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Abstract 

Today, animal movement data can be used in a remote sensing approach to obtain environmental 

information and detect human activities. Using the example of red kites (Milvus milvus) in western 

Switzerland the aim of this thesis was to develop a location-based, data-driven method to identify 

locations of anthropogenic feeding sites. Anthropogenic feeding of red kites is a rather common 

habit within the rural and urban population of Switzerland. Survey-based research has located and 

quantified anthropogenic feeding within a study area in western Switzerland. However, this is a 

very time-consuming approach, especially for larger geographic areas. The developed individual-

based approach combined context variables, kernel density estimation and revisitation analysis in a 

modelling framework. A key finding is that the methodology works best with data collected on 

breeding birds. For breeding birds 63% of potentially used anthropogenic feeding sites could be 

detected, with 60% and 75% detection rates for small and large sites, respectively. Non-breeding 

bird data, while performing well for large sized anthropogenic feeding sites with a detection rate of 

80%, only detected 31% of potentially used anthropogenic feeding sites overall. In conclusion, while 

it is possible to detect small and large size anthropogenic feeding sites with breeding bird data, data 

of non-breeding birds only delivers reliable results for large size feeding sites. These findings high-

light the behavioural differences of the age classes and indicate that the behaviour of breeding birds 

is more predictable by repeated visits to a location. In general, the results show how GPS tracking 

data of individual animals offer a new way to remotely sense environmental information. 
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Chapter 1  

1 Introduction 

1.1 Motivation 

Today, animal movement data are used in a remote sensing approach to obtain environmental in-

formation and detect human activities (Navarro et al., 2016). The red kite (Milvus milvus) is a wide-

spread species in Switzerland that is known to exploit anthropogenic food sources (Mougeot, Garcia 

and Viñuela, 2011; Orros and Fellowes, 2015). Therefore, the GPS tracking data of red kites serve as 

a good example to develop a methodological approach in the context of anthropogenic bird feeding 

and its detection. 

The Swiss breeding population gained international importance because red kite populations show 

declining or stagnating trends in their core distribution areas Germany, Spain and France 

(Aebischer, 2009; Swiss Ornithological Institute, 2019). However, in Switzerland red kites showed a 

continuous increase in the past decades and today they breed not only in the Swiss Plateau but also 

at altitudes above 800 metres (Aebischer, 2009; Knaus et al., 2018; Swiss Ornithological Institute, 

2020). The reasons for the increase in Switzerland, particularly in light of the contrasting develop-

ment of surrounding countries, are widely unknown. To gain an understanding of the factors driv-

ing this recent population development of red kites, the Swiss Ornithological Institute has initiated 

a research project in 2015. 

This master’s thesis was conducted in collaboration with the Swiss Ornithological Institute and it 

focuses on anthropogenic feeding in Swiss private households or farms (Cereghetti et al., 2019). An-

thropogenic feeding affects the food availability of red kites, which in turn might affect the repro-

duction, survival and, through the spatial distribution of food also their likelihood to disperse, and 

ultimately the population development in Switzerland. The development of a location-based, data-

driven approach to identify anthropogenic feeding sites in the study area is the key objective of this 

thesis, which aims to complement survey-based studies that identify locations of anthropogenic 

feeding sites. The use of ongoing technological advances offered by global positioning system (GPS) 

sensors for the collection of animal movement data and thus for gaining insight into environmental 

information, specifically human activities, is a key aspect of this thesis (Cagnacci et al., 2010; Kays et 

al., 2015; Navarro et al., 2016). 

1.2 Research Objectives 

Changes in food availability have major impacts on the dynamics on a population and on an indi-

vidual level, such as individual behaviour and movement decisions. As a result, anthropogenic feed-
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ing sites become locations of ecological interest (Plummer et al., 2015). Studies on bird feeding con-

cluded that garden feeding leads to reduced winter migration (Plummer et al., 2015). Therefore, spe-

cific behavioural changes of red kites might be decreased migration due to anthropogenic feeding 

or a trend towards communal roosting sites close to anthropogenic feeding sites in winter. Further-

more, individual movement patterns could change due to the attractiveness of anthropogenic feed-

ing sites in search of food. However, large-scale and long-term influences on the ecology of bird 

communities are still unknown (Plummer et al., 2019). Moreover, the extent of anthropogenic feed-

ing is often unclear (Cereghetti et al., 2019). Therefore, the aim of this master’s thesis is to develop a 

method to identify and thus, quantify anthropogenic feeding sites based on GPS tracking data of red 

kites. Results serve as a basis for further research on impacts of anthropogenic feeding and allow the 

identification of anthropogenic feeding sites in different regions in Switzerland. 

1.3 Research Gaps 

Although observational research in Switzerland has found evidence that feeding of red kites by pri-

vate households occurs regularly, especially during winter time, little information is available about 

the extent of these anthropogenic feedings and their spatio-temporal occurrence (Cereghetti et al., 

2019). Therefore, it is crucial to localise and quantify them to then further investigate their im-

portance for the Swiss red kite population (Cereghetti et al., 2019). Survey-based research to identify 

anthropogenic feeding sites has its limitations and is confined to a small spatial extent where time-

consuming door-to-door surveys can be conducted. A remote sensing approach using GPS tracking 

data is less limited by the spatial extent and therefore represents an interesting opportunity to quan-

tify anthropogenic feeding for larger areas. As will be detailed in Chapter 2, animal movements have 

been used to gain information about the environment in which the movement occurs and to detect 

human activities (Navarro et al., 2016). But no location-based, data-driven approach has been devel-

oped to identify anthropogenic feeding at private households or specifically for red kite movement 

data. The methodology is developed for, and tested in, a study area in western Switzerland, with 

the intention of applying it to other regions of Switzerland. 

1.4 Research Questions and Hypotheses 

This master’s thesis addresses the above-mentioned research gaps guided by the following research 

questions and hypotheses. 

 

RQ A What methods are required to identify daily anthropogenic feeding sites and those with lower feeding 

frequencies using GPS tracking data? 

The hypothesis is that anthropogenic feeding sites can be detected using red kite GPS data by ap-

plying a combination of density-based measures, particularly kernel density estimation, and recur-

sive movement characteristics integrated with a revisitation approach. Higher GPS point densities 

are expected at anthropogenic feeding sites since most currently known anthropogenic feeding sites 

have a regular feeding pattern and most private households have been feeding the red kites for 
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several years (Cereghetti et al., 2019). Furthermore, a revisitation-based approach is considered suit-

able, as Welti, Scherler, and Grüebler (2019) concluded that red kites respond more strongly to re-

peated placement of carcasses than other facultative scavengers. Hence, they exploit sites with high 

predictability of food occurrence and are therefore expected to regularly return to the same anthro-

pogenic feeding site. 

 

RQ A.1 Do the different frequencies of anthropogenic feeding sites influence their identifiability? 

There is a great diversity within the feeding frequency and the amount of feeding of the different 

anthropogenic feeding sites. The hypothesis is that this variety of frequencies in food supply af-

fects the density of GPS points and the revisitation rate at a location, thus influencing the identi-

fiability of a feeding site. Therefore, an appropriate method might require different parametrisa-

tions or even different approaches. A solution could be to address this problem by creating fre-

quency classes for the feeding sites (e.g., daily, three and more times a week, once a week, 

monthly) and the use of two different approaches. First, by using an individual-based approach, 

which attempts to identify anthropogenic feeding sites based on an individual’s movement. This 

might be a good solution for identifying anthropogenic feeding sites that provide food on a very 

regular (i.e. daily) basis. Second, an approach aggregating over several individuals could be used 

to identify anthropogenic feeding sites that cannot be detected on an individual basis. 

 

RQ A.2 Does the identifiability vary amongst age classes of red kites? 

Red kites undergo behavioural changes over the course of their lives; therefore, individuals of 

different age classes may show different movement behaviours. This heterogeneity in behaviour 

potentially influences the frequency with which an individual makes use of an anthropogenic 

feeding site and the number of feeding sites used. Therefore, the hypothesis is that the identifia-

bility of anthropogenic feeding sites is dependent on age classes (e.g., first year (fledgling), non-

breeding, breeding individuals) of the red kite providing the GPS data. 

 

RQ B What environmental context variables must be considered to identify anthropogenic feeding sites? 

The hypothesis is that environmental context variables based on ecological knowledge about red 

kites and characteristics of anthropogenic feeding sites are crucial. It is expected that this additional 

information allows for a differentiation between natural feeding sites, nests, roosting sites, and an-

thropogenic feeding sites which are all sites with potentially high density of GPS localisations. Fre-

quently visited forest areas are used by red kites for sleeping and resting (Aebischer, 2009) and are 

therefore not of interest for this thesis. Hence, including information on forest areas could reduce 

the number of locations indicating nests or roosting sites and focus on feeding grounds. Anthropo-

genic and natural resources display different temporal characteristics. While natural resources are 

usually not restricted to a certain time period during the day, anthropogenic resources tend to ex-

hibit different levels of ephemerality. Anthropogenic food is usually only available for a short time 

during daytime due to human involvement (Yoda et al., 2012). Since feeding takes place during the 
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day and red kites are diurnal animals only daytime GPS points are considered relevant for the task. 

Spatially, anthropogenic feeding takes place in or near residential areas due to human participation. 

Therefore, the inclusion of information on human-made structures at locations with high GPS point 

density seems appropriate and is considered essential for the successful identification of anthropo-

genic feeding sites. It is expected that this reduces the number of frequently visited areas by focus-

sing on the anthropogenic aspect of the feeding. Since the data have a low, 1 hour temporal resolu-

tion, GPS locations indicating a visit to an anthropogenic feeding site might not have been recorded 

at the exact location of the site, and therefore the polygons of the kernel density estimation could be 

slightly displaced. Hence, the use of a buffer around settlement areas might be a reasonable option 

to only include highly used areas in proximity to buildings into further analysis. 
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1.5 Outline 

▪ Chapter 2 provides background knowledge on the ecology of red kites and the impact of an-

thropogenic feeding on bird populations. Furthermore, necessary background information 

about movement ecology and the state of research is given. 

▪ Chapter 3 introduces the study area and the data used in this master’s thesis. 

▪ Chapter 4 explains the methodological workflow developed to identify locations of anthropo-

genic feeding sites. 

▪ Chapter 5 presents the results. 

▪ Chapter 6 discusses the results and the applied methodology. It also answers the research ques-

tions. 

▪ Chapter 7 provides conclusions and an outlook on future research. 
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Chapter 2  

2 Theoretical Background 

2.1 Red Kite Ecology 

2.1.1 Physiology, Habitat and Reproduction 

The red kite (Milvus milvus) is a diurnal raptor and the third largest native bird of prey in Switzer-

land (Swiss Ornithological Institute, 2019). Red kites (Figure 2.1) are around 56 to 73 cm long and 

wingspans in adult birds can reach up to 170 cm. Nevertheless, red kites weigh only 860 to 

1400 grams, with females being significantly heavier than males (Aebischer, 2009). Red kites have 

narrow, long and angled wings. Their plumage is mainly reddish-brown, especially the body, the 

upper tail, and the wing coverts. Other typical features are the large white spots on the underside of 

the primary feathers and the greyish head of adult birds as well as the long, deeply forked tail. Their 

short legs are yellow with black claws and their beak is horn-coloured, only the base is coloured 

yellow (Aebischer, 2009). 

 

 
Figure 2.1. First calendar year red kite (Milvus milvus) in flight. Image credit: P. Scherler. 

 

While red kites need trees for breeding and resting, open landscapes such as fields, meadows, pas-

tures, lakes, rivers, and forest edges are vital to access food resources. Therefore, preferred habitats 

are diversified and fragmented landscapes with pastures, heath lands, farmland mixed with trees or 

forests (Carter, 2001; Aebischer, 2009; Mougeot, Garcia and Viñuela, 2011; Heuck et al., 2013). Red 

kites occur less commonly in regions with large forest areas or without trees. In Switzerland, red 

kite nests are found at heights of 15 to 30 metres, mostly on forest edges (Aebischer, 2009). In the 
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wild, birds can reach an age of up to 29 years (Aebischer, 2009). Reproduction starts between 2 – 4 

years of age, with most birds breeding for the first time at the age of 3. Generally older birds, being 

more experienced breeders, have higher breeding success than young red kites (Aebischer, 2009; 

Mougeot, Garcia and Viñuela, 2011). 

The annual cycle of the red kite population can be classified into different phases. The cycle starts 

with spring migration back to Switzerland initiating in January, with continuing migration and the 

occupation of breeding territories in February. After nest building, eggs are laid in late March, be-

ginning of April, and incubated until chicks hatch after 30 days (Carter and Powell, 2019). In May 

the chicks are reared, until they fledge with 47 – 78 days of age in June and beginning of July 

(Bustamante, 1993). The young red kites become independent in August. July and August are part 

of the post-breeding season. In September and October, the autumn migration begins. November 

and December are spent in the non-breeding range before spring migration is initiated again (Carter 

and Powell, 2019). 

2.1.2 Population and Distribution 

Changes in animal population densities and distributions are strongly influenced by human activi-

ties causing changes in habitat structure and resource availability. Such impacts have also been ob-

served in the development of red kite populations (Blanco and Montoya, 2004). 

Red kites generally benefit from anthropogenically modified landscapes because the species is well 

adapted to open land and fragmented landscapes (Blanco and Montoya, 2004). However, other an-

thropogenic actions such as persecution, poisoning and nest plundering decimated the red kites 

populations throughout Europe in the 19th century and the first half of the 20th century (Aebischer, 

2009). Between 1970 and 1990 a new decrease in several European countries occurred due to a variety 

of reasons, such as strong industrial agriculture in eastern Germany, accidental poisoning by poison 

meant for water voles in north-eastern France and illegal hunting in Spain (Aebischer, 2009). In con-

trast to the negative population trends in most European countries, Switzerland showed a continu-

ous increase in the red kite population since the 1950s (Aebischer, 2009). 

The distribution area of red kites is limited to central, western, and southwestern Europe. Scotland 

and southern Sweden mark the northern border of the red kite breeding area, whereas Spain and 

Italy set the southern boundary (Aebischer, 2009). Germany, Spain, and France are the three most 

important countries for the red kite and account for about 85% of the world’s population (Mougeot, 

Garcia and Viñuela, 2011). Recently, the world’s red kite population has been estimated to a size of 

around 25,000 – 33,000 pairs (Swiss Ornithological Institute, 2019). 

In Switzerland, a continuing recolonisation of breeding areas and an expansion into altitudes above 

800 metres and alpine valleys can still be observed today (Aebischer, 2009; Knaus et al., 2019). For 

the period 2013 – 2016, the population size of red kites in Switzerland was estimated at around 2,800 

to 3,500 breeding pairs, compared to only around 150 in the 1970s. The Swiss red kite population 

amounts to approximately 10% of the world’s red kite population (Aebischer, 2009; Knaus et al., 

2018, 2019). 
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The reasons for the unparalleled increase in Switzerland, particularly in light of the contrasting de-

velopment of surrounding countries, are widely unknown and the reason for increased research 

interest (Swiss Ornithological Institute, 2019). 

Red kites are residents or short-distance migrants (Swiss Ornithological Institute, 2019). While 

breeding pairs in Great Britain and southern Italy are mostly sedentary, red kites breeding in Central 

Europe migrate to southern European countries due to adverse environmental conditions in Central 

Europe (Aebischer, 2009). However, since the 1960s the number of red kites and the number of com-

munal roosting sites in winter in Central Europe has continuously increased (Aebischer, 2009). Com-

munal roosting sites are located on single trees or tree rows, where red kites gather to spend the 

nights in winter (Figure 2.2). In Switzerland sometimes a dozen to up to 300 birds spend the nights 

on a few trees (Aebischer, 2009). The Swiss wintering population has grown to more than 3,000 in-

dividuals (Knaus et al., 2018). Interestingly, the red kite’s population has mainly grown in countries 

where large numbers of individuals spend the winter. Whether there is a causal relation between 

the growing breeding population and the wintering areas is unknown (Aebischer, 2009). 

 

 
Figure 2.2. Red kites at a communal winter roosting site. Image credit: P. Scherler. 

 

2.1.3 Foraging Behaviour 

Red kites travel long distances when searching for food resources. Meadows, pastures, arable land, 

ploughed grain fields, and urban areas are used for foraging (Aebischer, 2009; Orros and Fellowes, 

2015). To cover long journeys red kites use thermals to gain height and then glide for long distances. 

In their search for food, they usually fly at heights below fifty metres above ground scanning the 

land below for food. However, large suitable feeding locations can also be spotted from flight alti-

tudes of several hundred metres (Aebischer, 2009). Red kites have excellent eyesight and it is their 

most important sense when searching for food (Carter and Powell, 2019). When foraging they usu-

ally approach a site carefully before grabbing a piece of food with their feet and fly to a safe place to 
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eat it while small prey can be eaten in flight (Aebischer, 2009). During the breeding season red kites 

show an increased need for food to feed their young (Hötker, Krone and Nehls, 2017). 

Red kites are opportunistic scavengers and therefore have a very broad diet. Specifically, red kites 

feed on insects, small mammals, birds, reptiles, amphibians and fish species as well as carrion and 

are known to exploit anthropogenic food sources (Mougeot, Garcia and Viñuela, 2011; Orros and 

Fellowes, 2015). In the literature, this wide range of food consumption has been connected to the 

geographically dependent availability of different food sources, individual specialisation, and sea-

sonal changes. The variety of food used by red kites is seen as a major advantage when food is scarce 

(Mougeot, Garcia and Viñuela, 2011; Carter and Powell, 2019). 

2.2 Anthropogenic Feeding 

2.2.1 Types of Anthropogenic Feeding and Impacts 

The feeding of wild birds in gardens or backyards is a common human-wildlife interaction 

(Reynolds et al., 2017). This leads to birds being influenced by the availability of anthropogenic food 

(Cereghetti et al., 2019). Often the intention of private persons to feed birds is to improve survival 

during winter months (Reynolds et al., 2017). But other motivations such as seeing birds from up 

close, feeling relaxed and connected to nature, are also important (Cox and Gaston, 2016; Reynolds 

et al., 2017). While the public might associate anthropogenic food with feeding birdseed in gardens 

specifically for small passerines, also avian facultative scavengers such as corvids, gulls and raptors 

exploit anthropogenic food. However, these species feed on waste, carrion or livestock afterbirths 

(Reynolds et al., 2017; Cereghetti et al., 2019). 

