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Abstract 

As the world’s population keeps on rising and more people tend to live in cities rather than in 

the countryside the road networks get congested, which leads to an increase in car accidents, 

environmental pollution, and fuel consumption. A solution to tackle this is given by ride-sharing 

systems that assist in sharing taxis, thus reducing the number of vehicles on a cities’ road 

network. Considering information about traffic congestions and vehicle’s speed in such systems 

did so far not receive much attention from the research community. To close the given research 

gap this work develops a framework on how to identify potential ride-sharing paths from GPS 

taxi trajectory data considering the traffic state information, and analyses how such information 

influences the identified shared paths and the overall results of a ride-sharing system. The 

considered traffic state information is estimated only based on information received from the 

GPS records and the road network dataset and directly included into the matching process by 

being used as the weight of the shortest respectively fastest path algorithm. By developing and 

implementing a new similarity measurement between taxi trips that potentially could be shared, 

the complexity of the matching process gets reduced and the system is made more efficiently. 

The proposed system is applied to real-world GPS data of the city centre of Chengdu, China: 

once considering the estimated traffic state information and once assuming an absence of traffic 

congestions. This way the influence of traffic state information on ride-sharing systems is 

analysed. By not considering traffic state information a matching rate of 70.57% results. 

49.91% of the total travel time and 12.8% of the total travel distance are saved. This leads to a 

reduction of 1’705.3 kg CO2. On average the second passenger must wait 2 min 6 s to get picked 

up. With the proposed method the taxi fleet is reduced by 27.59%. Considering traffic state 

information, a matching rate of 54.86% and savings in the total travel time and distance of 

26.72% respectively 8.85% emerge. 1’179.1 kg CO2 can be saved while the average waiting 

time amounts to 3 min 14 s. 21.15 % of the taxi fleet can be reduced. This analysis shows that 

traffic state information leads to more conservative (and thus likely more realistic) matching of 

trips, which shows itself in lower respectively worse values for all the calculated measures. 

Most affected are the travel time savings and the average waiting. This allows claiming that 

ride-sharing system not considering traffic state information distort their results as they are 

embellished. This can lead to a decrease in the user-friendliness of a system as unexpected 

different waiting times or delays can emerge. This work shows that including traffic state 

information can be a very important point to make a ride-sharing system more useful for real-

world applications. Future research should analyse, based on the same data, how much 

computation time can be saved by this, due to the similarity measurement, simple, yet efficient 

ride-sharing approach and compare its results in absolute numbers to existing systems. 
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1. Introduction 

1.1 Motivation 

Since purchasing a vehicle has become possible for a big part of the world's society, our 

mobility rapidly increased and shaped our environment in many ways. Places that seemed to be 

unreachable have become relatively closer. Nowadays, most households in developed countries 

own a vehicle. From having an estimated total amount of 670 million vehicles worldwide in 

1996, the number of vehicles on our road networks rapidly increased to approximately 1.32 

billion in 2016. Since more economies have become wealthier, not only do developed countries 

from the global north affect this increase, but so do developing countries from regions like Asia 

or South America. In fact, the number of vehicles in developed countries stabilized in recent 

years, while a strong increase can be seen e.g. in Asia. (Petit, 2017) 

 

Figure 1: Development of the number of vehicles in operation worldwide between 2010 and 2016 

divided into different regions (Petit, 2017). 

As the world's population keeps rising, especially in the latter regions, these numbers are 

expected to grow even higher in the coming years. Combining this with the fact that more 

people tend to live in cities rather than in the countryside, complications in a city’s road network 

are almost inevitable. The most common form of such complications is traffic congestion. 

Vehicle passengers can lose more than a hundred hours getting stuck in traffic congestions. The 

biggest time loss due to traffic congestion was recorded in 2019 in Bogotá, Colombia, with an 

average time loss of 191 hours per year (Reed, 2020). These traffic congestions do not only 

lead to time loss, but also to an increase in car accidents, air pollution, and fuel consumption 

(Shete et al., 2015). Facing these problems gets even more urgent once we take into account the 

ongoing global climate change. A first step to address these problems can be done by reducing 

the number of vehicles on a city's road network. To achieve this, people started to share cars on 

their way to work or school, so that the number of people per car increases and the total amount 

of vehicles on the network decreases. This does not only reduce traffic jams, car accidents, and 

environmental pollution, but also minimizes the costs of travelling. Sharing cars with people 

whose routes are similar is commonly known as carpooling or ride-sharing (Shete et al., 2015). 

At first, finding other people to share a ride, had to be done manually. Nowadays, with 

smartphone technology, applications based on algorithms automatically assist in finding the 

most suitable person to share a ride with. 
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1.2 Background 

The fact that ride-sharing can save resources has been known already since around the second 

world war, where the US government organized a ride-sharing program by using bulletin boards 

at work to match people with similar destinations to conserve resources for the war effort. 

During an oil crisis in the 1970s, ride-sharing was used to save fuel by reducing the total fuel 

consumption of vehicles. Later, the main intention of sharing cars was to cope with problems 

of traffic congestions and air quality. Until the beginnings of the 2000s, the people would be 

matched together manually by organizations at work or telephone-based ride-sharing. With the 

rise of internet technology, though, the matching process could be transacted online. Today, 

this process has become ever-so dynamic through smartphone technology and Global 

Positioning Systems (GPS). (Chan & Shaheen, 2012) 

 

Using these technologies, many different applications of ride-sharing systems have been 

developed by companies and start-ups. The applications differ in their target audience and the 

objective which they want to achieve. They can be divided mainly into two groups: ride-sharing 

systems, which have been developed to match private persons using their own cars, and ride-

sharing systems, which match taxi or taxi-like requests of customers. The main difference 

between these two groups is that ride-sharing for private persons has no financial motivation, 

meaning that the price for a ride is only as high as the driver’s costs. On the other hand, ride-

sharing systems of taxis or taxi-like companies are profit-making (Chan & Shaheen, 2012). In 

recent years, companies like Carma (formerly known as Avego), Carticipate or Zimride entered 

the market of ride-sharing systems offering platforms that match private persons with similar 

start and end points to a driver (Agatz et al., 2012). This driver uses the capacity of his car to 

give a ride to people with trip destinations similar to his own. This has the benefit that the 

individual’s travel costs get reduced and the number of vehicles on the road network decreases 

(Barann et al., 2017). 

 

Sharing taxis has been a common transportation method in several developing countries (Hosni 

et al., 2014). In Colombia, for example, such taxi providers are called “colectivos”. They 

usually have several fixed start and end points in a city and passengers can be dropped off or 

picked up on the way. This form of ride-sharing has also become common in developed 

countries in the last several years. The main difference is the use of smartphone technology and 

GPS to assist in matching suitable trip requests together. This allows the applications to find a 

match for people’s requested trips even if their start points are not at the same location. This 

user-friendly system is what made them marketable. Therefore, ride-sharing services have 

become interesting for transportation companies. Such companies can be taxi providers or taxi-

like transportation companies such as Uber and Lyft. The latter are examples of taxi-like 

companies which, besides their normal transportation service, additionally offer ride-sharing 

services for some years, commonly known as UberPool or Lyft Line (Schwieterman & Smith, 

2018). Another famous example of such a company is Didi-Chuxing, the leading ride-sharing 

company in China (Stemler et al., 2019). 
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Their applications are based on algorithms which must compute (in a very short amount of 

time) which requested trips are similar and therefore suitable to be shared without generating 

prohibitive extra costs like an extended waiting time for the second passenger to be picked up 

or a bloated travel time in comparison to an individual’s trip (Agatz et al., 2012). Depending 

on the characteristics of a user’s trip request, the setup of the algorithm can differ. If a user can, 

besides his desired destination, define some points of interest (POI) which the taxi must visit 

during the ride, then the similarity of two trips is based on the whole trip. This means that only 

trips that are close in space (in sense of shape and distance) and time in their entirety are 

considered to be similar and therefore suitable for ride-sharing (Besse et al., 2016). The methods 

to measure this similarity can differ substantially between applications and have been analysed 

in many research studies. Based on them, clusters can be built to group similar trips together. 

Optimal shared paths will then only be computed inside each cluster individually.  

 

On the other hand, if the application allows its users only to define a destination, then the 

similarity between the requested trips depends only on the similarity between each start and end 

point. Between similar trips, an optimal path can then directly be computed which visits the 

start and end point of both trips in the shortest possible way. Characteristics like total savings 

of travel time or delay time for the second user can be used to identify the most suitable trips to 

be shared. (Santi et al., 2014a) 

 

In general, this means such algorithms assume that start and end points or even complete trips 

that are close to each other are less cost-intensive to share than ones far away from each other. 

Solving the ride-sharing problem this way presumes that the time to reach a target in space only 

depends on the distance. In the real world, however, the time to move on a road network 

depends a lot on the traffic state. Therefore, paths or start and end points that are close to each 

other in space do not always have to be less cost-intensive to share than others further away. 

Thus, to identify potential ride-sharing paths considering real-world circumstances, information 

on the traffic state should be included in the algorithms. 
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1.3 Aim and structure of the work 

Each ride-sharing system is based on different algorithms, and even if they have received a lot 

of interest from the research community in the last years, these algorithms leave room for 

improvement (Hosni et al., 2014). One point of improvement could be considering retrieved 

information about traffic congestions, thus making the models more realistic. Therefore, this 

study focuses on creating a framework to identify potential ride-sharing paths more realistically 

by considering the traffic state of the underlying road network. The main goals of the work are 

to show how potential ride-sharing paths can be identified efficiently from a raw GPS taxi 

trajectory dataset and where the estimated traffic state information can be included in this 

process. By applying the framework to a dataset of GPS taxi trajectories in the Chinese 

megacity Chengdu, the influence of traffic state information on ride-sharing systems is 

analysed. As the first step, the data must be pre-processed for further analysis and the recorded 

GPS taxi trajectories map-matched to the underlying road network. Subsequently, the traffic 

state is computed based on the trajectory points and then included in the identification process 

of potential ride-sharing paths. To improve the performance of this identification process, a new 

similarity measurement is defined and implemented. By computing the analysis once using 

traffic state information and once assuming that the vehicle’s speed is only limited by the 

maximum allowed speed of each road segment, it can be evaluated what differences in the 

results occur between assuming an absence of traffic congestions and considering the estimated 

real-world circumstances. We can therefore analyse the effect such information can have on 

ride-sharing systems.  

 

This work is structured as follows. In Chapter 2 an overview of the related work is provided. 

Interesting papers in the field of ride-sharing are discussed and insights into studies about map-

matching are provided, as this is a pre-processing step applied in this work. Additionally, 

research about traffic state estimation is summarized and interesting findings highlighted. 

Finally, the research gap is shown. In Chapter 3 the research questions and hypotheses for this 

study are presented. Chapter 4 provides an overview of the two datasets on which the 

framework is applied. The different methods and processes of this framework are then 

explained in detail in Chapter 5. Starting with the pre-processing of the data, methods about 

map-matching, traffic state estimation and the final identification of potential ride-sharing paths 

are illustrated. The results of these individual parts, as well as the final ride-sharing paths, are 

presented in Chapter 6. Chapter 7 puts the findings into perspective to the research questions 

and hypotheses by comparing the results between including traffic state information and 

assuming absence of traffic congestions and, furthermore, possible points for improvements are 

discussed. The most important results and findings are again highlighted in Chapter 8. This 

study is concluded by presenting ideas for future work in this field. 

  



  2 Related work 

 

5 

 

2. Related work 

The field of ride-sharing research, in which this work is embedded, is rapidly growing and the 

potential of such systems has become clearer in the last several years, especially in combination 

with problems related to global climate change. To show what has already been researched and 

to what extent this work can contribute new findings regarding the procedure of identifying 

potential ride-sharing paths, an insight into conducted studies of ride-sharing will be provided 

in this chapter. Studies of Agatz et al. (2012) and Furuhata et al. (2013) deliver a good overview 

of the different sub-categories of ride-sharing systems and corresponding research papers. The 

presented studies in this chapter mainly can be divided into static and dynamic ride-sharing 

systems and differ in their goal and applied methods. As these systems are usually based on 

GPS data, locating the recorded signals on the road network is another part of these studies. 

This procedure is known as map-matching and several different approaches exist to determine 

which road a GPS signal has been recorded on. Research on map-matching methods will 

therefore be discussed as the second part of this chapter. Information on traffic state will be 

used in this work and included in the process of identifying potential ride-sharing paths to solve 

the ride-sharing problem more realistically. Although methods on how such information can be 

derived represent its own field of research, they will be also presented here briefly. At the end 

of the chapter, considering the discussed studies, the research gap for this work will be 

presented and used in Chapter 3 to form the research questions.  

2.1 Ride-sharing methods 

The division of ride-sharing systems into a) systems focusing on matching private persons with 

other private persons, and b) systems focusing on matching trip requests of taxis or taxi-like 

companies, explained in the background section of this work, is also presented in the study of 

Furuhata et al. (2013). They divide the systems based on the type of service providers into the 

so-called service operators or matching agencies. Service operators are companies that provide 

their own vehicles to be used for ride-sharing systems. As mentioned in this study, a 

characteristic trait for such systems is that most of the decisions are made by the provider and 

the users only accept the proposed shared ride or refuse. This a typical situation of a ride-sharing 

system provided by a taxi or taxi-like company, where a user can request a ride, and the ride-

sharing system computes an optimal ride-sharing path with another user’s request. The only 

decision the user can make is to accept the provided ride-sharing path or to reject the offer. 

Matching agencies, on the other hand, are defined as ride-sharing systems that assist in the 

process of matching individual vehicle drivers and passengers. To better use the capacity of its 

vehicle and to share the travel expenses, a user can register his own vehicle for ride-sharing. In 

contrast to systems run by service operators, the driver himself is also seen as a ride-sharing 

participant who wants to reach a specific destination.  

 

Irrespective of service operators or matching agencies, ride-sharing systems are normally 

constructed to reach at least one specific objective. This can be represented by an optimization 

problem. The most common objectives a ride-sharing system can follow are, as explained in 

the paper of Agatz et al. (2012), the following three: minimize the total travel distance, 

minimize the total travel time or maximize the number of participants of the ride-sharing 

system. The total travel distance is the sum of the number of driven kilometres of shared trips 

as well as of unshared individual trips. A ride-sharing system following this objective matches 

the user’s trip requests where the difference in a sense of distance between two individual trips 
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and its shared trip is maximal. This then leads, in a global perspective, to the minimum total 

travel distance and additionally minimizes the emerging total travel costs. The total travel time 

represents how much time the participants have spent in the vehicles to reach their destinations. 

As a road network is highly complex, a vehicle cannot maintain the same speed on each road. 

Therefore, the travel time of a trip does not just depend on the driving distance, but also on the 

vehicle speed. Because of this, minimizing the total travel distance can result in different 

identified ride-sharing paths than minimizing the total travel time. The number of participants 

of a ride-sharing system is mainly incumbent on how many requested trips of users can be 

successfully matched. A good matching rate tells the user that there is a high chance to find a 

ride-sharing trip with this system. Consequently, the number of participants is higher in systems 

with good matching rates and this again attracts more potential participants as they rather 

register for frequently used rid-sharing systems than for uncommon ones. So, a ride-sharing 

system that follows the objective to maximize the number of participants matches the requested 

trips in a way so that it identifies as many ride-sharing trips as possible, regardless of how much 

travel distance and time is saved. (Agatz et al., 2012)     

 

Other objectives of ride-sharing systems, which are affiliated to the ones defined by Agatz et 

al. (2012), can be to minimize the waiting time emerging for a user, if she or he is being picked 

up as the second person, what affects the user-friendliness and, therefore, the attraction for 

potential participants, or minimizing the total CO2-emissions, which correlates with the total 

driving distance and the vehicle speed (Jung et al., 2013, Barann et al., 2017). The latter is 

shown in the study of Barann et al. (2017), where they compute how much kg of CO2 could be 

saved by implementing their ride-sharing approach in the city of New York, USA. Resulting 

savings of around 532’000 kg of CO2 emissions per week illustrate the potential of ride-sharing 

methods to contribute to the mitigation of global warming. 

 

Besides distinguishing between studies about ride-sharing systems based on their service 

provider or followed objective, other characteristics like the dimensionality or the dynamics of 

the matching problem can be used to subdivide them. The dimensionality of the matching 

problem stands for the number of passengers involved in the matching process. A simple case 

of a matching problem is when the system only allows matching the requested trips of two 

users. For a ride-sharing system provided by a matching agency, this would mean, that only a 

driver and one passenger can be matched together. Service operators would limit their system 

to match only two participants to a taxi. Allowing the matching of multiple passengers in a ride-

sharing system increases the complexity significantly. The maximum number of matched 

passengers is defined by the capacity of the used vehicle, in other words, the empty seats of the 

car. In this case, the system would have to match suitable trips of e.g. four persons, by still 

fulfilling the requirements of its objective. Considering the objective of minimizing the waiting 

time shows the increase in the complexity of a system matching more than two passengers, as 

then the overall waiting time for all passengers must be minimized and not only the waiting 

time of one person. (Furuhata et al., 2013) 

 

The nomenclature for the different dynamics of ride-sharing systems varies over the research 

papers. Terms like static, dynamic, real-time, or on-demand systems are often being used but 

differently defined. Shen et al. (2015) e.g. use the terms static and dynamic ride-sharing to 

subdivide the systems. They define a static ride-sharing system as a system where both the 

origin and destination of the two participants are known in advance and the system matches the 
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requested trips before they have started. As soon as a trip has started, the matched ride-sharing 

path cannot be changed anymore. Dynamic ride-sharing systems refer to systems where an 

algorithm can match requested trips of users in real-time, regardless of whether a vehicle or a 

trip has started or not. Considering a situation where a system allows to match more than two 

persons, a dynamic system could match a third person to a ride-sharing trip of two users, which 

have been matched in advance and are already en route. While doing so, the systems must 

assure that the constraints of the first matched trips remain satisfied while at the same time 

considering the constraints of the additionally added trip. Agatz et al. (2011) do not use the term 

static ride-sharing but refer to the same by using the term dynamic ride-sharing. Dynamic real-

time or on-demand systems are used to represent what was described by Shen et al. (2015) 

under the term dynamic systems. So, the underlying concept is the same but named differently. 

