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Abstract 

Due to the estimated aging demographic, promoting healthy aging in everyday life, particularly among 

older adults, has become an important agenda to alleviate the burden on the healthcare system and further 

society. It is known that daily mobility is the key to maintain physical and mental health of older adults 

through diverse activities including exercise, daily traveling, and social activities. Hence, it is crucial to 

assess the movement behaviors of older adults to draw conclusion about their state of health in daily 

life. Wearable location sensing technologies using GPS have enabled obtaining and analyzing the daily 

mobility data. Movement data analysis involves several procedures to transform sensor signals to 

meaningful information on mobility behaviors. As an early step, stop-move detection algorithms play a 

significant role in automatically extracting activity locations and moves from raw movement data. 

While many algorithms have been proposed for stop-move detection, selecting one among the existing 

algorithms is still challenging. This is because input parameters and optimal thresholds vary with 

different algorithms as well as input data and are often difficult to determine without a comparative 

analysis. Such kind of algorithm comparison research is still an evolving topic in the field of movement 

analysis. In this context, the aim of this thesis is to review and compare stop-move detection algorithms 

for GPS data in order to analyse the mobility patterns of older adults from a spatial and temporal 

perspective. The data was collected from the interdisciplinary research project named MObility, Activity 

and Social Interaction Study (MOASIS), conducted by research teams at the University of Zurich. 

To evaluate the suitability of three chosen criteria, that are 1) maximum parsimony of the algorithmic 

model, 2) ease of understanding, and 3) high performance, four algorithms were selected: two algorithms 

fully meeting the criteria (POSMIT and SOC), one algorithm partially meeting the criteria 

(MBGP algorithm), and one algorithm which does not correspond to them (CandidateStops). For each 

parameter of these algorithms, a vector of possible values was defined, which was then applied to the 

algorithm in every possible combination to find the optimal set of parameters. The algorithms were then 

compared based on F-measure, average number and variance of stops per day, robustness to noise as 

well as varying sampling rates and compactness of shape. Since the calculation of F-measure values 

requires ground truth, 90 days of data were manually labelled using an R Shiny Application. 

Furthermore, three scenarios were analysed out to find the algorithm that: 1) best handles noisy data, 

2) works well with varying sampling rates, and 3) has the most compact shapes.  

As a result, the MBGP algorithm performed the best for the sampled MOASIS data in the first and 

second scenario as well as regarding the average number of stops per day. The POSMIT algorithm suited 

the analysed MOASIS data the best in terms of the third scenario. The least suitable algorithm for the 

sampled MOASIS data was the CandidateStops algorithm. The result suggests that it is important to 

ensure that stop-move detection algorithms have at least a spatial and a temporal parameter. 
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This thesis set a base for further movement analysis at an individual level by analysing and proposing 

an algorithm that performs the sampled MOASIS data the best, which is the MBGP algorithm with the 

given setting: Dmax = 275 m, Tmax = 14400 s, and Tmin = 900 s. Since the F-measure values that could 

be calculated for the 90 test days were high, future research should mainly focus on generating more 

valid results instead of further increasing accuracy as well as including the interrater agreement to better 

assess the quality of the manually labelled ground truth. 

  



Acknowledgements  

 

 

Department of Geography, University of Zurich  Page III 

 

Acknowledgements 

First of all, I would like to thank my main advisor, Dr. Eun-Kyeong Kim, for the informative meetings 

and competent and helpful support during the whole process of writing the Master’s Thesis. Many thanks 

as well to the faculty representative, Prof. Dr. Robert Weibel, for all the valuable feedback and to my 

two concept reviewers, Julia Villette Ardito and Dr. Peter Ranacher, for the constructive inputs. 

I am further very grateful to my proofreader, Tim Waldburger, who has given me useful tips for the 

improvement of my work, as well as to my fellow roommate, Joseph Bailey, who proofread my English 

texts. I would also like to thank the MOASIS research teams for allowing me to use the MOASIS data 

for my thesis and Michelle Fillekes for making available the MBGP algorithm’s R-Codes. 

Finally, warmest thanks to my partner, friends, colleagues of work, and family for all the support, 

understanding, and encouragement during this project. I especially appreciated the coffee breaks and 

thematic exchange with Nathalie and the never-ending patience and comforting words of my partner. 

Tim, thank you for always being there for me! 



Contents  

 

 

Department of Geography, University of Zurich  Page IV 

 

Contents 

List of Figures .......................................................................................................................................... i 

List of Tables .......................................................................................................................................... iv 

List of Algorithms .................................................................................................................................. vi 

List of Abbreviations ............................................................................................................................. vii 

1 Introduction ..................................................................................................................................... 1 

1.1 Problem Statement .................................................................................................................. 2 

1.2 Research Questions ................................................................................................................. 3 

1.2.1 RQs at a Conceptual Level .............................................................................................. 3 

1.2.2 RQs at an Analytical Level .............................................................................................. 4 

1.3 Thesis Structure ....................................................................................................................... 5 

2 Theoretical Background and Framework ........................................................................................ 6 

2.1 Trajectories .............................................................................................................................. 6 

2.1.1 Stop Characteristics ......................................................................................................... 8 

2.1.2 Movement Patterns .......................................................................................................... 9 

2.2 Trajectory Pre-processing ...................................................................................................... 11 

2.2.1 Map-Matching ............................................................................................................... 12 

2.2.2 Compression .................................................................................................................. 12 

2.2.3 Noise Filtering ............................................................................................................... 13 

2.2.4 Segmentation ................................................................................................................. 13 

2.3 Stop-Move Detection Algorithms ......................................................................................... 14 

2.3.1 Classification Scheme ................................................................................................... 15 

2.3.2 Algorithm overview....................................................................................................... 16 

2.3.3 Algorithm Selection Criteria ......................................................................................... 26 

2.4 Algorithm Evaluation ............................................................................................................ 27 

2.4.1 Probabilistic Metrics ...................................................................................................... 27 

2.4.2 Sensitivity Analysis ....................................................................................................... 29 

2.4.3 Shape Measures ............................................................................................................. 30 

3 Data ............................................................................................................................................... 32 



Contents  

 

 

Department of Geography, University of Zurich  Page V 

 

3.1 MOASIS Data ....................................................................................................................... 32 

3.2 Ground Truth Labelling ......................................................................................................... 33 

3.3 Sample Data .......................................................................................................................... 34 

4 Methodology ................................................................................................................................. 35 

4.1 Conceptual Framework and Algorithm Selection ................................................................. 36 

4.1.1 Algorithm Selection....................................................................................................... 40 

4.1.2 Source Code Availability .............................................................................................. 41 

4.2 Algorithm Implementation .................................................................................................... 41 

4.2.1 Data Pre-Processing....................................................................................................... 41 

4.2.2 Algorithm Programming ............................................................................................... 42 

4.2.3 Data Post-Processing ..................................................................................................... 49 

4.3 Algorithm Comparison and Evaluation ................................................................................. 50 

4.3.1 Threshold Analysis ........................................................................................................ 50 

4.3.2 Ground Truth Collection ............................................................................................... 53 

4.3.3 Probabilistic Metrics ...................................................................................................... 54 

4.3.4 Sensitivity Analysis ....................................................................................................... 55 

4.3.5 Shape Measures ............................................................................................................. 56 

4.3.6 Running Time ................................................................................................................ 56 

5 Results ........................................................................................................................................... 57 

5.1 CandidateStops ...................................................................................................................... 57 

5.1.1 Threshold Selection ....................................................................................................... 57 

5.1.2 Handling Noise and Sampling Rate .............................................................................. 59 

5.1.3 Shape Measures ............................................................................................................. 60 

5.2 MBGP Algorithm .................................................................................................................. 63 

5.2.1 Threshold Selection ....................................................................................................... 63 

5.2.2 Handling Noise and Sampling Rate .............................................................................. 65 

5.2.3 Shape Measures ............................................................................................................. 69 

5.3 POSMIT ................................................................................................................................ 74 

5.3.1 Threshold Selection ....................................................................................................... 74 

5.3.2 Handling Noise and Sampling Rate .............................................................................. 77 



Contents  

 

 

Department of Geography, University of Zurich  Page VI 

 

5.3.3 Shape Measures ............................................................................................................. 79 

5.4 SOC ....................................................................................................................................... 80 

5.4.1 Threshold Selection ....................................................................................................... 80 

5.4.2 Handling Noise and Sampling Rate .............................................................................. 82 

5.4.3 Shape Measures ............................................................................................................. 84 

5.5 Ground Truth Comparison .................................................................................................... 85 

5.6 Stop-Move Classification Comparison .................................................................................. 87 

5.6.1 General Overview .......................................................................................................... 87 

5.6.2 Variance and Average Number of Stops ....................................................................... 91 

5.6.3 Running Time ................................................................................................................ 91 

5.6.4 Summary of Results ...................................................................................................... 92 

6 Discussion ..................................................................................................................................... 93 

6.1 Initial Findings ...................................................................................................................... 93 

6.1.1 Influence of Manually Labelled Ground Truth ............................................................. 94 

6.1.2 Relationship between functioning of Algorithms and Results ...................................... 95 

6.1.3 Meaningfulness of Running Time ................................................................................. 95 

6.2 Scenario 1: Handling Noise ................................................................................................... 95 

6.3 Scenario 2: Handling Sampling Rate .................................................................................... 96 

6.4 Scenario 3: Shape Compactness ............................................................................................ 98 

6.5 Influence of Pre- and Post-Processing on Results ................................................................. 99 

6.6 Evaluation Criteria and Measures ....................................................................................... 100 

6.7 Comparison with Fillekes, Kim, et al. (2019) ..................................................................... 101 

7 Conclusion ................................................................................................................................... 102 

7.1 Summary and Major Findings ............................................................................................. 102 

7.2 Limitations........................................................................................................................... 104 

7.3 Future Work ........................................................................................................................ 105 

8 References ................................................................................................................................... 107 

9 Appendix ..................................................................................................................................... 114 

9.1 Visualisations of Algorithms on Map .................................................................................. 114 

10 Personal Declaration ................................................................................................................ 119 



List of Figures  

 

 

Department of Geography, University of Zurich   Page i 

 

List of Figures 

Figure 2.1 Movement track (dotted line) with extracted trajectories (from Parent et al., 2013:4) .......... 6 

Figure 2.2 Example of a semantic trajectory (from Bermingham, 2018:3)............................................. 7 

Figure 2.3 Stop and location extraction from trajectories (from Fu et al., 2016:3) ................................. 8 

Figure 2.4 Concept of hierarchical stops (from Tran et al., 2011:2) ....................................................... 9 

Figure 2.5 Trajectory data mining (modified from Zheng, 2015:2) ...................................................... 11 

Figure 2.6 Exemplary confusion matrix (modified from Fillekes, Kim, et al., 2019:23) ..................... 28 

Figure 3.1 uTrail mobile Sensor used for data collection in the MOASIS study (modified from Bereuter, 

Fillekes and Weibel, 2016:2) ................................................................................................................. 32 

Figure 3.2 Graphical User Interface of Shiny Application by Burkhard (2017) ................................... 33 

Figure 4.1 Overview of methodological approaches ............................................................................. 35 

Figure 4.2 Trajectory pre-processing methods (modified from Zheng, 2015:2) ................................... 41 

Figure 4.3 Schematic overview of MBGP algorithm (from Montoliu, Blom and Gatica-Perez, 2013:189)

 ............................................................................................................................................................... 45 

Figure 4.4 Example for the parameters of the MBGP algorithm .......................................................... 50 

Figure 5.1 F-measure comparison of different speed thresholds of CandidateStops algorithm ............ 57 

Figure 5.2 F-measure comparison of different speed thresholds of post-processed CandidateStops 

algorithm ............................................................................................................................................... 58 

Figure 5.3 F-measure comparison of different test sets of CandidateStops algorithm .......................... 59 

Figure 5.4 F-measure comparison of different test sets of post-processed CandidateStops algorithm . 60 

Figure 5.5 Comparison of shape index value of different test sets of CandidateStops algorithm ......... 61 

Figure 5.6 Comparison of shape index value of different test sets of post-processed CandidateStops 

algorithm ............................................................................................................................................... 62 

Figure 5.7 F-measure comparison of top five threshold combinations of MBGP algorithm ................ 64 

Figure 5.8 F-measure comparison of top five threshold combinations of post-processed MBGP 

algorithm ............................................................................................................................................... 65 

Figure 5.9 F-measure comparison of different test sets of MBGP algorithm [Tmin = 900 s] ................. 66 

Figure 5.10 F-measure comparison of different test sets of post-processed MBGP algorithm 

[Tmin = 900 s] ......................................................................................................................................... 67 



List of Figures  

 

 

Department of Geography, University of Zurich  Page ii 

 

Figure 5.11 F-measure comparison of different test sets of MBGP algorithm [Tmin = 2100 s] ............. 68 

Figure 5.12 F-measure comparison of different test sets of post-processed MBGP algorithm 

[Tmin = 2100 s] ....................................................................................................................................... 69 

Figure 5.13 Comparison of shape index value of different test sets of MBGP algorithm [Tmin = 900 s]

 ............................................................................................................................................................... 70 

Figure 5.14 Comparison of shape index value of different test sets of post-processed MBGP algorithm 

[Tmin = 900 s] ......................................................................................................................................... 71 

Figure 5.15 Comparison of shape index value of different test sets of MBGP algorithm [Tmin = 2100 s]

 ............................................................................................................................................................... 72 

Figure 5.16 Comparison of shape index value of different test sets of post-processed MBGP algorithm 

[Tmin = 2100 s] ....................................................................................................................................... 73 

Figure 5.17 F-measure comparison of different threshold combinations of POSMIT algorithm ......... 74 

Figure 5.18 F-measure comparison of different threshold combinations of post-processed POSMIT 

algorithm ............................................................................................................................................... 75 

Figure 5.19 F-measure comparison of different test sets of POSMIT algorithm .................................. 77 

Figure 5.20 F-measure comparison of different test sets of post-processed POSMIT algorithm ......... 78 

Figure 5.21 Comparison of shape index value of different test sets of POSMIT algorithm ................. 79 

Figure 5.22 Comparison of shape index value of different test sets of post-processed POSMIT algorithm

 ............................................................................................................................................................... 80 

Figure 5.23 F-measure comparison of different Tau thresholds of SOC algorithm .............................. 80 

Figure 5.24 F-measure comparison of different Tau thresholds of post-processed SOC algorithm ..... 81 

Figure 5.25 F-measure comparison of different test sets of SOC algorithm ......................................... 82 

Figure 5.26 F-measure comparison of different test sets of post-processed SOC algorithm ................ 83 

Figure 5.27 Comparison of shape index value of different test sets of SOC algorithm ........................ 84 

Figure 5.28 Comparison of shape index value of different test sets of post-processed POSMIT algorithm

 ............................................................................................................................................................... 85 

Figure 5.29 Ground truth comparison of replaced ground truth (prob.) and manually labelled ground 

truth (man.) ............................................................................................................................................ 86 

Figure 5.30 Example of false negative stops detected by the algorithms (pre- and post-processed results 

were identical) ....................................................................................................................................... 87 



List of Figures  

 

 

Department of Geography, University of Zurich  Page iii 

 

Figure 5.31 Example of false positive stops detected by algorithms (pre-processed) ........................... 89 

Figure 5.32 Example of false positive stops detected by algorithms (post-processed) ......................... 89 

Figure 6.1 Manual ground truth labelling example on high zoom level (green = move, orange = stop) 94 

Figure 6.2 Manual ground truth labelling example on low zoom level (green = move, orange = stop) 94 

Figure 6.3 Schematic explanation of false positive stops remaining after post-processing ................ 100 

 



List of Tables  

 

 

Department of Geography, University of Zurich  Page iv 

 

List of Tables 

Table 2.1 Parameters of movement (modified from Dodge, Weibel and Lautenschütz, 2008:243) ..... 10 

Table 2.2 Algorithm grouping scheme .................................................................................................. 15 

Table 2.3 Overview of stop-move detection algorithms and their parameters ...................................... 17 

Table 4.1 Algorithm comparison based on criteria ............................................................................... 37 

Table 4.2 Evaluation Scenarios ............................................................................................................. 50 

Table 4.3 Example of calculating probabilistic metric F-measure (modified from Lamiroy and 

Sun, 2013:7) .......................................................................................................................................... 54 

Table 5.1 Boxplot statistics of CandidateStops algorithm .................................................................... 58 

Table 5.2 Boxplot statistics of post-processed CandidateStops algorithm ............................................ 58 

Table 5.3 Boxplot statistics of different test sets of CandidateStops algorithm .................................... 59 

Table 5.4 Boxplot statistics of different test sets of post-processed CandidateStops algorithm ........... 60 

Table 5.5 Boxplot statistics of shape index values of different test sets of CandidateStops algorithm 61 

Table 5.6 Boxplot statistics of shape index values of different test sets of post-processed CandidateStops 

algorithm ............................................................................................................................................... 62 

Table 5.7 Boxplot statistics of pre-processed Tmax values ...................................................................... 63 

Table 5.8 Boxplot statistics of top five threshold combinations of MBGP algorithm .......................... 64 

Table 5.9 Boxplot statistics of top five threshold combinations of post-processed MBGP algorithm .. 65 

Table 5.10 Boxplot statistics of different test sets of MBGP algorithm [Tmin = 900 s] .......................... 66 

Table 5.11 Boxplot statistics of different test sets of post-processed MBGP algorithm [Tmin = 900 s]. 67 

Table 5.12 Boxplot statistics of different test sets of MBGP algorithm [Tmin = 2100 s] ....................... 68 

Table 5.13 Boxplot statistics of different test sets of post-processed MBGP algorithm [Tmin = 2100 s]69 

Table 5.14 Boxplot statistics of shape index values of different test sets of MBGP algorithm 

[Tmin = 900 s] ......................................................................................................................................... 70 

Table 5.15 Boxplot statistics of shape index values of different test sets of post-processed MBGP 

algorithm [Tmin = 900 s] ......................................................................................................................... 71 

Table 5.16 Boxplot statistics of shape index values of different test sets of MBGP algorithm 

[Tmin = 2100 s] ....................................................................................................................................... 72 



List of Tables  

 

 

Department of Geography, University of Zurich  Page v 

 

Table 5.17 Boxplot statistics of shape index values of different test sets of post-processed MBGP 

algorithm [Tmin = 2100 s] ....................................................................................................................... 73 

Table 5.18 Boxplot statistics of POSMIT algorithm ............................................................................. 75 

Table 5.19 Boxplot statistics of post-processed POSMIT algorithm .................................................... 76 

Table 5.20 Boxplot statistics of different test sets of POSMIT algorithm ............................................ 77 

Table 5.21 Boxplot statistics of different test sets of post-processed POSMIT algorithm .................... 78 

Table 5.22 Boxplot statistics of shape index values of different test sets of POSMIT algorithm ......... 79 

Table 5.23 Boxplot statistics of SOC algorithm .................................................................................... 81 

Table 5.24 Boxplot statistics of post-processed SOC algorithm ........................................................... 82 

Table 5.25 Boxplot statistics of different test sets of SOC algorithm ................................................... 83 

Table 5.26 Boxplot statistics of different test sets of post-processed SOC algorithm........................... 83 

Table 5.27 Boxplot statistics of shape index values of different test sets of SOC algorithm ................ 84 

Table 5.28 Boxplot statistics of shape index values of different test sets of post-processed SOC algorithm

 ............................................................................................................................................................... 85 

Table 5.29 Boxplot statistics of F-measures calculated based on manually labelled ground truth (man.)

 ............................................................................................................................................................... 86 

Table 5.30 Boxplot statistics of F-measures calculated based on replaced ground truth (prob.) .......... 87 

Table 5.31 Confusion matrix (true positives (TP), false negatives (FN), and false positives (FP)) of 

pre-processed data ................................................................................................................................. 88 

Table 5.32 Confusion matrix (true positives (TP), false negatives (FN), and false positives (FP)) of 

post-processed data ................................................................................................................................ 90 

Table 5.33 Overview of variance and average number of stops per day ............................................... 91 

Table 5.34 Average algorithm running time per data frame ................................................................. 91 

Table 5.35 Result overview of the four algorithms ............................................................................... 92 

  



List of Algorithms  

 

 

Department of Geography, University of Zurich  Page vi 

 

List of Algorithms 

Algorithm 4.1 Pseudo Code of CandidateStops Algorithm (modified from Nogueira, Braga and 

Martin, 2014:105) .................................................................................................................................. 43 

Algorithm 4.2 Pseudo Code of MBGP Algorithm (modified from Montoliu, Blom and 

Gatica-Perez, 2013:190) ........................................................................................................................ 44 

Algorithm 4.3 Pseudo Code of POSMIT Algorithm (modified from Bermingham, 2018:111) ........... 46 

Algorithm 4.4 Pseudo Code of SOC Algorithm (modified from Xiang, Gao and Wu, 2016:8) ........... 48 

 



List of Abbreviations  

 

 

Department of Geography, University of Zurich  Page vii 

 

List of Abbreviations 

B 

BIRCH   Balanced Iterative Reducing and Clustering using Hierarchies 

 

C 

C-DBSCAN  Constrained Density-Based Spatial Clustering of Applications with Noise 

CB-SMoT  Clustering-Based Stops and Moves of Trajectories 

CLAR   Collaborative Location and Activity Recommendation 

 

D 

DBSCAN  Density-Based Spatial Clustering of Applications with Noise 

DB-SMoT  Direction-Based Stops and Moves of Trajectories 

DCC   Direction Change Coefficient 

 

E 

EAR   Electronically Activated Recorder 

 

G 

GPS   Global Positioning System 

 

H 

HDOP   Horizontal Dilution of Precision 

 

I 

IMU   Inertial Measurement Unit 

 

 

 



List of Abbreviations  

 

 

Department of Geography, University of Zurich  Page viii 

 

M 

MI   Moment of Inertia 

MOASIS  MObility, Activity and Social Interaction Study 

MSN   Move-Stop-Noise 

 

O 

OPTICS  Ordering Points to Identify the Clustering Structure 

 

P 

P-DBSCAN Pre-Processing and post-processing techniques that are used in combination 

with an unmodified version of DBSCAN 

PIE   Point-of-Interest Extraction 

POLOI   Polygon-of-Interest 

POSMIT  Probability of Stops and Moves in Trajectories 

 

S 

SMoT   Stops and Moves of Trajectories 

SOC   Sequence Oriented Clustering 

STC-SMoT  SpatioTemporal Clustering-based Stops and Moves of Trajectories 

 

T 

TDBC   Time and Distance Based Clustering 

TOSCA  TwO-Steps parameter free Clustering Algorithm 

TraClus  Trajectory Clustering 

TrajDBSCAN  Trajectory Density-Based Spatial Clustering of Applications with Noise 

 

V 

VDOP   Vertical Dilution of Precision 



Introduction  

 

 

Department of Geography, University of Zurich   Page 1 

 

1 Introduction 

An aging demographic was estimated by looking at the current development of the Swiss population 

(Swiss Confederation, 2016). To cope with the potential high demand of healthcare services, the Swiss 

healthcare system has to manage its capacities in order to deal with the older population (ibid.). More 

importantly, it is imperative to promote healthy aging (WHO, 2017). There are many aspects of healthy 

aging including physical/social activity, and cognitive well-being, as well as their interactions (Bereuter, 

Fillekes and Weibel, 2016). For instance, physical activity has a positive impact on the cognitive 

function of older adults1 (Voelcker-Rehage, Godde and Staudinger, 2011). The real-life assessments 

using advanced sensors and mobile devices have enabled examining the relationship between spatial 

use, physical and social activity and cognitive well-being beyond laboratory settings (Bereuter, Fillekes 

and Weibel, 2016).  

The interdisciplinary MObility, Activity and Social Interaction Study (MOASIS) research project was 

conducted at the University of Zurich. Over a period of 30 days, data on individual-level mobility, 

physical activity, and cognitive status from the everyday lives of older adults from German-speaking 

Switzerland were collected by using a wearable device, uTrail, equipped with mobile sensors 

(e.g., global positioning system (GPS), accelerometer) and an audio recorder (Bereuter, Fillekes and 

Weibel, 2016; Fillekes, Röcke, et al., 2019).  

Measuring the individual-level mobility in geographic space by GPS is useful to understand the healthy 

aging of older adults, as there is a relationship between the basic human need of physical movement and 

mobility. However, this need can often not be satisfied due to environmental barriers to mobility, which 

can lead to a decline in older adults’ mobility (Rantanen, 2013). This also limits their social activity and 

prevents older adults from using public transport, which is mainly seen as main driver of physical 

activity (Chaix et al., 2019).  To investigate the influence of environmental barriers on mobility and thus 

on healthy ageing, GPS is often used as an efficient and cost-effective source of data (Hirsch et al., 

2014; Chaix et al., 2019). 

To extract meaningful information on daily mobility and activities from collected raw trajectory data 

(e.g., GPS), it is critical to design automatic pre-processing methods including outlier removal, 

stop-move detection, and semantic enrichment (Zheng, 2015). Particularly, stop-move detection 

algorithms are known to play a significant role in determining the number of activity locations and the 

degree of mobility (Fillekes, Kim, et al., 2019; Fillekes, Röcke, et al., 2019). Therefore, it is important 

to detect stops and moves in trajectories correctly, otherwise, the results of the analysis of the 

individual’s mobility level could be distorted. Wrong outcomes (e.g., distorted travel distances), in turn, 

 
1 The term “older adults” describes people above retirement age (which is around 65 years in Switzerland). 
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would lead to the drawing of false conclusions about the older adults’ state of health and could make 

planning processes inefficient or counterproductive.  

Apart from health planning processes, detecting stops in the trajectories of older adults correctly is also 

useful in urban and facility planning as older adults have different mobility patterns than younger people. 

According to Marcum (2013), older adults spend less time travelling and communicating compared to 

younger people. Instead, they spend their time on individual activities, such as doing housework. The 

reason for this is that younger people tend to have bigger and more diverse social networks than older 

adults, as they usually live in multi-person households and travel more among people because of work 

or education (Marcum, 2013). When we know where older adults make stops, public places could be 

adapted to their needs such as building escalators instead of stairs in public areas, positioning 

defibrillators, creating green areas, or placing benches to recover on the way. 

1.1 Problem Statement 

Until now, discrepancies exist between the error-prone GPS data collected by smart phones and the 

requirement of accurate fine-scale estimates of trajectories (Li et al., 2019). Therefore, the trajectory 

reconstruction from GPS data (e.g., stop-move detection) is of substantial importance in trajectory data 

analysis. Depending on the stop-move detection algorithm used, automatically detected stops and moves 

may vary, yielding various mobility patterns and performances in estimation accuracy. Hence, it is 

necessary to be aware of the impact of selected algorithms on the accuracy and uncertainties of mobility 

lifelines by the comparison and evaluation of those algorithms. However, there is a lack of systematic 

evaluation criteria and profound comparison of the different algorithms in literature.  

Selecting a stop-move detection algorithm involves decision making on various aspects of the algorithm: 

1) optimal parameter setting, 2) consideration of missing data, and 3) robustness of results to the input 

parameters.  

First, different algorithms have different parameters and optimal thresholds. There is still need for more 

studies on finding the optimal thresholds of a stop-move detection algorithm. One example is the recent 

research of Fillekes, Kim, et al. (2019). They performed a sensitivity analysis on the parameter 

thresholds for the stop-move detection algorithm proposed by Montoliu, Blom and Gatica-Perez (2013).  

Second, only few algorithms consider a missing data problem. Informed selection of stop-move 

detection algorithms optimized for the data could make research more reliable and reduce interpreting 

false correlations.  

Third, according to Xiang, Gao and Wu (2016), the existing research on trajectory data has mainly 

focused on data management, data mining, and query techniques but neglects the impact of algorithms 

and parameters on the results (ibid.). Algorithms should be selected that are the least sensitive (i.e., more 
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robust)2 to data size and input parameters, as well as most accurate. The low sensitivity to the input data 

size is important because, even within the same dataset, the data size of each individual or each day may 

vary due to behavioural fluctuations or sensor types or amount of time spent in-/outdoors, and overly 

sensitive algorithms will yield inconsistent results of detected stops and moves. Algorithms that are 

robust to the input parameters can potentially serve less experienced researchers even without profound 

background knowledge and it may simplify the pre-evaluation of the sensitivity of candidate algorithms 

thanks to expected consistency by nature.   

1.2 Research Questions 

The aim of this thesis is to review and compare stop-move detection algorithms for GPS data collected 

from the healthy aging research project to analyse the mobility patterns of older adults from a spatial 

and temporal perspective. The focus of this thesis is an analysis of stop-move detection algorithms based 

on a profound literature-based overview. Based on these findings, four algorithms are selected, 

compared, evaluated, and implemented in the programming language R. The goal is to find out which 

of these algorithms suit the specific MOASIS dataset the best. For doing so, it is important to compare 

the advantages and disadvantages of the algorithms and learn about their different input parameters. In 

the thesis, the following research questions (RQ) will be addressed at both conceptual and analytical 

levels:  

1.2.1 RQs at a Conceptual Level 

RQ1: What are the conceptual criteria to evaluate the stop-move detection algorithms? 

This research question is a conceptual question and will mainly be answered through a literature review. 

According to Braune, Besecke and Kruse (2015), there will hardly be an algorithm that completely 

fulfils all of these criteria.  

RQ2: Which evaluation measure should be used to compare the stop-move detection algorithms? 

This question will be answered through a literature review as well. It is expected that sensitivity can be 

measured based on shape, precision, and the average number and variance of stops per day.  

 

 
2 Robustness meaning in this thesis: the algorithms’ consistency is independent of the size of the input dataset and the 

selected parameters. 
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1.2.2 RQs at an Analytical Level 

RQ3: To what extent do spatial and temporal parameters affect the results of detected stops and 

moves? How sensitive are the algorithms to the number of input data points, speed variation, 

temporal sampling interval, and data quality? 

The three types of parameters that use spatial, directional, and temporal traits of movements are used in 

most of the stop-move detection algorithms, as stated by Zadeh Monajjemi (2013). Previous studies 

have found that different algorithms perform differently to those input parameters and the number of 

input data points. Bermingham and Lee (2018) concluded that the probability-based algorithms’ results 

are less sensitive to changes in the spatial parameter than grid-based and density-based algorithms are 

to their respective spatial parameters. The probability-based algorithms were also less sensitive to the 

number of input data points (ibid.). Hence, the following three hypotheses are drawn. 

H3-1: The detection results of the probability-based algorithms are less sensitive to changes in spatial 

parameters for the specific MOASIS dataset than for grid- or density-based algorithms. 

H3-2: The probability-based algorithms perform better than the other algorithms when the sampling 

rate is bigger than 1 s.  

H3-3: The detection results of density-based algorithms using a minimum stop duration threshold are 

most sensitive to temporal input parameters as setting the optimal duration threshold is not 

trivial (Gong et al., 2015). 

RQ4: How do spatial, temporal and geometric characteristics of detected stops and moves vary 

depending on the applied algorithms?  

Detected stops are often characterized as regions where the data points are spatially denser than during 

periods of movement (Nogueira, Martin and Andrade, 2017). This density and other characteristics of 

the detected stops change depending on the applied algorithm. Some algorithms only seek for core 

sequences of the stop cluster and have to fulfil many criteria in order to detect a stop, other algorithms 

adopt fewer or relaxed criteria to decide whether a data point belongs to the stop or move cluster 

(Nogueira, Braga and Martin, 2014; Xiang, Gao and Wu, 2016). This leads to the following hypotheses 

regarding selected algorithms and the characteristics of detected stops.  

H4-1: The spatial extent varies between the applied algorithms with respect to shape, size, and spatial 

extent. A stop can be classified as an area or as multiple smaller points. Since a high resolution 

of detected stops is anticipated to occur, especially without post-processing the results, the 

algorithms are expected to find smaller stop points instead of one bigger area. Therefore, all 

algorithms will deliver more false positives than false negatives when compared to the ground 

truth. 
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H4-2: The density-based algorithms deliver most compact stops for the specific MOASIS dataset 

due to their ability to build clusters of contiguous data points that are close to each other in 

space and time (Bermingham and Lee, 2018).  

H4-3: The least compact stops result from the geography-based algorithms as they use predefined 

geographic geometries to detect stops (Bermingham and Lee, 2018). Hence, it can be assumed 

that indoor movements, for instance, in a building will not be detected easily. 

1.3 Thesis Structure 

The main part of this thesis is divided into seven chapters. Chapter 2 first explains the theoretical 

background and then presents the relevant literature for this project. The first part deals with the concept 

of trajectories and their properties (e.g., path characteristics) in general as well as with the concept of 

trajectory segmentation and the definitions of the basic terms (e.g., stop and moves). In the second part 

of this chapter, existing stop-move detection algorithms as well as their grouping schemes are described. 