Changes in food availability have major impacts on the ecology and dynamics of bird populations 

which makes research on anthropogenic feeding important (Plummer et al., 2015). By altering the 

food availability anthropogenic feeding sites can influence the size, distribution and behaviour of 

the population (Plummer et al., 2019). Studies on other bird species concluded that supplementary 

feeding as well as milder winter conditions in the Northern Hemisphere are potential factors chang-

ing the migratory behaviour (Plummer et al., 2015). 

In Spain large feeding stations exist where dead livestock is dumped. Those places called ‘mu-

ladares’ attract primarily vultures but also red kites (Mougeot, Garcia and Viñuela, 2011). In re-

search, scavenger feeding stations have been widely used in conservation programmes although 

their behavioural effects are still under discussion (Monsarrat et al., 2013). Monsarrat et al. (2013) 

analysed the foraging behaviour of Griffon vultures (Gyps fulvus) in the Grands Causses (France). 

They classified possible feeding sites into three groups: (1) ‘light feeding stations’ characterised by 

carcasses placement by farmers at their farms, (2) ‘heavy feeding stations’ where carcasses from dif-

ferent farms are accumulated and (3) open grasslands, where carcasses appearance is random. Those 

sites show different levels of predictability. While (1) ‘light feeding stations’ and (2) ‘heavy feeding 

stations’ deliver spatially predictable food resources, (3) open grasslands are unpredictable. Mon-

sarrat et al. (2013) concluded that predictable feeding stations were used preferably by the vultures 

compared to other, less predictable foraging areas within their habitats. Furthermore, there seemed 
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to be a tendency towards light feeding stations due to less intraspecific competition compared to 

heavy feeding sites. Bartumeus et al. (2010) found that seabirds or in general omnivorous animals 

alternate between natural and human-related food sources based on their availability. Yoda et al. 

(2012) stated that black-tailed gulls showed more ballistic movement when using anthropogenic 

food resources than when searching for natural ones, indicating their movement strategies are 

adapted to the food source. This served as an indication that gulls show knowledge of the spatial 

and temporal distribution of anthropogenic food resources and adapted their foraging strategies 

and movement patterns to the higher spatial predictability of anthropogenic sources (Yoda et al., 

2012). 

The conclusions about the preference of predictable food resources, the effect of intraspecific com-

petition at feeding sites, and the differing movement patterns, although made for Griffon vultures 

and gulls, are interesting to consider in the case of red kites in Switzerland (Yoda et al., 2012; 

Monsarrat et al., 2013). This suggests that red kites potentially show different movement patterns 

when using anthropogenic or natural feeding sites, respectively. 

However, anthropogenic feeding in Switzerland takes place on a smaller scale than in ‘muladares’ 

or ‘heavy feeding stations’ and should be more associated with the ‘light feeding stations’ classified 

by Monsarrat et al. (2013). For the red kite study area in the Sensebezirk FR and Schwarzenburger-

land BE it was found that intentional anthropogenic feeding does not necessarily lead to big aggre-

gations of scavengers at the sites. Only at feeding sites that provide large amounts of food or do so 

during the winter season, such aggregations might occur (Cereghetti et al., 2019). Cereghetti et al. 

(2019) concluded that a maximum daily average of almost 0.9 kg of food per km2 was distributed 

within the study area. In this region 12.7% of rural and 4.6% of urban households that were surveyed 

frequently provided food for red kites. Furthermore, only 20% of the feeding events took place in-

tentionally while 80% were unintentional. In Switzerland, the feeding rarely follows an exact time 

pattern because it happens in private households or on farms. Hence the food availability is depend-

ent on factors such as the disposal of kitchen leftovers or afterbirths, which in turn are related to 

livestock birth. This indicates that whereas the time is unpredictable the location of private feeding 

sites is predictable (Cereghetti et al., 2019). Therefore, one could conclude that red kites also slightly 

favour predictable, anthropogenic feeding sites over unpredictable resources. The preference of pre-

dictable resources would lead to a frequent use visible in GPS tracking data. Therefore, the detection 

of anthropogenic feeding sites should be possible using red kites tracking data. 

2.2.2 Anthropogenic Feeding Sites 

To be able to develop a methodology that can detect anthropogenic feeding sites in a Swiss context, 

it is necessary to first define the characteristics of such a site on a conceptual level. There are two 

different dimensions to be considered. First, the landscape characteristics specific to an anthropo-

genic feeding sites and second the behavioural aspect of red kites. 

The focus of this thesis lies on spatially predictable anthropogenic feeding that takes place in an 

anthropogenic environment, particularly at or close to farms or private houses. Depending on the 
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amount of food and the frequency of feeding occurring at an anthropogenic feeding site it is classi-

fied to a different level (small or medium, large, unknown). The feeding can be intentional (e.g., 

placement of food in the backyard) or unintentional (e.g., compost heap), but in this thesis no dis-

tinction is made, as spatial predictability is the important aspect. Since red kites alternate between 

anthropogenic and natural food sources (Orros and Fellowes, 2015), it is important that a method 

can distinguish between locations of those two types. Hence, the connection of red kite locations to 

human-made constructions is crucial. 

Temporally, there are regular and irregular anthropogenic feeding sites. The methodology focuses 

on the detection of anthropogenic feeding sites with regular feeding in sufficient quantity, as such 

locations are likely to attract red kites. Consequently, this leads to a high density of GPS localisations 

of an individual and possibly higher revisitation rates at such sites. Hence, locations expected to be 

feeding sites meet the following characteristics: a high density of GPS points, proximity to human-

made constructions, and recurring visits. 

The above-mentioned characteristics lead to the following aspects to be considered in an approach 

to detect anthropogenic feeding sites: 

A Density of GPS localisations 

B Anthropogenic environment 

B.1 negative buffer around forests (resting and nesting) 

B.2 positive buffer around settlement areas 

C Recurring, predictable feeding spots 

C.1 Revisitation of an individual to the same area 

 

2.3 Movement Ecology 

2.3.1 Movement Definition 

Moving objects can be defined as ‘entities whose positions or geometric attributes change over time’ 

(Dodge, Weibel and Lautenschütz, 2008, p. 240). Animals or humans are dynamic objects that move 

in geographic space and are geographically referenced. Sequences of locational points, when or-

dered in time, result in trajectories (Dodge, Weibel and Lautenschütz, 2008; Buchin, Dodge and 

Speckmann, 2012). Hence, trajectories can be defined as ‘discrete time series of measured locations’ 

(Demšar et al., 2015, p. 2). Or in other words, trajectories represent ‘paths through space and time’ 

executed by a moving object (Dodge, Weibel and Lautenschütz, 2008, p. 240). While the movement 

takes place continuously, location data is collected at discrete time intervals and according to specific 

temporal schedules. As a result, the location between two updates remains unclear, causing uncer-

tainty about the course of the trajectory (Demšar et al., 2015; Zheng, 2015). 
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2.3.2 Recording Animal Movement 

In the past, data collection from wild animals was too limited to describe the real-world phenomena 

of animal movement behaviours. As a result, the field of animal movement fell toward the margins 

of ecological research (Kays et al., 2015). 

Patterns in animal movements provide valuable information on behaviour between individuals, for-

aging strategies, learning excursions, seasonal migration and critical resources such as food (Nathan 

et al., 2008; Kays et al., 2015; Slingsby and van Loon, 2016). With movement being the spatio-temporal 

expression of an animal’s behaviour, it contains behavioural information and hence affects the ani-

mal’s life history (Kays et al., 2015; Gudmundsson, Laube and Wolle, 2017). Therefore, it is crucial to 

gain a better understanding of movement patterns, mechanisms as well as their causes and conse-

quences to obtain profound knowledge about populations, but also individuals (Nathan et al., 2008).  

Not only movement in general, but especially recursive movement, which is defined as returns to 

already visited places, plays an important role in movement ecology (Berger-Tal and Bar-David, 

2015). Empirical studies indicate that a large variety of animal species on different trophic levels 

show recursive movement patterns (e.g., bees (Williams and Thomson, 1998), birds (Garrison and 

Gass, 1999), large felines (Laundré, 2010) and ungulates (Bar-David et al., 2009)) (Berger-Tal and Bar-

David, 2015). Furthermore, the resource recovering rate might be the influencing factor controlling 

the temporal scale of the recursive movement pattern (Berger-Tal and Bar-David, 2015). In case of 

anthropogenic activity, the resource recovering rate could be regarded as the regularity with which 

a person displays food at a spatially predictable site. Recursive movement behaviour is only possible 

if an animal meets certain prerequisites (Berger-Tal and Bar-David, 2015). First, the animal must 

have basic cognitive abilities to perceive and identify locations with resource availability. This ena-

bles a targeted movement towards such places (Nathan et al., 2008; Berger-Tal and Bar-David, 2015). 

In addition, the ability to remember the locations and their quality of food is crucial. Therefore, a 

good spatio-temporal memory to predict and be able to estimate the rate of resource recovery is 

important for animals with recursive movement behaviour (Berger-Tal and Bar-David, 2015). A sec-

ond prerequisite for recursive movement behaviour is the degree of environmental predictability 

because memory does not prove useful if the environment is unpredictable (Berger-Tal and Bar-

David, 2015). Anthropogenic feeding sites show those characteristics of increased predictability of 

food availability spatially and to a certain extent temporally (Monsarrat et al., 2013). 

For a long time, the analysis of animal movements relied on radio telemetry, especially VHF (very 

high-frequency) technology (Cagnacci et al., 2010). In ornithological research radio telemetry was 

used to quantify mortality rates, habitat use or home range size and habitat selection (Grüebler et al., 

2008; Menz, Mosimann-Kampe and Arlettaz, 2009; Pfeiffer and Meyburg, 2015). However, a main 

disadvantage of this method is that receivers must be relatively close to an animals’ transmitting 

device in order to determine its location. 

Modern generations of tracking devices deliver new opportunities in the field of animal tracking 

research. The emergence of satellite telemetry and devices incorporating a global positioning system 

(GPS) receiver allow researchers to remotely track animal locations and movements (Cagnacci et al., 
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2010; Pfeiffer and Meyburg, 2015). Telemetry using GPS led to (Cagnacci et al., 2010; Kays et al., 2015; 

Pfeiffer and Meyburg, 2015): 

1. The coverage of large spatial extents without time-consuming efforts 

2. High precision and accuracy of positional data, increasing the spatial resolution 

3. The possibility to record movements of animals with an increased temporal resolution and therefore, in-

sights into short-term behaviour 

This growing amount of collected high-resolution spatio-temporal movement data led to research 

into animal tracking becoming increasingly important for the study of animal behaviour and the 

analysis of movement patterns (Nathan et al., 2008; Kays et al., 2015; Gudmundsson, Laube and 

Wolle, 2017). GPS and other sensors (e.g., accelerometer) have been integrated into miniaturised 

tracking tags to minimise the effects on an animal’s behaviour and survival. A sensor should not 

weigh more than 5% of an animal’s body weight (Kays et al., 2015). However, there are trade-offs 

between the size of a sensor and its performance, such as spatial accuracy, temporal resolution and 

battery life (Nathan et al., 2008). With the miniaturisation of sensors, it is now possible to collect 

trajectory data for a variety of animals, including most medium- or large-sized vertebrates, which 

has led to a better description and study of animal movements (Damiani, Issa and Cagnacci, 2014; 

Kays et al., 2015). Furthermore, the decreasing costs of sensors capable of tracking movements re-

sulted in higher numbers of tagged individuals (Gudmundsson, Laube and Wolle, 2017). Today, 

GPS tracking data can be remotely downloaded using satellite or cell phone communication net-

works, which makes real-time data about the tagged animals available (Kays et al., 2015). 

The technological advances led from data scarcity to an abundance of movement data with high 

levels of spatial and temporal detail (Demšar et al., 2015; Gudmundsson, Laube and Wolle, 2017). 

However, with the increasing amount of movement data, new challenges regarding data manage-

ment, processing, analysis and visualisation of these data emerged (Millspaugh and Marzluff, 2001; 

Nathan et al., 2008; Demšar et al., 2015; Gudmundsson, Laube and Wolle, 2017). Developing new, 

appropriate analysis and visualisation methods attracted the interest of various research fields 

(Demšar et al., 2015). An interdisciplinary collaboration between movement ecology and information 

science shows a good opportunity to improve methodological developments (Demšar et al., 2015). 

Furthermore, online repositories such as Movebank (www.movebank.org), hosted by the Max 

Planck Institute of Animal Behavior, facilitate access to large ecological and geographic databases 

and therefore improve the management, sharing, protection, analysis and archiving of movement 

data (Nathan et al., 2008; Wikelski, Davidson and Kays, 2020). 

Today, the movement data are increasingly applied not only to study the behaviour and movement 

patterns of animals, but also to gain insights into the environment in which the movement takes 

place. Hence, animals can be used as an instrument to deliver remotely sensed environmental infor-

mation. This approach relocates the research’s focus from the animal’s movement behaviour to-

wards the collection of environmental knowledge. A practical example using animals’ spatial move-

ment as remote sensing information is Navarro et al. (2016)’s approach to detect illegal dumping 

https://www.movebank.org/cms/movebank-main
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activities in southern Spain. Based on foraging activity recorded by real-time GPS data from yellow-

legged gulls the authors pinpointed an illegal waste dump. They uncovered that the site was repeat-

edly used by approximately 25% of the tagged birds (Navarro et al., 2016). Another possible appli-

cation is the use of albatrosses equipped with devices that detect radar emissions and record posi-

tions of vessels and birds to monitor illegal fisheries. In the future, this could allow the transmission 

of real-time information on the whereabouts of illegal fishing vessels to authorities (Weimerskirch 

et al., 2018). This novel approach directs the research interest towards the detection of anthropogenic 

activities such as environmental crime and away from the study of the species itself. The detection 

of anthropogenic feeding sites used by red kites in the study area can also be assigned to this emerg-

ing field of research. However, in this master’s thesis conclusions about the behaviour of red kites, 

the influence of anthropogenic feeding on red kites are still of interest and essential for the develop-

ment of a valid method. 

2.3.3 Utilisation Distribution 

Ecologists are particularly interested in the analysis of GPS tracking data to analyse spatio-temporal 

dynamics in movement patterns, estimate utilisation distributions, classify or identify behaviour 

and link movement data with an environmental context (Demšar et al., 2015). 

Utilisation distributions (UDs) are a frequently applied method in ecological research. The utilisa-

tion distribution is ‘the distribution of an animal’s position in the plane’ (Worton, 1989, p. 164). An-

other definition used by Van Winkle (1975) is ‘the two dimensional relative frequency distribution 

for the points of location of an animal over a period of time’ (Van Winkle, 1975, p. 118). According 

to these two definitions, UDs can be used to examine animal movement behaviour in space. The 

estimated utilisation distribution is widely used in home range research (Worton, 1989). The estima-

tion of home ranges is conducted with the aim to extrapolate where an animal will go if it continues 

to move with similar movements (Fleming et al., 2016). In this way an animal’s space use pattern can 

be quantified. Home range areas are defined as a certain percent coverage region. Commonly 95% 

of the probability distribution of all localisations is used (Fleming et al., 2015). Core areas of activity 

are often described by the 50% home range area (Harris et al., 2012; Hötker, Krone and Nehls, 2017). 

Kernel density estimations (KDEs) of trajectory points are frequently used to estimate a probability 

density function, by placing a probability function on each observed location. These probabilities 

are then summed up into a surface which displays the utilisation distribution (Lyons, Turner and 

Getz, 2013; Demšar et al., 2015). While traditional utilisation distribution approaches provide a static 

representation of space use there have recently been developments to add a more dynamic charac-

teristic (Benhamou and Riotte-Lambert, 2012). Benhamou and Riotte-Lambert (2012) point out that 

additional information such as residence time or visit frequencies to areas of special interest can help 

to identify areas within a home range which are intensively used or repeatedly visited. This ap-

proach provides new insight into the movement behaviour of animals and the environmental char-

acteristics influencing it. 
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2.4 Methods 

2.4.1 Kernel Density Estimation 

Kernel density estimation (KDE) is a widely used method of point pattern analysis in GIScience and 

for home range calculation in ecology (Downs, 2010; Benhamou and Riotte-Lambert, 2012; Lyons, 

Turner and Getz, 2013). The spatial variation in the density of points is turned into a smooth and 

continuous surface by a KDE. By using a kernel density estimator, the spatial intensity can be as-

signed to each position in a study area. Thereby, locations of unusually high spatial intensity of 

points, called ‘hot spots’, can be identified (Downs, 2010). KDE is a non-parametric method to esti-

mate utilisation distributions (Worton, 1989). The bivariate kernel density estimate 𝑓 at any point 𝑥 

can be mathematically expressed as (Downs, 2010, p. 17): 

 

 𝑓(𝑥) =
1

𝑛ℎ2  ∑ 𝐾

𝑛

𝑖=1

 (
|𝑥 − 𝑋𝑖|

ℎ
) (2.1) 

 

In Equation (2.1) sample size 𝑛 contains points 𝑋1, 𝑋2, . . . , 𝑋𝑛, ℎ is the bandwidth and 𝐾(𝑦) is the 

kernel function (Downs, 2010). In applications of the utilisation distribution 𝑓(𝑥) is the estimated 

utilisation distribution at a defined position 𝑥. The kernel function is based on the weighted sum of 

the target points 𝑋𝑖 within the selected bandwidth ℎ. The kernel’s bandwidth ℎ influences the degree 

of smoothing and thus the distance within which a point influences the density estimate. A point 

close to a relatively large number of other points receives a high intensity, whereas a point with 

greater distance is given less weight (Downs, 2010). While the choice of the kernel function (e.g., 

Gaussian, Epanechnikov) which influences the kernel’s shape is considered secondary in the litera-

ture as most functions deliver similar results, choosing the bandwidth ℎ is crucial when dealing with 

kernel density estimation (Silverman, 1998; Downs, 2010; Fleming et al., 2015). Choosing ℎ too small 

results in spurious fine structures becoming visible, hence an under-smoothing of the estimate, 

whereas a too large ℎ results in only broad features becoming visible, an effect called over-smoothing 

(Silverman, 1998; Fleming et al., 2015). The sensitivity to bandwidth selection is a major limitation of 

the KDE method (Downs, 2010). 