To avoid potential confusion, the nomenclature used in the study of Shen et al. (2015) will be 

applied in this work.  

2.1.1 Static ride-sharing 

In this section, interesting studies about static ride-sharing systems will be presented, discussed, 

and compared with each other. The models of the proposed systems are shown to later 

distinguish between them and the created framework of this work. Table 1 will give an overview 

of the discussed papers.  

 

Armant & Brown (2014) present in their study a static ride-sharing system aiming to minimize 

the total travel distance. Their study represents the case of a system provided by a matching 

agency. There are three different types of participants in their model: drivers, riders, and the so-

called shifters. Shifters are participants that can act as drivers or riders. A driver offers a trip, a 

rider requests a trip, and a shifter does both. They assume that each participant will complete 

their trip, either by a shared trip or individually. In the end, the total travel distance will be the 

driving distance of all the shared trips and the individual ones. Additionally, they do not set 

fixed start and end points to the trips. They create a set of standard locations, which are e.g. 

situated at the main junctions of the road network. Drivers and riders can negotiate over where 

to be picked up and dropped off. A rider can be matched to a driver if their defined start and 

end point are located in the right order on the path of the driver and they are requested in the 

same time window as the driver’s trip. Only the riders who form a shared path that fulfils the 

objective of minimizing the total travel distance are matched. This ride-sharing system is then 

applied to a randomly generated dataset based on OpenStreetMap (OSM) data of Dublin, 

Ireland. The experiment is used to study the effect of changing input parameters of the system, 

like the number of participants or the number of different pick-up and drop off locations. The 

results show that an increase in participants leads to more saved kilometres and less unmatched 

users. Using more different locations leads to less saved kilometres and more unmatched users. 

This approach represents a simple ride-sharing system, where the flexibility of the user must be 

high, as they have to walk to the negotiated pick up location and matches are only made if the 

driver does not have to change his route. 

 

Like the previous study, the work of Stiglic et al. (2015) proposes a static ride-sharing system 

that matches trip requests of private people using their own vehicle. Like in Armant & Brown 

(2014), Stiglic et al. (2015) allow the location of the users to be unfixed. This means they too 

assume that a user is willing to walk a certain distance to a meeting point to be picked up. Their 

study aims to analyse how using such meeting points in ride-sharing systems can lead to a 
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higher matching rate and bigger travel distance savings. The matching process is configured so 

that highest priority is given to match as many users as possible, and then the travel distance 

savings are maximized as a second main objective. In their study, they take a vehicle with three 

empty seats as the standard. Therefore, up to three riders plus the driver can be matched. 

Allowing to match multiple riders can have an influence on the user-friendliness of a system as 

a shared route with multiple riders has several stops, potentially causing inconvenience for 

certain users. To avoid this problem, they condition that only multiple riders per vehicle are 

allowed if they share the same meeting point in the sense of origin and destination. Each rider 

must define a start and end location and a certain amount of meeting places around these 

locations when using the system. The shared route can start either at the origin or at one of the 

surrounding meeting points. Additionally, a time for the earliest departure from the origin and 

the latest arrival at the destination must be known. The drivers define a maximum travel time 

they would accept. Drivers and multiple riders are then matched so that all the constraints are 

met, and the two objectives are followed in order. To study the influence of the meeting points, 

they apply their model on generated data from Atlanta, USA. To calculate the travel time of a 

driven route, they assume that the vehicle speed is 15 m/h (about 24 km/h) and remains constant 

for all roads and does not change in time. By changing the number of considered meeting places 

per rider between zero and four, the effect on measures, like percentage of matched users, total 

distance savings or average walking time of a user to its meeting point, is detected. They found 

out that allowing meeting places in ride-sharing systems and increasing the number of them 

leads to an increase in the percentage of matched users and the total distance savings. 

Nevertheless, their approach still assumes big flexibility of the users, which is not always given. 

The average walking time for a rider to its meeting places is around eight minutes. This is very 

high and might not be attractive for new users. Especially for use in cases of taxi ride-sharing 

system, this model would not fit very well as taxi customers usually are not that flexible.  

 

The study of Agatz et al. (2011) is based on the same study area and a very similar dataset is 

used as in the presented work of Stiglic et al. (2015). The main difference is that in Agatz et al. 

(2011), no meeting points exist, and a higher but still constant vehicle speed is given. So, all 

the generated trips connect fixed start and end location of the user’s requests. In their study, 

they propose a ride-sharing system that can be provided by a matching agency, which is 

interested in getting a revenue (a small percentage of the travel cost savings). Each user can be 

either a driver or a rider, which means that each user has a vehicle available. Different from the 

previous study, multiple matches are only allowed if the riders share the same start and end 

location and not just a meeting point. In the beginning, each user enters information about the 

earliest departure time and the latest arrival time into the system. The objective of the system 

is again to maximize the total distance savings. A match is only used if the resulting travel time 

is smaller than the sum of the travel time of the two individual requested trips. As new trip 

requests can enter the system at any time, the matching process must be performed repeatedly. 

Therefore, they define a time interval, and, always at the end of this interval, the matching 

process is performed again for the remaining and newly entered requested trips. They apply two 

different algorithms as they consider two cases. In the first case, each user can only be a driver 

or a rider, but not both. To find the optimal collocation of the matched trips, which minimizes 

the total travel distance, a maximum-weight bipartite matching model is applied. If it is not 

known whether a user is a driver or a rider, then a general graph matching model is used. These 

algorithms are very complex. In a simple case, an algorithm could always just create a match 

between the two trips with the biggest travel distance savings, remove them from the candidate 
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list, and search for the next best match. This would be repeated until no trips are left. The results 

show, that for the used dataset, the complex algorithms can match about 74% of all the 

requested trips, which leads to a total distance saving of 26%. So, they clearly outrun the simple 

algorithm (28% matched trips and 12% distance savings). The proposed ride-sharing system is 

more realistic than the previously presented ones as the start and end locations are fixed, and 

the flexibility of a user does not need to be very high. Nevertheless, the approach was only 

applied to generated data and was not tested on a real-world GPS dataset. 

 

The structure of the ride-sharing system proposed in the study of Cai et al. (2019) is to some 

degree similar to the three previously discussed papers. However, it is built for a different intent 

as this approach is an example of a ride-sharing system provided by a service operator (taxi 

company). Cai et al. (2019) create a taxi ride-sharing system based on real-world GPS data. 

They analyse the environmental benefits of their method applied to a historical trajectory 

dataset of taxis in the city of Beijing, China. These trajectories are recorded by a GPS device in 

the taxis. Each trip comes with information about its start and end point, start and end time, 

total travel time of the trip, total travel distance, and the average speed value of the vehicle. 

Different from the previous studies, only matched trips of a maximum of two users are allowed. 

This means a taxi can serve a maximum of two people. The ride-sharing system aims to 

maximize the total travel distance savings. Their matching process can be divided into two 

phases. First, all shareable trips of the dataset are identified and then the shared trips that create 

a global maximum of the travel distance savings are selected. How they decided if two trips are 

shareable is explained in Figure 2. 

 

Figure 2: Framework of shareable trip identification proposed by Cai et al. (2019). O stands for origin, 

D for destination, d for distance and e.g. t_0 for the departure time respectively t_0’ for the departure 

delay. 

A pair of two trips must pass two tests to get marked as shareable. First, the total distance of 

the shared path between a pair of two trips must be smaller than the sum of the distance of the 

two individual trips. If this is not the case, combining these two trips will not save travel distance 

and is therefore not useful. Second, the shared path of a pair of two trips must fulfil defined 

constraints concerning the departure and arrival time. A value of 10 minutes is set as a threshold. 

If the difference between the departure time of the individual trip and the shared trip is bigger 

than 10 minutes, sharing these two trips will not be considered as it would be inconvenient for 

the users. The same applies to the arrival time of the trips. In the end, only trips that save travel 

distance and do not lead to big differences in departure and arrival time are marked as shareable. 
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From all the identified shareable trips, in a second step, the ride-sharing paths are selected, 

which lead to a global maximum in the sense of travel distance savings. A final identified shared 

path is a combination of two trips that visits each start and end point in the shortest distance. In 

what order these points are visited is not predefined. Therefore, for each combination of two 

trips, they define four possible paths. Setting the start points of two trips i and j to Oi and Oj, 

respectively the end points to Di and Dj, the following collocations are possible: Oi-Oj-Di-Dj, 

Oi-Oj-Dj-Di, Oj-Oi-Di-Dj, Oj-Oi-Dj-Di. The collocation that results in the shortest distance is 

selected as the shared path. Cai et al. (2019) estimate the shortest distance connecting two points 

based on a linear relation to the Manhattan distance between them. The final distance of the 

shared path is, therefore, only an estimation and not an exact measurement. They apply the 

described method on the taxi GPS dataset of Beijing and detected that 77% of all trips can be 

shared. This means 33% of the total travel distance can be saved by implementing their 

approach. To further illuminate the potential environmental benefits of their method, they 

assume a linear correlation between emissions and driven kilometres. Doing so, they calculate 

annual savings of 28.3 million gallons of gasoline and a reduction of 2’392 tons of CO2 

emissions. Compared to the previous studies, the main difference of the proposed ride-sharing 

system of Cai et al. (2019) is, besides the different providers, that it is more realistic as it is 

based on real-world GPS data. Additionally, the approach is more user-friendly as no walking 

distance or multiple stops are assumed. Nevertheless, using an estimation method based on a 

linear relation to the Manhattan distance to calculate the distance of the shared path can lead to 

inaccuracies. Therefore, working with the shortest path algorithm instead based on the road 

network distances could have helped.  

 

This disadvantage is solved in the work of Wang et al. (2018). They propose a rather simple yet 

accurate taxi ride-sharing system, where they include the road network distance and 

additionally the travel time into the shortest path algorithm. Their system aims to match taxi 

users in a way that the total travel costs get minimized. Here, static means, that each user gets 

the shared path proposed before the ride starts and the path will not be changed anymore during 

the trip. The travel costs can either be the total driving distance or the total travel time. In their 

system, each user defines the following parameters when entering a trip request: maximal 

waiting time (here the waiting time relates to the time it takes for the system to find a shared 

ride), maximal acceptable departure and arrival delay, number of people requesting the trip, and 

minimal taxi fare reduction (percentage of taxi fare reduction due to ride-sharing). Additionally, 

Wang et al. (2018) define a percentage of the taxi fare a taxi driver must earn extra when serving 

a shared ride. For a set of two trips to be accepted as possible ride-sharing paths, all the above-

mentioned constraints must be met. The requested trips are then ordered by their request time 

and each of them gets analysed separately. Their system creates a shortest path (either based on 

the road network distance or the travel time) between the analysed trip and each trip that has 

not been matched so far, and that fulfils the constraints. The shared path that minimizes the 

travel costs is selected and gets assigned to a taxi driver, rendering it not a part of the system 

anymore. If no shared path is found for the available trips, the analysed trip will be stored to be 

eventually matched to a future trip request. If the time a trip is stored exceeds its departure 

delay, the trip gets served individually and leaves the system as well. This optimization strategy 

results in a local optimum, not in a global optimum as applied in the study of Cai et al. (2019). 

This means, that a served shared trip is a combination of two trip requests that minimizes the 

travel costs at this moment. From a global perspective, this does not mean, that this combination 

was the best possible choice, but it nevertheless highly reduces the complexity of the system. 
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This study represents an alternative approach to the global optimum model proposed in the 

paper of Cai et al. (2019) and shows that a local optimum can highly reduce the complexity of 

a system without suffering a significant loss of accuracy. Moreover, interesting constraints 

about the price setting of ride-sharing systems are included, which is not the case in the 

previously discussed papers. 

 

The proposed ride-sharing system in the study of Santi et al. (2014a) connects the mentioned 

characteristics of the systems presented by Cai et al. (2019) and Wang et al. (2018). Their 

system is based on a global optimum model and the shortest respectively fastest paths are 

computed in the matching process. This results in an accurate and efficient method but leads to 

time-intensive computations. With their approach, they assist in matching taxi requests so that 

either the number of identified shared trips is maximal or the total travel time is minimal. 

Depending on which objective is pursued, different results are obtained. Similar as in the 

previous studies, the system of Santi et al. (2014a) identifies a set of two trips as shareable 

provided there exists a path that connects each start and end point in the right order so that for 

each trip the start point is served before its end point and some specified constraints are met. 

Excluded is the collocation where one trip is being served before the other has started, as this 

does not represent a shared ride. The built shared path must not lead to a delay bigger than a 

threshold set by the user and must result in a total travel distance shorter than the sum of the 

two individual trips. For every single path, the trips that have been requested during a time 

window, more specifically in a certain amount of time before and after the analysed trip, serve 

as candidate trips for ride-sharing. Between each set of two trips, the fastest path connecting all 

the origins and destinations is built. As in the study of Cai et al. (2019), four possibilities to 

build the fastest path are given. As opposed to the shortest path, the edges used in the algorithm 

are weighted by the estimated travel time and not by the distance. This travel time represents 

the time a vehicle needs to travel on a specific road segment. Through a heuristic approach, the 

travel time gets estimated based on the information of the origin and destination of each trip. 

For all the identified fastest paths in a time window that fulfil the constraints, a global optimum 

is found that follows one of the two defined objectives. This procedure can be seen in Figure 3. 

 

Figure 3: Visualisation of the process of finding a global optimum for the potential ride-sharing paths. 

(A) shows all candidate trips in a time window. In (B) the fastest paths that fulfil the constraints are 

displayed. (C) represents the global optimum for maximizing the number of shared trips and is 

visualised in (D). The global optimum in (E) and (F) minimizes the total travel time. (Santi et al., 

2014a) 
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They apply the presented approach on real-world GPS data from the city of New York. The 

threshold for the maximum delay is set to five minutes and the analysed time window to one 

minute. This means trips that started one minute before and after the analysed trip serve as 

candidates. For the case where maximally two trip requests can be matched and the objective 

of minimizing the travel time is followed, 93% of the trips can be shared. This results in travel 

time savings of 32%. Changing the objective to maximize the number of shared trips leads to a 

matching rate of nearly 100% but to a decrease in the travel time savings. Additionally, they 

analyse how the number of users per shared ride affects the results. They conclude that the 

improvement in the results by allowing multiple users to be matched is too small to legitimize 

the significant increase in the computation complexity. (Santi et al., 2014a) 

 

Besides the presented static ride-sharing studies, other similar works exist as e.g. the study of 

Sun et al. (2020). They build a non-profit peer-to-peer ride-sharing model provided by a 

matching agency aiming to maximize the total cost saving. The path between two trips that 

maximizes these total cost saving represents its’ shared path. By a column generation based 

heuristic approach, the optimization problem gets solved. Ota et al. (2015) propose a taxi ride-

sharing system with the objective of minimizing the total driving distance. The matching 

process is based on the Dijkstra’s shortest path algorithm and they tested their approach on real-

world data of the city of New York, USA. Similar in principle but still uniquely different is the 

ride-sharing study of Barran et al. (2017). They conduct a taxi sharing study based on GPS taxi 

data from New York, USA. They do not follow a specific objective and therefore do not try to 

optimize their approach. They simply define several constraints which must be met by the 

shared path. All trips in a time window are analysed in order of their request time. As soon as 

a set of two trips fulfils the constraints, the identified shared path is taken as the final ride-

sharing path. Thus, their approach is based on the principle of first-come-first-served. 

Summarizing this section, all the discussed studies are listed again in Table 1. 

Table 1: Overview of the discussed static ride-sharing studies. 

Study of: Service provider Objective(s) Matching process 

Agatz et al. 

(2011) 
Matching agency  Minimize total travel distance 

Fastest path based on constant 

vehicle speed 

Armant & 

Brown (2014) 
Matching agency Minimize total travel distance 

Matching if negotiated pick up / 

drop off points of user are located 

on drivers’ path 

Barran et al. 

(2017) 

Service operator 

(taxi sharing) 

No objective (first-come-first-

served principle) 
Shortest path 

Cai et al. 

(2019) 

Service operator 

(taxi sharing) 
Minimize total travel distance 

Shortest path based on Manhattan 

distance between origin / 

destination 

Ota et al. 

(2015) 

Service operator 

(taxi sharing) 
Minimize total travel distance Shortest path 

Santi et al. 

(2014a) 

Service operator 

(taxi sharing) 

Maximize matching rate or 

minimize total travel time 

Fastest path based on by heuristic 

approach estimate travel time 

Stiglic et al. 

(2015) 
Matching agency 

Maximize matching rate and 

minimize total travel distance 

Shortest path between drivers’ 

and users’ origin and destination 

or meeting points 

Sun et al. 

(2020) 
Matching agency 

Maximizing the total cost 

saving 

Shortest path where the weights 

of the edges are the cost saving 

Wang et al. 

(2018) 

Service operator 

(taxi sharing) 

Minimize total travel distance or 

minimize total travel time 
Shortest path / fastest path 
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2.1.2 Dynamic ride-sharing 

As in the previous section, in this one dynamic ride-sharing studies will be presented, discussed, 

and related to each other. It will be shown why these studies are categorized as dynamic and 

not static ride-sharing studies. Table 2 provides an overview of the discussed studies in this 

section. 

