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Abstract

Up to 70% of the available fresh water is used in agriculture. As the occurrence of droughts in
combination with the demand for water are steadily rising, water will become an increasingly
scarce resource for both food production and drinking. To prevent shortcomings in food produc-
tion, an effective water use monitoring is necessary to increase water use efficiency and reach a
sustainable water management for the future. Although some scientific methods exist to monitor
water use on agricultural lands, there is generally a communication gap between scientists and
the people, here the farmers, who are meant to implement the findings in their daily work. The
aim of this thesis is to support farmers in their decision making and water management by mak-
ing remotely sensed products to monitor agricultural water use accessible through performance
indicators. With evapotranspiration calculated using the Penman-Monteith equation, and gross
primary production with the light use efficiency approach, the water use efficiency of different ag-
ricultural fields was modelled using Sentinel-2 data. The modelled parameters were compared to
in situ measurements of the eddy flux tower at the study site in Oensingen, Switzerland, to verify
the reliability of the generated base maps. Using a multi-temporal data stack of three indices (leaf
area index, chlorophyll vegetation index, green leaf index), the fields in the study area were clas-
sified into three crop types (summer, winter and mixed crops). Using these three classes and the
previously calculated parameters, three performance indicators (yield, water use and productiv-
ity) were developed and implemented into an interactive R Shiny application, so that farmers can
monitor the water use of their fields. Despite the limitations of the used methods, especially the
classification approach, the development of performance indicators and creation of an application
in R Shiny to simplify complex remote sensing data proved to be very promising. With ongoing
research in both the calculation of the input parameters and the classification of agricultural fields,
the results of the performance indicators could be improved to make it a reliable tool for farmers.
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1 Introduction

A large proportion of the available fresh water on earth is used for irrigation in agriculture (Rose-
grant et al., 2009). In drought-prone regions, agricultural water use can account up to 70% of
the available fresh water (WWAP, 2014). With climate models predicting warmer and drier sum-
mers in the near future (Falloon & Betts, 2010; Hegerl et al., 2007), the occurrence and severity of
droughts in Europe are likely to increase (Fisher et al., 2017; Lehner et al., 2006). Water consump-
tion for use in the energy and agriculture sectors will also increase in the near future, mostly due
to population growth (Jewell, 2011). And with this, distribution problems of fresh water between
all interested parties will become more complex (Veettil & Mishra, 2016). This could lead to short-
ages in the availability of fresh water resources for agricultural use (Falloon & Betts, 2010; Fisher
et al., 2008) and, thus, to shortcomings in food production. Therefore, an efficient irrigation tech-
nique and schedule is needed to increase water use efficiency and to attain a sustainable water
management in the future (Farg et al., 2017). Additionally, knowledge regarding the vulnerability
and availability of fresh water will help to prevent water shortages not only in agriculture (Veettil
& Mishra, 2016), but in other ecosystems as well.

The concept of green and blue water can help in understanding the scarcity and vulnerability
of water and which parts of the water cycle are affected by the overuse of water for agricultural
purposes. All fresh water on the surface of the Earth originates from rainfall and will eventually
enter the ocean. The water can either take the path of blue water, which is readily available surface
water in lakes and aquifers (Falkenmark, 2013; Rodrigues et al., 2014) or the path of green water
which is described as the sum of evapotranspiration and soil water content as storage (Schuol
et al., 2008). In other words, the rain water is stored in unsaturated soil and vegetation (Veettil
& Mishra, 2016). Even if 3/5 of the precipitation takes the path of green water (Oki & Kanae,
2006), the indirectness of the probable water scarcity makes it invisible to economy and difficult to
quantify (Schyns et al., 2015). However, green water is very important for terrestrial ecosystems
as plant growth is a function of soil moisture, hence, it is responsible for the production of food
(Falkenmark, 2013). During the growing season of plants, the global consumption of green water
can amount up to 84% (Lui & Yang, 2010). As the availability of green water is limited (Schyns et
al., 2015), overuse effects can occur. These effects are not as easy to quantify as blue water scarcity
effects, as they are only detectable indirectly in the inability of plants to grow. In times when the
natural green water is scarce, agriculture uses blue water to irrigate crops (Schyns et al., 2015),
which can lead to a blue water scarcity if the drought occurs over a long period of time.

As crop water deficits depend on the water availability in the root zone and are, therefore,
difficult for farmers to detect above the soil surface (Chartzoulakis & Bertaki, 2015), agricultural
fields are often over-irrigated (Chartzoulakis & Bertaki, 2015). Not only can the overuse of water
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diminish the quantity of available blue water (Rosegrant et al., 2009), it can also have negative
effects on the agricultural fields themselves. For instance, the loss of nutrients, mostly nitrogen
due to leaching, can pollute ground and surface water (Velthof et al., 2014). The decreased nutrient
source can then lead to yield losses in farming (Riley et al., 2001). Irrigation can also cause an
increased salinity of the soil which can induce both land and water degradation (Chartzoulakis
& Bertaki, 2015; Chhabra, 1996; Rosegrant et al., 2009). To remedy the multiple negative effects
of over-irrigation, water and nitrogen use needs to be more efficient in the future (Kodur et al.,
2019). This can be achieved by minimizing the water loss, and increasing Water Use Efficiency
(WUE) and irrigation, which has little to no effect on the crop yield. This principle is called deficit
irrigation (Karam et al., 2007). It helps to achieve the maximum yield and reduce negative effects
such as nutrient leaching into the soil and ground water (Irmak et al., 2016). However, WUE does
not solely depend on the irrigation of the field, it also depends on environmental influences (Mo
et al., 2005).

Multiple research projects have studied WUE of different crops and grasslands using field meth-
ods and models (Karam et al., 2007; Tian et al., 2010). This has led to very good results on a small
spatial scale. To be able to assess the WUE on a bigger scale and over longer time periods another
technique has to be used. Remote sensing can provide systematic and consistent observations
and as it is available globally, it can be used for crop monitoring on large scales (Wolanin et al.,
2019). Additionally, remote sensing data has mostly the same spatial density all over the world
and the measurements are repeatable without additional effort (Mo et al., 2005). Further, data,
such as used in this study from the European Space Agency satellite Sentinel-2, are open source
and can be downloaded and processed by every interested person. The gathered data can be used
for crop yield forecasting and management decision optimisation (Wolanin et al., 2019). The local
data can be used to describe key ecosystem functions which can then be scaled up to a global
extent using this technique (Masek et al., 2015). Both Evapotranspiration (ET) and Gross Primary
Production (GPP) are important parameters in local and regional water management plans and
can be modeled using remote sensing approaches. Based on these two products, the WUE can
be calculated for the desired region which can then be used for irrigation schedules and with
some interpretation for the prediction of long-term effects of land use changes (Glenn et al., 2007).
However, most results of scientific publications are too abstract to be implemented directly by the
end-user. There is a transfer and knowledge gap between the scientists and the people, here the
farmers, who are meant to implement the findings in their daily work.
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The aim of this thesis is to support farmers in their decision making and water management
by making remotely sensed products to monitor water use by plants (such as ET, GPP and WUE)
accessible through performance indicators. Hence, our research questions are formulated accord-
ingly:

1. Which parameters and data comparisons can be useful to farmers in their decision making?

2. How can abstract remote sensing data be presented and visualised, so that the information
is usable by the target group?

As most farmers are not familiar with remote sensing data, we expect an increase in the us-
ability of the product, if the output data is presented in an understandable context. To achieve
the aim of the thesis and to answer the research questions, ET is modelled using the Penman-
Monteith equation and GPP is calculated with the light use efficiency approach. Using the output
of these two parameters, WUE can be estimated. With the results of all these calculations three
performance indicators are developed which can be accessed via a user-friendly application.
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2 Material and Methods

2.1 Study Area

The cropland site in Oensingen (SO), Switzerland, has been part of the Swiss FluxNet since 2004
and is thus, equipped with an eddy covariance flux tower and a meteorological station (Paul-
Limoges et al., 2018). The site (47◦17’11.1” N, 7◦44’01.5” E, 452 m a.s.l.) is an agricultural field
with a rotation of different crop types over the years, such as peas, sugar beet, and winter barley
(Damm et al., 2015). Tower-based hyperspectral measurements were made at the site with a high
precision spectrometer (UniSpec-DC) from 2015 to 2018 (Paul-Limoges et al., 2018) and with a
fluorescence box (FloX-Box) since April 2019. For this thesis a slightly larger study area was used,
instead of only the test fields in Oensingen. An area reaching from Wiedlisbach (BE) in the south-
west to Egerkingen (SO) in the north-east was chosen (Figure 2.1). This way, the behaviour of
multiple crop types and agricultural fields can be compared.

2.2 Remote Sensing Data

In this study we analyzed eleven Sentinel-2 scenes from April to October 2019. Additionally,
APEX scenes were used to help classify the test fields into different categories. FloX-Box meas-
urements were used for the net radiation calculation within the Penman-Monteith equation (see
2.6.2.8).

2.2.1 Satellite Spectroscopy Data

The Sentinel-2 mission of the European Space Agency (ESA) provides data from two satellites
Sentinel-2A (since June 2015) and Sentinel-2B (since March 2017) with a high temporal resolution,
due to the revisiting period of 5 days (Drusch et al., 2012). Its Multi-Spectral Instrument (MSI)
samples in 13 spectral bands from visual to shortwave infrared (Wolanin et al., 2019). Depending
on the spectral band the spatial resolution varies between 10 – 60 m (Drusch et al., 2012) (Table
2.1). In this thesis Level-2A data was used. This product provides bottom of atmosphere reflect-
ance data composed of 100 km2 tiles in cartographic geometry (UTM/WGS84 projection) (ESA,
2015). Eleven cloud-free scenes (tile T32TMT) from April to October 2019 were selected to cover
the growing season of most agricultural crops present in the study area (Table 2.2). The selec-
ted scenes were then cut to a spatial subset of the study area (WGS84 NW-corner: 47.32N 7.61E;
SE-corner: 47.26N 7.82E) and resampled to 10 m resolution based on band 2 using the Sentinel
Application Platform (SNAP).
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FIGURE 2.1: Study area of the cropland site in Oensingen (SO), Switzerland, in colour. With the six selec-
ted test fields marked in yellow and the meteorological stations Oensingen and Wynau as triangles. The
Sentinel-2 scene of June 19th 2019 was used as background.

TABLE 2.1: Thirteen bands of ESA’s Sentinel-2 satellite with the spectral resolution shown as the center
wavelength of the band and the spatial resolution in meters. The weighing coefficients ωbi according to
(Vanino et al., 2018) are used for the albedo calculation (Eq. 2.18).

Band Center Wavelength Spatial Resolution ωbi

Number (nm) (m) (-)

1 443 60
2 490 10 0.1324
3 560 10 0.1269
4 665 10 0.1051
5 705 20 0.0971
6 740 20 0.0890
7 783 20 0.0818
8 842 10 0.0722
8a 865 20 -
9 940 60 -
10 1375 60 -
11 1610 20 0.0167
12 2190 20 0.0002

6



TABLE 2.2: Acquisition dates and times of the eleven T32TMT Sentinel-2 tiles used.