Chapter 3 presents the MOASIS data, which are the basis for this project. In Chapter 4, the 

methodological framework is presented in three steps and the procedure of this project is explained in 

detail. This chapter contains the methods that are necessary to evaluate the implemented stop-move 

detection algorithms introduced in Chapter 2. Chapter 5 then presents the results of analysis and 

evaluation of the algorithms. In Chapter 6, the results are discussed in response to the research questions 

proposed in Chapter 1. Chapter 7 draws a conclusion and further research approaches are proposed.  
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2 Theoretical Background and Framework 

Individuals change their spatial location over time. This can be seen as a fundamental characteristic of 

life and is driven by processes that operate across multiple temporal and spatial scales (Nathan et al., 

2008). These processes can be explored through movement research to get a detailed view of individual 

movement (ibid.). Traditional methods for getting an insight into the movement behaviour of individuals 

(i.e., direct observations, interviews, and diaries) are put into question in terms of reliability, compliance, 

reproducibility, and recall. With the use of GPS devices, individuals’ movements can be quantified with 

compensating the disadvantages of the traditional approaches (Vazquez-Prokopec et al., 2009). GPS 

devices record the individuals’ personal raw movement track data that typically consist of 

spatiotemporal points p = (x, y, t) (Parent et al., 2013; Zheng, 2015; Zhang, Wang and Huang, 2019). 

Depending on the GPS device, additional data (e.g., speed, acceleration, rotation, and direction) could 

supplement the spatiotemporal point data (Parent et al., 2013).   

2.1 Trajectories 

Since raw data usually includes outliers and noise, many applications are not interested in analysing the 

entire quantities of unprocessed raw data. Therefore, often only the meaningful movements are extracted 

through pre-processing (Parent et al., 2013). According to Parent et al. (2013), these segments are called 

trajectories (see Figure 2.1). Each trajectory contains two specific positions of the movement track, 

meaning the Begin (individuals’ first position) and End (individuals’ last position) of the 

trajectory (ibid.). 

 

Figure 2.1 Movement track (dotted line) with extracted trajectories (from Parent et al., 2013:4) 

Bermingham (2018) refines the trajectory definition as stated in Parent et al. (2013) and distinguishes 

between spatial trajectories and spatiotemporal trajectories. Spatial trajectories contain the minimal 

amount of information that a movement track can have (i.e., a list of spatial entries, meaning 

spatial/geographic coordinates, X and Y) as shown in Equation 2.1 (Bermingham, 2018).  

 𝑇𝑠𝑝𝑎𝑡𝑖𝑎𝑙 = {𝑋1, 𝑌1}, . . . , {𝑋𝑛, 𝑌𝑛} (2.1) 
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Alongside this spatial information, many other attributes are typically recorded quite often (ibid.). In 

many recordings, timestamps can be found. These trajectories, that incorporate spatial (X and Y) as well 

as temporal information (t) are called spatiotemporal trajectories (see Equation 2.2) (ibid.).  

 𝑇𝑠𝑝𝑎𝑡𝑖𝑜𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 = {𝑋1, 𝑌1, 𝑡1}, . . . , {𝑋𝑛, 𝑌𝑛, 𝑡𝑛} (2.2) 

However, spatiotemporal trajectories are complex structured data and are difficult to handle efficiently 

(Damiani and Hachem, 2017). Even simple operations (e.g., range and spatiotemporal join queries) are 

often computationally costly. Hence, the efficient access of spatial trajectory data needs to be further 

researched (ibid.). Especially when the knowledge granule is not the spatiotemporal coordinates itself, 

but rather the individuals’ behaviour in time, efficient data handling is of importance. The extracted 

information encoded into a semantic form reduces the size of the dataset and makes accessing relevant 

information of the summarized spatial trajectory easier (ibid.). Resulting out of this approach, the notion 

semantic trajectory has become popular in recent times (Parent et al., 2013; Damiani and Hachem, 

2017). Semantic trajectories represent the time-varying behavioural information of single individuals 

(see Figure 2.2) (Damiani and Hachem, 2017). 

 

Figure 2.2 Example of a semantic trajectory (from Bermingham, 2018:3) 

The concept of adding knowledge to trajectories is called semantic enrichment process (Parent et al., 

2013). Parent et al. (2013) define additional data that are attached to subparts of a trajectory or the 

trajectory as a whole, as annotations (a) (see Equation 2.3).  

 𝑇𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐 = {𝑋1, 𝑌1, 𝑡1, 𝑎1}, . . . , {𝑋𝑛, 𝑌𝑛, 𝑡𝑛, 𝑎𝑛} (2.3) 

Annotation values can be either an attribute value, a link to an object in the contextual data repository, 

or a complex value composed of attribute values and links to objects (Parent et al., 2013). There are 
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several ways of capturing annotation values. They are usually captured by observers and sensors, 

computed from raw data, or extracted from contextual data (ibid.). 

2.1.1 Stop Characteristics 

A stop point stands for a visited location (X,Y) where a person arrived at a specific time (tstart) and left at 

another time (tend) as Equation 2.4 shows (Fu et al., 2016).  

 𝑃𝑠𝑡𝑜𝑝 = {𝑋, 𝑌, 𝑡𝑠𝑡𝑎𝑟𝑡 , 𝑡𝑒𝑛𝑑} (2.4) 

Fu et al. (2016) distinguish between three types of stops as can be seen in Figure 2.3. The first type of 

stop is mostly the end or start point of each trajectory. Fu et al. (2016) argue that GPS data collection 

mostly starts from a location that a person leaves (e.g., leaving home) and ends in a position that is 

without a signal for a long time (e.g., arriving home). However, the end of a trajectory does not always 

have to indicate a stop. A trajectory may end up with other factors, such as a low battery (Fu et al., 

2016). The second type of stop is a spatiotemporal cluster of GPS points that appears when a person 

stays in one place for a long time without losing the GPS signal (ibid.). The third type of stop occurs 

when a person stays in a region where the GPS signal is lost due to buildings or barriers (ibid.). 

 

Figure 2.3 Stop and location extraction from trajectories (from Fu et al., 2016:3) 

When the stop points are clustered, a group of location points that are frequently visited by a person can 

be detected. Tran et al. (2011) distinguish between shared and personalized location points. Shared stops 

are location points where many different moving objects pass by and stay for a while such as public 

places. Personalized stops, on the other hand, are individual places where mostly only a few moving 

objects stop as, for example, the home of a tracked person (Tran et al., 2011).  

Furthermore, there is differentiation between generic stops and concrete stops in terms of the stop 

characteristics; this is useful because determining the suitable stop size often is difficult, as the 
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granularity (i.e., spatial scale) of the stops can differ (ibid.). Generic stops can be defined as more general 

stops – e.g., a shopping mall as opposed to the individual stores a person visited (ibid.). In such an 

example, concrete stops are the individual shops or restaurants in the shopping centre, indicating more 

specific and small-scale stops. Tran et al. (2011) state that most applications require the knowledge 

about concrete stops instead of generic ones. The authors therefore suggest splitting large stops into 

smaller, more concrete ones. As Figure 2.4 shows, this idea can be visualised through a tree-based stop 

hierarchy. 

 

Figure 2.4 Concept of hierarchical stops (from Tran et al., 2011:2) 

As seen in Figure 2.4, the stops in level 2 are more generic ones and contain more aggregated 

information on the potential stops, whereas the stops in lower level 1 are in small size and contain 

spatially higher-resolution information on the stops.  

Besides the spatial extent of a stop, a stop can also be characterised by its level of motion. A stop 

(i.e., nearly absence of motion) is characterized by a velocity less than 1 m/s (Nogueira, Braga and 

Martin, 2014). This threshold may serve as a good approximation, but it has to be adapted depending on 

the mode of transportation (ibid.).  

To not only get information on the stops themselves but also on how they are connected and in what 

frequency they are visited, it is also important to take into account the parts in between two stops: the 

moves (Fu et al., 2016).  

2.1.2 Movement Patterns 

In general, moving objects can be defined as entities whose geometric attributes or positions change 

over time. Nogueira, Braga and Martin (2014) characterize steady human motion with velocity greater 

than 1 m/s and acceleration values between -0.3 m/s2 and 0.3 m/s2. If the velocity increases and 

acceleration is less than -0.3 m/s2, negative acceleration happens whereas positive acceleration happens 

when the acceleration is greater than 0.3 m/s2 at a higher velocity than 1 m/s. Hence, movement is a 
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change of position when considered as physical phenomenon (ibid.). Dodge, Weibel and Lautenschütz 

(2008) propose a conceptual framework of movement as visualised in Table 2.1. There are three major 

groups of movement parameters: primitive parameters, primary derivates, and secondary derivates 

(Dodge, Weibel and Lautenschütz, 2008). The primary derivates and secondary derivates can be 

summarized under the generic term derived parameters. The parameters have spatial, temporal, and 

spatiotemporal dimensions (ibid.).  

As Table 2.1 shows, the temporal dimension of primitive parameters consists of instance, a point in 

time, and interval, a temporal sampling rate. Several derived parameters can be defined from the 

primitive parameters. A direct function of position are distance, direction, and spatial extent which can 

be assigned to the group of primary derivatives (ibid.). Duration consists of at least one time interval 

and is defined as a period of time in which a movement is observed. The space and time dimensions can 

be directly derived from spatial positions and time instances and consist of speed and velocity (ibid.). 

The speed is defined as “rate of change of the object’s position” and the velocity is defined as “rate of 

change of position and direction” (Dodge, Weibel and Lautenschütz, 2008:3). Higher-order movement 

parameters grouped into the secondary derivates can be derived from primary derivates. Besides 

defining movement parameters in an absolute sense, defining them in a relative sense (i.e., an object’s 

movement relative to the movement of otherer moving objects) is also preferable when at least two 

moving objects are to be analysed (ibid.). 

Table 2.1 Parameters of movement (modified from Dodge, Weibel and Lautenschütz, 2008:243) 

Parameters 

Dimension  Primitive Primary derivatives Secondary derivatives 

Spatial 
Position 

(x,y) 

Distance 𝑓(𝑝𝑜𝑠𝑛) Spatial distribution 𝑓(𝑑𝑖𝑠𝑡) 

Direction 𝑓(𝑝𝑜𝑠𝑛) Change of direction 𝑓(𝑑𝑖𝑟) 

Spatial Extent 𝑓(𝑝𝑜𝑠𝑛) Sinuosity 𝑓(𝑑𝑖𝑠𝑡) 

Temporal 
Instance (t) Duration 𝑓(𝑡) Temporal distribution 

Interval (t) Travel time 𝑓(𝑡) Change of duration 𝑓(𝑑𝑢𝑟) 

Spatiotemporal (x,y,t) - 
Speed 𝑓(𝑥, 𝑦, 𝑡) Acceleration 𝑓(𝑠𝑝𝑒𝑒𝑑) 

Velocity 𝑓(𝑥, 𝑦, 𝑡) Approaching rate 

In terms of the nature of movement, human beings share some parallels with, but also show 

discrepancies to others. According to Marcum (2013), older adults have smaller, less diverse, and more 

family-centric networks than younger people. These movements can take place at different temporal and 

spatial scales (Dodge, Weibel and Lautenschütz, 2008). In movement pattern analysis, scale plays an 

important role. The spatial scale of a movement can range from a very local scale (e.g., movements at 

home) to a global scale (e.g., movements with airplanes). The temporal scale can range from a very 
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short-term behaviour to a long-term one (ibid.). Marcum (2013) emphasises that time use especially 

differs between older and younger people. As older adults need more privacy in order to perform 

personal care activities, they tend to spend less time with others (Marcum, 2013). Furthermore, older 

adults might have fewer work and family obligations and are therefore in a different structural position 

than younger people. This means that older adults have more leisure time and usually cannot sleep 

through the night. Consequently, they need more time to rest during the day, whereas younger people 

have more daily routines (e.g., time at work) and have less time for daytime naps (ibid.). However, 

studies showed that older adults should stay in contact with others as it is important for staying healthy. 

In other aspects, time use does not change with age as a work-by-day, sleep-by-night pattern is what 

people tend to strive for (ibid.).  

As the cycle of daily life (e.g., wake up in the morning, eat, brushing teeth) becomes standardized over 

time, it is still part of the time budgets of older adults, although some factors (e.g., work) lead to 

age-associated changes (ibid.). Hence, movement patterns of older adults tend to concentrate mostly 

around their home location, as the top three leisure activities for older people are television watching, 

reading, and reflecting alone (ibid.).  

2.2 Trajectory Pre-processing 

In many scenarios, such as trajectory clustering and classification, trajectories need to be divided into 

segments for further processes (Zheng, 2015). This fundamental step of many trajectory data mining 

tasks is called trajectory pre-processing (see Figure 2.5).  

 

Figure 2.5 Trajectory data mining (modified from Zheng, 2015:2) 

Trajectory pre-processing includes (amongst others) four parts: Map-Matching, Compression, Noise 

Filtering, and Segmentation (Zheng, 2015).  
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2.2.1 Map-Matching 

The process that converts a sequence of raw latitude and longitude coordinates to a sequence of road 

segments is called map-matching (Zheng, 2015). Map-matching methods can be classified based on the 

additional information used, or the range of sampling points considered in a trajectory (ibid.).  

The first classifying approach using the additional information can be divided into four groups: 

geometric, topological, probabilistic, and other advanced techniques (ibid.). Geometric map-matching 

algorithms take into account the shape of a road network’s individual connections (e.g., adapting a GPS 

point to the nearest road). Topological algorithms consider the road network’s connectivity of a road 

network (ibid.). To deal with noisy and low-sampled trajectories, probabilistic algorithms explicitly pay 

attention to GPS noise and consider several possible paths through the road network to find the best one 

(ibid.). There are more advanced map-matching algorithms that consider both the road network’s 

topology and the trajectory data’s noise. These algorithms find a sequence of road sections that 

simultaneously approximate the noisy trajectory data and form a route through the road network (ibid.). 

The second classifying approach, the range of the sampling points considered, can be divided into two 

categories: local/incremental and global methods (ibid.). The local/incremental algorithms follow a 

greedy strategy to sequentially extend the solution from an already adapted part. Based on distance and 

orientation similarity, these methods try to find a local optimal point (ibid.). The local/incremental 

methods run very efficiently, often used in online applications. However, if the sampling rate of a 

trajectory is low, the matching accuracy deteriorates. As an alternative, global methods aim at matching 

an entire trajectory with a road network, e.g., by considering the successors and predecessors of a 

point (ibid.). Global methods are more accurate, but less efficient than local methods, and therefore 

usually used for offline tasks, meaning where entire trajectories have already been generated 

(e.g., mining of common trajectory patterns) (ibid.).  

This map-matching approach is especially important for research concerning traffic flow, guiding a 

vehicle’s navigation, or predicting where a vehicle is going (ibid.). Therefore, knowing about which 

road a vehicle was on is important. However, parallel roads, overpasses, and spurs can make 

map-matching a complex problem (Krumm, 2011 in Zheng, 2015). 

2.2.2 Compression 

With GPS-equipped devices, timestamped geographical coordinates can be recorded every second for a 

moving object. Unfortunately, that costs a lot of battery power and needs a lot of data storage. Also, 

many applications do not really require such spatial accuracy (Zheng, 2015). To solve this problem, two 

categories of trajectory compression strategies based on the shape of a trajectory have been proposed: 

offline compression and online compression (ibid.). These strategies aim to reduce the size of a 

trajectory without compromising the precision of the new data representation (Lee and Krumm, 2011 in 
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Zheng, 2015). Offline compression, or batch mode, reduces the size of the trajectory after the trajectory 

has been generated completely. Online compression compresses a trajectory immediately as an object 

moves (Zheng, 2015). 

2.2.3 Noise Filtering 

Due to sensor noise and other factors (e.g., poor GPS signals in urban environments), spatial trajectories 

are never entirely accurate (Zheng, 2015). Sometimes the error is acceptable because it can be fixed with 

map-matching methods (e.g., some GPS points do not perfectly fit the road the vehicle drove on). In 

other scenarios, the error of a noise point is too large, because, for example, it is several hundred meters 

away from its actual position. In this case, useful information such as driving speed cannot be derived 

(ibid.). Therefore, such noise points have to be filtered out of the trajectories before a mining task can 

be performed. The existing methods can be divided into the three main categories: mean (or median) 

filter, Kalman and particle filters, and heuristic-based outlier detection (ibid.).  

The mean (or median) filter in a way smooths the trajectory as it replaces each value with the mean (or 

median) of a fixed amount of data points (Zheng, 2015). It can be seen as a sliding window. For handling 

extreme errors, the median filter seems to be more robust than the mean filter (ibid.). 

For the Kalman filter method, the data are expressed as a state space model (Park et al., 2019). To this 

model, probabilistic estimations are applied in order to estimate the sensor values. The Kalman filter 

requires a measurement noise variance as input parameter (ibid.). However, as the sensor data are rather 

complex, acquiring the detailed noise information is difficult and can lead to a poor filtering 

performance (ibid.). 

The heuristic-based outlier detection methods do not aim to replace the trajectory values. Instead, they 

directly remove the noise points from the trajectories (Zheng, 2015). As an example, removing speed 

outliers in GPS data of older adults by setting a speed-threshold that must not exceed the speed value of 

the fastest high-speed train (e.g., 330 km/h in Germany), which is used by Fillekes, Kim, et al. (2019). 

2.2.4 Segmentation 

Through segmentation, the computational complexity can be reduced. Segmentation further allows us 

to mine richer knowledge from which we can learn more than from an entire trajectory (Zheng, 2015). 

The segmentation methods can be grouped into two categories: attribute-driven and pattern-driven 

(Damiani and Hachem, 2017).  

2.2.4.1 Attribute-Driven Segmentation 

Attribute-driven segmentation partitions a spatial trajectory in a minimum number of segments. The 

goal is that movements inside this trajectory are nearly uniform with respect to some condition on 
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movement attributes (Damiani and Hachem, 2017). The segmentation criteria can be divided into the 

three categories: application specific, monotone, and non-monotone (ibid.). 

Application specific criteria are criteria which have been selected according to the requirements of a 

specific task (ibid.). Instead of defining criteria on an ad-hoc basis, monotone criteria are defined in a 

more general model. A monotone criterion is granted, if any sub-trajectory that is based on a given 

criterion (e.g., speed < 50 km/h) of a sub-trajectory is sure to follow the given criterion (ibid.). 

Segmentation techniques meeting monotone criteria can be computed efficiently. A non-monotone 

criterion is granted, if a further criterion is added to build a sub-trajectory (e.g., speed < 50 km/h for at 

least 5 hours) and it cannot be assumed that every sub-trajectory of the sub-trajectory fulfils this second 

criterion (ibid.). Due to outliers causing incorrect breakpoints not all criteria of practical interest can be 

implemented using monotone segmentation criteria. Therefore, a theoretical framework based on 

non-monotone segmentation criteria has been introduced by Aronov et al. (2015). However, the 

trajectory segmentation using non-monotone criteria is more computationally complex (Aronov et al., 

2015; Damiani and Hachem, 2017).  

2.2.4.2 Pattern-Driven Segmentation 

Pattern-driven segmentation methods are usually based on machine learning (Damiani and Hachem, 

2017). Particularly, the unsupervised segmentation methods including clustering are part of the 

pattern-driven segmentation. Clustering based segmentation techniques are often used for the detection 

of specific behaviours or patterns that can either be concentrated on specific domains (e.g., human 

mobility) or be generic (e.g., stop-move patterns) (ibid.). Stop and move patterns can be seen as an 

abstraction of an object’s mobility behaviour; in other words, stops and moves are essential for 

understanding the moving object’s mobility because it repeatedly stays somewhere for a while before 

moving somewhere further. Thus, stop-move pattern detection is essential in this thesis. 

2.3 Stop-Move Detection Algorithms 

Stop-move detection algorithms automatically identify stops and moves in trajectories and can have the 

following input parameters: spatial threshold, temporal threshold, directional threshold, geographic 

places, minimum number of points, and non-attribute related thresholds (Bermingham, 2018; 

Bermingham and Lee, 2018). Depending on the applied algorithm, the single or multiple parameters can 

be used. Further, there are multiple ways of grouping these algorithms. The algorithms can be grouped 

according to either core algorithmic procedures to detect stops or presumptions/requirements for the 

task and input data to apply the algorithm. 
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2.3.1 Classification Scheme 

Stop-move detection algorithms can be grouped into three categories in terms of characteristics of 

algorithms and predefined geographic objects: density-based, geography-based, and probability-based 

algorithms (Bermingham and Lee, 2018). In terms of how the geographic space is partitioned into 

subspaces (i.e., different geographic shapes), stop-move detection algorithms can be classified into 

grid-based and clustering-based (including density-based, centre-based, and hierarchical-based) 

algorithms (Guidotti, Trasarti and Nanni, 2015). Table 2.2 gives an overview of the algorithms that are 

classified according to two criteria: 1) core procedural characteristics of the algorithm and 2) the method 

of partitioning space into subspaces. The algorithms in the table are linked to their respective description.  

Table 2.2 Algorithm grouping scheme 
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Regarding the criterion based on core procedural characteristics, algorithms can be classified into 

1) density-based, 2) geography-based, and 3) probability-based algorithms.  

First, the density-based algorithms automatically build clusters of contiguous data points that are 

spatiotemporally next to each other. The non-clustered data points are labelled as moving, the clustered 

data points as stopping events of the trajectory (Bermingham and Lee, 2018).  

Second, the geography-based algorithms search for a subsequence of connecting trajectory entries that 

match with predefined geographic geometries (e.g., buildings, footpaths) to discover stops (ibid.). The 

other recordings outside those predefined geometries are not reasonable stop candidates and therefore 

not considered as stops. Further, a stop is only valid if the subsequence of connecting trajectory entries 

matches with the geometry for a minimum user-specified duration (ibid.).  

Third, probability-based stop-move detection algorithms were recently proposed by Bermingham and 

Lee (2018) as an additional category. These algorithms calculate the probability that the person truly 

stopped at a given data point.  

Based on an algorithm’s partitioning method for a study region, algorithms are categorized into 

1) grid-based and 2) clustering-based algorithms. First, the grid-based algorithms divide the space into 

cells of same size and aggregate the data points according to their density (Guidotti, Trasarti and Nanni, 

2015).  

Second, the clustering-based algorithms can be further divided into centre-based clustering methods, 

hierarchical clustering methods, and density-based clustering methods (ibid.). Centre-based clustering 

methods often split the entire set of location points into several groups that are loosely connected 

although they tend to correctly identify subgroups of observations that should belong to the same 

location (ibid.). In an opposite way, hierarchical-based clustering methods tend to spot the loose 

connections well but are not good at distinguishing those that are actually boundaries with other 

clusters (ibid.).  

2.3.2 Algorithm overview 

In literature, there exist numerous different algorithms. Some algorithms have many input parameters 

allowing more flexibility and fine-tuning, while adding more complexity. Other algorithms have a few 

input parameters which makes them not only tuneable, but also simpler to adjust.  

Therefore, Table 2.3 gives an overview of the algorithms grouped in Table 2.2. Algorithms 1-5 are based 

on the SMoT algorithm, algorithms 6-11 are based on the DBSCAN algorithm, algorithms 12-13 are 

based on OPTICS, algorithms 14-23 are variations of the algorithms mentioned in 1-13, and algorithms 

24-25 are grid-based algorithms. 
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Table 2.3 Overview of stop-move detection algorithms and their parameters 

# Name of stop-move detection Algorithm (Abbreviation)            Algorithm’s input parameters 

Description of the algorithm 

1 Stops and Moves of Trajectories (SMoT) T, set of geometries, tmin 

The SMoT algorithm verifies for each point of a GPS trajectory if it intersects the geometry of a 

manually selected candidate stop (e.g., buildings) (Alvares et al., 2007). If the duration of the 

intersection is at least equal to a given temporal threshold (tmin), the intersected candidate stop is 

considered as a stop (ibid.). However, stops that are not in the manually selected candidate stops 

are not detected (ibid.).  

2 Direction-Based Stops and Moves of Trajectories (DB-SMoT) T, tmin, dirmin, tolmax 

The DB-SMoT algorithm considers the direction as main threshold to find the clusters (dirmin) 

(Rocha et al., 2010). The algorithm further uses the parameters tmin and tolmax. The minimal amount 

of time to generate a cluster is represented by tmin whereas tolmax is the maximal tolerance to 

evaluate the variation of the direction (ibid.). The algorithm calculates the direction variation 

between every two points. In case the direction does not variate between two points, the maximal 

tolerance is checked in order to identify whether the point was noise or if the direction change has 

ended (ibid.). The points with enough direction variation are added to the cluster if they pass the 

minimal time duration constraint (ibid.).   

3 Clustering-Based Stops and Moves of Trajectories (CB-SMoT)  T, tmin, area, set of geometries 

The CB-SMoT algorithm is a clustering method that is based on the speed variation of the 

trajectory. First, the trajectory sample points are evaluated and then clustered in places where the 

trajectory speed is lower than a given speed threshold for a minimal amount of time (tmin ) (Rocha 

et al., 2010). However, the pairwise distance between two sample points should not be greater 

than a minimum distance (Bermingham and Lee, 2018). This minimum distance is a relative 

parameter calculated from the mean and standard deviation of distances between adjacent points 

in a trajectory (Palma et al., 2008).  

As an input, a value between 0 and 1 has to be set in order to compute the minimum distance 

parameter. This parameter (area) is the approximate proportion of points that generate potential 

stops in relation to the total amount of points (ibid.). Secondly, the clusters are matched with a set 

of relevant geographic places defined by the user. This algorithm is useful for applications, such 

as traffic management, where speed plays a major role (Rocha et al., 2010). 
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4 SpatioTemporal Clustering-based Stops and Moves of Trajectories (STC-SMoT)  T, SC, tmin 

The STC-SMoT detects spatiotemporal clusters regardless of the density (Hwang et al., 2018). It 

checks for the minimum stop duration (tmin) between spatiotemporal neighbours (ibid.). The set of 

points need to be temporally close and in a specific distance (Eps). Most of the cluster-based 

approaches select Eps independently of the recording interval of a GPS trajectory (ibid.). 

However, Eps should be small when the data is collected in small intervals (high frequency), and 

Eps should be large otherwise (i.e., large interval/low frequency). 

To solve this problem, Eps is calculated out of the product between SC and the interval, whereas 

SC is the constant that takes the relationship between interval and Eps (ibid.). In order to remove 

noise, the noise point is replaced by the most frequent value via a sliding window containing the 

three consecutive data points (ibid.). The STC-SMoT works well with sparse trajectory data. 

5  Stops and Moves of Trajectories+ (SMoT+)  T, IS, H 

SMoT+ can determine the relationships between hierarchies. If site A contains site B and point C 

is located at B, the algorithm recognises that C also has to be located at A (Moreno et al., 2014). 

The aforementioned SMoT algorithm does not take into account possible overlapping or nesting 

of geographic locations (ibid.). Using hierarchies, stops in nested regions would better express the 

semantics of the trajectories. Therefore, the SMoT+ algorithm should find stops in nested regions, 

such as regions that occur in other regions (ibid.). 

Finally, the total time of the stop per site is calculated. As input the algorithm uses a knowledge 

base that represents a hierarchy (H) of containment relationships between every interesting site 

from the set of interesting sites (IS) (ibid.). 

6 Density-Based Spatial Clustering of Applications with Noise (DBSCAN)  T, Eps, pmin 

With the DBSCAN algorithm data objects are clustered based on density (Karami and Johansson, 

2014). It builds clusters, meaning groups the points into regions in which the objects are densely 

distributed (ibid.). These dense regions are separated by regions where the object density is low. 

The algorithm is able to discriminate noise as well as to find clusters with arbitrary shape (ibid.). 

In the case of stop-move detection, the noise points are considered as moves (Gong et al., 2015). 

Besides the trajectory sample points (T), DBSCAN only requires two input parameters, the radius 

of the cluster (Eps) and the minimum number of points required in the cluster (pmin) (Karami and 

Johansson, 2014). If points have more neighbours than pmin, they are considered to be a core point 

of the cluster (Schubert et al., 2017). However, it is not easy to determine suitable values for pmin 

and Eps (Karami and Johansson, 2014). 
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7 Trajectory Density-Based Spatial Clustering of Applications with Noise (TrajDBSCAN)  

 T, Eps, tmin 

The TrajDBSCAN algorithm forms hierarchies of stop types: generic stops at large regions like 

public places, concrete stops at specific locations, personalised stops where only an individual 

stops, and shared stops where many individuals stop (Bermingham, 2018). 

The main goal of TrajDBSCAN is to find clusters in which all points inside are smaller than a 

given radius (Eps) and the duration staying at this place is greater than tmin (Tran et al., 2011). 

In contrast to the DBSCAN algorithm, TrajDBSCAN defines a temporal linear neighbourhood 

with a core point that is determined based on a minimal stop time (tmin) instead of using a minimal 

number of points (pmin) (Gong et al., 2015). 

8 Constrained Density-Based Spatial Clustering of Applications with Noise (C-DBSCAN)  

 T, Eps, pmin, DCCAP, PCTAP 

DBSCAN builds clusters without considering the temporal sequence of the points (Gong et al., 

2015). Consequently, the stop cluster could contain moving points or stops that happened to a later 

point in time. Furthermore, when the data is collected in small intervals, the DBSCAN algorithm 

fails to detect objects that are moving with a small speed (ibid.). In order to avoid the two errors, 

the C-DBSCAN algorithm fulfils two additional constraints.  

First of all, all points in a cluster should succeed one after another. In case of a sudden increase, 

the cluster will be divided into two different clusters (ibid.). If the pmin condition for each cluster 

is not fulfilled, the points will be labelled as moving. Otherwise, the potential stop cluster will be 

tested further. The percentage of abnormal points in a cluster (PCTAP) should not exceed a 

user-defined threshold (ibid.). Additionally, points in a stop cluster should have an even 

distribution of direction changes. Therefore, the direction change coefficient (DCC) should nearly 

always have a different value from 1. Points with a DCC value close to 1 can be assumed to 

represent movement (ibid.). These points are called abnormal points. DCCAP is used to imply the 

approximation to 1 (ibid.).  

If both constraints are fulfilled, the clusters are marked as stops (ibid.). 
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9 Pre-Processing and post-processing techniques that are used in combination with an 

unmodified version of DBSCAN (P-DBSCAN)  T, Eps, pmin, speed threshold, G 

The actual stop-move detection algorithm of this approach is based on the simple DBSCAN 

algorithm (Bermingham, 2018). Pre- and post-processing methods should refine the algorithm’s 

outcome. The pre-processing methods include the removal of outliers based on too high-speed 

entries and the interpolation between recording gaps within the trajectory (ibid.). For 

post-processing, the values are sampled from an odd-numbered fixed-size sliding window with 

grid cell size (G) and the entry labels within the window are homogenized based on the majority 

label (ibid.).  

10 SeqScan T, Eps, pmin, tmin 

SeqScan tries to solve the problem of noise in cluster-based methods (Damiani and Hachem, 

2017). It works well for trajectories of low-sampling rate GPS points and works based on the three 

input parameters distance (Eps), minimum points (pmin), and minimal time span (tmin) (Damiani, 

Issa and Cagnacci, 2014).  

The algorithm goes through three phases. First of all, it searches for minimal stay regions. In the 

search phase DBSCAN is used for clustering the data (ibid.). Then, the stay regions are expanded 

and if a new minimal stay region is found, the active stay region is finally closed. A stay region 

cannot be expanded anymore once it is closed (ibid.). 

11 Trajectory Clustering (TraClus)  T, L, lmin, Eps 

The TraClus algorithm consists of two phases 1) partitioning and 2) grouping (Lee, Han and 

Whang, 2007). For the first phase, the partitioning phase, a formal trajectory partitioning algorithm 

based on the minimum description length principle is developed (ibid.). Therefore, the first phase 

of the algorithm only needs the trajectory sample points (T) as input.  

The second phase, the grouping phase, is done by a density-based line-segment clustering 

algorithm. This algorithm is based on DBSCAN, but using line segments (L) instead of 

points (ibid.). 
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12 Ordering Points to Identify the Clustering Structure (OPTICS)  T, Eps, pmin 

In contrast to DBSCAN, OPTICS can handle clusters with different densities (Guidotti, Trasarti 

and Nanni, 2015). After ordering the points with respect to the distance function (i.e., spatially 

adjacent points follow each other closely), a value for each point can be determined (ibid.). This 

is the density value that a point needs in order to be accepted in a cluster. If these distances are 

plotted, the clusters form valleys and can thus be identified (ibid.). 