 

In the study of He et al. (2014) a ride-sharing system that dynamically creates ride-sharing 

routes based on GPS trajectories is proposed. Their system represents a case of a matching 

agency where multiple passengers can be matched together. A driver can also become a rider if 

this optimizes the followed objective of minimizing the total travel distance. Similar to some 

of the previously presented studies, they assume that a user is willing to walk a specified 

maximum distance to a connection point to be picked up. Figure 4 shows the architecture of 

their system. In the first step, frequent routes of users are detected by mining their complete 

GPS trajectories. So, this system uses the trajectory in their entirety to compare it with the other 

ones and not just the start and end points of a trip. This is, as described in the background section 

of this work, often used in ride-sharing systems provided by matching agencies. In the second 

step, the stored frequent routes are used to form shared routes. Qualified riders for a route are 

selected and ranked by a defined service cost where the best-ranked rider and her or his route 

are matched to the original route. The defined service cost is the sum of the following 

parameters: the travel cost, which is proportional to the travel distance, the distance a user would 

have to walk to a pick-up location, the detour distance, the time a user has to wait to start the 

ride and the social distance, which is defined as the distances between the start and end points 

of two trips. Between the original route and the route that creates minimal service costs, a shared 

route is generated if some additional constraints are met. This procedure is repeated until there 

are no empty seats left. This study is categorised as a dynamic ride-sharing system because if a 

rider leaves the car, in other words is dropped off, a new rider can be matched to the route, 

which can in turn change the shared route again while still meeting the constraints set by the 

other passengers. (He et al., 2014) 

 

 

Figure 4: Model of the dynamic ride-sharing system proposed by He et al. (2014). 
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Similar base characteristics are given in the work of Haddad et al. (2013). They also propose a 

dynamic ride-sharing system for multiple passengers representing a matching agency case 

where it is assumed that the users are willing to walk to a meeting place. The matching process 

is based on the principle of the longest common path. Since the shared route which maximizes 

this longest common path is selected as the final ride-sharing path of two or more users, the 

objective of their system is to minimize the total travel distance. When a new user registers for 

the application, either a request as a driver or a request as a rider can be entered. The driver 

enters her or his origin, destination, desired departure time, maximum acceptable deviation, and 

some additional information about his vehicle. The system then computes a set of possible 

routes for its request based on the Google Maps API, and the driver must select one of them, 

which is then stored in a database. The rider, on the other hand, must define its origin, 

destination, and desired departure time. Again, routes for the entered information are derived 

by the Google Maps API. The system then selects all routes of drivers (empty vehicle or already 

serving a shared ride) that are suitable to be matched to the rider and sorts them based on the 

longest common path. Finally, the rider selects the driver of its choice (does not necessarily 

have to be the one with the longest common path) and gets matched to this trip. Automatically, 

the capacity of empty seats of the driver’s vehicle decreases by one. A driver’s trip is available 

for sharing until there are no empty seats left in the vehicle. This shows the dynamic part of 

their system and therefore the location of every driver must always be updated.  This approach 

again differs from the case of a taxi sharing system as not only start and end points are 

considered for the shared path, but also the path in its entirety. Unfortunately, there exists no 

experiment of their approach based on real-world data and, therefore, no information on the 

performance of their system is given. (Haddad et al., 2013) 

 

Both presented studies already demonstrate the increasing complexity of dynamic ride-sharing 

systems in comparison to static ones due to permanent location updates and having to meet 

multiple constraints. An even higher degree of complexity is given in the system proposed by 

Tian et al. (2013). Different from the previous works, they create a dynamic ride-sharing system 

to match taxi requests of multiple users. They design a model named Noah and apply it to a 

GPS dataset of the city of Shanghai, China. Their matching process is based on two user-defined 

constraints: the maximum acceptable waiting time to be picked up and the maximum percentage 

of a detour to the shortest path between its origin and destination. Its algorithm must identify 

all the taxi requests satisfying these constraints while building the shared path. In other words, 

for each analysed trip request, the shortest path is generated that connects the origin and 

destination point of itself and of each entered and not yet separately finished trip. Only the 

computed shared paths that fulfil the constraints are kept. The objective of their system is to 

minimize the waiting time occurring for the new user, and therefore the shared path that leads 

to the shortest distance between a candidate trip and the pick-up location of the analysed one is 

selected as the final shared path. Because the proposed system allows matching multiple users 

even en route, the matching process gets much more complex than just described. A taxi that is 

already occupied by two users that share a ride and is en route still serves as a possible matching 

partner for a new entering request, provided both the old constraints and the newly added ones 

are met. Therefore, in this system, a lot of shortest paths must be computed to select the best 

fitting one. To tackle the problem of increasing time consumption of this computation, Tian et 

al. (2013) included a caching process in their model so that the same shortest path does not get 

computed twice. Additionally, and very much like the previous works, the location of a taxi 

must be updated all the time to properly compute shortest paths to new requested trips. 
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Tian et al. (2013) then test their approach on the mentioned dataset of Shanghai. An average 

waiting time of 4 minutes and an average detour of 12% result. Unfortunately, no findings of 

travel time or travel distance savings, matching rate, nor reduction of the taxi fleet are given. 

Moreover, characteristics of the underlying road network such as travel speed are ignored in 

their approach. Such a dynamic system might be useful as it is flexible and can handle real-time 

requests even if taxis are in motion, but as described, the complex architecture leads to a very 

time-consuming model.  

 

As written in Bathla et al. (2018), such computation-intensive models can lead to performance 

problems if they have a centralized architecture. Centralized means that all the trip requests are 

handled on a central server. With the increasing complexity of the systems, these servers can 

slow down the performance. To avoid a potential performance loss in a dynamic ride-sharing 

system, Bathla et al. (2018) propose an alternative, so-called distributed taxi ride-sharing 

solution to the problem. They apply a messaging system based on wireless transmission that 

allows the system to handle the requests locally. Their approach differs from the so far presented 

architectures as not all trip requests in a time window are considered in the matching process. 

Only trip requests within a specified radius are considered. A trip request is then sent by a user 

to all the taxis that are located in this specified radius. Each taxi that receives the message stores 

it in a temporary schedule. If a shared trip is found, the trip request leaves the temporary 

schedule and the shared path is stored in a permanent schedule. Thus, let us assume that a taxi 

is en route serving a shared trip and is located inside the defined radius of the new user when a 

new trip gets requested. The request is then received by this taxi and the shortest path between 

the origins and destinations of the new request and the already shared path will be computed if 

there are empty seats available in the moving taxi. To check if the computed shortest path is a 

potential ride-sharing path, two constraints must be met. The waiting time for the user to be 

picked up must not surpass a defined value, and the delay time must be less than a certain 

threshold. Additionally, the constraints of the two users that are already en route must still be 

met. After each taxi that received the request has evaluated it, the user receives an answer from 

them. The proposed shared trips are then sorted by their costs (how much an individual must 

pay for the ride), the number of free seats in the taxi (objective of maximizing the occupancy 

of the taxi), and the minimum time it takes to reach its destination. The best one is selected as 

the final shared path and the corresponding taxi receives a confirmation from the user. The trip 

request then leaves the temporary schedule and the adjusted shared path is restored in the 

permanent schedule. All other taxis that were not selected, remove the trip request from their 

temporary schedule. This procedure goes on as long as there are empty seats available in a taxi. 

If a user is dropped off, a new person can be matched to this ride. 

 

The last point shows why this approach is categorized as a dynamic system. Each taxi must 

always compute the shortest path to a newly received request, even if it is already half full. This 

again leads to a time-consuming computation, but in comparison to centralized systems, to a 

much less complex one as only taxis inside the defined radius of a user are considered. The 

presented system is then applied to a GPS dataset of the city of Shanghai. Based on the set 

constraints the distributed model achieves a matching rate of 3.5% and a total distance saving 

of 2%. In comparison to the results of previous studies, these numbers are very small. This is 

due to the limited number of candidate trips respectively taxis inside the short radius. So, 

although this alternative approach might be less risky regarding performance issues, it still leads 

to a heavy loss of effectiveness. (Bathla et al., 2018) 
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There are several other rather interesting studies of dynamic ride-sharing system in the 

literature. Yu et al. (2020) e.g. develop a distributed taxi-sharing system based on the model of 

Bathla et al. (2018). There are three main differences in their approach, which make the model 

even more dynamic. While waiting on the confirmation of a passenger for a shared ride, in 

Bathla et al. (2018), the taxi is blocked for handling other requests. In Yu et al. (2020), the taxi 

still receives new requests and processes them. After receiving the confirmation from the 

passenger, the taxi must check the shared path again on the constraints to see if it still is suitable 

to be shared. Only if this is the case, the passenger gets a second confirmation message from 

the taxi to fix the shared ride.  Therefore, different from the previous study, the taxis can, in a 

parallel fashion, handle multiple incoming requests. If sharing the ride request of a passenger 

with a taxi is not suitable, the request does not just get disclaimed, but it is transmitted to the 

neighbour taxi instead. Through these three changes, the system of Yu et al. (2020) reduces the 

average waiting time and increases the matching rate. Another example is the study of Gökay 

et al. (2019) which represents a dynamic ride-sharing system provided by a matching agency. 

Like in previously presented studies, it is assumed that the users are willing to walk a certain 

distance to a pick-up location. Trip requests that have similar start and end points at the same 

time window are grouped and a new pick-up and drop-off location for that group is generated. 

These requests are then handled as one trip and matched to a driver. If there are empty seats 

available in the vehicle, additional individual or grouped trips can be matched. With their 

approach, they try to better utilise the resources. They argue that the small decrease in customer 

convenience due to walking can be recouped by offering cheaper rides. Additionally, they show 

that the total vehicle costs decrease and the matching rate increases. Aydin et al. (2020) propose 

a dynamic ride-sharing system to again match private person with private drivers. They analyse 

that allowing the driver to be matched to more than one passenger’s request in real-time, which 

is what represents the dynamic aspect, leads to an increase in the matching rate by 33%. 

Additionally, a different approach compared to the previous works is chosen. They implement 

a social compatibility score JSS, which consists of parameters like age, gender, employment, 

and the degree of willingness to meet new people. If the maximizing of this JSS score is chosen 

as the systems’ objective instead of maximizing the distance savings, only a small decrease in 

the distance savings emerges; at the same time, many qualitative matches are found. So, 

different from other studies, besides trying to maximize the distance savings, they focus their 

approach on optimizing the social component of the ride-sharing problem as well.   

Table 2: Overview of discussed dynamic ride-sharing studies. 

Study of: Service provider Objective(s) Matching process 

Aydin et al. 

(2020) 
Matching agency 

Maximize distance savings or 

maximizing the JSS score  
Shortest path 

Bathla et al. 

(2018) 

Service operator 

(taxi sharing) 

Minimize costs and maximize 

vehicle’s occupancy 

Distributed and not centralized 

solution using shortest paths 

Gökay et al. 

(2019) 
Matching agency Minimizing the vehicle costs 

Shortest path after grouping 

similar user requests 

Haddad et al. 

(2013) 
Matching agency Minimize total travel distance Longest common path 

He et al. 2014 Matching agency  Minimize total travel distance 
Based on a defined service cost 

function that is minimized 

Tian et al. 

(2013) 

Service operator 

(taxi sharing) 
Minimize waiting time 

Shortest path in combination 

with a caching model 

Yu et al. 

(2020) 

Service operator 

(taxi sharing) 

Minimize costs and maximize 

vehicle’s occupancy 

Distributed and not centralized 

solution using shortest paths 
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2.2 Map-matching 

Most of the presented ride-sharing systems have been applied or tested on real-world GPS 

trajectory data. As defined by van Kreveld & Luo (2007): “The trajectory of a moving object 

is a continuous function τ(t) of time t such that given a time instant t, it returns the position of 

the moving object. In reality, the moving object trajectory is recorded by a finite set of 

observations at discrete time stamps t1, t2, ..., tn.”. Each observation of a trajectory represents a 

trajectory point. The position of these trajectory points is recorded by a GPS signal. This means, 

that a driven taxi trip is represented through a trajectory consisting of several GPS signals. 

These signals were recorded by a GPS device in the corresponding vehicle. High-frequency 

GPS devices can record the location, given through the x- and y-coordinates, the exact 

timestamp, and sometimes the speed and direction of the vehicle e.g. every second (Greenfeld, 

2002 & He et al., 2019). But the recorded coordinates do not represent the exact location where 

the vehicle was located at the recorded timestamp as GPS devices in urban environments 

normally only have accuracy of about 10 meters (Aly et al., 2016). This means, by visualising 

each GPS signal and connecting them, one does not automatically receive the exact driven 

vehicle path on the underlying road network as especially in urban road networks, more than 

one road can be located inside this error radius of around 10 meters.  

 

To use GPS trajectory data in ride-sharing systems, it is important to know on which road 

segment the vehicle truly was during a GPS record. Using information from position systems 

like GPS together with road network data to determine on which road segment and where on 

this road segment a vehicle was located is called map-matching (Quddus et al., 2007).  

 

As map-matching GPS trajectory data is not only used for ride-sharing systems, many other 

studies have been published. With more and more different methods emerging as a product of 

these numerous studies, map-matching forms its own field of research. In the following, this 

field is shortly presented, and some different approaches are discussed. This is used in the 

method section to explain why the chosen map-matching approach was selected. 

 

A good example of why the map-matching process can be very complex where one cannot just 

match each GPS signal to the closest road segment in the road network, is provided in Figure 

5. Each black dot shows the coordinates of a GPS signal of a moving vehicle. Due to the 

accuracy error, it is not clearly visible which road segment a GPS signal belongs to if each dot 

is analysed separately. Simply matching each GPS signal to the closest road segment would 

lead to an incorrect vehicle path as in this case location 2 and 3 would be matched to the wrong 

road. By considering the 3 locations together, it is clear which road segment the GPS signals 

belong to. 
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Figure 5: Visualisation of the map-matching problem by Newson & Krumm (2009). The black dots 

represent the GPS signals and the light grey curve shows the vehicle’s actual path. Each dot could be 

assigned to more than one road segment. 

However, because it is not possible to visually analyse each GPS trajectory of a dataset 

containing several thousand of them, different methods that automatically map-match the 

trajectory points have been created. Quddus et al. (2007) offer a good overview of these 

different map matching methods and studies. They categorise the different approaches mainly 

into four groups: geometric, topological, probabilistic, and advanced techniques. 

 

Geometric methods represent the naive approach of just considering the geometry of the road 

network. This means that the connection and therefore the topology of the road segments is not 

considered. Only the shape of them is used to determine the exact location of the vehicle. Such 

methods are e.g. point-to-point matching, point-to-curve matching, or curve-to-curve matching. 

(Quddus et al., 2007) 

 

As described by Bernstein & Kornhauser (1996), in a point-to-point matching approach, the 

closest point on the road network for each GPS signal is searched. Each road segment consists 

of at least two nodes (start and end node) and an edge connecting these nodes. Complex road 

segments can additionally have some shape points (vertices between the start and end nodes). 

For each node or shape point in a reasonable radius, the Euclidean distance to the GPS signal 

is calculated, and the signal is then matched to the node or shape point with the shortest distance. 

The more shape points a road segment has, the better the result. A point-to-curve approach is 

similar, but rather than the closest point, the closest edge is searched. Therefore, the distance 

between the GPS signal and each edge must be computed. In curve-to-curve approaches, not 

only one GPS signal is used, but also several others that form a curve or a line. The goal is then 

to compute the distance between this curve and the surrounding edges in order to find the 

shortest one. As already the publication date of the mentioned study tells, such naive geometric 

approaches are very old and not up to date anymore. Especially in dense urban road networks, 

such map-matching methods are not used any longer as they are very erroneous. 
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Topological map-matching methods are algorithms that also make use of the topology of the 

road network to define the exact location of a GPS signal and, therefore, consider the 

information of connectivity and contiguity of the edges (Quddus et al., 2007). A prime example 

of this method is the enhanced weight-based topological map-matching algorithm proposed by 

Yang et al. (2013). Based on the study of Velaga et al. (2009), they define four weights related 

to topological information and calculate them for each candidate road segment. Additionally, 

they define weight coefficients depending on the density of the road network, meaning that e.g. 

some weights are more important in dense road networks than in sparse areas. Based on the 

total weight score, the best candidate road segment is selected for each GPS signal. The four 

weights are proximity, heading, edge connectivity, and turn restriction. The proximity is the 

distance between the GPS signal and each candidate edge and is calculated like in the geometric 

point-to-curve method. The heading depends on the angle between the moving direction of the 

vehicle (some GPS devices also record this information) and the direction of the candidate edge. 

If an edge is connected to a junction, then the edge connectivity and at best information about 

turn restriction is considered as well. This already gives significantly more accurate results as 

not only the closest point or edge is searched. Yang et al. (2013) test the presented approach on 

real-world GPS data and show that in dense urban areas, around 97% of the trajectory points 

are correctly map-matched by their method.  

 

Probabilistic map-matching methods are based on topological inputs but use probabilistic 

measurements rather than absolute weight scores to determine which road segment a vehicle 

was located on (Quddus et al., 2007). Therefore, with such methods, for each candidate trip, a 

probability is measured that this road segment is the one where the vehicle was driving at the 

given timestamp. Ochieng et al. (2004) propose such a probabilistic map-matching method in 

their study. They define an elliptical error region based on the error variances of the GPS device 

and for all candidate road segments inside of this error region, the probability of being the 

correct road segment for a GPS signal is computed based on information like heading, 

connectivity, or closeness. In the study of Bierlaire et al. (2013), they go even further by 

computing the possibility for a whole trajectory instead of individual trajectory points only. 

They created multiple hypothetical paths made up of connected road segments and computed 

the probability that such a path would lead to the measured GPS signals. Assuming a normal 

distribution of the GPS error, they computed, for each trajectory point of this hypothetical path, 

the probability that the distance between this point and the measured point is smaller than the 

estimated error. Building an integral over all the probabilities of the trajectory points gives a 

probability value for each hypothetical path. The most probable one is then selected as the map-

matched path. 

 

The fourth category of map-matching methods consists of advanced techniques which are 

methods that are based on more sophisticated and complex algorithms (Quddus et al., 2007). 

Most of them follow the principle of probabilistic approaches but in a more complicated way. 

They too result in probabilities for each candidate road segment, and the estimated location of 

the GPS signal is selected by these values. Examples of such complex algorithms are the 

Extended Kalman Filter used in the study of Obradovic et al. (2006), the Dempster-Shafer 

theory of evidence in Yang et al. (2003), a fuzzy logic-based approach by Syed & Cannon 

(2004), or a Hidden Markov model presented in studies of Ren & Karimi (2009) and Newson 

& Krumm (2009). The Hidden Markov model is based on the optimization of the product of 

emission and transition probabilities of the different candidate road segments. The emission 
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probability of a road segment stands for the likelihood that a GPS signal would be recorded if 

the vehicle is driving on that segment. The transition probability represents the chance that the 

vehicle is driving on a certain path given the connectivity of the road segments. The Viterbi 

algorithm is then used to find the optimal path that maximizes the product of the two 

probabilities, and therefore is most likely the truly driven path of the vehicle. 