Acquisition Date Acquisition Time

(Date) (UTC)

20/04/2019 10:30:31
04/06/2019 10:30:29
19/06/2019 10:30:31
29/06/2019 10:30:31
04/07/2019 10:30:29
24/07/2019 10:30:29
08/08/2019 10:30:31
18/08/2019 10:30:31
28/08/2019 10:30:21
12/09/2019 10:30:19
12/19/2019 10:30:29

2.2.2 Airborne Spectroscopy Data

The Airborne Prism Experiment (APEX) is a push-broom imaging spectrometer with a spectral
range from 400 nm to 2500 nm (Schaepman et al., 2015). The data set includes 313 spectral bands
in a 2 m spatial resolution. The images in the Oensingen region were taken on June 7th, July 25th

and 30th 2019. This data was not used in any calculations but to visually classify the different
crops on the test fields, as this was difficult with the lower resolution of the Sentinel-2 scenes.

2.2.3 Field Spectroscopy Data

The Fluorescence Box (FloX-Box) manufactured by JB-Hyperspectral, Germany, situated next to
the eddy flux tower at the Oensingen test site is primarily used to measure sun induced fluores-
cence. For this thesis the spectral radiance measurements [W m−2 sr−1 nm−1] were used. From
this data the daily mean and hourly mean values of the selected dates were calculated.

2.3 Meteorological Data

Multiple meteorological parameters are necessary input arguments for the Penman-Monteith equa-
tion. The data was provided by two different meteorological stations in the study area (Table 2.3).

2.3.1 Meteo Station Oensingen

The measurement equipment of the meteo station is situated next to the eddy flux tower at the
Oensingen test site (47◦17’11.1” N, 7◦44’01.5” E, 452 m a.s.l.). Air temperature, relative humidity,
atmospheric pressure and scalar wind speed data was used from this station in the ET calculation.
All data has a temporal resolution of 30 minutes. The data was provided by the ETH grassland
sciences group (‘Grassland Sciences’, 2020).
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2.3.2 Meteo Station Wynau

The meteo station in Wynau (47◦15’18.124” N, 7◦47’14.889” E, 422 m a.s.l.) is operated by Meteo-
Swiss. The global radiation measurements were used in the gross primary production calculation,
namely in the estimation of the photosynthetically active radiation (PAR) (see 2.7.1). These data
has a temporal resolution of 10 minutes. From that, a daily and hourly mean value of the se-
lected dates was calculated. The meteo data was accessed using IDAWEB, the data platform of
the MeteoSwiss services and have also been provided by MeteoSwiss, the Swiss Federal Office of
Meteorology and Climatology.

TABLE 2.3: Meteorological measurement specifications with unit, temporal resolution and height and
model of the instrument.

Parameter Unit Temporal Measurement Measurements Meteorological
Resolution Height Device Station

BOA Irradiance W m−2 nm−1 sr−1 ms (UTC) 2 m FloX-Box by Oensingen
(400.23 – 900.54 nm) JB-Hyperspectral, Germany
Temperature C 30 min. (GMT +1) 2 m Rotronic MP101A, Oensingen

Bassersdorf, Switzerland
Atm. pressure Pa 30 min. (GMT +1) 1 m - Oensingen
Windspeed m s−1 30 min. (GMT +1) 2 m Cup anemometer Oensingen
Rel. humidity % 30 min. (GMT +1) 2 m Rotronic MP101A, Oensingen

Bassersdorf, Switzerland
Global radiation W m−2 10 min. (UTC) 2 m Pyranometer CM21 by Wynau

Kipp & Zonen

2.4 Working Process

As can be seen in Figure 2.2, the programs Excel and SNAP were used for pre-processing. For
all calculations in the processing part of the thesis the software MATLAB (version R2019b) was
used. The performance indicators were calculated and visualised in R Shiny (RStudio, 2020) and
the base maps of the parameters were created in QGIS (version 3.10.2).

2.5 Classification of Test Fields

The classification of the fields into different crop types was necessary to be able to compare the
selected test fields to similar fields in the study area. In a first step, the study area, which only
consists of agricultural fields, had to be separated from the rest of the Sentinel-2 scene, otherwise
the fields would be compared to the forest or urban area within the region. For this polygon
masking in QGIS was used. In a second step, three indices were selected, which can explain
different plant traits and hence, behave differently for different field types. Sections 2.5.1 – 2.5.3
describe the indices used. In a third step, six test fields were selected (Figure 2.1), which should
simulate the input of an actual farmer to the later created performance indicator app. The fields
were selected due to their different appearance in the RGB representation of the Sentinel-2 scenes
and were of homogeneous structure. Field 4 was selected as it is the location of the measurement
devices of the Oensingen meteo station. The fields are represented by the mean of values of a
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FIGURE 2.2: Flow chart of the working process with the sources of the data and the computer programs
used in the different steps of the thesis indicated.

square of around 100 pixels in the middle of the fields. The position of the pixels was extracted
using SNAP.

2.5.1 Leaf Area Index

The LAI describes the degree of the canopy development (Vincini et al., 2008) and the leaf archi-
tecture (Glenn et al., 2007). With this index the potential surface for photosynthesis and leaf gas
exchange is calculated (Viña et al., 2011). The formula for the calculation of the LAI can be seen
under section 2.6.2.7. As the LAI is used to estimate ET, the classification cannot simply be based
on this index. Otherwise a bias would occur. Hence, two other indices were chosen.

2.5.2 Chlorophyll Vegetation Index

The chlorophyll vegetation index (CVI) is a vegetation index which can be used to estimate the
photosynthetic capacity and productivity of a plant canopy (Vincini et al., 2008). This index relies
on the assumption that the leaf chlorophyll content is no longer influenced by the LAI when the
canopy is closed (Vincini et al., 2008). The CVI was calculated according to Vincini et al. (2008)
using the Sentinel-2 bands 3, 4 and 8.

CVI =
Rn · Rr

R2
g

(2.1)

Rg: Band 3 (green) of Sentinel-2 (560 nm)
Rr: Band 4 (red) of Sentinel-2 (665 nm)
Rn: Band 8 (near infrared) of Sentinel-2 (842 nm)
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2.5.3 Green Leaf Index

As a third indicator the green leaf index (GLI) was chosen as only bands in the visual range of
the spectrum are necessary for the calculation (Hunt et al., 2012). The negative numbers when
calculating this index stand for the soil and nonliving surfaces and the positive values are the
green leaves and stems of the plants (Louhaichi et al., 2001). To calculate the GLI the method of
Louhaichi et al. (2001) was used.

GLI =
2 · Rg − Rr − Rb

2 · Rg + Rr + Rb
(2.2)

Rb: Band 2 (blue) of Sentinel-2 (490 nm)
Rg: Band 3 (green) of Sentinel-2 (560 nm)
Rr: Band 4 (red) of Sentinel-2 (665 nm)

2.5.4 Classification using the Spectral Angle Mapper

After looking at the variations in the indices over the course of the study time span, three dates
were selected (4th of June, 4th of July and 12th of September), where the indices of the six test
fields showed the highest differences (Figure 2.3). The resulting nine images were composed into
a layer stack, this way a multi-temporal data set was created. Using this data set, a supervised
classification using regions of interest, according to similar colours in the multi-temporal image,
was carried out. The Sentinel-2 images, on which all three indices are based, are acquired around
the same time during the day (Table 2.2) over the course of the study time. But as the sun angle
changes over the year, the illumination of the study area is not the same for the three selected
dates. As the spectral angle mapper (SAM) algorithm by Kruse et al. (1993) is independent of
the illumination of the scene (Lillesand et al., 2015), this classifier was chosen for the classification.
With this algorithm a spectral angle is used to determine the similarity of the image pixel spectrum
and a reference spectrum (Weyermann et al., 2009). The classification was performed with ENVI.
The three classes were used to generate binary masks to be able to calculate the class means of the
ET, GPP and WUE. This way it was possible to compare the selected test field to the mean of the
other fields in the area within the same class and hence similar properties.
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FIGURE 2.3: Calculated indices (a) leaf area index, (b) green leaf index and (c) chlorophyll vegetation index
for the six test fields over the year 2019. The grey boxes indicate the dates used for the classification.

2.6 Evapotranspiration

Evapotranspiration (ET) cannot be measured directly from space using satellite data but has to be
derived and approximated as an energy variable. For this, multiple types of in situ measurements
and information on phenology and vegetation cover are necessary to make sure that the processes
are captured correctly within the result (Fisher et al., 2017). To compute real-time ET, a prediction
of the daily reference evapotranspiration (ET0) has to be made. This value is then used as the basis
to estimate the crop evapotranspiration and the crop irrigation requirements (Allen1998). Mul-
tiple approaches to calculate ET0 have been developed over the past half century, all of them using
different climatic variables (R. G. Allen et al., 1998). Empirical approaches such as the Primault
method are mostly used for practical studies. For instance the MeteoSwiss net uses this method
for their measurements (Calanca et al., 2011). The Penman-Monteith approach is, however, the
one method recommended by the Food and Agriculture Organisation (FAO) to use for modelling
approaches and should be used as sole ET0 (R. Allen et al., 1994; Calanca et al., 2011). Hence this
method is used for this thesis.

2.6.1 The Penman-Monteith Equation

In May 1990, the FAO decided that the Penman-Monteith (P-M) model should be the new standard
to estimate ET0 (de Carvalho et al., 2013). Several different approaches are still used in science,
but the P-M model shows the most precise results compared to other models (Garcia et al., 2004;
Gavilán et al., 2006). The following P-M equation (Eq. 2.3) describes the ET as a latent heat flux. In
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order to be able to evaporate water, energy is necessary, which is provided by the solar radiation
term (Rn - G, Sections 2.6.2.8 and 2.6.2.9). The amount of water which can be evaporated firstly
depends on the difference in pressure in the atmosphere and plant (multiple variables calculated
with mostly meteorological data) and secondly on specific plant properties, namely the number
and functionality of the stomata openings (rs, Section 2.6.2.7).

ET =
∆(Rn − G) + ρaCp(

es−ea
ra

)

∆ + γ(1 + ( rs
ra
)

(2.3)

ET: Evapotranspiration [mm H2O day−1]
Rn: Net radiation at crop surface [MJ m−2 day−1]
G: Ground heat flux [MJ m−2 day−1]
es: Vapour pressure of the air at saturation [kPa]
ea: Actual vapour pressure [kPa]
(es - ea): Saturation vapour pressure deficit [kPa]
Δ: Slope of vapour pressure curve [kPa ◦C−1]
γ: Psychrometric constant [kPa ◦C−1]
Cp: Specific heat of the air [MJ ◦C−1 kg−1]
ρa: Mean air density at constant pressure [kg m−3]
ra: Aerodynamic resistance [s m−1]
rs: Surface resistance [s m−1]

The comparison between ET0 computed using the P-M equation (Eq. 2.3) and values estimated
from weather forecasts show best results in humid areas. The estimation in arid areas can be
biased especially during dry periods. This leads to an underestimation of ET most likely due to an
overestimation of ea (Cai et al., 2007). This needs to be considered, in particular if drought events
are studied.