OPTICS orders the points by starting at any unprocessed point, determining the neighbours in the 

distance (Eps) and remembering them in a priority queue according to their best reachability 

distance so far (Ankerst et al., 1999). The point with the smallest reachability distance is always 

next in the order. By processing a new point, the reachability distances of the unprocessed points 

can improve (ibid.). OPTICS processes a detected cluster completely by sorting this priority queue 

before continuing with the next cluster (ibid). Further, the user has to define the minimum number 

of points (pmin) in the Eps-environment to determine the centre point of a cluster.   

13 StopFinder  T 

The StopFinder algorithm by Zimmermann, Kirste and Spiliopoulou (2009) is based on OPTICS. 

Their algorithm takes into account the speed of motion and the temporal neighbourhood of the 

data points based on elapsed time. Additionally, the approach includes a visualization utility that 

portrays both the motion and the duration of a stop (Zimmermann, Kirste and Spiliopoulou, 2009).  

The spatial parameter (Eps) and the temporal parameter (tmin) are estimated by the algorithm for 

specifying the spatial neighbourhoods. The values are approximated by averaging the respective 

values over the number of data points (ibid.).  

14 Simple stop detection algorithm  T, dmax, tmin 

The Simple stop detection algorithm searches for sub-trajectories where the distance between two 

points does not exceed the user-defined spatial threshold (dmax) and does not fall below a 

user-specified temporal threshold (tmin) (Bermingham, 2018). This requires a very precise 

parameter setting by the user. The points that fulfil these two constraints are clustered as stops; the 

others labelled as moves. 
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15 Novel kernel-based algorithm  T, Eps, tmin 

The algorithm proposed by Thierry, Chaix and Kestens (2013) uses the GPS points to build a 

kernel density surface instead of analysing the points sequentially. Local maxima are extracted 

from the kernel density surface and classified as periods of stay, meaning stops (Thierry, Chaix 

and Kestens, 2013). The algorithm requires one spatial and one temporal parameter. With the 

spatial parameter (Eps) the user defines the kernel bandwidth and with the temporal parameter 

(tmin) the user defines the minimum duration of a stop (ibid.). According to the authors, the 

smoothing effect of the kernel density estimations should reduce the susceptibility to noise. 

16 Sequence Oriented Clustering (SOC)  T, Eps, Tau, tmin, tmin 

The SOC algorithm allows to identify noise points in a stop sequence and to classify them as part 

of the stop. The algorithm computes a reachability distance for each point by scanning the 

trajectory in chronological order (Xiang, Gao and Wu, 2016). The reachability distance is defined 

by a spatial parameter (Eps) and a temporal parameter (Tau) (ibid.).  

The algorithm then extracts continuous points whose reachability distance does not exceed a given 

threshold (Eps). Stops are then computed from Eps-reachability sequences (ibid.). Furthermore, a 

minimum duration (tmin) for a stop and a move, respectively has to be defined by the user. During 

the process, sequences which are separated by noise points but spatially and temporally close are 

merged (ibid.). Finally, false positive stops are removed from the results (ibid.). 

17 TwO-Steps parameter free Clustering Algorithm (TOSCA)  T, cut-threshold 

TOSCA takes small clusters obtained from centre-based methods and tries to aggregate them via 

an iterative procedure like single linkage hierarchical clustering based on their medoids (Guidotti, 

Trasarti and Nanni, 2015). The aggregation is stopped when the effort of merging two clusters is 

much larger than the previous merges. However, determining the cut-threshold, meaning the 

precise moment, is a non-trivial issue (ibid.). 
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18 CandidateStops  T, vmin 

The CandidateStops algorithm is a statistical method that works by considering the sampling rate 

standard z-score (Nogueira, Braga and Martin, 2014). The metric indicates how far the sample is 

from the mean of the whole dataset. With this value, the candidate stops are identified based on 

the analysis of sampling rate and speed values (ibid.). Good position accuracy has to be assumed 

when applying this algorithm. For each point, the time difference between the current and previous 

point is considered. When the standard score of each element of different time is calculated, 

moments where the interval of time between the points lasts longer than normal can be determined 

(ibid.). Because a long-time gap could happen due to GPS signal loss, the speed (vmin) has to be 

considered as well. A decreasing speed can be assumed in case of a stop, whereas the speed stays 

the same during a GPS signal loss (ibid.). 

19 Stop detection algorithm by Montoliu, Blom and Gatica-Perez (MBGP) T, tmin, tmax, dmax 

The MBGP algorithm groups the points of the GPS trajectory using a time-based clustering 

technique. The parameter tmin represents the minimum duration between the points in order to 

count as a stop (Montoliu, Blom and Gatica-Perez, 2013). Further, the distance between the first 

GPS point of a stop cluster and the last GPS point of this cluster is measured. The diameter of this 

stop cluster must not be greater than a maximum distance (dmax) (ibid.). Finally, tmax represents the 

maximum allowed time gap between two recorded location points to be considered as a part of the 

same stop cluster. 

20 Point-of-Interest Extraction (PIE)  T, imax, Eps, tmin, dirmin, πmax, set of geometries, PPOLOI 

According to De Graaff, De By and De Keulen (2016) the PIE algorithm detects stop sequences, 

that are geographical regions where a user stayed for a minimal time (tmin) within a distance of 

Eps. The algorithm filters out the points that are too imprecise to do further calculations with 

(i.e., points where the inaccuracy value exceeds the accuracy threshold (imax)). Then, the stay 

points (i.e., centroids of stop sequences) are extracted and the direction change between the stay 

points is determined (De Graaff, De By and De Keulen, 2016). For that, the user has to define a 

minimum value for direction change (dirmin) (ibid.). With this it can be determined whether any 

stay point is really a visited spot or caused due to natural behaviour (e.g., traffic jam). Afterwards, 

the selected points are projected onto nearby polygons (a set of all existing polygons is also an 

input of the algorithm) by considering the maximum projection distance (πmax). 

Polygons-of-interest (POLOIs) are added to the result set of visited polygons. Due to the fact that 

the heading change is taken into account, the stay points that were on a relatively straight path 

with respect to the previous and next stop points are filtered out (ibid.).  
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21 Move-Stop-Noise (MSN)  Tdistance, duration, speed, and turning angle, v, dirmin, Eps, tmax, j 

The MSN algorithm is a statistical method for stop, move, and noise detection and requires the 

distance, duration, speed, and turning angle between each pair of points as input parameters 

(Nogueira, Martin and Andrade, 2017). The turning angle can be described as the angle formed 

by three neighbouring points. Further input parameters are the modified z-score limits for distance 

(Eps), duration (tmin), and speed (v) (ibid.). To improve noise detection, a minimum rotation angle 

(dirmin) can be set, since it is assumed that a moving object does not rotate at small angles (ibid.). 

To make the algorithm more robust against outliers, a random uniform jitter (j) can be used (ibid.). 

First, the MSN algorithm identifies potential noise points, meaning points with relatively long 

distances compared to the median distance of all pairs of sequential trajectory points (ibid.). 

Furthermore, the turning angles are verified in order to filter out the noise points. After identifying 

and removing potential noise, potential stops are labelled (ibid.). 

22 Time and Distance Based Clustering (TDBC)  T, Eps, tmax 

The TDBC algorithm counters the problem that of most of the present algorithms have (i.e., some 

shortcomings due to the influence of GPS signal loss and data drift) (Fu et al., 2016). According 

to the authors, the algorithm has a better adaption for individual trajectory when determining stops. 

As input parameters TDBC uses a time threshold (tmax) and a distance (Eps) (ibid.). Fu et al. (2016) 

distinguish between three types of points as already mentioned and visualised in Figure 2.3.  

The algorithm itself performs a case distinction to find the three types of points. First of all, the 

algorithm checks for stops of the first type. If they belong to type one, a stop is directly classified 

(ibid.). Afterwards, the distance from a cluster to the next point is determined. If the distance is 

smaller than the threshold, the point is added to the cluster (ibid.). As soon as the distance and 

time exceed the given thresholds, the cluster is closed and defined as stop of the second type. In 

case the distance is smaller and the time duration greater than the given thresholds, there occurred 

a gap in the trajectory and a stop of type three is identified (ibid.). The remaining points are 

classified as moves.  
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23 Probability of Stops and Moves in Trajectories (POSMIT)  T, hi, hd, e 

The POSMIT algorithm calculates the probability that a point is actually stopping (Bermingham, 

2018). Since each point is assigned with a stop probability, the user must specify a minimum stop 

probability (e). All points that are greater than or equal to this stop probability are classified as 

stops (ibid.). This allows the user to filter out ambiguous points. This way, the probability of error 

during classification can be kept to a minimum (ibid.). POSMIT does not define stops over a 

minimum duration but weights the number of indices between the current entry and any 

neighbouring entry for the calculation of the stop probability (the less the weighting, the larger the 

number of indices) (ibid.). This can be realised with the search bandwidth (hi). With the stop 

variance (hd) users can define how strict they want to be when calculating the stop probability 

(ibid.). Due to the noise in the GPS data and its system-induced inaccuracy, a certain spatial shift 

occurs between the points. Therefore, the parameter hd has a considerable impact on the size of 

the stop cluster (ibid.). If hd is chosen close to zero, this means that only points with the same 

geographical position would be assigned to the stop cluster (ibid.). 

24 Velocity-based trajectory structure  T 

According to Yan et al. (2010) the velocity-based trajectory structure algorithm first smooths the 

trajectories and reduces the outliers by velocity thresholds that are determined due to domain 

knowledge (i.e., speed of walking, driving bike, driving car). The speed threshold used for finding 

stops, is determined through an algorithm (Nogueira, Martin and Andrade, 2017). This speed 

threshold is used in combination with a function that considers the moving object's average speed 

and the average speed of other moving objects. For this calculation the space is divided into a grid 

and each cell gets an average speed value (Yan et al., 2010).  

Because the algorithm requires non-robust average speed measures, a correct identification of 

stops could be difficult in case there is a large speed range in a trajectory. In order to reduce the 

number of input parameters, there was an effort to set speed thresholds dynamically, however the 

stop duration is still a user defined absolute metric value (ibid.). 
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25 Grid-growing clustering algorithm  T, G 

The grid-growing clustering algorithm performs clustering operations on the cells of the 

partitioned data space (Zhao et al., 2015). As the data are looked at in smaller packages, the 

algorithm is much more time efficient than general clustering algorithms (ibid). In the first part of 

the grid-growing algorithm, a grid structure (G) containing n rows and n columns is generated. 

Each data point is assigned to the corresponding grid cell based on its location. Afterwards, a 

region growing on the grid structure is performed (ibid.). This results in a certain number of 

groups. After selecting n number of seeds, regions are grown to adjacent points and K number of 

clusters are formed. From the K number of clusters, the clustering partitions (P) are gained (ibid.). 

Points that are do not correspond to a cluster are registered as noise, and in the case of stop-move 

detection, classified as moves. 

Parameter legend:  

area = approximate proportion of points that generate potential stops in relation to the total amount of points,  

DCCAP = direction change coefficient of abnormal points,   dmax = maximal distance,  

dirmin = minimal direction change,     e = minimum stop probability,  

Eps = geographical distance,     G = grid cell size,  

H = Hierarchy of containments among the sites from IS,   hd = stop variance,  

hi = index search bandwidth,     IS = Set of interesting sites,  

j = random uniform jitter,      L = set of line segments,  

lmin = minimal lines,      PCTAP = percentage of abnormal points,  

pmin = minimal number of points,     PPOLOI = subset of set of geometries containing POLOIs, 

SC = constant that takes the relationship between Interval and Eps,  T = trajectory sample points,  

Tau = time duration that defines a core sequence,   tmax = maximal amount of time,  

tmin = minimal amount of time,    tolmax = maximal tolerance,  

v = speed,        vmin = minimal speed 

An analysis and a table that show the basis on which criteria the algorithms used for this thesis were 

selected can be found in Section 4.1.  

2.3.3 Algorithm Selection Criteria 

While working with algorithms, it is important to understand the basic concepts of algorithm design and 

modelling. The first step of designing algorithms is to get a profound knowledge about the problem 

before planning a solution (Kant, 1985). Finding appropriate criteria that an algorithm should meet is 

not trivial. Therefore, there are several approaches of criteria selection. One example is that conditions 

for being a suitable algorithm can be condensed at a higher conceptual level as 1) maximum parsimony 

of the algorithmic model, 2) ease of understanding, and 3) high performance. 

At the first level, the principle of parsimony shows that an increasing of the number of parameters in a 

model leads to a decreasing bias but an increasing variance (Posada and Buckley, 2004). Examples for 

high parsimony are: minimal number of input parameters, kind of input parameters, minimal number of 

input datasets, and mathematical simplicity. 
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At the second level, it is important that the algorithms are easy to understand. This means that they are 

conceptually intuitive and easy to visualize in mind. According to Xiao (2016), algorithms that use fewer 

input parameters are easier to explain and understand.  

The third level of a suitable algorithm covers the aspect of high performance. High performance and 

efficient algorithms are especially important when a considerable number of input datasets has to be 

handled (Wegener, 1989). Aspects that cover the criteria of high performance are, for example, 

accuracy, precision, small computational complexity in time and space (e.g., minimizing energy used), 

robustness to noise and outliers, and input data resolution (Ovaska and Sztandera, 2002; Xiao, 2016; 

Dongarra, Grigori and Higham, 2020). However, the efficiency or speed of an algorithm is always 

determined by the problem to solve too (Xiao, 2016). Xiao (2016) suggests getting an overview of the 

computational steps that are needed to run the algorithm, as external factors such as computer memory 

could influence the running time.   

2.4 Algorithm Evaluation 

For algorithm evaluation, evaluation metrics are often employed (Fedorchuk and Lamiroy, 2017). 

Besides the more general approaches, such as comparison of the algorithm’s running time or output 

evaluation (i.e., in case of stop-move detection algorithms the average number or variance of detected 

stops), algorithms can be evaluated with probabilistic metrics, through sensitivity analysis, or shape 

measures (MacEachren, 1985; Silberholz and Golden, 2010; Fedorchuk and Lamiroy, 2017; 

Bermingham, 2018).  

2.4.1 Probabilistic Metrics 

Collecting ground truth and using it for evaluating or further training methods, is very convenient in 

current research. However, it is often rather costly to obtain and sometimes impossible to get (Lamiroy 

and Sun, 2013). Generally, ground truth collection requires human intervention and needs to be validated 

somehow. Hence, the ground-truthing process is costly, error prone, and difficult to scale (ibid.).  

Algorithms with binary outputs (i.e., stop or move of the stop-move detection algorithms) can be 

evaluated without ground truth as proposed by Fedorchuk and Lamiroy (2017). The main idea of this 

approach is that the standard ground truth will be replaced with a probability-based formula (Fedorchuk 

and Lamiroy, 2017). The statistical equivalent of the ground truth is an array expressing the probability 

P(δi) of class affiliation + for each data item δi (see Equation 2.5) (ibid.). 

 
𝑃(𝛿𝑖) = ∑

𝑆𝑘(𝛿𝑖)

𝑠
𝑘=1..𝑠

 (2.5) 
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Sn (δi) ∈ {0,1} signifies the classification result of data item δi by classifier Sn and s the number of 

classifiers (ibid.). 

Fedorchuk and Lamiroy (2017) describe three ways of how classifiers can be compared and evaluated 

using probabilistic metrics: F-measure, Negative Rate Metric, and Normalized Cross Correlation. 

2.4.1.1 F-measure 

In order to get the correspondent probabilistic equivalent of the F-measure, probabilistic equivalents of 

precision (Pr) (i.e., amount of relevant selected items, Equation 2.6) and recall (Rc) (i.e., amount of 

selected relevant items, Equation 2.7) are calculated and then their harmonic mean is computed 

(Fedorchuk and Lamiroy, 2017). The higher the value of this metric, the better the classifier. 

𝑃𝑟(𝑆𝑘) =
∑ 𝑃(𝛿𝑖)𝑆𝑘(𝛿𝑖)1..𝑑

∑ 𝑆𝑘(𝛿𝑖)1..𝑑
               (2.6)                                 𝑅𝑐(𝑆𝑘) =

∑ 𝑃(𝛿𝑖)𝑆𝑘(𝛿𝑖)1..𝑑

∑ 𝑃(𝛿𝑖)1..𝑑
               (2.7) 

In case there is ground truth available, the F-measure, precision, and recall can also be determined with 

regard to true positives (TP), false positives (FP), true negatives (TN), and false negatives (FN) (Lamiroy 

and Sun, 2013). 

The following confusion matrix in Figure 2.6 visualises the context of true and false positives, and false 

negatives.  

Algorithm classification 
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 ✓ (stop) x (no stop)  

✓ (stop) 
Stop detected by algorithm and 

present in ground truth (TP) 

Stop not detected by algorithm 

but present in ground truth (FN) 

 

x (no stop) 
Stop detected by algorithm but 

not present in ground truth (FP) 

No stop detected by the 

algorithm and not present in 

ground truth (TN) 

 

     

Figure 2.6 Exemplary confusion matrix (modified from Fillekes, Kim, et al., 2019:23) 

Out of this confusion matrix, the following equations for precision (Equation 2.8), recall (Equation 2.9), 

and F-measure (Equation 2.10), can be determined (Fillekes, Kim, et al., 2019): 

𝑃𝑟 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
               (2.8)         𝑅𝑐 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
               (2.9)         𝐹 =

2(𝑃𝑟 ∗ 𝑅𝑐)

𝑃𝑟 + 𝑅𝑐
               (2.10) 
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2.4.1.2 Negative Rate Metric  

The Negative Rate Metric is a function that is based on the probabilistic equivalents of false negative, 

false positive, true positive and true negative values. Out of the negative rate of false positive (NRFP) 

and false negative values (NRFN), the average (i.e., Negative Rate Metric) is calculated and visualized 

in Equations 2.11 and Equation 2.12 (Fedorchuk and Lamiroy, 2017). The lower the value of this metric, 

the better the classifier.  

𝑁𝑅𝐹𝑃(𝑆𝑘) =
∑ (1 − 𝑃(𝛿𝑖))𝑆𝑘(𝛿𝑖)1..𝑑

∑ 𝑃(𝛿𝑖)1..𝑑
         (2.11)         𝑁𝑅𝐹𝑁(𝑆𝑘) = 1 −

∑ 𝑃(𝛿𝑖)𝑆𝑘(𝛿𝑖)1..𝑑

∑ 𝑃(𝛿𝑖)1..𝑑
          (2.12) 

2.4.1.3 Normalized Cross Correlation 

The Normalized Cross Correlation (see Equation 2.13) is the normalized correlation that is calculated 

between the probability that the data items δi (given the majority voting P(δ)) belong to class ∆+ and the 

result given by classifier Sk (Fedorchuk and Lamiroy, 2017). The higher the value of this metric, the 

better the correlation between the two arrays.  

 
NCC = 1 −

∑ (𝑆𝑘(𝛿𝑖) − 𝑆𝑘
̅̅ ̅)(𝑃(𝛿𝑖) − 𝑃𝛿

̅̅ ̅)1..𝑑

√∑ (𝑆𝑘(𝛿𝑖) − 𝑆𝑘
̅̅ ̅)1..𝑑

2
∑ (𝑃(𝛿𝑖) − 𝑃𝛿

̅̅ ̅)1..𝑑
2

 
(2.13) 

2.4.1.4 Matthew’s Correlation Coefficient 

Bermingham (2018) introduces the Matthew’s Correlation Coefficient for measuring the binary 

classification accuracy (see Equation 2.14). Opposite to precision and recall, the Coefficient represents 

the accuracy in a single value. It also considers all quadrants of the confusion matrix covering the true 

and false observations contrary to the F-measures (Bermingham, 2018).  

 
MCC =

𝑇𝑃 ∗ 𝑇𝑁 − 𝐹𝑃 ∗ 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 (2.14) 

2.4.2 Sensitivity Analysis 

To measure the sensitivity of algorithms, Bermingham and Lee (2018) proposed evaluating the 

algorithms according to sampling rate robustness and general classification effectiveness. The sampling 

rate robustness can be measured by varying the sampling rate of the input data 1) regularly or 

2) randomly. Regular sampling rate means that data points are removed from a single trajectory with 

equal intervals (i.e., considering every third, every fourth, … , every n-th data point) (Bermingham, 

2018). The sampling rate can be selected randomly by using Poisson sampling (Ohlsson, 1998). The 

approach assumes that the Poisson distribution describes the random mechanism to generate the 

sampling data (ibid.).  
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The classification effectiveness can be compared by varying the different input parameters while the 

others stay the same (Bermingham, 2018). The effect of each parameter on the result can be investigated. 

Furthermore, the robustness to noise (i.e., creating degraded data with added noise) is also a common 

approach to test the sensitivity of an algorithm (Newson and Krumm, 2009). In order to test the 

robustness to noise there are approaches that increase the proportion of noise in a dataset from 0 – 90 % 

and analyse how the algorithms perform differently (Domingues et al., 2018). One approach for 

simulating GPS noise could be to add Gaussian noise to the data using a distribution with mean value 

of 0 (Bösche et al., 2013).  

A second approach is the house noise model introduced in Zhang, Liu and Song (2015). This function 

has a shape of a pitched house roof and noise can be applied to the data at a level between 0 and 1. A 

minimum level of 0 means that no noise is applied whereas a level of 1 means that the original sample 

will be changed to other values having a probability of 1 (ibid.). 

2.4.3 Shape Measures 

Algorithms’ stops can also be evaluated through shape measures. Li, Goodchild and Church (2013) 

proposed an evaluation method that measures the stops’ shape compactness, which is a numerical 

quantity symbolizing the degree to which a shape is compact. Compactness can be seen as an indicator 

of homogeneity within units (MacEachren, 1985). Li, Goodchild and Church’s (2013) approach is a 

trapezium-based one to compute compactness based on the concept of the moment of inertia (MI) 

(i.e., the second moment of an area about a point (p) on the shape).  

With this approach the compactness value (MI shape index (CMI)) can be determined and compared (Li, 

Goodchild and Church, 2013). The MI shape index is the circles’ MI about its centre to the shape’s MI 

about its centroid as Equation 2.15 shows. Thereby, the values range between 0 and 1 whereas larger 

values indicate more compact shapes (ibid.). In the equation below, the area of the shape is A.  

 
𝐶𝑀𝐼 =

𝐴2

2𝜋𝐼𝑔
 (2.15) 

Equation 2.16 for Ig which is needed for completing equation CMI is shown below.  

 
𝐼𝑔 = ∑ 𝐼𝑖_𝑇 + 𝑑𝑖_𝑇,𝑔

2

𝑛

𝑖=1

𝐴𝑖_𝑇 + 𝐼𝑖_𝑅 + 𝑑𝑖_𝑅,𝑔
2 𝐴𝑖_𝑅 (2.16) 

In this equation, di_T,g and di_R,g are the distances between the centroids of the rectangle and triangle 

pieces of trapezium (i) (ibid.). The equation basically calculates the area, centroid, and MI of the whole 

polygon (ibid.).  
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Ebdon (1985)’s compactness measures that count as rather robust measures compare the shape of a 

polygon with the shape of a circle as a circle counts as the most compact shape (see Equation 2.17) 

(in Kitchin and Tate, 2000). The closer to 1 the shape index value, the more compact the shape.  

 
𝑓𝑐𝑜𝑚𝑝 =

4𝐴

𝜋𝐷2
 (2.17) 

Equation 2.17 uses the smallest enclosing circle’s diameter (D) that is calculated by finding the longest 

axis across the polygon (Kitchin and Tate, 2000). In contrast to the following compactness measure, the 

longest axis across the polygon is allowed to leave the polygon.  

The next compactness measure proposed by Ebdon (1985) includes the longest axis of the shape without 

leaving the polygon (L) as Equation 2.18 shows (in Kitchin and Tate, 2000). 

 
𝑓𝑐𝑜𝑚𝑝 =

4𝐴

𝜋𝐿2
 (2.18) 

The last measure divides the radius of the smallest enclosing circle (R1) by the radius of the circle with 

the same areas the shape (R2) (see Equation 2.19) (Ebdon, 1985 in Kitchin and Tate, 2000).  

 

𝑓𝑐𝑜𝑚𝑝 =
R1

R2
         𝑤ℎ𝑒𝑟𝑒          R1 = √

𝐴

𝜋
          𝑎𝑛𝑑          R2 = 2𝐷 

 

(2.19) 
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3 Data 

3.1 MOASIS Data 

This thesis works with the GPS and Inertial Measurement Unit (IMU) datasets collected for the 

MOASIS project in 2018. There are data available from 152 participants (four of which are omitted for 

further evaluation due to broken devices or lack of data) that were collected during a 30-day study 

period. As of the time of study, the participants' age was over the retirement age and they were living in 

German-speaking Switzerland. The device that was used to collect the data is called uTrail and equipped 

with three sensors (see Figure 3.1). The GPS, IMU, and Electronically Activated Recorder (EAR) 

sensors cover the aspects of healthy aging: spatial and physical activity, and social interaction (Bereuter, 

Fillekes and Weibel, 2016).  

 

 Sensor Variable Sampling rate 

Spatial mobility GPS timestamp, latitude, longitude 1 / sec 

Physical activity IMU timestamp, acceleration (x,y,z) 3 / sec 

Social interaction EAR timestamp, sound sample  1 / 12.5 min 

Figure 3.1 uTrail mobile Sensor used for data collection in the MOASIS study (modified from Bereuter, Fillekes and Weibel, 

2016:2) 

The EAR sensor data is not relevant for this thesis. The stops and moves were determined with the data 

collected from the GPS sensor that collected the GPS data points with a sampling rate of 1 point per 

second (ibid.). On average over 600’000 GPS data points were collected per participant. 

The IMU sensor is a 3-axis accelerometer and its data were used in combination with the GPS data for 

manual ground truth labelling (see Section 3.2 for further information). 

After the first two weeks of data collection, the participants had to change their uTrail so that the data 

were able to be downloaded from the device and that no whole participants got lost for study purposes 

in case a uTrail broke. In that unfortune case, at least half the data of the study period could have been 

secured through this intermediate session. Hence, for the GPS and for the IMU data there exist two .csv-

files per participant that contain the first half and the second half of the study period’s data, respectively.  

In each GPS file, each column contains a timestamp (date and time), geographic coordinates 

(i.e., longitude and latitude), the number of satellites, an altitude, Vertical Dilution of Precision (VDOP), 

Horizontal Dilution of Precision (HDOP), recording and speed. Relevant for this thesis are the columns 

timestamp, geographic coordinates (i.e., longitude and latitude), and speed. 
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Each IMU file has the following columns: timestamp (date and time), the acceleration in mg (for each 

direction X, Y, Z), and the Magnetic flux density in mGauss (for each direction X, Y, Z). Relevant for 

ground truth labelling are the columns timestamp and acceleration in mg (for each direction X, Y, Z). 

3.2 Ground Truth Labelling 

In order to find the most suitable threshold combination per algorithm (one before and another after 

post-processing 3 ), some ground truth had to be labelled manually using an R-Shiny Application 

implemented by Oliver Burkhard in 20174 as no actual ground truth information is available. Without 

labelling ground truth manually, the algorithms’ outcomes could not be validated. The Shiny 

Application needs one .csv-file containing IMU and one .csv-file containing GPS information as input. 

It then visualises the trajectory and the user can click through the trajectory and gets information on the 

acceleration and speed of each point in the trajectory. With this information and visual monitoring, stops 

can be determined, labelled and downloaded (see Figure 3.2 as an example for the Shiny Application’s 

Graphical User Interface. The red arrows indicate that data are visualised for a user specified timeframe).  

 

 

Figure 3.2 Graphical User Interface of Shiny Application by Burkhard (2017) 

 
3 In the further course of this thesis, the best threshold combinations for the results with and without post-processing are 

meant when talking about the optimal threshold values or similar. 
4 Check out the following link for detailed information on the R-Shiny Application: https://github.com/o1i/mode_tagger 

https://github.com/o1i/mode_tagger
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The shiny application works with the three attributes speed, acceleration and time. Based on Chapter 2, 

data points were considered as stops that met the following criteria: 

• velocity less than 1 m/s (Nogueira, Braga and Martin, 2014) 

• acceleration between -0.3 m/s2 and 0.3 m/s2 (Nogueira, Braga and Martin, 2014)5 

• stop duration at least 10 minutes (see Section 4.3.1.2 for comparison) 

In order to be able to label ground truth manually, sample datasets have to be selected. 

3.3 Sample Data 

The aim is to obtain datasets with as many data points as possible since there is a greater chance for 

detecting obvious stops while selecting ground truth manually. Datasets with many data points are 

further important as the sampling rate is going to be modified in order to test the sampling rate 

robustness. Furthermore, many data points could indicate that people were more likely to leave their 

house. Therefore, all data frames dated with Sundays are selected and the thirty data frames with the 

highest number of data points are chosen as sample datasets as people tend to cover highest daily 

distances on Sundays (Swiss Confederation BFS, 2012). Covering highest daily distances on Sundays 

means additionally, that people perform most of their outdoor leisure activities on these day (ibid.). 

Therefore, the chance of finding obvious stops while labelling ground truth manually increases. In order 

to prevent bias and covering some weekdays as well, thirty data frames with the highest number of data 

points of Tuesday and Thursday, respectively, are selected. With this approach, the diversity of sample 

datasets is given since some participants tend to take similar routes each day. In other words, while 

covering weekdays as well as weekends and including various participants’ data by choosing the thirty 

datasets with the most data points per day, the chance of getting similar routes decreases. 

 
5 As it can be assumed, that during a stop period whether a positive nor negative acceleration takes place, the definition of 

steady human motion mentioned in Nogueira, Braga and Martin (2014) with an acceleration value range of -0.3m/s2 and 

0.3m/s2 was taken. 
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4 Methodology 

The methodological approaches of the Master’s thesis can be divided into three parts: 1) conceptual 

framework and algorithm selection, 2) algorithm implementation, and 3) comparison and evaluation of 

the algorithms (see Figure 4.1). 

 

Figure 4.1 Overview of methodological approaches 
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The first and second research questions (RQ1 and RQ2) will be answered in the first methodological 

part and the third and fourth research questions (RQ3 and RQ4) in the last part. The second part focuses 

on working with the data and algorithms. 

4.1 Conceptual Framework and Algorithm Selection 

Based on Chapter 2, criteria could be worked out in order to select four algorithms that were going to 

be applied or implemented with the programming language R. Table 4.1 provides an overview of the 

criteria the algorithms should ideally meet: 1) maximum parsimony of the algorithmic model, 2) ease of 

understanding, and 3) high performance. 

1) Maximum parsimony  

• The algorithms’ number of input parameter should be minimal, but at least 3. 

• The algorithms require at least a definition of a spatial and a temporal parameter (e.g., distance or 

minimum time, respectively). 

2) Ease of understanding 

• The algorithms’ parameter setting should be at a non-expert level. This means that the user has 

an intuition about the meaning of the parameters, and no considerable mathematical background 

is necessary to understand how the parameters work.  

• The algorithms should not use predefined geographic objects. 

3) High performance 

• The algorithms should be robust against outliers and noise. 

• The algorithms should deliver reliable outcomes independently of the trajectory data sampling 

rate.  

• The algorithms should not be computationally complex in time and space. 

• The algorithms should detect indoor stops. 
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Table 4.1 Algorithm comparison based on criteria 

 Criterion 

Category 

(1) Maximum 

parsimony 

(2) Ease of 

understanding  
(3) High performance 
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S
M

o
T

-B
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ed
 CB-SMoT 4 x       

DB-SMoT 4 x x x     

SMoT 3 x x      

SMoT+ 3 x x  x x   

STC-SMoT 3 x x x x    

D
B

S
C

A
N

-B
a
se

d
 C-DBSCAN 5   x x x x  

DBSCAN 3   x (x)  x  

P-DBSCAN 5   x (x)  x  

SeqScan 4 x  x x x x  

TraClus 4   x (x)  x  

TrajDBSCAN 3 x  x (x) x x  

O
P

T
IC

S
-B

a
se

d
 

OPTICS 3   x x x x  

StopFinder 1  x x x  x  

G
ri

d
-B

as
ed

 Grid-growing 

clustering 

algorithm 

2   x   x  

Velocity-based 

trajectory 

structure 

1   x x    

O
th

er
s 

CandidateStops 2  x x     

MSN 6 x  x x x   

Novel kernel-

based algorithm 
3 x  x x x   

PIE 8 x   x x  x 

POSMIT 4 (x)  x x x x (x)  

Simple stop 

detection 

algorithm 

3 x  x   x  

SOC 5 x  x x x x x 

MBGP 4 x x x   x  

TDBC 3 x  x  x x  

TOSCA 2   x  x   
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As already shown with the criteria listed above, the conditions for being a suitable algorithm can be 

condensed at a higher conceptual level as 1) maximum parsimony of the algorithmic model 

(e.g., minimal number of input parameters, containing a spatial and a temporal parameter), 2) ease of 

understanding (e.g., conceptually intuitive/easy to visualize in mind and no use of additional input 

variables such as geographic objects), and 3) high performance (e.g., computational complexity in time 

and space, robustness to noise, robustness to input data resolution, and detecting indoor stops).  

