
 

 
 

 (13-739-206) 

 

Supervised by  

Dr. Holger Frey 

PD Dr. Christian Huggel 

 

Faculty Member 

Prof. Dr. Andreas Vieli 

 

Glaciology and Geomorphodynamics Group 

Department of Geography  

University of Zurich

 

Modelling of Landslide Susceptibilities 
in the Cordillera Blanca (Peru) 

Master's Thesis GEO 610 
 

31st March 2018 

Emanuel Büechi 

 



 

 
 

I Modelling of Landslide Susceptibilities in the Cordillera Blanca (Peru) 

I. Abstract 

For this Master’s Thesis several existing methods of landslide susceptibility modelling were applied to 

the mountainous area of the Cordillera Blanca (Peru) which is prone to landslides. The performance of 

a physically based approach (SINMAP) was compared to different empirical statistical models. The 

models were applied to three different digital elevation models (DEMs): ASTER GDEM, SRTM, and 

TanDEM-X. Obtained results were evaluated using the area under the receiver operating 

characteristics curve (AUC) amongst other techniques. The evaluation was performed using a landslide 

inventory which extends over the whole study area and two other ones extending over a smaller area. 

The first two inventories only include shallow landslides and the second inventory of the smaller area 

includes deep-seated movements, to evaluate how well such landslides can be detected by models for 

shallow landslides. A last inventory was established at two different locations by measuring the 

displacement of several points. The evaluation showed that the physically based approach (AUCs 

between 0.567 and 0.625) performed worse than the empirical statistical ones (AUCs from 0.672 to 

0.759) over the large area, with the ASTER GDEM always having the lowest AUC value. This coincided 

with differences of the variability of the DEM-derived characteristics (e.g. elevation and curvature) 

from the small to the large evaluation area. A full explanation of the performance just by these 

characteristics is not possible. Using the smaller evaluation area of the shallow landslides all models 

received higher AUC values (0.743-0.799). The rather higher differences of the DEM-derived 

characteristics between the DEMs there resulted in a smaller variation of the model performances. 

Additionally, it was tried to explain the differences of the performances between the small and the 

large study area qualitatively. The higher variability of precipitation patterns within the large area may 

be decisive in this relation. A comparison from the statistical models showed that their performance is 

highly dependent on the slope angle. Models just considering the slope angle performed similarly to 

other models considering more independent parameters. The inventory of the deep-seated landslides 

showed that the shallow landslide models do not perform well for deep-seated landslides (all AUCs ≤ 

0.69). The displacement measurements do not allow a meaningful evaluation of the models. Better 

results were obtained for the analysis of the susceptibility classes of the different models. It showed 

that mainly the same slopes are considered as most or least susceptible. The main difference is that 

SINMAP is classifying larger areas as unstable or stable than the statistical models. Generally, this thesis 

showed that regional scale landslide susceptibility modelling can lead to reasonable results, but 

performances of different DEMs and models need to be evaluated carefully. 
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II. Zusammenfassung 

Für diese Masterarbeit wurden verschiedene Methoden der Erdrutsch-Anfälligkeitsmodellierung an 

der Cordillera Blanca (Peru) angewendet, einem Gebirge, welches anfällig auf Erdrutsche ist. Die 

Leistung eines physikalisch basierten Ansatzes (SINMAP) wurde mit empirisch-statistischen Modellen 

verglichen. Die Modelle wurden auf drei verschiedene digitale Höhenmodelle (DEMs) angewendet: 

ASTER GDEM, SRTM und TanDEM-X. Die erhaltenen Ergebnisse wurden unter anderem anhand der 

Fläche unter der "Receiver Operating Characteristics"-Kurve (AUC) evaluiert. Die Auswertung erfolgte 

anhand eines Erdrutschinventars, das sich über das gesamte Untersuchungsgebiet erstreckt und zwei 

weiteren, die sich über eine kleinere Fläche erstrecken. Die ersten beiden Inventare umfassen nur 

oberflächliche Erdrutsche, das zweite Inventar des kleineren Gebiets umfasst tiefere Bewegungen, um 

zu sehen, wie gut solche Erdrutsche durch Modelle für oberflächliche Erdrutsche erkannt werden 

können. Ein letztes Inventar besteht aus verschiedenen Punkten, an welchen Bewegungen gemessen 

wurden. Die Auswertung zeigte, dass der physikalisch basierte Ansatz (AUCs zwischen 0.567 und 0.625) 

über das gesamte Untersuchungsgebiet schlechter anwendbar ist als die empirisch-statistischen 

Modelle (AUCs von 0.672 bis 0.759), wobei das ASTER GDEM immer den niedrigsten AUC-Wert 

aufwies. Dies stimmte mit den Unterschieden der Variabilität der DEM-abgeleiteten Eigenschaften (z. 

B. Höhe und Krümmung) von dem kleinen zu dem großen Untersuchungsgebiet überein. Der Einfluss 

dieser Eigenschaften scheint jedoch nur beschränkt mit der Leistung der Modelle zusammenzuhängen. 

Unter Verwendung des kleineren Bewertungsbereichs der oberflächlichen Erdrutsche erhielten alle 

Modelle höhere AUC-Werte (0.743-0.799). Trotz eher grösserer Unterschiede der DEM-Charakteristika 

in diesem Gebiet zwischen der DEMs waren die Leistungen der Modelle näher zusammen. Zusätzlich 

wurde versucht, die Unterschiede der Leistungen des grossen und kleinen Untersuchungsgebiets 

qualitativ zu ermitteln. Eine mögliche Ursache wurde in der eher heterogeneren 

Niederschlagsverteilung innerhalb des grossen Gebietes entdeckt. Ein Vergleich der statistischen 

Modelle zeigte zudem, dass die Leistung dieser Modelle vor allem vom Neigungswinkel abhängt. Die 

Modelle, welche nur den Neigungswinkel betrachten, erreichen ähnliche Leistungswerte wie jenes 

Modell, welches noch weitere unabhängige Parameter benutzt. Das Inventare der tiefen Erdrutsche 

zeigte, dass die flachen Erdrutsch-Modelle für tiefe Erdrutsche nicht gut funktionieren (alle AUCs ≤ 

0.69). Die Bewegungsmessungen erlauben keine aussagekräftige Bewertung der Modelle. Bessere 

Resultate wurden bei der Analyse der Anfälligkeitsklassen erhalten. Diese zeigte, dass hauptsächlich 

die gleichen Hänge von allen Modellen als am stärksten oder am wenigsten anfällig angesehen werden. 

Der Hauptunterschied ist, dass SINMAP größere Gebiete als instabil oder stabil klassiert als die 

statistischen Modelle. Im Allgemeinen zeigte diese Arbeit, dass die Modellierung der 
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Erdrutschanfälligkeit auf regionaler Ebene zu vernünftigen Ergebnissen führen kann, jedoch müssen 

die Leistungen verschiedener DEMs und Modelle sorgfältig evaluiert werden. 
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1 Modelling of Landslide Susceptibilities in the Cordillera Blanca (Peru) 

1. Introduction 

The Cordillera Blanca in Peru (Fig. 1) has always been prone to disastrous landslides or related events. 

Several events like the landslides at Nevado Huascarán (1962/1970) (Vilímek et al. 2000; Evans et al. 

2009) or the glacial lake outburst flood of Palcacocha (1941) (Carey 2010) with thousands of victims 

caused intense hazard and risk related research in this area (Lliboutry 1975; Lliboutry et al. 1977; 

Vilímek et al. 2005, 2000; Hubbard et al. 2005; Klimeš and Vilímek 2011; Somos-Valenzuela and 

Mckinney 2011; Huggel et al. 2012b; Klimeš 2012; Schneider et al. 2014; Klimeš et al. 2016). This 

research usually concentrated on specific slopes or regions. An exception is the work done by Villacorta 

et al. (2012) who established a landslide susceptibility map covering the whole country of Peru. Due to 

the spatial resolution of their work of 100m most of the Cordillera Blanca is just considered having high 

or very high susceptibilities of landslides. Such spatially coarse information is hardly applicable for the 

local population and administration, thus more detailed studies possibly distinguishing different 

landslide types are needed. The presented work investigates the susceptibility to shallow landslides of 

the Cordillera Blanca using different methods of landslide susceptibility models.  

Physically based models like SINMAP, SHALSTAB, or TRIGRS (Crosta and Frattini 2003; Meisina and 

Scarabelli 2007; Terhorst and Kreja 2009; Zizioli et al. 2013; Michel et al. 2014; Pradhan and Kim 2015; 

Sarkar et al. 2016; Thiebes et al. 2016) or empirical statistical models (Van Den Eeckhaut et al. 2006; 

Bai et al. 2011; Felicísimo et al. 2012; He et al. 2012; Park et al. 2013b) have been applied in many 

different regions around the world. All the mentioned studies used different additional information 

like geological, land-use, or soil maps to better describe occurrence conditions of the studied 

landslides. Data availability largely constrains the extent of the application of the models, which would 

otherwise require extensive field work. Applications in mountainous regions are often even more 

challenging, as the landslide preparatory factors change abruptly in space (e.g. slope dip or soil 

characteristics due to the different altitudinal belts (Portes et al. 2016)), and available maps may lack 

important details of their spatial distribution pattern. Therefore, the model parametrisation on a 

regional scale always introduces uncertainties which are very difficult to assess or even quantify 

limiting the applicability of the final susceptibility maps (Guzzetti et al. 2006; Levermore et al. 2012).  

To contribute to overcome this problem, this Master’s Thesis aims at elaborating how landslide 

susceptibility models perform in areas without any additional information to the ones given by a digital 

elevation model (DEM), as the elevation information is increasingly more reliable and available even 

in high mountains due to variety of remotely sensed data (Lacroix et al. 2015). To assess the influence 

of the DEMs and possibly improve the models, three different DEMs are used for each model. Two of 
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them have a spatial resolution of 30m (ASTER GDEM and SRTM) and the third one, TanDEM-X, has a 

spatial resolution of 12m.  

Furthermore, the mentioned problems related to data scarcity are not only an issue of the Peruvian 

Andes (Suárez et al. 1983; Neukom et al. 2015). There are many regions with a lack of information 

(Frich et al. 2002), especially authors who study high mountain areas such as the Himalaya (Remesan 

and Holman 2015), Tien Shan (Pieczonka and Bolch 2015), or even the Rocky Mountains (Kunkel et al. 

2009; Pugin et al. 2014) need to deal with limited data. Therefore, the results of this thesis concerning 

the Cordillera Blanca could act representatively for many data-scarce high mountain regions.  

The main part of this thesis is the comparison of the physically based model SINMAP to a statistically 

based model using logistic regression. As a third and a fourth model, two different slope models have 

been established. One of these uses the logistic regression considering only the slope angle as 

independent parameter, and another one using failure rates per slope class, to evaluate the added 

value of the parameters considered additionally by SINMAP and the logistic regression model (LRM). 

These four models have been applied to the three DEMs. The evaluation of these model runs is done 

using three different landslide inventories. One of the inventories includes shallow landslides 

distributed over the whole study area, and another one is restricted to a much smaller region (see Fig. 

1). These two inventories are used to avoid model uncertainties caused by the highly variable 

conditions of the large study area. A final inventory is used which constrains to a smaller area too. It 

includes no shallow landslides but more deep-seated movements. This last inventory is used to 

evaluate if even different kinds of landslides can be detected by such models.  

These efforts should answer the following questions: 

-How do regional-scale landslide susceptibility models perform in areas with highly variable 

morphology and soil characteristics that are typical for high mountain regions? 

-How much of the performance of a model can be explained by considering only the slope angle? 

-What is the influence of the used DEMs on the performance of the models?  

-How do these models perform for landslide inventories with different kinds of landslides?  

This thesis first describes the study area, before a general introduction into the science of landslides is 

given. The next part then presents the used data and methods and special attention is given to the 

related uncertainties. The obtained results and their evaluation and validation are presented in the 

subsequent chapter. Finally, these results are discussed, and the conclusions are drawn.  
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2. Study Area 

The Cordillera Blanca is situated in Áncash, Peru. Large parts of it are considered in this thesis (Fig. 1). 

The mountain range is margined by the Río Santa in the west. This river flows through Huaraz on 

around 3000 m above sea level (masl) and flows down to 1400 masl in the north of the study area. 

There are several peaks on altitudes above 6000 masl, including Nevado Huascarán, the highest 

mountain of Peru with 6768 masl (ÖAV, 2006). Therefore, big parts of the study area are glacierised or 

of its surface consist of bare rocks (1381 km2). The remaining area (2861 km2) consists of many steep 

slopes (for example Fig. 2A) which are on average around 23° steep. The large interval of the elevations 

leads to the above-mentioned variability of the soils. Some soils reach thicknesses of more than 2 

meters, whereas in the higher elevations there are no soils anymore (Portes et al. 2016) 

The climate is dominated by a dry and a wet season. During the wet season from October to March, 

about 400 to 800 mm of precipitation is recorded, generally increasing with elevation while during the 

dry season from April to September only 100 to 200 mm of precipitation is observed. This combination 

of steep topography, extreme precipitation, and other factors, such as earthquakes, led to several 

landslides in the past (see Fig. 1 and 2). Furthermore, this region is highly inhabited. Only the major 

towns of Huaraz, Yungay, Caraz, and Carhuaz together, all located in the Santa valley at the western 

foot of the Cordillera Blanca, have around 300’000 inhabitants (Instituto Nacional de Estadística e 

 

Fig. 1 Study area and landslide inventories. Overview map from Google Earth (2017). The term SLI refers to shallow 
landslide inventory, MLI to Marcará landslide inventory. More detailed view of the area around Safuna Alta and Marcará 
on Fig. 3 
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Informática 2015). These conditions make it imperative to address landslide susceptibility zoning to 

make a first step towards increasing landslide resilience of the local population.  

After having considered the whole study area as one, further research is done by just considering two 

smaller regions of the study area. The first is the region around the Safuna lakes (Safuna Alta and 

Safuna Baja) (see Fig. 3). It is in the northern part of the study area. The two lakes lay at the end of the 

Pucajirca Glacier and are on altitudes of 4330 masl (Safuna Alta) and 4244 masl (Safuna Baja) (ÖAV 

2006). The two lakes are separated by a moraine which reaches elevations of around 4400 masl in its 

frontal part (Veliz et al. 1973). The water level of Safuna Alta is controlled by two tunnels (Portilla et 

al. 2000) of which the lower one is situated in the frontal moraine on 4330 masl (Veliz et al. 1973). In 

recent years, the water table did not reach the altitude of the tunnel. It stayed around 1 meter below 

the tunnel (Checa 2016). The two lakes belong to the accumulation area of the Río Quitaracsa which 

flows into the Río Santa (Portilla et al. 2000), passing a hydroelectric power station, close to the town 

of Huallanca (Hubbard et al. 2005). In 2002, a landslide of several millions m3 of rock occurred close to 

Safuna Alta and big parts of it fell into the lake, causing a glacier lake outburst flood (GLOF). The 

terminal moraine was overtopped by a large wave. The bursting water masses led to a measurable 

increase of the water level in the hydroelectric power station in Huallanca which is about 40 km 

downstream (Hubbard et al. 2005).  

The second region which is considered separately is the region around the town of Marcará (2748 

masl) (see Fig. 3). The considered slopes are mainly the ones which are situated in the west of Marcará. 

This is not part of the Cordillera Blanca anymore, but of the Cordillera Negra (ÖAV 2006). This region 

is of specific interest because of two reasons. Generally, the whole region there is highly prone to 

landslides, because of its lithology, sparse vegetation, and other factors. Besides, several smaller 

landslides, in the northwest of the town already happened a deep-seated landslide which caused 

casualties and damaged properties in 2009 (Klimeš and Vilímek 2011). The other reason is the 

vulnerability. More than 47’000 people live in the region of Carhuaz, which includes Marcará (Instituto 

Nacional de Estadística e Informática 2015), and the airport of the Santa Valley to reach Huaraz is 

situated below these slopes. This airport was already blocked once by a debris flow which originated 

in the Cordillera Negra (Vilímek et al. 2000). Besides the risk at this location, a recent study by Strozzi 

et al. (submitted), who measured slope movements with Synthetic Aperture Radar Interferometry 

(InSAR) data in this region, made it reasonable to consider these slopes separately, as different 

datasets about this region they produced can be used for this thesis.  
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Fig. 2 A shows the steep and by landslide scarred landscape above Caraz and Yungay. B shows shallow landslides in the region 
of Yungay (Photos by E. Bueechi) 

 



 6 Modelling of Landslide Susceptibilities in the Cordillera Blanca (Peru) 

 
 

 

Fi
g.

 3
 S

tu
d

y 
ar

ea
 w

it
h

 a
 f

o
cu

s 
o

n
 t

h
e 

tw
o

 s
m

al
le

r 
ar

ea
s 

w
h

ic
h

 a
re

 c
o

n
si

d
er

ed
 a

d
d

it
io

n
al

ly
 (

so
u

rc
e

s:
 O

ve
rv

ie
w

 m
ap

 b
y 

G
o

o
gl

e 
Ea

rt
h

, m
a

p
 o

f 
M

ar
ca

rá
 a

n
d

 S
af

u
n

a 
b

y 
Ö

A
V

 (
2

0
0

6
),

 P
h

o
to

s 
b

y 
E.

 B
u

ee
ch

i 

 



 

 

7 Modelling of Landslide Susceptibilities in the Cordillera Blanca (Peru) 

3. Gravitational Mass Movements 

This part of the thesis aims to understand the phenomenon landslides. This includes the morphology 

and terminology of landslides, two classifications systems, some basic laws of friction, and landslide 

causing factors. This chapter is, on the one hand, relevant for getting to know possibly meaningful 

factors for establishing models. On the other hand, it is crucial to understand landslides for the 

evaluation of the models (Guzzetti et al. 2012). For example, which parts of the mass movement are 

responsible for the movement and should therefore be modelled as insecure? 