2.6.2 Input Parameters for the Penman-Monteith Equation

Most of the components for the P-M equation (Eq. 2.3) have to be calculated or estimated with
other parameters as they cannot be measured directly or are dependent on other variables. In
this subsection the calculation and data origin of all input parameters will be discussed. The
meteorological parameters are assumed constant over the whole study area. ET was calculated
firstly as hourly means for each of the eleven days. Secondly, daily mean values were calculated
by summing the results of the hourly means. Hence, two different means had to be calculated
for each input parameter, a series of hourly means and eleven daily means. The original temporal
resolution of the measurements can be seen in Table 2.3. All input parameters for the P-M equation
were calculated according to the guidelines of Allen et al. (1998).

12



2.6.2.1 Psychrometric Constant γ

The psychrometric constant is only dependent on the atmospheric pressure P, which was meas-
ured at the Oensingen meteo station.

γ =
Cp · P
ε · λ =

1.013 · 10−3 · P
0.622 · 2.45

= 0.6647 · 10−3 · P (2.4)

γ: Psychrometric constant [kPa ◦C−1]
Cp: Specific heat of the air = 1.013 · 10−3 MJ ◦C−1 kg−1

P: Atmospheric pressure [kPa]
ε: Ratio of molecular weight of water vapour/dry air = 0.622 [-]
λ: Latent heat of vaporisation = 2.45 MJ kg−1

2.6.2.2 Mean Air Density ρa

The mean air density is a parameter that is dependent on the atmospheric pressure and indirectly
on the air temperature.

ρa =
P

Tkv · R
=

P
1.01 · (T + 273) · 0.287

(2.5)

ρa: Mean air density at constant pressure [kg m−3]
P: Atmospheric pressure [kPa]
Tkv: Virtual temperature
R: Specific gas constant = 0.287 kJ kg−1 K−1

2.6.2.3 Vapour Pressure of saturated Air es

For the estimation of the vapour pressure of saturated air the saturation vapour pressure at air
temperature has to be calculated first using equation (Eq. 2.7).

es = e◦(T) (2.6)

e◦(T) = 0.6108 · e( 17.27·T
T+237.3 ) (2.7)

es: Vapour pressure of saturated air [kPa]
e◦(T): Saturation vapour pressure at air temperature T [kPa]
T: Air temperature [◦C]
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2.6.2.4 Actual Vapour Pressure ea

The ea is dependent on the es (Eq. 2.6) and the relative humidity of the air. For the daily and
hourly ea equation (Eq. 2.6) both the mean relative humidity and indirectly the mean temperature
of the time span have to be considered.

ea = es ·
RH
100

(2.8)

ea: Actual vapour pressure [kPa]
RH: Relative humidity [%]

2.6.2.5 Slope of Vapour Pressure Curve Δ

The slope of the vapour pressure curve is the derivative of es and T. The second part of the equa-
tion (Eq. 2.9) is a simplification of this derivative. For both temperature and es the daily and
hourly mean have to be taken into consideration.

∆ =
des

dT
=

4098 · [0.6108 · e( 17.27·T
T+237.3 )]

(T + 237.3)2 (2.9)

Δ: Slope of vapour pressure curve [kPa ◦C−1]
es: Vapour pressure of the air at saturation [kPa]
T: Air temperature [◦C]

2.6.2.6 Aerodynamic Resistance ra

The aerodynamic resistance mainly describes the measurement set-up of the wind and humidity
parameters and the interaction of these with the plants. Different wind speed averages have to be
calculated.

ra =
ln( zm−d

zom
) · ln( zh−d

zoh
)

k2 · uz
(2.10)

ra: Aerodynamic resistance [s m−1]
zm: Height of the wind measurements [m]
zh: Height of the humidity measurements [m]
d: Zero plane displacement height [m]
zom: Roughness length governing momentum transfer [m]
zoh: Roughness length governing transfer of heat and vapour [m]
k = Karman’s constant = 0.41 [-]
uz: Wind speed at height z [m s−1]
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The height of the wind and humidity measurements can be found in Table 2.3. The following
equations 2.11 – 2.13 show the calculation for parameters additionally needed for equation 2.10.

d =
2
3
· hc (2.11)

zom = 0.123 · hc (2.12)

zoh = 0.1 · zom (2.13)

The FAO suggests a standard height of crops hc of 0.12 m. This height is further used to calculate
d (Eq. 2.11), zom (Eq. 2.12) and indirectly the zoh (Eq. 2.13). Through the assumed constant height
over the whole study area an error is induced to the result of the ET calculation.

2.6.2.7 Surface Resistance rs

For the surface resistance rs calculation the leaf area index (LAI) has to be estimated. As only one
Sentinel-2 scene was available for each of the eleven days, only one LAI value could be calculated
per day. Thus, the surface resistance is considered constant over the day. For rl a constant value
of 100 s m−1, as suggested by the FAO in Allen et al. (1998, chapter 2), was used. In reality the
stomatal resistance is crop dependent, but as not all crop types in the study area were known, a
constant value for all fields seemed appropriate. This will of course also induce an error to the
result. To calculate the LAI the method of (Delegido et al., 2013) was used (Eq. 2.15). The NDI was
calculated using the Sentinel-2 bands 4 and 5 (Eq. 2.16).

rs =
rl

LAIactive
(2.14)

rs: Surface resistance [s m−1]
rl : Stomatal resistance of the well-illuminated leaf [s m−1]
LAIactive: Leaf area index of the active part of the plant (LAI · 0.5) [-]

LAI = −0.91876 + 13.448 · NDI (2.15)

LAI = Leaf area index [-]
NDI = Normalized differential index [-]

NDI =
B4− B5
B4 + B5

(2.16)
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B4: Band 4 of Sentinel-2 (665 nm)
B5: Band 5 of Sentinel-2 (705 nm)

2.6.2.8 Net Radiation Rn

An important factor for the net radiation calculation is the albedo. It is derived from the Sentinel-
2 scene and assumed constant over the day. The irradiance measured with the FloX-Box was
summed up over the whole spectrum for each time step and averaged for the hourly and daily
calculations. The FloX-Box only collects data during daylight, hence there are no measurements
during night-time. Due to this, a constant time of 6.00 – 22.00 UTC was used for all calculations.
However, this can lead to too high ET values as some of the data may be cut of. Additionally, it
also limits the hourly means calculation to daytime.

Rn = (1− α) · ETOC (2.17)

Rn: Net radiation at crop surface [MJ m−2 day−1 or hour−1]
α: Albedo [-]
ETOC: Top of canopy irradiance [W m−2 nm−1]

The albedo is the integration of the at surface reflectance across the shortwave spectrum (D’Urso
& Belmonte, 2006). It can be calculated as follows:

α = ∑ | ρbi ·ωbi | (2.18)

α: Albedo [-]
ρ: Surface reflectance
ω: Weighing coefficient
bi: Band of Sentinel-2

To have the same spectral range as the FloX-Box irradiance measurements, only the Sentinel-
2 bands 2 – 8 were used for the albedo calculation. The same weighing coefficients ωbi for the
Sentinel-2 bands as in Vanino et al. (2018) were used and can be found in Table 2.1.

2.6.2.9 Ground Heat Flux G

According to the FAO and Calanca et al. (2011) the ground heat flux is 10% of the net radiation.

G = 0.1 · Rn (2.19)

G: Ground heat flux [MJ m−2 day−1 or hour−1]
Rn: Net radiation at crop surface [MJ m−2 day−1 or hour−1]
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2.7 Gross Primary Production

Gross Primary Production (GPP) describes the carbon flux from carbon dioxide to carbon com-
pounds in plants by using photosynthesis on an ecosystem level (Bandaru et al., 2013; Beer et al.,
2009). For the thesis a light use efficiency (LUE) based approach (Eq. 2.20), which uses climate
and satellite data, was used (Monteith, 1972, 1977).

GPP = PAR · f APAR · LUE (2.20)

GPP: Gross primary production [g C m−2 day−1]
PAR: Photosynthetically active radiation [W m−2]
fAPAR: Fraction of absorbed PAR [-]
LUE: Light use efficiency [g C m−2 / MJ APAR]

2.7.1 Photosynthetically Active Radiation

The photosynthetically active radiation (PAR) is the part of the spectrum which plants can use for
photosynthesis. This part lies in the visual part of the spectrum (400 – 700 nm) of the terrestrial
sunlight (Figure2.4) (González & Calbó, 2002). According to multiple sources PAR is about 45%
of the global radiation (González & Calbó, 2002; Xin et al., 2015). Therefore, this percentage of the
global radiation measurements from the Wynau meteo station was used to estimate PAR.

FIGURE 2.4: Spectrum of the solar radiation on Earth, in the extraterrestrial and terrestrial situation. The
photosynthetically active radiation represents the visible wavelength area of the total global radiation spec-
trum (terrestrial situation) (Degreen & Locusta, 2020).
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2.7.2 Fraction of absorbed PAR

A relation between the fraction of absorbed PAR (fAPAR) and the Enhanced Vegetation Index
(EVI) has been detected (Lin et al., 2019). This index is more sensitive to canopy structural vari-
ation than to chlorophyll content, which is for instance detected by the NDVI (Glenn et al., 2007).
It is also able to better explain the seasonal dynamics and inter annual changes of the carbon ex-
change (Xiao et al., 2005). This way the vegetation signal is optimised by a de-coupling of the
canopy background signal (Huete et al., 2002). The index is calculated as follows:

EVI = G · ρNIR − ρRED

ρNIR + C1 · ρRED − C2 · ρBLUE + L
(2.21)

EVI: Enhanced vegetation index [-]
ρ: Surface reflectance
L: Canopy background adjustments
C1, C2: Coefficients of the aerosol resistance term
G: Gain factor

The coefficient values proposed by Huete et al. (2002) L = 1, C1 = 6, C2 = 7.5 and G = 2.5 were
used. For NIR the Sentinel-2 band 8, for RED band 4 and blue band 2 were used. fAPAR was
assumed constant over the course of a day.

2.7.3 Light Use Efficiency

The LUE describes how efficient the photosynthesis of the studied biome or plant is and converts
the incoming radiation to stored carbon (Wei et al., 2017). It accounts for different conditions from
the environment which can have an effect on the photosynthesis of the plants (Wolanin et al.,
2019). LUE depends on the type of plant, but as not all plants in the study area are known, the
global average value estimated by Wei et al. (2017) of 1.23 g C m−2 / MJ APAR was used as a
constant value for all days of the study period.

2.8 Water Use Efficiency

There are different approaches to calculate Water Use Efficiency (WUE). For this thesis the GPP
based approach was used, which is defined as the ratio between the carbon gain, expressed
through GPP, and water loss due to evapotranspiration (Tian et al., 2010). This is also named
as biomass based WUE as it depends on the new biomass produced through photosynthesis (Qiu
et al., 2008). WUE was calculated as hourly and daily means using (Eq. 2.22).