A lot of research has been conducted into the adequate bandwidth choice and several methods have 

been developed to optimise the KDE bandwidth (Fleming et al., 2015). Bandwidth can be chosen 

either by algorithms (e.g., plug-in and cross-validation approaches) or arbitrarily (Downs, 2010; 

Fleming et al., 2015). The reference bandwidth is a common and easy approach for the bandwidth 

selection, using the standard deviation of the data to estimate the bandwidth (Silverman, 1998). In 

the R package ‘adehabitatHR’, often used to calculate home ranges in ecology, the reference band-

width is calculated based on the bivariate normal distribution (Calenge, 2019). A second method to 

select the bandwidth is least-squares cross-validation (LSCV), which is completely automatic 

(Silverman, 1998). For this method, an estimate from the data is constructed and the mean integrated 

square error (MISE) of the bandwidth is minimised (Worton, 1989). Furthermore, the bandwidth can 
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be chosen subjectively by looking at several resulting estimates. Thereby the parameter that best 

suits the research question is selected. The process of testing multiple bandwidths may give first 

insights into the data, but the choice remains a challenge (Silverman, 1998; Calenge, 2019). 

Figure 2.3 shows the application of a kernel density estimation to a spatial point pattern using a 

bivariate normal kernel and a fixed bandwidth. 

 

 
Figure 2.3. KDE applied to the spatial point pattern of a red kite’s GPS locations. Base map: Esri, HERE, Garmin, 

OpenStreetMap contributors and the GIS user community. 

 

2.4.2 Revisitation Analysis 

As mentioned above in ecology (Section 2.3.2), recursive movement can be observed in a variety of 

species (Berger-Tal and Bar-David, 2015). The purpose of revisitation analysis is to obtain infor-

mation on the return of an animal to specific areas throughout its lifetime (Berger-Tal and Bar-David, 

2015; Mcgrady et al., 2018). Revisitation takes place on different time scales such as daily, seasonal 

or annual, and across years depending on the species, as well as on different spatial scales (Berger-

Tal and Bar-David, 2015; Bracis, Bildstein and Mueller, 2018). Various methods are available to study 

revisitation patterns (Bracis, Bildstein and Mueller, 2018). Here, the focus lies on the revisitation 

approach proposed by Bracis, Bildstein and Mueller (2018), which is implemented in the ‘recurse’ 

package in the R environment. 

Bracis, Bildstein, and Mueller (2018) developed a method that focuses on point-based or visit-based 

analysis for temporal patterns of revisitation. The algorithm calculates revisits to specific locations 

in a movement trajectory or to arbitrary locations (Bracis, Bildstein and Mueller, 2018). By specifying 

locations, the analysis can be restricted to pre-identified sites (e.g., ground truth data). This makes 

the method applicable to conduct revisitation analysis to already identified locations that show cer-

tain ecological features. Moreover, the method can be used to quantitatively identify frequently used 
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sites along a movement trajectory or to investigate patterns of revisitation for single individuals and 

several individuals in order to uncover locations that are revisited across the population (Bracis, 

Bildstein and Mueller, 2018). 

The method calculates different revisitation measures using a circle with a user-defined radius that 

moves along the trajectory or user-specified locations (Figure 2.4). For each location, the number of 

segments of the trajectory passing through the circle is counted to assess the number of revisitations 

(Bracis, Bildstein and Mueller, 2018). Instead of choosing a radius around locations, it is also possible 

to calculate revisits to a polygon where the number of trajectory segments entering and exiting the 

polygon is counted to evaluate the number of revisits. Additional measures, such as time between 

visits, time spent at each visit and residence time, which is the sum of time spent during all visits, 

are automatically calculated. 

 

 
Figure 2.4. Graphical representation of revisitation calculations by the ‘recurse’ R package (Bracis, Bildstein and 

Mueller, 2018, p. 3). 

 

The revisitation calculations when using user-specified radii along the movement trajectory are vis-

ualised in Figure 2.4. (A) Three visits (V1, V2, V3) are counted to the specified circle. (B) For each visit 

entrance and exit times are calculated by linear interpolation between locations inside and outside 

the circle. With this information the time spent within the circle is determined. (C) For the revisits 

(V2, V3) the time since the last visit is calculated. (D) If trajectory segments only cross the circle (no 

observations inside) no visit is counted. Therefore, if data are not sampled finely enough, visits could 

remain undetected (Bracis, Bildstein and Mueller, 2018). 

The R package ‘recurse’ accepts data supplied as data frame or as ‘Move’ or ‘MoveStack’ objects. 

According to Bracis, Bildstein and Mueller (2018) irregular sampling or a few gaps in the data should 

not lead to problems but nevertheless regularly sampled data are favoured. To obtain more accurate 
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calculations of the number of revisits or the visit duration it is preferable to have more than one 

trajectory point inside the radius. Therefore, it is recommended that the radius is not considerably 

smaller than the step length. Furthermore, the radius size should be larger than GPS measurement 

errors. However, in this master’s thesis, the function calculating revisitations to a predefined poly-

gon is of key interest. 

2.4.3 Generalised Linear Mixed Model (GLMM) 

To make predictions about locations of anthropogenic feeding sites a suitable prediction model is 

required. In ecology, basic statistical methods assuming normally distributed data are often not ap-

propriate. Many applications in ecology deal with binary data (e.g., presence or absence of a species 

at a site or of a disease in an individual), proportions (e.g., infection rates) or counts (e.g., clutch sizes 

of storks) (Vicente et al., 2006; Bolker et al., 2009; Zuur et al., 2009). Ecological problems often contain 

grouped data (e.g., individuals, blocks in studies) and therefore hidden error structures. To account 

for that random effects are included in the model. Instead of trying to transform non-normal data to 

fit the use of classical statistical methods, Bolker et al. (2009) suggest the use of methods matching 

the non-normal and random effect characteristics of the data. A generalised linear mixed model 

(GLMM) offers this possibility. GLMMs are a combination of linear mixed models (LMM) and gen-

eralised linear models (GLM) which are both commonly used in ecology and evolution (Zuur et al., 

2009). Linear mixed models (LMM) are used to incorporate random effects into linear models, 

whereas generalised linear models (GLM) provide an approach for non-normal data by using link 

functions and distributions of the exponential family (e.g., normal, Poisson, binomial). But GLMs 

assume independent data, which does not always hold in ecological applications. Here, GLMMs 

which allow for the correlation between observations (e.g., temporal auto-correlation, a bird has 

several observations or polygons) or nested data structures, offer a solution (Zuur et al., 2009). 

Although GLMMs show new opportunities for analysis in ecology and evolution, they also present 

challenges. Bolker et al. (2009) reviewed 537 ecology and evolution papers using GLMM analyses 

and found that in 58% of the cases GLMMs were inappropriately used. Furthermore, Zuur et al. 

(2009) point out that GLMMs ‘are on the frontier of statistical research’ (Zuur et al., 2009, p. 323), 

suggesting that available information about GLMMs for ecologists is rare and somewhat technical. 

GLMMs consist of fixed-effect parameters (effects of covariates and interactions, e.g., revisits per 

polygon) and random-effect parameters (standard deviations of random effects, e.g., variation in 

revisits per polygon across individual birds). GLMM estimation fits these parameters by maximum 

likelihood (ML) which is computationally intensive. Therefore, in research approximations of the 

likelihood are used to estimate GLMM parameters (Bolker et al., 2009). Pseudo- and penalized quasi-

likelihood (PQL) is the most widely used approximation but is also considered the least accurate. 

When standard deviations of random effects are large, it is known to show biased parameter esti-

mates. Laplace approximation allows for more accurate approximations but is still not extremely 

computationally intensive (Bolker et al., 2009). The choice of an appropriate estimation technique 

depends on expectations regarding computation time, availability of software packages and on the 

complexity of the model at hand (Bolker et al., 2009). 
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According to Bolker et al. (2009) there are three different types of inference that can be performed 

after estimating parameter values with a GLMM: (1) hypothesis testing, (2) model comparison and 

(3) Bayesian approaches. In hypothesis testing test statistics (e.g., F statistics) are used to determine 

whether or not the null hypothesis can be rejected by comparing the distribution of estimates to the 

expected distribution under the null hypothesis. In model selection, the fit of a set of candidate mod-

els is compared. Either hypothesis tests or information theoretic approaches are used to establish a 

ranking of the models based on their expected predictive power. 

In this master’s thesis (2) model comparisons by information theoretic approaches will be described 

in detail. Information theoretic approaches provide a solution for the selection of a ‘best’ approxi-

mating model and a ranking from ‘best’ to ‘worst’ model for a set of predefined models based on 

the data. Since full reality cannot be captured in a model it is crucial to look for a model that approx-

imates the effects given by the empirical data (Burnham and Anderson, 2002). For this reason, 

Akaike (1973) developed a methodology for the selection of the ‘best’ or parsimonious model appli-

cable on the analysis of empirical data (Burnham and Anderson, 2002). He proposed the Akaike’s 

information criterion (AIC), which is based on the relationship between the Kullback-Leibler dis-

tance and Fisher’s maximised log-likelihood function (Burnham and Anderson, 2002). The Akaike’s 

information criterion expresses ‘an estimate of the expected, relative distance between the fitted 

model and the unknown true mechanism that actually generated the observed data’ (Burnham and 

Anderson, 2002, p. 61). The AIC can be mathematically expressed as (Zuur et al., 2009, p. 121): 

 

 𝐴𝐼𝐶 = −2 ×  𝐿(𝜃)  +  2 ×  𝑝 (2.2) 

 

In Equation (2.2) 𝐿 is the likelihood and 𝑝 the number of parameters in 𝜃. In other words, AIC is 

‘twice the difference between the value of the likelihood 𝐿 (measure of fit) and the number of pa-

rameters 𝑝 (penalty for model complexity) in 𝜃’ (Zuur et al., 2009, p. 121). In conclusion, the AIC 

contains a term for the measure of fitness of the model and the complexity of the model (Zuur et al., 

2009). For more technical and mathematical information, see Burnham and Anderson (2002) or 

Akaike (1973). In practical applications, the AIC is calculated for each candidate model and the 

model with the minimum AIC value is considered the ‘best’ fitted model. The differences Δ𝑖 in AIC 

values between the candidate models are of interest and not the absolute value which is influenced 

by sample size and constants (Burnham and Anderson, 2002). Therefore, the AIC cannot be used to 

compare models of different data sets. In some cases, no single best model can be established but 

rather a group of similarly appropriate models and another of inappropriate models. Thus, the AIC 

often leads to the identification of models with similar suitability (i.e. within 1 – 2 AIC units of the 

minimum AIC) and, conversely, ones with poor explanatory power for the data (Burnham and 

Anderson, 2002). Applying the model selection to a new data set likely changes the ranking of can-

didate models (Burnham and Anderson, 2002). However, Akaike’s Information Criterion is a re-

spected choice for model selection in linear modelling and in linear mixed modelling (Zuur et al., 

2009). 
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In linear mixed effects modelling, a good approach to establish candidate models is to use a top-

down strategy and then carry out model selection based on the AIC. The top-down strategy suggests 

starting with as many fixed effects (explanatory variables) as possible and their interactions included 

in the model. In a next step, the interaction with the highest, non-significant p-value can be omitted 

and the model is refitted. This step is repeated and finally, the AIC values of all candidate models 

are analysed (Zuur et al., 2009). 

2.4.4 Performance Measures and Classification 

In ecology, presence-absence models are often used to predict the presence or absence of species 

based on habitat information (Fielding and Bell, 1997). This master’s thesis deals with a model pre-

dicting presence-absence data and therefore, similar methods and performance measures are re-

garded suitable. To summarise the performance of a presence-absence model a 2 x 2 confusion ma-

trix, also known as an error matrix, can be created indicating instances correctly predicted or con-

fused by the classifier (Fielding and Bell, 1997; Tharwat, 2018). Table 2.1 shows an exemplary con-

fusion matrix with the four possible outcomes: true positives (TP), true negatives (TN), indicating 

correctly classified instances, and false negatives (FN) and false positives (FP), representing incor-

rectly classified instances. False positives (FP) or Type I errors arise if the instance is classified as 

positive when the actual class is negative. False negatives (FN) or Type II errors occur if the instance 

is classified as negative when the actual class is positive (Fielding and Bell, 1997; Powers, 2011; 

Tharwat, 2018). In the case of the presented research, the true positives (TP) are polygons with an 

anthropogenic feeding site within their extent that were correctly predicted by the model. True neg-

atives (TN) indicate polygons where no anthropogenic feeding site is reported, and the model pre-

dicted the absence of anthropogenic feeding. False positives (FP) stand for polygons where the pres-

ence of an anthropogenic feeding site was predicted but the ground truth information suggested the 

absence of anthropogenic feeding. False negatives (FN) are areas where the model predicted the 

absence of anthropogenic feeding while the ground truth stated the presence of anthropogenic feed-

ing. 

 

Table 2.1. Illustrative example of a confusion matrix from Powers (2011, p. 38); adapted by N. Heiniger. Colour 

indicates correct (green) and incorrect (red) counts. 

 Actual 

P
re

d
ic

te
d

  Positive (P) Negative (N) 

True (T) TP FP 

False (F) FN TN 

 

Imbalanced data sets introduce challenges when creating predictive models due to the underrepre-

sentation of the minority class. However, there are various strategies to deal with imbalanced data 

sets. The data distribution can be changed during pre-processing to obtain a more balanced distri-

bution, or the imbalance can be dealt with in the prediction post-processing (Branco, Torgo and 
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Ribeiro, 2016). An example for the latter case is to choose a pre-defined threshold to discriminate 

between classes in the classification process (Hernández-Orallo, Flach and Ferri, 2012). This is fre-

quently done to evaluate results of the logistic regression where a classification threshold must be 

defined in order to dichotomise the prediction values. Often a default threshold of 0.5 is used for the 

validation of model performance to map the continuous prediction values to a binary category. A 

value equal or greater than the threshold indicates one class (presence, positive event) and smaller 

values the other class (absence, negative event). The threshold 0.5 works properly for well-balanced 

data but is unsuitable if the data is skewed. Therefore, the threshold value should be assessed, espe-

cially in logistic regression where predictions are biased towards the larger class (Fielding and Bell, 

1997). When choosing a classification threshold there is a trade-off between the Type I (FP) and Type 

II (FN) errors. Therefore a threshold (cutoff) should be chosen based on context and costs associated 

(Fielding and Bell, 1997; Baldi et al., 2000). Questions could be whether tolerance is greater for false 

negatives or false positives. Is it more important to have few false negatives but it does not matter 

whether some false positives occur? One must assess what is most important for the analysis or 

which errors would lead to worse consequences (Fielding and Bell, 1997). 

A change in the classification threshold results in different values for the four fields of the confusion 

matrix and therefore most performance measures are threshold-dependent (Fielding and Bell, 1997; 

Powers, 2011; Tharwat, 2018). Some common measures derived from the confusion matrix 

(Table 2.1) are accuracy, recall (sensitivity), precision, F-measure, the Receiver Operating Character-

istic (ROC) curve and its Area Under Curve (AUC) (Maratea, Petrosino and Manzo, 2014). 

ACCURACY is often used to assess the probability of success but leads to misinterpretation of a 

model’s performance with highly imbalanced data. If a model misclassifies most incidents of the 

minority class, but can predict the majority class incidents well, the accuracy value could be very 

high (Maratea, Petrosino and Manzo, 2014). The accuracy is calculated as (Maratea, Petrosino and 

Manzo, 2014, p. 334): 

 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 +  𝑇𝑁

𝑇𝑃 +  𝐹𝑁 +  𝐹𝑃 +  𝐹𝑁
 (2.3) 

 

RECALL, also called sensitivity or true positive rate, is the proportion of correctly predicted real pos-

itives (Powers, 2011). Recall indicates which proportion of the actual positive cases a classifier can 

correctly identify (Powers, 2011). In the case of anthropogenic feeding sites, it would reflect the pro-

portion of correctly predicted feeding site polygons at the locations of actual anthropogenic feeding 

sites (ground truth). Recall is defined as (Powers, 2011, p. 38): 

 

 𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 +  𝐹𝑁
 (2.4) 
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PRECISION reflects the proportion of predicted positive cases that are actual positives. Precision is a 

common and popular measure as it delivers a simple and intuitive interpretation. A precision of 0.5 

translates to 50% correct predictions among all positive predictions (Saito and Rehmsmeier, 2015). 

In other words, 50% of the actual anthropogenic feeding sites are correctly predicted. Precision is 

defined as (Powers, 2011, p. 38): 

 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 +  𝐹𝑃
 (2.5) 

 

F-MEASURE is the harmonic mean of recall and precision and thus allows to integrate the two 

measures. It can be expressed by the general equation (Maratea, Petrosino and Manzo, 2014, p. 335): 

 

 𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =  (1 + 𝛽2)  ×  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑅𝑒𝑐𝑎𝑙𝑙 

(𝛽2  × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)   +  𝑅𝑒𝑐𝑎𝑙𝑙
  (2.6) 

 

𝛽 can be adjusted to give different weights to precision or recall. The higher 𝛽 the more weight is 

attributed to recall in comparison to precision (Maratea, Petrosino and Manzo, 2014). 

Recall, precision and F-measure emphasise the positive incidents, predictions and error rates, 

whereas no information is given on how well the model handles true negatives (Powers, 2011). Only 

three cells of the confusion matrix are used for these metrics (Maratea, Petrosino and Manzo, 2014). 

Like the accuracy, the F-measure is sensitive to data imbalance (Maratea, Petrosino and Manzo, 2014; 

Boughorbel, Jarray and El-Anbari, 2017). 