3.1. General Characteristics 

The term landslide is a subcategory of gravitational mass movements. An exact distinction of what still 

belongs to landslides and what are other kinds of gravitational mass movements is not that clear, 

though. De Blasio (2011) defines landslides as movement of rock, debris, or soil due to gravity. The 

density of the moving mass needs to be higher than 1100 kg/m3, thus, 10% higher than the one of 

water. The argument of the water content is used by other authors as well, but not with a that strict 

limit (Davies and Shroder 2014; Zepp 2014). This definition mainly excludes snow and ice avalanches, 

flood water waves, and suspension flows. Even though this exact limit seems a bit artificial, this 

definition is used for this thesis. Besides this restriction, the two terms gravitational mass movement 

and landslides are used as synonyms. Still, landslides, as showed in this chapter, are a diverse 

phenomenon. However, there are some characteristics and forms which they have all in common. Fig. 

4 shows a rotational landslide. Some of the labelled landforms, like the crown and the main body occur 

in most landslides (Highland and Bobrowsky 2008). The terms of Fig. 4 are used as a basic for any 

description of landslides in the following.  
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3.2. Landslide Classification 

The earlier mentioned collapse of the Nevado Huascarán was triggered by an earthquake. The falling 

mass consisted of snow, ice, and rocks (Evans et al. 2009). More than 30 years after this, in 2002, a big 

rock fall occurred close to Safuna Alta and triggered a GLOF (Hubbard et al. 2005). Within the same 

decade a deep-seated earth flow occurred in Rampac and destroyed several houses (Klimeš and 

Vilímek 2011). These are just three examples of bigger events. However, there are as well rapid, 

shallow landslides in the study area which occur much more frequently (See Fig. 1 and 2). Just by 

looking at all these different events it gets obvious that the term landslide is wide, and so are their 

causes and consequences. Triggering factors like earthquakes, intense rainfall, and anthropogenic 

activities and preconditioning factors like topography, geology, and soils are just some examples of 

causes (Corominas et al. 2014). This diversity makes it almost impossible to model landslide 

susceptibilities generally. Therefore, models like SINMAP and SHALSTAB among others just 

concentrate on shallow landslides (Wu and Sidle 1995; Dietrich et al. 1998; Pack et al. 1998; Baum et 

al. 2002; Haneberg 2004). Shallow landslides are as well the focus of this thesis. A description of what 

these shallow landslides are, and a categorisation of mass movements are the aims of this chapter.  

 

Fig. 4 Sketch of a rotational landslide with label of most important forms (Highland and Bobrowsky 2008) 
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Classification systems exist several ones and are as diverse as the mass movements themselves. An 

early one was developed by Sharpe (1938). He distinguished between slow- and rapid-flowage types, 

landslides, and subsidence (Sidle and Ochiai 2006). A slightly more complex one was then established 

by Carson and Kirkby (1972). The movements are there classified by their velocities and water content. 

They range from heave to slide and flow (Zepp 2014). There are other examples of different 

complexities (Hutchinson 1988; WP/WLI 1993; Cruden and Varnes 1996; Cruden and Couture 2011; 

Cruden and VanDine 2013). All of these classification systems are frequently quoted, but they are 

probably not as much used as the one of Varnes (Kienholz et al. 1984; Jäger and Wieczorek 1994; 

Deschamps and Lange 1999; Hungr et al. 2001; Popescu 2002; Malamud et al. 2004; D’Amato Avanzi 

et al. 2004; Galang et al. 2004; Witt and Kimberley 2005; Godt et al. 2006; Christanto 2008; Huggel et 

al. 2010; Bai et al. 2011; Cruden and Couture 2011; Kavzoglu et al. 2014; Pourghasemi et al. 2014; 

Scaioni et al. 2014). Varnes (1978) created a detailed classification scheme with around 20 different 

classes of mass movements (see Table 1). Especially his description of landforms, causes, and processes 

are useful for the classification of the landslides considered in this thesis. The first part of this chapter 

describes his work, as it is used as well as a basis for the second part. There, some of the classes of 

Varnes are summarised into more general, trigger-based classes, as done by Sidle and Ochiai (2006). 

They established a less differentiated scheme with only five categories. However, as these categories 

focus less on geomorphologic factors, but more on the required triggers it is frequently used as well 

(Turner et al. 2010; Safaei et al. 2011; Tsai et al. 2012; Lee and Park 2016). One of their classes, (rapid,) 

shallow landslides have been used a lot before their classification was published by many authors who 

modelled slope stabilities (Caine 1980; Wu and Sidle 1995; Dietrich and Montgomery 1998; Pack et al. 

1998; Wang et al. 2005; Tsai and Yang 2006; Baum et al. 2008). Hence, such a trigger-based approach 

seems to be a reasonable classification for modelling landslide susceptibilities and is, therefore, mainly 

used in this thesis.  

3.2.1. Varnes Landslide Classification Scheme 

Already in the 1950s, when Varnes developed his first classification scheme, there were plenty of other 

ones (Heim 1932; Ladd 1935; Sharpe 1938). In fact, there were many concerns if there was still a need 

of a new scheme by then (Varnes 1958). Varnes (1978) himself justified his work with the words of 

Ward (1945): "A classification of the types of failure is necessary to the engineer to enable him to 

distinguish and recognise the different phenomena for purposes of design and also to enable him to 

take the appropriate remedial or safety measures where necessary. The geographer, and geologist 

need a classification so that they may interpret the past and predict the present trends of topography 

as revealed by their observations." According to Varnes, these conditions were not met by the recent 

schemes. Hence, he developed his own scheme and updated it in 1978 and 1996 (Varnes, 1978; Cruden 

and Varnes, 1996).  
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The mass movements are classified mainly according to the type and rate of movement, its material, 

and the geometry of the failure plane (see Table 1). Especially the types of movements are analysed in 

the following. The focus here is laid on slides and flows, as these are the main concern of this thesis. 

The presented categories are the ones presented and described by Varnes (1978).  

Falls 

Falls occur mainly at steep slopes or cliffs. A mass is detached and usually falls through the air. Such 

movements are characterised by their high velocities and the separation of the mass from its source.  

Topples 

If there is enough pressure on the up-front part of a cliff or a steep slope, topples can happen. This 

means that an entire unit of the cliff starts rotating forward around a point below or low in the unit. In 

the end the whole mass just tilts over. The pressure required for this is usually exerted by freeze and 

thaw processes of water in cracks.  

Slides 

This category is still very heterogeneous. The term slide includes every movement which includes shear 

strain and a displacement of a mass along one or more surfaces. The development of the shear failure 

at the crown can be simultaneous or progressive. The latter means that local failure occurs, and the 

rupture area propagates. The proposed subdivisions of this class by Varnes (1978) consists, on the one 

hand, of a movement of few units or many units. The one of ‘few units’ slides predominantly 

homogeneous and constant over the whole area. ‘Many units’ means that the material is deformed 

and there are within the slide some almost independent units. On the other hand, slides can be 

subclassified into translational and rotational slides. 

The main characteristic of rotational slides is their sliding surface which is curved concavely upwards. 

It looks like a rotation around an axis parallel to the surface. The so-called slumps have in most cases 

a sliding surface formed like a spoon (spoon-shaped landslides). Just when the crown gets wider the 

slide can have a cylindrical form. In the field, though, this uniform curvature happens rarely. The sliding 

surface is strongly influenced by faults, joints, bedding, and other discontinuities of the soil. Despite 

these differences, characteristic for rotational slides are their steep surface of rupture below the crown 

and sometimes an upwards thrusting area at the foot. This topography leads to ponding. Any further 

water which reaches the slump leads to high water content within the soil, as it is hindered of flowing 

further. The concerned regions keep being unstable until they attain a low slope angle.  

The length of a rotational slide is limited by geologic factors or soil characteristics. Depending on where 

the slope angle of the sliding surface starts being faced upwards to the sliding direction the mass starts 

to decelerate.  
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Translational slides, on the other hand, are characterised by a quite planar surface of rupture. 

Therefore, there is no upwards thrusting area. The mass continues sliding until the shear resistance 

gets big enough again. The sliding mass is often much deformed and splits into many units. Like this, 

slides can then transform into flows, especially if there is much water included and velocities increase.  

Lateral Spreads 

Extension is the main process which leads to lateral spreads. This can either be an overall extension 

due to distributed movements without a well-defined basal shear surface, or more complex 

mechanisms of failure leading to different kind of movements of the coherent material. This second 

type of lateral spreads can as well be classified as complex movement, as they include many different 

mechanisms.  

Flows 

The velocities within flows are uniformly distributed. Between different flows, however, they can be 

divergent. There is a big variety of flows from slow to fast and from dry to wet. For a better 

differentiation Varnes (1978) splits it up into flows in bedrock and flows in debris and earth. The flows 

in bedrock requires many fractures of all sizes in order that the deformations can be distributed over 

a larger area and not concentrate on one single fracture. This usually results in very slow but steady 

flows.  

Flows in debris and earth are easier to recognise as flows. The only difference there is to tell for 

example debris flows from debris slides. This is mainly done by the water content and the resulting 

cohesion, as well as the velocity and their composition. Hence, the higher water content of flows leads 

to higher velocities and lower cohesion. Additionally, it is possible in a debris flow, that there can be 

Table 1 Varnes landslide classification scheme. The term engineering soils describes aggregates of solid particles of natural 
mineral, rock, and inorganic matter. They can be loose, unconsolidated, or poorly cemented (Varnes 1978) 

Type of movement Type of material 

Bedrock Engineering soils 

Predominantly coarse Predominantly fine 

Falls Rock fall Debris fall Earth fall 

Topples Rock topple Debris topple Earth topple 

Slides Rotational Few units Rock slump Debris slump Earth slump 

Translational Rock block slide Debris block slide Earth block slide 

Many units Rock slide Debris slide Earth slide 

Lateral spreads Rock spread Debris spread Earth spread 

Flows Rock flow  
(deep creep) 

Debris flow Earth flow 

Soil creep 

Complex  Combination of two or more principle types of movement 
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some slump blocks at the head. This is usually not the case in debris slides. Flows typically have a bigger 

power and reach further than slides. Characteristic is the V-shaped channel they form.  

As earth and debris flows are still very heterogeneous according to their grain sizes and velocities, they 

can be subdivided into categories like: subaerial flows, subaqueous flows, mudflows, and solifluction. 

The ones which shall be pointed out here are generally the rapid earth flows. They can happen in fine 

grained soils like clay and silt. Usually they occur in soils with a relatively low shear strength. The shear 

strength is then decreased to a small fraction by liquefaction of the whole mass. Earth flows can 

develop in a drier form too. Then, they are usually caused by earthquakes. 

Complex 

Landslides which cannot be assigned to one single of the precedent types belongs to this category of 

complex movements. This can be due to the variety of included materials or the combination of 

different movement types.  

3.2.2. Sidle and Ochiai's Landslide Classification Scheme 

Sidle and Ochiai (2006) base their classification mainly on the triggering factors, the velocity and depth 

of the movement, and the involved processes. The resulting categories are "shallow, rapid landslides", 

"rapid, deep slides and flows", "slower, deep-seated landslides", "slow flows and deformations", and 

"surficial mass wasting". These classes are introduced in the following, based on the descriptions by 

Sidle and Ochiai (2006). 

Shallow, Rapid Landslides 

As proposed by their name, shallow, rapid landslides occur mainly in shallow soils (<2m depth) (see 

Fig. 2B and 5). They require soils with low cohesion and usually occur on slopes with a inclination higher 

than 25°. Additionally, the surface of rupture is often a layer with low permeability, and is 

approximately parallel to the surface of the soil. Therefore, the processes of rotational slides defined 

by Varnes (1978) are excluded of this class. It includes debris and earth slides and flows (thus, it is 

congruent with the kind of mass movements Pack et al. (1998) wants to model). Shallow, rapid 

landslides are influenced by land management. Especially close to roads such failures are frequent (see 

Fig. 5).  
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The described mass movements share similar geomorphologic evidences. They are recognisable by the 

crown, the main scarp, and usually the foot. Characterisitically, they are longer than wide and are at 

least ten times longer than their depth.  

Rapid, Deep Slides and Flows  

This category is similar to shallow, rapid landslides. They occur as well on steep slopes within materials 

of low cohesion. However, as they are deep seated (>5m) they have a bigger potential of damage, have 

different triggers, and require other management activities. The decisive factor is a liquefaction along 

the surface of rupture. For sites which do not have any tension cracks extending from the soil surface 

to the regolith large amounts of antecedent rainfall is needed. For those which have such cracks or 

fractured bedrock single events of rainstorms can trigger a failure. More frequent, though, are 

earthquakes, after or during the rainfalls, the triggering factor. Unlike shallow, rapid landslides, rapid, 

deep slides and flows are not much influenced by human land management. In terms of the Varnes 

classification debris slides and flows, (bed-)rock slides, block slides, and earth flows can be part of this 

category.  

Slower, Deep-Seated Landslides 

Slow means that the movement rates are within a range from millimetres per year to a maximum of 

some meters per day. They do not need as steep slopes as the precedent categories. Undeveloped 

drainage system can cause these landslides as well on moderately steep slopes. The movement can 

stop during the dry season and is then reactivated as soon as the critical level of groundwater is 

reached again. Further water input afterwards can dramatically increase the velocity.  

 

Fig. 5 Shallow, rapid landslides on the eastern slopes of the Cordillera Blanca close to Piscobamba, Peru (Photo by E. Bueechi) 
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Slow Flows and Deformations  

The required soil characteristics are similar to the ones of slower, deep-seated landslides. Slow flows 

and deformations can happen in many different depths of soils and are not much dependent on the 

cohesion neither. Generally, the movement rates are very low, and they are dependent on cumulative 

rainfalls. The velocity characteristically decreases within the flow with increasing distance from the 

surface. Therefore, there is no real surface of rupture. The most common type of landslides defined by 

Varnes belonging to this category is soil creep. The risk soil creep pose mainly concerns properties. Just 

if they transform into deep-seated or rapid shallow landslides they can endanger humans as well. 

Other subcategories like gelifluction are not only gravity-driven, but also dependent on freeze-thaw 

mechanisms.  

Surficial Mass Wasting 

Surficial mass wasting mainly describes individual grains, aggregates, and fragments which move 

downslope by rolling, sliding, or bounding. This can be caused by the loss of interlocking frictional 

resistance due to freeze-thaw and wetting-drying cycles. This is a frequent phenomenon on steeper 

slopes with right conditions concerning moisture, temperature, wind, and exposition. It is not 

considered having a high potential to endanger properties nor humans.  

3.2.3. Implications for This Thesis 

The more diverse classification of landslides by Varnes provides a detailed description of mass 

movements. The three main materials and the six processes combined, sum up to 23 different kinds 

of slope movements. Additionally, there is some information about possible triggers as well. This 

combination of diverse classification and information about triggers are probably a reason, why it has 

been frequently cited by many authors.  

From a modelling point of view, though, it seems to be a rather too fine classification. Pack and 

Goodwin (2001), the developer of SINMAP, for example point out that their model is for all kind of 

shallow translational landslide phenomena. Similarly state Dietrich et al. (1998), one of the developer 

of SHALSTAB, that their model is a tool for mapping the potential of shallow landslides in general. This 

implies that both have used a different and more coarse classification scheme. Therefore, the other 

landslide classification scheme of Sidle and Ochiai was introduced. They just use five classes to 

categorise the phenomena of landslides. Hence, it is much less differentiated than the one of Varnes. 

Its main advantage is that it is more trigger-based. Landslides which have similar causes are put 

together. Therefore, in this thesis the second classification scheme is mainly used. 
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3.3. Mechanics of Landslides 

The analysis of slope stabilities has existed for more than 100 years now. In 1916, a first method of 

splitting the sliding body into several slices was established (Petterson 1955). Since then many other 

strategies of how to deal with landslides from a physical perspective developed (Morgenstern and 

Price 1965; Fredlund and Krahn 1977; Krahn 2003). The most commonly used nowadays is the method 

of limit equilibrium analysis with the factor of safety (Baum et al. 2002; De Blasio 2011; GEO-SLOPE 

International Ltd. 2012; Hartge et al. 2014; Griffiths 2015; McColl 2015). The factor of safety is defined 

as the ratio of the resisting forces (shear strength) and the driving forces (shear stress). As soon as the 

shear stress exceeds the shear strength the slope is unstable and is expected to fail. The involved forces 

can be assessed on many different levels of complexities. There are nonlinear solutions (Cheng and 

Zhu 2004), solutions which are split into different summands (Krahn 2003), 3D solutions (Xie et al. 

2006) or comparatively simple solutions (Pack et al. 2005; Sidle and Ochiai 2006; Zepp 2014). For this 

thesis one of these simpler solutions has been chosen, as the included parameters are similar for all. 

Eq. 1-5 show the factor of safety used by Sidle and Ochiai (2006).  

For the use of this model several simplifications have to be assumed. First, the bedding plane is smooth 

and parallel to the groundwater table and the ground surface. Second, a potential slip surface is 

sufficiently longer than the depth of the moving body. Third, an infinite slope with a constant angle is 

considered (Sidle and Ochiai 2006). Fig. 6 shows some of these simplifications and the forces acting on 

the soils. The relevant formulas for the involved forces are as followed: 

S = c + (W ∗ cos[β] − u) ∗ tan⁡(ϕ)  (1) 

where S = shear strength, c = cohesion of the soil, W = weight acting on slice, β = slope angle, u see Eq. 