WUE =
GPP
ET

(2.22)
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WUE: Water use efficiency [g C/kg H2O]
GPP: Gross primary production [g C/m2 day]
ET: Evapotranspiration [mm H2O/day]

2.9 Performance Indicators

Performance indicators (PI) were developed to help farmers understand and interpret the results
of the calculated parameters. They should add value to abstract scientific data, so that all users
can use the results and not only remote sensing scientists. To test the indicators, the same data was
displayed in a normal scientific way and in a more illustrated, visualised way. This was achieved
using the R package Shiny which enables the generation of interactive user interface for the data.

2.9.1 Yield

The possible increase or decrease in yield of a field was estimated by using the GPP parameter.
The summed differences between the chosen field and the chosen crop type for all images were
calculated. Depending on the resulting value, it is either a possible yield increase (positive value
as the field has higher a GPP sum as the class) or yield decrease (negative value).

2.9.2 Water

In a similar way as the yield PI, the water PI calculates a possible water loss or water saving by
using the ET parameter. If the field has higher summed ET values as the chosen crop type, more
water is unnecessarily used in the production of the crops and, therefore, water is lost. This PI is
only usable when the same crop in the same time frame is used for the comparison.

2.9.3 Productivity

As a third PI, the productivity of the selected fields was compared to the possible productivity
for the crop type found in literature. As reference values the data from (Swiss Granum, 2017) for
winter wheat, summer wheat and maize was used. As the productivity is the yield per area the
additional input of the field area is necessary for this calculation.
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3 Results

Evapotranspiration (ET) was calculated using the Penman-Monteith (P-M) equation (Eq. 2.3) and
the gross primary production (GPP) with the light use efficiency approach. From these two para-
meters the water use efficiency (WUE) was deduced. This was done for both daily and hourly
means. Using a multi-temporal data stack of three indices (LAI, GLI, CVI) the fields in the study
area were classified into three different crop types. Using these classes and the three parameters,
performance indicators (PI) were developed and implemented in an R Shiny app.

3.1 Classification of the Study Area into Crop Types

The result of the classification (Figure 3.1) shows test field 3 in class 1 (blue), fields 4 – 6 in class
2 (yellow) and fields 1 – 2 in class 3 (red). To define the kind of crops in each class was very
difficult to accomplish. The class images were compared to the three available APEX images of the
area and the Sentinel-2 images to determine the planting and harvesting periods of the different
field classes. Together with the seeding and harvesting times stated on landwirtschaft.ch (2020)
the crops within the three different classes were identified. Type 1 fields are still brown/bare
in June and dark green from July on. Hence, these fields have summer crops planted. Type 2
fields are green in all of the images used for the classification. Therefore, these fields represent a
mixture of maize and other crops. The last type shows brown/bare fields in the images of July
and September. This is the harvesting time of winter crops. Test field 4 belongs to this class, which
is the only field the crop type is known. According to the research site description, winter wheat
was planted in the 2018/19 season, which falls into the winter crop category. There are fields in
all three classes which could be grass or cut-down crops.

3.2 Calculation of the Base Maps

3.2.1 Leaf Area Index Values

The first parameter to calculate was the LAI which was then used as input for the ET calculation
(see section 2.6.2.7). Eliminating pixels with LAI values lower than or equal to 0, enabled the
filtering out of streets, buildings and water still present in the study area. Only the remaining
pixels were used to calculate the ET in the next step. Over the time span of the eleven analysed
dates the LAI had a total range of 0 – 6.3. The mean daily values for the whole study area and the
three classes can be found in Figure 3.2. More detailed values for each of the six test fields can be
found in Table A.1.
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FIGURE 3.1: Classification map of the three crop types (summer, winter and mixed crop) found in the study
area. The supervised classification was achieved by using a multi-temporal layer stack of three indices (leaf
area index, green leaf index, chlorophyll vegetation index) and the spectral angle mapper as classifier. The
Sentinel-2 scene of June 19th 2019 was used as background.

Figure 3.2a represents the changes of the daily mean values of LAI during the study time span,
with lower values in the summer months and higher values in both spring and autumn. This
distribution is also visible in both the winter crop and mixed crop classes, but not in the summer
crop class which shows a different trend (Figure 3.2b). Figure 3.3 shows the distribution of the
daily mean LAI values over the study area displayed as a heat map on 19th of June 2019. Darker
colours indicate higher LAI values and represent mostly fields of the winter and mixed crop class.
As the LAI is based on the Sentinel-2 image, there is only one value available per day. Therefore,
it is assumed constant over the day for further calculations and no hourly results are available.
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FIGURE 3.2: (a) Calculated daily mean leaf area index values for the whole study area and (b) the three
crop type classes over the year 2019 using the method of Delegido et al. (2013).

FIGURE 3.3: Heat map of daily mean leaf area index values of 19th June 2019 for the whole study area
with darker colours indicating a higher leaf area index. The Sentinel-2 scene of June 19th 2019 was used as
background.
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3.2.2 Evapotranspiration Values

In a second step, the remaining pixels after filtering with the LAI were used to calculate ET with
the aid of the Penman-Monteith equation for both hourly and daily time steps. Figure 3.4 shows
the hourly variation of the measured days in 2019. The results range from 0 – 0.6 mm/hour
with the highest values occurring during midday. It can also be seen that the amount of water
evapotranspirated at the midday peak varies over the year, with highest values in the hot summer
months. Early in the morning and in the evening even higher and lower values can occur (not
displayed in the graph). The FloX-Box’s recording time is the same over the whole period but
sunrise and sunset are changing. Due to this, the measurements are not always meaningful as
they only work during sunshine. Hence, only data from 6.00 – 22.00 UTC are presented in the
graphs.

FIGURE 3.4: Calculated mean hourly evpotranspiration for the whole study area for all eleven days in the
study period in 2019 using the Penman-Monteith equation.

The daily ET was calculated by summing up the hourly values. The total range of the daily ET
over the eleven analysed days was 0 – 7.5 mm/day. In Figure 3.5 the mean values of the whole
study area (a) and the three field classes (b) can be seen. This figure enables the higher ET values
in the summer months to be seen, and lower values in spring and autumn. It shows an opposite
course over the year than the LAI values (Figure 3.2a). More detailed values can be found in the
appendix (Table A.2). To visualize the computed ET data, a heat map of the study area for June
19th 2019 was created (Figure 3.6).The lightest blue values indicating low ET, belong mostly to the
summer crop class. When comparing to Figure 3.5b it can also be seen that this class has the lowest
values on June 19th. The other two crop classes are very similar on this date and have, therefore,
similar dark colours in the heat map.
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FIGURE 3.5: (a) Calculated mean evpotranspiration for the whole study area and (b) the three crop type
classes over the year 2019 using the Penman-Monteith equation.

FIGURE 3.6: Heat map of daily mean evpotranspiration of 19th June 2019 for the whole study area. The
darker blue colour indicates higher evpotranspiration. The Sentinel-2 scene of June 19th 2019 was used as
background.
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As the study site in Oensingen has its own eddy flux tower, in situ measured ET is available for
the same time period as calculated in this thesis. A comparison of the in situ measured ET (gap
filled), the mean ET calculated over the whole study area and test field 4 can be found in Figure
3.7a. Test fields is represented in the graph as the flux tower is situated at that location. The match
up data points of the in situ data and the modelled data for field 4 are also displayed in a scatter
plot (Figure 3.7b). The trend line in grey is calculated using the least-squares approach and the
blue line stands for the 1:1 dependency of the variables.

FIGURE 3.7: (a) Comparison of the in situ measured evpotranspiration at the flux tower in Oensingen which
is situated in test field 4 with the modelled data for this field and the whole study area as line plot. (b) The
direct comparison of field 4 data, modelled and measured, displayed as scatter plot with the 1:1 line in blue
and the trend line (y = 2.06 + 0.89x, R2 = 0.75) in grey.

3.2.3 Gross Primary Production Values

Using the light use efficiency approach, the hourly GPP values for the eleven available days were
calculated. Figure 3.8 shows hourly variation of all of the eleven test days. The values range
from 0 – 1.1 g C/m2 hour with highest values in spring and early summer (yellow to orange
colours). The shape of the daily course of the GPP values looks very similar to the ET on the
same day (Figure 3.4) with the highest values around midday and the same downward peak at
around 14.00 UTC. The daily values were calculated by summing the results of the hourly data.
The calculations resulted in a total range of 0 – 36 g C/m2 day. Figure 3.9a shows the results of
all the mean values over the course of the study time span. There is a clear decreasing trend of
GPP over time with some flatter parts with not much change during mid July to mid September.
The mixed and winter crop classes a similar trend with the summer crop class having an opposite
course (Figure 3.9b). More detailed values can be found in the appendix in Table A.3.
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FIGURE 3.8: Calculated mean hourly gross primary production for the whole study area over the year 2019
using the light use efficiency approach.

FIGURE 3.9: (a) Calculated daily mean gross primary production for the whole study area and (b) the three
crop type classes over the year 2019 using the light use efficiency approach.
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Similar to the LAI filtering, only pixels with GPP values equal or higher than 0 were used for
further calculations. Figure 3.10 shows the distribution of the mean GPP values over the whole
study area on the 19th of June for better visualisation of the spatial distribution of the values. At
the time of the snap shot the winter crop is the class with the lowest values. This is reflected
by the lightest coloured fields in the map. The fields with the highest GPP belong to the mixed
crop class. The flux tower in Oensingen does not only measure ET but also estimates GPP using
the nighttime partitioning method (Reichstein et al., 2005). With this information, the second
modelled parameter used to estimate WUE could be validated with in situ measurements (Figure
3.11a & b). The trend line in grey is calculated using the least-squares approach and the blue line
represents the 1:1 dependency of the variables.

FIGURE 3.10: Heat map of mean gross primary production of 19th June 2019 for the whole study area with
darker green colour indicating higher a gross primary production. The Sentinel-2 scene of June 19th 2019
was used as background.
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FIGURE 3.11: (a) Comparison of the in situ measured gross primary production at the flux tower in Oensin-
gen which is situated in test field 4 with the modelled data for this field and the whole study area. (b) The
direct comparison of field 4 data, modelled and measured, as scatter plot with the 1:1 line is in blue and the
trend line (y = 3.87 + 0.56x, R 2 = 0.77) in grey.