At the first level, a maximum parsimony of the algorithmic model can be reached by minimising the 

number of input parameters. As the algorithms determine stops and moves in spatiotemporal trajectories, 

it would be good for comparing the algorithms on a spatiotemporal basis if the algorithms had a spatial 

and a temporal parameter (i.e., parameters that limit the stop duration and spatial extent or shape of 

potential stops). These two parameters combined with a directional parameter are commonly used in 

stop-move detection algorithms (Zadeh Monajjemi, 2013). The POSMIT algorithm does not have a 

specific temporal input parameter, such as minimum duration because it calculates the stop probability 

of each individual data point (Bermingham, 2018). POSMIT can therefore find very granular stops 

without taking a temporal parameter into account (i.e., stops containing sparse number of data 

points) (ibid.). However, Bermingham (2018) points out that because trajectories are recorded as 

time-ordered sequences of entries, the index search bandwidth (hi) indirectly integrates the temporal 

dimension of the data as well. For this reason, POSMIT is marked as (x) in Table 4.1 that it should 

contain a spatial and a temporal parameter.   

Besides a spatial and a temporal parameter, the trajectories themselves (i.e., containing data points with 

latitude, longitude, date, time, and speed values) are a prerequisite input parameter so that the minimum 

number of input parameters should be at least three. It can be assumed that the more input parameters 

are included, the more detailed the knowledge for the input parameters algorithm has to be. This would 

contradict the principle of high parsimony because more input parameters would increase 

complexity (Posada and Buckley, 2004). 

At the second level, the algorithm should also meet the criterion that it can be easily understood. This 

means that non-expert researchers can intuitively understand how the parameters function in the 

algorithm and set suitable parameters for their purpose of analysis. The parameters’ influence on the 

selected stop should be mentally visualisable and no huge mathematical background should be necessary 

to understand how the parameters work. Karami and Johansson (2014) state that it is not easy to 

determine suitable values for pmin and Eps that are necessary for the DBSCAN-based algorithms and 

OPTICS. Algorithms’ authors, Bermingham (2018) as an example, emphasize that their developed 

algorithm (in this case, POSMIT) is highly suitable for non-expert researchers because all of the 

parameters can either be estimated/calculated by the algorithm or set by the researcher. 
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The next criterion is that the algorithms should not require geographic objects as additional input data. 

Bermingham and Lee (2018) point out that a disadvantage of geographic-based algorithms is that using 

them is very time consuming: first, performing spatial queries throughout the algorithm to find the data 

points that enter the geographic geometries and second, selecting the specific candidate places, 

especially when they are labelled manually (Bermingham and Lee, 2018). Moreover, a spatial database 

that contains spatial geometries has to be available and stops that are not covered by the selected 

geometries will not be detected (ibid.).  

At the third level, the algorithms should deliver a high performance. One of the most important criteria 

is that an algorithm is resilient (i.e., robust) against noise and outliers. When not explicitly stated, the 

corresponding column in Table 4.1 was left empty. Some DBSCAN-based algorithms are marked as (x) 

in Table 4.1 for that criterion. The DBSCAN algorithm and its extensions are developed to handle 

applications with noise; they are specialized for detecting clusters with irregular shapes. However, some 

DBSCAN-based algorithms such as SeqScan are further improved to handle noise in cluster-based 

methods (Damiani and Hachem, 2017). Hence, the improved algorithms were marked with the x in 

Table 4.1. SOC, for example, is able to accept noise points as part of a stop instead of marking them as 

noise, when detected in a trajectory stop (Xiang, Gao and Wu, 2016). 

Furthermore, the algorithms should deliver consistent results independently of the number of data points. 

It is common that human trajectory data relying on location sensing mobile devices have missing parts 

in data, due to GPS signal loss or compliance issues (Fillekes, Kim, et al., 2019). Although the MOASIS 

data have many data points available, a significant number of participant datasets show incomplete 

records and contain noise. However, Das and Winter (2016) state that most DBSCAN algorithms do not 

perform well with sparse trajectory data (e.g., Hwang et al., 2018). Additionally, when clusters’ density 

varies locally or different clusters have different densities, DBSCAN performs poorly at differentiating 

between them (Braune, Besecke and Kruse, 2015). As with the resilience to noise criterion, when not 

explicitly stated that the algorithm performs well with sparse trajectory data, the corresponding cells in 

Table 4.1 were left empty.  

By looking at the computational complexity, the SMoT algorithms are regarded rather complex and time 

consuming because they have to access an external database with geographic objects (Bermingham and 

Lee, 2018). According to Xiang, Gao and Wu (2016), the DBSCAN-based algorithms, the 

OPTICS-based algorithms, and the SOC algorithm have the same computational complexity that is 

O(n*log n), where n is the number of data points. However, SOC requires less computation than 

DBSCAN and OPTICS because after detecting a core sequence, it only checks the further points 

belonging to that core sequence (Xiang, Gao and Wu, 2016). POSMIT was marked as (x) in Table 4.1 

for this criterion because depending on the parameter value hi it outperforms the SMoT-based 
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algorithms; it was compared to by Bermingham (2018). For POSMIT, the computational complexity is 

O(nhi), and for CB-SMoT, it is O(n) (ibid). 

Since the thesis focuses on detecting stops and moves out of mobility patterns of older adults who are 

more sedentary than active, an algorithm’s ability to detect indoor stops is critical (see Section 2.1.2, for 

further explanation). Only the PIE and SOC algorithm focus on detecting indoor stops. According to 

De Graaff, De By and De Keulen (2016), the PIE algorithm was developed in particular for research 

concerning urban indoor trajectory assessment (De Graaff, De By and De Keulen, 2016). Xiang, Gao 

and Wu (2016)’s algorithm is capable of detecting indoor stops. The authors compared their SOC 

algorithm to other algorithms, showing that SOC outperformed the other algorithms regarding indoor 

stop detection.  

4.1.1 Algorithm Selection 

Based on the number of criteria met out of the analysis illustrated and summarized in the previous section 

and Table 4.1, the following four algorithms were selected for further analysis: CandidateStops, MBGP, 

POSMIT, and SOC.  

The evaluation results in Table 4.1 show that the SOC and POSMIT algorithms meet most of the criteria 

(seven out of eight). The authors of both algorithms claim that the algorithms performed best compared 

to other stop-move detection algorithms such as CB-SMoT. According to Bermingham (2018), POSMIT 

showed the best overall classification effectiveness and was least sensitive to changes in the spatial 

parameter. Xiang, Gao and Wu (2016) pointed out that SOC was more robust to noise than the other 

algorithms. However, the performance of SOC and POSMIT was not tested against each other. 

Furthermore, two other algorithms were chosen to compare them against POSMIT and SOC: the MBGP 

algorithm with a moderate level of evaluation (five out of eight criteria were met) and the 

CandidateStops algorithm with a low level (two out of eight criteria were met). The MBGP algorithm 

is commonly used and was applied to another similar dataset of older adults by Fillekes, Kim, et al. 

(2019) but not to MOASIS data. It would be interesting to compare if the threshold analysis results are 

consistent over different study data. Unlike the other three chosen algorithms, CandidateStops takes 

speed into account (Nogueira, Braga and Martin, 2014). In case this algorithm should deliver good 

outcomes, the selection criteria for the algorithm used above would have to be reconsidered. As 

algorithm comparisons were frequently done with the SMoT algorithms, not all stops are detected 

depending on the manually defined candidate stops, and their criteria of geographic objects is a 

time-consuming approach, they were not selected for further analysis. 
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4.1.2 Source Code Availability 

The availability of algorithm’s source code to the public was checked because it increases the 

reproducibility and replicability of analysis. At the time the analysis for this thesis was conducted, 

DBSCAN and OPTICS algorithms were implemented as functions in R and could be easily called. The 

R codes for the MBGP algorithm were borrowed from Fillekes, Kim, et al. (2019). The SMoT, 

CB-SMoT, and DB-SMoT algorithms could be borrowed from Krähenbühl (2014). The Python codes 

for TrajDBSCAN are publicly available provided by Tran et al. (2011) on 

https://github.com/devil1993/TrajDBSCAN. Furthermore, Bermingham (2018) provided the Java 

scripts for POSMIT and CB-SMoT on https://github.com/lukehb/137-stopmove. However, the POSMIT 

algorithm had to be rewritten completely by referring to its pseudo code from Bermingham (2018). 

Fortunately, most of the authors provide the pseudo code in the respective paper. (Krähenbühl, 2014) 

4.2 Algorithm Implementation 

The main goal of the thesis is to perform a basic step of the trajectory mining tasks (i.e., segmentation) 

proposed by Zheng (2015). Before the trajectory segmentation algorithms (i.e., the stop and move 

detection algorithms) were implemented or applied, the data needed to be pre-processed.  

4.2.1 Data Pre-Processing 

After importing the .csv-files into R, the NA values and special characters (e.g., tab stops) were dropped. 

During the time the older adults charged their devices, the word “charging” was stored in the longitude 

column of the dataset. As it can be assumed that the older adults charged their devices at home and no 

address information was available, the longitude cells containing “charging” were replaced with a place 

holder (e.g., -9999). Afterwards the values before and after the charging process were collected and 

values outside the 95 % confidence interval were removed. With the remaining values, the median was 

calculated, and the place holder replaced by this value. Finally, a coordinate transformation from 

WGS84 into LV95 was performed in order to calculate Euclidean distances without having to consider 

the curvature of the earth.  

As the interest lies primarily in detecting stops and not in knowing the exact moving path of the older 

adults, map-matching was not performed. Instead, noise filtering, more specific heuristic-based outlier 

detection, was performed (see Figure 4.2).  

 

Figure 4.2 Trajectory pre-processing methods (modified from Zheng, 2015:2) 

https://github.com/devil1993/TrajDBSCAN
https://github.com/lukehb/137-stopmove
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A speed-threshold of 200 km/h was set, which is the high-speed standard of Switzerland’s trains, and 

all values above this threshold were removed as the heuristic-based outlier detection methods do not 

aim to replace the trajectory values (SBB, no date; Zheng, 2015). As smoothing algorithms, such as the 

Kalman filter, could bring new random errors when trajectory data is sparse, the other methods were not 

chosen for noise filtering (Parent et al., 2013). Furthermore, a time series segmentation was necessary 

in order to split the whole trajectory data into daily segments based on time (Damiani and Hachem, 

2017). As a splitting criterion, the time of 3 a.m. was chosen for the functional end/beginning of a day 

because it can be assumed that people would have finished their daily business by three o'clock in the 

morning at the latest (Schneider et al., 2013). The trajectories were then segmented by pattern-driven 

segmentation using stop-move detection algorithms (ibid.).  

4.2.2 Algorithm Programming 

In general, all the processes were implemented and performed in R. For doing so, the packages dplyr, 

lubridate, plyr, rgeos, sp, stringr, and tidyr were used for applying the algorithms; ggplot2 and extrafont 

were used for generating graphs; leaflet was used for visualising the data on an interactive map6. On top 

of implementing the algorithms, the aim of the algorithm programming part was to run the algorithms 

with different thresholds in order to find the most suitable parameter set for the MOASIS data. 

4.2.2.1 CandidateStops 

The CandidateStops algorithm was only available in pseudo code and therefore had to be implemented 

in R. The pseudo code is illustrated in Algorithm 4.1. It only uses two input parameters: a list of 

spatiotemporal data points containing speed and time difference values and a speed threshold (𝜀). 

The CandidateStops algorithm checks for every entry at index i if  𝑧 is greater than the mode of the time 

difference between index i and index i-1 and if the speed is smaller than the given speed threshold 

(Nogueira, Braga and Martin, 2014). If these two conditions are met, the point is considered as stop, 

while all other data points not fulfilling the conditions are classified as moves. The algorithm is a 

statistical method that works by considering the sampling rate standard z-score as calculated in line 15 

of Algorithm 4.1 and visible in Equation 4.1.  

 𝑧 =
𝑥 − µ

σ
 (4.1) 

 
6 Consult the links below for further information about the R-packages:  

https://www.rdocumentation.org/packages/dplyr,  https://www.rdocumentation.org/packages/sp, 

https://www.rdocumentation.org/packages/rgeos,  https://www.rdocumentation.org/packages/plyr, 

https://www.rdocumentation.org/packages/tidyr,  https://www.rdocumentation.org/packages/ggplot2, 

https://www.rdocumentation.org/packages/leaflet,  https://www.rdocumentation.org/packages/lubridate, 

https://www.rdocumentation.org/packages/stringr, https://www.rdocumentation.org/packages/extrafont, 

https://www.rdocumentation.org/packages/dplyr
https://www.rdocumentation.org/packages/sp
https://www.rdocumentation.org/packages/rgeos
https://www.rdocumentation.org/packages/plyr
https://www.rdocumentation.org/packages/tidyr
https://www.rdocumentation.org/packages/ggplot2
https://www.rdocumentation.org/packages/leaflet
https://www.rdocumentation.org/packages/stringr
https://www.rdocumentation.org/packages/extrafont
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The metric indicates how far the sample is from the mean of the whole dataset. The mean (µ) and 

standard deviation (σ) of the time difference between two entries are calculated in lines 10 and 11. The 

variable 𝑥 is the time difference between index i and index i-1. 

Algorithm 4.1 Pseudo Code of CandidateStops Algorithm (modified from Nogueira, Braga and Martin, 2014:105) 

1: Input: 

2: T = (p1, … , pN): list of spatiotemporal data points containing speed and time difference values 

3: 𝜀: speed threshold 

4:  

5: Output:  

6: Tsm: List of resulting stay points 

7:  

8: function CANDIDATESTOPS(T, 𝜀) 

9: Tsm ← ∅; 

10:  µ ← mean of diffTime; 

11:  σ ← standard deviation of diffTime; 

12:  m ← mode of diffTime; 

13:  

14:  for each speed and duration in v and diffTime do 

15:   z ← (duration - µ) / σ;  

16:   if z > m and speed < 𝜀 then  

17:    Consider as stop; 

18:    Add stop to Tsm; 

19:   else 

20:    continue 

21:   end if 

22:  end for 

23: end function 

4.2.2.2 MBGP Algorithm 

The MBGP algorithm had already been implemented by Michelle Fillekes, one of the authors of 

Fillekes, Kim, et al. (2019), and made available for this thesis. Algorithm 4.2 shows the pseudo code. 

The MBGP algorithm uses four input parameters: a list of spatiotemporal data points, a distance (Dmax) 

and two time thresholds (Tmin and Tmax). 
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Algorithm 4.2 Pseudo Code of MBGP Algorithm (modified from Montoliu, Blom and Gatica-Perez, 2013:190) 

1: Input: 

2: lp = (p1, … , pN): list of spatiotemporal data points 

3: Tmin, Tmax: time thresholds 

4: Dmax: distance threshold 

5:  

6: Output:  

7: lsp: List of resulting stay points 

8:  

9: i ← 1; 

10: lsp ← ∅;  

11: while i < N do   

12:  j ← i + 1;   

13:  while j < N do  

14:   t ← TimeDifference(pj, pj-1);   

15:   if (t > Tmax) then 

16:    i ← j; 

17:   end if 

18:   d ← SpaceDistance(pi, pj); 

19:   if d > Dmax then 

20:    t ← TimeDifference(pi, pj-1); 

21:    if t > Tmin then 

22:     [lat, long] ← EstimateCentroid(pk | k ∈ [i, j-1]); 

23:     Tstart ← pi.T; 

24:     Tend ← pj-1.T; 

25:     sp ← [lat, long, Tstart, Tend]; 

26:     lsp ← lsp ∪ sp; 

27:    end if 

28:    i ← j; 

29:   end if 

30:   j ← j+1; 

31:  end while 

32: end while 

The distance threshold Dmax can be seen as the diameter of a stop as it represents the maximum allowed 

distance between the first GPS point of a stop cluster and the last (Montoliu, Blom and Gatica-Perez, 

2013). The parameter Tmin represents the minimum duration between the points in order to count as a 

stop (ibid.). Tmax represents the maximum allowed time gap between two recorded location points to be 

considered as a part of the same stop cluster (ibid.). If the time span between two entries is too long, it 

could be due to a GPS signal loss and therefore a new stop cluster is assumed. Figure 4.3 shows how 
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the three parameters work in order to find stops. The green lines show where the parameters’ conditions 

are met and the red ones where the parameters’ conditions are not met.  

 

Figure 4.3 Schematic overview of MBGP algorithm (from Montoliu, Blom and Gatica-Perez, 2013:189) 

The algorithm checks if the distance from the first point of the stop cluster to the current point is in the 

range of Dmax and if the minimum time between a current point and its neighboring point is bigger than 

Tmin (Montoliu, Blom and Gatica-Perez, 2013).  

If the time span between the points is also less than Tmax, the point belongs to the stop cluster, or starts a 

new stop cluster otherwise.  In Figure 4.3 the time span between P8 and P9 is bigger than Tmax and 

therefore P9 does not belong to the stop cluster.  

If all the stop clusters are detected, their coordinates can be replaced by the coordinates of the centroid 

of each cluster. This means that two points with the same semantic information share the same location 

information (ibid.). 

4.2.2.3 POSMIT 

Bermingham (2018) made the Java source code of the POSMIT algorithm publicly available on 

https://github.com/lukehb/137-stopmove. However, the code had to be newly implemented in R. The 

pseudo code is illustrated in Algorithm 4.3. It uses four input parameters: a list of spatiotemporal data 

points, an index search bandwidth (ℎ𝑖), a stop variance (ℎ𝑑), and a minimum stop probability (𝜀). 

 

 

 

 

https://github.com/lukehb/137-stopmove
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Algorithm 4.3 Pseudo Code of POSMIT Algorithm (modified from Bermingham, 2018:111) 

1: Input:  

2: T = (p1, … , pN): list of spatiotemporal data points  

3: ℎ𝑖: index search bandwidth  

4: ℎ𝑑: stop variance 

5: 𝜀: minimum stop probability 

6:   

7: Output:    

8: Tsm: List of spatiotemporal data points with added semantics    

9:     

10: function POSMIT(T, ℎ𝑖, ℎ𝑑, 𝜀)   

11: Tsm ← ∅;    

12:  // Find stop probability of each entry.  

13:  for (i ← 0; j < T.length; i++) do   

14:   ai = MOVE; 

15:   if CALCSTOPPR(T, i, ℎ𝑖, ℎ𝑑) ≥ 𝜀 then  

16:    ai ← STOP; 

17:   end if 

18:   Add entry 〈xi, yi, ti, ai〉 to Tsm; 

19:  end for 

20:  return Tsm 

21: end function 

The algorithm checks for each entry at index i, if its stop probability (see function CalcStopPr on line 

15) is greater than a given minimum stop probability threshold (𝜀) (Bermingham, 2018). If so, the entry 

is marked as stop and as move otherwise. The function CalcStopPr is based on the Gaussian kernel 

smoothing function (Equation 4.2):  

 
Pr(𝑆𝑡𝑜𝑝|𝑥𝑖 , 𝑦𝑖) =

∑ {𝐾(𝜔𝑖,𝑗)𝐾(∆𝑖,𝑗)}𝑢
𝑗=𝑙

∑ 𝐾(∆𝑖,𝑗)𝑢
𝑗=𝑙

 (4.2) 

The definitions of the helper functions 𝐾(𝑧), ∆𝑖,𝑗, 𝜔𝑖,𝑗, 𝑙, 𝑎𝑛𝑑 𝑢 are explained in detail below. 

Here, 𝐾(𝑧) that is shown in Equation 4.3, represents a gaussian function with a standard deviation and 

height of one and a mean of zero (i.e., the result is in the range [0,1]) (ibid.). Due to the zero-mean 

Gaussian function, a small displacement between entries will result in a higher stop probability than 

entries with larger displacements (ibid.). 

 𝐾(𝑧) = 𝑒−0.5𝑧2
 (4.3) 
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The function ∆𝑖,𝑗 (Equation 4.4) represents the normalised index displacement where entries closer to i 

contribute more to the stop probability calculation (ibid.). In this function, ℎ𝑖 controls the width of the 

Gaussian function.  

 
∆𝑖,𝑗=

 | 𝑖 − 𝑗 | 

ℎ𝑖
 (4.4) 

Parameters 𝑙 and 𝑢 are lower and upper index search-bounds (Equations 4.5 and 4.6). They define the 

sampling window of indices that are considered for calculating the stop probability of each entry at 

index i (ibid.). 

𝑙 = max(0, 𝑖 − 3 ∗ ℎ𝑖)               (4.5)                                                   𝑢 = min (𝑛, 𝑖 + 3 ∗ ℎ𝑖)               (4.6)  

The last function needed for calculating the stop probability is the normalised spatial displacement, 𝜔𝑖,𝑗 

that is shown in Equation 4.7 (ibid.). It is used for calculating the Euclidean distance between the 

coordinates of each entry i and its neighbouring entry j that is divided by the stop variance (ℎ𝑑). Similar 

to ℎ𝑖 , ℎ𝑑  controls the width of the Gaussian function (ibid.). This function is most fundamental for 

calculating the stop probability as it spatially defines the notion of a stop. The spatially closer the two 

entries i and j, the more likely i is to be a stop (ibid.). 

 

𝜔𝑖,𝑗 =
√(𝑥𝑖 − 𝑥𝑗)2 + (𝑦𝑖 − 𝑦𝑗)2

ℎ𝑑
 

  (4.7) 

The helper functions are inserted into the Pr(𝑆𝑡𝑜𝑝|𝑥𝑖, 𝑦𝑖)  function in order to calculate the stop 

probability for each entry at index i. 

4.2.2.4 SOC 

The SOC algorithm was only available in pseudo code and therefore had to be implemented in R. The 

pseudo code is shown in Algorithm 4.4. It uses five input parameters: a list of spatiotemporal data points, 

a geographical distance to define a core sequence (Eps), a time duration that defines a core 

sequence (Tau), a minimum duration for a stop (MinStp), and a minimum duration for a move (MinMov). 

However, the MinStp parameter is not used in the algorithm as it is described in the pseudo-code in 

Xiang, Gao and Wu (2016:8). Since it is still mentioned by the authors, it is included in the algorithm's 

parameters but set to NA by default. It is assumed that MinStp is used to remove too short stops which 

is done eventually in post-processing. 
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Algorithm 4.4 Pseudo Code of SOC Algorithm (modified from Xiang, Gao and Wu, 2016:8) 

1: Input:  

2: T = (p1, … , pN): list of spatiotemporal data points  

3: Eps: geographical distance to define a core sequence  

4: Tau: time duration that defines a core sequence  

5: MinStp: minimum duration for a stop 

6: MinMov: minimum duration for a move  

7:     

8: Output:    

9: Stops = (s1, … , sM): the set of trajectory stops, each of which is a sequence in T  

10:    

11: // initialize the reachability distance of each point in T to UNDEFINED;    

12: for i ← 1 to |T|   

13:  ComputeDistance(T, pi, Eps, Tau);   

14: end for 

15: Seqs ← Extract_Sequence(T, Eps); 

16: Stops ← Merge_Sequence(Seqs, Eps, MinMov); 

17: PruneStops(Stops, Eps,Tau); 

18: FalsePositiveRemove(Stops); 

19:  

20: function ComputeDistance(T: in out, pi: in, Eps: in, Tau: in) 

21: Seq ← GetEpsSequence(T, pi, Eps); 

22:  if Seq is a core sequence with respect to Tau 

23:   r = GetCoreDistance(Seq, Tau) 

24:   for each point q in Seq 

25:    if q precedes pi 

26:     q.reachability distance = max{r, distance(pi, q)}; 

27:    else  

28:     break; 

29:    end if 

30:   end for 

31:  else 

32:   break; 

33:  end if 

34: end function 

First of all, helper functions were defined in order to compute the distance of row 13. The function is 

explained at row 20. Row 21 defines the function GetEpsSequence that is looking for all data points 

within distance of Eps. Row 22 checks for core sequences. If point i is in a sequence and the time 

difference between the first and last data point in the sequence is ≥ Tau, a core sequence is detected 
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(Xiang, Gao and Wu, 2016). Otherwise a value that is significantly higher than Eps is returned (in this 

case 2*Eps). After detecting a core sequence, the minimal radius (r) is defined so that the sequence of 

any data point (p) to r is still a core sequence and the time difference still ≥ Tau (row 23). At rows 24-26 

the reachability distance for each data point with its preceding data point is calculated (ibid.). The 

reachability distance that is stored for every data point is the higher value of either radius (r), or the 

distance between the data point and its preceding one (ibid.). After computing the distance at row 13, 

sequences are determined every time there is a change from reachability distance < Eps or > Eps 

(row 15). Row 16 calculates the centres of two consecutive sequences. If the distance is ≤ 2*Eps and 

the time difference between the last data point of the first sequence and the first data point of the second 

sequence is < MinMov, the two sequences are merged (ibid.). Out of this merge, a new centre is 

calculated and compared to the following sequence. Afterwards, out of these sequences all the core 

points (i.e., data points that fulfil the requirements of a core sequence) are labelled as stops (row 17). 

Finally, at row 18, all false positives as for example very slow movements potentially occurring in case 

of traffic jams are removed (ibid.). For that, Xiang, Gao and Wu (2016) use two approaches called 

straightness and centred-distance (see Equations 4.8 and 4.9).  

𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒. 𝑐𝑒𝑛𝑡𝑟𝑒𝑑 − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
∑ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝𝑖, 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒. 𝑐𝑒𝑛𝑡𝑒𝑟) ∗ (𝑒𝑛𝑑−1

𝑖=𝑠𝑡𝑎𝑟𝑡 𝑡𝑑𝑖𝑓𝑓𝑝𝑖+1−𝑝𝑖
)

∑ 𝑡𝑑𝑖𝑓𝑓𝑝𝑖+1−𝑝𝑖

𝑒𝑛𝑑−1
𝑖=𝑠𝑡𝑎𝑟𝑡

(4.8) 

If the centred-distance is significantly smaller than Eps (i.e., < 0.5*Eps) and the straightness is > 0.8, 

then the stop is removed and reclassified as a move. 

 
𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒. 𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠 =

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝𝑠𝑡𝑎𝑟𝑡 , 𝑝𝑒𝑛𝑑)

∑ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝𝑖 , 𝑝𝑖 + 1)𝑒𝑛𝑑−1
𝑖=𝑠𝑡𝑎𝑟𝑡

 
(4.9) 

4.2.3 Data Post-Processing 

Once the stops were detected, all moves shorter than 180 seconds were removed and classified as noise. 

A minimum move duration of 180 seconds is a commonly applied threshold as stated by Fillekes, Kim, 

et al. (2019). Subsequently, the stops that were spatially and temporally close to each other were merged. 

Therefore, a maximum duration and the maximum distance between the last point of the first stop cluster 

and the first point of the second stop cluster had to be defined in order to check if the clusters could be 

merged. The selected thresholds were 1 hour for the maximum duration, and 150 meters for the 

maximum distance, same as those adopted in Fillekes, Kim, et al. (2019). The detected moves were 

converted into polylines for better visualisation.  
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4.3 Algorithm Comparison and Evaluation 

For evaluating and comparing the algorithms’ performance, as well as having a basis for discussion, 

three scenarios were developed in order to find the algorithms that work best for the corresponding 

scenario (see Table 4.2).  

Table 4.2 Evaluation Scenarios 

Scenario 1 The dataset is very noisy. Which algorithm is most robust to noise? 

Scenario 2 The dataset has a low sampling rate. Which algorithm performs best with varying 

sampling rates? 

Scenario 3 The shapes of the stops should be very compact. Which algorithm’s stops have the 

most compact shapes? 

4.3.1 Threshold Analysis 

To find the thresholds that deliver the best results, a vector of a range supported by literature was defined 

for each parameter and is explained for each algorithm in the following sections. Afterwards, the 

algorithm run several times, and recorded for each time (i.e., every new parameter combination) the 

number of stops as Figure 4.4 shows for an imaginary example.  

 

Figure 4.4 Example for the parameters of the MBGP algorithm 

The arrows in Figure 4.4 indicate such combinations: The first combination is the red one, meaning the 

first column of this matrix. Afterwards, Dmax is increased while Tmax and Tmin stay the same (orange 

arrows). When all combinations with a changing Dmax are found, Tmin stays the same, Tmax gets increased 

by one, and Dmax is iterated through again (indicated by blue arrows) and so forth. In the example that 

Figure 4.4 visualises, the algorithm would run 63 = 216 times. With this approach, the influence of each 

single parameter on the result can be shown.  

The threshold combination of the stop detection result that best represented the ground truth before 

post-processing the results was considered as most suitable for MOASIS data. Additionally, the best 

threshold combination to represent the post-processed data was also selected. With this approach, it can 

be shown if post-processing improved the result or whether another threshold combination should be 
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chosen when it is sure that the data always will be post-processed. To find the optimal combination, the 

centre of each stop cluster was determined and investigated if it is spatiotemporally close7 to the centre 

of the stop cluster of the manually labelled ground truth.  

4.3.1.1 CandidateStops 

As Nogueira, Braga and Martin (2014) stated, a stop can be characterized by a velocity less than 1 m/s. 

A velocity of 1 m/s is the most common walking speed for adults up to the age of 75 (Ewert, 2012). 

Afterwards the velocity decreases to 0.8 m/s up to the age of 85 and stagnates at 0.7 m/s after the age of 

85 (ibid.). Ewert (2012) shows that older adults with balance problems even walk with velocities of 

0.5 m/s. Therefore, the algorithm run six times with the following speed thresholds: 

𝜀 = c(0.5:1) increasing each time by 0.1 m/s 

4.3.1.2 MBGP Algorithm 

Selecting the parameters Dmax, Tmin, and Tmax of the MBGP algorithm was more complex. As Dmax is the 

maximum distance the user can cover in order to count as a stop event, too small a value could divide a 

place or values too big could merge several places into only one (Montoliu, Blom and Gatica-Perez, 

2013). As the interest lies rather in finding stop regions instead of single stop points, values from 150 m 

to 300 m could be suitable. In that case, the older adult’s homes would be included and even some places 

with size of shopping malls could be detected. 

The minimum time a person has to stay in the same place in order to be considered at stop is represented 

by the parameter Tmin. Research shows that the average shopping time in a supermarket is about 

13 minutes and in larger shopping facilities around 21 minutes (Schneider and Hennig, 2008). Therefore, 

the parameter was tested starting with 10 minutes (rounded down average supermarket shopping time) 

although Montoliu, Blom and Gatica-Perez (2013) stated that a Tmin between 20 and 40 minutes delivers 

the best results. Because the interests of this thesis do not lie in detecting bus stops and tram stations, 

small values were not considered.  

Tmax is the maximum timespan between two stop clusters. By setting Tmax high, the most significant 

places will be detected and a lot of places of interests could remain undetected. However, the risk of a 

Tmax that is set too low is that more false positive places could be discovered (Montoliu, Blom and 

Gatica-Perez, 2013). It is assumed that a meeting for lunch or for coffee could take about three to four 

hours and due to the weak GPS signals in buildings, Tmax should not fall below four hours. Furthermore, 

older adults tend to spend up to eight hours in bed (Huang et al., 2002). Therefore, the parameter values 

 
7 Meaning the centres of the stop clusters are in a range of 150 meters and the start times of the respective clusters lie within a 

time interval of 20 minutes.  
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of Tmax chosen for comparison were between four and eight hours. This resulted in the following vectors 

and 245 runs of the algorithm: 

Dmax = c(150:300) increasing each time by 25 meters 

Tmin = c(10:40) increasing each time by 5 minutes 

Tmax = c(4:8) increasing each time by 1 hour 

4.3.1.3 POSMIT 

For POSMIT, Bermingham (2018) describes three approaches, that can be performed in order to find 

the most appropriate thresholds for the search bandwidth (ℎ𝑖), the stop variance (ℎ𝑑), and the minimum 

stop probability (𝜀).  

To determine the stop variance (ℎ𝑑), Satopää et al. (2011) propose a Kneedle function in order to find 

elbow points in non-continuous datasets. The main goal of this function is to sort the spatial 

displacement between each entry and its neighbouring entry in the trajectory in ascending order to find 

elbow points (i.e., point of maximum curvature in a function) that should indicate a point of change 

(i.e., change from move to stop, ℎ𝑑  value) (Bermingham, 2018).  

A smoothing spline is adapted to preserve the shape of the original dataset (Satopää et al., 2011). 

Afterwards, the data is normalised into the unit-square [0, 1]2 using a min-max normalisation (ibid.). 