2, and φ = internal friction angle 

u = γw ∗ h ∗ cos2(β)  (2) 

where γw = unit weight of water (9.81 kN/m^3) and h = vertical depth of water table 

W = (γt ∗ [D − h] + γsat ∗ h) ∗ cos⁡(β)  (3) 

where W = weight acting on slice,⁡γt = moist unit weight of soil (above groundwater), D = vertical soil 

depth, and γsat = saturated unit weight of soil  

T = W ∗ sin⁡(β)  (4) 

where T = shear stress  

The factor of safety (FS) can be defined out of this equations as the ratio of the shear strength and the 

shear stress. This then results in: 
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𝐹𝑆 =
c

W∗sin⁡(β)
+

tan⁡(ϕ)

tan(β)
−

u∗tan(ϕ)

W∗sin⁡(β)
 (5) 

Out of a physical point of view a landslide occurs as soon as the denominators exceed the numerators. 

The denominators are dependent on the cohesion, the internal friction angle, the height of the 

groundwater table, and the slope angle. The unit weight of water is as well part of u, but as it is a 

constant it is not further considered. The destabilising factors are the slope angle (twice as sinus, once 

as tangent, and once as cosine), the unit weights of moist and saturated soils, and the vertical depths 

of the soil and the water table (Sidle and Ochiai 2006). These factors and their impact on the formulas 

are presented here (see Fig. 7). 

3.3.1. Cohesion 

Cohesion is the resistance force which accompanies shear deformation resulting of an applied shear 

force. It is measured in Pa and is in soils usually in the range of some kPa and for rocks even some MPa 

(De Blasio 2011). The force of cohesion consists of different other forces: electrostatic bonds between 

clay and silt particles, organic matter which causes cementation, and van der Waals forces. It is 

impacted by the water content (Sidle and Ochiai 2006). Wet sands, for example, have little water 

bridges between the particles which results in negative pore pressure, thus, higher cohesion (De Blasio 

2011). As soon as there is too much water between the grains, they lose contact. The soil is then even 

more unstable than in a dry state (Grotzinger and Jordan 2017). This effect of water on the stability of 

soils was already examined by Thorne and Tovey (1981). They compared the erosion of two similar 

slopes, but one with wet and the other with dry material. According to them, the stability of the dry 

 

Fig. 6 Basic Laws of Friction. β=slope angle; D=soil depth (vertical); D'=soil depth (orthographic); h=vertical depth of water 
table N=normal force along sliding surface (=W*cos(β)); S=shear strength; T=shear stress; W=weight acting on slice 
(modified after De Blasio, 2011; Sidle and Ochiai, 2006) 

 

 

 

 

 



 

 

17 Modelling of Landslide Susceptibilities in the Cordillera Blanca (Peru) 

and therefore cohesionless material is just dependent on the slope angle and the internal friction 

angle. This makes this soil vulnerable to erosion due to water. This is not the case for the wet, thus, 

cohesive material. There, they did not observe much movement. Besides this dependency on the water 

content another factor influencing the cohesion needs to be pointed out: roots. Schmidt et al. (2001) 

split the total cohesion into the two factors effective cohesion of soils and the apparent cohesion 

provided by roots. They conclude that root cohesion varies significantly between the vegetation types 

and is in the range of some kPa to more than 90 kPa for some trees. These different types of cohesion 

together have a linear influence on the factor of safety (see Eq. 5). It increases with increasing cohesion 

(see Fig. 7).  

 

Fig. 7 The different parameters influencing the factor of safety. The different lines represent a variation of the considered 
parameter within reasonable ranges. The not considered parameters are put as a constant. For example, the graph on the 
top left represents the factor of safety for constant values of all parameters, except the cohesion which varies from 1 to 
100 kPa. The constant values are set as followed: cohesion=5 kPa (De Blasio 2011), internal friction angle=30° (Schellart 
2000), slope angle=30°, height of water table=1.5 m (except for variations of soil depths, there 0.1 m is used), soil depth=3 
m (Crosta and Frattini 2003), unit weight of moist soil=8 kN/m3, unit weight of saturated soil=13 kN/m3 (Capparelli and 
Versace 2014), unit weight of water=9.81 kN/m3 (Thorne and Tovey 1981). The influence of some of the parameters changes 
when the constants are set differently. The internal friction angle, for example can correlate negatively with the FoS for 
high values of u  
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3.3.2. Internal Friction Angle 

If the considered material is dried and bulked on a plane, the internal friction angle is the slope angle 

the developed accumulation takes (Zepp 2014). This angle is dependent on different factors like size 

and shape of the grains. Bigger and flat particles can withstand steeper slope angles (Grotzinger and 

Jordan 2017). The range of possible values starts approximately at 26° for some sandstones and can 

reach around 45° for Blair dolomite (Schellart 2000).  

Its influence on the slope stability is positive: the higher the internal friction angle, the higher is the 

slope stability (Zepp 2014) (Fig. 7). Looking at Eq. 5 this is not that clearly visible. It is twice in the 

formula as a tangent on the numerator. As it is within a tangent function the value increases fast with 

a higher internal friction angle. However, the term appears twice in the formula, and the second time 

it is negative (-u*tan[φ]). Thus, its influence on the factor of safety is not as big and more dependent 

on the particular ratios of the second summand and the subtrahend.  

3.3.3. Slope Angle 

Many slope stability modellers consider the slope angle as one of the most important preconditioning 

factor of landslides (Swanston 1973; Lee et al. 2002; van Beek et al. 2002; Sidle and Ochiai 2006; Yilmaz 

2009; Felicísimo et al. 2012; Kavzoglu et al. 2014; Pourghasemi et al. 2014; Posner and Georgakakos 

2015). Fig. 7 supports this assumption. In the graph of the slope angle the variations of the factor of 

safety is biggest. The factor of safety decreases from over 30 in flat regions to less than 1 for slope 

angles bigger than 15°. This gets clear as well from Eq. 4. There the shear stress is defined as 

X*cos(β)*sin(β) (X is always positive and independent of β). This means that the shear stress increases 

rapidly with the slope angle, especially in the first 10-20 degrees. 

3.3.4. Water Table 

The height of the water table has an influence on two parameters of the factor of safety. u increases 

linearly with the water table and is subtracted of the shear strength. Additionally, it is included in W, 

and therefore twice in the denominator. Therefore, a higher water table leads the a lower factor of 

safety. Cohen et al. (2009) explains this mainly with the positive pore water pressure which develops. 

Two other processes are pointed out by them. First, there is additional loading as saturated soil is 

heavier than moist soil. This is expressed as well in Eq. 3. The weight acting on the slice increases with 

a higher water table. The second process Cohen et al. (2009) point out, is that the cohesion is reduced 

as soon as a certain wetness of the soil is exceeded. Another important characteristic of the water 

table is its high variability. It can change rapidly with severe consequences for the slope stability. Heavy 

rainfall or snowmelt events can cause sudden increase of the water table and raise the shear stress 

(Sidle and Ochiai 2006; McColl 2015), and with its effect on the cohesion reduce the shear strength at 

the same time (Hartge et al. 2014; Zepp 2014).  
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3.3.5. Soil Depth 

The soil depth is here defined as the vertical soil height of the ground from the surface to the bedding 

plane (Sidle and Ochiai 2006). For the considered shallow landslides this corresponds to the actual soil 

depth (Pack et al. 2005). The factor of safety just increases slightly with increasing soil depth (see Fig. 

7). Its influence is restricted to the difference of the soil depth and the height of the water table (see 

Eq. 3 and 4). Hence an increasing soil depth does not change anything when the water table raises 

simultaneously. In practice, though, higher soil depths are considered to rather reduce the stability of 

soils, when considered independently from the water table (Sidle and Ochiai 2006; McColl 2015).  

3.3.6. Weight of Soil  

The weight of the soil influencing the factor of safety needs to be differentiated. The first one is γt, the 

unit weight of the soil (Sidle and Ochiai 2006). This may vary between the horizons, but does not 

change rapidly over time (Capparelli and Versace 2014). The second definition of the weight of soil is 

the whole weight acting on the bedding plane, defined as W in Eq. 3 (which includes γt). They both 

correlate positively with the factor of safety. What is not considered here, though, is an additional 

external load. External loads can act contrarious as preparatory and triggering factors (McColl 2015) 

(see as well the following chapter 3.4).  

3.4. Preconditioning, Preparatory, and Triggering Factors 

The occurrence of landslides is dependent on three different factors: preconditioning factors, 

preparatory factors, and triggers (Zimmermann et al. 1997; McColl 2015). Preconditioning factors 

describe slope characteristics which influence slope stability and are constant on timescales of decades 

to centuries. Preparatory factors are more variable over time. They reduce the stability of slopes but 

do not initiate failures (t0-t3 on Fig. 9). The factor which then causes the landslide is the trigger (see 

Fig. 8, Fig. 9 at t4). The border between preparatory factors and triggers can be fluent (McColl 2015). 

All these factors concerning shallow, rapid landslides are described in the following subchapters.  

3.4.1. Preconditioning Factors 

Preconditioning factors are mainly related to the relief and the included material. Landslides are 

favoured by a high relief energy (Zimmermann et al. 1997), hence high differences of altitudes in small 

areas (Burak et al. 2006). This is due to the fact, that this leads to steeper slopes, what is considered 

by many authors as a crucial preconditioning factor, as mentioned before. Increasing slope angles 

enhance the landslide susceptibility until slope angles around 45°. Afterwards, the susceptibility 

decreases again, due to a lack of soil, as they constantly erode (Sidle and Ochiai 2006). Sidle and Ochiai 

(2006) complement that it is still just one of many factors, as shallow landslides generally occur on 

slope angles between 20° and 67.5°. This wide range which includes many stable slopes too shows that 

there need to be as well other factors. One of which is the curvature. Divergent and convex landforms 
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are less susceptible to landslides. This is due to the distribution of the subsurface water flow, which 

can be more easily distributed over larger areas for these two forms. Convergent or concave landforms, 

on the other hand, enhance the accumulation of subsurface water, leading to higher pore-water 

pressures. This increases the susceptibility (Sidle and Ochiai 2006). Furthermore, there are two other 

relief-related factors which have an indirect impact on the landslide susceptibility: elevation and 

aspect. They have an influence on the weathering of soils and their development (Zimmermann et al. 

1997) and further developed soils, are more susceptible to landslides (Sidle and Ochiai 2006). Elevation 

and aspect affect hydrologic processes, mainly via evapotranspiration, as well. North-facing slopes in 

the northern hemisphere are usually wetter (Sidle and Ochiai 2006). These two factors of the soil 

development and wetness lead to the assumption, that north-facing slopes in the northern 

hemisphere, south-facing slopes in the southern hemisphere respectively, are more prone to 

landslides. Empiric studies, however, have found as well contradicting or insignificant results (Lineback 

Gritzner et al. 2001; Dai and Lee 2002; Ayalew and Yamagishi 2005; Gokceoglu et al. 2005; Yilmaz 

2009). Therefore, Sidle and Ochiai (2006) conclude that the aspect does have an influence on the 

mentioned factors, but other factors can relativise its impact. 

The included materials concern the soils, and the geology (bedrock and parent material) (McColl 2015). 

For defining the susceptibility of soils, looking at their shear strength is crucial (Sidle and Ochiai 2006). 

This is mainly composed by the cohesion, internal friction angle, and the depth of the soils (Eq. 1-3). 

Their influence is explained in the previous chapter. Additionally, it is of importance how the soil 

 

Fig. 8 Explanation of different stability states of a slope, and factors which can change these states (Popescu 2002) 
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horizons are composited. Stiff horizons overlaying weak plastic horizons enhance susceptibilities 

(McColl 2015) just like changes of the permeability. A permeable horizon above an impermeable 

horizon leads to fast saturation during rainfall what can cause failure (Cruden and Lan 2015). Due to 

this reason clay-rich horizons can act as a good sliding plane (Sidle and Ochiai 2006). Soils which change 

their characteristics fast when water enters the system are critical too (Glade and Crozier 2005a).  

Geological factors which can enhance the slopes susceptibility to shallow, rapid landslides are diverse 

(Cruden and Varnes 1996). The weatherability of the parent material plays an important role. Even 

though, this is not only dependent on the geology, but as well on the predominant kind of weathering. 

Sidle and Ochiai (2006) state that for example granite rocks weather slow compared to other rocks in 

regions of predominantly physical weathering. In regions with high chemical weathering, though, 

granite rocks weather fast. This is probably a reason why Glade and Crozier (2005a) consider as well 

vegetative and climatic conditions as preconditioning. Further influences of the geology are mainly 

related to the vulnerability of the bedrock to different preparatory factors which are described in the 

following subchapter. 

3.4.2. Preparatory Factors 

Preparatory factors are variable over time. Depending on the factor the considered time-scale where 

it varies can be days to centuries. One of the main factor here is water related. Periods of intense 

rainfall or snowmelt can increase the groundwater table and the pore-water pressure and, therefore, 

reduce the stability of the soil (Popescu 2002). Human reasons for changing groundwater levels can be 

irrigation and broken pipes. Over a time period of some decades, climate change can have an impact 

on the groundwater level too (McColl 2015). One of the rather long-term changing factors is the 

increase of the slope steepness caused by tectonic uplift (Glade and Crozier 2005a). The slope angle 

can increase in shorter time as well due to fluvial, marine, and glacial erosion (McColl 2015). Humans 

can change it even faster with construction work or mining (Cruden and Lan 2015). Another rather 

slow process is weathering (Glade and Crozier 2005a). The cohesion is reduced when the bare rock 

surface is turned into soils (Sidle and Ochiai 2006). The already developed soils or as well the bedrock 

can be undercut by fluvial or marine erosion (Zimmermann et al. 1997). Similar impacts can have the 

construction of roads (McColl 2015). This leads to a lower stability of the slope as the stabilising effects 

of the slope toe are removed (Zimmermann et al. 1997). In glacierised regions debuttressing is a 

common preparatory factor. The retreat of the glaciers or the permafrost can destabilise slopes and 

expose them (Huggel et al. 2013). Further important factors are deforestation (Glade and Crozier 

2005a; Cruden and Lan 2015) what removes the root cohesion (Schmidt et al. 2001), or the loading of 

the slopes. This final factor mentioned here can be produced by humans or naturally by landslides or 

other loads (Cruden and Lan 2015; McColl 2015).  



 22 Modelling of Landslide Susceptibilities in the Cordillera Blanca (Peru) 

3.4.3. Triggering Factors 

One of the most frequent trigger for shallow, rapid landslides is water. Soils which receive too much 

moisture get oversaturated and may start sliding. This water can come from different sources. Long or 

convective precipitation, rapid snow and ice melt, and GLOFs are the most frequent ones 

(Zimmermann et al. 1997; Van Asch et al. 1999; Glade and Crozier 2005a; De Blasio 2011; McColl 2015). 

McColl (2015) mentions as well the other extreme: the absence of water. The drawdown of 

groundwater can decrease cohesion what can cause a failure of the slope as well. Other strength 

reducing factors which can lead to active instabilities are decreasing permafrost area, weathering, and 

stress-induced fatigue (McColl 2015). A typical stress increasing factor is seismic shaking caused by 

earthquakes (Glade and Crozier 2005a; Lin et al. 2008; Chen et al. 2011; de Blasio 2011) or by 

explosions (Crozier and Glade 2005). Additionally, volcanic eruptions, slope undercutting or slope 

overloading can act as triggering factors too (Crozier and Glade 2005). 

3.4.4. Implications for the Study Area 

Concerning the preconditioning factors, it can be stated, that the study area extends over elevations 

from 1400 masl to 6768 masl. These elevations often change over small distances (see chapter 2 and 

Fig. 18 where the slope regression model indicates the steepness of the slopes). This leads to a high 

relief energy. Other preconditioning factors like curvature, elevation, and aspect are mainly too 

variable over the study area (ÖAV 2006), to make any generalisations. The predominant geologic 

 

Fig. 9 t0-t3 show different states of stabilities during the process of destabilisation 
due to preparatory factors. T4 changes the slope into the state of active instability, 
thus shows a triggering event (Huggel et al. 2012a) 
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settings in the study area consist of granodiorite and glaciofluvial deposits (INGEMMET 1999). The 

weathering is dependent on the region (vegetation cover, altitude, etc.) and can be chemical and 

physical (Portes et al. 2016). Hence, general implications for the study area from a geologic point of 

view, is imprecise too.  

The precipitation and the related pore water pressure can act as preparatory and as triggering factor 

for landslides. In the Cordillera Blanca rainfall mostly occurs in the months between October and 

March. Depending on the location and altitude within the study area, between 400mm and 800mm of 

precipitation occur in these months on average. In the southeast of Huaraz extreme events of 100 mm 

within 5 days are expected to happen with a return period of around 40 years (Schauwecker et al. 

2017).  

The worldwide trend of retreating glaciers and permafrost degradation is observed in the Cordillera 

Blanca as well (Kaser et al. 1990; Mark and Mckenzie 2007; Vuille et al. 2008; Baraer et al. 2012; 

Schneider et al. 2014). This leads to the debuttressing effect which can act as preparatory and 

triggering effect.  

Earthquakes are frequent in Peru. Even earthquakes with magnitudes of Mw 6 or larger have been 

observed a lot in the past (Suárez et al. 1983; Bellier et al. 1991; Lemoine et al. 2002; Daniels et al. 