3.2.4 Water Use Efficiency Values

Using the ET and GPP values for the WUE estimation a total range of areal mean of 0 – 8.9 g C/kg
H2O was calculated. When checking the absolute range of all values and not just the means, a
very high maximum of over 100’000 g C/kg H2O can be discovered. This however, is due to the
calculation of the WUE (Eq. 2.22). If the ET value of a certain pixel is close to 0, the result for
the WUE will be a very high number. For the same reason the standard deviation can be high for
specific days and areas. For a better overview the mean values of the whole area (Figure 3.13a) and
the three crop classes, (Figure 3.13b) should be used. All mean values and their standard deviation
can be found in Table A.4 in the appendix. The hourly calculations of the WUE resulted in Figure
3.12a displaying the data for all days during the study time and Figure 3.12b for 19th of June
2019. Only the data between 7.00 – 18.00 UTC is used as the results before and after this time span
have very high values. This is due to the same reason as described in Section 3.2.2. Within this
daily time slot the results range between 1.2 – 5.7 g C/kg H2O, with higher values in spring and
autumn (yellow and blue-green colours). During this time period the variation within one day is
also greater. 19th of June represents a more average distribution of values when compared to all
the sampled days, however, when it is displayed separately, the inter daily variations can be seen.
There are high values in the morning and evening, which are probably not usable measurements.
But from around 9.00 – 14.00 UTC the graph shows a similar course as the ET and GPP results,
with the highest values just before or around midday.
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FIGURE 3.12: Calculated mean hourly water use efficiency for the whole study area over the year 2019
using the before estimated evapotranspiration and gross primary production.

For the daily mean WUE values the hourly data was summed up. Figure 3.13a shows the
distribution of the daily mean values over the course of the study, with low values in summer
(except for one peak in August) and higher values in spring and autumn. The daily mean of the
three classes (Figure 3.13b) is the result of dividing the mean GPP by the mean ET of the respective
classes. All classes also display a similar trend as the daily mean of the whole study area, and are
relatively similar in value range. Figure 3.9b allows to pin point the outlier in August to the winter
crop class displayed in yellow. A heat map describing the mean WUE values over the whole study
area, calculated by pixel wise division of GPP/ET can be found in Figure 3.14. The lightest colour
indicating low WUE can be found in fields of the winter crop class. Highest values are from
summer crop and mixed crop fields.
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FIGURE 3.13: (a) Calculated daily mean water use efficiency for the whole study area and (b) the three crop
type classes over the year 2019 using the before estimated evapotranspiration and gross primary produc-
tion.

FIGURE 3.14: Heat map of daily mean water use efficiency of 19th June 2019 for the whole study area
calculated by pixel wise division of evapotranspiration and gross primary production. Higher water use
efficiency is displayed in darker orange colour. The Sentinel-2 scene of June 19th 2019 was used as back-
ground.
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3.3 Performance Indicators

An app was created with the aid of the R Shiny package (RStudio, 2020) to interactively display
the calculated results. On its start page, information is given about the research conduced for this
thesis (Figure 3.15). The two tabs "Daily Data" and "Performance Indicators" enable an interactive
exploration of the results of this study.

FIGURE 3.15: Start page of the R Shiny app with information about the research and a map of the study site
with the six test fields marked.

Depending on the chosen test field, crop type and parameter (ET, GPP, WUE), the course of the
daily values is displayed over the year 2019. With this, the own field can be compared to the mean
value of the same crop type in the study area. As example Figure 3.16 illustrates the "Daily Data"
tab with the comparison of daily mean GPP of field 3 and the corresponding summer crop class.
The data is displayed both as line and bar plot.
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FIGURE 3.16: Daily mean gross primary production of field 3 (red) compared to the summer crops class
(blue) in the app. The same data is visualised as line and bar plot. The black lines indicate the standard
deviation of the means.

As a second step, three performance indicators, as described in Section 2.9, were implemen-
ted in the app. Using line and bar plots and adaptable graphics the PIs should help the user to
understand the measured and calculated data. Additionally, the PI add value to the three calcu-
lated parameters by adding useful practical parameters such as yield, potential water loss and
productivity. The three performance indicators are described in the following sections.
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3.3.1 Yield

After calculating the yield differences between the selected test field and the crop type, the result
was classified into three categories indicated with the position of the arrow in the adaptable graph-
ics (Figure 3.17). The lowest category with a yield difference of < -10, meaning the test field has
a much lower yield as the average of the fields with the same crop type. This is represented with
the red part of the speedometer. The orange intermediate category represents yield differences of
-10.1 – 10, which is a mix of having lower and higher yield than the average. The highest class in
the green area stands for yield differences > 10. The unit used for the definition of the categories
in ’GPP-values’ in g C/m2 day. These values are transformed into % - numbers for more clarity
and are accompanied with a statement whether a yield increase or decrease can be expected.

The same field and crop type class as in Figure 3.16 were selected to illustrate the possible yield
outcome of 2019 in the app (Figure 3.18). The top plot describes the mean daily GPP of both the
selected field (red) and crop class (blue). The bottom plot illustrates the absolute difference per
measurement day as a bar. If the value is negative (less yield in the field than the overall class),
the bar points downward and is coloured orange e.g. 12. September. As can be seen on the left
side of the figure, the possible yield of field 3 is classified in the orange category. Additionally, the
sentence below the graphic indicates a possible yield loss of 3.58% for the chosen field.

FIGURE 3.17: Depending on the yield difference between the chosen test field and crop type, one of the
three categorised adaptable graphics appears in the app. They stand for (a) low, (b) middle and (c) high
potential yield.

3.3.2 Water Use

Similar to the yield PI, the result of the difference of the water usage calculation was classified
into three categories. Here, a water drop was chosen for the adaptable graphics with the different
stages of fill for the three categories (Figure 3.19). The thresholds for the three classes are the
same as described in Section 3.3.1 with the unit being the ’ET-values’ in mm/day. As additional
statement the potential water loss, if the difference between field and crop type is negative at the
end of the year, or water saving, if the difference is positive, is given.

34



FIGURE 3.18: Possible yield of field 3 compared to the summer crop class in the app.

Using again the combination of field 3 and the summer crop class, the PI indicator for possible
water losses and savings is illustrated in Figure 3.20. The top plot displays the distribution of ET
of the field (red) and crop class (blue) over the year. The bottom plot indicates the differences in
ET between the selected field and class. In contrast to the yield PI, having a negative water PI is a
positive result, as it indicates less water use and therefore a water saving in this area. Due to this,
negative bars are coloured in green and not orange as in the yield PI. The graphics indicates field
3 to be in the middle category and having a potential water saving of 6.66% over the year 2019.
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FIGURE 3.19: Depending on the potential water loss or saving of the chosen test field compared to the crop
type, one of the three categorised adaptable graphics appears in the app. They stand for (a) low, (b) middle
and (c) high water use.

FIGURE 3.20: Water use of field 3 compared to the summer crop class in the app.
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3.3.3 Productivity

As a third performance indicator the productivity of the selected test fields was analysed. Using a
manual input of the field area in ha, calculated yields and literature reference values, the possible
and actual productivity can be compared. As each of the the three crop types contains multiple
different crops, three representative crops were chosen to be used for the productivity calculation.
For the summer crop, the productivity of 42.3 kg/Ar of summer wheat, for winter crop 58.4 kg/Ar
of winter wheat and for the mixed crop type 108.9 kg/Ar of maize was used. After calculating, the
app generates statements about the actual productivity of the selected yield and the productivity
that could be possible on the same field in t/ha. The productivity PI is represented by a number
of wheat stalks (Figure 3.21) depending on the percentage of productivity of the field compared to
the possible productivity of the crop type. Less than 50% is the lowest category, between 50 and
75% is represented in the intermediate category and higher than 75% is the highest category with
three wheat stalks.

The last PI of the productivity was also tested with field 3 (Figure 3.22). With an assumed field
size of 50 ha the productivity of the field (red box) is not as high as literature references estimate
(yellow box). Due to this the field is classified in the lowest category of the PI. The additional text
below the graphic indicates the exact productivity value of 211.5 t/ha possible and 102.03 t/ha
actual.

FIGURE 3.21: Depending on the productivity of the selected field compared to the possible productivity of
the crop type class, one of the three categorised adaptable graphics appears in the app. They stand for (a)
low, (b) middle and (c) high productivity.
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FIGURE 3.22: Productivity of field 3 compared to the summer crop class in the app. An area of 50 ha was
assumed for field 3.

For each of the six test fields the PI category was determined when they were compared to their
respective crop classes (Table 3.1). For the productivity PI a field area of 50 ha was assumed for all
six test fields.

TABLE 3.1: Category of the performance indicators of the six test fields when compared to their respective
crop classes. Summer crop: field 3, mixed crop: fields 1, 2, winter crop: fields 4, 5, 6.

PI Yield Water Use Productivity

Category High Middle Low High Middle Low High Middle Low

Field 1, 5 3, 6 2, 4 2 1, 3-6 - - - 1-6
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4 Discussion

4.1 Interpretation of the Classification

Comparing one’s own field with fields in which the same or similar crop types have been planted
gives a more informative output for the end user, instead of only using the whole area as a com-
parison. For this, a classification of the fields in the study area was necessary. As the main focus
of this thesis is not the classification of agricultural fields, a basic approach was used. The res-
ults of using this simple method is reflected in the low quality of the differentiation of the three
crop classes. This effect is most obvious in the graphs which show the annual change of the three
different classes (e.g. Figure 3.5b).

The shape of both the summer and winter crop class for the LAI (Figure 3.2b) and GPP (Figure
3.9b) parameters are reasonable, when compared to the sowing and harvesting times of the crops.
Winter crops have the majority of their growing time over winter and spring, which accounts
for the higher LAI and GPP values during the beginning of the study period (‘landwirtschaft.ch’,
2020). During this time the plants also consume and evaporate more water as they are more
actively undergoing photosynthesis (Penning de Vries et al., 1989), which is reflected in the higher
ET values (Figure 3.5b). After harvesting of the winter crop in June and July, all the described
parameters drop to a constant lower value. The class of summer crop shows an contrary shape
with lower values at the beginning of the year. This is consistent with the sowing time of around
March to April. Values increase during peak growing season. After harvesting time in August
the values should decrease as they do in the winter crop class (‘landwirtschaft.ch’, 2020). The
results, however, show only a slight decrease and a drop in late September and October. This later
harvesting time indicates the presence of another crop in this class, for instance maize which is
harvested during this period of the year.

First, the third crop type class was meant to be the corn class. As the sowing time for maize is
in late spring, LAI and GPP values should be low at the beginning of the study period with an
increase over the summer months (‘landwirtschaft.ch’, 2020). With the harvesting time in autumn
this signal should be the only crop class with high values in this time of year. Even if the third
class has the highest values in this period it shows a contradicting shape over time and should
rather look similar to the summer crop curve. Additionally, the two classes for corn and winter
crop have a very similar shape in GPP over the year, with the difference of the corn class having
generally higher values. This indicates that the two classes are not separated well and that most
likely the corn class is a mixture of different crops including corn and winter crops. Due to this,
the corn class was renamed mixed crop class.
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Based on this, the summer crop class is the most reliable and the mixed crop class the least
reliable within the classification. As the classification is only used as a means of comparison and
visualisation of fields, the result is sufficient. Many other scientists are currently working on more
sophisticated ways to classify agricultural fields e.g. Böhler et al. (2020) with promising results,
which could be implemented in the future.

4.2 Reliability of the Base Maps

The resulting values and ranges of the four calculated parameters (LAI, ET, GPP, WUE) were com-
pared to the in situ flux tower measurements conducted at the Oensingen site. Additionally, stud-
ies using the same model calculations were consulted to test the reliability of the base maps. This
enables a validation of the two modelled input parameters ET and GPP for the WUE calculation,
resulting in an indirect test for the reliability of the WUE.