MATTHEWS CORRELATION COEFFICIENT (MCC) and AUC are more robust measures in case of data 

imbalance according to Boughorbel, Jarray and El-Anbari (2017). Furthermore, the MCC uses all 

four quantities of the confusion matrix and therefore provides a better summary of the performance 

than the F-measure (Saito and Rehmsmeier, 2015; Boughorbel, Jarray and El-Anbari, 2017). The MCC 

is calculated with the following equation based on the confusion matrix (Boughorbel, Jarray and El-

Anbari, 2017, p. 5): 

 

 𝑀𝐶𝐶 =   
𝑇𝑃 ×  𝑇𝑁 −  𝐹𝑃 ×  𝐹𝑁 

√(𝑇𝑃 + 𝐹𝑃)(𝐹𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁) 
 (2.7) 

 

The range of MCC is between −1 and +1. A value of +1 stands for complete agreement between 

prediction and observation, −1 for complete disagreement and 0 for random predictions (Baldi et 

al., 2000). 

All of the above-mentioned measures to evaluate a classifier’s performance are bound to a defined 

classification threshold (Saito and Rehmsmeier, 2015). 
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The ROC CURVE (Figure 2.5) illustrates a model’s performance over all thresholds instead of a single 

subjectively chosen one (Fielding and Bell, 1997; Lobo, Jiménez-Valverde and Real, 2008). The ROC 

curve delivers a good overview of the model’s performance by showing the trade-off between the 

true positive rate (proportion of actual positives correctly identified; ‘hit rate’) and the false positive 

rate (proportion of actual negatives wrongly classified as positives; ‘false alarm rate’) (Baldi et al., 

2000; Saito and Rehmsmeier, 2015). 

 

 
Figure 2.5. ROC curves show the performance of different classifiers at all classification thresholds (Branco, Torgo 

and Ribeiro, 2016, p. 12). The ideal prediction model would result in a point in the upper left corner, showing perfect 

classification. Models with curves above the diagonal line show better performance than random classifiers and 

those below show worse performance. 

 

AUC, the area under the curve of the receiver operating characteristic (ROC), is a threshold-inde-

pendent measure that is often used to assess the accuracy of probability prediction models (Lobo, 

Jiménez-Valverde and Real, 2008; Saito and Rehmsmeier, 2015). The AUC summarises the ROC 

curve into a single measure for the overall accuracy. Its values range from 0.5 – 1, where 0.5 means 

that the accuracy is no better than chance in case of balanced data (diagonal line in Figure 2.5). It can 

be used to quantify how accurately the model can discriminate between the positive and negative 

class (Fielding and Bell, 1997). For binary classification of imbalanced data, the AUC is often referred 

to as a valid performance measure (Zou et al., 2016). 
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The PRECISION-RECALL PLOT, however, is more informative in case of imbalanced data sets than the 

ROC plot according to Saito and Rehmsmeier (2015). They state that the precision-recall plot 

(Figure 2.6), should be used in addition to the ROC. Both are visual representations of the perfor-

mance of a model. For highly imbalanced data precision-recall plots are recommended as ROC 

would produce optimistic results about the classifier’s performance (Davis and Goadrich, 2006; 

Branco, Torgo and Ribeiro, 2016). 

 

 
Figure 2.6. Precision-Recall curve. 
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3 Study Area and Data 

3.1 Study Area 

The red kites project of the Swiss Ornithological Institute started in 2015 and is ongoing. The field 

work is focussed on a study area located in western Switzerland, more precisely in the Sense district 

of the canton of Fribourg and extending into the Schwarzenburgerland in the canton of Bern 

(Figure 3.1) with an area of 387.5 km2. Red kites are tagged with GPS transmitters, feeding supple-

mentation experiments take place and GPS movements are monitored to detect dead birds in time 

to retrieve carcasses and analyse the cause of death. During the breeding season, the work is focused 

on finding nests and monitor the breeding success of the red kites. 

In this master’s thesis, the spatial extent of the study area with a 5 km buffer is used as a basis for all 

analyses. 

 

 
Figure 3.1. Study area with anthropogenic feeding sites (Swiss Ornithological Institute) and its location within 

Switzerland. Base map: Esri, HERE, Garmin, OpenStreetMap contributors and the GIS user community.  
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3.2 Data 

3.2.1 Red Kite Trajectories 

All movement data were collected by the Swiss Ornithological Institute in Sempach in terms of the 

red kite project. The data were available in Movebank, the online database for animal tracking data 

(Wikelski, Davidson and Kays, 2020). The data set contains the trajectories of 420 red kites equipped 

with solar-powered GPS transmitters (Figure 3.2) from two different models: Ecotone (SKUA/CREX 

type) and Milsar (M9/S9 type). Ecotone Telemetry GPS loggers have been deployed since 2015 and 

Milsar Telemetry loggers since 2017. So far, more than 5 million GPS localisations have been ob-

tained during the project duration. The GPS transmitters provide hourly data, with some interrup-

tions due to the limited battery life. 

In this master’s thesis the season 2018/2019, spanning from 01.04.2018 to 31.03.2019, was used for 

analysis. 412 red kites recorded GPS locations during this time period with 233 birds having GPS 

localisation within the study area of interest. For the study area a total of 1,077,374 GPS data points 

were available with 227 birds having sufficient data points (> 5 relocations every month) to be used 

for the kernel density estimation. Additional information for the individual red kites such as age 

class, sex, or territorial use was provided by the Swiss Ornithological Institute in Sempach. 

 

 
Figure 3.2. Red kite in flight with a GPS transmitter attached on its back. Image credit: P. Scherler. 

 

The 227 individuals that were used for the KDE analysis, were categorised into three age classes 

based on their age, occupation of a territory or breeding attempts: fledgling (first year of life), non-

breeding birds, and breeding birds (Table 3.1). A rough division of the season into breeding 

(March – July) and non-breeding season (August – February) was performed and considered suffi-

cient for this analysis even though in ecology a more detailed classification exists (Section 2.1).  

https://www.movebank.org/cms/movebank-main
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Table 3.1. Age classes of red kites used for kernel density estimation. 

Age class Number of individuals 

Breeding bird  80 

Non-breeding bird 108 

Fledgling  39 

Total 227 

 

3.2.2 Land Cover Information 

VECTOR25 is the digital landscape model of Switzerland and is based on the national map 1:25’000 

(Bundesamt für Landestopografie swisstopo, 2007). The location error is between 3 and 8 metres. 

VECTOR25 was used for the land cover data on the primary land cover class ‘forest’, specifically the 

two subcategories ‘forest’ and ‘open forest’. 

For the information on the anthropogenic environment, represented by buildings, the swissTLM3D 

data set was obtained (Bundesamt für Landestopografie swisstopo, 2020b). Since no 3-D buildings 

were required for the analysis only the footprints of the buildings were used as a polygon layer. The 

geometric accuracy is 0.2 to 1.5 metres (Bundesamt für Landestopografie swisstopo, 2019). Further-

more, the swissTLM3D object classes tree and shrub rows were used in the evaluation to determine 

the association of prediction polygons with these land cover classes. 

SwissBOUNDARIES3D was applied to limit the spatial extent of the data used in the revisitation 

analysis. It contains administrative units and the borders of Switzerland and the Principality of 

Liechtenstein (Bundesamt für Landestopografie swisstopo, 2020a). 

3.2.3 Anthropogenic Feeding Sites 

Ground truth data for anthropogenic feeding sites in Switzerland were provided by the Swiss Orni-

thological Institute. The data set was mostly established by Cereghetti et al. (2019) in a public survey 

of a sample of randomly selected households within the study area and supplemented by reports 

directed to the Swiss Ornithological Institute. Relevant for this master’s thesis were 44 sites with 

active feeding practice in the season 2018/2019 and geographic coordinates available. Additional 

information about the frequency (e.g., daily, several times per week, weekly, 14 days, monthly, un-

known, rarely) and the approximate amount of food (e.g., 100g, 300g, 500g, 1000g, 1500g, 2000g, 

3000g, etc.) as well as the intentionality, the type of food (e.g., slaughter waste, meat, pet food, etc.) 

was available. Moreover, the Swiss Ornithological Institute provided a classification of the feeding 

sites in four classes: small, medium, large, unknown, based on a combination of the frequency and 

the amount of feeding. In addition, the data indicate whether a site carries out restricted feeding (i.e. 

only in winter, snow coverage) or all year round. Site characteristics (e.g., garden, meadow, farm) 

and the number of red kites observed at a particular site is recorded as is the time period during 

which the anthropogenic feeding has been taking place (e.g., 5 – 10 years, > 10 years, etc.). 
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4 Methodology 

The data cleaning, preparation, implementation, data analysis and evaluation were performed in 

the R language and environment (version 3.6.1; R Core Team, 2019) using the RStudio integrated 

development environment (IDE). The coordinates of all data sets were converted to the Swiss pro-

jected reference system (CH1903+/LV95). 

The data for the time period 01.04.2018 – 31.03.2019 were directly downloaded as a ‘MoveStack’ ob-

ject from www.movebank.org to the R environment. The data contained both live feed and manually 

uploaded data. For live feed data the timestamp indicates the minute when the position was taken, 

while the manually uploaded data have a timestamp with correct information about the second. For 

the detection of feeding sites, the second of recording a GPS localisation was considered irrelevant, 

so both data sets, live feed and manually uploaded data, were used for the analysis. The date and 

time columns of the data frame were transformed into a consistent format. The methodological 

workflow was developed as an individual-based approach due to a potential future application in 

areas with only a few tagged individuals. To obtain a first impression of the red kite trajectory data, 

some exploratory data analysis, including visualisations of exemplary trajectories, was conducted 

(Appendix A). A step-by-step flow chart with decision-making arguments of the complete method-

ology can be found in Appendix B. 

4.1 Pre-processing 

To achieve a clean and clearly arranged data set of the GPS points for the upcoming analyses only 

variables necessary for the task were retained and non-relevant ones discarded. Among the relevant 

variables were the local identifier, which identifies the individual red kite, the timestamp with date 

and time details, and coordinate information. 

To remove erroneous GPS locations, the data set was analysed for spatial and velocity outliers. Lo-

cations outside Europe were discarded because the habitat of red kites is mainly Europe and all birds 

used in this study were tagged in the study area in Switzerland. After excluding spatial outliers, 

velocity for the remaining points was calculated based on step length and time lag of consecutive 

positions. Records with velocity values higher than 33.3 m/s (= 120 km/h) and their subsequent rec-

ord were removed. Raptors rarely show higher velocities but might do so for short-term behaviour 

like hunting (Pennycuick, Åkesson and Hedenström, 2013; Vansteelant et al., 2015; Hart et al., 2018). 

Relevant for this thesis was the spatial extent of Switzerland for an accurate revisitation analysis and 

the study area for a detailed analysis of the identification of anthropogenic feeding sites. Therefore, 

the swissBoundaries3D vector data set with a 5 km buffer was used to filter the GPS data points for 

http://www.movebank.org/
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the revisitation analysis (Bundesamt für Landestopografie swisstopo, 2020a). For the data used in 

the kernel density estimation, only GPS points within the spatial extent of the study area and a 5 km 

buffer were retained to ensure the identifiability of an anthropogenic feeding site at the border or 

just outside the study area. 

To prepare the data optimally for the calculation of core areas by kernel density estimation and thus 

the task of identifying anthropogenic feeding sites, the number of GPS data points was further re-

duced. Based on ecological knowledge, GPS locations in forest areas were excluded. These locations 

mark resting places, nests or roosting sites, which are not relevant for this research focussing specif-

ically on anthropogenic feeding. A 20 m buffer around forest areas was applied to take GPS errors 

into account and because the law on forests and natural hazards of the canton of Fribourg states that 

the construction of non-forest related structures at a distance of less than 20 metres from the edge of 

the forest are prohibited (Der Grosse Rat des Kantons Freiburg, 2019). As anthropogenic feeding is 

expected to take place in connection with human-made constructions such as houses this buffer 

seemed reasonable. 

By calculating the daily period of daylight for each GPS location all points of darkness where ex-

cluded. GPS locations recorded between dawn and dusk were retained since red kites are diurnal 

birds and anthropogenic feeding is expected to take place during daytime due to human involve-

ment (Aebischer, 2009; Yoda et al., 2012). For the kernel density estimation more than 5 relocations 

per individual and month were needed, therefore this was another factor to be included. 

4.2 Kernel Density Estimation 

4.2.1 Generating Core Area Polygons 

Through kernel density estimation the main areas of activity of red kites can be identified. In a first 

step kernel density estimation (KDE) was implemented to detect potential candidate regions for an-

thropogenic feeding sites. The polygons were then attributed with additional information from the 

revisitation analysis. The ‘adehabitatHR’ package in R was used to estimate the utilisation distribu-

tion in an individual-based approach (Calenge, 2019). KDEs for individual red kites for monthly 

snippets over the study period from 01.04.2018 to 31.03.2019 were calculated to obtain an individual-

based KDE result. The monthly period seemed reasonable since the most impactful and therefore 

interesting anthropogenic feeding sites are those with a temporally high feeding frequency (i.e. 

daily, several times a week, weekly). 

Most kernel functions deliver similar results, hence the frequently used bivariate normal kernel 

function was applied (Silverman, 1998; Downs, 2010; Fleming et al., 2015). According to the literature 

the 50% home range area is commonly seen to represent the core area of activity indicating areas 

with a 50% probability of use (Harris et al., 2012; Hötker, Krone and Nehls, 2017). This parametrisa-

tion was chosen under the assumption that anthropogenic feeding sites hold an important role in a 

red kite’s use of geographic space and therefore should be located within their core areas of use. 
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Different parametrisations for the bandwidth ℎ were tested on a random sample data set of 21 indi-

viduals and then applied to the full data set of 227 birds. Calenge (2019) stated that the reference 

bandwidth is often too large if an animal uses multiple activity centres and results in an over-

smoothed probability surface, which was shown by the high values delivered by href (Table 4.1). 

Hence, the reference bandwidth was not suitable to capture events of small spatial extent, such as 

the anthropogenic feeding sites. Therefore, the LSCV method which computes the bandwidth ℎ by 

a Least Square Cross Validation, was tested (Calenge, 2019). The calculated bandwidths were con-

siderably lower compared to the href bandwidths but still large for the task (Table 4.1). 

Therefore, a subjective, iterative visual choice of the bandwidth was considered (Silverman, 1998). 

Successive tests with bandwidths varying between 10 and 100 were conducted (Appendix C). Core 

area polygons resulting from bandwidth ℎ = 10 were too small to include the known anthropogenic 

feeding sites in their extent, which is a sign of under-smoothing. Bandwidth ℎ = 100 over-smoothed 

the result as it was too big for the spatial scale of anthropogenic feeding. However, the bandwidths 

ℎ = 30 and ℎ = 50 showed similarly suitable results. Considering the spatial scale of anthropogenic 

feeding (e.g., single backyard) and the distribution of GPS localisations of different individuals the 

bandwidth ℎ = 50 was chosen (Table 4.1). Two underlying grid sizes were tested: 30m x 30m and 

60m x 60m. The influence of the grid parameter was negligible, but the 60m x 60m grid was selected 

for a better future application on larger areas, where computational effort is more demanding. 

 

Table 4.1. Parametrisation of bandwidth ℎ with reference bandwidth (href), LSCV and subjective choice method. 

 Reference bandwidth LSCV Subjective choice 

Bandwidth h 185 – 2500 9 – 199* 50 

* The algorithm did not converge. 

 

The KDE polygons represent the 50% home range area for each individual per month over the sea-

son 2018/2019 (Figure 4.1). 

 

 
Figure 4.1. Exemplary 50% monthly home range polygons (core areas) of red kite ID013; evaluated parameters: 

h = 50, grid = 60 x 60m.  
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4.2.2 Anthropogenic Environment 

As anthropogenic feeding is linked to human activity and human-made structures, the land cover 

information about settlement areas was included in the analysis using the swissTLM3D data 

(Bundesamt für Landestopografie swisstopo, 2020b). The known anthropogenic feeding sites in the 

study area show location characteristics such as garden, orchard, meadow, compost, farm, house 

with garden, and are therefore closely associated with buildings. To include the aspect of inhabited 

buildings and exclude very small, potentially uninhabited buildings, a limit of 65 m2 for the building 

floor area was set. This corresponds to the minimum design of a detached single-family house 

(Röthlisberger, 2019). Only 50% home range polygons that are in close proximity to such human 

activity, represented by the building layer, should be considered for further analysis of the identifi-

cation of anthropogenic feeding sites. To find the best suitable buffer to include or exclude core area 

polygons different buffer sizes (25 m, 50 m, 75 m, 100 m) around buildings were analysed. 

4.2.3 Ground Truth Information 

The known anthropogenic feeding sites were classified into three groups: small or medium (called 

small), large, and unknown, subsequently referred to as the size of a feeding site, based on a combi-

nation of the frequency and the amount of feeding. All following analyses were based on this clas-

sification rather than only on the frequency of food provision suggested in RQ A.1. 

To test the suitability of the kernel density estimation subsequently applied to detect anthropogenic 

feeding sites, it had to be determined whether a reported active anthropogenic feeding sites had 

been potentially visited by one of the red kites in the sample. 44 active anthropogenic feeding sites 

were reported for the season 2018/2019 in the study area (Section 3.2.3). However, active anthropo-

genic feeding sites without visits of an individual from the sample are impossible to detect with a 

method based on GPS tracking data and therefore would bias the evaluation process. Consequently, 

anthropogenic feeding sites were classified as ‘potentially visited’ if there was at least one at least 

one by at least GPS localisation of the pre-processed data set within a 50 m buffer around the site. 

The remaining core area polygons were attributed with information about their connection to an-

thropogenic feeding. As the approach is individual-based, it had to be ensured that the GPS points 

which identify a feeding site as potentially visited and the 50% home range polygon belong to the 

same individual. Hence, a polygon was classified as ‘feeding site’ if the polygon and the GPS data 

point recording a visit to the feeding site belonged to the same individual. For example, if only red 

kite no. 001 potentially visited anthropogenic feeding site no. 1, the 50% home range polygon of red 

kite no. 001 was considered a ‘feeding site’ if the GPS point close to the site belonged to red kite 

no. 001. 