 

Hashemi & Karimi (2014) compared in their work the accuracies of some of the presented map-

matching methods in this chapter. Most of the advanced map-matching methods lead to an 

accuracy higher than 90% correct identified road segments. By comparing the methods of the 

different categories, topological, probabilistic, and advanced techniques most of the time outrun 

simple geometric approaches. This is illustrated in Figure 6, where simple algorithms stand for 

geometric approaches, weight-based algorithms for topological methods, and probabilistic and 

advanced techniques are represented by the advanced algorithms. When using map-matching 

methods, it is important to consider the data in the sense of GPS accuracy, frequency of the 

records, and density of the road network. The more accurate the methods get, the more complex 

and time-consuming the computations will be. Therefore, using complex map-matching 

methods in sparse rural areas makes less sense than in dense urban regions as in these cases, 

simpler algorithms can lead to satisfactory results as well. Considering this, the accuracy values 

of such methods must always be regarded with suspicion as each model only works that 

accurate for specific conditions. In the end, selecting the right map-matching method is a trade-

off between accuracy and performance regulated by the type of data.   

 

Figure 6: Accuracy of the different categories of map-matching methods analysed and illustrated in the 

work of Hashemi & Karimi (2014). 
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2.3 Traffic state estimation 

Information on traffic state in a city’s road network can be very useful for any kind of mobility 

analyzation as traffic congestions highly affect the travel time on a road network. As already 

mentioned in the introduction to this work, the traffic state information will be used in the 

proposed ride-sharing approach and, therefore, a short overview on how such information is 

derived and used in other studies is given.  

 

Methods on traffic state estimation are either used to reconstruct traffic patterns like traffic 

congestion and mean travel time for a specific road segment or help compute short time 

predictions of traffic flow. Besides observing traffic state through video cameras or loop 

detectors, GPS trajectories from probe vehicles can be used to estimate quantities like flow, 

speed, or density (Sunderrajan et al., 2016). Asakura et al. (2017) analyse probe vehicle’s GPS 

trajectories to identify traffic incidents that lead to traffic congestion by comparing the travel 

time of two connected road segments. They apply their method on a highway segment in the 

city of Tokyo, Japan, where they divide this road into segments of equal length. As they work 

with GPS signals recorded every second, based on vehicle speed and length of the segments, 

the travel time of each vehicle for each segment can be exactly calculated. Using characteristics 

like the absolute travel time difference, the ratio of the travel time difference, and the flow rate 

difference ratio, two consecutive road segments are compared. Wherever the distance 

difference and ratio are big enough combined with a decrease in the traffic flow, an incident, 

and a subsequent traffic congestion, is detected.  

 

De Fabritiis et al. (2008) and Kerner et al. (2005) use floating car data to compute mean travel 

speed, and thus the differences in mean travel time of a road network. This information then 

serves as an input for short time predictions of traffic speed. The former use floating car data 

of the Rome Ring Road in Italy containing information about the vehicle speed at each GPS 

signal. To estimate the current speed of each road segment, the average of the vehicle’s speed 

measures in combination with previously calculated average speed values on that road segment 

is computed every 3 minutes. Similarly, Kerner et al. (2005) use average traffic speed values to 

assign them to each road segments as its average speed depending on the time. The travel time 

is then calculated in combination with the length of the segments.   

 

Nanthawichit et al. (2003) propose a more complex method to estimate traffic state; they also 

additionally predict traffic flow by applying a macroscopic model and a Kalman filtering 

technique on a mix of probe vehicle data and data from stationary detectors. The travel time for 

each road segment based on the GPS signals is again calculated as in studies like Kerner et al. 

(2005). This is then combined with information about traffic speed and density of stationary 

detectors. Using this as an input to the algorithm, short time predictions are made. The presented 

studies are papers that completely focus on traffic state estimation or prediction and their 

methods, as the study of Nanthawichit et al. (2003) shows, can, therefore, be quite complex. If 

traffic state information is used in a study where it is not its main focus, it sometimes makes 

more sense to apply a less complex and, therefore, less time-consuming method. 
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Two of the presented ride-sharing systems in the section about static ride-sharing work as well 

with information on the travel time of the road segments, and therefore also, with information 

on the traffic state. Wang et al. (2018) compute the average taxi travel time for each road 

segment based on real-world GPS data. As described in their study, they use taxi trajectory data 

collected over six months to calculate the traffic state. The result is the travel time for each road 

segment for every hour. It is not mentioned when the data was collected, hence, it is not given 

that the system truly works with traffic information derived by the same analysed dataset as the 

data of these six months could have been collected earlier. Moreover, it is not explained how 

the average travel time is estimated.  

 

Santi et al. (2014a), on the other hand, explain in detail how they estimate the travel times used 

in their ride-sharing system. Due to the lack of trajectory and speed information in their dataset, 

they estimate the travel time only based on the pick-up and drop off times of their analysed 

trips. This means they do not include each GPS signal into their computation as proposed in the 

presented study of Kerner et al. (2005). First, each pick-up and drop off GPS location is matched 

to the closest intersection in the road network. Then, knowing the travel time between every 

pick-up and drop off point lets them estimate the travel time for each road segment of a trip. As 

a road segment can be part of several trips, the estimation must be done for all trips of a time 

window at the same time. Like this, they can divide the known travel time of a trip to the 

individual road segments so that the average relative error (the difference between the actual 

travel time of a trip and the summed up travel time of the estimated values for each road 

segment) is minimized. This is done every hour, and therefore 24 different travel time 

estimations surface as a result. As only 91.7% of the streets of the road network form part of a 

trip, some road segments without information on the travel time remain. By using a weighted 

average of the surrounding segments with such information, the missing values are added. This 

estimated travel time is then used in their fastest path algorithms. Their approach is a good 

alternative if there is a lack of information in GPS trajectory points, but it only partially 

represents the real-world circumstances as only two of possible dozens to hundreds of GPS 

signals per trip are considered. 
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2.4 Research gap 

The presented literature review shows the variety of ride-sharing systems that already have been 

studied and how they can differ in their objective, their provider, the used algorithm, its 

performance, and the overall architecture of the model. Nevertheless, there is still room for 

further research. Besides showing the potential of their system in a sense of e.g. matching rate, 

total travel distance, or time savings, some studies do as well analyse the influence on the 

overall results of changes in parameters like the number of passengers per vehicle, the flexibility 

of the users, the complexity of the algorithms, or user-defined constraints. Considering the 

scope of research on this problem thus far, what has not yet been analysed is the influence of 

real-world circumstances like travel speed or traffic congestions on ride-sharing algorithms.  

 

As mentioned in the introduction, the majority of ride-sharing studies assume that the time to 

reach a destination on a road network only depends on the distance. Just a few studies include 

information on the travel speed of the vehicles. But except the studies of Wang et al. (2018) 

and Santi et al. (2014a), all of them assume a constant speed for each road segment, meaning 

that the traffic state is not taken into consideration. As ride-sharing can not only influence traffic 

congestions, but is as well affected by it, considering information on traffic state is important 

to solve the ride-sharing problem more realistically. Two pick-up locations might be close in 

space, but if the connecting road segment is congested, it could make more sense to share a ride 

with another user where the traffic state is better. This would not be considered if traffic state 

information is not used and, therefore, the circumstances of the road network would not be 

represented realistically enough. Wang et al. (2018) and Santi et al. (2014a) developed a ride-

sharing system that uses such information, but as explained in the traffic state estimation section 

of this chapter, they either compute it based on a different dataset than the analysed one, or they 

only use a small part of the available GPS signals. Furthermore, they simply include it in their 

algorithm but do not analyse the influence such information could have on the overall results 

of a ride-sharing system.  

 

Therefore, this work tries to fill the described research gap by estimating the traffic state based 

on all the GPS trajectory points that are used in the proposed taxi ride-sharing system, 

subsequently including this information in the matching process, and finally analysing its 

influence on the identified ride-sharing paths. As a second contribution, a new similarity 

measure is introduced to speed up the matching process and hence improve the performance. 

Last, a taxi ride-sharing system considering real-world circumstances has, to the best of found 

knowledge, not yet been applied to the used dataset of the city of Chengdu, China. Applying 

ride-sharing methods to new cities is always useful as each road network has its own 

characteristics, and therefore can, deliver new findings for the research field of ride-sharing.  
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3. Research objective 

This work aims to develop a framework for the identification of potential ride-sharing paths 

from GPS taxi trajectory data by considering the traffic state of the underlying road network 

and implementing a newly developed similarity measurement. By doing so, an attempt is made 

to solve the ride-sharing problem efficiently and more realistically. The method is only based 

on GPS taxi trajectory data and road network data. No further inputs are needed. The framework 

contains all the steps from map-matching the GPS signals, estimating the traffic state to 

identifying suitable ride-sharing paths. The new approach is based and evaluated on historical 

data, and thus represents a static ride-sharing system. It is applied to a GPS taxi trajectory 

dataset of the city centre of Chengdu, China. The overall objective of the system is to minimize 

the waiting time imposed on the passenger that joins second. Only a maximum of two trip 

request per taxi is considered for the matching process, as, explained by Cai et al. (2019), the 

benefit of allowing more than two trip requests to be matched is marginal in comparison to the 

increase in time consumption of the computation. By comparing the results of the new approach 

considering the estimated traffic state of the underlying road network and assuming an absence 

of traffic congestions, the influence of using traffic state information on ride-sharing methods 

is analysed. 

3.1 Research questions 

In this study, the following research questions are addressed by working out the framework and 

used to analyse the influence of traffic state information on ride-sharing systems: 

 

1. How can traffic state information be estimated and included in the process of 

identifying potential ride-sharing paths? 

 

Traffic state information is estimated based on the GPS taxi trajectory dataset and available in 

the form of average speed values for a particular road segment at a particular time of the day. 

This can be used to calculate the resulting travel time of the mentioned road segment. The travel 

time can be included either while computing a shared path of two trip requests that could be 

matched together, or as well to select the most suitable computed shared path for an analysed 

trip request from a set of potential ride-sharing paths. How exactly is this information obtained 

and where is it included best is addressed by this research question. 

 

2. How can potential ride-sharing paths be efficiently identified from a large GPS taxi 

trajectory dataset? 

 

The goal of developing a ride-sharing system is to identify the most suitable paths to be shared 

that fulfil the set constraints and follow the objective of the method. How this result can be 

efficiently achieved starting with raw GPS signals will be shown by the developed framework. 

By defining and implementing a new similarity measurement, it is attempted to improve the 

performance of the identification process of the potential ride-sharing paths, therefore making 

the system more efficient. 

  



  3 Research objective 

25 

 

3. What is the influence of considering traffic state information in ride-sharing systems 

on its results? 

 

This research question analyses the effect of considering information about the estimated traffic 

state in ride-sharing systems by comparing the results of the developed ride-sharing system 

between including traffic state information and assuming an absence of traffic congestions. 

Besides the identified ride-sharing paths, resulting measures like the matching rate, the average 

waiting time, total saved travel time,  total saved driving distance, and the degree of saved CO2-

emissions can be compared. This allows to demonstrate the extent to which other studies are 

not representing real-world circumstances by assuming an absence of traffic congestions. 

3.2 Hypotheses 

Concerning the third research question, the following hypotheses were established before the 

analysis was started. They will be discussed in Chapter 7 based on the results of Chapter 6. 

 

1. Less potential ride-sharing paths are identified when including traffic state information 

compared to assuming an absence of traffic congestions. 

 

2. The average waiting time for the second passenger is higher when including traffic state 

information compared to assuming an absence of traffic congestions. 

 

3. Savings in total travel time and total travel distance are smaller when including traffic state 

information compared to assuming an absence of traffic congestions. 
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4. Data 

The created framework of this study is applied to real-world GPS trajectory data to analyse the 

influence traffic state information can have on ride-sharing systems. This data consists of two 

different datasets. One dataset contains the information about the taxi trips, meaning the GPS 

taxi trajectories, and the other dataset comprises of information about the underlying road 

network of the study area. In the following section, the study area and the two used datasets are 

described and its essential characteristics highlighted, to better understand the applied methods 

of Chapter 5. 

4.1 Study area 

The study area for this work is situated in the city centre of Chengdu, China. Chengdu is the 

provincial capital of Sichuan Province, located in south-west China. It is one of its major cities 

and serves as an economic, cultural, logistical, and technological centre for this region. It has a 

population of approximately 14 million in a total area of 12’390 km2 (urban and rural area). The 

road network consists of a traditional grid-based structure in the centre with four ring roads 

connecting the different regions. (Qin, 2015) 

 

Figure 7: Location of Chengdu in China, the provincial capital of Sichuan Province (Liu et al., 2014). 

The city centre is located inside the first three ring roads. Limited by the extract where the GPS 

taxi trajectories are provided by Didi-Chuxing, the analysed study area only covers the upper 

part of the centre as it can be seen in Figure 8. This equals an area of 76.9 km2. 
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Figure 8: The city centre of Chengdu with its three ring roads and the grid-based structure of smaller 

streets. The study area of this work is illustrated by the red rectangle located in the upper part of the 

city centre. The shape of the study area is given by the availability of the data. (Source: Google Maps)  

4.2 OpenStreetMap road network 

The data of the road network of Chengdu is obtained by the open-source community 

OpenStreetMap (OSM) and downloaded as a shapefile with the BBBike Extract Service. As 

mentioned above, the extracted area has an extent of about 77 km2. The dataset contains 3’136 

road segments that are stored as an ordered set of nodes. These nodes can be start and end nodes 

or additional vertices that represent the shape of the road segment. The selected road network 

contains 1’038.3 km of road segments. The length of the individual segments differs from 1.4 

meters to 6.1 kilometres. On average, a road segment has a length of 331.1 meters. The provided 

attributes for the road segments are listed in Table 3. 

Table 3: Attributes of the OSM road network dataset. 

Name Type Description 

osm_id Integer OSM ID of the road segment 

name Text Street name in Chinese 

ref Text Reference number or code of the street if available 

type Text Road type of the segment 

oneway Boolean Information if the segment is a one-way or a two-way street 

bridge Boolean Information if the segment is a bridge 

maxspeed Integer Information on the maximum allowed speed for the segment if available 

length Double Length of the road segment in meters 
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The attributes about the name, the reference number, and the maximum allowed speed are not 

given for all the road segments. Only a small part contains this information. The other attributes 

are always given. The segments can be divided into 23 different types. They are listed in Table 

4; some of them are segments that can only be passed by foot and not by vehicle; some are not 

located inside the study area. Those are not considered in the further process anymore. As 

information on the maximum allowed speed is not available for each road type, these values 

must be added manually. By considering the available values and information provided by 

Wikitravel (2008), a maximum allowed speed value is set for each road type. 

Table 4: The 23 different road types available in the OSM road network dataset and information on the 

maximum allowed speed as well as whether or not will the road type be considered in this study. 

  

Road type Max. allowed speed Considered in study 

bus stop - no 

construction - no 

cycleway - no 

footway - no 

living street 10 km/h yes 

motorway 100 km/h yes 

motorway link 60 km/h yes 

path 20 km/h yes 

pedestrian - no 

primary 60 km/h yes 

primary link 60 km/h yes 

residential 20 km/h yes 

road - no 

secondary 40 km/h yes 

secondary link 40 km/h yes 

service 30 km/h yes 

steps - no 

tertiary 30 km/h yes 

tertiary link 30 km/h yes 

track 30 km/h yes 

trunk 80 km/h yes 

trunk link 40 km/h yes 

unclassified 30 km/h yes 
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As there are many road types with equal or similar maximum allowed speed values, six new 

categories of road types are built to reduce the complexity of the dataset. Each category has one 

maximum speed value assigned, which will be later used in the analysis part. The new 

categories are shown in Table 5. Figure 9 illustrates how many road segments of the study area 

are assigned to each category. In Figure 10, all the road segments of this part of the road network 

are coloured concerning their category. 

 

Zhang et al. (2015) analyse in their study the quality of the described OSM road network and 

show that the dataset for Chengdu has, based on the Shannon-Wiener index, high diversity 

between 2.13 and 2.46 and high road density between 3.35 and 18.42 km/km2. The Shannon-

Wiener index tells us how well distributed the different road types are. The highest score can 

be achieved if the number of road segments per road type is equal for all of them. In both 

categories, Chengdu is part of the group with the highest values for China. Therefore, the quality 

of this road network is assumed to be adequate enough for it to be used in this study. 

Table 5: The six newly generated road type categories with its maximum allowed speed. 

 

Figure 9: Statistical distribution of the number of road segment per road type category. 
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Road type category Max. allowed speed Grouped road types 

Living street 20 km/h living street, residential, path 

Motorway 100 km/h motorway 

Primary street 60 km/h primary, primary link, motorway link 

Secondary street 40 km/h secondary, secondary link, trunk link 

Tertiary street 30 km/h tertiary, tertiary link, track, service, unclassified 

Trunk 80 km/h trunk 
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Figure 10: The OSM road network of the city centre of Chengdu. Each road segment inside of the 

study area is coloured according to its road type category. 

4.3 GPS taxi trajectory data 

The GPS taxi trajectory dataset used in this study is generated and provided by the Chinese 

company Didi Chuxing Technology Co. Through their GAIA Open Dataset Initiative, they 

share part of their collected data for scientific use. Didi Chuxing Technology Co. (in short Didi) 

is the biggest ride-sharing and -hailing company in China with over 400 million users (Ye, 

2018). They even took over Uber in China and see themselves situated in a near-monopoly 

situation on the Chinese market (Crabtree, 2018). The obtained data is a trajectory dataset of 

the above-presented study area recorded in the year 2016. It is available in the form of two CSV 

files. As already mentioned, GPS records outside of the study area are not provided. 

 

The first file contains anonymized information about the routes of their vehicles collected from 

the 1st until the 30th November 2016 in the form of trajectories. This means that each point of 

these trajectories has an entry in this CSV file. Table 6 shows the stored attributes for each 

trajectory point and contains an example entry. The taxi ID is used to identify the vehicle and 

the order ID to match each trajectory point with a taxi trip. The longitude and latitude represent 

the coordinates of each GPS record. The time stamp shows the exact time when the GPS signal 

was recorded. This time is given as a Unix Time Stamp. This temporal reference system counts 

the number of seconds since its origin on the 1st January 1970 (Cox & Little, 2020). For the 

given example in Table 6, this means that the Unix time 1477959044 stands for the 1st Nov. 