4.2.1 Leaf Area Index Base Map

The LAI is an input parameter for the Penman-Monteith (P-M) equation and is, therefore a base for
the ET calculation. Many studies have been conducted in Oensingen before and their results were
used for validation of the here calculated data. In a study Laurent et al. (2013) estimated different
biophysical and biochemical plant properties using APEX data at the Oensingen test site. They
concluded that the LAI was the parameter with the highest similarity between model estimate
and in situ measurement. The data measured in the study area has a range of 0 – 4.5, which is in
the same region as the results of the mean daily LAI values calculated in this thesis.

The distribution of the calculated LAI values visualises the different growing and harvesting
cycles of the agricultural fields (Figure 3.2a). Late April, with the beginning of this study most
winter crops are already fully grown and no increase in LAI is visible when averaged over the
whole area. With the harvest of the winter crops during spring and early summer and the sowing
of summer crop and maize, a minimum LAI value is reached at the end of July. This is followed
by a strong increase representing the growth of the before sown summer crops and maize plants
and a decrease at the end of the study time span indicating the harvest of said crops. The curves
for the different crop classes match up nicely with the sowing and harvesting times indicated on
‘landwirtschaft.ch’, 2020.

4.2.2 Evapotranspiration Base Map

As the result of the P-M equation, ET is one of the two modelled parameters in this thesis, which
is then used to calculate the WUE.

Validating the modelled data with in situ data enabled the verification of the approach em-
ployed and to detection of possible error sources. Fortunately, the Oensingen site has its own
flux tower from which the data was used. When comparing the modelled data to the in situ data
from the flux tower (Figure 3.7a) a general overestimation of ET was detected. This was expected,
however, as the P-M equation results in the potential evapotranspiration ET0 and the flux tower
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measurements represent the actual evapotranspiration (Cai et al., 2007). The modelled values and
the flux data are similar in shape. High ET values at the beginning of the year, with the highest
point in late June, describes the cycle of a winter crop, which field 4 had planted in this season
(‘Oensingen site’, 2020). The decrease beginning in July indicates the harvesting time of the field.
Both features were modelled well by the P-M equation. The flux data remains relatively low for
the rest of the year. The modelled values are much higher and even show an increase in late Au-
gust. As the P-M equation is only applicable for vegetated areas with plants of a certain height,
fields which lay bare or only have short grass growing, can lead to errors in the result due to
low LAI (Farahani & Bausch, 1995). It is not certain that the pattern seen in Figure 3.7a is related
to this. It was, however, observed that fields belonging to a crop class which was not within the
crops’ growing phase resulted in higher values than expected. The scatter plot also well illustrates
the overestimation of the values computed by the used model, as all match up data points of field
4 and the flux tower are situated above the 1:1 line in blue (Figure 3.7b). The trend line in grey
(y = 2.06 + 0.88x) is nearly parallel to the 1:1 line and has an R2 of 0.75 which indicates a good
correlation between measured and modelled data with a linear shift between actual and potential
ET. The slight tilt of the line indicates a better estimation of higher ET values by the used model.

Comparing the calculated ET values of the whole area to different studies, the values calculated
in this thesis are much higher. If the values are parted into the three different crop classes (Figure
3.5b) they are more similar to literature references. Paul-Limoges et al. (2020) found daily ET
values of 1 – 4.5mm/day. This, however, was a study conducted in a forest area. A study from the
US measured ET over crop land for four years and found a value range of around 0 – 4mm/day
depending on the annual cycle (Tian et al., 2010). The daily peak of the ET values is reached on
midday when the solar radiation has the highest impact (Chávez et al., 2008). On the distribution
of ET over the single days (Figure 3.4a) the different length of days and the time when the sun
is positioned at its highest in the sky can be determined. The peak in October is about one hour
earlier than the ones during summertime and only have a third of the ET value. The curve is in
general flatter, indicating that the plants are less active during this time of the year. Looking at the
daily values of the three classes (Fig. 3.5b), the curves for both the summer and winter crop, show
similar trends than the LAI (Figure 3.2b). As the plants are able to evapotranspirate more water if
the leaf area is bigger, and hence, more photosynthesis can be done by the plants, this dependency
of parameters was expected (Penning de Vries et al., 1989). The mixed crop class shows highest ET
values at the beginning of the summer with a decreasing trend over the year and with this looks
very similar to a winter crop. In contrast to the winter crop class the ET is higher in the second
half of the year. This again supports the description of a mixed crop class for the red curve.

The spatial distribution of ET in late June (Figure 3.6) visualises lower values in lighter colours.
The lightest fields are all classified into the summer crop class. When compared to the RGB image
of the area (Figure 2.1) most of these fields are light to dark brown, indicating that almost no plants
have grown there, yet. The strong increase of growth is occurs at the beginning of July. The higher
value fields are winter crops which have not been harvested and fields belonging to the mixed
crop class. The ET measured there is probably from falsely classified winter crops, grass or some
other crop type which is unknown.
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From analysing and comparing the modelled data to the in situ flux tower measurements, it
can be concluded that the ET data computed with the P-M equation can be used for this area.
The equation is however very sensitive to non-vegetated ground and can therefore result in false
values. Due to that, care must be taken when interpreting the results, as they also depend on the
previously made classification.

4.2.3 Gross Primary Production Base Map

Using the light use efficiency (LUE) approach (Monteith, 1972, 1977), the GPP for the study area
was modelled. As a second parameter to calculate the WUE, its reliability also had to be tested.

For the validation, the data from the flux tower in Oensingen was used (Figure 3.11a). Generally,
the modelled data overestimates the GPP, only in the middle of June two do data points of the flux
tower have a higher value than the modelled ones. The comparison between the in situ data in
yellow and the modelled values for field 4 in orange shows very similar shapes over the year.
High values in spring when the winter crop, planted on the field, is growing and a decrease in
June and July during harvesting. The rest of the year GPP values are low, as not much is growing
on the field. Other than the modelled ET, the GPP is much more similar to the in situ data during
this time. Only a small upwards peak in September is visible. The simulated GPP data points
are much closer to the in situ measured data than the ET estimations. This is also reflected in the
scatter plot. All points, except for the two in June, are slightly above the 1:1 line which indicated a
small overestimation of GPP for the modelled data. The match up points are, however, scattered
close to the 1:1 line, with the linear regression (y = 3.87 + 0.56x) having an R2 of 0.77. This indicates
a good estimation by the model. The trend line in grey crosses the 1:1 line at around 9g C/m2 day
which would mean that these model values are the most exact with the in situ data. However, the
angle of the trend line is probably tilted this way to fit the two data points in June which could
be outliers. If more data point were available, the trend line might be more parallel to the 1:1 line
and describe a better fit between model and reality.

The speed of plant growth and with it the GPP is very different for every species. As there are
probably multiple crops classified in the same crop type class, it is difficult to compare the GPP to
reference values and even between the three classes. However, many sources estimate a daily GPP
of 0 – 14g C/m2 day (Paul-Limoges et al., 2018) and 0 – 20g C/m2 day for a cropland site (Li et al.,
2018; Revill et al., 2019), respectively. A similar value range was calculated in this study. The high
values of 20g C/m2 day, was however only reached during peak growing season, if max values of
field pixels were compared. If only daily mean values are taken into consideration, values as high
as 17.8g C/m2 day for test field 1 can be observed. The distribution of the hourly changes over
the year (Figure 3.8a) look very similar to the ET values. As GPP is calculated by using the global
radiation as proxy for PAR, this result was also expected. In the middle of the day and during
the summer months more global radiation is present which can be used by plants to carry out
photosynthesis and acquire more carbon (Penning de Vries et al., 1989). This increased activity
is reflected in the growth of the plants which again is reflected in higher GPP. The mean daily
values over the whole study area (Figure 3.9a) show a decreasing trend with a stagnant part in
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summer. When compared to the curves of the three crop classes (Figure3.9b) it shows a similarity
to the mixed crop and summer crop classes, which are both also very similar to each other. This
could mean that these two classes are more present in the study area and that the third class of
summer crop, which looks different, has the smallest area. If the class has a smaller area the
weight of the values in the mean calculation will be smaller. The only impact of this class is visible
in the stagnant part in the curve in summer when the summer crops have higher GPP values than
the winter crop class. There should, however be a more prominent increase of GPP at the end
of the year as maize has its peak growing season. Maize has been found to have the highest GPP
values probably due to the height and volume of the plant and the greater photosynthetic capacity
(Suyker et al., 2005; Xin et al., 2015).

The spatial distribution of the GPP values in mid June (Figure 3.10) looks similar to the ET dis-
tribution, with the lower value fields being the same. In contrast to the ET values, the distribution
in the middle part of the data range is much more distinct. There are clearer differences between
the fields, and fields next to each other can have very different values. For example there are fields
with very high GPP values next to very low value fields in the north east corner of the study site.
The same fields are not so different in the ET map. Consulting the classification map (Figure 3.1),
it can be seen that the fields in this part belong to the mixed crop class. Fields in this class behave
very differently for these two parameters being similar in ET and different in GPP. This could also
render it difficult for the used classifier to distinguish between the fields in this class.

Comparing the in situ data to the GPP calculated using the LUE based approach leads to prom-
ising results. Having more data points could increase the validation significantly as the weight
of the two outliers in June may be reduced. Even if LUE models show good results (Hu et al.,
2013), there are multiple studies which model GPP using sun-induced fluorescence (SIF) instead
of the EVI to estimate fAPAR (Damm et al., 2015; Paul-Limoges et al., 2018). As research goes on
in this topic and the new ESA FLuorescence EXplorer (FLEX) mission is specialised for measuring
vegetation fluorescence (Coppo et al., 2017), this approach is very promising for future use, as it
enables the use of a direct signal instead of a simple band math index.

4.2.4 Water Use Efficiency Base Map

After testing the reliability of both ET and GPP, the result of the WUE calculation was indirectly
tested as well. There could however be errors which are not related to the input parameters but to
the calculation method or the previously made classification.

The WUE results were not validated with in situ measurements but compared to values from
scientific papers. The range of WUE values found in literature is quite wide. Tian et al. (2010) cal-
culated the WUE of different landcover types such as grassland, cropland and forest. For cropland
they estimated a value of 0.54g C/kg H2O, slightly less then the range of 0.68 – 0.89g C/kg H2O
calculated by Karam et al. (2007). For grapevines a WUE of 3 – 6g C/kg H2O was calculated (Fl-
exas et al., 2010). With values between 1.5 – 3 or even over 4g C/kg H2O of the winter crop class
the modelled WUE in this thesis is the high end of the literature value range.
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The water use efficiency is the total water consumed by the plant during the growing season.
This is the sum of the plant transpiration and the water lost without being used by the plant
(evaporation) (Flexas et al., 2010). To make agriculture more effective the second component has
to become smaller. The P-M equation gives only the combined evapotranspiration, which makes
it difficult to distinguish between water used by plants and surplus water. Therefore, the water
loss is estimated using the combined ET (Zhang et al., 2004). High values of WUE indicate that the
vegetation was effectively using most of the available moisture (Glenn et al., 2007; Huxman et al.,
2004). This was the case in spring and autumn during the study period, in summer the values
were in general lower in the whole study area, except for one high value in mid August (Figure
3.13a & b). The lower values in summer can be due to higher soil evaporation as most of the crops
have been harvested or not grown yet (Hu et al., 2013). Therefore an effective way to reduce ET
and hence increase WUE would be to decrease soil evaporation (Zhang et al., 2004).