Finally, (x, y-x) is performed on each pair of values in order to get the set of differences between the x 

and y values (ibid.). This difference transformation should highlight when “the difference curve changes 

from horizontal to sharply decreasing” (Satopää et al., 2011:168). That would indicate an elbow in the 

dataset. The elbow point can be extracted from the transformed data as it is the local maxima of the 

curve (Bermingham, 2018). In case there were multiple local maxima, the global maximum was taken. 

Bermingham (2018) proposes a heuristic in order to estimate the search bandwidth (ℎ𝑖 ). At the 

beginning, entries are determined that are ≤ ℎ𝑑 meters away from their neighbouring entry. As long as 

the entries meet the condition, the number of contiguous entries is counted and stored if the number of 

entries is at least two. If one entry is ≥ ℎ𝑑, the counting stops and starts again when another row of 

contiguous entries that meet the criteria occurs (Bermingham, 2018). When the process reaches the end 

of the entries, the median is calculated out of the stored values and divided by two in order to get ℎ𝑖. 

The division by two is necessary as the parameter ℎ𝑖 considers both directions (ibid.).  

To estimate the minimum stop probability (𝜀), Bermingham (2018) calculates the stop probability for 

each data point and clusters the data into two clusters (i.e., stops and moves) using the k-means clustering 

method (k = 2). After building the clusters, Bermingham (2018)’s approach was adapted: the maximum 

stop probability of the move cluster and the minimum stop probability of the stop cluster were averaged. 
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The average out of these two values counted as the minimum stop probability (𝜀) (ibid.). The three 

parameters were estimated for each dataset as compared to fixed parameter values as well. 

Taking out of Bermingham (2018)’s experiments, the minimum stop probability was tested with the 

fixed values of 0.25, 0.5, and 0.75. As for events like shopping or hiking, Bermingham (2018) got best 

results, when ℎ𝑖 ≤ 5. Therefore, the values 1:5 were iterated through. As the estimated ℎ𝑑  got the best 

classification result in Bermingham (2018), it was not going to be further compared to different values. 

This resulted in the following vectors and the algorithm in running 24 times: 

ℎ𝑑 = estimated ℎ𝑑 

ℎ𝑖 = c(estimated ℎ𝑖, 1, 2, 3, 4, 5) 

𝜀 = c(estimated 𝜀, 0.25, 0.5, 0.75)   

4.3.1.4 SOC 

For the SOC MinMov parameter, 180 seconds can be seen as an appropriate time duration that a normal 

moving behaviour should at least last, as this is a commonly applied threshold (Xiang, Gao and Wu, 

2016). For MinStp, no parameter value is set (see Section 4.2.2.4 for further explanation).  

Tau and Eps define the boundary between stop and move in terms of how far a person can get before a 

stop becomes a move. The two parameters can be seen as equivalent to Tmin and Dmax/2 from the MBGP 

algorithm. Dmax/2 was chosen because Eps is the radius of the core sequence instead of the diameter as 

Dmax is in the MBGP algorithm. This resulted in the following vectors and in running the algorithm 28 

times:  

Eps = c(75:150) increasing each time by 25 meters 

Tau = c(10:40) increasing each time by 5 minutes 

MinMov = 180 seconds 

4.3.2 Ground Truth Collection 

To find the most suitable threshold, the algorithms’ outcomes were compared to the manually labelled 

ground truth introduced in Section 3.2. Furthermore, the ground truth was replaced with the probabilistic 

formula introduced in Fedorchuk and Lamiroy (2017) in order to compute the probabilistic metrics and 

compare these results to the F-measure values of the algorithms validated with the manually labelled 

ground truth. The approach of the replaced ground truth will further be elaborated in Section 4.3.3.  
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4.3.3 Probabilistic Metrics 

For calculating the probabilistic metrics, all results whose parameter combination fitted the manually 

labelled ground truth best were taken. The following approach is based on the assumption that each 

point has the same probability of being stop or move. 

For each data point, the information was available if the algorithms detected them as stop (1) or 

move (0). Furthermore, two columns were added to the data (similar as in Table 4.3) that indicated that 

every data point is a stop or move, respectively (Lamiroy and Sun, 2013). Out of this scheme, the 

probability for each point being a stop was calculated (i.e., this is the replaced ground truth).  

Table 4.3 Example of calculating probabilistic metric F-measure (modified from Lamiroy and Sun, 2013:7) 
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data point 1 0.67 1.00 0.00 1.00 1.00 1.00 0.00 

data point 2 0.83 1.00 1.00 1.00 1.00 1.00 0.00 

data point 2 0.50 1.00 0.00 1.00 0.00 1.00 0.00 

sum 2.00 3.00 1.00 3.00 2.00 3.00 0.00 

∑ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠  2.00 0.83 2.00 1.50 2.00 0.00 

precision  0.67 0.83 0.67 0.75 0.67 ∞ 

recall  1.00 0.42 1.00 0.75 1.00 0.00 

F-measure  0.80 0.56 0.80 0.75 0.80  

The precision was calculated out of the sum of the probabilities (∑probabilities) divided by the sum of 

the detected stops (coloured in blue and orange in Table 4.3). The recall was calculated out of the 

∑probabilities divided by the sum of the probability that a point is a stop (coloured in blue and green in 

Table 4.3). The F-measure was calculated as the harmonic-mean between precision and recall 

(Fedorchuk and Lamiroy, 2017).  
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In order to compare the F-measure results explained in Table 4.3 to the results of the manually labelled 

ground truth and for finding the optimal threshold combination in the first place, the F-measure was also 

computed with regard to true positives (TP), false positives (FP), true negatives (TN), and false negatives 

(FN) as introduced in Section 2.4.1.1 (Lamiroy and Sun, 2013). The F-measure was also calculated for 

the results of the following sensitivity analysis methods.  

4.3.4 Sensitivity Analysis 

The sensitivity was analysed first by determining the average number and variance of stops per day and 

second with a varying regular and random sampling rate. To find the most appropriate thresholds, the 

algorithms run with the complete dataset where each point was approximately recorded every second. 

The varying sampling rate approach was applied only to the threshold combination, that seemed to fit 

the algorithms’ results best. The regular sampling rates were a data point every 30 seconds, every 

minute, every five minutes and every ten minutes:  

Regular sampling rate [s] = c(1, 30, 60, 300, 600)  

With the function sample_frac of the dplyr R package, that was already mentioned in Section 4.2.2, a 

random amount of data points can be selected. In order to test the sampling rate robustness with a random 

sampling rate, a fraction of 30 % of the data points was randomly selected and also applied to the chosen 

threshold combination.  

Similar to the approach of Domingues et al. (2018), the algorithms’ behaviour when increasing the 

proportion of noise in the data was analysed. These results were compared to the ground truth. According 

to Bösche et al. (2013), adding Gaussian noise to the data would lead to jumps from one side of a road 

to the other, which is unusual in open areas away from buildings or tunnels.  

Hence, there are R packages available that use the house noise model for ordinal variables to increase 

the proportion of noise in a dataset (Zhang, Liu and Song, 2015). Using the R package FunChisq8, noise 

was added to the longitude column of the dataset with the add.noise function. The advantage of this 

function is that the true values were replaced by noise and the sum of each column stayed the same. 

According to the package description, the noise level of 0.5 creates the most random pattern. Therefore, 

a noise level of 0.25 was applied as no noise is added to the data at a level of 0.  

 
8 Consult the link for further information about the R-package: https://www.rdocumentation.org/packages/FunChisq  

https://www.rdocumentation.org/packages/FunChisq
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4.3.5 Shape Measures 

In order to compare the shapes of the algorithms’ results, the compactness measure of Ebdon (1985) 

cited in Kitchin and Tate (2000) that compares the shape of a polygon with the shape of a circle was 

selected (see Equation 4.10). 

 
𝑓𝑐𝑜𝑚𝑝 =

4𝐴

𝜋𝐷2
 (4.10) 

The smallest enclosing circle was calculated with the R package shotGroups9 that contains a function 

called getMinCircle. The diameter was determined by taking the square root of the division of the 

circle’s area by π and then multiplying the result by two. The area of the stop was determined by 

calculating the convex-hull’s area with the R package geometry10 and the function convhulln. For each 

algorithm, the median of the shape index values was taken. 

4.3.6 Running Time 

After the optimal threshold combination was chosen, the algorithms’ running times were determined by 

running the algorithms several times with different data frames and taking the mean of the running times. 

 
9 Consult the link for further information about the R-package: https://www.rdocumentation.org/packages/shotGroups 
10 Consult the link for further information about the R-package: https://www.rdocumentation.org/packages/geometry 
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5 Results 

This chapter gives an overview of the evaluation on the selected algorithms. In order to make the results 

comparable, they all were visualised and compared to the same 90 study days, where ground truth was 

labelled manually. For choosing the most suitable threshold combination, a bar chart was included in 

the boxplot figures in order to show for what percentage of the test sets an F-measure was calculated. 

The results of the four algorithms are displayed in the following order for each algorithm: 1) threshold 

selection, 2) handling noise and sampling rate, and 3) shape measures. At the end of this chapter there 

is an overview of the results to draw the bigger picture (see Section 5.6).  

5.1 CandidateStops 

The CandidateStops algorithm had to be run six times for each testing day in order to build all threshold 

combinations as it only needs one input parameter, speed [m/s]. 

5.1.1 Threshold Selection 

As Figure 5.1 shows, the CandidateStops algorithm only delivered an F-measure value for about 3 % of 

the test sets for a speed threshold of 0.5 m/s, which is more than for the other thresholds. Furthermore, 

the F-measure value range and median was highest at a speed threshold of 0.5 m/s.  

 

Figure 5.1 F-measure comparison of different speed thresholds of CandidateStops algorithm 

The results of the boxplot statistics are visualised in Table 5.1. The selected threshold of 0.5 m/s is 

highest for all of the key distribution parameters except for the minimum value. The lowest performance 

was reached by a speed threshold of 1.0 m/s. 
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Table 5.1 Boxplot statistics of CandidateStops algorithm 

Speed Threshold [m/s] Min. Q1 Median Mean Q3 Max. 

0.5 0.112 0.154 0.250 0.288 0.400 0.500 

0.6 0.117 0.129 0.171 0.206 0.238 0.400 

0.7 0.091 0.121 0.135 0.180 0.196 0.400 

0.8 0.083 0.116 0.133 0.177 0.194 0.400 

0.9 0.069 0.109 0.133 0.173 0.196 0.400 

1.0 0.065 0.100 0.133 0.170 0.195 0.400 

By looking at the results of the post-processed CandidateStops algorithm in Figure 5.2, one can see that 

all the results improved, for the percentage of valid results as well as for the F-measure values. Still, a 

speed threshold of 0.5 m/s seems to deliver the best outcomes for the post-processed results as well.  

 

Figure 5.2 F-measure comparison of different speed thresholds of post-processed CandidateStops algorithm 

This is confirmed by the boxplot statistics in Table 5.2. All of the key distribution parameters increased 

for a speed threshold of 0.5 m/s except for the maximum value. It stayed the same whereas it increased 

for the other speed thresholds 0.7 m/s, 0.8 m/s, 0.9 m/s, and 1.0 m/s.  

Table 5.2 Boxplot statistics of post-processed CandidateStops algorithm 

Speed Threshold [m/s] Min. Q1 Median Mean Q3 Max. 

0.5 0.125 0.200 0.333 0.320 0.400 0.500 

0.6 0.118 0.200 0.250 0.253 0.333 0.400 

0.7 0.125 0.160 0.250 0.273 0.310 0.670 

0.8 0.125 0.151 0.268 0.285 0.350 0.670 

0.9 0.125 0.151 0.273 0.324 0.400 0.750 

1.0 0.125 0.158 0.279 0.331 0.400 0.750 
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5.1.2 Handling Noise and Sampling Rate 

After the speed threshold of 0.5 m/s was chosen, the algorithm was applied to the test sets with added 

noise and varying sampling rates. As Figure 5.3 shows, the best results in terms of most valid results 

and highest median value are the randomly selected 30 % and a regular sampling rate of 600 s. The test 

sets with added noise had the same percentage of valid results compared to the pre-processed data, 

however the median F-measure value is higher for the test sets with added noise.  

 

Figure 5.3 F-measure comparison of different test sets of CandidateStops algorithm 

In Table 5.3, one can see that the randomly selected 30 % sampling rate and the regular sampling rate 

of 600 s have values of perfect precision and recall as the maximum F-measure value is 1. The 

pre-processed original data performed worst for most of the key distribution parameters. 

Table 5.3 Boxplot statistics of different test sets of CandidateStops algorithm 

Test set Min. Q1 Median Mean Q3 Max. 

regular sampling rate 30 s 0.250 0.286 0.333 0.374 0.333 0.667 

regular sampling rate 300 s 0.200 0.286 0.333 0.386 0.400 0.667 

randomly selected 30 % 0.200 0.286 0.400 0.451 0.500 1.000 

regular sampling rate 60 s 0.222 0.298 0.333 0.374 0.383 0.667 

regular sampling rate 600 s 0.200 0.286 0.400 0.451 0.500 1.000 

added noise 0.089 0.154 0.400 0.310 0.462 0.500 

pre-processed data 0.112 0.154 0.250 0.288 0.400 0.500 

In Figure 5.4, it can be seen that the fraction of randomly selected 30 %, the regular sampling rate of 

600 s, and with added noise, are lower for the post-processed results compared to the pre-processed 

ones. The post-processed CandidateStops algorithm performs best with a regular sampling rate of 60 s. 
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Although the range of the resulting values of the regular sampling rate of 300 s is higher, the percentage 

of valid results and the median are slightly higher for a regular sampling rate of 60 s. 

 

Figure 5.4 F-measure comparison of different test sets of post-processed CandidateStops algorithm 

Table 5.4 shows that the regular sampling rate of 30 s, 300 s and 600 s have values of perfect precision 

and recall as the maximum F-measure value is 1. Compared to the results of the only pre-processed test 

sets, the randomly selected 30 % and the regular sampling rate of 600 s have lower median F-measure 

values and were only able to calculate F-measure values for a small number of test sets. The performance 

of the test sets with added noise decreased as well.  Hence, the results of the test sets with a sampling 

rate of 30 s, 300 s, 60 s, and the post-processed original test sets increased compared to the only 

pre-processed versions.  

Table 5.4 Boxplot statistics of different test sets of post-processed CandidateStops algorithm 

Test set Min. Q1 Median Mean Q3 Max. 

regular sampling rate 30 s 0.182 0.277 0.333 0.465 0.667 1.000 

regular sampling rate 300 s 0.200 0.310 0.500 0.569 0.833 1.000 

randomly selected 30 % 0.333 0.333 0.333 0.444 0.500 0.667 

regular sampling rate 60 s 0.286 0.350 0.533 0.542 0.667 1.000 

regular sampling rate 600 s 0.333 0.333 0.333 0.444 0.500 0.667 

added noise 0.125 0.195 0.292 0.307 0.415 0.500 

post-processed data 0.125 0.200 0.333 0.320 0.400 0.500 

5.1.3 Shape Measures 

For a regular sampling rate of 300 s, 60 s, and 600 s, as well as for the randomly selected 30 % sampling 

rate, no shape index values could be determined as there needed to be three different point locations in 

order to determine the area of the convex hull. This means that when the sampling rate exceeds 30 s, the 
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determined stops contain only single points instead of a stop area. The least compact shapes result when 

a regular sampling rate of 30 s is used, as Figure 5.5 shows (a shape index value of 1 would indicate 

most compact shapes).  

 

Figure 5.5 Comparison of shape index value of different test sets of CandidateStops algorithm 

As Table 5.5 shows the most compact shapes were detected by the pre-processed original data with the 

sampling rate of 1 s as this has the values closest to one. However, the regular sampling rate of 30 s has 

a higher minimal value than the pre-processed data and the test sets with added noise. The manually 

labelled ground truth has, in general, more compact shapes than those generated by the only 

pre-processed CandidateStops algorithm. 

Table 5.5 Boxplot statistics of shape index values of different test sets of CandidateStops algorithm 

Test set Min. Q1 Median Mean Q3 Max. 

pre-processed data 2.46*10-17 6.57*10-15 1.91*10-15 8.04*10-14 8.01*10-15 5.88*10-11 

added noise 2.46*10-17 5.67*10-16 1.54*10-15 1.77*10-14 5.79*10-15 3.84*10-11 

regular sampling rate 600 s 0.00 0.00 0.00 0.00 0.00 0.00 

regular sampling rate 60 s 0.00 0.00 0.00 0.00 0.00 0.00 

regular sampling rate 300 s 0.00 0.00 0.00 0.00 0.00 0.00 

regular sampling rate 30 s 1.23*10-16 1.51*10-16 1.79*10-16 1.04*10-15 1.50*10-15 2.83*10-15 

randomly selected 30 % 0.00 0.00 0.00 0.00 0.00 0.00 

manually labelled 

ground truth 
1.99*10-11 6.72*10-10 3.08*10-09 6.97*10-08 7.79*10-09 8.71*10-07 

The post-processed data have, in general, more compact shapes than only the pre-processed ones. 

Furthermore, different from the pre-processed results, the post-processed results were able to calculate 

shape index values for the regular sampling rate of 60 s. However, the data are rather wide-spread for 

the regular sampling rate of 60 s as the interquartile range of the boxplot in Figure 5.6 is the biggest.  
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Compared to the only pre-processed values, the median of the test sets with added noise is higher than 

the median of the original data with a sampling rate of 1 s.  

 

Figure 5.6 Comparison of shape index value of different test sets of post-processed CandidateStops algorithm 

Although a regular sampling rate of 60 s has the biggest interquartile range, its minimum shape index 

value is higher than the minimum shape index value of the other test sets (see Table 5.6). Therefore, the 

range of data including the outliers, is smaller for the data with a regular sampling rate of 60 s compared 

to the other test sets. This indicates that this sampling rate produces more homogeneous shapes. The 

manually labelled ground truth has in general more compact shapes than the post-processed 

CandidateStops algorithm. 

Table 5.6 Boxplot statistics of shape index values of different test sets of post-processed CandidateStops algorithm 

Test set Min. Q1 Median Mean Q3 Max. 

post-processed data 3.82*10-17 3.87*10-11 9.30*10-09 3.75*10-05 1.34*10-06 3.38*10-03 

added noise 3.82*10-17 4.21*10-11 1.87*10-08 3.48*10-05 2.32*10-06 4.34*10-03 

regular sampling rate 600 s 0.00 0.00 0.00 0.00 0.00 0.00 

regular sampling rate 60 s 4.44*10-13 2.06*10-12 1.08*10-11 9.78*10-03 4.63*10-05 1.12*10-01 

regular sampling rate 300 s 0.00 0.00 0.00 0.00 0.00 0.00 

regular sampling rate 30 s 1.20*10-13 4.69*10-12 3.64*10-11 9.44*10-05 7.94*10-09 2.81*10-03 

randomly selected 30 % 0.00 0.00 0.00 0.00 0.00 0.00 

manually labelled 

ground truth 
1.99*10-11 6.72*10-10 3.08*10-09 6.97*10-08 7.79*10-09 8.71*10-07 

 



Results  

 

 

Department of Geography, University of Zurich  Page 63 

 

5.2 MBGP Algorithm 

As the MBGP algorithm had to be run 245 times for each test set (i.e., 22’050 times for the original test 

sets without the varied sampling rate and added noise) in order to build all threshold combinations. The 

five combinations with the highest key distribution parameters and percentage of valid results were 

pre-selected before creating the boxplots for visualising the results. By looking at the parameter Tmax, 

while parameters Dmax and Tmin vary, the F-measure results for each Tmax value were exactly the same as 

Table 5.7 shows. For the post-processed results, the F-measure results were the same as well. Therefore, 

the Tmax value was set to 14400 s before selecting the best threshold combination.  

Table 5.7 Boxplot statistics of pre-processed Tmax values 

Tmax [s] Min. Q1 Median Mean Q3 Max. 

14400 0.091 0.444 0.800 0.690 1.000 1.000 

18000 0.091 0.444 0.800 0.690 1.000 1.000 

21600 0.091 0.444 0.800 0.690 1.000 1.000 

25200 0.091 0.444 0.800 0.690 1.000 1.000 

28800 0.091 0.444 0.800 0.690 1.000 1.000 

5.2.1 Threshold Selection 

As the threshold for Tmax was set to 14400 s, the threshold combinations for Dmax and Tmin had to be 

determined out of the remaining 49 combinations. Threshold combinations containing parameter 

Dmax = 150 m, 175 m, and 300 m were not among the top five combinations as the percentage of valid 

results was the smallest. Threshold combinations containing parameter Tmin = 600 s, 1500 s, and 1800 s 

were also not among the top five combinations as the percentage of valid results was smaller compared 

to the selected ones visualised in Figure 5.7. The threshold combination 275/14400/900 had the highest 

percentage of valid results when looking at the bar charts. Its median F-measure value is only slightly 

lower than the F-measure value of the combination 250/14400/900. Therefore, the threshold 

combination 275/14400/900 was chosen. 
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Figure 5.7 F-measure comparison of top five threshold combinations of MBGP algorithm 

The selected threshold combination can be further explained with the help of Table 5.8. The first quartile 

of the selected threshold combination 275/14400/900 is higher than the first quartile of the combination 

with the highest median value and their mean values are almost the same. The third quartile and the 

maximum value are the same for all of the combinations except for the combination 200/14400/2400.  

Table 5.8 Boxplot statistics of top five threshold combinations of MBGP algorithm 

Dmax [m]/Tmax [s]/Tmin [s] Min. Q1 Median Mean Q3 Max. 

200/14400/2400 0.133 0.500 0.800 0.684 0.981 1.000 

250/14400/1200 0.125 0.464 0.844 0.701 1.000 1.000 

250/14400/900 0.125 0.485 0.889 0.745 1.000 1.000 

275/14400/2100 0.105 0.500 0.800 0.738 1.000 1.000 

275/14400/900 0.100 0.533 0.857 0.744 1.000 1.000 

By looking at the results in Figure 5.8, the F-measure values of the top five combinations are lower 

compared to the pre-processed ones. However, the percentage of valid results increased slightly. The 

Dmax value of 250 m dropped out of the top five combinations. Hence, the Tmin value of 1500 s is new 

among the top five combinations. The chosen threshold combination for the pre-processed data 

(275/14400/900) has the second lowest median of F-measure values. The combination 200/14400/600 

has the smallest percentage of valid results but the highest median of F-measure values. The same 

median of F-measure values is yielded by the threshold combination 275/14400/2100 and a higher 

percentage of valid results. Therefore, the threshold combination 275/14400/2100 is considered most 

suitable for the post-processed data run with the MBGP algorithm. 
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Figure 5.8 F-measure comparison of top five threshold combinations of post-processed MBGP algorithm 

By looking at the boxplot statistics in Table 5.9, one can see that the key distribution parameters are 

highest for the selected threshold combination 275/14400/2100 except for the minimal value. Compared 

to the only pre-processed results, the minimal values increased. 

Table 5.9 Boxplot statistics of top five threshold combinations of post-processed MBGP algorithm 

Dmax [m]/Tmax [s]/Tmin [s] Min. Q1 Median Mean Q3 Max. 

200/14400/600 0.154 0.500 0.800 0.702 1.000 1.000 

275/14400/1200 0.167 0.500 0.708 0.697 1.000 1.000 

275/14400/2100 0.167 0.500 0.800 0.708 1.000 1.000 

275/14400/900 0.167 0.500 0.739 0.706 1.000 1.000 

275/14400/1500 0.182 0.500 0.775 0.707 0.917 1.000 

As the threshold combination 275/14400/900 is more suitable for the pre-processed data than the 

combination 275/14400/2100, that seemed to be slightly more suitable for the post-processed data, 

further analysis was therefore carried out with both combinations.  

5.2.2 Handling Noise and Sampling Rate 

After the two combinations were chosen, the algorithm was applied to the test sets with added noise and 

varying sampling rates. First, the combination 275/14400/900 is visualised and compared to the 

post-processed results and afterwards the results for the combination 275/14400/2100 are shown.  

5.2.2.1 Handling Noise and Sampling Rate with Tmin of 900 s 

As Figure 5.9 shows, the best result for Tmin = 900 s in terms of most valid results and highest median 

value is the pre-processed original data, followed by the test sets with added noise. In terms of the 
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percentage of valid results and the F-measure median, the regular sampling rate of 60 s outperformed 

the regular sampling rate of 30 s.  

 

Figure 5.9 F-measure comparison of different test sets of MBGP algorithm [Tmin = 900 s] 

Table 5.10 shows that the pre-processed original data have more low value outliers compared to the 

other test sets, as the minimal value of the pre-processed data is the lowest. However, the pre-processed 

original data performed best for most of the key distribution parameters.  

Table 5.10 Boxplot statistics of different test sets of MBGP algorithm [Tmin = 900 s] 

Test set Min. Q1 Median Mean Q3 Max. 

regular sampling rate 30 s 0.111 0.319 0.727 0.637 0.909 1.000 

regular sampling rate 300 s 0.118 0.310 0.667 0.623 0.857 1.000 

randomly selected 30 % 0.125 0.475 0.667 0.634 0.814 1.000 

regular sampling rate 60 s 0.111 0.431 0.800 0.680 1.000 1.000 

regular sampling rate 600 s 0.125 0.475 0.667 0.634 0.814 1.000 

added noise 0.125 0.353 0.857 0.713 1.000 1.000 

pre-processed data 0.100 0.533 0.857 0.744 1.000 1.000 

In Figure 5.10, it can be seen that the median F-measure values are lower for the post-processed data 

compared to the pre-processed data. This behaviour was also detected for the CandidateStops algorithm. 

The percentage of valid results increased for the post-processed original data and noise compared to 

their pre-processed equivalents, whereas the percentage of valid results decreased for the test sets with 

varying sampling rates. In opposition to the pre-processed results, the regular sampling rate of 30 s 

outperforms the regular sampling rate of 60 s in terms of the median F-measure value and the percentage 

of valid results. 
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Figure 5.10 F-measure comparison of different test sets of post-processed MBGP algorithm [Tmin = 900 s] 

Furthermore, the F-measure values of the test sets with varying sampling rates are more similar for the 

post-processed results compared to the pre-processed ones (see Table 5.11). The third quartile in 

particular is the same for all the different sampling rates.  

Table 5.11 Boxplot statistics of different test sets of post-processed MBGP algorithm [Tmin = 900 s] 

Test set Min. Q1 Median Mean Q3 Max. 

regular sampling rate 30 s 0.182 0.286 0.400 0.425 0.500 1.000 

regular sampling rate 300 s 0.182 0.268 0.333 0.402 0.500 1.000 

randomly selected 30 % 0.182 0.286 0.333 0.399 0.500 1.000 

regular sampling rate 60 s 0.182 0.277 0.333 0.410 0.500 1.000 

regular sampling rate 600 s 0.182 0.286 0.333 0.399 0.500 1.000 

added noise 0.143 0.458 0.667 0.649 0.904 1.000 

post-processed data 0.167 0.500 0.739 0.706 1.000 1.000 

5.2.2.2 Handling Noise and Sampling Rate with Tmin of 2100 s 

As Figure 5.11 shows, the best result for Tmin = 2100 s in terms of most valid results and highest median 

value is the post-processed original data, followed by the test sets with added noise. In terms of the 

percentage of valid results, the regular sampling rate of 60 s outperformed the other types of sampling 

rates. Compared to the pre-processed data with a Tmin = 900 s, the median F-measure values are lower 

whereas the percentage of valid results stayed the same.  
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Figure 5.11 F-measure comparison of different test sets of MBGP algorithm [Tmin = 2100 s] 

Table 5.12 shows that the pre-processed original data have more low value outliers compared to the 

other test sets, as the minimal value of the pre-processed data is the lowest similar to the results with 

Tmin = 900 s. However, the pre-processed original data performed best for most of the key distribution 

parameters.  

Table 5.12 Boxplot statistics of different test sets of MBGP algorithm [Tmin = 2100 s] 

Test set Min. Q1 Median Mean Q3 Max. 

regular sampling rate 30 s 0.118 0.500 0.667 0.645 0.829 1.000 

regular sampling rate 300 s 0.125 0.417 0.667 0.609 0.800 1.000 

randomly selected 30 % 0.133 0.500 0.667 0.621 0.800 1.000 

regular sampling rate 60 s 0.118 0.490 0.667 0.634 0.800 1.000 

regular sampling rate 600 s 0.133 0.500 0.667 0.621 0.800 1.000 

added noise 0.154 0.500 0.800 0.714 1.000 1.000 

pre-processed data 0.105 0.500 0.800 0.738 1.000 1.000 

In Figure 5.12, one can see that the median F-measure values are lower for the post-processed data 

compared to the pre-processed data. The percentage of valid results increased for the post-processed 

original data and noise compared to their pre-processed equivalents, whereas the percentage of valid 

results decreased for the test sets with varying sampling rates. In opposition to the pre-processed results, 

the regular sampling rate of 30 s outperforms the regular sampling rate of 60 s in terms of the median 

F-measure value and the percentage of valid results. Compared to the results of Tmin = 900 s the results 

for the varying sampling rates and added noise did not improve. 
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Figure 5.12 F-measure comparison of different test sets of post-processed MBGP algorithm [Tmin = 2100 s] 

Unlike the pre-processed data, the F-measure values of the test sets with the regular sampling rate of 

30 s stayed not the same as the other test sets with varying sampling rates did (see Table 5.13). The third 

quartile and the minimum F-measure value are the same for all the different sampling rates.  

Table 5.13 Boxplot statistics of different test sets of post-processed MBGP algorithm [Tmin = 2100 s] 

Test set Min. Q1 Median Mean Q3 Max. 

regular sampling rate 30 s 0.182 0.286 0.400 0.444 0.500 1.000 

regular sampling rate 300 s 0.182 0.277 0.333 0.398 0.500 1.000 

randomly selected 30 % 0.182 0.286 0.333 0.393 0.500 1.000 

regular sampling rate 60 s 0.182 0.286 0.333 0.419 0.500 1.000 

regular sampling rate 600 s 0.182 0.286 0.333 0.393 0.500 1.000 

added noise 0.143 0.500 0.667 0.658 0.857 1.000 

post-processed data 0.167 0.500 0.800 0.708 1.000 1.000 

5.2.3 Shape Measures 

The shape measures were also applied to both threshold combinations. First, the combination 

275/14400/900 is visualised and compared to the post-processed results and afterwards the results for 

the combination 275/14400/2100 are shown.  

5.2.3.1 Shape Measures with Tmin of 900 s 

Unlike the CandidateStops algorithm, for all of the different test sets a shape index value could be 

determined (see Figure 5.13). The least compact shapes result out of the randomly selected 30 % 

sampling rate and the regular sampling rate of 600 s. The pre-processed original data has the most 

compact shapes. Compared to the CandidateStops algorithm, the shapes are more compact. 
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Figure 5.13 Comparison of shape index value of different test sets of MBGP algorithm [Tmin = 900 s] 

Except for the minimal value, the pre-processed original data has the highest key distribution parameters 

(see Table 5.14). The key distribution parameters of the regular sampling rate of 600 s and the randomly 

selected 30 % are equal and the lowest except for the minimal value. The manually labelled ground truth 

has fewer compact shapes than the only pre-processed MBGP algorithm. 

Table 5.14 Boxplot statistics of shape index values of different test sets of MBGP algorithm [Tmin = 900 s] 

Test set Min. Q1 Median Mean Q3 Max. 

pre-processed data 2.76*10-11 6.55*10-08 1.23*10-07 1.77*10-07 2.11*10-07 5.35*10-06 

added noise 2.74*10-11 4.07*10-08 1.07*10-07 1.54*10-07 1.97*10-07 2.80*10-06 

regular sampling rate 600 s 1.56*10-12 3.97*10-10 2.30*10-09 1.75*10-08 2.32*10-08 1.99*10-07 

regular sampling rate 60 s 9.38*10-11 1.11*10-08 5.06*10-08 8.02*10-08 1.02*10-07 8.26*10-07 

regular sampling rate 300 s 5.77*10-13 1.18*10-09 7.35*10-09 2.86*10-08 3.14*10-08 4.62*10-07 

regular sampling rate 30 s 5.77*10-13 2.30*10-08 6.90*10-08 1.03*10-07 1.23*10-07 7.46*10-07 

randomly selected 30 % 1.56*10-12 3.97*10-10 2.30*10-09 1.75*10-08 2.32*10-08 1.99*10-07 

manually labelled 

ground truth 
1.99*10-11 6.72*10-10 3.08*10-09 6.97*10-08 7.79*10-09 8.71*10-07 

The post-processed data have, in general, more compact shapes than the pre-processed test sets. In 

particular, the varying sampling rates got higher median shape index values whereas the median shape 

index values of the post-processed original data and the post-processed test sets with added noise only 

slightly increased. As Figure 5.14 shows, the results are rather wide spread for the different varying 

sampling rates, especially for the sampling rate of 600 s. 
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Figure 5.14 Comparison of shape index value of different test sets of post-processed MBGP algorithm [Tmin = 900 s] 

Unlike the results of the pre-processed data the original data and test sets with added noise have the 

lowest key distribution parameters as Table 5.15 shows. The manually labelled ground truth has fewer 

compact shapes compared to the post-processed MBGP algorithm. 