4.2.4 Overlaps of KDE Polygons 

Furthermore, it was tested whether intersection areas of a red kite’s polygons over various months 

provides a possibility to reduce the number of polygons that do not detect an anthropogenic feeding 

site (false positives) but a natural feeding ground such as a field close to a building or tree rows 



Chapter 4 | Methodology  32 

 

 

Department of Geography, University of Zurich 

where red kites rest. For this reason, overlaps of the core areas of use for several months per indi-

vidual red kite were calculated. However, this approach later proved to be unsuccessful and was 

therefore no longer pursued (Section 5.3). 

4.3 Revisitation Analysis 

The revisitation analysis was conducted to introduce additional information to the core area poly-

gons. It was expected to allow for a differentiation between core area polygons correctly identifying 

anthropogenic feeding sites (true positives) and those with false indications (false positives). 

For the revisitation analysis data of 224 individuals with suitable data available for the revisitation 

calculation were utilised. The R package ‘recurse’ from Bracis, Bildstein and Mueller (2018) was ap-

plied to calculate the revisitation metrics for the GPS trajectory data. The package has a built-in 

function for the calculation of revisits to a polygon (e.g., a protected area) (Bracis, 2018). Bracis (2018) 

states that polygons should have a convex shape to receive accurate results. For this reason, the 

above calculated 50% home range polygons representing core areas of use were transformed into 

convex polygons. The convex candidate polygons were used as areas of interest to calculate the re-

visitation measures. Since the function ‘getRecursionsInPolygon’ was developed for the application 

to a single polygon rather than multiple polygons it had to be modified to make it applicable for 

multiple polygons and multiple individuals.  

The calculations were performed in an individual-based approach. For every polygon (representing 

a period of one month) of a specific individual, its recursion information was calculated for this 

particular month. As an example: Red kite no. 001 has one polygon for the month of January 2019. 

So, based on all the GPS points from January 2019 it was calculated how many times the trajectory 

passes through this polygon. The algorithm automatically calculates revisits by counting the number 

of segments of a trajectory that cross the polygon. In addition, residence time or time since last visit 

is calculated assuming a linear movement between points inside and outside the polygon. If the 

value for revisits is 1, there were no revisits to the polygon, except the one initial visit (Bracis, 2018). 

The focus here lay on the two measures revisits to a polygon and residence time for each polygon. 

Since the polygons stand for the core areas used within one month, the revisits state the number of 

revisitations to this core area over the period of one month and the residence time indicates the total 

time spent within the core area over this time period. 

The revisitation analysis was used as an intermediate step towards more information about the core 

area polygons to subsequently conduct predictions by the generalised linear mixed model rather 

than as a separate method. 

4.4 Generalised Linear Mixed Model 

To improve the detection of anthropogenic feeding sites and allow for the application to other re-

gions the high number of core area polygons indicating anthropogenic feeding sites at locations 

where the ground truth indicates none (i.e. false positives) had to be reduced. The results of a GLMM 

informed by revisitation parameters were used for the prediction. The prediction values state the 
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probability of a polygon to be an anthropogenic feeding site (e.g., 0.2) and were later converted to a 

binary value of presence or absence (e.g., a polygon is an anthropogenic feeding site or not) by a 

classification threshold. 

Every core area polygon contained information on the individual, the number of revisits, residence 

time, area of the polygon, age class, season, month and the average number of recorded GPS points 

the specific red kite showed in a month. Data of 224 birds were used for the predictive model  

(Table 4.2). 

 

Table 4.2. Data used for the generalised linear mixed model grouped by age class. 

Age class Number of individuals Number of polygons 

Breeding bird  80  2,348 

Non-breeding bird  108  11,634 

Fledgling  36  718 

Total  224  14,700 

 

In a first, step numeric variables were scaled to make model convergence more likely. An a priori 

selection of feasible variables and interactions for the model was made based on ecological assump-

tions and knowledge (Dormann et al., 2013). The number of revisits and residence time within a core 

area polygon were expected to differ between those associated with anthropogenic feeding activity 

and natural sites. During the previous steps of analysis differences between age classes could be 

observed; therefore, the inclusion into the model seemed reasonable. The following six fixed effects 

were included in the model: number of revisits, residence time, age class in 2018, season (breeding 

time, non-breeding time), the area of the polygon in hectares and GPS points per month  

(Appendix D, Table D.1). 

Collinearity between the numerical fixed effects was tested by calculating a pairwise Pearson’s cor-

relation coefficient  (𝑟). Collinearity indicates that explanatory variables are linearly related, thus are 

not independent (Dormann et al., 2013). When collinearity occurs the individual effect of the varia-

bles on the results cannot be separated and therefore the interpretation of the model is difficult 

(Dormann et al., 2013). In pairwise correlation, the coefficient should not exceed a threshold of 

0.5 – 0.7, values above that indicate high collinearity (Dormann et al., 2013). The highest correlation 

coefficient occurred between the number of revisits and residence time (r = 0.68), hence all explana-

tory variables remained in the model. 

Instead of resampling the GPS data to make sure all individuals have the same number of recorded 

points within a month, a control variable stating the number of points for a month was integrated 

into the model. The six fixed effects and all two-way interactions were included. In GLMMs, in ad-

dition to the fixed effect structure, an optimal structure for the random effects has to be found (Zuur 

et al., 2009). The random effects were selected based on the data structure and study design. Random 

effects allow the modelling of differences between the individual red kites as well as the different 

months represented by the candidate polygons (Zuur et al., 2009). Hence, two independent random 
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effects were integrated, one associated with each individual (BirdID) and another for each month, 

representing the repeated measures (Appendix D, Table D.2). The addition of a random term to the 

intercept resulted in a random intercept mixed effects model (Zuur et al., 2009). 

The choice of the error distribution for a GLMM depends on the response variable (Bolker et al., 

2009). Since the response variable ‘feeding site’ has either value 0 (polygon is not associated with an 

anthropogenic feeding) or 1 (polygon is a feeding site), a binomial GLMM is suitable (Zuur et al., 

2009). The link function defines the relationship between the expected value of the response variable 

and the predictor function. The logit link is the most common link function for binomially distrib-

uted data, and it achieves the goal of limiting the fitted values between 0 and 1 (Zuur et al., 2009). 

The above-mentioned steps resulted in a first model equation (4.1):  

 

 

   𝑔𝑙𝑚𝑒𝑟(𝑓𝑒𝑒𝑑𝑖𝑛𝑔𝑠𝑖𝑡𝑒 ~ 𝑟𝑒𝑣𝑖𝑠𝑖𝑡𝑠 ∗  𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒 𝑡𝑖𝑚𝑒 +  𝑟𝑒𝑣𝑖𝑠𝑖𝑡𝑠 ∗  𝑠𝑒𝑎𝑠𝑜𝑛 
+  𝑟𝑒𝑣𝑖𝑠𝑖𝑡𝑠 ∗  𝑎𝑔𝑒 𝑐𝑙𝑎𝑠𝑠 +  𝑟𝑒𝑣𝑖𝑠𝑖𝑡𝑠 ∗  𝑎𝑟𝑒𝑎 +  𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒 𝑡𝑖𝑚𝑒 
∗  𝑠𝑒𝑎𝑠𝑜𝑛 +  𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒 𝑡𝑖𝑚𝑒 ∗  𝑎𝑔𝑒 𝑐𝑙𝑎𝑠𝑠 +  𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒 𝑡𝑖𝑚𝑒 
∗   𝑎𝑟𝑒𝑎 +  𝑝𝑜𝑖𝑛𝑡𝑠 𝑝𝑒𝑟 𝑚𝑜𝑛𝑡ℎ + (1 |𝐵𝑖𝑟𝑑𝐼𝐷)  + (1 | 𝑚𝑜𝑛𝑡ℎ),
𝑑𝑎𝑡𝑎 =  𝑑𝑎𝑡𝑎, 𝑓𝑎𝑚𝑖𝑙𝑦 =  𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑙𝑖𝑛𝑘 =  𝑙𝑜𝑔𝑖𝑡),
𝑛𝐴𝐺𝑄 =  1)  

(4.1) 

 

The expression (1 |𝐵𝑖𝑟𝑑𝐼𝐷)  stands for the random effect where an intercept is calculated for each 

individual red kite. The operator ‘*’ represents interaction terms (Zuur et al., 2009). 

The generalised linear mixed models were fitted by the glmer() function from the ‘lme4’ package in 

R (Bates et al., 2015). As recommended by Zuur et al. (2009) a top-down strategy was used to create 

candidate models, starting with Equation (4.1), containing as many explanatory variables in the fixed 

component as possible, also known as ‘beyond optimal model’ (Zuur et al., 2009, p. 121). Non-sig-

nificant interactions were dropped one by one starting with the highest p-value, followed by drop-

ping non-significant fixed terms. 13 candidate models were obtained (Appendix D, Table D.3). The 

‘best’ of 13 models was chosen based on the information theoretic approach of the AIC. 

The equation for the ‘best’ model is stated below (4.2): 

 

 

𝑔𝑙𝑚𝑒𝑟(𝑓𝑒𝑒𝑑𝑖𝑛𝑔𝑠𝑖𝑡𝑒 ~ 𝑟𝑒𝑣𝑖𝑠𝑖𝑡𝑠 ∗  𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒 𝑡𝑖𝑚𝑒 +  𝑟𝑒𝑣𝑖𝑠𝑖𝑡𝑠 ∗  𝑎𝑟𝑒𝑎 
+   𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒 𝑡𝑖𝑚𝑒 ∗  𝑠𝑒𝑎𝑠𝑜𝑛 +  𝑎𝑔𝑒 𝑐𝑙𝑎𝑠𝑠 +  𝑝𝑜𝑖𝑛𝑡𝑠 𝑝𝑒𝑟 𝑚𝑜𝑛𝑡ℎ 
+  (1 | 𝐵𝑖𝑟𝑑𝐼𝐷)  + (1 | 𝑚𝑜𝑛𝑡ℎ), 𝑑𝑎𝑡𝑎 =  𝑑𝑎𝑡𝑎,
𝑓𝑎𝑚𝑖𝑙𝑦 =  𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑙𝑖𝑛𝑘 =  𝑙𝑜𝑔𝑖𝑡), 𝑛𝐴𝐺𝑄 =  1) 

(4.2) 

 

The evaluation of the GLMM was conducted with the performance measures described in Sec-

tion 2.4.4. The optimal classification threshold was based on the highest F-measure, giving precision 

and recall equal weight. Further information about land cover was integrated to analyse the origin 

of false positive results. 
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The prior classification of a polygon as an anthropogenic feeding site or not (class 1/0) is based on 

the location of a ground truth data point within the core area polygon’s extent (Section 4.2.3). To 

study the influence of this classification on the best model chosen, the attribution of a polygon to an 

anthropogenic feeding site was repeated based on the condition that it must be located within 50 m 

from a ground truth data point. This approach offers a possibility to account for spatial uncertainty 

of ground truth data. The model selection process was rerun with the adapted classification and a 

model with the same fixed effects and interaction terms was found to be the optimal model based 

on its AIC. This is an indication that the model is robust. 

The original data set shows great imbalance between the positive (1, anthropogenic feeding site) and 

the negative (0, no anthropogenic feeding site) events. Therefore, a test with balanced data was con-

ducted. The balanced data set included all positive events (i.e. polygons associated with anthropo-

genic feeding) and an equal number of negative events (i.e. polygons not associated with anthropo-

genic feeding) generated by a random selection from all negative events. The model selection pro-

cess was repeated for the balanced data set. The resulting ‘best’ model was similar to Equation (4.2), 

with the difference that neither an interaction term of revisits and residence time nor of revisits and 

area was included. However, all fixed terms remained in the equation. The imbalance in the data 

only slightly affected the model selection process and therefore the influence on the resulting pre-

diction is not expected to be substantial. Based on those assessments the model of Equation (4.2) was 

used for all subsequent analyses and evaluations. 
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Chapter 5  

5 Results 

5.1 Pre-processing 

During the pre-processing of the data, the amount of GPS data points was reduced based on context 

variables (Section 4.1). The main reduction occurred when GPS points within forest areas were ex-

cluded (Table 5.1). The pre-processing also resulted in a decrease of individuals suitable for the KDE 

analysis. 227 of 233 individuals still had sufficient data points (> 5 relocations per month) to be used. 

 

Table 5.1. Pre-processing of GPS data points with the number of GPS points remaining after the exclusion of points 

based on context variables forest and daytime. 

Total Excl. forest areas Excl. nighttime Used 

1,077,374 570,456 504,444 504,309 

 

5.2 Use of Anthropogenic Feeding Sites 

37 of 44 (84%) active anthropogenic feeding sites were potentially visited by tagged individuals (Ta-

ble 5.2). 81% of small or medium sites, 100% of large sites and 83% of unknown-sized feeding sites 

were visited. Visits were indicated by the presence of at least one GPS localisation within a 50 m 

buffer around the site. Breeding birds and non-breeding birds made use of approximately the same 

number of different anthropogenic feeding sites, fledglings, however, show visits to a smaller num-

ber of sites. 

 

Table 5.2. Potentially visited anthropogenic feeding sites by size and age class of red kite. (potentially visited 

feeding sites / active feeding sites). 

Age class Total Small or medium Large unknown 

Breeding bird 24 / 44   16 / 32 5 / 6 3 / 6 

Non-breeding bird 28 / 44  20 / 32 5 / 6 3 / 6 

Fledgling 13 / 44  8 / 32 2 / 6 3 / 6 

All birds 37 / 44  26 / 32 6 / 6 5 / 6 

 

105 red kites had GPS localisations in close range to known anthropogenic feeding sites, which in-

dicates that 46% of the sample potentially used anthropogenic feeding sites. While only 26% of fledg-

lings potentially visited a feeding site, 45% of breeding birds and 56% of non-breeding birds did so 

(Table 5.3).  
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Table 5.3. Number of individuals with GPS points in a 50 m buffer around anthropogenic feeding sites and the 

number of red kites used for KDE analysis grouped by age classes. 

Age class In 50 m buffer of feeding site Used for KDE 

Breeding bird  36  80 

Non-breeding bird  59  108 

Fledgling  10  39 

Total  105  227 

 

Out of the red kites which potentially used anthropogenic feeding sites, most (90 of 105, i.e. 86%) 

potentially visited one or two sites, with only a few birds benefiting from more sites (Table 5.4). 

 

Table 5.4. Number of potentially visited anthropogenic feeding sites by age classes. 

No. of visited sites All birds Breeding bird Non-breeding bird Fledgling 

0 122 44  49  29 

1  51 22  23  6 

2  39 13  23  3 

3  10  1  8  1 

4  4  -  4  - 

5  1  -  1  - 

 

51 red kites potentially visited one site from April 2018 to March 2019, thereof 22 were breeding 

birds, 23 non-breeding birds, and 6 fledglings (Table 5.4). Breeding individuals showed potential 

visits to a maximum of three sites, with most of the birds visiting one. Non-breeding birds showed 

a maximum of five visited sites, with the majority concentrated around one and two sites. 87% of 

the individuals visiting more than two feeding sites are non-breeding birds. 

5.3 Kernel Density Estimation 

The kernel density estimation resulted in 39,517 polygons representing monthly core areas of use of 

the individuals. By including the information about a connection to human-made structures with 

different buffer sizes around buildings, the number of polygons was reduced to 16,936 (- 57%) for 

the 227 red kites in the study area (Table 5.5). 

 

Table 5.5. Number of KDE core area polygons intersecting with different buffer sizes around buildings. 

Total 25 m 50 m 75 m 100 m 

39,517 12,269 16,936 21,521 25,719 

 

Depending on a red kite’s movement the core areas resulted in distinct numbers of polygons per 

month with different sizes. The number of core area polygons per month for non-breeding bird 

showed generally higher values than for breeding bird data (Figure 5.1). On average non-breeding 
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birds had 18 polygons categorised as core areas per month, while breeding birds had 3. Non-breed-

ing bird data showed a larger within-group variability for the number of polygons per month than 

breeding bird or fledgling data. Furthermore, there was a large variation in size of the core area 

polygons as they reached areas of up to 60 ha (0.6 km2), with the majority being below 20 ha 

(0.2 km2). 

 

Figure 5.1. Number of polygons per month by individual, grouped by age class. The box plots show median (bold 

line), interquartile range (box), minimum and maximum value, and outliers (dots). 

 

The detection success of KDE core areas was evaluated using the potentially visited anthropogenic 

feeding sites as ground truth. A group of 35 red kites benefiting from anthropogenic feeding poten-

tially visited one site without detecting it (Figure 5.2). 17 red kites that potentially visited two feeding 

sites and detected one, resulting in a detection rate of 50%. With the KDE-based method one red kite 

has identified a maximum of four feeding sites, while potentially visiting five. Overall, 51 of 105 

individuals (49%) successfully detected at least one feeding site that they potentially visited. 

 

 
Figure 5.2. Number of potentially visited anthropogenic feeding sites in relation to the number of detected feeding 

sites. Reading example: 35 individuals potentially visited 1 site, detecting 0 sites.  
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When looking at the detection of individual feeding sites results showed that 26 out of 37 potentially 

visited feeding sites (70%) were positively identified by the KDE method (Table 5.6). Importantly, 

all six large anthropogenic feeding sites were located within the KDE 50% home range polygons. 17 

of 26 (70%) small- and medium-sized as well as 3 of 5 (60%) sites of unknown size were successfully 

identified. Of the total 26 sites located within the core area polygons, six sites were used by both 

breeding and non-breeding individuals. Half of the large feeding sites were visited and detected by 

individuals from both age-classes, while small feeding sites were only detected by either a breeding 

or a non-breeding individual. 

16,936 core area polygons were identified, but only 144 (0.85%) contained a known feeding site. The 

remaining 16,792 (99.15%) were not connected to a reported site. To reduce the number of polygons 

not connected to a known site, overlaps of the monthly core areas per individual bird were analysed. 

The assumption was that a red kite revisits the same anthropogenic feeding site in several months 

over the course of a season. The number of polygons incorrectly indicating an anthropogenic feeding 

site was reduced by 90.9% in this step. However, the condition of two monthly 50% home range 

polygons overlapping in season 2018/2019 reduced the number of detectable anthropogenic feeding 

sites by more than half (Table 5.6) and was therefore not pursued further. 