2016 at 00:10 a.m. This is the Coordinated Universal Time (UTC) and must then be translated 

to the China Standard Time (CST). So, the example GPS signal was recorded at the 1st Nov. 

2016 at 08:10 a.m. in the city centre of Chengdu.  
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Table 6: Example GPS record with its attributes stored in the first CSV file of the trajectory dataset. 

The second file contains information about the individual trips and can be linked to the first file 

by the order ID. Table 7 shows all its attributes. The start and stop time are again given as a 

Unix Time Stamp and represent the time it took for a taxi to drive a trip. The pick-up and drop 

off longitudes and latitudes stand for the coordinates of the first and last trajectory point of each 

trip, in other words their GPS signal.  

Table 7: Example GPS record with its attributes stored in the second CSV file of the trajectory dataset. 

While the OSM road network is projected in the WGS-84 coordinate system, the data of the 

trajectory dataset is projected in the GCJ-02 coordinate system. This is the Chinese coordinate 

system that is used in its territory. The trajectory points were recorded every 2 to 4 seconds and, 

therefore, the GPS devices have a high frequency. Around 32 million trajectory points are 

recorded by these devices per day. These points have been collected by approximately 35’000 

taxis (calculated for one day), which equals a total of about 180’000 trips a day. Summing this 

up to a month, there would have been around 960 million trajectory points and approximately 

5.4 million different trips recorded. These numbers show not only the amount of information 

available for the study, but also indicate the big size of the dataset. The latter is a crucial point 

for the analysis conducted in this study. As using all the available data would go beyond the 

scope of this work, only GPS taxi trajectory data of one day will be used from now on. The 

analysed day is the 1st November 2016, which is a Tuesday. Data from all the 24 hours of that 

day are analysed. 

 

Figure 11 shows the distribution of the requested trips over the analysed day. It can be seen that 

during the night, fewer taxi trips were requested on this day. During the morning rush-hour, the 

number of requested trips rises and remains high until the end of the evening rush-hour. There 

are two peaks. One in the morning and one in the afternoon. The most trips were requested in 

the afternoon with approximately 3’250 taxi trips.  

Taxi ID 5a25883efb40a7246962ea767ed6f065 

Order ID 914cb27d35ba86df0ee95051c0b411f2 

Longitude 104.05447960734 

Latitude 30.6878976313132 

Time stamp 1477959044 

Order ID 914cb27d35ba86df0ee95051c0b411f2 

Start time 1477957963 

Stop time 1477959332 

Pick-up longitude 104.065129 

Pick-up latitude 30.712609 

Drop off longitude 104.04777 

Drop off latitude 30.68346 
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Figure 11: Number of requested trips over the 1st Nov. 2016.  

By locating and visualising the trajectory points of these taxi trips in Figure 12, it can be 

surmised that all the GPS signals were recorded inside the study area. An example trajectory is 

displayed in Figure 13 to show the density of the available trajectory points for each trip.  

 

Figure 12: Visualisation of the trajectory points recorded on 1st Nov. 2016 inside of the study area. No 

GPS records are available outside of the study area. 
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Figure 13: Visualisation of an example taxi trip represented by 385 trajectory points to show the 

density of the GPS records. 
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5. Methods 

This study aims to identify potential ride-sharing paths from GPS taxi trajectory data and 

analyse the influence of traffic state information on the ride-sharing results by including the 

estimated traffic state of the underlying road network into the matching process. To achieve 

this, a framework is built to explain the steps involved in identifying suitable ride-sharing paths 

from raw GPS records. This framework is then applied to the previously presented real-world 

GPS taxi data to conduct the mentioned analysis. By studying the different ride-sharing systems 

of the related work presented in Chapter 2, suitable insights about the main steps of identifying 

ride-sharing paths have been gained. Furthermore, opportunities for improvement in the 

individual steps and the presented research gap were detected. These assist in analysing the best 

way to include the traffic state information into the system and to build the framework presented 

in Figure 15. 

 

The four main steps applied in this work are illustrated in Figure 14. First, the real-world GPS 

and road network dataset must be pre-processed to be used in the next part. Then, these two 

datasets are map-matched to locate the driven taxi trips on the road network. Using this, the 

traffic state of the network is computed to later being included in the matching process. This 

allows identifying the potential ride-sharing paths and analyse the influence that traffic state 

information can have on ride-sharing systems and their results.  

 

Figure 14: The four main steps of the process of identifying potential ride-sharing paths from GPS taxi 

trajectory data applied in this work. 

Figure 15 illustrates the framework of this study that contains additional sub-processes of the 

mentioned four main steps. In the pre-processing step, both the GPS and the road network data 

are slightly changed. Coordinate transformation and resizing form part of these processes. The 

map-matching step also includes calculating the distance of each trajectory point to the start of 

its map-matched path, which is later used in the traffic state estimation. There, first, a speed 

value for each road segment gets calculated and then used for the interpolation. This allows 

assigning a speed value to each road segment in the network. Finally, the travel time per road 

segment per time window is computed. In the fourth step, the similarity between a subset of the 

requested trips is calculated and for similar ones, the fastest shared path is computed. By finding 

a local optimum, for each trip the ride-sharing path that accomplishes the objective of 

minimizing the waiting time is identified. By comparing the new method between using traffic 

state information and assuming an absence of traffic congestion the effect such information can 

have on ride-sharing systems is analysed. The remainder of this chapter delivers detailed 

explanations of all the mentioned methods elaborated and applied in this work and an 

experimental design describes how these methods are used to analyse the influence of traffic 

state information on ride-sharing systems.  
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Figure 15: Framework including all the elaborated and applied methods in this work.  
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5.1 Tools 

The methods and processes that are presented in this chapter are computed using different tools. 

For the coordinate transformation in the pre-processing step, the software environment R 3.5.1 

is used (R Core Team, 2018). All the data, original and modified, are stored with the database 

management system (DBMS) PostgreSQL 12. PostgreSQL is an open-source relational DBMS 

that originally does not provide a spatial extension, but the open-source solution PostGIS 

version 3.0 can be installed so that this DBMS can be used with spatial data (Piórkowski, 2011). 

Most of the analysis part of this study is processed with Python 3.6.10. The code is written 

using PyCharm 2019.3.1, an integrated development environment (IDE). Table 8 gives an 

overview of the most relevant Python modules used in this work. Additionally, two Geographic 

Information Systems (GIS) are used for visualising purposes and analysations. QGIS 3.12.2, an 

open-source software, is used for all the visualisations and with ArcGIS 10.7 the results of the 

in Python computed methods are checked. Furthermore, its Python module arcpy is included in 

several scripts, e.g. the map-matching or interpolation script.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 8: List of most relevant Python modules used in the analysis part of this work. 

5.2 Pre-processing 

Before an analysis can be conducted, the data typically must be pre-processed. In this study, 

this needs to be done for both datasets, the GPS trajectories and the OSM road network. First, 

the pre-processing of the road network and later the pre-processing of the GPS trajectories are 

explained in detail. 

5.2.1 OSM road network 

As described in the data section, the original OSM road network consists of road segments 

which can significantly differ in their length. There are very small road segments of less than 2 

meters length and some very large ones of more than 6 kilometres length. As the traffic state is 

calculated per road segment, it would lead to an inaccurate representation of the traffic 

conditions if a road segment of 6 km length would only have one traffic state information value 

for the whole segment assigned. Additionally, the original road segments do not end at 

intersections, which again would lead to inaccurate results, as an intersection can have a strong 

influence on the average speed of vehicles on a road segment. Considering this, the original 

OSM road network is reshaped in two stages.  

 

Module 

arcpy 

geopandas 

mapmatcher 

math 

matplotlib 

networkx 

pandas 

psycopg2 

shapely 
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First, the problem of road segments not divided by intersections is addressed. Each road 

segment that contains an intersection is divided into two individual segments. This leads to an 

increase in the number of road segments, but the newly created segments are still referenced to 

the original road segment by its OSM ID, and, therefore, still contain all the information on e.g. 

the road type or the maximum allowed speed. As especially long road segments are prone to be 

divided by this method, the problem with the different lengths is addressed as well. To solve it 

entirely, in the second step, each road segment that is longer than 500 m is divided into two 

segments of equal length. This is repeated until no road segments longer than 500 m are left.  

 

The pre-processing of the road network leads to a new total of 8’368 road segments with an 

average length of 124.1 m. The total length of the road network remains the same and the 

longest road segment is now 499.8 m long. The statistical distribution of the different road type 

categories mentioned in the data section has slightly changed, as not all road types are affected 

equally by these two reshaping steps. How this distribution has changed is visualised in Figure 

16. 

 

Figure 16: Visualisation of the total number of road segments per road type category. The dark colours 

represent the numbers for the original data and the light colours the ones for the pre-processed data. 

The distribution slightly changed as now there exist e.g. more primary streets than living streets. 
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5.2.2 GPS taxi trajectory data 

The original GPS taxi trajectory dataset provided by Didi is recorded in the GCJ-02 coordinate 

system. This is a Chinese coordinate system, which differs from the common WGS-84 system 

by an applied shifting algorithm. This algorithm can be used to protect the security of China’s 

geographic information and thus using it in combination with data stored in the WGS-84 

coordinate system would produce position errors. (Jia et al., 2016) 

 

As the OSM road network dataset is stored in the WGS-84 coordinate system, such position 

errors are a problem. To solve this, a coordinate transformation must be executed on the 

trajectory dataset, so that both datasets are stored in the same coordinate system. Lin (2018) 

published an in R written function on GitHub, a collaborative software development repository, 

to cope with this transformation. It removes the position shift mathematically and delivers very 

reliable results. As one day of the dataset already contains around 32 million trajectory points, 

this transformation can be time-consuming. To speed up the process, these 32 million points 

are divided into several subsets and then reunited again projected in the WGS-84 coordinate 

system. An example of these position errors and the trajectory points after the coordinate 

transformation is shown in Figure 17. 

 

 

Figure 17: Example taxi trip stored in the GCJ-02 coordinate system (up) and after the transformation 

to the WGS-84 coordinate system (down), same as the underlying road network. The arrows on the 

upper hand indicate the effect of the applied shifting algorithm of the Chinese system. 

Coordinate transformation 
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In the second pre-processing step, the transformed GPS trajectories must be filtered by their 

location. As already mentioned in the data section, Didi only provides data inside the study 

area, but the taxi trips do not have to stop at the border of this area. This means that a taxi trip 

can leave the study area and stop outside of it or even return to the study area. The stored GPS 

signals cover only the part inside the area and the path driven outside of it is missing. Figure 18 

shows an example of such a situation, where the taxi trip leaves the study area for a while before 

returning and finishing the trip inside the study area. Here only the two single parts inside the 

area are recorded respectively provided and no information is given about the driven path 

outside the study area. 

 

Figure 18: Example trajectory where part of it is missing because only GPS signals inside the study 

area are provided by Didi. The trip starts north, leaves the study area, and finishes in the south. Using 

such trajectories would lead to incorrect paths and potential errors. 

Considering these incomplete trajectories in the analysis part would lead to incorrect paths and 

could produce errors. To solve this, only taxi trips that never left the study area are considered 

in this work. First, all trajectory points are connected by their order IDs and transformed into 

line features. Subsequently, a rectangle approximately 150 m smaller on each side as the study 

area is inserted and only the line features, and thus the trips, that are located completely inside 

this rectangle are kept. The buffer of 150 m is chosen as assuming a maximum vehicle speed 

of 110 km/h (100 km/h plus a set buffer of 10 km/h) and the longest time gap between two GPS 

signals of four seconds, a taxi could reach around 123 m outside the rectangle during this time. 

Therefore, if a taxi has left the study area but the created line feature still is completely inside 

this area (possible if the taxi leaves the area and does not return or both, the last GPS record 

before leaving the area and the first after returning to it, are connected) it will not be selected 

as it is not located completely inside the rectangle. Additionally, the dataset contains trajectories 

with a duration of less than one minute. As such taxi trips are not suitable to be considered in a 

ride-sharing study, they are deleted as well. The GPS signals are recorded every 2-4 seconds, 

so assuming again the slowest sampling frequency of four seconds would mean that a trip with 

a duration of one minute is represented by a minimum of 15 trajectory points. This is taken as 

the threshold to filter out these unsuitable short taxi trips. These pre-processing steps reduces 

the number of available taxi trips by 76.7%. The corrected dataset contains around 42’000 trips, 
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driven by 19’000 different taxis, represented by approximately 9 million trajectory points. The 

pre-processing of the GPS dataset might have an influence as well on the distribution of the taxi 

trips over the time of the day, but as it is shown in Figure 19, both curves are very similar. 

 

Figure 19: Comparison of the distribution of the number of taxi trips requested per time of the day 

between the original dataset and the pre-processed dataset. Displayed are the numbers in proportion to 

the total number of requested trips for both cases. 

5.3 Map-matching 

To work with the pre-processed data, it is important to know on which road segment each 

trajectory point is recorded. As already explained in Chapter 2, this process is called map-

matching. From all the presented possible methods, in this work, the Hidden Markov Model 

(HMM) approach provided by the study of Newson & Krumm (2009) is applied. This method 

is selected because using a simpler approach would lead to inaccurate results, as the road 

network is dense, and the average GPS error is around 10 meters. Furthermore, their method 

can provide very reliable matches and is already implemented into a Python script, which is 

published by Schneider (2017) and freely available for scientific use. In the following section, 

an explanation of the HMM approach in general and the detailed implementation of Newson & 

Krumm (2009) is provided. Additionally, a small extension to the existing Python script is 

presented, to calculate the distance on the route of each map-matched trajectory point. 

 

A Markov model is a statistical model that represents the special case of a Markov process and 

is named after the Russian mathematician Markov. Given a system with several states, it is used 

to calculate the probability that a change of state in the system occurs. In a normal Markov 

model, this probability depends on the transition probability, that shows how likely it is that a 

state transitions to another, and the initial state probability, that stands for the likeliness that a 

specific state is detected. In this case, the states refer to observable events. In a Hidden Markov 

Model, these events are not directly observable, but can be observed through another set of 

measurements. Differently from a normal Markov model, an HMM, therefore, includes an 

emission probability, that shows how likely it is, that a measurement can be observed given the 

state. (Rabiner, 1989) 
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Newson & Krumm (2009) apply this statistical model to the map-matching problem by using 

the knowledge about the connectivity of the road network. In their approach, the states of the 

HMM are represented by the road segments and the state measurements by the GPS signals. 

The aim is to find for each longitude/latitude measurement pair zi the road segment on that the 

vehicle actually was driving. To reduce the computation complexity, a maximum search radius 

is defined that limits the candidate road segments for each measurement zi. Each measurement 

z1, z2, … zN has a specific amount of candidate road segments, on which the vehicle could have 

been driving. This is illustrated in Figure 20, where rj stands for the individual road segments. 

As can be seen, already with only three measurements there are several possible combinations 

(paths). The method aims to find the most probable one of them. This path must respect both 

the reasonability of zi being measured on rj and that the road segments are connected like this 

based on the connectivity of the network. This is represented by the introduced emission 

probability (called measurement probability) and the transition probability. Those must be 

calculated for each GPS signal to find in the end the most probable path. 

 

Figure 20: Visualisation of Newson & Krumm (2009). The black dots represent the candidate road 

segments and their connection stands for the different possible combinations between the three 

measurements zi. The white dots are not inside the search radius and therefore ignored. The algorithm 

must find the path with the biggest probability in the sense of emission and transition probability. 

 

The emission probability stands for the likeliness that a measurement is observed due to a 

certain state, meaning each road segment inside the search radius of zi has an emission 

probability that shows the likeliness that zi would be observed if the vehicle actually was on 

road segment rj. This can be expressed as p(zi|rj). In general, the further away a road segment is 

located from the measurement, the less probable it is to be the correct one. How far away a road 

segment is located gets measured by the great circle distance of the surface of the earth from 

the measurement zi to the closest point on the road segment rj, denoted as xi,j. The great circle 

distance stands for the distance between two points measured on the surface of the earth while 

assuming the earth to be nearly spherical. The remaining distance for the correct match is 

assumed to be the GPS error, that can be modelled as zero-mean Gaussian. This is used to 

calculate p(zi|rj), as this equals the probability density function of a Gaussian distribution in this 

form: 
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𝑝(𝑧𝑖|𝑟𝑗) =  
1

√2𝜋𝜎𝑧

𝑒
−0.5(

𝑔𝑟𝑒𝑎𝑡 𝑐𝑖𝑟𝑐𝑙𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ||𝑧𝑖−𝑥𝑖,𝑗||

𝜎𝑧
)2

 

 

𝜎z stands for the standard deviation of the GPS signals. If ground truth data is available, this 

value can be calculated exactly. In this work, ground truth data is not given and, therefore, this 

value must be set based on analysing a subset of the GPS signals and testing it in the Python 

script. In addition to the emission probability, the initial state probability πi must be computed 

as well. This normally tells the likelihood that a state can occur. In this approach, for the initial 

state probability, the probability of the first road segment in each path is taken, based on the 

first measurement. In other words, πi is given by p(z1|rj). 

 

The transition probability shows the likeliness that a vehicle was moving between two matched 

road segments given zi,t and zi,t+1. This probability is calculated by considering the difference 

between two distances. First, the distance between the closest point on the first road segment 

and the closest point on the second is analysed. This distance is represented by the shortest path 

from xi,t,j to xi,t+1,i and stands for the route distance. The second is the already described great 

circle distance between zi,t and zi,t+1. The smaller the difference between these two distances, 

the more probable is the analysed path because having to make complicated manoeuvres (what 

leads to a long route distance and a big overall difference) is unlikely in high-frequency GPS 

vehicle data. This relation between the difference in these two distances and the probability can 

be modelled as an exponential probability distribution in the form of: 

 

𝑝(𝑑𝑡) =  
1

𝛽
𝑒

−𝑑𝑡
𝛽  

Where 

 

𝑑𝑡 = |‖𝑧𝑖,𝑡 − 𝑧𝑖,𝑡+1‖𝑔𝑟𝑒𝑎𝑡 𝑐𝑖𝑟𝑐𝑙𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 −  ‖𝑥𝑖,𝑡,𝑗 − 𝑥𝑖,𝑡+1,𝑖‖𝑟𝑜𝑢𝑡𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒| 

 

and β again could be calculated if ground truth data would be available, but as before with 

the 𝜎z, this is not the case for this study. As β represents the tolerance of non-direct routes, this 

value must be chosen in a trade-off between accuracy and successfully matched GPS signals. 