2009; Grant et al. 2015; Lacroix et al. 2015; IGP 2017; Ruiz et al. 2017). The distribution within the 

country shows, that Áncash is one of the most affected regions of Peru (Bernal et al. 2002). The already 

mentioned devastating landslide of Nevado Huascarán in 1970 was triggered by an earthquake 

(Lliboutry 1975; Carey 2010). Hence, earthquakes can be expected to have an impact on landslides in 

the study area. Less likely are influences by volcanic eruptions, as the closest active volcano is around 

700 km north of the study area in Sangay, Ecuador (Siebert et al. 2010).  
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4. Methods and Data 

4.1. Landslide Susceptibility Models 

4.1.1. SINMAP 

Stability Index Mapping (SINMAP) is a physically based slope stability model developed by Pack et al. 

(1998). As an extension of the program ArcGIS it calculates for each grid cell of a given DEM the stability 

index (SI) (Pack et al. 2005). The SI is based on a dimensionless form of the infinite slope stability 

model’s factor of safety (FS) (see Eq. 6). This is a slight adaption of the FS presented in Eq. 5. The FS 

used by SINMAP includes a term for the relative wetness index (w) additionally (Eq. 8). The height of 

the water table is not included here, unlike the FS by Sidle and Ochiai (2006) presented before. For the 

final calculation of the SI (Eq. 9), though, it is used again.  

𝐹𝑆 =
C+cos⁡(β)[1−w

ρw
ρs
]tan⁡(ϕ)

sin⁡(β)
 (6) 

where C = cohesion which is used in a dimensionless form (see Eq. 7), β = slope angle, w = relative 

wetness index, ρw = density of water, ρs = density of the soil, and φ = internal friction angle. 

𝐶 =
𝐶𝑟+𝐶𝑠

h∗ρ𝑠∗g
 (7) 

where Cr = root cohesion, Cs = soil cohesion, h = perpendicular soil depth, and g = gravitational constant. 

The water destabilising effects on the FS is represented by the topographic wetness index (TWI) which 

provides the value of w. This value is used to include the upslope area which drains into given grid 

cells.  

w = Min(
R∗a

T∗sin(β)
, 1) (8) 

where R = steady state recharge (m/hr), a = contributing upslope area per unit contour length [m2/m], 

and T = soil transmissivity [m2/hr] (ex. hydraulic conductivity [m/hr] times soil thickness[m]). The 

combination of these two generalised assumptions (FS and TWI, see Eq. 6-8) results in the SI.  

SI =
Cr+Cs+Cos

2(β)[ρsg(D−Dw)+(ρsg−ρwg)Dw]tan⁡(ϕ)

Dρsgsin(β)cos⁡(β)
 (9) 
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where D = vertical soil depth and Dw = vertical height of the water table. The required parameters can 

either be used as proposed by the authors (see Table 2) or they can be updated manually if further 

information about the soils are available. For this thesis the default values are used, as the study area 

has a big extent and highly variable soil characteristics. The other parameters can be derived from the 

DEM (Pack et al. 1999). At first a pit fill is applied on the DEM, to raise all points which do not drain, up 

to a point where they drain again. Then, the remaining required parameters like the slope angle, flow 

direction and flow accumulation are calculated. Afterwards, w and the SI can be calculated. This is 

done using different values of the soil characteristics within the defined interval. Points which are still 

stable under the worst case scenario, what means lowest cohesion and internal friction angle, and 

highest transmissivity / effective recharge, obtain an FS larger than 1 (Pack et al. 2005). In doing so, 

SINMAP tries to handle not only the spatial variability of the soil characteristics, but the temporal 

variability too (Meisina and Scarabelli 2007). For these calculations several simplifications with respect 

to landslide occurrence need to be assumed. (I) The water table is parallel to the soil surface and the 

layer below. (II) The layer below the soil is relatively impermeable. (III) The shallow lateral flow can be 

derived from the surface topography and therefore follows the topographic gradient. (IV) There is an 

equilibrium of the lateral discharge at each point and the steady state recharge. (V) T*sin(β) defines 

the capacity for lateral flux at each point (Pack et al. 1998).  

The obtained SI values for each grid cell are then classified into six different classes. The most stable 

class includes all cells with SI values higher than 1.5 and is called “Stable slope zone”. With increasing 

susceptibility of landslides, the other classes are: “Moderately stable zone” (1.25<SI<1.5), “Quasi-

stable slope zone” (1<SI<1.25), “Lower threshold slope zone” (0.5<SI<1), “Upper threshold slope zone“ 

(0<SI<0.5), and "Defended slope zone" (SI<0). This last class characterises pixels which are unstable for 

any values within the considered parameter range (Table 2). Stability in such regions cannot be 

explained by the model (Pack et al. 1998).  

4.1.2. Multiple Logistic Regression  

Regressions are used to model a dependent variable with one or more independent (explanatory) 

variables. The frequently used linear regression model assumes a straight-line relationship between 

the independent and the dependent variable, except an error term (Ross 2010). For many problems in 

Earth sciences this is a reasonable model (Yilmaz 2009).  

Table 2 Default values for the required soil characteristics (Pack et al. 1999) 

Transmissivity / effective recharge 2000-3000m 

Dimensionless cohesion 0-0.25 

Internal friction angle 30-45° 

Soil density 2000 kg/m3 
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For binary response data, though, where just the presence or absence of a phenomenon is of interest, 

logistic regressions are more often used (Lee and Sambath 2006). Especially in the case of landslide 

susceptibility modelling this is a frequent approach (Lee 2004; Ayalew and Yamagishi 2005; Lee and 

Sambath 2006; Van Den Eeckhaut et al. 2006; Yilmaz 2009; Bai et al. 2011; Felicísimo et al. 2012; 

Devkota et al. 2013; Park et al. 2013b; Kavzoglu et al. 2014). The aim of a logistic regression is to model 

the probability of the occurrence of an event based on some independent variables (Hilbe 2011). In 

the case of landslide modelling popular independent variables are listed in Table 3. 

For this thesis, only information which can be gained from a DEM is used: elevation, slope, aspect, 

curvature, flow accumulation, and distance to rivers (derived from flow accumulation).  

To perform a logistic regression with these variables a calibration dataset is required. This dataset 

consists of several event points (1) as well as several non-event points (0). 196 landslide points were 

taken from the shallow landslide inventory (see subchapter 5.2.1) and compared to 798 non-landslide 

points. For data, where non-events are much more frequent than events as it is the case for landslide 

occurrence, it is recommended to reflect this as well in the calibration set, with up to five times more 

non-event points (King and Zeng 2001; Van Den Eeckhaut et al. 2006; Bai et al. 2011). The non-landslide 

points are randomly distributed over the area of the inventory. The observed landslides were at first 

subtracted from the study area, using a 5 meter buffer zone. The calibration set was then analysed 

using the glm function of the stats package in R. The considered independent parameters were 

combined in different ways to find the lowest AIC (Akaike Information Criteria), and hence the best 

model (Hilbe 2011). The first regression model included all parameters and was then compared to 

different regression models with less explanatory parameters. Parameters which had no significant 

influence on the model for any combination were not used. From the remaining parameters the ones 

were chosen which resulted in the lowest AIC. The best parameter combination was then used for the 

model using Eq. 10 and 11.  

𝑃(𝑌 = 1) = 𝜇𝑖 =
1

1+𝑒−𝑧
 (10) 

Table 3 Common independent parameters for logistic regression modelling of landslide susceptibilities 

Authors Independent variables 

(Devkota et al. 2013) Slope, aspect, curvature, elevation, stream power index (SPI), TWI, 
sediment transport index, land use map, lithology, distance from 
faults, rivers, and roads 

(Yilmaz 2009) Geology, elevation, slope, aspect, SPI, TWI, distance from faults, 
and drainage 

(Kavzoglu et al. 2014) Slope, drainage density, elevation, TWI, slope length, land cover, 
distance to road, lithology, and aspect 

(He et al. 2012) Lithology, elevation, slope, aspect, plan and profile curvature, and 
distance to rivers 
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𝑧 = 𝑥𝑖𝛽 = 𝛽0 + 𝑥1𝛽1 +⋯+ 𝑥𝑛𝛽𝑛 (11) 

where μi = probability that a landslide occurs, β = calculated weights for the explanatory variables, xi = 

explanatory variables, n = number of explanatory parameters (Hilbe 2011). 

The final map of resulting landslide susceptibilities was classified into 5 classes using the natural breaks 

method (Slocum et al. 2009). 

4.1.3. Slope Models 

As the slope angle is a crucial preconditioning factor, within many slope stability models it plays a main 

role for determining the stability of slopes (Baum et al., 2002; Dietrich and Montgomery, 1998; GEO-

SLOPE International Ltd., 2012; Haneberg, 2004; Kavzoglu et al., 2014; Lee et al., 2002; van Beek et al., 

2002; Wu and Sidle, 1995). Also the two models used in this thesis include, and also largely depend 

(Pack et al. 1998) on the slope angle. Hence, as it is one of the main factors used, two models more 

were established which are just based on the slope angle. The first one is another logistic regression 

model, using the slope angle as the only explanatory variable. It was trained using the same calibration 

set as the LRM model. This model was compared to SINMAP and LRM, to see how much the increasing 

number of explanatory parameters improved the model performance. The classification process was 

done identically to the one of the LRM. Since this logistic regression slope model is very similar to the 

LRM, further simplification was done using bi-variate statistics to define slope angle/landslide 

occurrence relationship. This second slope model is based on the failure rate method described in 

Jäger and Wieczorek (1994). The slope maps were classified into classes of 5° (0-5°,5-10°,…) up to the 

final class which includes all areas with slope angles >50°. The landslide density was calculated by 

dividing the number of landslides in the calibration set of the shallow landslide inventory, divided by 

the total area of the slope class. The landslide densities can then be transformed into failure rates by 

subtracting the landslide density of the whole area. Like this the classes show if the considered slope 

angles lead to increased or decreased susceptibility of landslides compared to the general 

susceptibility of the area (Jäger and Wieczorek 1994). The resulting map is classified using natural 

breaks too (Slocum et al. 2009).  

4.2. Landslide Inventories 

The established models were evaluated using three different landslide inventories. Two of these just 

include shallow landslides, as these are the ones which are modelled by SINMAP (Pack et al. 1998) and 

the LRM. The first shallow landslide inventory was established over the whole study area (Shallow 

landslide inventory (SLI)). The second one is restricted to a smaller area around the town of Marcará 

(Marcará landslide inventory (MLI)). The third inventory extends over a similar area as the MLI but 

considers slower, deep-seated landslides (Deep-seated landslide inventory (DSLI)). This third inventory 
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is used to detect possible differences of the performance. Is it possible to detect even other kinds of 

landslides than the ones which are modelled, or how big is the difference of the performances for 

shallow and deep-seated landslides?  

4.2.1. Shallow Landslide Inventory 

High resolution optical data like aerial photography or satellite images have proven to be a useful tool 

for establishing landslide inventories, in particular because such data is increasingly becoming freely 

available in a georeferenced format (He et al. 2012; van Westen et al. 2012; Zizioli et al. 2013; Kritikos 

and Davies 2014; Raia et al. 2014; Steger et al. 2015a; Alejandrino et al. 2016; Rossi and Reichenbach 

2016; Pradhan and Mezaal 2017). Google Earth, for example, has been used a lot for this purpose 

(England 2011; Guzzetti et al. 2012; Corominas et al. 2014; Fuchs et al. 2014; Posner and Georgakakos 

2015; Sarkar et al. 2016). Therefore, the SLI was based on Google Earth images dated between August 

2013 and July 2017. 

This landslide inventory is restricted to shallow landslides as defined by Sidle and Ochiai (2006). This 

corresponds to the kind of landslides which are modelled by SINMAP (Pack et al. 1998). The inventory 

covers the entire study area. A landslide point was set at locations where one or several of the 

following recognition features proposed by Rowbotham and Dudycha (1998) were detected: (I) 

disrupted vegetation patterns, (II) scars, or (III) obviously displaced blocks of unconsolidated material. 

For each landslide, a point was set in its uppermost part (Fig. 12). The landslides considered in the 

Marcará landslide inventory are not considered in this inventory for having two exclusively distinct 

inventories. The resulting inventory was then split into a calibration set for the statistical models (about 

75% of the landslides) and a validation set (25% of landslides) for all models. This is a slightly more 

equilibrated ratio than the 80/20% used by Bai et al. (2011) and Van Den Eeckhaut et al. (2006). By 

doing so it was ensured to still have enough points for the validation.  

4.2.2. Marcará Landslide Inventory 

This is an already existing landslide inventory for the region around Carhuaz and Marcará. It was 

prepared using the high resolution optical data available on Google Earth as well and then it was 

validated with extensive fieldwork (Strozzi et al. submitted). It includes all landslide types which could 

be identified in the field from which just the shallow ones were selected for this work. Due to the field 

check of this inventory, I consider it to be more complete. The purpose of this second inventory is 

having a smaller, but more homogenous evaluation area. None of the landslides of the MLI were used 

for the calibration of the models, but they were used for their evaluation. 
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4.2.3. Deep-Seated Landslide Inventory 

InSAR is a remote sensing technique using microwaves. It can be used to measure the topography of 

surfaces and, if datasets of different times are available, the changes of the topography over time as 

well (Rosen et al. 2000). Like this, surface displacements can be measured with an accuracy of some 

millimetres (Guzzetti et al. 2012; Herrera et al. 2013). The considered landslides are mainly slower, 

deep-seated landslides, slow flows, and deformations (Riedel and Walther 2008; Guzzetti et al. 2009; 

Delgado et al. 2011; Cascini et al. 2013; Herrera et al. 2013). This technique was used by Strozzi et al. 

(submitted). They established a landslide inventory of deep-seated landslides which could be used for 

this thesis. It was established using Differential Synthetic Aperture Radar Interferometry (DInSAR) and 

Permanent Scatterer Interferometry (PSI) (Strozzi et al. submitted; Frey et al. 2017). These techniques 

are considered as powerful and cost-effective techniques to detect even small movements on the 

surface (Guzzetti et al. 2012; Herrera et al. 2013; Scaioni et al. 2014; Ciampalini et al. 2016). Therefore, 

they have been used by many authors to monitor or inventory landslides in different regions (Guzzetti 

et al. 2009; Cascini et al. 2010, 2013; Delgado et al. 2011; Auflic and Komac 2012; Greif and Vlcko 2013; 

Herrera et al. 2013; Cigna et al. 2013; Jebur et al. 2015; Bianchini and Pratesi 2016; Rosi et al. 2018).  

4.2.4. Total Station 

Additional to the inventories, displacement rates were measured on site. The displacement of different 

points close to Marcará and around the Safuna Alta (Fig. 15) were measured using the total station 

Leica TS-06 PLUS. Therefore, several points were chosen in these two regions at stable and unstable 

places (indicated by the DInSAR and PSI measurements). The chosen points were marked with iron 

sticks which were installed with concrete into the ground. One of the points which was considered as 

stable and, furthermore, had a good visibility to all other points was used as base. All other points are 

measured from there as rovers. The idea was similar to what Tsai et al. (2012) did. Two measurements 

should be undertaken which include the rainy season. For this thesis the first measurement was 

planned for January or beginning of February 2017, hence within the rainy season and a second 

measurement after the rainy season in July / August. This inventory should be used complementary to 

the DSLI as it focuses on the slower landslides too.  
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4.3. DEMs 

The four landslide susceptibility models were applied to large parts of the Cordillera Blanca using three 

different DEMs: the Advanced Spaceborne Thermal Emission and Reflection Radiometer Global DEM 

(ASTER GDEM) (version 2), the Shuttle Radar Topography Mission (SRTM) DEM (version 4) (herein just 

called SRTM), and TanDEM-X DEM (TDX). All of these DEMs were co-registered using the co-

registration tool developed by Nuth and Kääb (2011). This was applied with the SRTM DEM as master, 

as the used SRTM and TDX were already co-registered. The study area was extracted from these DEMs 

for the modelling. An additional co-registration of the DEMs to Google Earth data (SLI) was not 

performed. Its fitting was just analysed qualitatively by comparing the flow accumulation of the SRTM 

to Google Earth images (see Fig. 10).  

4.3.1. ASTER GDEM 

The first used DEM was the ASTER GDEM version 2. It was retrieved online from the Global Data 

Explorer Tool (in October 2016), maintained by the NASA Land Processes Distributed Active Archive 

Center, USGS/Earth Resources Observation and Science Center, Sioux Falls, South Dakota (NASA LP 

DAAC 2011). The DEM is based on photogrammetric processing of optical satellite images acquired 

between 18th December 1999 and 28th February 2011 (ASTER Science Team 2014). It has postings of 

one arc-second (ca. 30m). The validation study performed by Tachikawa et al. (2011) in Japan showed 

an elevation error of +7.4m in mountainous areas with standard deviations of 12.7m. External 

 

Fig. 10 Visual control of the co-registration of the Google Earth images and the SRTM DEM using the flow accumulation map 
of the SRTM DEM 
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validations by means of Global Positioning System (GPS) and comparisons to other DEMs showed 

elevation errors of 0.99m to 8.1m with standard deviations of 7.45m to 11.3m (Athmania and Achour 

2014; Rexer and Hirt 2014; Satgé et al. 2015; Elkhrachy 2017). Hence, the results are in a similar range. 

According to the co-registration tool the final co-registered ASTER GDEM had a root mean squared 

error (RMSE) of 36.78 to the SRTM. 