 

Table 5.6. Number of detected anthropogenic feeding sites grouped by size located within KDE core areas and 

their intersection areas. 

 Total Small or medium Large Unknown 

1-month core areas  26  17 6 3 

2-months intersection  12  6 4 2 

3-months intersection  9  5 2 2 

 

5.4 Revisitation Analysis 

The revisitation analysis was used as a step towards more information about the core area polygons 

to subsequently conduct predictions by the generalised linear mixed model rather than as a separate 

method. 

Revisitation measures were calculated for the convex polygons of the original KDE core areas. There 

was a concern that the polygons would vastly increase in area and therefore change the outcome of 

the revisitation analysis by incorporating more data points. However, 78% of the polygons showed 

an area change smaller or equal to 10% and only 0.8% demonstrated an area change greater than 

50% (Figure 5.3). The result is not surprising, as core area polygons derived from a smooth KDE 

surface inherently tend to be convex. 
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Figure 5.3. Area change [%] from original polygon created by 50% home range calculation to convex polygons used 

for revisitation analysis. 

 

Revisitation rates were calculated for 143 polygons (out of 144, 99.3%) linked to feeding sites and 

14,557 polygons (out of 16,792, 86.7%) not linked to anthropogenic feeding. Calculation for omitted 

polygons resulted in erroneous results. Most of the erroneous polygons showed very small areas 

resulting from the subjective parametrisation of the kernel density estimation. Since most of the error 

polygons were not associated with anthropogenic feeding, the revisitation calculation was contin-

ued with the 14,700 polygons where revisitation measures were successfully computed. 

Table 5.7 shows a summary of the calculated revisitation measures. Generally, the mean number of 

revisitations to a core area was larger for polygons linked to anthropogenic feeding sites than those 

without connection to anthropogenic feeding across all age classes. The same was true for the aver-

age residence time within a polygon’s boundary. Considering the average time per visit, the poly-

gons associated with anthropogenic feeding sites showed higher values than such without connec-

tion to feeding activity. 

 

Table 5.7. Average of revisitation measures with classification of polygons based on ground truth information 

about feeding sites grouped by age class. 

Feeding site Age class Revisits 

mean SD 

Residence time [h] 

mean SD 

Time per visit [h] 

mean 

No 

Breeding bird  33.3 48.9  87.2 144.6 2.6 

Non-breeding bird  3.3 5.3  6.5 20.7 1.9 

Fledgling  15.7 38.9  35.6 106.4 2.3 

All birds  8.6 24.3  20.5 70.9 2.3 

Yes 

Breeding bird  48.1 41.4  165.0 188.5 3.4 

Non-breeding bird  9.4 11  25 48.3 2.7 

Fledgling  24.0 -  77.9 - 3.2 

All birds  30.1 36.5  99.8 157.2 3.3 
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At locations with and without feeding activity breeding bird data on average showed higher values 

for numbers of revisits, residence time and time spent per visit, than non-breeding bird data. How-

ever, the data has large standard deviations values and therefore a large amount of variation within 

the groups. 

5.5 Generalised Linear Mixed Model 

The data used for the prediction model were highly imbalanced, with 143 positive cases (actual an-

thropogenic feeding site polygons) and 14,557 negative cases (polygons without association to feed-

ing). Based on the ‘best’ model described in Equation (4.2), probability predictions for each polygon 

for being linked to anthropogenic feeding or not were made. 

The explanatory variables area of the polygon, number of revisits and residence time had a positive 

effect on the probability of a polygon being associated with anthropogenic feeding (Table 5.8). The 

area represented the strongest effect on the model. Of the interaction terms, interactions between 

revisits and residence time as well as revisits and area showed negative effects. For the random 

effects bird-to-bird variability made the greatest contribution, with a variance for the random inter-

cept of 6.44, followed by the month-to-month variability, with a variance for the random intercept 

of 0.17 (Appendix D, Table D.4). 

 

Table 5.8. Summary of the generalised linear mixed model. 

Explanatory variable Estimate Std. Error Z-value 

Intercept  -6.88785 0.73041  -9.430*** 

Number of revisits  0.48391 0.16136  2.999** 

Residence time  0.23391 0.11160  2.096* 

Area [ha]  0.52588 0.07827  6.719*** 

Season: breeding time  0.52515 0.34080  1.541 

Age class: fledgling  -2.02570 1.39290  -1.454 

Age class: non-breeding bird  -0.38538 0.58339  -0.661 

GPS points per month  -0.25130 0.21408  -1.174 

Revisits*Residence time  -0.07640 0.03783  -2.020* 

Revisits*Area [ha]  -0.08643 0.04301  -2.010* 

Residence time*Season: breeding time  -0.25376 0.12965 -1.957 

* p < 0.05, ** p < 0.01, *** p < 0.001  
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The performance measures addressed in Section 2.4.4 were applied to evaluate the results of the 

generalised linear mixed model. The predictive model shows a high AUC of 0.952 close to the max-

imum value of 1, suggesting a good classification performance of the model (Figure 5.4). 

 

 
Figure 5.4. ROC curve colourised according to threshold, ROC AUC: 0.952. 

 

However, the precision-recall curve recommended by Saito and Rehmsmeier (2015) for unbalanced 

data shows a less optimistic view of the model’s classification performance (Figure 5.5). The curve 

shows a rapid decrease and an AUC of the precision-recall curve of 0.374. High values of recall were 

only achieved at low values of precision. 

 

 
Figure 5.5. Precision-recall curve colourised according to threshold, PRC AUC: 0.374. 
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In Table 5.9 the confusion matrix and the related performance measures are illustrated for the default 

threshold of 0.5. However, as mentioned in Section 2.4.4 a threshold of 0.5 works well for balanced 

data sets but is unsuitable for imbalanced data such as the one at hand, which is indicated by the 

low values for the F-measure and MCC. 

 

Table 5.9. Confusion matrix with classification threshold 0.5. Values indicate polygon counts and percentages. 

 Actual 

P
re

d
ic

te
d

  Feeding site Non-feeding site 

Feeding site TP 22 (0.15%) FP 10 (0.07%) 

Non-feeding site FN 121 (0.82%) TN 14,547 (98.96%) 

 Precision 0.15 

Recall 0.68 

F-measure 0.25 

MCC 0.34 

 

The F-measure and MCC curves show similar courses, both displaying a maximum value of 0.45 at 

cutoffs of 0.188 and 0.266, respectively (Figure 5.6). Due to the simple calculation and easy under-

standing of the F-measure and the similar results of the F-measure and MCC, the threshold of 0.188 

was chosen to accomplish a maximum value for the balanced F-measure, giving precision and recall 

equal weight. 

 

 
Figure 5.6. Precision, recall, F-measure and MCC curves for the overall GLMM. 
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Table 5.10 shows the confusion matrix and the performance measures for the optimal threshold 0.188 

when evaluating the model’s prediction among all birds in the sample. 

 

Table 5.10. Confusion matrix with classification threshold 0.188. Values indicate polygon counts and percentages. 

 Actual 

P
re

d
ic

te
d

  Feeding site Non-feeding site 

Feeding site TP 63 (0.43%) FP 71 (0.48%) 

Non-feeding site FN 80 (0.54%) TN 14,486 (98.54%) 

 Precision 0.47 

Recall 0.44 

F-measure 0.45 

MCC 0.45 (threshold: 0.266) 

 

There is a probability of 47% that a predicted anthropogenic feeding site polygon indicates the loca-

tion of an actual feeding site. The probability of the model to successfully recognize an anthropo-

genic feeding site polygon is 44%. 

In more detail, the results show that data of only 15 out of 224 birds contributed to the true positive 

polygons. Furthermore, 13 of these are breeding birds and 2 non-breeding birds. 97% of the true 

positive polygons belong to breeding birds whereas 81% of the false negative polygons belong to 

non-breeding birds. However, also 86% of false positives belong to breeding birds. The contribution 

of fledglings to the identification of anthropogenic feeding sites was negligible as there was only one 

polygon attributed to a fledgling, which appears as a true positive at the chosen threshold. 

Based on these first results and on ecological background knowledge that the age classes might show 

different behaviour the threshold choice and further evaluation was conducted separately for breed-

ing birds and non-breeding birds. 

Figure 5.7 shows the precision, recall, F-measure and MCC curves for the prediction model at dif-

ferent thresholds for (a) breeding bird and (b) non-breeding bird data, respectively. For breeding 

bird data, the optimal threshold based on maximum F-measure and MCC was at probabilities of 

0.266, whereas for non-breeding bird data the values differed and lay at 0.082 and 0.021. The thresh-

old choice based on F-measure and MCC both showed large differences indicating that the two age 

classes behave differently in the variables used for the model. The following model evaluation was 

conducted based on the maximum F-measure and the corresponding optimal threshold for each age 

class. 

First, the evaluation of the results was done from a red kite’s perspective, evaluating the predictions, 

and analysing the results per age class. Second, the focus was placed on the anthropogenic feeding 

sites, assessing the proportion of correctly identified sites and the influence of the size of a site and 

the age class of the red kite on the prediction success.  
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 (a) Breeding bird data (b) Non-breeding bird data 

Figure 5.7. Precision, recall, F-measure and MCC curves for the GLMM by age class (breeding vs. non-breeding 

individuals). 

 

The model performed better for core area polygons of breeding birds. All performance measures 

indicate better results for data on breeding than on non-breeding birds at the individually optimal 

threshold (Table 5.11). The F-measure and MCC with 0.65 and 0.64, as opposed to 0.2 and 0.21, were 

considerably higher for breeding bird data. When using breeding bird data, the model predicted 

70% of the actual anthropogenic feeding site polygons correctly (recall) and was correct 60% of the 

time when predicting if a core area polygon is an anthropogenic feeding site (precision). For non-

breeding bird data 18% of the actual anthropogenic feeding site polygons were correctly predicted 

(recall) and the model was correct 23% of the time when predicting if a core area polygon is an 

anthropogenic feeding site (precision). 

 

Table 5.11. Comparison of breeding bird and non-breeding bird data evaluation of the GLMM. The two age clas-

ses show different optimal thresholds and varying values for the corresponding performance measures. Cell val-

ues indicate polygon counts and percentages. 
 

 Breeding birds (threshold: 0.266) 

 Actual 

P
re

d
ic

te
d

 

 Feeding 

site 

Non-feed-

ing site 

Feeding 

site 

TP 53 

(2.26%) 

FP 35 

(1.49%) 

Non-feed-

ing site 

FN 23 

(0.98%) 

TN 2,237 

(95.27%) 

 Precision 0.60 

Recall 0.70 

F-measure 0.65 

MCC 0.64 

 

 Non-breeding birds (threshold: 0.082) 

 Actual 

P
re

d
ic

te
d

 

 Feeding 

site 

Non-feed-

ing site 

Feeding 

site 

TP 12 

(0.10%) 

FP 40 

(0.34%) 

Non-feed-

ing site 

FN 54 

(0.45%) 

TN 11,528 

(99.09%) 

 Precision 0.23 

Recall 0.18 

F-measure 0.20 

MCC 0.21 (threshold: 0.021) 
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In general, only a small number of individuals accounted for the correctly predicted feeding site 

polygons. Just 10 of 80 breeding birds (13%) and 9 of 108 (8%) non-breeding birds contributed to the 

true positive polygons. In the case of false negative polygons 16 of 80 breeding birds (20%) and 30 

of 108 (28%) non-breeding birds produced such results and 9 of 80 breeding birds (11%) and 23 of 

108 non-breeding birds (21%) contributed to false positive results, respectively. 

The false positive (FP) polygons are created by various underlying environmental effects. A visual 

assessment showed that the polygons were located primarily over tree rows and natural feeding 

grounds such as fields. Further instances included potentially unknown feeding sites and ones in 

close proximity to an actual anthropogenic feeding site surrounded by natural feeding grounds (e.g., 

farm house). False positive polygons were also located around known communal roosting sites (Fig-

ure 5.8). 

 

  

 (a) Breeding bird data   (b) Non-breeding bird data 

Figure 5.8. False positive core area polygons of breeding bird (left) and non-breeding bird data (right). Polygons 

are located above fields, near a farm, near a known feeding site, as well as tree rows and the area of a known 

communal roosting site. Base map: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, 

USGS, AeroGRID, IGN, and the GIS user community. 

 

The analysis of the false positive polygons indicated that the model had difficulties distinguishing 

between the formerly mentioned sites and actual anthropogenic feeding sites. What stands out are 

the different origins of false positives by age class. For this evaluation, the swissTLM3D object classes 

tree and shrub rows were included to determine the association to these land cover classes. False 

positive polygons originating from non-breeding bird data were more often associated with roosts 

and tree rows than such from breeding bird data (Table 5.12) 
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Table 5.12. Number of false positive polygons with their association to environmental factors such as communal 

roosting sites and tree/shrub rows. The evaluation was conducted at the individual optimal threshold for breeding 

and non-breeding bird data, respectively. Communal roosting sites incorporate tree/shrub rows; therefore, a poly-

gon might be associated with both land cover classes. 

Age class Association with roosting site Association with tree/shrub row 

Breeding bird 1 / 35 (2.9%) 17 / 35 (48.6%) 

Non-breeding bird 11 / 40 (27.5%) 37 / 40 (92.5%) 

 

In a second step, the predictions were evaluated from the perspective of anthropogenic feeding sites. 

Table 5.13 shows the proportion of correctly predicted feeding sites and the potentially detectable 

number based on KDE. All results were evaluated by the individual optimal threshold chosen per 

age class. Overall, 50% of the possibly detectable anthropogenic feeding sites were correctly pre-

dicted by the model. For breeding bird data, the model correctly predicted 63% of the detectable 

anthropogenic feeding sites, whereas for non-breeding bird data 31% were predicted correctly. 

 

Table 5.13. Correctly predicted anthropogenic feeding sites by size at individual optimal thresholds by age class. 

(correctly predicted feeding sites / potentially detectable feeding sites). 

Age class Total Small or medium Large Unknown 

All birds 13 / 26 (50%) 8 / 17 (47%) 4 / 6 (67%) 1 / 3 (33%) 

Breeding bird 10 / 16 (63%) 6 / 10 (60%) 3 / 4 (75%) 1 / 2 (50%) 

Non-breeding bird 5 / 16 (31%) 0 / 10 (0%) 4 / 5 (80%) 1/ 1 (100%) 

 

For large anthropogenic feeding sites, the model showed similar prediction success for data of breed-

ing birds and non-breeding birds with 75% and 80%, respectively. The detection success rate for 

small and medium-sized sites for breeding bird data was 60%, whereas the model delivered poor 

results for such sites used by non-breeding birds, where no site was correctly predicted. 

An evaluation of the proportion of correctly predicted (true positives) and incorrectly predicted 

(false negatives) polygons at locations of known anthropogenic feeding sites was conducted (Ap-

pendix E). When evaluating at the optimal threshold for all red kites (breeding and non-breeding 

individuals) small feeding sites with feeding activity on a daily basis to several times per week 

showed the highest percentage of correctly predicted core area polygons, followed by large anthro-

pogenic feeding sites with the same frequency of feeding. While most large feeding sites showed at 

least one correctly predicted polygon, for two sites all overlapping polygons were incorrectly pre-

dicted (false negatives). Small feeding sites with only weekly or unknown frequency of feeding ac-

tivity often showed zero correctly predicted but a few incorrectly predicted core area polygons. Fig-

ure 5.9 shows true positive and false negative polygons over exemplary feeding sites. 
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Figure 5.9. Predictive core area polygons over anthropo-

genic feeding sites no. 38 and no. 25 (left) and no. 1 

(right). The figure delivers a visualisation of the ratio for 

true positive and false negative polygons (Table E.1) at 

an optimal threshold of 0.188 for breeding and non-

breeding bird data combined. True positives (cyan) are 

correctly predicted polygons and false negatives (orange) are incorrectly predicted polygons, where the model predicts 

no feeding site but the actual value for the polygon is a feeding site. Base map: Esri, DigitalGlobe, GeoEye, Earthstar 

Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS user community. 

 

In general, the results demonstrate that the proportion of correctly and incorrectly predicted poly-

gons per anthropogenic feeding site was larger when evaluated for breeding bird data than for non-

breeding bird data (Appendix E). The data for breeding birds showed a range of 25 – 100% correctly 

predicted polygons at the feeding sites. Both small and large anthropogenic feeding sites showed 

high percentages of correctly predicted polygons (Appendix E, Table E.2). Some small feeding sites 

with activity only in winter and a large site with unknown frequency could not be correctly classi-

fied. The proportion of correctly classified polygons for non-breeding bird data was substantially 

lower ranging from 12.5 – 36.8% (Appendix E, Table E.3). Furthermore, the anthropogenic feeding 

sites with recall values above 0% (percentage of correctly predicted polygons at a feeding site) were 

all but one of large size. More detailed information on the proportion of correctly predicted polygons 

for the individual anthropogenic feeding sites with exemplary map visualisations for breeding and 

non-breeding bird data, respectively, can be found in Appendix E. 
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Chapter 6  

6 Discussion 

In this chapter, the results of the last chapter are discussed in further detail and the formulated re-

search questions are answered. The results are examined from a methodological and a red kites’ 

behavioural perspective. 

6.1 Use of Anthropogenic Feeding Sites 

Not all the active feeding sites within the study area were visited by a tagged red kite. However, a 

majority (37 of 44, 84%) showed visits of at least one tagged individual. The remaining sites were 

possibly used by untagged birds, undetectable due to a low temporal resolution of the data or not 

active anymore. Overall, 46% of the sample population showed visits to known feeding sites, indi-

cating that anthropogenic feeding sites take an important role in foraging strategies. However, more 

than half of the tagged red kites did not use feeding sites and therefore seem to focus on natural 

food sources. Most red kites that potentially use anthropogenic feeding, benefitted from one or two 

sites, with only a few visiting more. Hence, red kites prefer to visit a small selection of feeding sites. 