In the end, p(dt) assigns the transition probability. The relation between the two distances used 

in this calculation is illustrated in Figure 21.  

(1) 

(2) 

(3) 
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Figure 21: Explanation of the difference between the two distances based on Figure 4 of Newson & 

Krumm (2009). zi,t has two and zi,t+1 has one candidate road segment. For each candidate there exists 

the closest point xi,t,1, xi,t,3 or xi,t+1,2. The smaller the difference between the route distance of xi,t,1 and 

xi,t+1,2 respectively xi,t,3 and xi,t+1,2 and the great circle distance, the bigger the transition probability.  

After calculating these two probabilities (emission and initial state probability taken as one) for 

each trajectory point of a taxi trip the aim is to find the optimal path with the highest probability. 

This path maximizes the product of emission and transition probability for each trajectory point 

of the trip. Here, they apply the Viterbi algorithm to find this optimal path for each taxi trip. 

The Viterbi algorithm is a dynamic programming algorithm that is useful together with an 

HMM as it does not have to compute the probability for each possible collocation in a network 

(in this case a road network) and is, therefore, less time-consuming (Theodoridis & 

Koutroumbas, 2009). 

 

As the data used in this work is different from the one used in the study of Newson & Krumm 

(2009), the previously mentioned parameters must be newly set for the map-matching script. 

The search radius is set to 50 m due to the dense road network in the city centre. 𝜎z is set to 50 

m as well. The average GPS error, analysed by a subset of the data, is about 10 m, but using 50 

m as the parameter gives more successfully map-matched taxi trips. β, the last parameter, is set 

to 3000 m as sometimes there are big gaps between two trajectory points in the used dataset 

and these trips would not be map-matched with a lower β. Nevertheless, there can still be some 

taxi trips that produce errors and cannot be map-matched successfully.  
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The explained HMM map-matching approach provided by Newson & Krumm (2009) is, as 

already mentioned, implemented into a Python script, mainly based on arcpy, and provided on 

GitHub (Schneider, 2017). Only the road network, the trajectory points of a trip ordered by time 

and the mentioned parameters are needed as the input. The script calculates the presented 

emission-, initial state- and transition probabilities based on these parameters. The output of the 

original script is a complete path containing the matched road segments and its ID. For each 

trajectory point, the nearest road segment of this matched path is selected, which in this case 

must be the map-matched road segment, and its ID is added to the point. Like this, each 

trajectory point of a trip that is map-matched successfully contains the ID of the matched road 

segment. To improve the performance of this method unnecessary trajectory points of the input 

trip are removed so that only the important ones that keep the shape of the trip are left. By trying 

and resetting the degree of simplification it is assured that this process does not negatively 

influence the result but leads to a less time-consuming computation. Furthermore, an addition 

to the script is made, that calculates the distance each trajectory point has to the start of its 

assigned path. As the output of the map-matching algorithm is a complete matched path, each 

trajectory point can be located on that path and the distance from the start of the path to the 

trajectory point represents its distance value. It is important to mention that with this step, for 

each point the network distance instead of the Euclidean distance is calculated as every turn is 

considered in the computation. Especially in dense urban road networks, the Euclidean distance 

between two points can be smaller than the network distance, as the mentioned turns and 

junctions lead to a larger distance than just taking the direct way. This is illustrated in Figure 

22 for better understanding. The calculated distances respectively the distance between two 

trajectory points are used in the traffic state estimation and, therefore, this step forms an 

important part. 

 

Figure 22: The black line shows the matched path containing eight road segments. The seven 

trajectory points are located on the route for the distance computation. Using the network distance 

gives ∆T2-T1 = R1+R2 and using the Euclidean distance gives ∆T2-T1 = ET1,T2. The former is larger 

as it considers the involved turn. The same situation appears at T6/T7. This shows that working with 

the Euclidean distance would lead to inaccurate measurements what later would affect the quality of 

the traffic state estimation. 
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5.4 Traffic state estimation 

The main goal of this work is to identify potential ride-sharing paths including information on 

the traffic state of the underlying road network and analyse the influence such information can 

have on the results. The information on traffic state is not given or derived from any source and 

must, therefore, be estimated first. As one of the contributions of this work, in the following 

section, it is presented how traffic state can be estimated from raw GPS taxi trajectory data. 

Information used from the dataset is the vehicle speed, the maximum allowed speed per road 

segment, the type of the road segment, and the length of it. Normally GPS data used in traffic 

state estimation or prediction studies contain information on the speed of the vehicle at each 

GPS record. Unfortunately, such information is not given in the used dataset of this work. 

Therefore, the first step is to estimate the vehicle speed at each GPS signal. Subsequently, an 

average speed value per time window per road segment is computed. This gives information on 

how fast a vehicle is driving on average at a particular time on a particular road segment. The 

final estimated traffic state is then represented by the travel time for each road segment. In this 

section, first, the vehicle speed calculation method is explained in detail, then an interpolation 

approach is presented to estimate the traffic state on every road segment of the network and 

finally the method on computing the travel time is described. 

5.4.1 Vehicle speed 

To calculate how fast a taxi was driving at each GPS record, the pre-processed and map-

matched data is used. As each trajectory point comes with information about the exact time it 

was recorded and thanks to the map-matching process as well with information about the 

distance to the start of the trip, the differences in this information between several points can 

be used. In other words, the difference in the time stamps and the distance of two trajectory 

points is used to calculate the vehicle speed. Let us consider the situation illustrated in Figure 

23, where a trip only contains trajectory point A, B, and C. Each trajectory point contains 

information about its exact recording time, given in seconds, and the distance to the start of the 

trip. Furthermore, the ID of the map-matched road segment is stored for each point as well. 

How the vehicle speed is calculated depends on the position in the order of the trajectory points. 

 

Figure 23: Explanation of the vehicle speed calculation for trajectory point B based on the driven 

speed between A-B and B-C. The speed is derived by using the differences in time and distance. 
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To calculate e.g. the speed of trajectory point B, the average of the speed between point A and 

B and point B and C is taken. The speed between A and B is simply calculated by: 

 

𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑠𝑝𝑒𝑒𝑑 [𝑘𝑚/ℎ] =  
(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡 𝐵 − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡 𝐴)

(𝑡𝑖𝑚𝑒 𝑠𝑡𝑎𝑚𝑝 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡 𝐵 − 𝑡𝑖𝑚𝑒 𝑠𝑡𝑎𝑚𝑝 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡 𝐴)
× 3.6 

 

The distance stands for the in the map-matching part calculated network distance to the start of 

the trip, meaning the real distance the taxi was driving, which is important to get a more accurate 

speed value. As the distance is given in meters and the time stamp in seconds, the result must 

be converted into km/h to be in the same format as the given maximum allowed speed per road 

segment. Equation 4 is used the same way for calculating the speed between point B and C. 

Considering the values given in Figure 23, the vehicle speed between point A and B is 45 km/h 

and between B and C 36 km/h. The average of these two speed values, 40.5 km/h, represents 

how fast the vehicle was driving at the GPS record B. While calculating the vehicle speed for 

point A or C, there is only one other trajectory point available. Because of this, the speed for 

point A or C is not the average of its surrounding speeds, but just the vehicle speed calculated 

between point A and B (45 km/h) respectively between B and C (36 km/h).  

 

The described method is used to calculate an average speed value for each road segment based 

on the trajectory points’ vehicle speed. As the trajectory points are recorded over a whole day 

and the vehicle speed at a particular road segment is not equal all the time, the 24 hours of the 

1st Nov. 2016 must be divided into short time windows. For each time window, only information 

of trajectory points that are recorded inside this window is used to estimate the traffic state. 

Santi et al. (2014a) work with a time window of one hour and in Kong et al. (2013) they 

calculate the traffic state every four minutes. Regarding the time-consuming computations, in 

this work, a time window size between the two mentioned ones of 15 minutes is set. This means 

the 24 hours are divided into 96 equal intervals. Getting back to Figure 23, to calculate the 

average speed value at the given time window for the road segments R1 and R2, the following 

is done. First, all the trajectory points are filtered by their time stamp, so that only trajectory 

points inside the specific time window are considered. In this example, this means all the points 

that are recorded between 10 a.m. and 10:15 a.m. Here, only the three points are given, so no 

other points must be filtered out. To calculate the average speed for road segment R1, from the 

remaining points, only the ones which are map-matched to R1 are selected. Now, the average 

of all the speed values of these points represents the vehicle speed for road segment R1 between 

10 a.m. and 10:15 a.m. As in Figure 23 only trajectory point A is map-matched to R1, the 

average vehicle speed of R1 is 45 km/h for that time window. R2 has two map-matched 

trajectory points and therefore the average of 40.5 km/h and 36 km/h represents the speed value 

for this road segment, which equals 38.25 km/h. Like this, the road segments contain 

information about how fast on average a vehicle drives at a particular time of the day, which 

represents the first way to estimate the traffic state. The second one will be represented by the 

estimated travel time, which is explained later. 

 

While a taxi is picking-up or dropping off a customer, its speed value drops to 0 km/h. Because 

this is a special behaviour of the taxis’ movement, it does not represent the speed a taxi normally 

could drive on the specific road segment. Therefore, these start- and stop movements of a taxi 

trip must be filtered out before computing the average speed value per road segment. If during 

the trip the taxi must stop, because of traffic or traffic lights, it can be seen as a representation 

(4) 



  5 Methods 

47 

 

of the state at this location. To not mix these two patterns, only trajectory points at the start and 

the end of the trip are analysed. In more detail, starting with the first trajectory point, if the 

calculated speed value is lower than 20 km/h, all the following trajectory points are filtered out 

until its speed exceeds the 20 km/h threshold. The same is done for the last trajectory point of 

each trip. This threshold is set because the minimum of the allowed speed values of the network 

equals 20 km/h for streets of type residential (excluding living streets with a maximum speed 

of 10 km/h as they are very rare). So, speed values at the start an end of a trip below 20 km/h 

are classified as not normal, and thus, as start- and stop movements. For better understanding, 

such a situation is illustrated in Table 9. 
 

a) 
 

b) 

 

Table 9: a) shows the calculated speed values per trajectory point for an example trip. b) shows the 

remaining speed values after filtering out the start- and stop movements. The speed values below 20 

km/h during the trip are not classified as such a movement and, therefore, included in the average 

speed calculation for the road segments. 

As either the GPS records can be erroneous or the distance calculation in the map-matching 

part can produce wrong values, unrealistically high speed values are possible after the vehicle 

speed computation. For each road type a maximum allowed speed is given and, therefore, too 

high speed values can be detected easily. Including them in further processes would lead to a 

bad representation of the estimated traffic state. Thus, these detected values must be corrected. 

To set the threshold to the maximum allowed speed per road type would be unrealistic, as 

vehicles may drive faster than allowed. In China usually after driving more than 10 km/h faster 

than allowed a fine is issued (Angloinfo China, 2020). Considering this, the threshold for too 

high speed values is set to 10 km/h above the given maximum allowed speed. If a calculated 

speed value of a trajectory point is more than 10 km/h higher than the maximum allowed speed, 

the calculated value is replaced by the maximum allowed one. So, if for some reason a trajectory 

point, that is matched to a road segment of type “primary”, has a speed value of 90 km/h 

assigned, this value is replaced by 60 km/h, the maximum allowed speed for roads of type 

“primary”. With the mentioned steps of filtering and correcting, each road segment where a taxi 

was driving has reasonable vehicle speed values for the 96 time intervals assigned. 

5.4.1.1 Interpolation 

The pre-processed road network contains 8’368 road segments, but not all of them are visited 

by a taxi during the 1st Nov. 2016. This means, that there exist road segments with no GPS 

records assigned to and, therefore, no speed value estimated. If focusing on the 96 time intervals 

individually, even less segments are visited. As a potential ride-sharing path can lead through 

each of the 8’368 segments, the traffic state must be estimated for all of them. This assures that 

there is no information missing while computing e.g. the resulting travel or waiting time of a 

shared path. The unvisited road segments get a speed value assigned by interpolating the already 

estimated values. This is done by applying a Kriging interpolation method. 

Trajectory point T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 

Speed [km/h] 0 5 21 4 0 0 15 28 37 45 23 10 0 0 

Trajectory point T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 

Speed [km/h] - - 21 4 0 0 15 28 37 45 23 - - - 
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Kriging is a geostatistical approach to estimate unknown values based on the autocorrelation in 

the distance to the measured values. The basic principle is that the further away the unknown 

point lies from the measured one, the less autocorrelated they are. The missing value can be 

estimated by the sum of a trend of observable factors and a random error component. The spatial 

autocorrelation is found in this error component. By plotting the variance over the lag distance 

of the known values, an experimental variogram is created that models this component. After 

fitting a curve to the variogram, important parameters can be detected, that serve as an input to 

the Kriging model. They are known as the nugget, the partial sill and the range. The nugget 

represents the variation that remains unresolved, the partial sill stands for the spatially 

correlated variance and the range gives the threshold distance at which the variance stabilizes. 

The curve that is fitted to the variogram and detects the presented parameters is represented 

either by an exponential, spherical or Gaussian model. Besides the model of the curve and the 

three parameters, the type of Kriging interpolation must be chosen as well based on the given 

data as an input to the function. If the mentioned trend of observable factors is known, then the 

Simple Kriging method can be used. If the trend depends on explanatory variables, the 

Universal Kriging approach should be applied. If explanatory information is lacking, the 

Ordinary Kriging method fits best. (Oliver & Webster, 2014 and Wang & Kockelman, 2009) 

 

The work of Wang & Kockelman (2009) shows that the described Kriging interpolation method 

is a useful approach for transportation studies. They analyse the utility of Kriging to interpolate 

traffic count values on a road network in Texas, USA. As a pre-processing step, they divide the 

road segments based on their type into several groups so that only similar road segments are 

used to estimate the missing value of a road of the same type. Then, the described parameters 

and the model of the curve are analysed for each group individually and later used as an input 

to the global Ordinary Kriging model (assuming a lack of explanatory information). 

Additionally, they show that using the Euclidean distance instead of the network distance does 

not severely worsen the quality of the interpolation but significantly reduce the complexity. The 

result is a continuous distribution of traffic count values over the whole study area for each 

group of road segments. Based on the location of the road segments, the interpolated value of 

the underlying Kriging surface can be extracted and assigned to the segments’ attributes.  

 

Based on their study, the procedure of the interpolation of the speed values is implemented 

similarly in this work. The Ordinary Kriging model is applied to the estimated speed values per 

road segment. As it does not make sense to include speed values of road segments of the type 

“living street” to interpolate a missing value of a road segment type of “motorway” (on average 

totally different speed values), the road network first must be divided into sub-networks based 

on the road type categories presented in Chapter 4. Like this, the 8’368 road segments are 

divided into six sub-networks, shown in Table 10. The Ordinary Kriging is applied to each sub-

network individually, to assure that only speed values of the same range are used to estimate 

the missing values. As the used speed values of a sub-network are similar over the whole study 

area, it is waived to apply a local interpolation and, thus, global Ordinary Kriging interpolation 

is implemented. Furthermore, the interpolation must be done 96 times, meaning for each time-

window separately, as the estimated values per road segment differ in time. The global Ordinary 

Kriging is, therefore, run 576 times. To reduce the time consumption of this process, the 

parameters and curve model are analysed only once per sub-network and not 96 times. The time 

window used for analysing the variograms of the six sub-networks is between 12:00 p.m. and 

12:15 p.m. The six variograms including the chosen parameters are illustrated in Figure 24. 
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Table 10: The six sub-networks used for the interpolation and the number of road segments per sub-

network. 

 

Figure 24: Variograms and used parameters of the six sub-networks. The parameters are analysed for 

the time window between 12:00 p.m. and 12:15 p.m. and taken as the input for the Ordinary Kriging 

interpolation method. A bigger size of the figure is given in the appendix of this work. 

 Sub-network Number of road segments  

 Living street 570  

 Motorway 4  

 Primary street 426  

 Secondary street 404  

 Tertiary street 1238  

 Trunk 96  
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The already estimated speed values are assigned to a road segment, meaning they represent an 

attribute for a feature of the geometry type line. As these input measurements, on which the 

interpolation is based, must be given as point geometries for the Kriging function, this problem 

first must be solved. Therefore, the vertices of each road segment of each sub-network are 

extracted. Complex line features can have more than two vertices to store the shape of the line 

and thus, these vertices must not only be the start and end points. Each extracted point contains 

an attribute that keeps the connection to its road segment ID and an attribute that stands for the 

speed value estimated for this segment. The Ordinary Kriging interpolation is then run 96 times 

for each sub-network based on these point features with its speed value and the analysed 

parameters of Figure 24. The result is a continuous distribution of the speed values over the 

whole study area. The road segments with the missing speed values are represented as well by 

their vertices as explained before. The interpolated speed value of the continuous distribution 

is then extracted at the exact location of each vertex and assigned to its attributes. Through this 

step, each vertex of the sub-network has an estimated speed value assigned. In the end, the 

geometry type representing the road segments must again be a line feature and, therefore, the 

original road segments must be reconstructed. If a road segment where no taxi was recorded, is 

split into e.g. three vertices, then all of them can potentially become slightly different speed 

values assigned, as their distance to the given points is not equal. The reconstructed road 

segment of these three vertices can only have one speed value assigned, thus, the three newly 

estimated values must be transformed into one. This is done by computing the average speed 

value of the three individual ones. For better understanding, an example for the time window 

between 12:00 p.m. and 12:15 p.m. of the sub-network “trunk” is illustrated in Figure 25.  

  

b) 

a) 
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Figure 25: a) shows the sub-network and the road segments with the missing values. In b) the line 

features are split into its vertices. The resulting interpolated speed values are illustrated in c). As 

shown in d), the average of the speed values of the three vertices, that are extracted from the Kriging 

surface, represents the final interpolated speed value for the specific road segment. A bigger size of the 

figure is given in the appendix of this work. 