The WUE modelled here is within the value range found in literature. However, the range is
very wide. As both ET and GPP proved to be estimated accurately for the study area, the WUE can
also be expected to be reliable. Due to the division used to calculate the WUE, it is very sensitive
to low ET values. For a better performance a threshold for ET values close to 0 could be used.

4.3 Added Value of the Performance Indicators

Most performance indicators (PI) developed in studies are either related to financial values
such as profit gained from yield and effectiveness of different parts of the production (Elnmer et
al., 2018) or are used to compare different parameters and approaches (Alexandridis et al., 2014).
The approach in this thesis, to use PI to simplify complex scientific data for a more general user, is
hardly used in scientific papers. There are some websites similar to the app created here, such as
Fruitlook.co.za (2020) which shows the calculated parameters such as LAI directly and does not
have additional PI which further use this data to illustrate yield, for example. The here developed
PI and their respective adaptable graphics use the calculated parameters, and some additional in-
formation if necessary, to interpret the data in an easy way. Instead of using complicated statistics,
the same is shown in adaptable graphics for the respective PI (Figures 3.17, 3.19, 3.21).

For each PI only a few fields were classified in the highest category (Table 3.1). This means that
most of the fields have room for improvement in the respective PI. However, this could also be
a product of the classification of the study area. The crop type classes are a mixture of different
crops and possibly dirt roads and bare soil. The fields, on the other hand, are homogeneous and,
therefore more representative for the crop type. This could also be a reason why the two fields
belonging to the mixed crop class are in the highest category in the yield and water use PI. The
summer crop field can be found in the middle class for two of the three indicators. This is also the
crop class which was classified most reliably and hence the area of this class is most homogeneous.
The fields of the winter crop class are situated in the middle and low categories, except for field
5 in the yield PI. This can be due to the difficulties in distinguishing between the winter crop and
mixed crop classes. The area used to compare the test fields with, were probably not homogeneous
enough for a real comparison.
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Most of the test fields are classified in the middle category of the water use PI. This could
indicate that the range of values falling into this category is too wide and not the same thresholds
as for the yield PI can be used. In contrast 2 fields fall in each category in the yield PI, which shows
that the threshold values are appropriate for this parameter. That no field was classified into the
highest and intermediate productivity category can be explained by the fact that the same area
of 50 ha was used for all fields. In reality, all fields have a different size which is unknown since
no field measurements were conducted. However, if the tool were used by farmers, they would
have to register their fields with the correct size. It is expected that this PI would work better if
the exact area were known.

4.4 Outlook

After analysing the created base maps and the developed app, some issues and error sources
were detected. How the used methods can be improved is discussed in the following section.

4.4.1 Advancement of Base Maps

A higher spatial resolution of the input data would be helpful in order to be able to model the
different parameters more accurately and hence produce more reliable base maps. Using for in-
stance a drone instead of satellite imagery, would lead to a more accurate representation of the
fields and enables the identification of patterns due to water loss within each field. All variables
which were not generated from the Sentinel-2 images (resolution of 10 m) were only available at
one location and assumed to be constant over the whole study area. Therefore, the fields nearest
to those stations have more precisely modelled values. On the other hand, this approach reflects
reality better as not every farmer has their own meteorological station for the fields. Using this
method showed that modelling ET and GPP with these constant values is possible, with the result
not being as accurate as it could be.

Another important area where improvements can be made is the classification. As this step
was considered a necessity for the results but was not the main focus of this thesis, a very simple
approach was used. Due to this, the three resulting classes are not clearly distinguishable crops but
rather crop types or mixtures of different crops. To be able to make a better classification, another
method can be used where additional field measurements are utilized to validate the result. This
would help to make the interpretation of the results easier and more valuable to the end user.

Finally, during this thesis some issues when using the P-M equation were detected. The equa-
tion is only meant to be used for vegetated areas, which does not include bare fields. But some of
said fields were present, that induced errors in the resulting base maps. Using threshold values
and masks of the crop type classes, when applying the P-M equation, could help in preventing
these errors. Also some input parameters for the P-M equation are considered to be constant over
the study area. However, they could be calculated in a different way for each crop class which
could make the resulting ET of the fields more accurate. As mentioned under section 4.2.4 the
result of the P-M equation is the combination of the evaporation and transpiration, which makes
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it hard to distinguish between water used by plants and surplus water. The partitioning of the
modelled ET could therefore lead to a better detection of the location of major water losses in agri-
culture, whether they are in the soil or the plants themselves. To that, the FloX-Box was installed in
April 2019 which makes the data used here, the first to be collected by the sampler. This could lead
to not so well calibrated measurements, as there were no reference measurements from another
study. This could explain some patterns in the data for which no clear origin can be found.

4.4.2 Making the App more efficient

The functionality of the generated app is limited to the visualisation of the previously modelled
and calculated data using MATLAB. To be able to give the user information on any desired input
date and year (in the time frame of Sentinel-2), the whole work flow, from downloading the satel-
lite imagery and meteorological data to the processing of the inputs would have to be automated.
This leads to some problems such as account-protected web services such as the Copernicus Open
Access Hub for Sentinel data and the data service platform IDAWEB of MeteoSwiss as well as the
digitisation of the desired fields of the farmers. For the app to be able to execute such complex
workflows and time intensive calculation, it may be necessary to use a different tool than R Shiny.
One possibility would be to use the Google Earth Engine which meets most of the requirements
mentioned here.

For this thesis, three performance indicators were created. With the calculated results and pos-
sible user inputs more PI could be created and added to the app. Similar to the field area input
for the productivity PI, other data can be provided by the user, such as yields of previous years
to use as reference values instead of literature numbers and perhaps to generate trends for future
years. It would also be very useful to include the weather forecast from the nearest meteorological
station in order to be able to give farmers advice as to when to irrigate the fields to maximise water
use efficiency.
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5 Conclusion

In this Master thesis, I analysed which parameters and data comparisons can be useful for farm-
ers in their decision making. I investigated how abstract remote sensing data can be visualised
for the information to be usable by the target group. I showed the possibilities of presenting the
results in an R Shiny app and the limitations of the used methods which can be improved in future
research projects.

Four base map parameters (LAI, ET, GPP and WUE) emerged to be useful for the creation of
the performance indicators. These performance indicators enable the visualisation of the complex
data generated, with for instance the Penman-Monteith equation, in an understandable and in-
terpretable way. The potential yield, water use and productivity can add value to the base map
parameters in providing additional information for the farmer’s decision-making processes. The
usability of the generated PI can be tested further by questioning farmers about the created app
using a questionnaire. The feedback gathered therefrom can then be used to come up with a
second iteration of PI which may be more suited to the needs of the farmers. One of the biggest
limitations encountered during this thesis was the classification of the agricultural fields into dif-
ferent crops. Even when three indices, each using different band combinations, were used, the
classification proved to be faulty and combine fields with clearly different crops together in one
category. Due to this, the comparison between test fields and their respectable crop classes was
prone to error, which may be represented in the results of the PI. As neither the classification nor
the creation of perfect parameter base maps were the main aim of this thesis, these errors were
left in the resulting data. For a more sophisticated future use of the findings of this thesis, these
error sources have to be known and addressed. Multiple studies, each carrying out research on a
different input parameter used here, exist today and promise a possible improvement in both the
classification and the calculation of the base map parameters.

In spite of the limitations of the methods employed, the approach using performance indicators
for the visualisation of complex remote sensing data is very promising. With ongoing research the
input parameters can be improved and with that a useful and functioning tool can be developed.
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A Appendix - Additional Figures and Tables

TABLE A.1: Daily mean leaf area index with the standard deviation indicated for the whole study area, the
three crop type classes and the six test fields.

Date Area Summer Crop Mixed Crop Winter Crop Field 1 Field 2 Field 3 Field 4 Field 5 Field 6

20.04.2019 2.5 ± 1.0 0.5 ± 1.2 1.3 ± 1.5 0.6 ± 1.1 3.0 ± 0.4 3.7 ± 0.1 3.4 ± 0.4 1.7 ± 0.6 2.7 ± 1.2 3.1 ± 0.4
04.06.2019 2.2 ± 1.1 0.1 ± 0.4 1.4 ± 1.5 0.7 ± 1.2 3.4 ± 0.3 3.4 ± 0.1 0.1 ± 0.9 2.3 ± 0.9 2.8 ± 1.0 3.0 ± 0.3
19.06.2019 1.9 ± 1.0 0.2 ± 0.6 1.1 ± 1.3 0.6 ± 1.0 2.0 ± 0.3 0.3 ± 0.1 0.3 ± 0.1 1.8 ± 0.7 2.1 ± 0.9 2.6 ± 0.2
29.06.2019 1.7 ± 0.9 0.3 ± 0.7 0.9 ± 1.1 0.5 ± 0.9 2.1 ± 0.3 0.1 ± 0.0 1.1 ± 0.3 1.6 ± 0.5 1.2 ± 0.9 1.6 ± 0.5
04.07.2019 1.5 ± 0.8 0.4 ± 0.7 0.8 ± 1.0 0.4 ± 0.7 2.0 ± 0.3 0.1 ± 0.0 1.6 ± 0.2 1.3 ± 0.4 1.2 ± 0.9 0.8 ± 0.6
24.07.2019 1.1 ± 0.8 0.4 ± 0.7 0.6 ± 0.9 0.1 ± 0.4 1.2 ± 0.2 0.6 ± 0.2 1.6 ± 0.1 0.2 ± 0.2 1.0 ± 0.8 0.4 ± 0.6
08.08.2019 1.6 ± 1.0 0.5 ± 0.9 0.9 ± 1.2 0.2 ± 0.6 2.5 ± 0.4 3.7 ± 0.1 2.2 ± 0.2 0.3 ± 0.4 1.7 ± 1.0 0.7 ± 1.1
18.08.2019 1.8 ± 1.2 0.5 ± 1.0 1.0 ± 1.4 0.3 ± 0.7 3.0 ± 0.4 1.1 ± 0.1 1.9 ± 0.3 0.5 ± 0.9 2.4 ± 0.9 1.1 ± 1.5
28.08.2019 1.9 ± 1.1 0.6 ± 1.0 1.1 ± 1.4 0.2 ± 0.7 2.9 ± 0.5 1.9 ± 0.2 1.9 ± 0.3 0.6 ± 0.2 2.7 ± 1.1 0.8 ± 1.2
12.09.2019 2.3 ± 1.1 0.6 ± 1.0 1.6 ± 1.6 0.2 ± 9.5 2.9 ± 0.4 3.7 ± 0.1 0.1 ± 0.1 1.1 ± 0.6 2.2 ± 1.2 0.9 ± 1.2
12.10.2019 2.1 ± 1.2 0.3 ± 0.7 1.4 ± 1.5 0.4 ± 0.9 3.1 ± 0.3 2.1 ± 0.1 0.3 ± 0.2 2.2 ± 1.3 2.8 ± 0.9 2.7 ± 0.4

TABLE A.2: Daily mean evapotranspiration [mm/day] with the standard deviation indicated for the whole
study area, the three crop type classes and the six test fields.