4.3.2. SRTM DEM 

The SRTM DEM version 4 from the 24th September 2014 was retrieved online from the EarthExplorer 

tool, maintained by the NASA Land Processes Distributed Active Archive Center too (USGS 2015). It is 

based on the datasets of two SARs, one C-band and one X-band system. These two SARs were on board 

of a space shuttle, from where the measurement took place (Farr et al. 2007). The void filled version 

was used, which has for the considered area a spatial resolution of one arc-second. The validation of 

the SRTM DEM was performed by Farr et al. (2007). It showed an absolute geolocation error of 9 m in 

South America and an absolute vertical error of 6.2 m. External validations of the SRTM DEM v4 have 

been performed in different places of the world. They showed better results of around 3m or less of 

vertical error with standard deviations of 3.2-8.4 m (Mouratidis et al. 2010; Athmania and Achour 2014; 

Rexer and Hirt 2014). Higher elevation errors were detected in the Altiplano of southern Peru, Bolivia, 

and northern Chile, with a mean error of 10.6 m and standard deviation of 11.3 m (Satgé et al. 2015).  

4.3.3. TanDEM-X DEM 

This DEM was produced in-house by Gamma Remote Sensing from TanDEM-X acquisitions performed 

along ascending (24th January 2013) and descending (1st October 2013) orbits with a posting of 0.0001 

decimal degrees, corresponding to about 10 m (Strozzi et al. submitted). Voids that occurred due to 

radar specific issues such as layover, radar shadow, etc. were filled with data from the SRTM DEM. For 

TanDEM-X DEMs produced with the same methodology in the past over Mount Etna in Italy 

(Wegmüller et al. 2014) and the Chomolhari region in Bhutan (Ambrosi et al. in Press), mean 

differences of the elevations were found between the DEMs and ground control points measured by 

means of GPS of 0.6 m and 3.6 m, respectively, and standard deviations of 4.3 m and 2.8 m, 

respectively. Its accuracy with respect to the SRTM is a RMSE of 61.02m according to the co-

registration tool.  

4.3.4.  Glacier and Rock Mask 

Since the SINMAP model works only on slope stabilities of soils and weathered slope material, areas 

without any sediment cover like glaciers and rocks were excluded from the analysis (see Fig. 1). This 

was done by establishing a glacier and rock mask. At first areas were selected for slope angles steeper 

than 50° and elevations higher than 5200 masl. The resulting polygons, were manually completed and 
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adjusted using Google Earth imagery. This mask was applied on all DEMs after the model runs, for not 

excluding any parts of the flow accumulation area.  

4.4. Evaluation and Validation 

All four models were applied to each of the three DEMs. Hence, possible differences of the 

performances of the DEMs could relate to the DEM derived morphologic characteristics. In a first step, 

such differences between the DEMs were analysed. Afterwards, the twelve realisations were evaluated 

with the three landslide inventories: the validation set of the SLI extending over the whole area, the 

MLI extending over the smaller area around Marcará only, and the DSLI. The evaluation was done using 

the receiver operating characteristics (ROC) and the related area under curve (AUC) method as done 

by many authors which established landslide susceptibility maps (He et al. 2012; Günther et al. 2013; 

Kavzoglu et al. 2014; Ghazvinei et al. 2015; Kim et al. 2015; Posner and Georgakakos 2015; Steger et 

al. 2015a; Lee and Park 2016; Rossi and Reichenbach 2016; Samia et al. 2017). Furthermore, a 

confusion matrix was established for further evaluation (Legorreta Paulin et al. 2010; van Den Eeckhaut 

et al. 2012; Park et al. 2013a; Petschko et al. 2014). A final evaluation technique is to just look at the 

cumulative distribution function of the landslides according to their susceptibility (Lee 2004; Guzzetti 

et al. 2006; England 2011; Chen et al. 2013). The validation was performed by comparing the areas 

which are considered as most and least susceptible by the different models (Haneberg 2004; Michel 

et al. 2014). These methods are described in the following subchapters.  

4.4.1. Comparison of the DEMs and the Study Areas 

All the model runs are based on the DEMs and their derivatives like slope angle, flow accumulation, 

curvature, and elevation. Potential differences of the performance of the model runs could, therefore, 

relate to the variability of these characteristics. Hence, these variabilities were compared between the 

DEMs and the different study areas of the MLI and SLI using a t-test for random point clouds within 

the two areas, MLI and SLI. For all the points the deviation from the mean was tested to check the 

variabilities of the considered parameters. It was worked using a 1% significance level. 

4.4.2. Evaluation 

Receiver Operating Characteristics 

The process of the evaluation was done using the ROC and the related AUC. These methods are useful 

and frequently used tools for comparing landslide susceptibility models. A point dataset with a similar 

amount of non-landslide cells and landslide cells which are distributed within the same area is 

required. The additional points of the non-landslide cells were again calculated randomly within the 

area of the inventory, except the 5m buffer around the observed landslides. The calculated values of 

the model at the given points are then evaluated. This is done calculating the true positive rate (TPR, 
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Eq. 12 and Table 4) and the false positive rate (FPR, Eq. 13) for different thresholds dividing the model 

into stable and unstable (e.g. for thresholds which define large parts of the map as unstable the TPR is 

close to one, as a large unstable area increases the probability that the observed landslides are in this 

unstable area. Simultaneously the FPR increases too, as the likelihood of non-landslide points being in 

an unstable region increases as well). The received rates are then plotted against each other. The true 

positive rate is the y-axis and the false positive rate the x-axis. The points on the plot resemble a curve 

and the bigger the area below this curve, the better the model performance (Fawcett 2006). For this 

concern the AUC value was developed. It expresses the amount of the area which lays below the ROC 

curve (Lee and Park 2016). Hence, the closer it is to one, the better the model performance. An AUC 

of 0.5 denotes a random prediction of landslides (Posner and Georgakakos 2015). 

 𝑇𝑃𝑅 =
True⁡Positives

True⁡Positives+False⁡Negatives
⁡ (12) 

𝐹𝑃𝑅 =
False⁡Positives

False⁡Positives+True⁡Negatives
 (13) 

 

 

 

 

Confusion Matrix 

The ROC curve is basically a visual representation of the confusion matrix for many different threshold 

values (Beguería 2006). The definition of single threshold values, though, is crucial for the final 

susceptibility map and has a big influence on the quality of the map (Petschko et al. 2014). Hence for 

this thesis two different approaches were tested to classify the resulting maps into stable and unstable 

regions. The first one is the method natural breaks and the second one is quartiles (Slocum et al. 2009; 

Kritikos and Davies 2014; Foery and Sturm 2015; Constantin 2016). For SINMAP instead of the method 

natural breaks the classes proposed by the authors (Pack et al. 1998) were used. The comparison of 

the susceptibility classes was performed by comparing the percentage of landslides which occurred in 

the least susceptible classes to the percentage of landslides occurring in the most susceptible classes. 

The percentage of the area which corresponds to each class is considered as well (Dietrich et al. 1998; 

Beguería 2006; van Den Eeckhaut et al. 2012; Michel et al. 2014).  

Cumulative Distribution of Landslides 

Plots were established which show how much of the study area needs to be modelled as unstable for 

detecting how many landslides. This means that the percentage of the study area ranked from most 

Table 4 Definition of true positives etc. 

True positives landslide occurred where model is unstable 

True negatives landslide did not occur where model is stable 

False positives landslide did not occur where model is unstable 

False negatives landslide occurred where model is stable 
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to least susceptible is plotted as the x-axis, and the cumulative occurrence of landslides for these 

susceptibilities on the y-axis (Guzzetti et al. 2006). To ensure a better comparability of this method the 

area under these curves was calculated too. 

Velocity Modelling 

The measurements which were done using the total station cannot really be considered as a landslide 

inventory. It just depicts distances how far certain points travelled within some months. Therefore, the 

evaluation process needs to be different from the other inventories. Such movement rates can mainly 

be used for the validation of some numerical models on single slope scale for deeper landslides (Corsini 

et al. 2005). Bertolini and Pizziolo (2008) complement that such measurements are mainly useful in 

regions where limit equilibrium models cannot be applied due to the depth of the movement. This 

means that the usefulness of such an evaluation for shallow landslide models can be questioned. 

However, with this inventory it shall be controlled if there still are correlations between the velocities 

of the measured points and the landslide susceptibilities.  

4.4.3. Comparison of the Models (Validation) 

The consistency of different models concerning which slopes are most or least stable is of high 

relevance for mapping landslide susceptibilities and its plausibility (Sterlacchini et al. 2011). Hence, the 

different models were compared, to see if the same regions were modelled as most / least susceptible 

(Michel et al. 2014). As the confusion matrix, this is established twice, once using the originally used 

classification (natural breaks and the classes by SINMAP) and once using quartiles (Slocum et al. 2009) 

for all model runs. The comparison was performed for the three models LRM, SINMAP, and slope 

regression model. The failure rate model was not considered due to its similarity to the slope 

regression model.  

4.5. Uncertainties, Errors, and Limitations 

Models are always simplifications of the reality and cannot represent its whole complexity (Stachowiak 

1973; Jeffers 1988). Landslide susceptibility models are no exception and are, therefore, “inherently 

riddled with uncertainties” (Petschko et al. 2014). Guzzetti et al. (2006) distinguishes four sources of 

uncertainties for the modelling process itself. (I) Landslide and thematic information for the analysis is 

incomplete or defective; (II) the understanding of landslides is limited, just like (III) the techniques to 

determine the susceptibility; (IV) the phenomenon landslide inheres natural variability. Further 

uncertainties can be added by the used material like DEMs (Fisher and Tate 2006), landslide inventory, 

the assignment of the hazard class to the stability values, and others (Carrara et al. 1992). A list of 

these uncertainties and errors which concern this thesis are presented in the following subchapters.  
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4.5.1. Digital Elevation Model 

The models used in this thesis are either physically based or empirical-statistical ones. They require 

different information as inputs. Some of them are just used for one of these models, others are used 

by all models. One of the used input they have all in common are the DEMs on which they are based 

(Jäger and Wieczorek 1994; Pack et al. 1998; Bai et al. 2011). Therefore, the uncertainties which relate 

to the DEMs are presented first.  

The quality of DEMs has increased over the years but is still subject to uncertainties. Possible errors 

occurring on DEMs are diverse. They can be systematic, spatially autocorrelated, biased, or just 

random (Fisher and Tate 2006) (see Fig. 11). They are to some degree quantifiable (Wechsler and Kroll 

2006). The deviation of the model elevation from the real elevation (measured by GPS or more precise 

DEMs) can be calculated by the RMSE. Such calculations are, though, not valid over the whole region 

and can deviate locally (Carlisle 2002). Global datasets like the ASTER GDEM, SRTM, and TanDEM-X are 

usually validated just in some specific regions (see chapter 4.3.1-4.3.3). Hence, it needs to be 

considered, that RMSEs calculated in some regions are not necessarily the same as within the 

considered area. Mountainous areas, or generally areas of steep slopes, are associated with higher 

errors (Carlisle 2002). Thus, even quantifiable errors can be uncertain. Other factors which influence 

the quality of DEMs which are less tangible contribute to the uncertainty too. This concerns for 

example the interpolation of the DEMs. The used DEMs in this thesis have a spatial resolution of 10 m 

or 30 m. The area in between needs to be interpolated for assessing characteristics like the slope angle 

(Carlisle 2002; Fisher and Tate 2006). Another uncertainty arises from temporal variabilities of the 

surface. Surface changing processes like erosion, landslides, and glacier retreat, among others (McColl 

2015) create deviations from the DEM to the actual state of the reality. This phenomenon can be used 

to derive landslide inventories, when there are two DEMs acquired at two different moments (Weirich 

and Blesius 2007; Guzzetti et al. 2012). However, it means as well, the DEM does not represent the 

actual state of the earth’s surface (Raia et al. 2014).  
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4.5.2. Susceptibility Models 

A second source of uncertainties are the susceptibility models. There are considered being three main 

sources of uncertainties in the process of modelling: (I) the structure of the model which includes 

uncertainties of input-output relationship and its degree of complexity, as for example if there are 

important factors neglected; (II) measurement of the required input data; (III) temporal and spatial 

variations of the parameters (Rowe 1994; Loucks et al. 2005; Chatfield 2006; Coppi 2008; Levermore 

et al. 2012). The used models are analysed based on these main uncertainties. Some other sources 

were added, but the following lists of possible sources of uncertainties presented do not claim 

completeness. It was tried to pick the most relevant ones concerning this thesis. 

 

Fig. 11 Illustration of the different errors which can occur on DEMs (modified after Fisher and Tate 2006). (A) Biased error; 
(B) systematic error; (C) spatially autocorrelated error; (D) random error 
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SINMAP and Limit Equilibrium Analysis 

SINMAP models slope stabilities using the limit equilibrium analysis by considering several factors like 

cohesion, soil depth, and more (see chapter 4.1.1). It is in the nature of modelling, though, that not all 

factors can be represented by the model and many simplifications are assumed (Chatfield 2006). Rowe 

(1994) even state that there are more factors we do not know than the ones we know in such models. 

In the case of SINMAP this means that there are many factors missing. Some of these missing factors 

include the precipitation patterns, distribution of shear layers or how they are composed (Iverson 

1997; Al-Hurban et al. 2006), the underlaying geology in general (Pack et al. 2005), or the process of 

failure (Cohen et al. 2009). The process of failure can have a significant impact on the location of the 

landslide-crown. Deformation, debuttressing and related stresses and strengths can cause larger 

failures upslope from the original landslides (Krahn 2003; Cohen et al. 2009). Other examples of an 

incomplete representation of the reality are presented by Krahn (2003). The factor of safety does not 

consider possible existences of anchors which stabilize slopes from below. Generally, special attention 

needs to be paid when there are concentrations of stresses within the slope.  

During the process of the measurement of the considered input data further uncertainties arise. The 

developers of SINMAP handled measurement errors and data handling problems by the design of the 

model. The required soil properties can be defined within an interval. SINMAP then defines the stability 

of the slopes by considering the most stable and most unstable combination (Pack et al. 2005). By 

doing so, the uncertainties can be attacked but not reduced (Meisina and Scarabelli 2007). Besides the 

effect of reducing measurement errors, this procedure helps to deal with uncertainties caused by 

spatial and temporal variations of the input parameters. These variabilities are, though, not 

represented in the result of the modelling. The SI is set deterministically (Pack et al. 2005).  

The limitations of the model’s applicability mainly relate to the fact, that SINMAP just models shallow 

translational landsliding phenomena which are controlled by shallow groundwater flow convergence 

(Pack et al. 2005). Hence, soils are required (no bare rock or glaciers), and the layer below should not 

have a considerable permeability (Kim et al. 2015). Else, shallow groundwater flow drains and cannot 

accumulate in the way predicted by the model. Additionally, the authors recommend performing a 

thorough calibration using meaningful calibration regions. Even when having considered these 

requirements, the resulting SI should not be expected being numerically precise and just used to 

compare the susceptibility of the regions within the modelled area (Pack et al. 2005).   

Besides all these limitations and uncertainties of the limit equilibrium method, the FS, and the related 

SI of SINMAP, remains a useful tool for getting first impressions of the stability of slopes. Especially, 

when its limitations and areas of application are fully understood (Malkawi et al. 2000; Krahn 2003; Al-

Hurban et al. 2006; Meisina and Scarabelli 2007; McColl 2015).  



 38 Modelling of Landslide Susceptibilities in the Cordillera Blanca (Peru) 

Logistic Regression Models 

Linear statistical models are usually expressed like Eq. 14. The first part shows the dependency of the 

dependent and independent variables and the last summand describes the statistical error of the 

model. In doing so, the deviation from the model to the training set is considered. Uncertainties arising 

from the input-output relationship are tackled and quantified like this (Ross 2010).  

𝑦 = 𝑎 + 𝑏𝑖 ∗ 𝑥𝑖 + 𝜀 (14) 

Where y is the dependent variable, a the intercept, bi the weights of the independent variables (xi), 

and ε the error term which is usually gaussian distributed with values which are independent and 

identically distributed (iid) with 0 mean and σ2 as variance (𝜀⁡~
𝑖𝑖𝑑Ɲ(0, 𝜎2)) (Ross 2010). In the case of 

logistic regression models, it is harder to reasonably assess such an error term. A basic assumption of 

the error term of the linear model is violated in case of logistic regression models, as the error term 

cannot be normally distributed. Additionally, it cannot be spoken of an error, as the model just 

calculates probabilities of an event. Therefore, it is usually not used for logistic regression models 

(Faraway 2006) (see Eq. 10 and 11). Still, the uncertainties are quantified, but not used in the model. 

The glm function of the stats package of the program R calculates for all weights an uncertainty term 

using the standard deviation. The uncertainties arising from the input parameter selection in the model 

is not quantified (Faraway 2006). Neither are the ones deriving from the model selection (Faraway 

2006; Levermore et al. 2012). The uncertainties from parameter measurement are for the used logistic 

regression models a combination of the accuracy of the training set of the landslide inventory 

(explained below) and the uncertainties of the DEMs. The spatial variabilities of the used parameters 

are considered by the spatially distributed information from the DEM. The temporal variabilities, 

though, concern the DEMs and, therefore, the input parameters too.  

The presented errors and uncertainties described above show to some degree how well the model is 

suited for determining landslide susceptibilities from a statistical point of view. Decreasing 

uncertainties and higher correlations of the dependent and independent variable should lead to a 

better model (Hilbe 2011). This does not need to result in higher model performances, though. In some 

cases, the statistical correctness of the model did not correlate with the predictive power of the model. 

Lower correlations of the input parameters and the landslides, leading to higher uncertainties, 

improved the performance of the model (Brenning 2005). Hence, such uncertainty analysis need to be 

handled with care.  

Failure Rate Model 

The failure rate model is one of the simplest models which was used. Lower complexities of the model, 

on the one hand, may reduce its capability to represent the complexity of the real system, thus 

increasing uncertainties. On the other hand, a smaller amount of input parameters reduces the 
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uncertainties and errors which are related to the not used input parameters (Loucks et al. 2005). Also, 

they are suitable for applications to mountain areas, where data and information typically is sparse. 