A special case of the explained procedure is when for a given time window no road segment of 

the whole sub-network is visited by a taxi. This means, that not even one speed value is available 

and could be used for the interpolation. To deal with such situations, for each road segment in 

the sub-network, the average of the estimated speed values of one time window before and one 

after the missing time window is calculated and assigned to the analysed road segment. If only 

one value is given, either before or after the analysed time window, then this value represents 

the speed for the specific road segment. Through this, an average value of the time windows 

before and after the analysed one is calculated, and this is likely to be accurate because the 

speed value usually does not change significantly in 15 minutes at the same road segment. 

 

  

c) 

d) 
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Additionally, a post-processing method is applied, as there is no upper boundary of the 

interpolated speed values, meaning that if a road segment is located far away from the other 

segments of its type, the assigned speed value might be unreasonably high (as it occurred before 

the interpolation). To cope with this problem, the same correction as before the interpolation 

step is done again. Thus, the speed values more than 10 km/h higher as the maximum allowed 

speed value of this road type are readjusted and set to the maximum allowed speed.  

5.4.2 Travel time 

Besides vehicle speed values for each road segment depending on the time, the travel time of a 

road segment can represent the traffic state as well. Moreover, it is a very useful way of 

informing on the traffic state, as the travel time can be included in the trip duration of e.g. a taxi 

ride. Through the presented interpolation and re-correcting method, each road segment in the 

study area has 96 speed values assigned. As mentioned in the data section, for each road 

segment the length in meters is given as well. By transforming this length to kilometres and 

using the calculated speed value, the travel time for each road segment and for all the 96 time 

windows is computed. The resulting time is given in hours. As most of the road segments’ travel 

times are much shorter than one hour, the travel time will be stored and later used in minutes. 

5.5 Identifying potential ride-sharing paths 

Without the presented steps of pre-processing, map-matching and traffic state estimation, the 

final identification of potential ride-sharing paths would not be possible or at least the influence 

of using traffic state information could not be analysed. The following methods aim to use the 

gained information most effectively. The general procedure to identify the potential ride-

sharing paths, as presented in studies of e.g. Santi et al. (2014a), Barran et al. (2017) or Wang 

et al. (2018), would be to select a subset of all the requested or driven taxi trips and compute 

between all of them individually a shared path. These paths would then be ranked by some 

characteristics and either based on a local or a global optimum, the ride-sharing paths that 

maximize the objective of the method are chosen. 

5.5.1 Time window size 

The mentioned subset is based on a time window where the selected taxi trips act as candidate 

trips for ride-sharing. This is necessary as it does not make sense to share a ride with a user that 

requests a trip several hours later than the first user. Therefore, only trips that are requested at 

a similar time are useful to potentially be shared. How big this time window is, depends on how 

long a user is willing to wait until a ride-sharing partner is found. In general, the bigger the time 

window is, the more candidate trips are available and, therefore, the percentage of matched 

trips, or simply the “matching rate” increases. The implemented time windows in the literature 

differ from one minute up to ten minutes. Santi et al. (2014a) analyse in their work how 

significant the impact of enlarging the time window is on the matching rate and based on this 

select the most effective time window. They show that using a time window of one minute is 

the most effective choice for their data as enlarging it would lead to a relatively bigger increase 

in the computation time than in the matching rate. As this result might be different depending 

on the given data, a similar evaluation is done for the dataset used in this study.  
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Figure 26 shows the relation between a bigger time window and a bigger candidate trip 

repertory. Enlarging the time window by one minute, from one minute to two minutes, doubles 

the number of available candidate trips. Considering another minute more, the increase in 

candidate trips is slightly reduced to 150%. The curve visualises the decline in the increase of 

the candidate trips. After four minutes there is a too small increase considering the rising 

computation time and the decrease in the user-friendliness of the system, as a user must 

potentially wait longer to be matched to a ride-sharing partner with a bigger time window. 

 

Figure 26: The decline in the percentage increase of candidate trips by an enlargement of the time 

window of one minute. Starting with 46 candidate trips, by enlarging the time window one minute the 

number of candidate trips gets doubled. Adding another minute enlarges the 92 candidate trips by 

again 46 candidates, what equals an increase of 150%. After the enlargement of four minutes, the 

percentage increase is too small to justify the arising increase in the computation time and the decrease 

in the user-friendliness of the system. 

Considering this short analysis, a time window of five minutes (enlargement of the original 

time window of one minute by four minutes) is implemented in the ride-sharing approach 

presented in this study. This means for an analysed taxi trip Tt all the trips started five minutes 

before and five minutes after this trip are considered as candidate trips for ride-sharing. 

Depending on the number of taxi trips in the dataset and their temporal distribution during the 

day, there can be dozens, hundreds or thousands of candidate trips selected. The system of Santi 

et al. (2014a) would then compute a fastest shared path between the analysed trip and each of 

the candidate trips individually. Filtering and ranking them based on specified constraints and 

characteristics lets the system identify the ride-sharing paths that globally optimise their 

objective of minimizing the total travel time. Such an approach is very time intensive and a lot 

of fastest path computations are conducted between sets of two paths that are not useful to be 

shared at all. To reduce the time consumption and prevent unnecessary computations, in this 

work a new simple yet reliable similarity measurement is presented and implemented to filter 

out unsuitable candidate trips before computing the optimal ride-sharing paths that locally 

optimise the objective of minimizing the waiting time for the second passenger to be picked up. 

Figure 27 provides an overview of the so far and in the following explained methods. 
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Figure 27: Illustration of the steps implemented in the identification process of potential ride-sharing 

paths in this work. Different from previous studies, a similarity measurement is developed to reduce 

the time consumption and prevent unnecessary fastest shared path computations. 

5.5.2 Similarity measurement 

There is a higher probability that the optimal ride-sharing path for a trip is combined with a 

very similar candidate trip than with a less similar one and therefore two trips must be similar 

to a certain degree in order to count as suitable to be shared, so that minimal detour emerges to 

pick up the second passenger. Thus, measuring the similarity between the analysed and the 

candidate trip can be used to filter out unnecessary candidates and reduce the time consumption 

of the computation. In ride-sharing studies where the service provider is a matching agency, a 

common way to measure the similarity between two vehicle trajectories is to compare the two 

trips in their entirety through methods like Dynamic-Time-Warping (DTW) or Longest-

Common-Subsequence (LCSS) (Besse et al., 2016). This means two trajectories are only 

similar if a significant part of the two trips are similar in route. Thus, the similarity depends a 

lot on the vehicles’ chosen path. To show this, one can assume that two start and end points are 

very close in space, but the rest of the trips take completely different paths and are far away 

from each other. This would lead to a small similarity measure despite the fact the start and end 

points are close. Such route choices are realistic, as it can be that a driver needs to pass a certain 

place on her or his path before the destination is reached. An example could be a kindergarten, 

where a father needs to drop off his child. Generally, it can be defined that considering the two 

trips in their entirety makes sense for vehicle trajectory data of ride-sharing systems provided 

by matching agencies, as there can exist hidden patterns in their paths that influence the 

shareability of the trips. In a taxi ride-sharing system the similarity between the two paths in 

their entirety is not relevant because the final optimal shared path will visit both start and end 

points in the fastest possible way and the route of the two individual trips does not influence 

that. Therefore, a different similarity measurement must be applied. To the best of found 

knowledge, there does not exist a taxi ride-sharing study that implements a similarity 

measurement and thus the presented method in this section represents a novelty in the research 

field of ride-sharing. 
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The developed and implemented similarity measurement only considers the distance between 

each start and end point of two taxi trips and, if necessary, the closest trajectory point of the 

opposite trip to either a start or end point. It thus does not consider the distances between all 

trajectory points of both paths. This assumes that trips whose start and end points, and 

sometimes the closest point of the other trip, are to some extent close in space and time (already 

taken into account by the applied time window to select the candidate trips) are similar and, 

therefore, suitable to be shared. A naive approach would be to simply measure the Euclidean 

distance between both start and end points. This is functionally insufficient as it would not 

consider when a start point is located rather far away from the first passenger’s start point but 

very close on the way of this passenger, and therefore could be picked-up while en route (at the 

closest point of the first trip to the secondary passengers’ start point, illustrated in Figure 29). 

Such special cases must be included in the measurement as well. Thus, the similarity 

measurement assumes three different collocations of two taxi trips which cover all the possible 

positions two trips can have to each other. In the following, these collocations are explained 

based on the start points. The same situations apply as well for the end points. 

1. Considering Figure 28, in this collocation the closest point of the second trajectory T2 to the 

start point of the first trajectory ST1 equals the start point of the second trajectory ST2. The 

same is valid for the other way around, meaning that the closest point of the first trajectory 

T1 to the start point of the second trajectory ST2 is equal to the start point of the first 

trajectory ST1. This represents the simplest collocation.  

 

Figure 28: 1st possible collocation of two taxi trips, where the closest point of the other trajectory is for 

both its start point. This represents the simplest case. 

2. As shown in Figure 29, in this collocation the closest point of the second trajectory T2 to 

the start point of the first trajectory ST1 is one of its trajectory points TT2 but not its start 

point ST2. On the other hand, the closest point of the first trajectory T1 to the start point of 

the second trajectory ST2 equals the start point of the first trajectory ST1. The same counts 

as well if the closest point of the first trajectory T1 to the start point of the second trajectory 

ST2 is one of its trajectory points TT1 but not is start point ST1.  

 

Figure 29: 2nd possible collocation of two taxi trips, where the closest point of the other trajectory is 

not for both its start point. This represents a more complex case, where one passenger could be picked 

up on the way of the other passenger without generating a big detour. 
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3. Figure 30 represents the collocation where the closest point of the second trajectory T2 to 

the start point of the first trajectory ST1 is one of its trajectory points TT2 but not its start 

point ST2. The closest point of the first trajectory T1 to the start point of the second trajectory 

ST2 is as well one of its trajectory points TT1 but not its start point ST1.  

 

Figure 30: 3rd possible collocation of two taxi trips, where the closest point of the other trajectory for 

both is not its start point. This represents the most complex case, as picking up a passenger on the way 

would only be possible if the other passenger would be willing to walk to a meeting location.  

Depending on the given collocation of the two trips, the distance between the two start and end 

points can be calculated slightly different. In the end one distance value, given in meters, for 

the two start points and one for the two end points is computed. The overall Similarity 

Measurement Index (SMI), that shows how similar two trips are, is the average of the distance 

between the two start and the two end points. A small SMI signifies a short average distance 

between the start and end points of both trips and represents, therefore, high similarity. How 

the distance is calculated for the three collocations is explained in the following: 

 

1. The value that represents the distance between the two start points (the same is valid for end 

points) in the 1st collocation, visualised in Figure 28, is retrieved by calculating the 

Euclidean distance between both start points. As for each start point the closest point on the 

other trajectory is its start point, no other distance than the one between these two points is 

possible. 

 

2. Given the situation in Figure 29, only for one start point (respectively end point) the closest 

point on the other trajectory is its start point. For the second there is a closer point on the 

first passenger’s trajectory. This can be used to pick up this passenger in a more efficient 

way as driving from ST1 to ST2. The closest point X on T2, notated as XT2, represents the 

location from where the detour to ST1 begins and therefore, the value showing the distance 

of the start points between these two trips is calculated by measuring the Euclidean distance 

between XT2 and ST1 (red arrow in Figure 29). As this distance is always shorter than the 

distance between ST1 and ST2, the latter is no option for this collocation.  

 

3. In the 3rd collocation, for each start point the closest point on the other trajectory is not its 

start point but a trajectory point XT2, respectively XT1. Driving from ST2 to XT1 or from ST1 

to XT2 to pick up the other passenger would assume that the users are willing to walk to a 

meeting point, because driving e.g. from ST2 to XT1 to ST1 is illegitimate and therefore, no 

better option. As forcing passengers to walk is not user-friendly and thus, excluded in this 

system, the best option is to directly drive from ST2 to ST1. Consequently, the value 

representing the distance between the two start points in this collocation is again calculated 

by measuring the Euclidean distance between them (blue arrow in Figure 30). 
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The distance used to calculate the SMI in all the three explained cases is the Euclidean distance 

and not the network distance. This is chosen as implementing the network distance would mean 

that the shortest path must be calculated for each distance (either between XT2 and ST1, 

respectively XT1 and ST2 or between ST1 and ST2). This increases the time consumption of the 

method, what would be off-target as with this similarity measurement the computation time 

should be minimized. Thus, using the Euclidean distance assures the sought time reduction. 

The technical details of the developed similarity measurement are notated in the algorithm 

illustrated in Figure 31. 

 

Figure 31: Algorithm of the new developed and implemented similarity measurement. 

Algorithm Similarity measurement 

Input: (1) An analysed taxi trip T1 = {T0T1, T1T1, …, TnT1} with T0T1 = ST1 and TnT1= ET1 

 (2) A candidate taxi trip T2 = {T0T2, T1T2, …, TnT2} with T0T2 = ST2 and TnT2 = ET2 

Output: Similarity Measurement Index SMI in meters 

 for ST1 do 

  find the closest trajectory point XT2 of T2; 

  if XT2 = ST2 then 

  a = 1 and da = EuclideanDistance (ST1, ST2); 

  else if XT2 = TiT2 or XT2 = ET2 and XT2 ≠ ST2 then 

  a = 2 and da = EuclideanDistance (ST1, XT2); 

  end if 

 end for 

 for ST2 do 

  find the closest trajectory point XT1 on T1; 

  if XT1 = ST1 then 

  b =1 and db = EuclideanDistance (ST2, ST1); 

  else if XT1 = TiT1 or XT1 = ET1 and XT1 ≠ ST1 then 

  b = 2 and db = EuclideanDistance (ST2, XT1); 

  end if 

 end for 

 if a = 1 and b = 1 then 

  distance between start points ∆S = da = db; 

 else if a = 1 and b = 2 then 

  ∆S = db; 

 else if a = 2 and b = 1 then 

  ∆S = da; 

 else if a = 2 and b = 2 then 

  ∆S = EuclideanDistance (ST1, ST2); 

 end if 

 for ET1 do 

  find the closest trajectory point XT2 of T2; 

  if XT2 = ET2 then 

  a = 1 and da = EuclideanDistance (ET1, ET2); 

  else if XT2 = TiT2 or XT2 = ST2 and XT2 ≠ ET2 then 

  a = 2 and da = EuclideanDistance (ET1, XT2); 

  end if 

 end for 

 for ET2 do 

  find the closest trajectory point XT1 on T1; 

  if XT1 = ET1 then 

  b =1 and db = EuclideanDistance (ET2, ET1) ; 

  else if XT1 = TiT1 or XT1 = ST1 and XT1 ≠ ET1 then 

  b = 2 and db = EuclideanDistance (ET2, XT1); 

  end if 

 end for 

 if a = 1 and b = 1 then 

  distance between end points ∆E = da = db; 

 else if a = 1 and b = 2 then 

  ∆E = db; 

 else if a = 2 and b = 1 then 

  ∆E = da; 

 else if a = 2 and b = 2 then 

  ∆E = EuclideanDistance (ET1, ET2); 

 end if 

 SMIT1, T2 = (∆S + ∆E) / 2; 
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Besides the presented three possible collocations, there exist two special cases; for one start 

point the closest point on the other trajectory is its end point. This represents a situation where 

the first trip has already finished before the second trip is started and is therefore not considered 

as a ride-sharing situation. Nevertheless, this end point is treated as a normal trajectory point. 

Such a situation is illustrated in Figure 32. The distance gets calculated like in Figure 29 and 

this could lead to a very small SMI and would therefore incorrectly signal a high similarity. If 

such a trip collocation occurs and would be selected as one of the most similar candidate trips 

for ride-sharing, it would get eliminated in the next step, as only ride-sharing paths that reduce 

the total travel time of the shared path compared to the sum of the two individual paths are 

considered to be suitable for ride-sharing systems. Therefore, this special case is not added as 

a 4th possible collocation, but rather represented by the 2nd collocation. The mentioned condition 

is explained in more detail in the next section. The same elimination counts for the situation 

illustrated in Figure 33 (same distance calculation method for the start points as in the 3rd 

collocation, and same method for the end points as in the 1st one), where two trips are allocated 

in the opposite direction as sharing these two trips would again not reduced the total travel time 

if the two start points must be visited first. Once again there is no 4th collocation needed. 

 

Figure 32: Collocation where the first trip has already finished before the second one even started and 

is therefore not considered as a ride-sharing situation. Nevertheless, ET1 is treated like a normal 

trajectory point TT1 and the red arrow shows the distance used for the SMI. In the next process such 

wrongly similar candidate trips would get eliminated. 

 

Figure 33: The situation where two taxi trips are collocated in the opposite direction. The blue arrow 

shows the distanced used for the similarity between the two start points (as in the 3rd collocation) and 

the red arrow represents the similarity between the two end points (as in the 1st collocation). If such a 

candidate trip is selected as one of the most similar ones it would again get eliminated in the upcoming 

process. 

The presented similarity measurement is applied to all the candidate trips of an analysed trip 

and each set of two paths gets an SMI appended. By ordering them from small to big, the three 

smallest SMI values, if available, and in relation to this the three most similar candidate trips 

are selected as the remaining candidates for the identification of the optimal ride-sharing path. 