Date Area Summer Crop Mixed Crop Winter Crop Field 1 Field 2 Field 3 Field 4 Field 5 Field 6

20.04.2019 4.8 ± 0.8 4.4 ± 1.2 4.9 ± 0.5 4.8 ± 0.7 5.0 ± 0.1 5.1 ± 0.0 5.0 ± 0.2 4.7 ± 0.7 4.7 ± 0.9 5.1 ± 0.1
04.06.2019 6.9 ± 1.1 5.6 ± 1.7 7.2 ± 0.2 7.2 ± 0.4 7.2 ± 0.0 7.4 ± 0.0 3.0 ± 1.6 7.2 ± 0.5 7.1 ± 0.3 7.4 ± 0.1
19.06.2019 6.6 ± 1.3 5.2 ± 1.8 7.0 ± 0.5 7.0 ± 0.8 7.0 ± 0.2 4.5 ± 0.5 4.4 ± 0.8 7.0 ± 0.8 6.8 ± 0.5 7.0 ± 0.1
29.06.2019 7.5 ± 1.1 6.9 ± 1.4 7.8 ± 1.0 7.7 ± 1.0 8.0 ± 0.2 2.3 ± 0.9 7.6 ± 0.6 8.0 ± 0.5 6.8 ± 1.4 7.7 ± 0.3
04.07.2019 6.8 ± 1.1 6.6 ± 1.1 6.91± 1.0 6.8 ± 1.1 7.3 ± 0.2 1.4 ± 0.7 7.3 ± 0.1 7.0 ± 0.9 5.8 ± 1.9 5.9 ± 0.8
24.07.2019 6.2 ± 1.8 7.0 ± 1.1 6.4 ± 1.8 4.9 ± 1.9 7.1 ± 0.4 6.3 ± 0.3 7.4 ± 0.1 3.9 ± 1.7 6.0 ± 2.0 3.5 ± 2.0
08.08.2019 5.7 ± 1.3 6.2 ± 0.6 5.8 ± 1.3 5.0 ± 1.6 6.5 ± 0.1 6.2 ± 0.0 6.5 ± 0.1 4.1 ± 1.3 6.1 ± 0.4 3.7 ± 1.9
18.08.2019 5.1 ± 1.5 5.7 ± 0.8 5.3 ± 1.3 4.1 ± 1.8 6.1 ± 0.1 5.2 ± 0.1 5.9 ± 0.4 2.8 ± 1.6 5.8 ± 0.6 3.0 ± 2.4
28.08.2019 5.3 ± 0.9 5.6 ± 0.5 5.6 ± 0.4 4.5 ± 1.3 5.7 ± 0.1 5.7 ± 0.0 5.7 ± 0.1 4.9 ± 0.3 5.6 ± 0.3 3.2 ± 1.8
12.09.2019 4.7 ± 0.8 4.8 ± 0.4 4.9 ± 0.1 3.8 ± 1.3 4.9 ± 0.2 4.8 ± 0.0 1.6 ± 1.0 4.2 ± 1.1 4.8 ± 0.2 2.8 ± 1.8
12.10.2019 2.0 ± 0.5 1.7 ± 0.6 2.2 ± 0.2 1.8 ± 0.5 2.2 ± 0.0 2.2 ± 0.0 1.3 ± 0.3 1.9 ± 0.6 2.1 ± 0.2 2.2 ± 0.0

TABLE A.3: Daily mean gross primary production [g C/m2 day] with the standard deviation indicated for
the whole study area, the three crop types and the six test fields.

Date Area Summer Crop Mixed Crop Winter Crop Field 1 Field 2 Field 3 Field 4 Field 5 Field 6

20.04.2019 13.2 ± 3.8 12.8 ± 5.1 13.6 ± 3.2 12.7 ± 3.4 15.6 ± 0.7 16.9 ± 0.5 16.5 ± 0.9 12.1 ± 1.6 15.2 ± 2.4 15.2 ± 1.4
04.06.2019 13.7 ± 5.0 6.6 ± 3.7 15.8 ± 3.2 15.2 ± 3.3 17.8 ± 0.6 15.7 ± 0.5 2.7 ± 0.7 15.1 ± 2.0 17.2 ± 2.9 17.2 ± 0.9
19.06.2019 11.7 ± 4.4 7.4 ± 4.3 13.4 ± 3.6 12.7 ± 3.1 12.0 ± 0.7 4.0 ± 0.2 4.6 ± 0.3 12.7 ± 1.4 15.3 ± 3.7 16.0 ± 0.6
29.06.2019 11.6 ± 4.0 10.5 ± 4.2 12.3 ± 4.1 11.2 ± 3.3 13.6 ± 0.8 3.4 ± 0.2 11.1 ± 0.8 10.9 ± 1.0 10.0 ± 3.6 12.0 ± 1.7
04.07.2019 10.6 ± 3.9 11.3 ± 3.9 11.3 ± 4.1 8.9 ± 3.0 13.3 ± 0.9 2.8 ± 0.2 14.0 ± 0.7 7.7 ± 0.8 9.6 ± 3.7 7.1 ± 2.7
24.07.2019 9.5 ± 4.4 11.8 ± 3.6 9.2 ± 4.0 5.5 ± 3.3 9.0 ± 0.9 7.1 ± 0.8 14.4 ± 0.6 3.9 ± 0.2 8.6 ± 3.3 5.1 ± 3.0
08.08.2019 9.2 ± 4.3 11.5 ± 3.0 9.6 ± 4.3 6.0 ± 3.5 11.1 ± 0.9 18.2 ± 0.3 13.5 ± 0.4 3.6 ± 1.6 9.9 ± 3.5 5.7 ± 4.9
18.08.2019 9.1 ± 4.3 11.0 ± 2.8 9.6 ± 4.3 6.2 ± 4.0 12.3 ± 0.9 5.5 ± 0.3 12.0 ± 0.4 4.1 ± 3.1 10.8 ± 2.0 6.3 ± 5.9
28.08.2019 8.4 ± 3.7 10.2 ± 2.4 9.1 ± 3.3 5.2 ± 3.6 11.1 ± 1.6 7.7 ± 0.5 10.9 ± 0.4 3.7 ± 0.5 11.6 ± 2.5 4.3 ± 4.2
12.09.2019 9.1 ± 3.2 9.4 ± 2.3 10.7 ± 2.0 4.8 ± 2.5 10.7 ± 0.9 14.1 ± 0.3 1.4 ± 0.3 5.4 ± 1.8 8.5 ± 3.1 4.3 ± 3.8
12.10.2019 4.9 ± 2.4 3.2 ± 2.0 6.2 ± 1.7 4.1 ± 2.3 6.7 ± 0.3 4.3 ± 0.2 1.8 ± 0.2 4.7 ± 1.9 6.7 ± 1.3 5.6 ± 0.7
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TABLE A.4: Daily mean water use efficiency [g C/kg H2O] with the standard deviation indicated for the
whole study area, the three crop type classes and the six test fields.

Date Area Summer Crop Mixed Crop Winter Crop Field 1 Field 2 Field 3 Field 4 Field 5 Field 6

20.04.2019 3.1 ± 20.6 3.7 ± 41.3 2.9 ± 7.1 2.8 ± 6.8 3.1 ± 0.1 3.3 ± 0.1 3.3 ± 0.1 2.8 ± 1.2 3.6 ± 3.5 3.0 ± 0.2
04.06.2019 2.0 ± 4.8 1.6 ± 10.3 2.2 ± 0.5 2.1 ± 1.0 2.5 ± 0.1 2.1 ± 0.1 2.6 ± 8.8 2.1 ± 0.3 2.4 ± 0.4 2.3 ± 0.1
19.06.2019 1.9 ± 10.0 1.9 ± 18.4 1.9 ± 0.5 1.9 ± 7.4 1.7 ± 0.1 0.9 ± 0.1 1.5 ± 4.3 1.8 ± 0.2 2.1 ± 0.5 2.3 ± 0.1
29.06.2019 1.7 ± 26.9 1.6± 5.9 1.8 ± 38.8 1.5 ± 2.2 1.7 ± 0.1 2.1 ± 3.4 1.5 ± 0.1 1.4 ± 0.1 1.6 ± 1.2 1.6 ± 0.2
04.07.2019 1.8 ± 37.1 2.3 ± 71.4 1.7 ± 7.3 1.4 ± 2.5 1.8 ± 0.1 8.9 ± 49.3 1.9 ± 0.1 1.2 ± 0.3 1.9 ± 1.5 1.2 ± 0.3
24.07.2019 1.8 ± 16.9 1.8 ± 6.9 1.6 ± 4.5 2.1 ± 32.8 1.3 ± 0.1 1.1 ± 0.1 1.9 ± 0.1 1.5 ± 2.0 4.6 ± 25.0 2.2 ± 3.8
08.08.2019 1.8 ± 9.0 1.9 ± 2.5 1.8 ± 10.1 1.5 ± 11.4 1.7 ± 0.1 3.0 ± 0.1 2.1 ± 0.0 0.9 ± 0.3 1.6 ± 0.5 2.0 ± 3.7
18.08.2019 2.5 ± 170.7 2.0 ± 4.8 1.9 ± 12.6 4.3 ± 345.1 2.0 ± 0.1 1.1 ± 0.0 2.1 ± 0.2 2.9 ± 7.9 1.9 ± 0.3 2.8 ± 3.6
28.08.2019 1.6 ± 4.2 1.8 ± 1.4 1.6 ± 3.7 1.4 ± 6.4 1.9 ± 0.3 1.4 ± 0.1 1.9 ± 0.1 0.8 ± 0.1 2.1 ± 0.4 2.6 ± 9.6
12.09.2019 2.1 ± 10.90 2.0 ± 1.7 2.1 ± 0.4 2.0 ± 23.5 2.2 ± 0.2 3.0 ± 0.1 3.6 ± 16.5 1.4 ± 0.7 1.8 ± 0.6 2.5 ± 6.0
12.10.2019 2.8 ± 21.6 2.7 ± 35.9 2.9 ± 6.9 2.6 ± 21.2 3.0 ± 0.1 2.0 ± 0.1 0.9 ± 0.3 2.6 ± 1.1 3.1 ± 0.5 2.6 ± 0.3

FIGURE A.1: Mean daily (a) leaf area index, (b) evapotranspiration, (c) gross primary production and (d)
water use efficiency of the six used test fields in the study area.
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