The main uncertainties which still exist are related to the ones mentioned before, as this is a statistical 

model too. Additional uncertainties can arise from the chosen interval which is used to classify the 

slope map (Jäger and Wieczorek 1994; Guzzetti et al. 2006).  

4.5.3. Classification Process 

All used models calculate for each grid cell a value representing its susceptibility to landslides, either 

in form of a Stability Index (SINMAP) (Pack et al. 1998), as a probability of failure (logistic regression 

models) (Hilbe 2011), or as a failure rate (Jäger and Wieczorek 1994). The resulting values are then 

classified into different susceptibility classes. Depending on the method used to define the limits of 

the classes certain points can belong to different susceptibility classes (Jebur et al. 2014). This has an 

impact especially on the amounts of landslides which lay within certain classes (Ayalew and Yamagishi 

2005; Kritikos and Davies 2014). Hence, uncertainties arise of which area is considered as being most 

or least susceptible (Carrara et al. 1992).  

4.5.4. Landslide Inventory 

The quality of landslide inventories is crucial in landslide susceptibility modelling. It is not only 

responsible for the quality of the statistical models (van Westen et al. 2006), but as well the evaluation 

of all models is heavily dependent on the quality of the inventory (Pack et al. 2005; Steger et al. 2015a). 

It is not trivial to define the accuracy of such maps (Galli et al. 2008; Guzzetti et al. 2012). Easier to 

asses are the uncertainties and errors which impact the outcome. The completeness of the inventory 

is one such factor (Carrara et al. 1992). It refers to the percentage of mapped landslides to the total 

amount of landslides (of certain sizes) within the area (mostly unknown) (Guzzetti et al. 2012). Two 

other factors influence the cartographic mismatch. The scale of the interpreted optical data and the 

experience of the investigator correlate negatively with the cartographic mismatch of the inventory 

(Carrara et al. 1992; Guzzetti et al. 2012). The first one is certainly a factor which has improved due to 

the technologic improvements. Not only are nowadays high-resolution optical data available for large 

parts of the world, it is even in a georeferenced format (Scaioni et al. 2014). Some years ago it was one 

of the main sources of uncertainties to correctly map the landslides found in the field or on non-

georeferenced aerial images (Carrara et al. 1992; Malamud et al. 2004). Further, still actual, sources of 

uncertainties are the timing (van Westen et al. 2006) and the specific trigger of the landslide within 

the inventory (Guzzetti et al. 2006). The used landslide inventories of this thesis do not have 

information about the exact moment when the landslides occurred, nor about their triggers. The only 

restriction of the timing when the landslides of the SLI happened is that they happened before the 

used Google Earth images were taken but are still visible. Landslides which occurred some time ago 
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and are already covered by vegetation again are hard to detect (Carrara et al. 1992). Another factor 

which arises uncertainties is the accuracy of Google Earth and how well it correlates with the used 

DEMs. The accuracy of Google Earth has been tested worldwide and showed low accuracies. It showed 

a RMSE of 39.7m (Potere 2008; Yu and Gong 2012; Visser et al. 2014). Even though, there are regions 

where Google Earth has much lower RMSEs (Benker et al. 2011; Mohammed et al. 2013), it needs to 

be assumed, that its accuracy in the study area is lower than the ones of the used DEMs (see chapter 

4.3.1-4.3.3). The correlations from Google Earth and the DEMs are generally dependent on the 

considered area and range from quite high correlations (Rusli et al. 2014) to high average location 

errors of 107.9m (Sato and Harp 2009). 

Additionally, Google Earth has as well some internal uncertainties of correct georeferencing. On some 

scales it is visible, that for example roads can be interrupted and being continued slightly displaced. 

Similar things occur when images of different years are considered. Specific objects can have varying 

locations between the years (Potere 2008) (see Fig. 12). Since the SLI is based on Google Earth images 

between 2013 and 2017, errors can be caused by these deviations.  

The landslide inventory which was used for the evaluation of this thesis is a point dataset. Each 

landslide is represented by one single point (see Fig. 12). Therefore, one of the main error can be 

avoided, namely, the correct selection of the boundary of the landslide (Van Den Eeckhaut et al. 2006). 

 

Fig. 12 A shallow landslide in the Cordillera Blanca as seen in Google Earth. On the left-hand side from a dataset of August 
2013, and on the right-hand side from July 2017. The yellow line shows the distance from the landslide point set on the image 
of 2017 to where it would have been set on the image of 2013 
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Still, this point needs to be set accurately for ensuring the quality of the inventory (Pack et al. 2005). If 

this point then really is the one which origins the movement is another question and cannot be assured 

(Michel et al. 2014). 

4.5.5. Evaluation 

A meaningful evaluation of landslide susceptibility models is dependent on the quality of the landslide 

inventory (Guzzetti et al. 2012), which was analysed before, and the selection of an evaluation method 

(Guzzetti et al. 2006; Petschko et al. 2014). It was tried to minimize the impact of the chosen evaluation 

method by using different ones. However, Steger et al. (2015b) state that statistical performances 

generally do not represent the plausibility of maps. They base this assumption on 16 susceptibility 

models for a certain area which all performed similarly well according to the ROC analysis. The spatial 

patterns of the model, though, revealed considerable differences.  
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5. Results 

5.1. Morphologic Comparison of the Study Areas and DEMs 

First, the different DEMs and the considered study areas were compared. 385 points distributed within 

the small area (MLI) were compared to the same amount of points distributed over the large area (SLI). 

A t-test revealed that the differences between the DEMs are mainly restricted to the curvature (see 

Table 5, last four columns). Its variability is different for all DEMs. The only additional significance was 

obtained within the small study area of the MLI, where the slope angle variability of the ASTER GDEM 

is not equal to the one of the TDX.  

The comparison of the variabilities between the study areas, from the MLI to the SLI, showed 

statistically significant results for the elevation within all DEMs (see Table 5, first 5 columns). 

Furthermore, the ASTER GDEM had statistically significant results for the variability of the slope angle 

and the curvature between the two study areas. The one-sided t-test shows that the assumption that 

the variabilities within the MLI is bigger, can be rejected for all mentioned statistically significant 

results.  

 

Table 5 p-values of the t-tests comparing the morphologic variability of the areas of the MLI and the SLI in the first five columns and the 
ones between the DEMs in the last four columns. Both-sided just indicates differences of the means, whereas MLI less and larger tests 
the assumption, that the mean of the MLI is lower or higher. For the variabilities between the DEMs it was just tested if there are 
differences and not in which DEM they are bigger, hence just a two-sided t test was performed. The significant results (<1%) are 
highlighted in grey 

DEM Characteristic Two sided MLI less MLI larger Characteristic DEM SLI MLI 

GDEM Slope 0.0007 0.9996 0.00035 Slope GDEM/SRTM 0.7893 0.2267 

 Flow accum. 0.0225 0.01127 0.9887  GDEM/TDX 0.9792 0.0009 

 Curvature 0.00089 0.9996 0.00045  SRTM/TDX 0.8120 0.0380 

 Elevation 2.2E-16 1 2.2E-16 Flow accum. GDEM/SRTM 0.0769 0.4225 

SRTM Slope 0.0578 0.9711 0.0289  GDEM/TDX 0.0524 0.0109 

 Flow accum. 0.407 0.2035 0.7965  SRTM/TDX 0.0477 0.0453 

 Curvature 0.03682 0.9816 0.01841 Curvature GDEM/SRTM 2.2E-16 2.2E-16 

 Elevation 2.2E-16 1 2.2E-16  GDEM/TDX 2.2E-16 2.2E-16 

TDX Slope 0.8691 0.5655 0.4345  SRTM/TDX 2.2E-16 2.2E-16 

 Flow accum. 0.8959 0.5521 0.4479 Elevation GDEM/SRTM 0.9506 0.9056 

 Curvature 0.2738 0.1369 0.8631  GDEM/TDX 0.2554 0.9038 

 Elevation 2.5E-04 0.9999 1.2E-04  SRTM/TDX 0.2679 0.9984 
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5.2. Landslide Inventory 

5.2.1. Shallow Landslide Inventory 

The first landslide inventory is presented in Fig. 1. It contains exclusively shallow landslides which are 

distributed over the whole study area. The landslides were marked at places where clearly visible scars 

of the landscape were found (see Fig. 12). The final inventory included a total of 254 landslides, 

whereof 196 were used to calibrate the logistic regression models and 58 for the evaluation. 

5.2.2. Marcará Landslide Inventory 

The received datasets from Strozzi et al. (submitted) were checked again with Google Earth images. 

Therefore, it could be ensured, that just the shallow landslides are used for this inventory. This resulted 

in a point dataset including 77 landslides (blue points in Fig. 13). The evaluation area, within which the 

non-landslide points were defined, was obtained by drawing a boarder around the mapped landslides 

approximately.  

5.2.3. Deep-Seated Landslide Inventory 

The DSLI is as well an inventory established by Strozzi et al. (submitted). As movement rates in the 

range of some cm/year were looked for, this inventory focusses on slower, deep-seated landslides 

shallow landslides are not likely being included in this inventory. The landslides of this inventory are 

barely visible in the field (Fig. 14) and on Google Earth usually not recognisable. Hence, for the 

inventory the polygons obtained by Strozzi et al. (submitted) were taken and points were set in the 

uppermost part of each of those. The resulting inventory included 78 landslides (green points in Fig. 

13). As for the MLI, all of them were just used for the evaluation and the evaluation area was defined 

approximately around the landslide points. 
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Fig. 13 The used landslide inventories for the evaluation. The SLI is not complete on this figure. For its whole extent see Fig. 1 
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5.2.4. Total Station 

Additionally to the landslide inventories, several points in the west of Marcará and around Safuna Alta 

(see Fig. 15) were measured with a total station. The points were installed on the 2nd February 2017 in 

Marcará and on the 11th February 2017 around Safuna Alta, respectively. Due to technical constraints 

it was not possible to measure them by then. The first time they were measured on 19th May 2017 and 

the second measurement took place on 8th August 2017 (Marcará). The points around Safuna Alta were 

measured three times: 15th May 2017, 11th August 2017, and on the 8th December 2017. The measured 

movements are summarised in Table 6 and Fig. 16. Due to the extremely large movements, which for 

two points are even more than 70 cm higher than before these values are not considered for the 

evaluation. The second control seems more likely being useful results.  

 

Fig. 14 A deep-seated landslide in the east of Yungay which is part of the DSLI. The main scar is highlighted by the red ellipsoid 
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Table 6 Movement rates measured at the two locations. The values of the second control depict the 
difference of the second and the first control, the first control is the difference of the original measurement 
and the first control 

  1st Control  2nd Control  

  

Elevation 
change 

Total 
movement 

Elevation 
change 

Total 
movement 

Safuna Base -4.47 4.47 3.36 3.39 

 1 4.43 4.45 -4.39 4.51 

 2 -69.37 69.71 -3.21 10.36 

 3 1.09 20.93 -10.11 16.77 

 4 75.25 76.13 -27.28 27.49 

 5 73.21 75.08 -15.07 24.61 

Marcará Base 5.84 6.33 - - 

 1 1.14 6.10 - - 

 2 -1.35 5.03 - - 

 3 1.27 3.18 - - 

 4 0.29 1.54 - - 

 

 

Fig. 15 Location of the points measured next to Marcará and the Safuna Alta 
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5.3. Model Runs 

5.3.1. SINMAP 

The SINMAP model was applied on the three DEMs over the study area (see Fig. 18). It was used as 

one single calibration area and no further calibration of the soil characteristics parameter was 

performed. Thus, two recommendations of the authors of SINMAP were violated, as meaningful 

calibration areas with a thorough calibration are highly recommended (Pack et al. 1998). The resulting 

maps using the different DEMs had no SI values below 0. Hence, the SINMAP class ‘defended slope 

zone’ was not used. The remaining classes were all used and classified by the proposed threshold 

values from Pack et al. (1998) (see Table 8).  

 

Fig. 16 Graphical illustration of the movement rates. The red line represents the slope angle at the measured point. The 
length of the vector shows the total movement of the point and its direction shows if it increased or decreased in height. 
Hence, an upwards directed arrow illustrates increasing elevation from the first to the second measurement 
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5.3.2. Logistic Regression Model 

The logistic regression was calculated for all three DEMs (result of the SRTM see Fig. 18). The obtained 

weights for the explanatory variables elevation and slope angle, just like the intercept values are all 

similar for the DEMs (see Table 7). However, the lowest AIC was obtained for all DEMs with different 

additional parameters. The SRTM DEM just used the already mentioned explanatory variables, 

whereas for the ASTER GDEM and the TDX the models were improved by considering additionally the 

curvature and the distance to rivers, respectively. The parameters aspect and flow accumulation had 

no significant impact on the models for no DEM and were, therefore, not used. The classification using 

the natural breaks resulted in the threshold values presented in Table 8.  

5.3.3. Slope Model 

The first slope model was established using the logistic regression too. The weights of the independent 

parameters were calculated in the same way as for the LRM. The obtained results are summarized in 

Table 7. The weights are more variable between the DEMs than for the LRM, but still they are close to 

each other. The classification threshold values are displayed in Table 8. Using this information, the 

maps were calculated and classified (Fig. 18 shows the example of the SRTM DEM).  

5.3.4. Failure Rate 

The second slope model was applied on a more basic approach. For each of the slope angle classes the 

landslide density was calculated and compared to the total mean over the study area (see Fig. 17). The 

classification process into susceptibility classes was performed manually based on natural breaks 

(Table 8). The adjustments which were done were to make sure, that failure rates higher than 0 are 

within the two most susceptible classes.  

 

 

 

Table 7 Summary of the used weights for the logistic regression models. The first columns are the parameters of the LRM, the 
last two are the ones of the slope model. ‘-‘ means that this parameter was not used for the considered DEM 

 Intercept Elevation Slope angle Curvature Distance to river Intercept Slope angle 

GDEM -0.283 7.15E-05 9.14E-03 3.41E-02 - -0.036  9.59E-03 

SRTM -0.308 7.26E-05 9.66E-03 - - -0.058 10.27E-03 

TDX -0.311 7.58E-05 10E-03 - -4.1179 -0.077 10.8E-03 
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Fig. 17 Used values for the classes of the failure rate model 

 

 

 Table 8 List of the used threshold values for the classification. The class names are the ones proposed for the SINMAP model 
(Pack et al. 1998), starting with the least susceptible class 

 
Stable 

slope zone 
Moderately 

stable slope zone 
Quasi-stable 

slope zone 
Lower threshold 

slope zone 
Upper threshold 

slope zone 

SINMAP >1.5 1.25 1 0.5 0 

LRM      

GDEM <0.517 0.545 0.571 0.599 1 

SRTM <0.512 0.539 0.564 0.593 1 

TDX <0.510 0.537 0.563 0.593 1 

Slope model  
    

GDEM <0.520 0.542 0.563 0.587 1 

SRTM <0.517 0.540 0.564 0.593 1 

TDX <0.514 0.539 0.563 0.591 1 

Failure rate      

GDEM <-6e-5 -3.7e-5 0 8e-5 1.8e-4 

SRTM <-1.25e-5 -7.78e-6 0 8.17e-6 2.5e-5 

TDX <-9.3e-6 -7e-6 0 8.5e-6 1.9e-5 
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Fig. 18 Results for the four different landslide susceptibility models using SRTM data 
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5.4. Evaluation 

5.4.1. Receiver Operating Characteristics 

In a next step, the evaluation using the AUC / ROC method was performed for all realisations (see Table 

9, Fig. 19 A). The physically based SINMAP approach seems to be problematic for modelling slope 

stabilities over the entire study area. SINMAP does not perform well with the SLI which extends over 

the whole study area (see Table 9). Especially the result obtained with the ASTER GDEM is close to a 

random prediction of landslides. Within the smaller area (MLI), on the other hand, it performs much 

better. A similar pattern is visible for the other models. The statistical models (LRM, slope model, and 

failure rate model) receive as well higher AUC values for the smaller area and have the lowest AUC 

values over the entire study area using the ASTER GDEM. However, all statistical models obtained 

better results than the ones of SINMAP considering the entire study area. The results using the LRM 

has generally the best performances. It receives AUC values between 0.684 and 0.759 over the large 

study area. Within the smaller study area, it even received AUC values from 0.768 to 0.799. Similar 

values were received for the slope model, which obtained AUC values between 0.672 and 0.742 for SLI 

and 0.767 to 0.783 for MLI. The two slope models (the logistic regression and density model) 

performed very similar, except for the TDX, where the failure rate model performed worse over the 

SLI area, but better over the whole area. The failure rate model also reached the highest AUC from all 

applied models for the MLI area (TDX). For the further analysis the focus is laid on the first slope model, 

as it can be easier compared to the other models, since it is established similar to the LRM. For all 

models it is noticeable that the AUC values of the different DEMs are much closer to each other for the 

evaluation with the MLI. 

 

Fig. 19 A: ROC plot for the results of the LRM, B: Cumulative distribution of landslides for the results of SINMAP. The evaluation 
using the shallow landslide inventory (SLI) are displayed as a solid line, the one of the Marcará landslide inventory (MLI) as dotted 
line. Cf. Table 9 
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5.4.2. Confusion Matrix 

 The portion of the landslides used for the model validation (58 and 77 cases for the SLI and MLI, 

respectively) within each susceptibility class can be considered as a measure of the success of the 

model to predict the distribution of landslides unknown during its preparation. The portion of 

landslides captured by the most susceptible classes shows correct spatial prediction, while landslides 

which fall into the least susceptible class may be considered as an error of the models. The most 

susceptible class of all models has a rather small extent (e.g. up to 7 percent of the pixels from the 

entire study area). The landslides occurring in this class are less than a quarter for all the model runs. 