In general, individuals of the classes breeding bird and fledgling visited a lower number of different 

sites than non-breeding birds. This implies behavioural differences in the space use of red kites de-

pending on their age class. An explanation could be the territorial behaviour of breeding birds 

around their nests and the related coverage of smaller distances in search of food sources. In addi-

tion, breeding birds likely follow the central place foraging theory and therefore, at least during 

breeding season, possibly prefer the limited number of anthropogenic feeding sites that are in close 

range to their nest (Orians and Pearson, 1979). The lower number of visited anthropogenic feeding 

sites reported for fledglings was to be expected as those individuals leave the nest only in July and 

therefore have fewer data available for the analysis. Another factor could be the lack of knowledge 

about locations of feeding sites and the lack of experience in finding such sites. Non-breeding birds, 

however, are more experienced in finding sites, geographically more independent during the entire 

season and thus might locate new feeding sites. With this behaviour non-breeding birds extend their 

knowledge on the spatial and temporal distribution of different anthropogenic food sources. 

6.2 RQ A – Methodological Approach 

In the first research question, the selection of a methodological approach to detect anthropogenic 

feeding sites was key. Based on this research question the priorly discussed workflow combining 

information from kernel density estimation and revisitation analysis in a generalised linear mixed 

model was developed (Appendix B). 
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6.2.1 Kernel Density Estimation 

A majority (70%) of the known anthropogenic feeding sites were within the extent of the calculated 

KDE core area polygons. Hence, the assumption that anthropogenic feeding sites take an important 

place within a red kite feeding routine and therefore lead to an accumulation of GPS points at such 

location, is assumed valid. Hence, the integration of kernel density estimation to define candidate 

polygons for further analysis was effective. The utilisation distribution of non-breeding birds 

showed a higher number of activity centres resulting in more core area polygons per month than 

breeding birds. This shows that breeding birds, while being bound to a nest for at least some part of 

the season, have a geographically less expanded area of use, or more precisely, use the same areas 

more frequently. Even after the breeding season, breeding birds continue to have less centres of 

activity than non-breeding birds. Non-breeding birds, however, seem to roam around in an explor-

atory manner using various places, resulting in a more scattered utilisation distribution and a higher 

number of activity centres. With just half of the individuals successfully detecting at least one visited 

feeding site with one of their core area polygons, still a majority of sites was detectable. Large feeding 

sites showed the highest percentage of locations within the core areas of use, indicating that those 

sites have a greater influence on the movement pattern of an individual than small, medium, and 

unknown sized sites. But also, some smaller sites have sufficient impact to be detectable by core 

areas of use. 

Most individuals only detected a small number of feeding sites. This indicates that only a few se-

lected sites have a large enough impact on the movement pattern to be detectable by core areas. 

While large feeding sites were detected by individuals of both age classes, small sites were identified 

by single individuals either breeding or non-breeding birds. This suggests that at large feeding sites 

multiple individuals gather, while small feeding sites are used only by a breeding pair or a single 

individual. 

6.2.2 Revisitation Analysis 

Since red kites respond to repeated placement of carcasses more strongly than other facultative scav-

engers and therefore exploit sites with high predictability of food occurrence a factor of revisitation 

was integrated (Welti, Scherler and Grüebler, 2019). The characteristic of recurrence was incorpo-

rated into the analysis by using the revisitation measures for each candidate polygon as fixed effects 

for the generalised linear mixed model. The assumption that red kites more frequently visit areas at 

anthropogenic feeding sites, based on the repetitive characteristic of food placement, and therefore 

show higher revisitation rates at such locations, was confirmed by the results. However, shorter 

residence times due to the temporally limited action of anthropogenic feeding could not be ob-

served. In general, there was a large amount of variation for revisitation rates and residence time 

within all age classes, indicating large variabilities within the groups. The trajectory data showed a 

course, 1-hour sampling interval, which can cause insecurities in the revisitation analysis emerge. 

But these results could also be influenced by different behaviour of red kites at anthropogenic feed-

ing sites. One reason could be that although the anthropogenic feeding takes place within a certain 

time frame, red kites behaviour differs from the assumption that they perceive the placed food and 
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simply grab it without hesitation. The longer residence time rather suggests that red kites circle 

above the anthropogenic food source cautiously before taking the food in the same way as they do 

when searching for natural food. This behaviour is potentially dependent on the number of red kites 

competing at the same anthropogenic feeding site and whether a red kite regularly uses the site and 

hence already trusts the source. Breeding birds showed higher revisitation rates than non-breeding 

birds which implies that breeding birds frequently use the same feeding site close to their nest. 

Hence, they have memorised the location which results in a frequent return pattern to check for food 

and consequently in a high number of revisits. However, non-breeding birds probably do not return 

to the same site as frequently because they are not bound to a nest. 

6.2.3 Integration of Revisitation Parameters 

Through the integration of revisitation parameters in a generalised linear mixed model and by clas-

sifying the probability predictions with an optimal threshold, the number of false positive polygons 

was reduced. The KDE analysis delivered 16,936 polygons which were potential feeding sites, with 

144 true positives and 16,792 false positives. With the predictions of the GLMM the number of false 

positive polygons was reduced to 71, 35, or 40 depending on the optimal evaluation threshold for 

all birds, breeding, and non-breeding individuals, respectively. This increased the applicability of 

the approach by reducing the number of incorrectly predicted feeding sites and therefore improved 

the methodology. However, the absolute number of feeding sites that were identifiable, was reduced 

from 26 (KDE) to 13 (GLMM) when evaluating at an optimal threshold for all birds. With the age-

dependent evaluation thresholds a total of 15 sites were identifiable, 10 detected by breeding bird 

and 5 by non-breeding bird data. Even if a smaller number of feeding sites was detectable, up to 80% 

of the large feeding sites were correctly predicted depending on the age-dependent threshold. By 

using age-dependent probability thresholds potential differences between age classes were ac-

counted for. With breeding bird data 63% of potentially visited feeding sites were detected, with 

60% and 75% detection rates for small and large sites, respectively. However, non-breeding bird 

data, while performing well for large-sized anthropogenic feeding sites with a detection rate of 80%, 

only reached a detection rate of 31% overall. These results show that while breeding bird data and 

non-breeding bird data are equally qualified to identify large anthropogenic feeding sites, only 

breeding birds delivered satisfactory results for small or medium size sites. Therefore, if only large-

sized feeding sites are of interest the use of non-breeding bird data can be sufficient. But one should 

be aware that while the data shows prediction success for the detection of large feeding sites it does 

not for small anthropogenic feeding sites. This suggests that the methodological approach based on 

the idea of revisitation and anthropogenic feeding on a regular basis corresponds more to the be-

haviour of breeding birds than non-breeding birds. Non-breeding birds potentially show more ex-

ploratory behaviour using larger geographic areas and not the expected regularity in repetitive use 

of the same anthropogenic feeding site but rather use several different sites. In case those sites are 

not visited at least in a monthly pattern they would go undetected. 

Furthermore, the number of individuals contributing to false positive and false negative results was 

higher for non-breeding birds than for breeding birds, even at the optimal individual threshold for 

the age classes, respectively. This indicates that the developed classification works better with data 
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of breeding birds. The flexibility of choosing different evaluation thresholds based on precision and 

recall makes the method a versatile tool as it is adjustable to individual project needs. 

Overall, the results showed that not only the red kite age class but also the size of the anthropogenic 

feeding site, a combination of frequency and amount of feeding, had an influence on the identifia-

bility of an anthropogenic feeding site. In general, a larger proportion of large anthropogenic feeding 

sites than small sites were correctly predicted, especially sites with feeding taking place daily, sev-

eral times a week or weekly were detectable. 

In RQ A the application of a population-based approach in addition to the individual-based ap-

proach was discussed. However, the implementation of a second, population-based approach went 

beyond the scope of this master’s thesis. A population-based approach could potentially only deliver 

results for the detection of large anthropogenic feeding sites, since these are locations where multiple 

individuals gather. As the individual-based approach already delivers satisfactory and interesting 

results considering the detection of large and small anthropogenic feeding sites, a population-based 

approach was not expected to improve the methodology. Furthermore, a population-based ap-

proach is only applicable if sufficient data are available i.e. in regions where a lot of red kites are 

tagged. Hence, the here developed, individual-based approach enables broader applicability by be-

ing suitable for densely and scarcely sampled regions. 

6.2.4 Uncertainties and Limitations 

The examined methodological approach showed success in detecting small and large anthropogenic 

feeding sites, however, the step-by-step methodology involves a long decision-making process and 

each decision affects the results and the conclusions drawn from them. Therefore, their implications 

and limitations are discussed here. 

While kernel density estimation (KDE) is a widely used method for point pattern analysis it might 

produce biased results when used for point patterns of moving objects. The analysis of point pat-

terns resulting from animals with movement over time might require a method that includes both 

spatial and temporal elements (Downs, 2010). KDE assumes independent data, animal tracking data, 

however, shows autocorrelation and therefore violates this assumption (Fleming et al., 2015). The 

impact of autocorrelation on KDEs performance increases when the temporal resolution of trajecto-

ries improves. Hence, the more finely the data are resolved, the worse is the KDE result (Fleming et 

al., 2015). Since the data used were sampled at an hourly rate and a large number of consecutive 

points were removed when excluding all points within forests, autocorrelation was not considered 

a problem. Furthermore, red kites can cover large distances during the sampling interval. In this 

thesis, the temporal aspect of a red kite’s movement data was incorporated into the methodology by 

the revisitation measures for the core areas. However, there is a variety of other methods to account 

for autocorrelation such as a new approach where kernel density estimation is combined with meth-

ods of time geography, and geo-ellipses are used to compute density estimates (Downs, 2010). An-

other option developed by Fleming et al. (2015) is the autocorrelated KDE (AKDE) which is suitable 

for movement data. Still, in future research, the issue of autocorrelation in animals’ movement data 

should be considered to ensure the performance of point pattern analysis. 
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Furthermore, there are behavioural explanations for the limitation of the kernel density estimation 

to define candidate polygons. The large variety of different red kite movement behaviour within the 

sample proved to be difficult in the selection of appropriate parameters. While the subjectively cho-

sen bandwidth for the kernel density analysis might be suitable for the location data of some red 

kites, it is potentially less suitable for others. This has been shown by the varying number and size 

of core area polygons depending on the red kite’s movement behaviour. Furthermore, some poly-

gons sizes show values up to 0.6 km2, which is rather large considering that anthropogenic feeding 

takes place within a few square metres in a backyard, on a feeding platform, or a farm’s compost 

heap. This leads to limitations in the application of the method. Within densely populated regions a 

polygon indicating an anthropogenic feeding site could easily contain several buildings. Hence, pin-

pointing the anthropogenic feeding to one house is not possible or would have to be investigated by 

a door-to-door survey in this area. However, for an anthropogenic feeding site on a farm standing 

alone between fields, the size of the polygon should not cause problems. 

Even under the additional conditions of excluding GPS points in forests and during nighttime as 

well as the included proximity to anthropogenic building structures, a large number of core area 

polygons occurred at locations where no association with actual anthropogenic feeding sites could 

be established. For these locations a red kite’s behaviour could be a key explanation because poly-

gons occurred at locations of natural feeding sites, such as agricultural fields in close range to a 

farmhouse, a flight corridor over a settlement area that was frequently used to access a nest or a 

communal roosting site. Overall, the application of KDE with adjusted parametrisation for the small 

spatial scale of anthropogenic feeding sites was not sufficiently reliable for the detection of anthro-

pogenic feeding sites. Therefore, the revisitation parameters were included in a generalised linear 

mixed model to improve the methodology. 

When selecting and evaluating the generalised linear mixed model (GLMM) the same data was used 

for finding the optimal model and for the model validation. This method called resubstitution gen-

erally results in optimistic measures for prediction success. To obtain a more robust measure of pre-

diction success independent data should be used by splitting data into training and test data or by 

applying the method to a completely new sample (Fielding and Bell, 1997). Furthermore, depending 

on the aim of the research the classification thresholds for the evaluation of the GLMM should be 

adapted. 

The classification results of the generalised linear mixed model show that false positives polygons 

were associated with known roosting sites and natural feeding grounds. This indicates that polygons 

at natural feeding grounds, tree rows and roosts as well as potentially unreported anthropogenic 

feeding sites and the actual anthropogenic feeding sites show similar revisitation rates and residence 

times. Even with this difficulty of distinguishing between the formerly mentioned sites and actual 

anthropogenic feeding sites, the method can be useful to limit the locations of potential anthropo-

genic feeding sites.  



Chapter 6 | Discussion  54 

 

 

Department of Geography, University of Zurich 

6.3 RQ B – Environmental Context Variables 

Research question B dealt with the context variables necessary to limit the results to an anthropo-

genic environment and lead to a confident identification of anthropogenic feeding sites. 

Several context variables, used to define the anthropogenic environment of the feeding sites and 

exclude some natural sites, were considered in the development of the step-by-step workflow. Cer-

tain context variables were already integrated into the pre-processing of the data set. The main re-

duction of GPS points occurred when locations in forest areas were excluded, which accounted for 

about half of all points. This supports the assumption that red kites spend a lot of time in or close to 

forest areas. The number of GPS points was only slightly reduced by the exclusion of night points. 

Possibly because red kites are diurnal animals and most of the time spent in such areas is between 

dusk and dawn when they rest. Hence, a lot of nighttime points were already excluded by the prior 

step. Nevertheless, since feeding activities occur during daytime the omission was considered rea-

sonable, to only retain areas of high GPS density potentially connected to foraging activities. 

The kernel density estimation resulted in 39,517 polygons representing core areas of use of the indi-

viduals. The different buffer sizes tested to include information about the proximity to buildings, 

indicated that buffers larger than 50 m included many polygons without a link to anthropogenic 

feeding, such as areas of agricultural fields and other natural feeding grounds. However, both the 

25 m and the 50 m buffer seemed suitable. As a conservative measure, a 50 m buffer was selected to 

retained polygons potentially linked to feeding based on their proximity to buildings, while still 

reducing the number of predicted polygons by more than half. Additionally, a 50 m walk (1 minute) 

was considered likely to be carried out by a person to place food on a neighbouring field to observe 

red kites. The large reduction of polygons indicates that many core areas, even with forest areas 

already excluded, have no association with the anthropogenic environment. But it also shows that 

the proximity to buildings helps to improve the method by excluding a large number of false posi-

tives. Hence, despite the relative simplicity of the integrated information, the context variables con-

tributed to the improvement of the method. However, because of the high number of remaining 

candidate polygons unrelated to anthropogenic feeding the additional methodological steps, revis-

itation analysis and the inclusion of its information into a generalised linear mixed model, were 

required. 

6.3.1 Uncertainties and Limitations 

The issue of core areas predicted to be anthropogenic feeding sites which are in fact connected to 

natural feeding sites, roosting sites, tree rows or single trees remained even with the application of 

the generalised linear mixed model.  

Hence, to further increase the method’s success more detailed information about the land cover 

could be integrated. For example, single trees and tree rows which are not included in the used data 

set for forest areas could be excluded to avoid core area polygons and predicted anthropogenic feed-

ing sites over such locations. Furthermore, information about agricultural fields or meadows that 
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serve as natural feeding grounds could be added to core area polygons. However, by a more restric-

tive selection of core area polygons, areas potentially associated with anthropogenic feeding (e.g., 

representing a flight corridor to a site), would be dismissed. As shown in the results of the GLMM 

prediction, locations of known roosting sites were present in the false positive polygons. Therefore, 

an intent for better predictions could be the inclusion of information about the proximity to a roost-

ing site as an exploratory variable in the GLMM. 

The order of integrating the context variables into the workflow influences the outcome of the 

method. GPS data points in forest areas were excluded in the first step, as it was expected that due 

to a high accumulation of points in those areas the occasional visits to feeding sites could go unde-

tected by the kernel density estimation or only very frequently visited sites could be detected. How-

ever, a different implementation order was not tested, as it would have gone beyond the scope of 

this thesis. 
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Chapter 7  

7 Conclusion 

7.1 Summary 

The aim of this master’s thesis was to learn whether locations of anthropogenic feeding can be iden-

tified by an approach based on individual GPS trajectories of red kites and therefore set a basis for 

the quantification of anthropogenic feeding sites in Switzerland. Consequently, with an exploratory 

approach, a methodological workflow was developed and potentially relevant characteristics such 

as density of GPS localisation, anthropogenic environment and recurring, predictable feeding spots 

were included. 

The results suggest that anthropogenic feeding sites used by red kites in the study area in western 

Switzerland can be detected with an individual-based approach using GPS tracking data. However, 

the detectability depends on (1) the amount and frequency of the food provision at the site and (2) 

the age class of the red kite, which provides the GPS tracking data. 

7.2 Contributions 

The findings of this master’s thesis suggest that a method based on density measures and the inclu-

sion of revisitation information into a generalised linear mixed model delivers a possibility to iden-

tify the locations of anthropogenic feeding sites with the data of individual red kite trajectories. 

Hence, it shows how individual animals can be used as an instrument to detect landscape features 

based on associated behaviours that are reflected in their movement patterns. On the example of red 

kites, it was demonstrated, how in particular anthropogenic feeding activity was detectable with 

GPS tracking data. 

The method offers a new, less time-consuming way of detecting potential anthropogenic feeding 

sites than survey-based approaches and can possibly be applied to larger geographic areas. The re-

liable detection rate of large feeding sites makes the method especially useful, as those sites could 

have a substantial effect on the behaviour of red kites. Even smaller feeding sites, when in the prox-

imity of breeding individuals can be successfully detected. While locations of feeding sites can be 

determined by the method, more detailed information about the frequency, amount and type of food 

would still need to be collected by survey-based door-to-door interviews. 

Although the methodology shows some uncertainties when predicting anthropogenic feeding sites, 

it became evident that the use of trajectories of breeding birds shows higher prediction success. De-

pending on the research objective the data of a specific group of red kites can be used or the data 

can be evaluated based on different thresholds to account for differences between the age classes. 
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When applying the methodology to non-breeding bird data, one should be aware that while the 

approach shows success in identifying large feeding sites it is less successful for small anthropogenic 

feeding sites. By varying evaluation thresholds, the method can be adjusted based on research con-

text and the expectations for precision and recall, respectively. Overall, the results indicate a focus 

on breeding bird data to detect small anthropogenic feeding sites. 