Furthermore, the different sampling rates have the same maximum values but have very different 

interquartile ranges that are wider compared to their pre-processed equivalents. The shapes of the 

post-processed data with varying sampling rates are less homogeneous than the shapes of the 

pre-processed data.  

Table 5.15 Boxplot statistics of shape index values of different test sets of post-processed MBGP algorithm [Tmin = 900 s] 

Test set Min. Q1 Median Mean Q3 Max. 

post-processed data 2.76*10-11 7.29*10-08 1.46*10-07 9.30*10-02 3.18*10-07 8.62*1000 

added noise 2.74*10-11 5.24*10-08 1.35*10-07 8.11*10-02 2.94*10-07 8.62*1000 

regular sampling rate 600 s 8.74*10-11 1.52*10-08 1.28*10-06 4.79*10-01 2.72*10-03 1.06*1001 

regular sampling rate 60 s 9.01*10-10 2.53*10-07 2.63*10-05 4.23*10-01 3.56*10-03 1.06*1001 

regular sampling rate 300 s 1.12*10-09 6.96*10-08 4.14*10-06 4.99*10-01 4.12*10-03 1.06*1001 

regular sampling rate 30 s 4.90*10-10 7.87*10-08 3.20*10-06 2.65*10-01 6.84*10-04 1.06*1001 

randomly selected 30 % 8.74*10-11 1.52*10-08 1.28*10-06 4.79*10-01 2.72*10-03 1.06*1001 

manually labelled 

ground truth 
1.99*10-11 6.72*10-10 3.08*10-09 6.97*10-08 7.79*10-09 8.71*10-07 
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5.2.3.2 Shape Measures with Tmin of 2100 s 

As Figure 5.15 shows, the least compact shapes result from the randomly selected 30 % sampling rate 

and the regular sampling rate of 600 s. The pre-processed original data has the most compact and most 

homogeneous shapes. Compared to the results of Tmin = 900 s, the boxplot patterns and the median shape 

index values look similar.  

 

Figure 5.15 Comparison of shape index value of different test sets of MBGP algorithm [Tmin = 2100 s] 

Except for the minimal value and third quartile, the pre-processed original data have the highest key 

distribution parameters (see Table 5.16). The key distribution parameters of the regular sampling rate of 

600 s and the randomly selected 30 % are equal and the lowest. The manually labelled ground truth has 

fewer compact shapes than the only pre-processed MBGP algorithm. 

Table 5.16 Boxplot statistics of shape index values of different test sets of MBGP algorithm [Tmin = 2100 s] 

Test set Min. Q1 Median Mean Q3 Max. 

pre-processed data 2.76*10-11 5.58*10-08 1.27*10-07 1.79*10-07 2.18*10-07 5.35*10-06 

added noise 2.74*10-11 4.25*10-08 1.18*10-07 1.58*10-07 2.20*10-07 9.19*10-07 

regular sampling rate 600 s 7.80*10-12 4.08*10-10 2.24*10-09 1.68*10-08 1.94*10-08 1.98*10-07 

regular sampling rate 60 s 9.38*10-11 1.05*10-08 4.67*10-08 7.58*10-08 1.03*10-07 6.04*10-07 

regular sampling rate 300 s 9.04*10-12 1.30*10-09 6.20*10-09 3.00*10-08 3.22*10-08 4.62*10-07 

regular sampling rate 30 s 8.71*10-11 2.08*10-08 6.72*10-08 1.02*10-07 1.21*10-07 7.46*10-07 

randomly selected 30 % 7.80*10-12 4.08*10-10 2.24*10-09 1.68*10-08 1.94*10-08 1.98*10-07 

manually labelled 

ground truth 
1.99*10-11 6.72*10-10 3.08*10-09 6.97*10-08 7.79*10-09 8.71*10-07 

The post-processed data have in general more compact shapes than the pre-processed ones. Specifically, 

the varying sampling rates got higher median shape index values whereas the median shape index values 

of the post-processed original data and the post-processed test sets with added noise only slightly 
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increased. As Figure 5.16 shows, the data are rather wide-spread for the different varying sampling 

rates, especially for the sampling rate of 600 s and the randomly selected 30 %. 

 

Figure 5.16 Comparison of shape index value of different test sets of post-processed MBGP algorithm [Tmin = 2100 s] 

Unlike the results of the post-processed data with Tmin = 900 s, test sets with a regular sampling rate of 

600 s and randomly selected 30 % have the lowest key distribution parameters for the first quartile and 

median value as can be seen in Table 5.17. Furthermore, the different sampling rates have the same 

maximum values but have very different interquartile ranges that are wider compared to their 

pre-processed equivalents. The manually labelled ground truth has fewer compact shapes compared to 

the post-processed MBGP algorithm. 

Table 5.17 Boxplot statistics of shape index values of different test sets of post-processed MBGP algorithm [Tmin = 2100 s] 

Test set Min. Q1 Median Mean Q3 Max. 

post-processed data 3.39*10-10 4.48*10-08 1.29*10-07 2.21*10-07 2.45*10-07 4.66*10-06 

added noise 2.74*10-11 5.20*10-08 1.35*10-07 8.45*10-02 2.59*10-07 8.62*1000 

regular sampling rate 600 s 8.74*10-11 7.87*10-09 1.05*10-07 4.67*10-01 1.28*10-03 1.06*1001 

regular sampling rate 60 s 4.78*10-10 9.72*10-08 1.31*10-06 3.49*10-01 9.85*10-04 1.06*1001 

regular sampling rate 300 s 5.51*10-10 3.21*10-08 2.68*10-06 4.90*10-01 3.24*10-03 1.06*1001 

regular sampling rate 30 s 4.90*10-10 3.40*10-08 2.01*10-07 2.01*10-01 6.27*10-06 1.06*1001 

randomly selected 30 % 8.74*10-11 7.87*10-09 1.05*10-07 4.67*10-01 1.28*10-03 1.06*1001 

manually labelled 

ground truth 
1.99*10-11 6.72*10-10 3.08*10-09 6.97*10-08 7.79*10-09 8.71*10-07 
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5.3 POSMIT 

The POSMIT algorithm had to be run 24 times for each test set (i.e., 2160 times for the original test sets 

without the varied sampling rate and added noise) in order to build all threshold combinations as it needs 

three input parameters, of which only two, search bandwidth (hi) and stop probability (𝜀), needed to be 

iteratively tested.   

5.3.1 Threshold Selection 

As Figure 5.17 shows, the POSMIT algorithm has a high percentage of valid results for the search 

bandwidth of 1 and a stop probability of 0.25 as well as for the calculated search bandwidth and stop 

probability of 0.25. Furthermore, the median F-measure values were highest for those two combinations. 

The other threshold combinations had very low percentages of valid results, but the respective median 

F-measure values varied from 0.04 to 0.37.    

 

Figure 5.17 F-measure comparison of different threshold combinations of POSMIT algorithm 

The results displayed in Table 5.18 give a more detailed overview of the boxplot statistics. The boxplot 

statistics show that the F-measure values are highest for the threshold combination 1/0.25. As it also has 

the highest percentage of valid results, this combination was chosen for further analysis. 
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Table 5.18 Boxplot statistics of POSMIT algorithm 

Thresholds hi/ɛ Min. Q1 Median Mean Q3 Max. 

1/0.25 0.182 0.298 0.400 0.475 0.625 1.000 

1/0.5 0.004 0.012 0.041 0.055 0.102 0.120 

1/0.75 0.068 0.097 0.110 0.134 0.162 0.235 

1/calc. 0.010 0.070 0.097 0.123 0.203 0.237 

2/0.25 0.002 0.023 0.037 0.048 0.058 0.129 

2/0.5 0.063 0.097 0.105 0.138 0.188 0.235 

2/0.75 0.027 0.073 0.088 0.216 0.225 0.800 

2/calc. 0.009 0.063 0.078 0.075 0.102 0.117 

3/0.25 0.003 0.011 0.049 0.058 0.107 0.124 

3/0.5 0.063 0.102 0.120 0.227 0.351 0.500 

3/0.75 0.040 0.286 0.333 0.336 0.475 0.667 

3/calc. 0.008 0.077 0.124 0.268 0.385 0.800 

4/0.25 0.033 0.087 0.119 0.127 0.133 0.264 

4/0.5 0.021 0.086 0.367 0.348 0.554 0.750 

4/0.75 0.040 0.310 0.333 0.428 0.500 1.000 

4/calc. 0.008 0.101 0.333 0.338 0.500 0.750 

5/0.25 0.039 0.044 0.098 0.087 0.119 0.144 

5/0.5 0.057 0.286 0.333 0.372 0.500 0.667 

5/0.75 0.049 0.333 0.333 0.447 0.500 1.000 

5/calc. 0.003 0.187 0.333 0.311 0.383 0.667 

calc./0.25 0.182 0.286 0.400 0.472 0.500 1.000 

calc./0.5 0.004 0.012 0.041 0.054 0.097 0.120 

calc./0.75 0.068 0.090 0.110 0.133 0.162 0.235 

calc./calc. 0.010 0.070 0.098 0.124 0.203 0.237 

The post-processed median F-measure values for the combination 1/0.25 and the calculated search 

bandwidth/stop probability of 0.25 stayed the same compared to the only pre-processed results. 

However, the other median F-measure values, as well as the percentage of valid results increased as 

Figure 5.18 shows. The percentage of valid results stayed the same for the chosen threshold 1/0.25. 

 

Figure 5.18 F-measure comparison of different threshold combinations of post-processed POSMIT algorithm 
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By looking only at the boxplot statistics in Table 5.19, the threshold combination 1/0.5 seemed to deliver 

the best results. However, as the percentage of valid results was higher for the threshold combination 

1/0.25 this result was chosen. This result was chosen over the calculated/0.25 threshold combination 

(both combinations had the exact same results) because knowing the parameter value is more transparent 

and makes interpretations easier compared to not knowing the calculated search bandwidth value. 

Table 5.19 Boxplot statistics of post-processed POSMIT algorithm 

Thresholds hi/ɛ Min. Q1 Median Mean Q3 Max. 

1/0.25 0.182 0.298 0.400 0.475 0.625 1.000 

1/0.5 0.036 0.343 0.667 0.602 1.000 1.000 

1/0.75 0.053 0.243 0.276 0.460 0.792 1.000 

1/calc. 0.063 0.258 0.286 0.462 0.694 1.000 

2/0.25 0.035 0.218 0.667 0.564 1.000 1.000 

2/0.5 0.043 0.100 0.276 0.371 0.449 1.000 

2/0.75 0.091 0.170 0.200 0.281 0.267 0.800 

2/calc. 0.038 0.062 0.158 0.189 0.224 0.522 

3/0.25 0.036 0.286 0.583 0.547 0.724 1.000 

3/0.5 0.098 0.178 0.287 0.293 0.405 0.500 

3/0.75 0.121 0.286 0.333 0.352 0.475 0.667 

3/calc. 0.056 0.100 0.167 0.259 0.182 0.800 

4/0.25 0.074 0.222 0.345 0.487 0.889 1.000 

4/0.5 0.091 0.187 0.333 0.392 0.619 0.750 

4/0.75 0.138 0.333 0.333 0.441 0.500 1.000 

4/calc. 0.069 0.174 0.333 0.340 0.500 0.667 

5/0.25 0.050 0.115 0.179 0.292 0.302 1.000 

5/0.5 0.105 0.286 0.333 0.367 0.500 0.667 

5/0.75 0.143 0.333 0.333 0.448 0.500 1.000 

5/calc. 0.043 0.259 0.333 0.331 0.383 0.667 

calc./0.25 0.182 0.298 0.400 0.475 0.625 1.000 

calc./0.5 0.036 0.286 0.600 0.561 0.857 1.000 

calc./0.75 0.053 0.129 0.201 0.223 0.260 0.500 

calc./calc. 0.063 0.184 0.267 0.304 0.464 0.500 
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5.3.2 Handling Noise and Sampling Rate 

After the threshold combination 1/0.25 was chosen, the algorithm was applied to the test sets with added 

noise and varying sampling rates. As Figure 5.19 shows, the best results in terms of most valid results 

and highest median value is the test sets with added noise followed by the pre-processed original data. 

The worst results in terms of percentage of valid results delivered the regular sampling rate of 600 s and 

the sampling rate of randomly selected 30 %. 

 

Figure 5.19 F-measure comparison of different test sets of POSMIT algorithm 

Similar to the CandidateStops algorithm, the test sets with added noise have the highest key distribution 

parameters as can be seen in Table 5.20. Furthermore, the regular sampling rate of 600 s and the 

sampling rate of randomly selected 30 % show the same results. All of the different test sets have the 

same minimal values and the different sampling rates have the same first quartile and median values. 

Table 5.20 Boxplot statistics of different test sets of POSMIT algorithm 

Test set Min. Q1 Median Mean Q3 Max. 

regular sampling rate 30 s 0.182 0.268 0.333 0.410 0.500 1.000 

regular sampling rate 300 s 0.182 0.268 0.333 0.391 0.500 1.000 

randomly selected 30 % 0.182 0.268 0.333 0.369 0.450 0.667 

regular sampling rate 60 s 0.182 0.268 0.333 0.410 0.500 1.000 

regular sampling rate 600 s 0.182 0.268 0.333 0.369 0.450 0.667 

added noise 0.182 0.333 0.400 0.511 0.667 1.000 

pre-processed data 0.182 0.298 0.400 0.475 0.625 1.000 
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Figure 5.20 shows that the percentage of valid results decreased for the test sets with added noise 

compared to the pre-processed test sets with added noise (i.e., now same percentage as post-processed 

original data). Furthermore, the median F-measure values stayed the same for all the different test sets. 

 

Figure 5.20 F-measure comparison of different test sets of post-processed POSMIT algorithm 

Table 5.21 shows that the values only changed for the added noise and post-processed original test sets 

compared to the pre-processed test sets. The values of added noise decreased and are identical to the 

post-processed original data values. 

Table 5.21 Boxplot statistics of different test sets of post-processed POSMIT algorithm 

Test set Min. Q1 Median Mean Q3 Max. 

regular sampling rate 30 s 0.182 0.268 0.333 0.410 0.500 1.000 

regular sampling rate 300 s 0.182 0.268 0.333 0.391 0.500 1.000 

randomly selected 30 % 0.182 0.268 0.333 0.369 0.450 0.667 

regular sampling rate 60 s 0.182 0.268 0.333 0.410 0.500 1.000 

regular sampling rate 600 s 0.182 0.268 0.333 0.369 0.450 0.667 

added noise 0.182 0.298 0.400 0.475 0.625 1.000 

post-processed data 0.182 0.298 0.400 0.475 0.625 1.000 
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5.3.3 Shape Measures 

Opposite to the CandidateStops algorithm, shape index values could be determined for all test sets of 

the POSMIT algorithm (see Figure 5.21). The median shape index values and the interquartile ranges 

of the different test sets are close together. The median shape index values are highest compared to the 

other two algorithms, CandidateStops and MBGP.  

 

Figure 5.21 Comparison of shape index value of different test sets of POSMIT algorithm 

As Table 5.22 shows, the least compact shape was detected by the regular sampling rate of 300 s 

followed by the regular sampling rate of 30 s. The test sets with added noise have the highest key 

distribution parameters except for the median value. The manually labelled ground truth has fewer 

compact shapes compared to the POSMIT algorithm. 

Table 5.22 Boxplot statistics of shape index values of different test sets of POSMIT algorithm 

Test set Min. Q1 Median Mean Q3 Max. 

pre-processed data 1.39*10-08 4.43*10-06 4.09*10-04 7.48*10-01 1.72*10-02 1.13*1001 

added noise 1.42*10-08 4.93*10-06 4.10*10-04 7.48*10-01 1.73*10-02 1.13*1001 

regular sampling rate 600 s 1.61*10-09 4.55*10-06 4.55*10-04 6.36*10-01 1.44*10-02 1.07*1001 

regular sampling rate 60 s 6.26*10-09 4.10*10-06 3.27*10-04 6.05*10-01 1.47*10-02 1.12*1001 

regular sampling rate 300 s 1.36*10-09 3.75*10-06 2.39*10-04 6.00*10-01 1.45*10-02 1.11*1001 

regular sampling rate 30 s 2.99*10-09 2.32*10-06 2.52*10-04 5.34*10-01 1.55*10-02 1.13*1001 

randomly selected 30 % 1.61*10-09 4.55*10-06 4.55*10-04 6.36*10-01 1.44*10-02 1.07*1001 

manually labelled 

ground truth 
1.99*10-11 6.72*10-10 3.08*10-09 6.97*10-08 7.79*10-09 8.71*10-07 
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The post-processed data show the same results in Figure 5.22 as the pre-processed data in Figure 5.21. 

Furthermore, boxplot statistics were also identical and were therefore not included in the thesis. Reasons 

for the same results are discussed in Chapter 6. 

 

Figure 5.22 Comparison of shape index value of different test sets of post-processed POSMIT algorithm 

5.4 SOC 

The SOC algorithm was planned to be run 28 times for each testing day in order to build all threshold 

combinations. However, it was not able to find stops for Eps values other than 75 m. Therefore, the 

algorithm only had to run seven times in order to find the optimal threshold Tau.   

5.4.1 Threshold Selection 

As Figure 5.23 shows, the median F-measure values were the same for all Tau values. By looking at the 

percentage of valid results, the Tau value of 1200 s and 1800 s had the same percentage of valid results. 

 

Figure 5.23 F-measure comparison of different Tau thresholds of SOC algorithm 
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To choose the most suitable threshold, Table 5.23 gave an overview of the boxplot statistics. Based on 

the key distribution parameters a Tau value of 600 s seemed most suitable. However, for this value, the 

percentage of valid results was lowest. By looking at the two results where the percentage of valid results 

was highest, a Tau value of 1200 s had a higher first quartile value and mean value than the Tau value 

of 1800 s. In general, the percentage of valid results are second highest after the MBGP algorithm, 

compared to the other three algorithms.  

Table 5.23 Boxplot statistics of SOC algorithm 

Tau [s] Min. Q1 Median Mean Q3 Max. 

 600 0.182 0.444 0.500 0.520 0.600 1.000 

 900 0.182 0.391 0.500 0.508 0.571 1.000 

 1200 0.182 0.400 0.500 0.498 0.571 1.000 

 1500 0.182 0.400 0.500 0.492 0.536 1.000 

 1800 0.182 0.364 0.500 0.485 0.571 1.000 

 2100 0.167 0.356 0.500 0.470 0.518 1.000 

 2400 0.167 0.333 0.500 0.460 0.571 1.000 

By looking at the results of the post-processed SOC algorithm in Figure 5.2, one can see that the median 

F-measure values stayed the same or decreased in case of a Tau value of 2100 s. The third quartiles of 

the boxplots seemed to have decreased compared to the pre-processed results. The percentage of valid 

results stayed the same or increased slightly in case of Tau = 1500 s.  

 

Figure 5.24 F-measure comparison of different Tau thresholds of post-processed SOC algorithm 

According to Table 5.24 a Tau value of 600 s delivered the best key distribution parameters. However, 

as the percentage of valid results was lowest for this Tau value, a Tau value of 1200 s was chosen for 

the post-processed results (same as for the pre-processed results) as it had the second highest key 

distribution parameters of the boxplot statistics.  
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Table 5.24 Boxplot statistics of post-processed SOC algorithm 

Tau [s] Min. Q1 Median Mean Q3 Max. 

 600 0.182 0.382 0.500 0.512 0.586 1.000 

 900 0.182 0.341 0.500 0.501 0.571 1.000 

 1200 0.182 0.364 0.500 0.496 0.571 1.000 

 1500 0.182 0.356 0.500 0.490 0.500 1.000 

 1800 0.182 0.333 0.500 0.483 0.500 1.000 

 2100 0.167 0.333 0.472 0.466 0.500 1.000 

 2400 0.167 0.333 0.500 0.457 0.500 1.000 

5.4.2 Handling Noise and Sampling Rate 

After the Tau value of 1200 s was chosen, the algorithm was applied to the test sets with added noise 

and varying sampling rates. As Figure 5.25 shows, the best results in terms of most valid results and 

highest median value are the pre-processed original data followed by the test sets with added noise. 

These results are similar to the results of POSMIT and MBGP algorithm. The different varying sampling 

rates have the similar percentage of valid results.  

 

Figure 5.25 F-measure comparison of different test sets of SOC algorithm 

Table 5.25 confirms that the test sets with added noise and the pre-processed original data have the 

highest or second highest key distribution parameters except for the third quartile value that was highest 

at the regular sampling rate of 300 s. The test sets with added noise and the pre-processed original data 

had maximum values of 1 which means values of perfect precision and recall.  
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Table 5.25 Boxplot statistics of different test sets of SOC algorithm 

Test set Min. Q1 Median Mean Q3 Max. 

regular sampling rate 30 s 0.222 0.286 0.400 0.417 0.500 0.857 

regular sampling rate 300 s 0.154 0.321 0.481 0.465 0.617 0.800 

randomly selected 30 % 0.143 0.286 0.400 0.410 0.500 0.800 

regular sampling rate 60 s 0.182 0.343 0.500 0.477 0.586 0.857 

regular sampling rate 600 s 0.143 0.286 0.400 0.410 0.500 0.800 

added noise 0.182 0.333 0.500 0.500 0.615 1.000 

pre-processed data 0.182 0.400 0.500 0.498 0.571 1.000 

Compared to the pre-processed data, the F-measure median value decreased for all of the different 

varying sampling rates except for the regular sampling rate of 30 s. The percentage of valid results also 

decreased for the different varying sampling rates. They stayed the same for the test sets with added 

noise and the post-processed original data.  

 

Figure 5.26 F-measure comparison of different test sets of post-processed SOC algorithm 

Figure 5.26 shows, that the test sets with added noise had the highest key distribution parameters 

followed by the post-processed original data. The sampling rate of randomly selected 30 % and the 

regular sampling rate of 600 s had the worst key distribution parameters. 

Table 5.26 Boxplot statistics of different test sets of post-processed SOC algorithm 

Test set Min. Q1 Median Mean Q3 Max. 

regular sampling rate 30 s 0.182 0.298 0.400 0.379 0.486 0.500 

regular sampling rate 300 s 0.182 0.250 0.333 0.345 0.400 0.500 

randomly selected 30 % 0.182 0.250 0.333 0.341 0.400 0.500 

regular sampling rate 60 s 0.182 0.286 0.400 0.378 0.472 0.667 

regular sampling rate 600 s 0.182 0.250 0.333 0.341 0.400 0.500 

added noise 0.182 0.333 0.500 0.495 0.593 1.000 

post-processed data 0.182 0.364 0.500 0.496 0.571 1.000 
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5.4.3 Shape Measures 

Compared to the POSMIT algorithm, the shape index values were lower and more similar to the shape 

index values of the MBGP algorithm (see Figure 5.27). The regular sampling rate of 600 s and the 

sampling rate of randomly selected 30 % have fewer compact shapes than the test sets with added noise, 

which have the most compact shapes.  

 

Figure 5.27 Comparison of shape index value of different test sets of SOC algorithm 

As it can be seen in Table 5.27, the results that can be seen in the boxplots visualised in Figure 5.27 

above were confirmed and the test sets with added noise have the highest key distribution parameters 

except for the mean value. Furthermore, the key distribution parameters for the regular sampling rate of 

600 s and the sampling rate of randomly selected 30 % are identical. The manually labelled ground truth 

has fewer compact shapes than the only pre-processed SOC algorithm. 

Table 5.27 Boxplot statistics of shape index values of different test sets of SOC algorithm 

Test set Min. Q1 Median Mean Q3 Max. 

pre-processed data 8.82*10-10 7.84*10-09 2.55*10-08 2.03*10-05 1.47*10-07 2.57*10-03 

added noise 8.90*10-10 8.86*10-09 2.99*10-08 2.57*10-05 2.16*10-07 2.57*10-03 

regular sampling rate 600 s 2.46*10-12 1.29*10-10 5.01*10-10 1.23*10-07 1.63*10-09 1.47*10-05 

regular sampling rate 60 s 5.54*10-11 2.38*10-09 9.36*10-09 1.22*10-06 3.12*10-08 1.39*10-04 

regular sampling rate 300 s 4.52*10-12 3.61*10-10 1.62*10-09 1.95*10-07 6.59*10-09 1.63*10-05 

regular sampling rate 30 s 3.24*10-11 3.43*10-09 1.05*10-08 1.26*10-06 5.85*10-08 1.40*10-04 

randomly selected 30 % 2.46*10-12 1.29*10-10 5.01*10-10 1.23*10-07 1.63*10-09 1.47*10-05 

manually labelled 

ground truth 
1.99*10-11 6.72*10-10 3.08*10-09 6.97*10-08 7.79*10-09 8.71*10-07 

Figure 5.28 shows that the key distribution parameters of the different varying sampling rates of the 

post-processed data have wider interquartile ranges of shape index values than their respective 
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pre-processed data. The post-processed original data’s median shape index value slightly decreased 

whereas the median shape index value of the test sets with added noise increased. 

 

Figure 5.28 Comparison of shape index value of different test sets of post-processed POSMIT algorithm 

The regular sampling rate of 600 s has the same key distribution parameters as the sampling rate of 

randomly selected 30 % (see Table 5.28). They also have the widest interquartile ranges which means 

that these two statuses have the least homogenous shapes. The test sets with added noise and 

post-processed original data have the most homogenous shapes as their interquartile ranges are closest. 

The manually labelled ground truth has fewer compact shapes than the post-processed SOC algorithm. 

Table 5.28 Boxplot statistics of shape index values of different test sets of post-processed SOC algorithm 

Test set Min. Q1 Median Mean Q3 Max. 

post-processed data 8.82*10-10 7.33*10-09 2.54*10-08 2.17*10-05 2.06*10-07 2.57*10-03 

added noise 8.90*10-10 8.52*10-09 3.04*10-08 2.70*10-05 2.29*10-07 2.57*10-03 

regular sampling rate 600 s 1.97*10-11 3.89*10-10 4.44*10-09 1.24*10-01 7.41*10-04 4.01*1000 

regular sampling rate 60 s 3.07*10-10 6.17*10-09 5.39*10-08 1.31*10-01 3.55*10-04 5.10*1000 

regular sampling rate 300 s 3.37*10-11 1.56*10-09 9.36*10-09 1.48*10-01 9.22*10-04 4.01*1000 

regular sampling rate 30 s 1.03*10-10 4.70*10-09 1.32*10-08 2.87*10-02 3.22*10-07 1.53*1000 

randomly selected 30 % 1.97*10-11 3.89*10-10 4.44*10-09 1.24*10-01 7.41*10-04 4.01*1000 

manually labelled 

ground truth 
1.99*10-11 6.72*10-10 3.08*10-09 6.97*10-08 7.79*10-09 8.71*10-07 

5.5 Ground Truth Comparison 

After having chosen the threshold combinations per algorithm, the ground truth was calculated for the 

pre-processed original data with the probabilistic formula introduced in Section 4.3.3. In Figure 5.29, 

the boxplots of the F-measure values are visualised per algorithm (“prob.” means calculated using the 

probabilistic formula; “man.” indicates the manually labelled ground truth). 
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Figure 5.29 Ground truth comparison of replaced ground truth (prob.) and manually labelled ground truth (man.) 

The manually labelled ground truth shows higher F-measure median values for the CandidateStops and 

MBGP algorithm, whereas the ground truth calculated with the probabilistic formula produced higher 

values for the POSMIT and SOC algorithm. By comparing the different manually labelled ground truths 

one can see that the MBGP algorithm with Tmin = 900 s has the highest key distribution parameters (see 

Table 5.29).  

Table 5.29 Boxplot statistics of F-measures calculated based on manually labelled ground truth (man.) 

Algorithm Min. Q1 Median Mean Q3 Max. 

CandidateStops 1.12*10-01 1.54*10-01 2.50*10-01 2.88*10-01 4.00*10-01 5.00*10-01 

POSMIT 1.82*10-01 2.98*10-01 4.00*10-01 4.75*10-01 6.25*10-01 1.00*1000 

MBGP Tmin = 900 s 1.00*10-01 5.33*10-01 8.57*10-01 7.44*10-01 1.00*1000 1.00*1000 

MBGP Tmin = 2100 s 1.05*10-01 5.00*10-01 8.00*10-01 7.38*10-01 1.00*1000 1.00*1000 

SOC 1.82*10-01 4.00*10-01 5.00*10-01 4.98*10-01 5.71*10-01 1.00*1000 

The replaced ground truth shows similar results. The F-measure values are different than the manually 

labelled ones, but the replaced ground truth of the MBGP algorithm with Tmin = 900 s also yielded the 

highest key distribution parameters. Similar to the manually labelled ground truth, the CandidateStops 

algorithm’s performance is lowest, as Table 5.30 shows. The key distribution parameters of the two 
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threshold combinations of the MBGP algorithm are more similar compared to the manually labelled 

ground truth values. 

Table 5.30 Boxplot statistics of F-measures calculated based on replaced ground truth (prob.)  

Algorithm Min. Q1 Median Mean Q3 Max. 

CandidateStops  7.19*10-05 7.44*10-04 4.42*10-01 2.16*10-01 5.69*10-01 7.68*10-01 

POSMIT  5.90*10-01 7.15*10-01 7.48*10-01 7.51*10-01 7.89*10-01 8.72*10-01 

MBGP Tmin = 900 s  6.00*10-01 7.32*10-01 7.56*10-01 7.63*10-01 7.99*10-01 8.78*10-01 

MBGP Tmin = 2100 s  5.61*10-01 7.30*10-01 7.47*10-01 7.56*10-01 7.96*10-01 8.78*10-01 

SOC  1.31*10-02 3.41*10-01 5.55*10-01 5.15*10-01 7.31*10-01 8.72*10-01 

5.6 Stop-Move Classification Comparison 

5.6.1 General Overview 

To give a brief overview of the overall stop-move classification results presented in the previous 

sections, the following confusion matrix (see Table 5.31) visualises the classification results for each 

algorithm. The results show the percentage of true positive, false negative, and false positive cases out 

of the classification in order to make the results comparable among the algorithms. The sum of true 

positives and false negatives is 100 % (where 100 % are the total number of manually labelled stops). 

The false positive value is the percentage of stops that the algorithm detected too many, compared to 

the manually labelled ground truth. Conversely, the false negative value indicates the percentage of stops 

detected too few. 

An example of false negatives can be seen in Figure 5.30. The black circles visualise the manually 

labelled stop. Except for the MBGP algorithm with Tmin = 900 s, the algorithms were not able to detect 

this stop (blue = stop, yellow = move). This stop duration was longer than 15 minutes (900 seconds) and 

shorter than 35 minutes (2100 seconds) because it was not detected by the MBGP algorithm with 

Tmin = 2100 s. This example shows how important it is to have an optimal threshold value for the data. 

 

Figure 5.30 Example of false negative stops detected by the algorithms (pre- and post-processed results were identical) 
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Table 5.31 Confusion matrix (true positives (TP), false negatives (FN), and false positives (FP)) of pre-processed data 

 Test set TP [%] FN [%] FP [%] 
C
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id
at

eS
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p
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pre-processed original 0.44 99.56 0.30 

regular sampling rate 30 s 0.39 99.61 28.67 

regular sampling rate 300 s 16.88 83.12 466.23 

randomly selected 30 % 25.00 75.00 491.67 

regular sampling rate 60 s 1.58 98.42 96.57 

regular sampling rate 600 s 25.00 75.00 491.67 

added noise 0.40 99.60 0.29 
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pre-processed original 24.87 28.13 75.13 71.88 69.11 95.49 

regular sampling rate 30 s 21.56 25.26 78.44 74.74 75.32 105.26 

regular sampling rate 300 s 23.75 26.74 76.25 73.26 92.50 117.44 

randomly selected 30 % 23.25 24.89 76.75 75.11 114.02 140.44 

regular sampling rate 60 s 24.05 25.96 75.95 74.04 77.03 104.56 

regular sampling rate 600 s 23.25 24.89 76.75 75.11 114.02 140.44 

added noise 22.20 27.24 77.80 72.76 61.66 91.99 

P
O

S
M

IT
 

pre-processed original 68.89 31.11 344.44 

regular sampling rate 30 s 43.82 56.18 374.16 

regular sampling rate 300 s 39.77 60.23 382.95 

randomly selected 30 % 42.68 57.32 410.98 

regular sampling rate 60 s 44.32 55.68 378.41 

regular sampling rate 600 s 42.68 57.32 410.98 

added noise 67.78 32.22 332.22 

S
O

C
 

pre-processed original 38.93 61.07 202.01 

regular sampling rate 30 s 25.44 74.56 185.80 

regular sampling rate 300 s 27.65 72.35 186.47 

randomly selected 30 % 26.88 73.13 200.00 

regular sampling rate 60 s 24.86 75.14 167.57 

regular sampling rate 600 s 26.88 73.13 200.00 

added noise 33.12 66.88 187.26 

The pre-processed original data run with the POSMIT algorithm had the highest percentage of true 

positive values compared to the other algorithms, followed by the SOC algorithm. Hence, the POSMIT 

algorithm detected three times more false positive values and the SOC algorithm two times more false 

positive values. The pre-processed original data have the highest true positive values compared to the 

other test sets calculated with the respective algorithm except for the CandidateStops algorithm. There, 

both the sampling rate of randomly selected 30 % and the regular sampling rate of 600 s had a percentage 
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of 25 %. The MBGP algorithm with a Tmin of 2100 s had a higher percentage of true positive values 

compared to a Tmin of 900 s. Generally, the MBGP algorithm overclassified fewer points as stops for a 

Tmin of 900 s compared to the Tmin of 2100 s.  