A much higher ratio of correctly modelled landslides can be obtained by considering the two most 

susceptible classes together. Then, 43.1-77.6% of the landslides of the SLI fall within these two classes 

which extent over 18.29-42.76% of the whole area (Table 10). 

5.4.3. Cumulative Distribution of Landslides 

This evaluation technique looks similar to the ROC method. The difference is that it does not focus on 

the threshold values, nor on the true or false positive rates, it just shows how much of the area needs 

to be considered as unstable for detecting which number of landslides of the validation set. The idea 

of the area under curve value is the same as before, that the faster the y values increase, the higher is 

the AUC and the better the model. The received values are close to the ones of the ROC. Most of them 

are in the same range (highlighted in green on Table 9) and depict similar patterns of which model / 

Table 9 Results of the AUC calculations for all the model runs. In the first columns the results of the ROC evaluation 
are displayed and in the last ones the ones of the cumulative distribution function. The cells highlighted in green 
are very close to the values of the ROC (+/-0.03) 

ROC SLI MLI DSLI Cumulative 
distribution  

SLI MLI DSLI 

 SINMAP SINMAP 

GDEM 0.567 0.749 0.551 GDEM 0.674 0.754 0.591 

SRTM 0.605 0.743 0.626 SRTM 0.701 0.755 0.624 

TDX 0.625 0.744 0.583 TDX 0.704 0.789 0.604 

 LRM  LRM 

GDEM 0.684 0.799 0.69 GDEM 0.684 0.783 0.654 

SRTM 0.759 0.768 0.683 SRTM 0.755 0.777 0.659 

TDX 0.746 0.78 0.659 TDX 0.745 0.798 0.647 

 Slope model  Slope Model 

GDEM 0.672 0.767 0.657 GDEM 0.692 0.759 0.575 

SRTM 0.742 0.764 0.653 SRTM 0.75 0.774 0.616 

TDX 0.719 0.783 0.655 TDX 0.739 0.813 0.626 

 Slope model II (failure rate)  Slope model II (failure rate) 

GDEM 0.687 0.757 0.647 GDEM 0.702 0.759 0.614 

SRTM 0.74 0.751 0.642 SRTM 0.739 0.759 0.621 

TDX 0.674 0.804 0.632 TDX 0.677 0.813 0.616 
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DEM combinations lead to better results. Only the evaluation of SINMAP looks significantly better than 

with ROC. The DSLI for all other models performs even worse than with the ROC. Fig. 19 B shows that 

for the MLI area it is possible to classify around 90% of the landslides in unstable regions when 30% of 

the region are considered as unstable using the TDX. For the whole area already 45% of the area need 

to be considered as unstable for correctly model 90% of the landslides.  

5.4.4. Velocity modelling 

Fig. 20 shows the correlation of the velocities measured with the total station to the values calculated 

by the landslide susceptibility models. The points around Marcará show the correlations which would 

be expected if the models explained the velocities. There are negative correlations to the SI of SINMAP. 

This means that the velocity is higher at places where the stability is low (higher susceptibility). For the 

other three models there are positive correlations (except for the Failure Rate ASTER GDEM 

combination). This means that velocities are higher, at places where the probability of landslides is 

higher (higher susceptibility). The points measured around Safuna, though, do not follow such a 

pattern. Additionally, it needs to be considered, that these two datasets just include five or six 

Table 10 Summary of the comparison of the different susceptibility classes. The classes were obtained using natural breaks 
for the LRM and the slope model. The SINMAP classes are the ones proposed by the authors (Pack et al. 1998). The two 
most susceptible classes refer to upper and lower threshold unstable, the least susceptible to stable slope zone 

 Percentage of occurred landslides Percentage of class area to total area 

 

Two most 
susceptible 

most 
susceptible 

least 
susceptible 

Two most 
susceptible 

most 
susceptible 

least 
susceptible 

 SINMAP for SLI 

GDEM 67.2 22.4 10.3 41.0 7.0 31.0 

SRTM 70.7 24.1 6.9 39.7 6.3 33.2 

TDX 77.6 17.2 5.2 42.8 6.1 29.3 

 Logistic regression for SLI 

GDEM 43.1 15.5 6.9 18.3 3.9 21.0 

SRTM 63.8 17.2 1.7 26.1 6.4 16.4 

TDX 56.9 20.7 0.0 28.6 6.8 15.3 

 Slope model for SLI 

GDEM 55.2 15.5 5.2 25.6 6.8 20.4 

SRTM 58.6 19.0 1.7 24.2 5.7 19.4 

TDX 51.7 19.0 1.7 28.0 6.4 18.8 

 SINMAP for MLI 

GDEM 52.0 7.8 9.1 24.4 1.6 47.5 

SRTM 54.6 11.7 16.9 23.9 1.6 49.7 

TDX 66.2 13.0 10.4 27.1 1.6 45.5 

 Logistic regression for MLI 

GDEM 13.0 1.3 5.2 3.6 0.2 38.8 

SRTM 22.1 3.9 3.9 6.2 0.5 34.9 

TDX 44.2 5.2 3.9 8.7 0.5 32.9 

 Slope model for MLI 

GDEM 36.4 6.5 5.2 11.2 1.2 32.3 

SRTM 39.0 6.5 2.6 10.9 1.1 31.3 

TDX 59.7 16.9 2.6 15.7 1.8 30.3 
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measurements each. Correlations can happen by coincidence and do not have statistical significances 

(Ross 2010).  

 

 

 

 

Fig. 20 Correlation of the measured velocities around Marcará and Safuna and the modelled landslide susceptibilities 
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5.5. Comparison of the Spatial Extent of the Model Classes 

This final control of the quality of the models aims to describe the accordance of the models. In doing 

so, the failure rate was neglected, thus, the slope model is just represented by the slope regression 

model. Of the remaining three models the areas which are considered as most or least susceptible are 

considered. Fig. 21 shows the percentages of the areas which are considered by one, two, or all models 

as most or least susceptible. Contradictions occur if one or two of the models consider a region as most 

and another one considers it as least susceptible. 100% depicts the total area of all regions which are 

modelled as most or least susceptible by at least one of the models. The spatial distribution of these 

results is presented in Fig. 22 

 

 

Fig. 21 Spatial agreement of the different models. The percentage which is displayed 
in dark blue shows the area, where all three models predict the same stability, either 
all very stable or all very unstable (e.g. for quantiles the most and least susceptible 25% 
are considered). Blue depicts the area where two of the models agree (and the third 
model does not consider this area neither as very unstable nor as very stable), and sky 
blue is the area which is considered as stable or unstable just by one model. The last 
class, contradiction in yellow describes areas which are considered as most susceptible 
by one and least susceptible by another model. The acronyms nb and qua stand for the 
classification processes natural breaks, and quantiles, respectively, on which the 
classification of the susceptibilities was based on 
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6. Discussion 

6.1. Comparison Evaluation Techniques 

This first subchapter of the discussion part shall compare the used evaluation techniques – the ROC, 

confusion matrix, cumulative distribution of landslides, and the velocity modelling. Except the latter, 

all these methods are similar, as they all show in a way, how large areas of the study area include which 

amounts of landslides. For the comparison, the ROC / AUC is used as basis and all other ones are 

compared to it.  

The confusion matrix is generally in agreement with the ROC. The high AUC values using the SLI for the 

combinations LRM/SRTM, LRM/TDX, and slope model/SRTM have high percentages of landslides in the 

most susceptible (56.9-63.8%) and low percentages in the least susceptible class (0-1.7%). The 

LRM/ASTER GDEM combination, though, seems to have a contradiction of the evaluation techniques 

within the small study area (MLI). It received a high AUC value (0.799) but just classifies 12.99% of the 

landslides correctly (in the most susceptible classes). Already 5.2% of the landslides occurred in regions 

considered as least susceptible. An adjustment of the classes could possibly improve its performance 

there, as just a small area is considered as most susceptible (3.6%) and a big area is considered as least 

susceptible (38.8%).  

The distribution of landslides within the susceptibility classes shows slightly better results for SINMAP 

considering the SLI (see Table 10). It includes by far the highest percentage of landslides occurring in 

the least stable classes for the whole region. It also has, though, the highest number of landslides 

occurring in the most stable class. Looking at the extents of these classes this is not surprising. SINMAP 

considers around 40% of the area as most susceptible and 30% as least susceptible. The LRM and the 

slope model consider no more than 28.6% as most susceptible, no more than 21% as least susceptible, 

respectively. A similar pattern is visible within the MLI. SINMAP classifies regions where up to 66.2% 

of the landslides occurred as unstable. On the other hand, depending on the DEM, 9.1-16.9% of the 

landslides occurred in the most stable class. Both these values are higher than the ones of the LRM 

and the slope model. Thus, it can be concluded, that the confusion matrix performance is highly 

dependent on the size of the considered area. Still, the general trends are for both techniques similar.  

Easier to compare is the ROC with the cumulative distribution of the landslides. Both evaluation 

techniques can be displayed as curves and the higher the area below it, the better the model. Hence, 

for both the AUC was calculated. On Table 9 the obtained values of the cumulative distribution which 

are close to the ones of ROC, are highlighted in green. This shows that these two techniques are not 

only similar in their forms, but similar in their results too. For the three statistical models all values are 

close for both techniques for the MLI and the SLI. For SINMAP and all model evaluations using the DSLI 
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the values differ more. Still, the patterns are similar, and not much additional information can be 

gained from the cumulative distribution evaluation. As all these first three evaluation techniques 

showed similar results, the following subchapters all refer only to the ROC.  

The last evaluation technique was used for having a totally distinct technique from the other ones. 

However, the measured distances for the velocity modelling approach do not necessarily depict the 

susceptibility to shallow landslides of a measured point. Hence, this final tool needs to be considered 

with care, even more, as no statistical significance can be reached with a dozen of measured points.  

The measured distances of all points were corelated with the model results at these points separately 

for both locations (see Fig. 20). The points of Marcará (triangles in Fig. 20) attest the models generally 

a good performance. Except for the failure rate ASTER GDEM combination all model runs seem to 

corelate in the way they should (positively for the statistical models and negatively for SINMAP) with 

the velocities. Such patterns are not present when the points measured at Safuna are used. In this case 

rather random correlations occur. Thus, any meaningful conclusions about the model performance 

cannot been drawn.  

6.2. Performance of the Models 

The four models have been applied to the Cordillera Blanca, a mountain range of highly variable soil 

characteristics. It showed that especially the physically based approach SINMAP is problematic for such 

heterogeneous regions. The fact that it performed better over the area of the MLI (higher AUC for all 

DEMs, see Table 9) could relate to the lower variability (see following subchapter 6.3) within this 

region, as the authors of the model propose to use meaningful calibration areas (Pack et al. 1998). The 

LRM, on the other hand, could handle these variabilities to some degree. AUC values around 0.75 for 

the SRTM and TDX show that it is possible to establish reasonable models over such regions. A 

decreasing tendency of the model performance to the larger study area size, the LRM still performed 

better over the MLI area, is yet visible. There are two reasons which could explain why the statistical 

models outperformed the empirical one. First, there is a high dependency of the landslides on the 

slope angle. This was already explained in other chapters (e.g. 3.3.3, 3.4.1) and is now confirmed by 

the two slope models. Both have a similar performance to the one of the LRM. Hence, the good 

performance of the LRM compared to SINMAP could be explained by its higher dependency on the 

slope angle. Additionally, the slope angle is one of the more reliable factors, as it is easy obtainable 

from the DEM with comparably low uncertainties. SINMAP uses this information too, just like other 

DEM derived characteristics (see Eq. 9), but the SI is dependent on assumptions of the soil 

characteristics and more too. These additional parameters seem to be counterproductive, as they 

increase the uncertainties of the model and remove the focus from the parameters which are spatially 

distributed available. Other studies showed, that SINMAP can be a useful tool for modelling slope 
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stabilities (Pack and Goodwin 2001; Meisina and Scarabelli 2007; Terhorst and Kreja 2009; Michel et 

al. 2014). A thorough calibration seems crucial, though, what was not given in this thesis. Such 

subdivisions of the study area over such large variable areas would be extremely time consuming. This 

led to more useful results using empirical statistical approaches for modelling landslide susceptibilities 

in this study area.  

6.3. Impact of Morphologic Variability 

As already mentioned, the poor performance of the SINMAP model may to some degree be explained 

by the morphological characteristics of the study area. Previous works (Klimeš 2008; Thiebes et al. 

2016) suggest that the model performs better in regions with contrasting slopes where landslides 

source areas distribution does not follow slope distribution within the study area. For instance, highest 

landslide occurrence is related to less frequent slope class within the study area. The high variability 

of the landslide occurrence conditions considered by the SINMAP model is illustrated in Fig. 23. The 

studied landslides occurred on a wide range of slopes and flow accumulation. It contrasts with a 

different study area in the Czech Republic (represented by the blue line in Fig. 23) where the slope 

angle and the flow accumulation variability are much lower and also the SINMAP model performed 

better. For the considered study areas this effect is not as pronounced. SINMAP does perform much 

better using the MLI (the AUC increased by approximately 0.12 for TDX and SRTM), but there are no 

significant differences of the variability of the slope angle and the flow accumulation for these two 

DEMs.  

 

Fig. 23 Comparison of the morphologic characteristics of ASTER GDEM and 
TDX over the smaller area of the MLI for random points. The blue line indicates 
the maximal extent of the morphologic variability for a study area in the Czech 
Republic where SINMAP was applied as well (all points are below this line) 
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For all models such a dependency of the performance on the variability is hardly visible neither. In 

favour of such a dependency is the fact that the variability of the DEM derived characteristics (Table 

5) show significant differences of the elevation between the MLI and SLI for all DEMs. The better 

performance of the models within the area of the MLI might be supported by this lower variability. As 

the ASTER GDEM has higher variabilities within the whole study area for two more characteristics 

(slope angle and curvature) as well, it performs even worse for all models. Still, it can be doubted that 

the variability of the DEM derived characteristics is the main explanation for the model performance. 

There are no significant differences between the DEMs considering the area of the SLI. Still, there are 

differences in the AUC of around 0.07 for the different DEMs. The study area of the MLI, on the other 

hand, does have significant differences between the variability of the TDX and the ASTER GDEM, but 

there, the AUC of these two DEMs is for all models, except the failure rate model, within a range of 

0.02. Hence, there need to be other factors influencing the model performance.  

6.4. Impact of the DEMs on the Performance of the Model 

The impact of the DEMs on the model performance seems low within the area of the MLI. The already 

mentioned significant morphologic differences between the DEMs within this area are not represented 

in the model performance. Just the AUC values of the failure rate model show deviations of more than 

0.05 of the AUC (TDX vs. SRTM, see Table 9). Considering the large area of the SLI, though, the ASTER 

GDEM seems to be less suitable to model landslide susceptibilities. For all models, except the failure 

rate, it has performed worse than the other two DEMs with AUC values which are around 0.05 lower. 

This can hardly be explained with the quality of the DEMs. The presented validation studies (chapters 

4.3.1-4.3.3) showed that the ASTER GDEM has rather higher accuracies in mountainous areas than 

SRTM (7.4m elevation error vs 10.6m for SRTM). The TDX is, when speaking of vertical errors, certainly 

the best DEM (3.6m). For modelling landslide susceptibilities TDX and SRTM are for this study area 

comparable. It needs to be mentioned that none of the DEMs has been validated within the study area. 

The worse performance cannot be explained by a worse co-registration neither, as the co-registered 

ASTER GDEM has a lower RMSE than TDX (36.78 m vs. 61.02 m). Thus, it needs to be assumed, that 

there are other factors of the SRTM and TDX which are beneficial within the study area, for modelling 

landslide susceptibilities. The spatial resolution of the DEMs does not seem to be one of these factors 

for the considered models. The performance of the SRTM with its spatial resolution of 30 m is similar 

or even slightly better than the performance of the TDX which has a spatial resolution of 10 m. This is 

in accordance with recent studies which compared the effect of the spatial resolution on the 

performance of landslide susceptibility models (Fuchs et al. 2014; Thiebes et al. 2016; Schlögel et al. 

2018). They found similarly, that 10 m DEMs do not perform much better than DEMs with slightly lower 

spatial resolutions (20 or 30 m).  



 

 

61 Modelling of Landslide Susceptibilities in the Cordillera Blanca (Peru) 

6.5. Slope Angle Impact on the Performance 

This subchapter mainly focusses on the comparison of performances of the three empirical-statistical 

models. At first the two slope models are compared to see if the influence of the slope angle is visible 

independently of the model. Table 11 shows that the performance of the two slope models is similar. 

Using the ASTER GDEM and the SRTM the differences of the two models are maximally 0.015. The 

results of the TDX differ a bit more between the two slope models. There, the slope regression model 

is much closer to the results of the LRM. For comparing the failure rate model, it needs to be 

understood, that it has two significant differences compared to all other models. First, the used values 

are not continuous. It just consists of 11 independent values which are set for each of the slope classes. 

This characteristic leads to the second difference. The set values for each slope class can vary a lot for 

different DEMs. The slope angles at some landslide points of the training set just need to vary slightly 

(39.8° instead of 40.1°) for changing the values of these two classes significantly. On Fig. 17 it can be 

seen that this effect is for most classes not that severe, as the values are quite close together. Just the 

two classes for slope angles between 40° and 50° have quite diverse values. This can be explained as 

these two classes are the ones with the smallest areal extent. Therefore, their landslide densities, on 

which the failure rate is based, vary even faster when some landslides fall into another slope class. 