7.3 Limitations 

A major challenge was the temporal resolution of the GPS tracking data. Anthropogenic feeding 

takes place on a very small spatial and temporal scale, hence potential visits to anthropogenic feed-

ing sites and therefore their positions might go undetected because of the low temporal resolution. 

The aim of the methodological approach, however, was the applicability to the low temporal reso-

lution data set, as the Swiss Ornithological Institute has most data recorded at this interval and only 

fewer with a higher temporal resolution. 

Another uncertain factor was the completeness of the ground truth data for the anthropogenic feed-

ing sites within the study area. Even though there is a high level of confidence that the information 

about anthropogenic feeding sites in the study area is complete, most of the data is based on a survey 

and observational data from field assistants. The answers about frequency, amount of feeding and 

its continuation might depend on whether respondents believe that feeding of red kites is socially 

respected or frowned upon, respectively. This could influence the categorisation into small-/me-

dium-sized and large-sized anthropogenic feeding sites. 

The underlying data of this thesis was the season 2018/2019. However, annual variation of the use 

of anthropogenic feeding sites cannot be ruled out and was not accounted for in this thesis. The 

availability of natural food sources could impact the frequency of use of human-related food sources 

as red kites alternate between both sources. In case of an abundance of natural food, red kites possi-

bly make less use of feeding sites which would result in fewer GPS localisations at those sites and 

hence affect their identifiability. 

There was only little research and scientific literature available about anthropogenic feeding of birds 

of prey and particularly of red kites for Switzerland. Much is still unclear about the impact and 

influence of anthropogenic feeding within a red kite’s life history and the behaviour of red kites 

around anthropogenic feeding sites, which made the development of a method challenging. 
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7.4 Future Research 

The context variables included in this thesis were relatively simple and hence an interesting ap-

proach would be to test whether the methodology can be significantly improved by including extra 

land cover information such as locations of tree rows, roosting sites and places of natural food abun-

dance to the generalised linear mixed model. Those additional variables could possibly further re-

duce the number of polygons incorrectly predicting anthropogenic feeding. 

Since this thesis has developed a step-by-step workflow, the single steps can be easily replaced by 

different methods. Other methods to calculate candidate polygons for anthropogenic feeding sites, 

such as AKDE for autocorrelated data (Fleming et al., 2015) should be studied to see whether results 

differ. Furthermore, the methodology discussed in this thesis has been developed based on the low 

sampling interval and therefore the low density of GPS locations and the revisitation to certain areas. 

For data with a higher temporal resolution, stop detection algorithms such as the one developed by 

Montoliu et al. (2013) could be tested to detect anthropogenic feeding sites shown by stops in red 

kite trajectories. 

The conclusions drawn in this thesis are based on the red kite GPS tracking data and the anthropo-

genic feeding sites within the study area in the Sense district and the Schwarzenburgerland in west-

ern Switzerland. Hence, the application of the developed workflow to other regions within Switzer-

land should be tested in future research. As large feeding sites and even some small sites can be 

confidently identified by the method, its application could lead to better insight into the quantity of 

anthropogenic feeding taking place within different regions and all of Switzerland. By quantifying 

anthropogenic feeding in Switzerland and analysing regional differences the impact on red kites’ 

foraging strategies, varying movement patterns based on the origin of the food source (natural vs. 

anthropogenic) and the potential influence on the population increase could be studied in further 

detail. 
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Appendix A  

Exploratory Data Analysis 

To obtain a first impression of the red kite trajectory data, visualisations of the data for all of Europe 

and within Switzerland was conducted.  

A first finding was the large heterogeneity in the red kite’s data set and the strongly varying behav-

iour between individuals visible in the GPS trajectories. While some individuals showed migrating 

patterns to Spain or France in winter others remained in Switzerland during the whole year. 

When focusing on the patterns of GPS localisations in Switzerland it could furthermore be distin-

guished that many GPS points were located in forest areas. This was not unexpected, but neverthe-

less important for the development of an appropriate methodology. The pattern can be explained 

by red kites’ behaviour of spending time sitting on tree branches, in their nest or returning to these 

areas. A variety of behavioural patterns, such as age-dependent movement patterns, were visible in 

the GPS trajectories. Two sample trajectories are illustrated in Figure A.1 and Figure A.2. Figure A.1 

displays the trajectory of a migrating, non-breeding red kite, spending summer in Switzerland and 

Germany, showing exploratory behaviour and winter months in Spain. Figure A.2 shows the trajec-

tory of a sedentary, breeding red kite spending 12 months in the same area in Switzerland using 

approximately 50 km2. 

 

 
Figure A.1. Trajectory of a migrating red kite (season 2018/2019). Base map: OpenStreetMap contributors (2020).  
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Figure A.2. Trajectory of a sedentary red kite (season 2018/2019). Base map: OpenStreetMap contributors (2020). 

 

The data availability of red kites by age class and month was analysed to gain insight into the data 

structure. For the study area breeding birds showed data availability for more months over the 

course of the year than non-breeding birds or fledglings (Figure A.3). On average breeding birds 

spent ten months within the study area, non-breeding birds seven and fledglings three. As fledglings 

leave their nests only in July there were consequently fewer data available relevant for this thesis. 

 

 
Figure A.3. Number of months with available data for the study area by age class. 
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Appendix B  

Methodological Workflow 

Figure B.1. Workflow with tasks in grey and decision-making arguments or descriptions in light grey. 
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Appendix C  

Kernel Density Estimation 

Table C.1. Parameter choice for kernel density estimation: example visualised for red kite no. 013. 

 Grid = 30 x 30m Grid = 60 x 60m 

h
 =

 1
0 

  

h
 =

 3
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h
 =

 5
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Appendix D  

Generalised Linear Mixed Model 

Table D.1. Overview of fixed effects included in the generalised linear mixed model. 

Variable Description Type 

revisits.z Number of revisits to a polygon during a month (scaled). Numeric 

residencetime.z Total time [hours] spent during all visits to polygon in one month 

(scaled). 

Numeric 

season Information about season during which polygon was produced 

2 levels: breeding time, non-breeding time. 

Categorical 

age_class_2018 Information about age class of red kite. 

3 levels: fledgling, non-breeding bird, breeding bird 

Categorical 

area_ha.z Area of polygon in hectares (scaled). Numeric 

points_month Amount of GPS points recorded in the month of the KDE polygon for 1 

individual. E.g., if 1 individual has several KDE-polygons in a single 

month, the amount of GPS points attributed to those polygons is the 

same. 

Numeric 

 

Table D.2. Overview of random effects included in the generalised linear mixed model. 

Variable Description Type 

BirdID Number identifying the individual red kite creating a polygon. Factor 

month Month attributed to a polygon. Factor 
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Table D.3. GLMM candidate models with AIC and AUC values. Model no. 5 was selected based on the lowest AIC value. 

Model number Model equation AIC AUC 

1 

feedingsite ~ revisits.z * residencetime.z + revisits.z * sea-

son + revisits.z * age_class_2018 + revisits.z * area_ha.z + 

residencetime.z * season + residencetime.z * 

age_class_2018 + residencetime.z * area_ha.z + 

points_month.z + (1 |BirdID) + (1 | month) 

1216.9 0.954 

2 

feedingsite ~ revisits.z * residencetime.z + revisits.z * sea-

son + revisits.z * age_class_2018 + revisits.z * area_ha.z + 

residencetime.z * season + residencetime.z * area_ha.z + 

points_month.z + (1 |BirdID) + (1 | month) 

1215.8 0.953 

3 

feedingsite ~ revisits.z * residencetime.z + revisits.z * sea-

son + revisits.z * area_ha.z + residencetime.z * season +  

residencetime.z * area_ha.z + age_class_2018 + 

points_month.z +  (1 |BirdID) + (1 | month) 

1212.5 0.953 

4 

feedingsite ~ revisits.z * residencetime.z + revisits.z * sea-

son + revisits.z * area_ha.z + residencetime.z * season + 

age_class_2018 + points_month.z + (1 |BirdID) 

+ (1 | month) 

1210.7 0.953 

5 

feedingsite ~ revisits.z * residencetime.z + revisits.z * 

area_ha.z + residencetime.z * season + age_class_2018 + 

points_month.z + (1 |BirdID) + (1 | month) 

1209.4 0.952 

6 

feedingsite ~ revisits.z * residencetime.z + revisits.z * 

area_ha.z + season + age_class_2018 + points_month.z 

+ (1 |BirdID) + (1 | month) 

1211.5 0.954 

7 

feedingsite ~ revisits.z + residencetime.z + revisits.z * 

area_ha.z + season + age_class_2018 + points_month.z +  

(1 |BirdID) + (1 | month) 

1212.5 0.955 

8 

feedingsite ~ revisits.z + residencetime.z + season + 

age_class_2018 + area_ha + points_month.z + (1 | BirdID) 

+ (1 | month) 

1218.2 

 

0.954 

 

9 
feedingsite ~ residencetime.z + season + age_class_2018 + 

area_ha + points_month.z + (1 | BirdID) + (1 | month) 

1216.6 0.954 

10 
feedingsite ~ residencetime.z + age_class_2018 + area_ha + 

points_month.z + (1 | BirdID) + (1 | month) 

1215.6 0.953 

11 
feedingsite ~ residencetime.z + age_class_2018 + area_ha + 

(1 | BirdID) + (1 | month) 

1214.9 0.954 

12 
feedingsite ~ residencetime.z + area_ha + (1 | BirdID) + 

(1 | month) 

1215.2 0.955 

13 feedingsite ~ area_ha + (1 | BirdID) + (1 | month) 1215.3 0.955 
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Table D.4. Output and diagnostics of the 'best' model from Table D.3. 

Output & diagnostics of the ‘best’ model 

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) [ 

glmerMod 

Family: binomial  ( logit ) 

Formula: feedingsite ~ revisits.z * residencetime.z + revisits.z * area_ha.z +   

    residencetime.z * season + season + age_class_2018 + points_month.z +   

    (1 | BirdID) + (1 | month) 

   Data: poly_kde50_2018_revisit 

Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e+05)) 

 

     AIC      BIC   logLik deviance df.resid  

  1209.4   1308.1   -591.7   1183.4    14687  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-1.8770 -0.0699 -0.0282 -0.0202 24.1407  

 

Random effects: 

 Groups Name        Variance Std.Dev. 

 BirdID (Intercept) 6.4418   2.5381   

 month  (Intercept) 0.1673   0.4091   

Number of obs: 14700, groups:  BirdID, 224; month, 12 

 

Fixed effects: 

                                        Estimate Std. Error z value Pr(>|z|)     

(Intercept)                             -6.88785    0.73041  -9.430  < 2e-16 *** 

revisits.z                               0.48391    0.16136   2.999  0.00271 **  

residencetime.z                          0.23391    0.11160   2.096  0.03609 *   

area_ha.z                                0.52588    0.07827   6.719 1.83e-11 *** 

seasonnon_breeding_time                  0.52515    0.34080   1.541  0.12333     

age_class_2018fledgling                 -2.02570    1.39290  -1.454  0.14586     

age_class_2018non_breeding_bird         -0.38538    0.58339  -0.661  0.50887     

points_month.z                          -0.25130    0.21408  -1.174  0.24045     

revisits.z:residencetime.z              -0.07640    0.03783  -2.020  0.04339 *   

revisits.z:area_ha.z                    -0.08643    0.04301  -2.010  0.04448 *   

residencetime.z:seasonnon_breeding_time -0.25376    0.12965  -1.957  0.05031 .   

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Correlation of Fixed Effects: 

            (Intr) rvsts. rsdnc. ar_h.z ssnn__ ag__2018 a__2018_ pnts_. rvs.:. rv.:_. 

revisits.z  -0.188                                                                    

residnctm.z -0.201  0.170                                                             

area_ha.z   -0.006 -0.097 -0.362                                                      

ssnnn_brdn_ -0.336  0.118  0.180  0.000                                               

ag_cls_2018 -0.196  0.070  0.030 -0.048 -0.020                                        

ag_c_2018__ -0.644  0.249  0.225 -0.109  0.136  0.208                                 

pnts_mnth.z -0.053 -0.371  0.116  0.034  0.086 -0.158    0.089                        

rvsts.z:rs.  0.156 -0.623 -0.669  0.379 -0.075 -0.053   -0.208    0.084               

rvsts.z:r_. -0.056 -0.257  0.136 -0.618 -0.008  0.039    0.036    0.037 -0.187        

rsdnctm.:__  0.102 -0.221 -0.404 -0.037 -0.268  0.019   -0.058    0.018  0.275  0.059 
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Appendix E  

Evaluation of Breeding Bird and Non-breeding Bird Data combined 

Table E.1. Evaluation per anthropogenic feeding site with optimal threshold 0.188 for breeding and non-breeding bird 

data combined. 

ID Size Frequency  
Amount 

[g] 

Restricted 

feeding 

TP 

polygons 

FN 

polygons 
Ratio Recall* 

25 small daily 100 year round  5  0 5 100 

28 small 
several times per 

week 
700 wintering  1  0 1 100 

40 small unknown unknown unknown  1  0 1 100 

31 small 
several times per 

week 
100 year round  10  1 10 90.9 

7 small 
several times per 

week 
100 year round  11  2 5.5 84.6 

1 large 
several times per 

week 
300 year round  11  8 1.4 57.9 

38 unknown unknown unknown unknown  8  6 1.3 57.1 

20 small 
several times per 

week 
100 year round  1  1 1 50 

24 small weekly 100 year round  2  3 0.7 40 

2 large 
several times per 

week 
3000 year round  9  18 0.5 33.3 

13 small 14d 100 year round  1  3 0.3 25 

36 large weekly ca. 5000 year round  2  6 0.3 25 

33 large daily 3000 year round  1  5 0.2 16.7 

3 large daily 500 year round  0  7 0 0 

5 medium weekly ca.5000 wintering  0  1 0 0 

8 small weekly 1500 wintering  0  1 0 0 

15 small 14d 1500 wintering  0  2 0 0 

21 small daily 100 year round  0  1 0 0 

26 small weekly 1500 wintering  0  1 0 0 

29 small weekly 1500 year round  0  1 0 0 

32 small daily 100 year round  0  1 0 0 

34 unknown unknown >2000 unknown  0  8 0 0 

35 large unknown ca. 5000 unknown  0  1 0 0 

37 small unknown unknown unknown  0  1 0 0 

39 small unknown unknown unknown  0  1 0 0 

41 unknown unknown  unknown  0  1 0 0 
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TP: true positives 

FN: false negatives 

*Recall: The model correctly identifies xx% of the polygons of an anthropogenic feeding site. 

 

Evaluation of Breeding Bird Data 

Table E.2. Evaluation per anthropogenic feeding site with optimal threshold 0.266 for breeding bird data. 

ID Size Frequency 
Amount 

[g] 

Restricted 

feeding 

TP 

polygons 

FN 

polygons 
Ratio Recall 

1 large 
several times per 

week 
300 year round  11 0 11 / 0 100 

25 small daily 100 year round  5 0 5 / 0 100 

2 large 
several times per 

week 
3000 year round  7 1 7 87.5 

31 small 
several times per 

week 
100 year round  9 2 4.5 81.8 

7 small 
several times per 

week 
100 year round  10 3 3.33 76.9 

38 unknown unknown unknown unknown  7 3 2.33 70 

20 small 
several times per 

week 
100 year round  1 1 1 50 

24 small weekly 100 year round  1 1 1 50 

13 small 14d 100 year round  1 3 0.33 25 

36 large weekly ca.5000 year round  1 3 0.33 25 

21 small daily 100 year round  0 1 0 0 

26 small weekly 1500 wintering  0 1 0 0 

28 small 
several times per 

week 
700 wintering  0 1 0 0 

34 unknown unknown >2000 unknown  0 1 0 0 

35 large unknown ca.5000 unknown  0 1 0 0 

40 small unknown unknown unknown  0 1 0 0 
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Figure E.1. Predictive core area polygons over anthropo-

genic feeding sites no. 2 (left) and no. 31 (right). The figure 

delivers visualisation of the ratio for true positive and false 

negative polygons (Table E.2) at an optimal threshold of 

0.266 for breeding bird data at exemplary feeding sites. True 

positives (cyan) are correctly predicted polygons and false 

negatives (orange) are incorrectly predicted polygons, where the model predicts no feeding site but the actual value for 

the polygon is a feeding site. Base map: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, 

USGS, AeroGRID, IGN, and the GIS user community. 
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Evaluation of Non-breeding Bird Data 

Table E.3. Evaluation per anthropogenic feeding site with optimal threshold 0.082 for non-breeding bird data. 

ID Size Frequency 
Amount 

[g] 

Restricted feed-

ing 

TP 

polygons 

FN 

polygons 
Ratio Recall 

2 large 
several times per 

week 

3000 
year round 7  12 0.6 36.8 

33 large daily 3000 year round 2  4 0.5 33.3 

3 large daily 500 year round 1  6 0.2 14.3 

34 unknown unknown >2000 unknown 1  6 0.2 14.3 

1 large 
several times per 

week 

300 
year round 1  7 0.1 12.5 

5 medium weekly ca.5000 wintering 0  1 0 0 

8 small weekly 1500 wintering 0  1 0 0 

15 small 14d 1500 wintering 0  2 0 0 

24 small weekly 100 year round 0  3 0 0 

29 small weekly 1500 year round 0  1 0 0 

32 small daily 100 year round 0  1 0 0 

36 large weekly ca.5000 year round 0  3 0 0 

37 small unknown unknown unknown 0  1 0 0 

38 unknown unknown unknown unknown 0  4 0 0 

39 small unknown unknown unknown 0  1 0 0 

41 unknown unknown unknown unknown 0  1 0 0 
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Figure E.2. Predictive core area polygons above anthropo-

genic feeding sites no. 2 (left) and no. 33 (right). The figure 

delivers visualisation of the ratio for true positive and false 

negative polygons (Table E.3) at an optimal threshold of 

0.082 for non-breeding bird data at exemplary feeding sites. 

True positives (cyan) are correctly predicted polygons and false negatives (orange) are incorrectly predicted polygons, 

where the model predicts no feeding site but the actual value for the polygon is a feeding site. Base map: Esri, DigitalGlobe, 

GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS user community. 
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