Figure 5.31 gives an example of how false positive stops could have occurred. At the presumed home 

locations where the participants stayed for longer periods of time, the GPS signal was wandering, which 

led to a star-shaped trajectory around the home location. Therefore, some algorithms detected multiple 

stops (indicated with green circles) for the same home location although they should only detect two 

stops (i.e., this participant left the house in the morning and returned in the evening). This behaviour led 

to many false positive stops in the evaluation. In the example of Figure 5.31, the CandidateStops 

algorithm detected the most of these false positive stops followed by the MBGP algorithm for a 

Tmin of 900 s.  

 

Figure 5.31 Example of false positive stops detected by algorithms (pre-processed)  

The patterns described above can also be found when looking at the post-processed data in Table 5.32 

and at another example visualised in Figure 5.32. Compared to Figure 5.31 post-processing only 

decreased the number of false positive stops for the MBGP algorithm with Tmin = 900 s. 

 

Figure 5.32 Example of false positive stops detected by algorithms (post-processed) 
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In Table 5.32, one can further see that, in contrast to the example in Figure 5.32, post-processing the 

data generally led to increased numbers of true positives and false positives except for the POSMIT 

algorithm. As the number of true positives increased through post-processing, the number of false 

negatives inevitably decreased. In Table 5.32, the sum of true positives and false negatives is 100 % 

(where 100 % are the total number of manually labelled stops). 

Table 5.32 Confusion matrix (true positives (TP), false negatives (FN), and false positives (FP)) of post-processed data 

 Test set TP [%] FN [%] FP [%] 

C
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post-processed original 4.36 95.64 73.03 

regular sampling rate 30 s 4.59 95.41 185.20 

regular sampling rate 300 s 23.33 76.67 520.00 

randomly selected 30 % 15.79 84.21 484.21 

regular sampling rate 60 s 8.40 91.60 275.57 

regular sampling rate 600 s 15.79 84.21 484.21 

added noise 4.05 95.95 75.48 
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post-processed original 31.08 35.00 68.92 65.00 84.80 107.92 

regular sampling rate 30 s 40.74 34.96 59.26 65.04 303.70 267.48 

regular sampling rate 300 s 43.33 44.44 56.67 55.56 370.00 368.89 

randomly selected 30 % 46.67 47.78 53.33 52.22 366.67 365.56 

regular sampling rate 60 s 43.48 45.45 56.52 54.55 360.87 330.30 

regular sampling rate 600 s 46.67 47.78 53.33 52.22 366.67 365.56 

added noise 26.55 31.46 73.45 68.54 83.19 107.87 
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post-processed original 68.89 31.11 344.44 

regular sampling rate 30 s 43.82 56.18 374.16 

regular sampling rate 300 s 39.77 60.23 377.27 

randomly selected 30 % 42.68 57.32 391.46 

regular sampling rate 60 s 44.32 55.68 378.41 

regular sampling rate 600 s 42.68 57.32 391.46 

added noise 68.89 31.11 344.44 

S
O

C
 

post-processed original 42.54 57.46 202.24 

regular sampling rate 30 s 35.62 64.38 282.19 

regular sampling rate 300 s 56.25 43.75 406.25 

randomly selected 30 % 52.08 47.92 418.75 

regular sampling rate 60 s 38.46 61.54 316.92 

regular sampling rate 600 s 52.08 47.92 418.75 

added noise 34.67 65.33 196.00 
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5.6.2 Variance and Average Number of Stops 

Apart from the accuracy of the different algorithms that was shown by displaying the confusion matrix, 

the algorithms can also be compared through the variance and the average number of stops they detected. 

Table 5.33 gives an overview of the variance and average number of stops per day and algorithm. Except 

for the only pre-processed CandidateStops algorithm, the results are quite similar. Post-processing the 

CandidateStops algorithm substantially improved the variance and mean results. The variance as well 

as the mean of the two post-processed MBGP algorithms’ results are the same, whereas they show 

different results after only pre-processing the data. The MBGP algorithms’ results are closest to the 

results of the manually labelled ground truth. 

Table 5.33 Overview of variance and average number of stops per day 

Algorithm Variance Mean 

CandidateStops pre-processed 1536.720 9.900 

CandidateStops post-processed 5.159 4.144 

POSMIT pre-processed 5.061 4.133 

POSMIT post-processed 5.061 4.133 

MBGP pre-processed Tmin = 900 s 5.251 4.126 

MBGP post-processed Tmin = 900 s 5.011 4.035 

MBGP pre-processed Tmin = 2100 s 5.177 4.092 

MBGP post-processed Tmin = 2100 s 5.011 4.035 

SOC pre-processed 4.648 4.432 

SOC post-processed 4.865 4.493 

Manually labelled ground truth 6.028 3.800 

5.6.3 Running Time 

Finally, in order to compare the general performance of the algorithms, the average running time per 

algorithm was determined by checking how long an algorithm did take on average to process a test set. 

As Table 5.34 shows, the SOC algorithm is the slowest algorithm, while the MBGP algorithm runs 

fastest.  

Table 5.34 Average algorithm running time per data frame 

Algorithm Average Running Time 

CandidateStops 40.0 s 

MBGP 9.1 s 

POSMIT  42.5 s 

SOC 6.7 min ≈ 402.8 s 
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5.6.4 Summary of Results 

To give an overview of the key results that will be discussed in Chapter 6, Table 5.35 was created based 

on the hypotheses and the three scenarios introduced in Chapter 4.  

Table 5.35 Result overview of the four algorithms 

 

Optimal 

parameter 

thresholds 

Median 

F-measure of test sets 
Shape index values of test sets Average 

running 

time test 

sets 

value pre-

processed 

 value post-

processed 
test sets value pre-processed 

value post-

processed 

C
an

d
id

at
eS

to
p

s 

ɛ = 0.5 m/s 

original 0.25 0.33 original 1.91*10-15 9.30*10-09 

040.0 s 

noise 0.40 0.29 noise 1.54*10-15 1.87*10-08 

30 s 0.33 0.33 30 s 1.79*10-16 3.64*10-11 

60 s 0.33 0.53 60 s 0.00 1.08*10-11 

300 s 0.33 0.50 300 s 0.00 0.00 

600 s 0.40 0.33 600 s 0.00 0.00 

keep  

30 % 
0.40 0.33 

keep 

30 % 
0.00 0.00 

M
B

G
P

 

Dmax = 275 m 

Tmax = 14400 s 

Tmin = 900 s 

(left columns) 

        or 

Tmin = 2100 s 

(right columns) 

original 0.86 0.80 0.74 0.80 original 1.23*10-07  1.27*10-07 1.46*10-07 1.29*10-07 

09.1 s 

noise 0.86 0.80 0.67 0.67 noise 1.07*10-07 1.18*10-07 1.35*10-07 1.35*10-07 

30 s 0.73 0.67 0.40 0.40 30 s 6.90*10-08 6.72*10-08 3.20*10-06 2.01*10-07 

60 s 0.80 0.67 0.33 0.33 60 s 5.06*10-08 4.67*10-08 2.63*10-05 1.31*10-06 

300 s 0.67 0.67 0.33 0.33 300 s 7.35*10-09 6.20*10-09 4.14*10-06 2.68*10-06 

600 s 0.67 0.67 0.33 0.33 600 s 2.30*10-09 2.24*10-09 1.28*10-06 1.05*10-07 

keep  

30 % 
0.67 0.67 0.33 0.33 

keep 

30 % 
2.30*10-09 2.24*10-09 1.28*10-06 1.05*10-07 

P
O

S
M

IT
 

ɛ = 0.25 

hd = calculated 

hi = 1 

original 0.40 0.40 original 4.09*10-04 4.09*10-04 

042.5 s 

noise 0.40 0.40 noise 4.10*10-04 4.10*10-04 

30 s 0.33 0.33 30 s 2.52*10-04 2.52*10-04 

60 s 0.33 0.33 60 s 3.27*10-04 3.27*10-04 

300 s 0.33 0.33 300 s 2.39*10-04 2.39*10-04 

600 s 0.33 0.33 600 s 4.55*10-04 4.55*10-04 

keep  

30% 
0.33 0.33 

keep 

30 % 
4.55*10-04 4.55*10-04 

S
O

C
 Eps = 75 m 

Tau = 1200 s 

MinMov = 180 s 

original 0.50 0.50 original 2.55*10-08 2.54*10-08 

402.8 s 

noise 0.50 0.50 noise 2.99*10-08 3.04*10-08 

30 s 0.40 0.40 30 s 1.05*10-08 1.32*10-08 

60 s 0.50 0.40 60 s 9.36*10-09 5.39*10-08 

300 s 0.48 0.33 300 s 1.62*10-09 9.36*10-09 

600 s 0.40 0.33 600 s 5.01*10-10 4.44*10-09 

keep  

30 % 
0.40 0.33 

keep 

30 % 
5.01*10-10 4.44*10-09 
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6 Discussion 

6.1 Initial Findings 

The first observation that one can make about Table 5.35 is that the POSMIT algorithm has identical 

results for all of the different test sets and shape measures before and after post-processing the results. 

The decision for the most suitable threshold combination was made only based on the boxplot statistics 

and percentage of valid results. Furthermore, the most suitable threshold combination was selected for 

the only pre-processed and the post-processed data independently. By comparing the percentage of true 

positives and the average number of stops per day, one could see as well that the results were identical. 

Therefore, post-processing the results (at least in the way it was carried out in this thesis) neither changed 

the number of stops nor did it improve the results as other threshold combinations did when looking 

only at the boxplot statistics of the POSMIT algorithm.  

As the decision was made to estimate/calculate the spatial parameter (hd) for each testing day 

individually, a sensitivity to the spatial parameter could not be determined for the POSMIT algorithm. 

The method to estimate/calculate the spatial parameter prevents the algorithm from having to deal with 

changes in the spatial parameter. Therefore, the algorithm is not sensitive to changes in the spatial 

parameters at all. Based on these findings, one of the hypotheses stated at the beginning of the thesis 

concerning the POSMIT algorithm can be rejected.  

H3-1: The detection results of the probability-based algorithms are less sensitive to changes in spatial 

parameters for the specific MOASIS dataset than for grid- or density-based algorithms. 

This hypothesis was formulated before studying the literature in detail and before selecting the value 

ranges for the single parameters. The CandidateStops algorithm that is a density-based algorithm does 

not have a spatial parameter. The density-based MBGP algorithm was able to find stops for all proposed 

spatial parameter values, in contrast to the centre-based SOC algorithm. The SOC algorithm was not 

able to find stops for values larger than 75 m. Therefore, H3-1 could be re-phrased to: 

The detection results of the centre-based algorithms are more sensitive to changes in spatial 

parameters for the specific MOASIS dataset compared to density-based algorithms.  

Furthermore, the question arises if prioritizing the percentage of valid results over the F-measure values 

visualised with boxplots was an appropriate approach, as the percentage of valid results was in general 

very low for all algorithms. This means that the manually labelled ground truth does not match well with 

the detected stops of the algorithms. One reason could be that the parameters used to check if the stops 

match with the manually labelled ground truth are poorly chosen and therefore a lot of stops remained 

undetected. Nevertheless, if the time range and radius from the first data point of a stop cluster were too 

big, the same true positive stop would be detected multiple times by an algorithm that detects rather stop 
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points instead of stop regions. Another reason could be that the manually labelled ground truth’s quality 

is not that good as labelling stops manually is rather subjective.  

6.1.1 Influence of Manually Labelled Ground Truth 

As long as there is no actual ground truth, manual ground truth labelling is always subjective and 

therefore, there is no guarantee that the actual stops were discovered. Manual stop identification can be 

different depending on the zoom level. As Figure 6.1 shows, because of the high zoom level, it seems 

like the person walked to a location and stayed there.  

 

Figure 6.1 Manual ground truth labelling example   

on high zoom level (green = move, orange = stop) 

 

       Figure 6.2 Manual ground truth labelling example on 

       low zoom level (green = move, orange = stop) 

However, by looking at the zoomed-out extent of the same area outlined in red in Figure 6.2 (the yellow 

circle in Figure 6.1 as well as in Figure 6.2 is at the same location). For a period of only a few minutes, 

the movement patterns look quite unnatural (especially in the x-direction), which could also indicate 

signal wandering. Depending on how this situation was judged, it could influence whether the starting 

point of the stop detected by the algorithm lies in the range of 150 meters and 20 minutes to the starting 

point of the detected stop or not. In cases of signal wandering due to indoor situations, the acceleration 

was quite restless and therefore an evaluation by eye and “common sense” influences the labelling 

process, although three scientific criteria were introduced that could describe a stop. In order to assess 

the quality of the manually labelled ground truth, the interrater agreement could have been determined 

(Fleiss, Levin and Paik, 2003). This means that several people would have had to additionally label the 

same ground truth manually. If the agreement between the manually labelled ground truths had been 

good, there would have been a high probability, but no guarantee, that the detected stops were also the 

real stops (ibid.). This approach might have provided a better basis to detect problematic cases.  

To find out if the probabilistic formula to replace the ground truth delivers better results than the 

manually labelled ground truth, actual ground truth would be needed. For the MBGP algorithm and the 
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SOC algorithm, the values of manually labelled ground truth and the replaced ground truth showed 

similar median F-measure results. This could indicate that the results of these two algorithms are closer 

to the actual ground truth than the results of the POSMIT and CandidateStops algorithm.   

6.1.2 Relationship between functioning of Algorithms and Results 

The CandidateStops algorithm checks each data point individually, which means that stops are detected 

even for very short-term changes in motion (which may be caused by signal wandering). Although 

moves shorter than 3 minutes are removed during post-processing, the result still contains so many stops 

that some of them are detected correctly. However, most of the detected stops are false positives. This 

argument is supported by the fact that the number of true and false positives detected by the 

CandidateStops algorithm seem to depend very much on the sampling rate.  

The other three algorithms not only consider individual points but also their neighbours and therefore, 

the influence of individual points becomes smaller. This “smoothing mechanisms” reduce the sensitivity 

to varying sampling rates and it could also be the reason why post-processing seems to influence the 

CandidateStops algorithm’s results most. It does not have its own mechanism to deal with outliers and 

short-term fluctuations in the raw data, whereas the other algorithms are able to reduce the influence of 

such fluctuations. 

6.1.3 Meaningfulness of Running Time 

The empirically measured average running time is a result that needs to be interpreted with some caution. 

Apart from the computational complexity of the algorithm, it is dependent on several practical factors, 

such as the efficiency of implementation of the algorithm in R, the CPU, as well as the available memory. 

Nevertheless, with all due caution it can be observed that the MBGP algorithm ran fastest out of the four 

algorithms and seemed to have the highest median F-measure values, especially for the only 

pre-processed data with the threshold combination Tmin = 900 s.  

6.2 Scenario 1: Handling Noise 

When looking only at the original data, the MBGP algorithm had the second highest percentage of valid 

results, after the POSMIT algorithm. Hence, the POSMIT algorithm had the second lowest median 

F-measure value compared to the other algorithms. Therefore, one could argue that under perfect 

conditions the MBGP algorithm with pre-processed data and Tmin of 900 s delivered the best results. 

However, it seems more realistic that real-life data have large sampling rates (> 1 s) and include noise. 

Scenario 1 wants to find the algorithm that could best handle noise in case one had to deal with very 

noisy datasets. For noise simulation, Gaussian noise was not selected as it is only suitable to simulate 

GPS errors, that in general were filtered out during pre-processing. Instead of adding additional noise to 
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the data, and therefore having to deal with more data points, the chosen method replaced existing 

longitude values with noise values. As some median F-measure values were higher for the test sets with 

added noise compared to the original data, the question arises if the selected noise model really was an 

appropriate choice for the data or if other non-Gaussian/non-linear noise models would have been more 

suitable. The choice of the noise model depends on the type of noise that wants to be simulated. In case 

of the added noise, GPS inaccuracies were simulated. The spatial distortions caused by the added noise 

could have moved the starting point of the stop cluster closer to the stop cluster of the manually labelled 

ground truth. This could explain why the F-measure values were higher for some of the algorithms. 

However, it seems unlikely to happen systematically.  

Based on Table 4.1 that was used to select the four algorithms, the SOC and POSMIT algorithms were 

said to be resilient to noise. This characteristic was not explicitly mentioned for the CandidateStops and 

MBGP algorithms. 

As the results show, the F-measure values either stayed the same after post-processing the data or 

decreased. There was no algorithm where post-processing increased the F-measure results of test sets 

with added noise. However, post-processing increased the percentage of valid results by about 5 % for 

the MBGP algorithm and the CandidateStops algorithm. Only based on the percentage of valid results, 

the POSMIT algorithm could best handle noise. Only based on the F-measure values, the only 

pre-processed MBGP algorithm with a Tmin of 900 s performed best as the median F-measure value is 

0.86. By considering the combination of F-measure values and percentage of valid results, the 

post-processed MBGP algorithm seems to best handle noise as its percentage of valid results is around 

30 % and the median F-measure value is 0.67. Interestingly, while there are obvious differences in the 

F-measure results of the only pre-processed data of the MBGP algorithm with thresholds Tmin = 900 s 

and Tmin = 2100 s, their F-measure values were almost equal for the post-processed test sets with added 

noise. While the MBGP algorithm would be most suitable for handling noise in datasets, the 

CandidateStops algorithm would be least suitable as the percentage of valid results is at maximum 5 %. 

For the first scenario, the ranking of algorithms based on fulfilled criteria is true for the CandidateStops 

algorithm that fulfilled the least criteria, but is not true for the MBGP algorithm that was third in the 

ranking out of the four algorithms. 

6.3 Scenario 2: Handling Sampling Rate 

Scenario 2 wants to find the algorithm that performs best with varying or low sampling rates. According 

to the following hypothesis, the POSMIT algorithm was expected to cope best with varying sampling 

rates: 

H3-2: The probability-based algorithms perform better than the other algorithms when the sampling 

rate is bigger than 1 s.  
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Based on the F-measure values, the POSMIT algorithm had similar results as the CandidateStops 

algorithm. For a regular sampling rate of 600 s, the POSMIT algorithm had worse results for the only 

pre-processed data as well as for the post-processed test sets with sampling rates of 60 s and 300 s. The 

SOC algorithm and the MBGP algorithm had higher results. However, based on the percentage of valid 

results, the POSMIT algorithm handles different sampling rates second best after the MBGP algorithm.  

Similar to the resilience to noise, the CandidateStops and the MBGP algorithm were not explicitly said 

to handle sparse trajectory data well (see Table 4.1). Even though the CandidateStops algorithm has 

similar F-measure values compared to the other algorithms, one can say that the algorithm does not 

handle sparse trajectory data well as the percentages of valid results were below 10 %. Unlike the 

algorithm comparison of Table 4.1, the MBGP algorithm seems to handle sparse trajectory data best. In 

contrast to the other algorithms, the MBGP algorithm has a constraint that prevents two data points 

separated by large time periods from belonging to the same stop cluster (Montoliu, Blom and 

Gatica-Perez, 2013). As the values of Tmax were considerably higher than the maximum chosen regular 

sampling rate, the chance of a data point being matched to the wrong stop cluster is minimal.  

In terms of highest percentage of valid results and F-measure values, the regular sampling rate of 60 s 

for the only pre-processed test sets of the threshold combination with Tmin = 900 s had the closest result 

to the original sampling rate. Apart from this, the only pre-processed MBGP algorithm’s results of 

Tmin = 900 s, as well as the results of Tmin = 2100 s, had the same median F-measure values for a sampling 

rate of randomly selected 30 % and a regular sampling rate of 300 s and 600 s. The interquartile ranges 

of the F-measure values and the percentage of valid results are close for the two parameter combinations. 

Additionally, the median F-measure values are identical for the three sampling rates. The post-processed 

MBGP algorithm’s results have the same median F-measure values for all of the different varying 

sampling rates except for the regular sampling rate of 30 s. Similar to the only pre-processed MBGP 

algorithm’s results, the two different threshold combinations have the same median F-measure values 

and very similar key distribution parameters. These findings 1) lead to the rejection of hypothesis H3-2, 

and 2) showed that the MBGP algorithm is not sensitive to temporal input parameters either (i.e., seems 

to handle sparse trajectory data best).  

As explained above, the results of the two MBGP threshold combinations that only have different Tmin 

values are almost identical, especially for the post-processed data. The analysis of the parameter Tmax 

further showed, that the F-measure results were all identical for the different Tmax values. Therefore, one 

can argue that the post-processed data run with the density-based MBGP algorithm in particular are not 

sensitive to temporal input parameters. The SOC algorithm that is also in the category of density- and 

centre-based algorithms, showed similar results. The median F-measure values of the different selected 

Tau values were identical, and the percentage of valid results were quite similar. As the Tau value is 

similar to the Tmin value of the MBGP algorithm, one can reject the hypothesis stated below: 
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H3-3: The detection results of density-based algorithms using a minimum stop duration threshold are 

most sensitive to temporal input parameters as setting the optimal duration threshold is not trivial 

(Gong et al., 2015). 

The CandidateStops algorithm does not have a temporal parameter, that is why it could not be considered 

for analysing the impact of minimum stop durations for density-based algorithms.  

6.4 Scenario 3: Shape Compactness 

In Scenario 3, the algorithm that has the most compact shapes should be found. A compact shape could 

indicate that the stop is more of a stop region instead of a single stop point such as at a bus stop for 

example. Most of the algorithms’ shape index values were less homogeneous for the post-processed 

data. Based on the data range of the shape index values, the CandidateStops algorithm has the least 

compact and the POSMIT algorithm the most compact shapes. The SOC and MBGP algorithm had quite 

similar values, whereas the SOC algorithm had lower shape index values than the MBGP algorithm. 

The MBGP algorithm with Tmin = 900 s further had more compact shapes than the results with 

Tmin = 2100 s. Based on these results, the following hypothesis can be rejected as the probability-based 

algorithm delivers the most compact shapes.  

H4-2: The density-based algorithms deliver most compact stops for the specific MOASIS dataset due 

to their ability to build clusters of contiguous data points that are close to each other in space 

and time (Bermingham and Lee, 2018).  

However, the values are all closer to 0 than to 1 and therefore generally not that compact. 

Post-processing the data improved the shape compactness. This indicates that more smaller stop points 

were found (especially for the only pre-processed data). This could be a reason for the high number of 

false positives that the algorithms detected. They detected up to three times more stops than stops were 

labelled manually. One explanation could be that when participants stayed indoors for a long time, the 

GPS signal was wandering, and these smaller outliers could be detected as moves. Due to the GPS signal 

wandering, multiple stops could be detected for the same stop region. Therefore, the hypothesis stated 

below cannot be rejected.  

H4-1: The spatial extent varies between the applied algorithms with respect to shape, size, and spatial 

extent. A stop can be classified as an area or as multiple smaller points. Since a high resolution 

of detected stops is anticipated to occur, especially without post-processing the results, the 

algorithms are expected to find smaller stop points instead of one bigger area. Therefore, all 

algorithms will deliver more false positives than false negatives when compared to the ground 

truth. 
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One hypothesis about the compactness of stops detected by the geography-based algorithms was left 

open in the discussion so far.  

H4-3: The least compact stops result from the geography-based algorithms as they use predefined 

geographic geometries to detect stops (Bermingham and Lee, 2018). Hence, it can be assumed 

that movements in e.g., a building will not be detected. 

As geography-based algorithms were only part of the literature review, this hypothesis can only be 

answered based on literature. Literature confirms that the geography-based algorithms can only detect 

the stops of the predefined geographic geometries (Alvares et al., 2007). However, one could argue that 

the stops that will be detected could be compact, as the users can select the geographic geometries. 

Therefore, the users can decide if they want to use predefined geographic point or polygon geometries 

and control the compactness of the stops’ shapes by themselves. That is why hypothesis H4-3 can be 

rejected. 

6.5 Influence of Pre- and Post-Processing on Results 

During the process of writing this thesis, serious outliers were discovered in the MOASIS data by the 

researchers; they also removed speed outliers for pre-processing the data. This would indicate that the 

chosen pre-processing method of only removing speed outliers would not be enough if the algorithm 

had to run with data containing outliers other than speed outliers. As the algorithms run with the test 

sets with which ground truth was labelled manually and no severe outliers were discovered during the 

labelling process, the proposed method for pre-processing was suitable (i.e., removing GPS points with 

the speed of higher than 200 km/h). The question arises how the algorithms’ performance would change 

after the data were pre-processed with another method. A Kalman Filter, that applies probabilistic 

estimations to the model, could help to remove the severe outliers of the MOASIS data because it can 

effectively reject uncorrelated disturbances by preserving the shape of noise-free registrations in data 

with high sampling rates (Leśniak, Danek and Wojdyła, 2009; Park et al., 2019). Furthermore, 

post-processing did not improve most of the results in terms of median F-measure values and percentage 

of valid results. As the approaches for how the algorithms categorize the data points into stops and 

moves are very different, using a unique post-processing method for each algorithm could be more 

suitable instead of using the same method for all of the algorithms. Another argument could be that the 

parameters were badly chosen. Therefore, setting the parameters of the post-processing method 

differently could improve the results. However, this would require a more sophisticated analysis of these 

parameters.  

Additionally, post-processing the data led to a higher number of false positive stops. One reason causing 

this effect is visualised in Figure 6.3. The blue circles in Figure 6.3 visualise the manually labelled 

stops, the white circles visualise stops detected by the algorithms. As too short moves (i.e., moves shorter 
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than 3 minutes) were removed and close stops merged in the post-processing step, stops that were 

labelled as true positive stops (see Case 1) could be labelled as false positive stops after post-processing 

because they do not meet the criteria of a true positive stop anymore (see Case 2). 

 

Figure 6.3 Schematic explanation of false positive stops remaining after post-processing 

By changing the post-processing method to removing too short stops instead of too short moves, the 

number of false positive stops could be decreased because by eliminating too short stops instead of 

merging them, less stops would be detected in general. However, this could also negatively influence 

the number of detected true positive stops if actual stops were removed. 

6.6 Evaluation Criteria and Measures 

As the discussion showed, the MBGP algorithm with Tmin = 900 s was best for two out of three scenarios: 

best in handling noisy data and best in handling different sampling rates. Furthermore, its results 

concerning average number of stops per day were closest to the manually labelled ground truth. This 

indicates that the algorithm selection criteria described in Table 4.1 were not properly chosen as the 

MBGP algorithm was not among the most suitable algorithms when the algorithms were ranked 

according to the chosen criteria. The number of parameters (i.e., at least 3 input parameters) and that the 

algorithms should have at least one spatial and one temporal input parameter seemed to be strong criteria. 

The CandidateStops algorithm that only used speed as input parameter did not match one of these two 

criteria and performed worst for all of the chosen scenarios and evaluation measures.  

The evaluation further showed that algorithms, whose parameters are easy to understand, performed 

better than algorithms with complex parameters and that the criterion “ease of understanding” is 

therefore particularly important. Considering this criterion, the MBGP algorithm is best suited because 

its parameters can be mentally visualised and are also understandable for non-expert researchers. In 

contrast, the POSMIT and the SOC algorithms are more complex: although Bermingham (2018) stated 

that POSMIT can be applied by non-expert researchers, as there is an opportunity to estimate the 

parameters, getting a profound understanding of them is not trivial. Regarding the SOC algorithm, 

especially its calculation of core sequences, it is very specific and not easy to understand. 
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Measuring sensitivity to accuracy with varying sampling rates and added noise compared to the original 

data combined with the F-measures seemed to be an appropriate approach to evaluate the algorithms’ 

results. This is because even within the same dataset, the data size of each individual or each day may 

vary due to behavioural fluctuations, different sensor types, or amount of time spent in-/outdoors. Since 

finding the most suitable parameter threshold combinations was an extensive research method, the 

sensitivity of the single input parameters could also be looked at. This led to the finding that the results 

for parameter Tmax of the MBGP algorithm did not change depending on the chosen values. The results 

of the SOC algorithm’s Tau values were also close and therefore, the SOC algorithm is not that sensitive 

to changes of the temporal input parameter. The CandidateStops algorithm on the other hand showed 

considerable differences in results for the different tested speed variations, especially for testing days 

where the participant only took walks or stayed at home11. The differences were also considerable for 

the parameters of the POSMIT algorithm. The results for a stop probability of 0.25 and a search 

bandwidth of 1 were highest and results changed a lot when these parameters were changed, as the 

threshold analysis showed.  

In case of the shape measures, the algorithms all have similar results and most likely the SOC algorithm 

matches with the shape index values of the manually labelled ground truth. Since no good differentiation 

among the algorithms is possible, other shape measurements might be better suited to evaluate the shape 

of the stops. 

6.7 Comparison with Fillekes, Kim, et al. (2019) 

Since the MBGP algorithm seems to suit the MOASIS data best in two out of the three proposed 

scenarios (i.e., Scenario 1 and Scenario 2) as well as regarding the percentage of valid results and the 

average number of stops per day, the parameter thresholds can be compared with Fillekes, Kim, et al. 

(2019). They used the MBGP algorithm with data from another healthy aging research project whereby 

the data were similar to the MOASIS data used in this thesis (i.e., data had a sampling rate of 1 s). The 

threshold combination determined through their sensitivity analysis was: Dmax = 125 m, Tmax = 18000 s, 

and Tmin = 360 s. The values of Dmax and Tmin are over 50 % smaller than the values determined in this 

thesis (Dmax = 275 m, Tmax = 14400 s, and Tmin = 900 s). As the thesis’ focus was rather in finding stop 

regions instead of single stop points, too small threshold values were not considered. The Tmin parameter 

for example, was tested starting with 10 minutes as this value was based on the average shopping time 

in a supermarket. Furthermore, Montoliu, Blom and Gatica-Perez (2013) stated that a Tmin between 20 

and 40 minutes delivers the best results. In both studies, the F-measure barely reacted to varying Tmax. 

 
11 When paths were covered with higher speed than walking speed, the CandidateStops algorithm seemed to perform better 

than the POSMIT algorithm. See Appendix 9.1 for an example, where the participant covered a long distance by train and 

car. However, in this example the MBGP algorithm with Tmin = 900 s performed best.  
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7 Conclusion 

7.1 Summary and Major Findings 

Analysing mobility patterns of older adults from a spatial and temporal perspective is an important factor 

in health planning processes. Stop-move detection is essential to extract semantic information on the 

human daily mobility (e.g., traveling behaviours) and potential activities performed at stop locations 

from trajectory data captured by location sensor devices. The aim of this thesis was therefore to review 

and compare stop-move detection algorithms for GPS data in light of healthy aging research projects, 

using GPS data collected in the MOASIS project. In order to find the algorithm that works best with the 

MOASIS data, four research questions (RQs) were stated: two at a conceptual and two at an analytical 

level. 

RQ1 was concerned with the selection of conceptual criteria to evaluate the algorithms. Based on a 

literature review, the key criteria for a suitable algorithm were summarised at a higher conceptual level 

as 1) maximum parsimony of the algorithmic model, 2) ease of understanding, and 3) high performance. 

To evaluate the suitability of stop-move detection algorithms regarding these criteria, four algorithms 

were selected: two fully meeting the criteria (POSMIT and SOC), one partially meeting the criteria 

(MBGP algorithm), and one which does not directly correspond to them (CandidateStops). The first and 

the second criterion seemed to be the most relevant ones in order to find a suitable algorithm. 

Considering these criteria, the MBGP algorithm seems best suited because it has a low number of 

4 parameters, while including both spatial and temporal parameters. Additionally, its parameters are 

intuitive and thus also understandable for non-expert researchers. Based on these results, it can be stated 

that performance should not be the main criterion when evaluating stop move-detection algorithms but 

rather their set of parameters and their conceptual complexity.  