These two factors could be decisive, why for some DEMs (ASTER GDEM and SRTM) the two slope 

models performances correspond well and for others, like in this study the TDX, a bit worse. It is 

interesting to see, that the failure rates of the TDX is for most classes in between the rates of the other 

two DEMs (see Fig. 17), but for the already mentioned two classes from 40° to 45° and 45° to 50° has 

the highest, and by far lowest failure rate respectively. Besides the higher deviation from the other 

slope model, this led to a poor performance over the SLI but the overall highest performance for the 

MLI.  

Generally, the performances of the slope models come quite close to the ones of the LRM model. For 

the combination TDX and MLI they even performed slightly better. For all the other combinations, they 

just had a slightly lower AUC value. These results show that the slope angle is the most important 

model parameter of the considered variables for explaining the occurrence of shallow landslides. 

According to the failure rate model the susceptibility increases for steeper slope angles until it reaches 

a peak somewhere between 40 and 50°. Afterwards, the susceptibility decreases (Fig. 17). Additional 

DEM derived parameters used as explanatory variables for the LRM improved the model performance 

Table 11 Differences of the performances using the ROC evaluation. The first columns show the differences of the two slope 
models, the last columns the ones from the regression slope model to the LRM. The sum of the absolute values along the 
inventories for all DEMs is displayed too, to see if some similarities of the model arise from the DEMs 

Slope-failure rate SLI MLI DSLI Sum LRM-slope SLI MLI DSLI Sum 

ASTER GDEM -0.015 0.01 0.01 0.035  0.012 0.032 0.033 0.077 

SRTM 0.002 0.013 0.011 0.026  0.017 0.004 0.03 0.051 

TDX 0.045 -0.021 0.023 0.089  0.027 -0.003 0.004 0.034 
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only slightly. This confirms previous findings by Glade and Crozier (2005) that simply increasing the 

number of used preparatory and preconditioning factors for susceptibility modelling does not 

necessarily improve the model performance. 

6.6. Landslide Inventory Impact on the Performance 

This subchapter compares the performance of the model using different inventories. As the MLI and 

SLI were already compared from a morphologic point of view in chapter 6.3 special attention is given 

to the DSLI. Therefore, the usefulness of shallow landslide susceptibility models for other kinds of 

landslides may be estimated. A dependency of the model performance to the landslide inventory was 

already described by Steger et al. (2015a). For this thesis, however, it is hardly possible to evaluate to 

which degree this finding corresponds to the obtained results. None of the landslide inventories was 

established over the exact same region (see Fig. 1 and 13). Hence, for estimating the impact of the 

inventory on the model performance, two factors need to be considered, the different areal extent, 

and the distinct landslides. For the comparison of the SLI and MLI, some of the impact may be 

attributed to the areal extent, as done in chapter 6.3. Similar effects can be expected when considering 

the DSLI. This third inventory extents over a larger area than the MLI but a smaller than the SLI. What 

is of further importance is that it includes exclusively deep-seated landslides. Hence, a third possible 

factor adds up to the other two impact factors of the inventory on the performance. For analysing how 

well shallow landslide susceptibility models perform using different kinds of landslides, all three factors 

need to be considered. These factors are not tried to be quantified, rather is it the aim to generally 

state, if, under the given conditions, considering these factors, deep-seated landslides were detected 

too by the models.  

The area of the DSLI is considerably larger than the one of the MLI and includes it entirely, but is, on 

the other hand, entirely included in the area of the SLI and much smaller than it. From this point of 

view, it would be reasonable, if its performance would lay in between of the SLI and MLI too. The 

second factor of the impact of the inventory itself cannot be assessed. As it is a rather more complete 

inventory than the SLI it is not assumed that it would perform much worse than it just by this factor. 

The final factor of the considered landslides is strongly in favour of the first two inventories, as they 

both consist of landslides which are meant to be modelled. When looking at the AUC values of the ROC 

evaluation, the overall best performance of the DSLI was obtained for the LRM using the ASTER GDEM. 

With an AUC value of 0.69 it is still far lower than best values obtained with the other inventories 

(0.759 and 0.804). For all other results of the statistical models its performance is worse than the ones 

of the other inventories and is in the range of 0.632 and 0.683. Such AUC values attest to a bad 

prediction of landslide susceptibilities. Just for the physically-based model SINMAP, the DSLI comes 

close to the SLI, but there the AUC values are even below 0.63. Hence, if just the first two factors were 
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considered, it would have been reasonable, if the DSLI performed better than the SLI but worse than 

the MLI. The third factor, thus, seems to be that decisive, that it finally performed generally worse, and 

did in no combination reach a AUC value of a useful model. As expected, shallow landslide susceptibility 

models do not perform well for deep-seated landslides in the study area. To some degree they seem 

to have a dependency on the slope angle too but concerning the other preparatory and 

preconditioning factors they act too different, for being detected by such models.  

6.7. Spatial Extent of the Model Classes 

The comparison of the spatial extent of the models (Fig. 21 and 22) shows that quartiles classifier 

generally has a higher agreement for all DEMs. This can be explained by the fact that the original 

classification method of SINMAP considers much larger areas as unstable or stable than the other two 

models. This leads to a larger total area considered. This is visible on Fig. 22 too, where especially 

regions which are considered by one model as most susceptible (pink colour) are much more frequent 

on the map using natural breaks. The ASTER GDEM again performs worse than the other two models, 

as it has a lower agreement of the models. SRTM and TDX, on the other hand, have similar agreements, 

where TDX has a slightly higher accordance using natural breaks and SRTM for quartiles. The 

agreement rates are generally around 40-50% for all models, and 60 to more than 70% for regions 

where at least two models coincide. Additionally, the regions of contradictions have an almost 

negligible extent. Using the SRTM with natural breaks this class is fully absent. This is a bit surprising, 

as this combination has generally the second highest percentage of areas, where just one model 

considers certain slopes as most or least susceptible. Generally, it can be stated that there is a high 

spatial agreement of the models. This is in contrast with findings of other researchers (Sterlacchini et 

al. 2011) who noted low spatial agreement of susceptibility maps prepared using different 

combinations of input factors, while maintaining very similar prediction rate. The high ROC and spatial 

consistency of the results presented here may be attributed to the very similar and limited number of 

input parameters used for the modelling, and especially their high dependence on the slope angle. This 

gets obvious when looking at the spatial patterns of the agreement (Fig. 22). It shows that highest 

agreements of stable areas are along the Santa River around the towns of Yungay, Carhuaz, and 

Marcará. All three models coincide on unstable regions for the steep slopes in the Llanganuco valley 

in the southeast of Nevado Huascarán or the slopes in the west of Carhuaz. Hence, the models agree 

for regions with very steep or flat slope angles (see Fig. 18, the slope regression model shows where 

steep and flat slope dips occur). 

6.8. Physical Interpretation of the Model Results 

This final section of the Discussion part shall connect the presented results of the models with the 

presented scientific background of landslides of chapter 3. The focus is laid on the occurred differences 
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of the performances between the two study areas of the MLI and the SLI. Most of the preconditioning 

factors which were presented in the chapters 3.4.1 and 3.4.4 have already been analysed in connection 

with the morphologic variabilities. What is yet missing are the preparatory and triggering factors. These 

factors mainly include the porewater pressure, which is related to precipitation and snow melt 

patterns, the debuttressing effect of the glacier and permafrost degradation, and earthquakes.  

As shown in the chapters 3.3 and 3.4 the porewater pressure is a decisive preparatory and triggering 

factor. Higher water tables reduce the FS without even considering its impact on the cohesion which 

can reduce the stability of soils even further. Hence, for slopes which have similar surface 

characteristics the porewater pressure can make the difference between a stable and an unstable 

slope. This is of importance for the models, as they are all exclusively based on DEMs. There is no 

explicit information about precipitation patterns. Hence, the models assume the porewater pressure 

being similar over the considered area. If this is not the case the performance of the model is likely to 

decrease, as the steep slope modelled as most susceptible may in wet state be more stable than less 

steep, thus less susceptible slopes which are oversaturated by water. The variability of the 

precipitation and snowmelt patterns, therefore, could have an influence on the performance of the 

models.  

An analysis of the precipitation patterns in the region of the Cordillera Blanca was performed by 

Schauwecker et al. (2017). They concluded that there is an increasing tendency of the precipitation 

with higher elevation and from west to east. Both these factors are much more variable in the area of 

the SLI than in the one of the MLI. The variability of the elevations has been tested (see Table 5) and is 

higher in the SLI area. Additionally, the east-west extent is much larger for the SLI area too (see Fig. 1). 

From this information it can be concluded that the precipitation varies more in the SLI area. 

Furthermore, this could be a reason why the LRM has generally the best performances over the SLI 

area. In all model runs of the LRM the elevation is included which gives implicit information about the 

precipitation patterns.  

The impact of the other two preparatory and triggering factors on the two areas is harder to assess. 

The glacier and rock mask ensured that no parts of the study areas include glaciers nor the surrounding 

areas which consist of bare rocks. Regions which could have been affected by glaciers or permafrost 

are likely being within or at least close to the glacier and rock mask. As the SLI entirely includes the 

glacier and rock mask and the MLI area just has a small area where it borders at it, the SLI area is rather 

more affected by such factors again. Similar statements can be done for earthquakes. As the SLI area 

is larger it is more likely that earthquakes exceed certain magnitudes within its area. Looking at the 

distribution of the earthquakes in Peru of the last century (Bernal et al. 2002) no patterns which could 

have a significantly higher impact on the SLI area can be revealed. 
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Even though, for the last two processes, there is no evidence for the higher variability within the area 

of the SLI, it can be assumed that all these factors have an impact on the outcome of the models. 

Especially due to the precipitation, it can be assumed that the worse performance using the SLI can to 

some degree be explained by these variabilities. Still, it is likely that a combination of several factors 

impacted the differences of the results within the study areas.  

  



 66 Modelling of Landslide Susceptibilities in the Cordillera Blanca (Peru) 

7. Conclusion 

The aim of this thesis was to apply existing methods of landslide susceptibility modelling in the high 

mountain area of the Cordillera Blanca. At first a short introduction into the science of landslides was 

written for getting a reasonable basis of understanding of the involved processes of landslides. In this 

context two popular classification schemes of Varnes (1978) and Sidle and Ochiai (2006) were 

introduced. Afterwards, four models were established on three DEMs and evaluated using three 

landslide inventories and terrain movement rates at several points. The arising uncertainties of the 

used material and methods was analysed. A combination of these results then led to the following 

conclusions for the posed research questions. 

How do regional-scale landslide susceptibility models perform in areas with highly variable 

morphology and soil characteristics that are typical for high mountain regions? 

Regional-scale landslide susceptibility models can receive reasonable performances in high mountain 

regions. The ROC evaluation led to an AUC value of 0.759 over the whole study area using a logistic 

regression model applied on the SRTM DEM. This is a remarkable performance when considering that 

the study area shows high topographic variability, including elevations between 1400 and up to more 

than 5000 masl (excluding the glacier and rock mask) and that the information used is restricted to 

remotely sensed data. It was shown, that these variabilities may relate to the variability of the 

morphologic characteristics. The ASTER GDEM for example has the highest variabilities of the DEM-

derived characteristics between the two study areas and as well the highest difference of the AUCs in 

the two study areas MLI and SLI. The differences in model performances based on the different DEMs, 

however, could not be explained with this approach. For this study area empirical statistical models 

performed much better than the physically based model SINMAP. Therefore, it can be recommended 

to compare different approaches of modelling slope stabilities in such regions for getting reasonable 

results. The validation of the models, looking at the most and least susceptible classes, indicates 

reasonable results as well. Still, the models are surely not precise enough for judging single slopes for 

their susceptibilities. This gets obvious when looking at the susceptibility classes. Only 63.8% of the 

mapped landslides happened within the most susceptible classes using the SRTM/LRM model run. The 

provided models are rather useful tools as a refinement of national scale landslide susceptibility 

models for scales up to 1:100’000. Besides, the established landslide susceptibility maps of this thesis 

are only valid for shallow landslides. Hence, for general landslide hazard maps, further modelling would 

be required to include all kinds of landslides. Furthermore, adjustments of the method for the 

definition of the susceptibility classes might reduce the number of observed landslides within areas 

considered as stable by the model. Still, these models can be used for getting a first impression of the 

situation within an area, and to indicate which slopes could be subject of further research. This is surely 
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useful, especially, as it is an efficient approach of landslide susceptibility modelling. The only thing 

required is a DEM and a landslide inventory. Whereof the latter can easily be established in landslide 

prone areas using high resolution optical data. With the same data, the required glacier and rock mask 

can be established for getting better and more realistic results.  

How much of the performance of a model can be explained by considering only the slope angle? 

The best result of the LRM / SRTM combination for the whole study area (AUC = 0.759) was just slightly 

better than the AUC of similar models considering only slope angle as independent parameter (0.742 

slope regression, 0.74 failure rate model). Generally, the results are similar for all statistical models. 

Hence, it can be stated that the performance of the models is obtained by the high dependency of the 

landslides occurrence on the slope angle. This assumption is supported by the LRM too, as the slope 

angle and the elevation were the only independent variables which were used for the LRM of all DEMs.  

What is the influence of the used DEMs on the performance of the models?  

The presented results showed that, especially when comparing the ASTER GDEM to the other two 

DEMs, there are considerable differences of the performances. For the study area the SRTM and TDX 

had similar performances and always led to better results than the ASTER GDEM. The similar 

performance of TDX and SRTM might to some degree be explained by the SRTM void fills in the TDX. 

The only exception depicts the failure rate model where the SRTM alone performed better than the 

TDX and GDEM, which both led to poor results (AUC around 0.67). This is, though, probably more due 

to the impact of the model than to the one of the DEM. Within the smaller area of the SLI such general 

tendencies are not visible. The performances of the models using the three DEMs are close and for 

some (SINMAP, LRM) the ASTER GDEM received the highest AUC values and for others (the two slope 

models) the TDX was best.  

How do these models perform for landslide inventories with different kinds of landslides?  

The evaluation using the DSLI showed that shallow landslide susceptibility models cannot, or just very 

carefully, be used for deep-seated landslides. There still seems to be a dependency of the landslides 

on the slope angle. It is not as pronounced, however, as for the shallow landslides (see slope model 

performances on Table 9). Therefore, a model can even reach an AUC value of 0.69 (LRM / ASTER 

GDEM). This is a remarkable performance, but still not high enough for a reasonable susceptibility map. 

To enhance the quality of deep-seated landslide susceptibility maps further specific preconditioning 

and preparatory factors would need to be considered too.  

Further studies could use the presented results and combine them with models for different kinds of 

landslides. Such results could then provide the refinement of the national-scale results of landslide 

susceptibilities by Villacorta et al. (2012). For the local authorities this could be useful for future land-
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use planning. Especially, if the maps do not only concentrate on the origins of landslides, but consider 

the potential reach of occurring landslides, and thus, provide a general landslide hazard map.  

Furthermore, it would be interesting to analyse, if physically based models could achieve better results 

at this scale using spatially distributed estimators for soil characteristics. As it is time-intensive in such 

regions to establish useful calibration areas, such estimators might replace them. A physical-based 

approach needs further information about soils for potentially improving the results.  

The local population around the Cordillera Blanca suffered a lot in the past. With the potentially higher 

landslide hazard in future due to climate change, it is crucial trying to protect the population with the 

help of such studies. This is the case for other such areas too. The Cordillera Blanca is just one of several 

data-scarce high mountain regions of the earth. The presented thesis showed that it is still possible to 

get reasonable results for regional scale landslide susceptibility modelling using only remotely sensed 

data. Hence, as a next step, it would be interesting to see if this is the case for other study areas with 

similar characteristics as well. For this it can be recommended to evaluate the performances of 

different models and DEMs carefully.  
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Annex 

The Unidad de Glaciología y Recursos Hídricos is part of the national water authority of Peru. They 

have an office in Huaraz and have been doing research in the Cordillera Blanca for several decades 

(ANA 2017). Over these years many documents like aerial photographies, maps, and documentations 

have accumulated in their archive. During my stay there, I was looking for documents about the study 

area. Some of these collected maps and aerial images were used to reconstruct historic DEMs of the 

region around the Safuna lakes. For this concern two different datasets were used. The first one is a 

historic map of the Safuna Alta, which was measured in 1971 and established until 1973. This map 

includes the two lakes Safuna Alta and Baja and the moraine in between. The region where the rockfall 

occurred which triggered a GLOF in 2002 is not on the map anymore. Hence, just the area of the 

moraine between the lakes was digitised to detect how it developed with this rockfall and the GLOF. 

 

Fig. 24 Development of the moraine between the two Safuna lakes. The DEM which was created from the map of 1971 was 
subtracted from the TDX 
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The digitised contour lines were transformed into a DEM and subtracted from the TDX (see Fig. 24). 

The quality of the map-derived DEM has not been assured, but still some tendencies are visible. The 

western part in the front seems having increased heights until recent years. Furthermore, are the 

highest negative changes in the southwestern part, below the region where the rockfall occurred. The 

rockfall may have caused these parts to fail too.  

The second dataset which was used consists of two aerial images from August 1950. They were taken 

on the same day from slightly different positions. Hence, they could be transformed into a DEM by 

using structure from motion software. The resulting DEM was a bit distorted and showed an elevation 

dependent error. At least this seemed the case when comparing it to the TDX. A linear trend was 

removed to subtract the elevation dependent error. The result still showed some distortions but 

already revealed some tendencies when comparing it to the TDX (see Fig. 25). The area where the 

rockfall occurred, for example, is well visible in the south of Safuna Alta.  

 

Fig. 25 Comparison of the DEM obtained by the aerial images from 1950 and the TDX 

 