In order to find the most suitable algorithm for a given task, the candidate algorithms must be 

comparable and therefore, RQ2 was directed towards the definition of an appropriate set of evaluation 

measures. In this thesis the following performance indicators were selected from the literature: 

F-measure, average number and variance of stops per day, robustness to noise and varying sampling 

rates, as well as compactness of shape. Since the calculation of F-measures requires ground truth, 

90 days of data were manually labelled and used to calculate the percentage of valid results using 

F-measure (i.e., for how many days an F-measure could be calculated). As it can be assumed that no 

single algorithm outperforms all others in all aspects, three scenarios were worked out, each responding 

to one of the following requirements: 1) best handles noisy data, 2) works well with varying sampling 

rates, and 3) has the most compact stop region shapes. Despite the fact that the results of the four 

algorithms were very different in terms of percentage of valid results, the average number and variance 

of stops per day were similar. The MBGP algorithm seemed to suit the MOASIS data best in two out of 
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the three proposed scenarios (i.e., Scenario 1 and Scenario 2) as well as regarding the percentage of 

valid results and the average number of stops per day. The POSMIT algorithm suited the MOASIS data 

best in terms of the third scenario. The least suitable algorithm for MOASIS data seemed to be the 

CandidateStops algorithm suggesting that it is important that stop-move detection algorithms have at 

least a spatial and a temporal parameter. 

RQ3 was asking whether and how the spatial and temporal parameters affect the results of the detected 

stops and moves differently: while the temporal parameter of the SOC algorithm does not strongly 

influence the results (i.e., median F-measure values are the same but interquartile ranges differ slightly), 

the spatial parameter does. For threshold values greater than 75 m, results could not even be generated. 

The MBGP algorithm showed as well that at least one of the temporal parameters does not influence 

results at all as the different Tmax values led to identical results. The spatial parameter Dmax on the other 

hand affects the results more, as some tested parameter settings generated very low percentages of valid 

results. These findings suggest that the SOC algorithm and the MBGP algorithm are only sensitive to 

their spatial but not – or at least only to a lesser degree – to their temporal parameters. The results further 

revealed that the CandidateStops algorithm showed considerable differences in performance for the 

different speed variations used for testing. The POSMIT algorithm was also sensitive to its input 

parameters. Other than stated in the literature, the density-based MBGP algorithm was least sensitive to 

variations in the number of input data points and the temporal sampling interval. 

Besides testing the sensitivity of the algorithms, the thesis, mainly RQ4, addressed the characteristics of 

the stops detected by the algorithms. The stops’ shape compactness was determined using Ebdon 

(1985)’s shape index value (in Kitchin and Tate, 2000). All values were closer to 0 than to 1 and 

therefore all algorithms detected not that compact shapes. However, post-processing the data improved 

the shape compactness. This indicates that more smaller stop points were found (especially for the only 

pre-processed data) which could be a reason for the high number of false positives that the algorithms 

detected. Based on the data range of the shape index values, the CandidateStops algorithm has the least 

compact and the POSMIT algorithm the most compact shapes. 

To sum up the thesis, one can observe that five out of six hypotheses could be rejected. As these 

hypotheses were stated on the basis of claims reported in the literature, this general finding underlines 

the importance of empirical, comparative evaluation of different algorithms to put the results reported 

in individual publications into perspective. In short, probability-based algorithms do not handle varying 

sampling rates better than the other three algorithms. Density-based algorithms are not more sensitive 

to the temporal input parameters and do not detect more compact stops than the other algorithms other 

than stated by Bermingham and Lee (2018) and Gong et al. (2015). The hypothesis that could not be 

rejected was that in general, more false positives than false negatives would be detected by all the 

algorithms. The algorithms often detected several stops instead of one very long stop. This might be due 
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to badly chosen parameter thresholds; the data might not have been processed well or the algorithms are 

not able to detect very long stops as one continuous stop.  

Additionally, an algorithm evaluation without reliable ground truth is not recommended because it 

makes a significant difference to the result whether the F-measure value is 0.4 or 0.7. If the ground truth 

cannot be assumed to be accurate, the resulting F-measure is of limited value. The alternative, ground 

truth based on a probability formula, worked very well for two out of four algorithms. An evaluation 

criterion that was not found to be that important in this thesis is the running time, since there is room for 

improvement in the implementation of the algorithms (e.g., with parallelization or an implementation in 

another programming language). 

In most of the individual tests conducted in this thesis, and therefore in the overall evaluation as well, 

the MBGP algorithm performed best. The parameter set for the MBGP algorithm showing the most 

promising results and therefore found most suitable for the MOASIS data is: Dmax = 275 m, 

Tmax = 14400 s, and Tmin = 900 s (where Dmax represents the maximum distance of the stop cluster’s 

diameter, Tmin represents the minimum duration between the points in order to count as stop, and Tmax 

represents the maximum allowed time gap between the points of the same stop cluster). The POSMIT 

algorithm detected the most compact shapes. The CandidateStops algorithm performed worst, leading 

to the conclusion that a good algorithm should contain some kind of smoothing, since GPS data can be 

expected to always contain noise. Furthermore, pre- and post-processing should be adapted to the 

strengths and weaknesses of the individual algorithms, since post-processing was sometimes almost 

counterproductive to the result. However, this would make the algorithms’ results no longer comparable 

in the sense of an evaluation across algorithms. The fact that the results of the MBGP algorithm are not 

noticeably better than those of the other algorithms is due to certain limitations of this study.   

7.2 Limitations 

One of the most serious limitations of this thesis was the rather small number of test sets used, as stops 

and moves had to be labelled manually in a post-hoc process due to missing actual ground truth. As long 

as there is no actual ground truth, one is not sure if the manually labelled ground truth really matches 

the actual ground truth or if the algorithms even detected the stops better than the person performing the 

post-hoc labelling. As this question remains unanswered, finding a reason for the small percentage of 

valid results is also limited. Furthermore, only four algorithms were selected, implemented, and 

evaluated in this thesis. As the literature study has shown, many more algorithms have been proposed, 

some of which might actually perform better in practice than in theory, as this study has shown, leading 

to the rejection of five out of six hypotheses based on reported findings and claims found in the literature. 

One example is the, according to the literature, moderately suitable MBGP algorithm that outperformed 

the purportedly more suitable SOC and POSMIT algorithms. Although the MBGP algorithm suits 
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MOASIS data best out of the four algorithms, it does not mean that exactly this threshold combination 

or even this algorithm are most suitable for analysing the mobility patterns of older adults collected in 

other studies. As the comparison with Fillekes, Kim, et al. (2019)’s sensitivity analysis, using the MBGP 

algorithm but a slightly different data set, revealed, the MBGP algorithm’s Tmax and Dmax values 

determined in this thesis were more than twice as high. Indeed, the algorithm parameters will always 

have to be tuned to the characteristics of the particular data used. All the more important it then is that 

the algorithm is parsimonious regarding its parameters and intuitively understandable. 

7.3 Future Work 

In the future, the analysis of stop-move detection algorithms for GPS data of older adults should be 

further refined. Future work should concentrate on maximizing the percentage of valid results since 

improving the F-measure values is not the priority as they are high in general. To that end, collecting 

more reliable and accurate ground truth data should be pursued. Ideally, this would involve labelling of 

stops while the mobility activity is performed. If post-hoc labelling has to be used, several persons 

should carry out the labelling, which would allow determining the interrater agreement as introduced in 

Section 6.1.1.  

The evaluation results could be optimized by pre- and post-processing the data differently per algorithm. 

The chosen post-processing approach of this thesis could be improved through grid search, by iterating 

through multiple, different parameter combinations. Furthermore, research should be done to find out 

how algorithms (e.g., the MBGP algorithm that overall performed best) perform differently depending 

on the pre- and post-processing methods applied. Since the MBGP algorithm is only the best out of four 

tested algorithms, other algorithms proposed in the literature might be evaluated using the methodology 

proposed in this thesis and be compared to the results of the MBGP algorithm. The evaluation R-script 

can easily be adapted to accommodate different algorithms. An alternative algorithm that could be 

suitable for the MOASIS data might be the ‘Novel kernel-based algorithm’ proposed by Thierry, Chaix 

and Kestens (2013), because it has both spatial and temporal parameters and, according to the literature, 

handles noise and sparse trajectory data well, which is particularly important for the noisy MOASIS 

data. The algorithm is also easy to understand, because it has only two parameters, kernel bandwidth 

and minimum stop duration. Other than the four selected algorithms, it builds a kernel density surface 

instead of analysing the points sequentially. If the focus should lie on only detecting specific stops of 

large spatial (and temporal) extent, the SMoT algorithm by Alvares et al. (2007) would be 

recommended, as it takes candidate geometries as input. 

Many detected stops that the four algorithms classified wrongly, might be due to noisy data or 

unsuccessfully chosen parameter combinations. Therefore, it could be interesting to see how the 

algorithms handle different kinds of noise by applying different noise models to the data.  
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Since IMU data were also collected during the MOASIS research project, combining GPS and IMU data 

for finding stops and moves in trajectories correctly could be another approach to improve the stop 

detection results. The limitations of the GPS sensor (e.g., low signal accuracy in urban areas or heavy 

drain of battery) could be overcome with the IMU data as even small scale activities such as housework 

can be derived from accelerometer signals (Ellis et al., 2014). Usually, transport mode detection results 

(also including stop detection) using GPS and IMU data in combination are better than if GPS or IMU 

data are used alone, respectively (Cetin, Ustun and Sahin, 2016; Ustun, 2016). One algorithm that 

combines GPS and IMU data and uses machine learning for transport mode detection was proposed by 

Ellis et al. (2014).  

Algorithms based on machine learning could be also useful for only using GPS data, as the algorithms 

often detected several stops instead of one very long stop. Assuming that it is not due to badly chosen 

parameters as mentioned above, more complex algorithms could be tested, which would adjust the 

parameters according to the stop situation. However, it would be important, especially when developing 

new algorithms, to keep simplicity as a principle, because as shown in this study algorithms that were 

easy to understand performed better. 

By finding the algorithm that suits MOASIS data best, a base has been established for further analysis 

of individual mobility and activities, so that conclusions about their state of health can be drawn and 

planning processes made more efficient.  



References  

 

 

Department of Geography, University of Zurich  Page 107 

 

8 References 

Alvares, L. O., Bogorny, V., Kuijpers, B., de Macedo, J. A. F., Moelans, B. and Vaisman, A. (2007) ‘A 

model for enriching trajectories with semantic geographical information’, Proceedings of the 15th 

annual ACM international symposium on Advances in geographic information systems, (i), p. 1. doi: 

10.1145/1341012.1341041. 

Ankerst, M., Breunig, M. M., Kriegel, H. P. and Sander, J. (1999) ‘OPTICS: Ordering Points to Identify 

the Clustering Structure’, SIGMOD Record (ACM Special Interest Group on Management of Data), 

28(2), pp. 49–60. doi: 10.1145/304181.304187. 

Aronov, B., Driemel, A., Van Kreveld, M., Löffler, M. and Staals, F. (2015) ‘Segmentation of 

Trajcetories on Nonmonotone Criteria’, ACM Transactions on Algorithms, 12(2), pp. 1–28. 

Bereuter, P., Fillekes, M. and Weibel, R. (2016) ‘Analyzing GPS and Accelerometer Data in the Study 

of the Mobility, Activity and Social Interaction of Older Adults’, AGILE Workshop on Visually-

supported Computational Movement Analysis, 14 June 2016, Helsinki, Finland. doi: 10.5167/uzh-

130642. 

Bermingham, L. L. (2018) ‘From spatio-temporal trajectories to succinct and semantically meaningful 

patterns’, PhD thesis, James Cook University. doi: https://doi.org/10.4225/28/5afa1141b90e5. 

Bermingham, L. and Lee, I. (2018) ‘A probabilistic stop and move classifier for noisy GPS trajectories’, 

Data Mining and Knowledge Discovery. Springer US, 32(6), pp. 1634–1662. doi: 10.1007/s10618-018-

0568-8. 

Bösche, K., Sellam, T., Pirk, H., Beier, R., Mieth, P. and Manegold, S. (2013) ‘Scalable Generation of 

Synthetic GPS Traces with Real-Life Data Characteristics’, in Nambiar, R. and Poess, M. (eds) Selected 

Topis in Performance Evaluation and Benchmarking - 4th TPC Technology Conference, TPCTC 2012, 

Istanbul, Turkey, August 27, 2012, Revised Selected Papers. Springer Verlag Berlin Heidelberg, pp. 

140–155. 

Braune, C., Besecke, S. and Kruse, R. (2015) ‘Density Based Clustering: Alternatives to DBSCAN’, in 

Emre Celebi, M. (ed.) Partitional Clustering Algorithms. Springer International Publishing Switzerland, 

pp. 193–214. 

Cetin, M., Ustun, I. and Sahin, O. (2016) ‘Classification Algorithms for Detecting Vehicle Stops from 

Smartphone Accelerometer Data’, 95th Annual Meeting of the Transportation Research Board and 

consideration for Publication in Transportation Research Record, pp. 1–14. 

 

 



References  

 

 

Department of Geography, University of Zurich  Page 108 

 

Chaix, B., Benmarhnia, T., Kestens, Y., Brondeel, R., Perchoux, C., Gerber, P. and Duncan, D. T. (2019) 

‘Combining sensor tracking with a GPS-based mobility survey to better measure physical activity in 

trips: Public transport generates walking’, International Journal of Behavioral Nutrition and Physical 

Activity. International Journal of Behavioral Nutrition and Physical Activity, 16(1), pp. 1–13. doi: 

10.1186/s12966-019-0841-2. 

Damiani, M. L. and Hachem, F. (2017) ‘Segmentation techniques for the summarization of individual 

mobility data’, Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 7(6), pp. 1–

22. doi: 10.1002/widm.1214. 

Damiani, M. L., Issa, H. and Cagnacci, F. (2014) ‘Extracting stay regions with uncertain boundaries 

from GPS trajectories: A case study in animal ecology’, Proceedings of the 22nd ACM SIGSPATIAL 

International Conference on Advances in Geographic Information Systems, pp. 253–262. doi: 

10.1145/2666310.2666417. 

Dodge, S., Weibel, R. and Lautenschütz, A.-K. (2008) ‘Towards a Taxonomy of Movement Patterns’, 

Information Visualization, 7(3–4), pp. 240–252. 

Domingues, R., Filippone, M., Michiardi, P. and Zouaoui, J. (2018) ‘A comparative evaluation of outlier 

detection algorithms: Experiments and analyses’, Pattern Recognition. Elsevier Ltd, 74, pp. 406–421. 

doi: 10.1016/j.patcog.2017.09.037. 

Dongarra, J., Grigori, L. and Higham, N. (2020) ‘Numerical algorithms for high-performance 

computational science’, The Royal Society, 378(2166). 

Ellis, K., Godbole, S., Marshall, S., Lanckriet, G., Staudenmayer, J. and Kerr, J. (2014) ‘Identifying 

active travel behaviors in challenging environments using GPS, accelerometers, and machine learning 

algorithms’, Frontiers in Public Health, 2(36), pp. 1–9. doi: 10.3389/fpubh.2014.00036. 

Ewert, U. (2012) ‘Senioren als Fussgänger’, Bern: bfu – Beratungsstelle für Unfallverhütung, bfu-

Fakten(08), pp. 1–16. 

Fedorchuk, M. and Lamiroy, B. (2017) ‘Binary Classifier Evaluation Without Ground Truth’, Ninth 

International Conference on Advances in Pattern Recognition (ICAPR-2017). 

Fillekes, M. P., Kim, E.-K., Trumpf, R., Zijlstra, W., Giannouli, E. and Weibel, R. (2019) ‘Assessing 

Older Adults’ Daily Mobility: A Comparison of GPS-Derived and Self-Reported Mobility Indicators’, 

Sensors, 19(4551), pp. 1–30. doi: 10.3390/s19204551. 

Fillekes, M. P., Röcke, C., Katana, M. and Weibel, R. (2019) ‘Self-reported versus GPS-derived 

indicators of daily mobility in a sample of healthy older adults’, Social Science and Medicine. Elsevier, 

220, pp. 193–202. doi: 10.1016/j.socscimed.2018.11.010. 

 



References  

 

 

Department of Geography, University of Zurich  Page 109 

 

Fleiss, J. L., Levin, B. and Paik, M. C. (2003) ‘The Measurement of Interrater Agreement’, in Shewart, 

W. A. and Wikls, S. S. (eds) Statistical Methods for Rates and Proportions. 3rd edn, pp. 598–626. doi: 

10.1002/0471445428.ch18. 

Fu, Z., Tian, Z., Xu, Y. and Qiao, C. (2016) ‘A two-step clustering approach to extract locations from 

individual GPS trajectory data’, ISPRS International Journal of Geo-Information, 5(166), pp. 1–17. doi: 

10.3390/ijgi5100166. 

Gong, L., Sato, H., Yamamoto, T., Miwa, T. and Morikawa, T. (2015) ‘Identification of activity stop 

locations in GPS trajectories by density-based clustering method combined with support vector 

machines’, Journal of Modern Transportation. Springer Berlin Heidelberg, 23(3), pp. 202–213. doi: 

10.1007/s40534-015-0079-x. 

De Graaff, V., De By, R. A. and De Keulen, M. (2016) ‘Automated semantic trajectory annotation with 

indoor point-of-interest visits in urban areas’, Proceedings of the ACM Symposium on Applied 

Computing, pp. 552–559. doi: 10.1145/2851613.2851709. 

Guidotti, R., Trasarti, R. and Nanni, M. (2015) ‘TOSCA: TwO-Steps Clustering Algorithm for personal 

locations detection’, GIS: Proceedings of the ACM International Symposium on Advances in 

Geographic Information Systems. doi: 10.1145/2820783.2820818. 

Hirsch, J. A., Winters, M., Clarke, P. and McKay, H. (2014) ‘Generating GPS activity spaces that shed 

light upon the mobility habits of older adults: a descriptive analysis’, International Journal of Health 

Geographics, 13(1), pp. 1–14. doi: 10.1002/9781119199410.ch3. 

Huang, Y.-L., Liu, R.-Y., Wang, Q.-S., Van Someren, E. J. W., Xu, H. and Zhou, J.-N. (2002) ‘Age-

associated difference in circadian sleep-wake and rest-activity rhythms’, Physiology and Behavior, 76, 

pp. 597–603. doi: 10.1016/S0031-9384(02)00733-3. 

Hwang, S., VanDeMark, C., Dhatt, N., Yalla, S. V. and Crews, R. T. (2018) ‘Segmenting human 

trajectory data by movement states while addressing signal loss and signal noise’, International Journal 

of Geographical Information Science. Taylor & Francis, 32(7), pp. 1391–1412. doi: 

10.1080/13658816.2018.1423685. 

Kant, E. (1985) ‘Understanding and automating algorithm design’, IEEE Transactions on Software 

Engineering, 11(11), pp. 1243–1253. 

Karami, A. and Johansson, R. (2014) ‘Choosing DBSCAN Parameters Automatically using Differential 

Evolution’, International Journal of Computer Applications, 91, pp. 1–11. doi: 10.5120/15890-5059. 

Kitchin, R. and Tate, N. (2000) ‘Spatial Analysis’, in Conducting Research in Human Geography. 

London: Routledge, pp. 156–210. doi: 10.4324/9781315661063-14. 

 



References  

 

 

Department of Geography, University of Zurich  Page 110 

 

Krähenbühl, A. (2014) ‘Vergleich von Methoden zur Detektion von Stopps in Trajektorien. 

Masterarbeit’, p. 121. 

Lamiroy, B. and Sun, T. (2013) ‘Computing precision and recall with missing or uncertain ground truth’, 

9th International Workshop, GREC 2011, Seoul, Korea, September 15-16, 2011, Revised Selected 

Papers, Springer(7423), pp. 149–162. doi: 10.1007/978-3-642-36824-0_15. 

Lee, J. G., Han, J. and Whang, K. Y. (2007) ‘Trajectory clustering: A partition-and-group framework’, 

Proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 593–604. 

doi: 10.1145/1247480.1247546. 

Leśniak, A., Danek, T. and Wojdyła, M. (2009) ‘Application of Kalman Filter to Noise Reduction in 

Multichannel Data’, Schedae Informaticae, 17(18), pp. 63–73. doi: 10.2478/v10149-010-0004-3. 

Li, M., Gao, S., Lu, F. and Zhang, H. (2019) ‘Reconstruction of human movement trajectories from 

large-scale low-frequency mobile phone data’, Computers, Environment and Urban Systems. Elsevier, 

77, pp. 1–10. doi: 10.1016/j.compenvurbsys.2019.101346. 

Li, W., Goodchild, M. F. and Church, R. (2013) ‘An efficient measure of compactness for two-

dimensional shapes and its application in regionalization problems’, International Journal of 

Geographical Information Science, 27(6), pp. 1227–1250. doi: 10.1080/13658816.2012.752093. 

MacEachren, A. M. (1985) ‘Compactness of Geographic Shape : Comparison and Evaluation of 

Measures’, Geografiska Annaler. Series B, Human Geography, 67(1), pp. 53–67. 

Marcum, C. S. (2013) ‘Age Differences in Daily Social Activities’, Research on Aging, 35(5), pp. 612–

640. doi: 10.1177/0164027512453468. 

Montoliu, R., Blom, J. and Gatica-Perez, D. (2013) ‘Discovering places of interest in everyday life from 

smartphone data’, Multimedia Tools and Applications, 62(1), pp. 179–207. doi: 10.1007/s11042-011-

0982-z. 

Moreno, F., Pineda, A., Fileto, R. and Bogorny, V. (2014) ‘SMOT+: Extending the SMOT algorithm 

for discovering stops in nested sites’, Computing and Informatics, 33(2), pp. 327–342. 

Nathan, R., Getz, W. M., Revilla, E., Holyoak, M., Kadmon, R., Saltz, D. and Smouse, P. E. (2008) ‘A 

movement ecology paradigm for unifying organismal movement research’, PNAS, 105(49), pp. 19052–

19059. 

Newson, P. and Krumm, J. (2009) ‘Hidden Markov Map Matching Through Noise and Sparseness’, 

GIS: Proceedings of the ACM International Symposium on Advances in Geographic Information 

Systems, pp. 336–343. doi: 10.1145/1653771.1653818. 

 



References  

 

 

Department of Geography, University of Zurich  Page 111 

 

Nogueira, T. P., Braga, R. B. and Martin, H. (2014) ‘An ontology-based approach to represent trajectory 

characteristics’, Proceedings - 5th International Conference on Computing for Geospatial Research and 

Application, COM.Geo 2014, pp. 102–107. doi: 10.1109/COM.Geo.2014.22. 

Nogueira, T. P., Martin, H. and Andrade, R. M. C. (2017) ‘A statistical method for detecting move, stop, 

and noise episodes in trajectories’, Proceedings of the Brazilian Symposium on GeoInformatics, pp. 

210–221. 

Ohlsson, E. (1998) ‘Sequential poisson sampling’, Journal of Official Statistics, 14(2), pp. 149–162. 

Ovaska, S. J. and Sztandera, L. M. (2002) Soft Computing in Industrial Electronics. Springer-Verlag 

Berlin Heidelberg GmbH. 

Palma, A. T., Bogorny, V., Kuijpers, B. and Alvares, L. O. (2008) ‘A clustering-based approach for 

discovering interesting places in trajectories’, Proceedings of the 2008 ACM symposium on applied 

computing, SAC ’08, pp. 863–868. doi: 10.1109/ICICTA.2009.569. 

Parent, C., Pelekis, N., Theodoridis, Y., Yan, Z., Spaccapietra, S., Renso, C., Andrienko, G., Andrienko, 

N., Bogorny, V., Damiani, M. L., Gkoulalas-Divanis, A. and Macedo, J. (2013) ‘Semantic trajectories 

modeling and analysis’, ACM Computing Surveys, 45(4), pp. 1–32. doi: 10.1145/2501654.2501656. 

Park, S., Gil, M. S., Im, H. and Moon, Y.-S. (2019) ‘Measurement noise recommendation for efficient 

kalman filtering over a large amount of sensor data’, Sensors, 19(1168), pp. 1–19. doi: 

10.3390/s19051168. 

Posada, D. and Buckley, T. R. (2004) ‘Model selection and model averaging in phylogenetics: 

Advantages of akaike information criterion and bayesian approaches over likelihood ratio tests’, 

Systematic Biology, 53(5), pp. 793–808. doi: 10.1080/10635150490522304. 

Rantanen, T. (2013) ‘Promoting Mobility in Older People’, Journal of Preventive Medicine and Public 

Health, 46, pp. 50–54. doi: 10.3961/jpmph.2013.46.S.S50. 

Rocha, J. A. M. . R., Oliveira, G., Alvares, L. O. and Bogorny, V. (2010) ‘DB-SMoT : A Direction-

Based Spatio-Temporal Clustering Method’, IEEE Conf. of Intelligent Systems, pp. 114–119. 

Satopää, V., Albrecht, J., Irwin, D. and Raghavan, B. (2011) ‘Finding a “Kneedle” in a haystack: 

Detecting Knee Points in System Behavior’, Proceedings - International Conference on Distributed 

Computing Systems, pp. 166–171. doi: 10.1109/ICDCSW.2011.20. 

SBB (no date) HSR-C – Connection to High-Speed Rail Traffic. Available at: 

https://company.sbb.ch/en/the-company/projects/national-projects/hsr.html (Accessed: 5 January 

2020). 

 



References  

 

 

Department of Geography, University of Zurich  Page 112 

 

Schneider, C. M., Rudloff, C., Bauer, D. and González, M. C. (2013) ‘Daily travel behavior: Lessons 

from a week-long survey for the extraction of human mobility motifs related information’, Proceedings 

of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. doi: 

10.1145/2505821.2505829. 

Schneider, W. and Hennig, A. (2008) Lexikon Kennzahlen für Marketing und Vertrieb: Das Marketing-

Cockpit von A - Z. 2nd edn. Mannheim: Springer Berlin Heidelberg. 

Schubert, E., Sander, J., Ester, M., Kriegel, H.-P. and Xu, X. (2017) ‘DBSCAN revisited, revisited: Why 

and how you should (still) use DBSCAN’, ACM Transactions on Database Systems, 42(3), pp. 21, 

article 19. doi: 10.1145/3068335. 

Silberholz, J. and Golden, B. (2010) ‘Comparison of Metaheuristics’, in Gendreau, M. and Potvin, J. 

(eds) Handbook of Metaheuristics. Springer, Boston, MA, pp. 625–640. 

Swiss Confederation (2016) ‘Demografischer Wandel in der Schweiz: Handlungsfelder auf 

Bundesebene Bericht des Bundesrates in Erfüllung des Postulats 13.3697 Schneider-Schneiter’, pp. 1–

86. 

Swiss Confederation BFS (2012) ‘Freizeit’, ValeurS - Ein Informationsmagazin des Bundesamtes für 

Statistik, (1), pp. 1–28. 

Thierry, B., Chaix, B. and Kestens, Y. (2013) ‘Detecting activity locations from raw GPS data: A novel 

kernel-based algorithm’, International Journal of Health Geographics, 12(14), pp. 1–10. doi: 

10.1186/1476-072X-12-14. 

Tran, L. H., Nguyen, Q. V. H., Do, N. H. and Yan, Z. (2011) ‘Robust and Hierarchical Stop Discovery 

in Sparse and Diverse Trajectories’, Technical report EPFL, pp. 1–10. Available at: 

http://infoscience.epfl.ch/record/175473. 

Ustun, I. (2016) ‘Robust Algorithms for Estimating Vehicle Movement from Motion Sensors Within 

Smartphones’, Doctor of Philosophy (PhD), Dissertation, Modeling Simul & Visual Engineering, Old 

Dominion University, pp. 1–155. doi: 10.25777/8fqh-vc04. 

Vazquez-Prokopec, G. M., Stoddard, S. T., Paz-Soldan, V., Morrison, A. C., Elder, J. P., Kochel, T. J., 

Scott, T. W. and Kitron, U. (2009) ‘Usefulness of commercially available GPS data-loggers for tracking 

human movement and exposure to dengue virus’, International Journal of Health Geographics, 8(68), 

pp. 1–11. doi: 10.1186/1476-072X-8-68. 

Voelcker-Rehage, C., Godde, B. and Staudinger, U. M. (2011) ‘Cardiovascular and coordination 

training differentially improve cognitive performance and neural processing in older adults’, Frontiers 

in Human Neuroscience, 5, pp. 1–12. doi: 10.3389/fnhum.2011.00026. 

 



References  

 

 

Department of Geography, University of Zurich  Page 113 

 

Wegener, I. (1989) Effiziente Algorithmen für grundlegende Funktionen. 2nd edn. Springer Fachmedien 

Wiesbaden GmbH. 

WHO (2017) ‘10 Priorities towards a decade of healthy ageing’, pp. 1–15. 

Xiang, L., Gao, M. and Wu, T. (2016) ‘Extracting stops from noisy trajectories: A sequence oriented 

clustering approach’, ISPRS International Journal of Geo-Information, 5(29), pp. 1–18. doi: 

10.3390/ijgi5030029. 

Xiao, N. (2016) GIS Algorithms: Theory and Applications for Geographic Information Science & 

Technology, GIS Algorithms: Theory and Applications for Geographic Information Science & 

Technology. Edited by R. Rojek, M. Oldfield, K. Haw, and R. Leigh. SAGE Publications Ltd. doi: 

10.4135/9781473921498. 

Yan, Z., Parent, C., Spaccapietra, S. and Chakraborty, D. (2010) The Semantic Web: Reserach and 

Applications - 7th Extended Semantic Web Conference, ESWC 2010, Lecture Notes in Computer 

Science. Edited by L. Aroyo, G. Antoniou, E. Hyvönen, A. ten Teije, H. Stuckenschmidt, L. Cabral, and 

T. Tudorache. Springer-Verlag Berlin Heidelberg. 

Zadeh Monajjemi, P. P. (2013) ‘A Clustering-Based Approach for Enriching Trajectories With Semantic 

Information Using VGI Sources’, Master’s Thesis Faculty of Geo-Information Science and Earth 

Observation of the University of Twente, The Netherlands. 

Zhang, W., Wang, X. and Huang, Z. (2019) ‘A system of mining semantic trajectory patterns from GPS 

data of real users’, Symmetry, 11(889), pp. 1–12. doi: 10.3390/sym11070889. 

Zhang, Y., Liu, Z. L. and Song, M. (2015) ‘ChiNet uncovers rewired transcription subnetworks in 

tolerant yeast for advanced biofuels conversion’, Nucleic Acids Research, 43(9), pp. 4393–4407. doi: 

10.1093/nar/gkv358. 

Zhao, Q., Shi, Y., Liu, Q. and Fränti, P. (2015) ‘A grid-growing clustering algorithm for geo-spatial 

data’, Pattern Recognition Letters, 53, pp. 77–84. doi: 10.1016/j.patrec.2014.09.017. 

Zheng, Y. (2015) ‘Trajectory Data Mining: An Overview’, ACM Transactions on Intelligent Systems 

and Technology, 6(3), pp. 1–41. doi: 10.1145/2743025. 

Zimmermann, M., Kirste, T. and Spiliopoulou, M. (2009) Finding Stops in Error-Prone Trajectories of 

Moving Objects with Time-Based Clustering, Intelligent Interactive Assistance and Mobile Multimedia 

Computing - Communications in Computer and Information Science 53. Edited by D. Tavangarian, T. 

Kirste, D. Timmermann, U. Lucke, and D. Versick. Rostock: Springer-Verlag Berlin Heidelberg. 

 



Appendix  

 

 

Department of Geography, University of Zurich  Page 114 

 

9 Appendix 

9.1 Visualisations of Algorithms on Map 

Appendix 9.1 shows the visualised results for one exemplary day. In bright green circles, the stops of 

the manually labelled ground truth were inserted in the maps. The centres of the stops, that the algorithms 

detected are coloured in small dark green points.  

 

Appendix Figure 9.1 Visualisation of CandidateStops algorithm (pre- and post-processing delivered the same results) 
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Appendix Figure 9.2 Visualisation of POSMIT algorithm (pre- and post-processing delivered the same results) 



Appendix  

 

 

Department of Geography, University of Zurich  Page 116 

 

 

Appendix Figure 9.3 Visualisation of MBGP algorithm, Tmin = 900 s,  

(pre- and post-processing delivered the same results) 
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Appendix Figure 9.4 Visualisation of MBGP algorithm, Tmin = 2100 s,  

(pre- and post-processing delivered the same results) 
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Appendix Figure 9.5 SOC algorithm (pre- and post-processing delivered the same results) 
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