All the other candidate trips are considered as unsuitable for sharing their ride with the analysed 

trip and are discarded. This reduces the computation time and portrays the utility of the 

developed method. The approach is quite simple yet reliable as it considers the different 

possible collocations of two taxi trajectories. Using this method in real-time applications, 

instead of the recorded trajectory (which in this case would not be available) the shortest path 

connecting the known start and end point of a trip could be used. 
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5.5.3 Optimal path computation 

Due to the similarity measurement, instead of considering all candidate trips, an optimal ride-

sharing path must only be computed between each analysed trip and a maximum of three other 

taxi trips. This optimal ride-sharing path is identified by applying a set of fastest path algorithms 

and constraints to the three (or less) possible combinations of the analysed and the candidate 

trip. The taxi trips get analysed ordered by their start time. For the primary taxi trip of the 1st 

Nov. 2016 initially all the candidate trips are selected based on the time window of five minutes 

(in this case only trips that started up to five minutes after the first one as there are no trips 

available before this time stamp) and then the similarity measurement is applied. From the 

remaining candidate trips the optimal ride-sharing path is selected which represents the fastest 

path for the given combination of analysed and candidate trip, fulfils the set constraints, and 

maximizes the objective. The identified ride-sharing path is then stored, and the two input taxi 

trips are removed from the candidate list. This means that they are no longer an option for 

sharing a ride with a trip started later. If for some reason for an analysed trip no optimal path 

that fulfils the constraints is identified or no candidate trips are found and therefore the 

similarity measurement cannot be applied, then this path is stored to be driven individually and 

as well removed from the candidate list to not be considered anymore. Subsequently, the next 

taxi trip in order of their start time that is not removed so far from the candidate list is analysed. 

As for each trip the optimization problem is solved independently from the following trips and 

their possible optimal paths, the matching process of this system represents a local optimum 

case and not a global optimum as implemented in the study of Cai et al. (2019). This means that 

for the analysed trip at this moment the identified ride-sharing path is the optimal solution, but 

on a global perspective potentially its ride-sharing partner could have been matched to an even 

more optimal trip to share the ride. On the point of a strong increase in the computation time 

and the complexity of the method, it is decided to work with a local optimum as just described. 

Moreover, Wang et al. (2018) show, that finding a local optimum instead of a global one, can 

deliver very reliable results as well. 

5.5.3.1 Fastest path 

The optimal ride-sharing path must visit each start and end point of the two combined taxi trips 

in the fastest but not necessarily the shortest way. This way it is ensured that the travel time, 

depending on the driven speed, is considered to find the optimal path and not its distance. This 

travel time can have two different sources, meaning the considered speed values are derived 

differently. First, as the speed values the given maximum allowed speed per road segment can 

be used, which represents the travel time needed to pass a road segment assuming an absence 

of traffic congestion. Second, and this represents a new approach, the in the traffic state 

estimation calculated speed values, or directly the estimated travel time, can be implemented 

into the fastest path algorithm. By this function, the necessary time to travel on a road segment 

based on the raw GPS taxi trajectory points is used and thus the traffic state information is 

included in the identification process of potential ride-sharing paths. To find the fastest path, a 

weighted Dijkstra’s shortest path algorithm is implemented. Given a start node, an end node 

and a network graph, the algorithm computes the shortest path between the two nodes on the 

underlying graph (Goldberg & Tarjan, 1996). A normal Dijkstra’s shortest path algorithm 

would identify the shortest path based on the total distance, given by the length of the individual 

edges of the graph (road segments). By using a weighted Dijkstra’s shortest path algorithm, a 

weight can be added that replaces the length of the edges. This weight is either the travel time 

based on the maximum allowed speed values or the travel time calculated in the traffic state 
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estimation. The sum of the travel times of each selected edge must be minimal for the fastest 

path. The results of this fastest path algorithm are the edges of the path and the total travel time. 

As a shared path must visit four nodes but the Dijkstra’s shortest path algorithm only works 

with two nodes, more than one fastest path is computed for an optimal shared path. Given the 

first start point S1, the first end point E1, the second start point S2 and the second end point E2, 

for the complete shared path, three fastest paths must be computed. Additionally, there is more 

than one possible order of how the points are visited. The only rule is that both start points must 

be visited before serving an end point and dropping off a passenger, as the opposite would not 

represent a ride-sharing situation. Thus, the following four collocations are possible: 

 

Figure 34: The four different collocations of the start and end points of the two trips to be shared. For 

each collocation three fastest paths must be computed and summed up to the final shared path of this 

collocation. The collocation that leads to the shortest total travel time represents the fastest path for the 

combination of the two matched trips. 

For the first collocation e.g., the fastest path between S1 and S2, between S2 and E1 and between 

E1 and E2 must be computed. Considering this, for an optimal path, 12 fastest paths are 

computed. Summing up the total travel time and edges of the three sub-paths give the end 

measures for each collocation. The one leading to the shortest total travel time represents the 

final fastest shared path for the combination of the analysed trip with this candidate trip. This 

is done a maximum of three times if there are three very similar candidates left, and each trip 

combination is represented by one fastest shared path. Later, these paths are tested on the 

constraints and the one of the remaining paths that maximizes the objective is identified as the 

final ride-sharing path. 

 

As aforementioned, the weighted Dijkstra’s shortest path algorithm needs as the input the two 

nodes, the network graph and the weight of the edges. If for the weight the travel time based on 

the maximum allowed speed is used, the weight of the edges remains the same over the whole 

day. On the contrary, when using the travel time calculated in the traffic state estimation 

depending on the start time of the two trips that are shared a different weight is used, as the 

travel time is always given for a time window of 15 minutes. Before running the fastest path 

algorithm, the estimated travel time for the time window in which the second trip started must 

first be selected and added as the weight to the algorithm. The time window of the start time of 

the second trip is chosen as the shared path will not start earlier because the trip request of the 

second user is not available until this time. Of course, a shared trip can have a duration longer 

than 15 minutes and then the traffic state and with this the travel time might change. However, 

it is assumed that taxi drivers like to stick to the at the beginning computed route and thus the 

travel time of only one time window is considered. The network graph is represented by nodes 

and edges and is based on the start and end vertices of the road segments. Furthermore, the 

information on the one-way restrictions is included, meaning a two-way road segment is 

included twice in the network graph (once with inverted order of the nodes). This ensures that 

the optimal path only considers road segments where it is allowed to drive. 
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As the origin and destination of a taxi trip are only given as a trajectory point that is map-

matched to the road network, meaning the ID of the map-matched road segment is stored as its 

attribute but the point itself is not part of the segment, these origin and destinations are not 

available in form of nodes. Thus, besides including the one-way restriction and selecting the 

right travel time for the weights of the edges, the origin and destination of each input trip must 

be transformed to start and end nodes of the network graph to be used in the algorithm. There 

exist three different approaches on how to transform the origin and destination of a trip to start 

and end nodes of the network graph. These approaches are visualised in Figure 35. One possible 

way is to select the closest start or end vertex of the map-matched road segment to the first and 

last trajectory point of a trip, meaning the closest node representing this segment in the network 

graph (Figure 35b). To make this method more accurate, as seen in Figure 35c, the road 

segments could be split into smaller segments so that the distance to the closest node of the 

map-matched road segment gets smaller. Unfortunately, this leads to a strong increase in the 

complexity of the network graph and therefore to a loss of performance, as there would be 

created a lot of new nodes. The third approach, visualised in Figure 35d, is to snap each start 

and end trajectory point of a trip to the map-matched road segment and divide it into two new 

segments. This would again lead to an increase in the complexity and the time consumption as 

each new road segment means two new nodes are inserted in the network graph. Due to the 

mentioned downsides of the other methods, the approach visualised in Figure 35b is 

implemented in this work.  

 

Figure 35: a) shows the problem that the start trajectory point of a trip is not part of the map-matched 

segment and, therefore, not stored as a node in the network graph. In b), the closer node of the map-

matched segment is chosen as the start node that represents the start trajectory point. The method in c) 

divides the road into smaller segments so that the nearest node of it is even closer to the start trajectory 

point. In d), the start trajectory point gets snapped to the segment and divides it at this location so that 

the start trajectory point is directly represented in the graph. 
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The selected approach measures the Euclidean distance from the start trajectory point to both 

start and end vertex of the map-matched road segment. The node that represents the vertex with 

the closer distance to the start trajectory point is chosen as the start node of this taxi trip. In the 

case of figure 35b, the 2nd node is chosen as the start node of that trip. The same is done for the 

end trajectory points and the vertices of its map-matched road segment. With this method, each 

start and end point of a taxi trip is represented by a start and end node in the network graph and 

can be used as an input for the weighted Dijkstra’s shortest path algorithm. As seen in Figure 

35b, with this approach the location of the start point gets moved slightly (in this case 32.4 m). 

The average length of a road segment is 331.1 m and thus the average maximum shift is around 

165 m. This is not a significant shift and both the start and end point get shifted randomly, 

meaning the trip could be enlarged or shortened with the same likelihood. With this considered 

as well as the utility of the method, the choice of the approach is regarded as legitimate.  

5.5.3.2 Objective and constraints 

From the computed fastest paths, the one that fulfils all the constraints and maximizes the 

objective of the ride-sharing system is identified as the optimal ride-sharing path for the given 

combination of the analysed and the candidate trip. Different from the presented studies in 

Chapter 2, the objective of the system of this work is to minimize the emerging waiting time 

for the second user to be picked up. Another possible objective would have been to minimize 

the total travel time and with this the total driven kilometres and therefore the total CO2-

emissions. Following this objective makes sense as in a global perspective the aim of a ride-

sharing system is to some extent to minimize the CO2-emissions, but the more important aspect 

will be the user-friendliness of the system which is highly related to the waiting time. A ride-

sharing system only works if the users are willing to join, and this depends, in some part, on 

additional costs like the mentioned waiting time. Therefore, in a holistic view, a ride-sharing 

system aiming to minimize the CO2-emissions might not save more CO2-emissions than a 

system that focuses on the user-friendliness, as fewer users will join the system and thus less 

shared rides are identified. 

 

Before the fastest path that minimizes the waiting time can be identified, the remaining paths 

must be tested on three constraints. Only the fastest shared paths that lead to a total travel time 

smaller than the sum of the travel times of the two individual trips are suitable for ride-sharing. 

This means that only ride-sharing paths that save time remain. The others are removed from 

further analysis as they will not save CO2-emissions and are not user-friendly. The second set 

constraint is that the shared path must also save distance compared to the situation without any 

ride-sharing involved. In other words, the total driven kilometres must be less for the shared 

path than the sum of the driven kilometres of the two individual trips. Here again CO2-emissions 

and user-friendliness are the reason to remove the unsuitable paths. The last constraint is related 

to the objective of the system. By setting a maximum acceptable waiting time, it is prevented 

that a user would have to wait for too long until the taxi arrives and decides to not use the ride-

sharing system. In the study of Cao et al. (2015) they apply a maximum acceptable waiting time 

of 15 minutes. As Rayle et al. (2014) analyse in their survey, 90% of the users of taxi-like 

transportation systems as e.g. Uber or Lyft say that they wait on average less than ten minutes 

for the requested vehicle to arrive. Only a few users specified a waiting time bigger than ten 

minutes and barely any users mentioned waiting times over 20 minutes. Therefore, the applied 

maximum waiting time of 15 minutes by Cao et al. (2015) is regarded as reasonable and will 

be used in this study as well. So, if the computed fastest shared path leads to a waiting time 
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bigger than this threshold, it is not considered as suitable anymore and will be removed. After 

applying the fastest path algorithm, all three or less computed shared paths are checked on the 

mentioned constraints. Only shared trips that fulfil all the set constraints are considered to be 

suitable for ride-sharing. As soon as one constraint is not met, the candidate trip is removed 

from the list. The remaining shared paths are ordered by their waiting time and the one that 

minimizes this waiting time is identified as the optimal shared path for the analysed trip. As 

already mentioned, this shared path with its indicators is stored and both the analysed and the 

candidate trip are removed from the list for further combinations of ride-sharing paths. If no 

shared trip fulfils all constraints, the analysed trip is considered as unsuitable for ride-sharing 

and will be served individually. This information is stored as well, and the trip is removed from 

further computations. Subsequently, the next taxi trip in order of its start time is analysed. The 

total distance of the shared and the two individual trips is derived by summing up the lengths 

of each road segment that is part of the path. The waiting time equals the time needed to get 

from the first start point to the second one. This sub-path is represented by the computed fastest 

path from S1 to S2 or vice versa. The resulting travel time of this fastest sub-path stands, 

therefore, for the emerging waiting time of the final shared trip. 

5.6 Experimental design 

To analyse the influence of considering traffic state information in ride-sharing systems, the 

described optimal path identification process is applied twice. First, the travel time calculated 

in the traffic state estimation is used as the weight of the edges in the Dijkstra's algorithm. 

Second, the travel time based on the maximum allowed speed value of each road type is taken 

as the weight. This leads to potentially different results in measures like the average waiting 

time, the saved total travel time, or the reduction in the size of the needed taxi fleet. Analysing 

these differences is used to answer and comment on some of the presented research questions 

and hypotheses of Chapter 3. Furthermore, the computation is done first without considering 

the constraint on the distance reduction and then with including this addition. This means, once 

only the travel and waiting time constraints are applied and therefore the identified shared path 

must not necessarily reduce the total travel distance. This is used to show the influence such a 

constraint can have on the overall results of a ride-sharing system and its importance regarding 

the impact of ride-sharing on the natural environment. So, the whole process is run four times: 

 

Figure 36: The four different variations of implementing the identification process of the optimal ride-

sharing path. 

All results of these four variations are presented and compared in the next chapter. Based on 

them, in Chapter 7, the influence of using traffic state information is discussed and the results 

are put into perspective to the research questions and hypotheses of Chapter 3. Figure 37 shows 

the algorithm that delivers again a detailed view of the described process of identifying the 

optimal ride-sharing path and is connected to the developed similarity measurement. Presented 

is the variation where the traffic state information is included, and the distance constraint 

considered. The algorithms for the other three variations are very similar.  
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Algorithm Identification of optimal ride-sharing paths  

Input: (1) All map-matched taxi trips Tn = {T0Tn, T1Tn, …, TnTn} with T0Tn = STn and TnTn= ETn 

 (2) The road network R including the one-way restrictions and the max allowed speeds 

 (3) Traffic state information tRntn given for each road segment at each time interval 

Output: Optimal ride-sharing paths with its indicators and individually driven trips 

 create graph G based on R 

 for each trip Tn do 

  calculate travel time timeTn 

  calculate distance distanceTn 

  select node Gn where minDist (Gn, STn) as start node 

  select node Gm where minDist (Gm, ETn) as end node 

  select trips started +/- 5 min of start time of STn as candidate trips CTn 

  if CTn is not empty then 

  for each candidate trip CnTn in CTn do 

  calculate SMI = Similarity measurement (Tn, CnTn) 

  end for 

  select the CnTn with the 3 (or less) smallest SMI values as CnTn’ 

  for each CnTn’ do 

  select node Gi where minDist (Gi, SCnTn’) as start node 

  select node Gj where minDist (Gj, SCnTn’) as end node 

  set weight of edge we = tRntn where maxTime {STn, SCnTn’} in time interval tn 

  create weighted graph weighted_G = weightedGraph (G, we) 

  for each collocation [A-B-C-D] = {(S1-S2-E1-E2),(S1-S2-E2-E1),(S2-S1-E1-E2),(S2-S1-E2-E1)} 

do 

  travel_time_1, path_1 = weighted_Dijkstra’s_shortest_path (weighted_G, A, B) 

  travel_time_2, path_2 = weighted_Dijkstra’s_shortest_path (weighted_G, B, C) 

  travel_time_3, path_3 = weighted_Dijkstra’s_shortest_path (weighted_G, C, D) 

  end for 

  total_travel_time = travel_time_1 + travel_time_2 + travel_time_3 

  shared_path = path_1 + path_2 + path_3 

  fastest_shared_path sharedCnTn’ = shared_path where min (total_travel_time[A,B,C,D]) 

  time_sharedCnTn’ = total_travel_time 

  waiting_timeCnTn’ = travel_time_1 

  distance_sharedCnTn’ = sum of lengths of Rn in sharedCnTn’ 

  timeCnTn’ = travel time of CnTn’ 

  distanceCnTn’ = sum of lengths of Rn in CnTn’ 

  end for 

  for each sharedCnTn’ do 

  if time_sharedCnTn’ > (timeCnTn’ + timeTn) 

  or 

  if distance_sharedCnTn’ > (distanceCnTn’ + distanceTn) 

  or 

  if waiting_timeCnTn’ > 15 min then 

  drop sharedCnTn’ 

  end if 

  end for 

  if remaining trips CnTn’’ > 0 then 

  optimal shared path sharedTn,CnTn’’ = sharedCnTn’’ where min (waiting_timeCnTn’’) 

  save sharedTn,CnTn’’, time_sharedTn,CnTn’’, waiting_timeTn,CnTn’’, distance_sharedTn,CnTn’’ 

  remove Tn and CnTn’’ from the candidate list of the up-following trips 

  else 

  save: Tn is unsuitable for ride-sharing and served individually  

  remove Tn from the candidate list of the up-following trips 

  end if 

  else 

  save: Tn is unsuitable for ride-sharing and served individually  

  remove Tn from the candidate list of the up-following trips 

  end if 

 end for 

Figure 37: Algorithm of the identification process of the optimal ride-sharing paths. 
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6. Results 

This chapter presents the results of applying the developed framework and its methods to the 

real-world GPS taxi trajectory and the OSM road network data. As each sub-process produces 

its results, this chapter is divided into these respective processes. First, the results of the applied 

map-matching method are presented. Based on example taxi trips, it is shown how the resulting 

map-matched trips look like and statistics about the successfully map-matched trajectories are 

provided. In Chapter 6.2, the estimated traffic state information is described. Results about the 

vehicle speed calculation, the interpolation of these values, and the estimated travel times are 

delivered. By providing examples of traffic maps, the final estimated traffic state is illustrated. 

Before presenting the main results of the optimal path identification, the product of the 

implemented similarity measurement is shown. Subsequently, examples of the identified ride-

sharing paths are visualised, and different measures provided. These ride-sharing results are 

described for each of the explained variations in Figure 36 of Chapter 5.6. The presented results 

are then discussed in Chapter 7 and related to the research questions and hypotheses of this 

work. 

6.1 Map-matching 

By applying the map-matching algorithm, for each trajectory point of a taxi trip the ID of the 

map-matched road segment results. Furthermore, a distance value measured from the start of 

the trip is given for each point. By connecting all the map-matched road segment IDs, the path 

where the taxi was most likely to be driving is reconstructed. Table 11 shows the resulting map-

matched road segment IDs and calculated distance values for an example taxi trip. This taxi 

trajectory consists of 320 GPS records and has a length of approximately 5.2 km.   

Table 11: Example of the map-matching algorithm results in written form. Shown are the map-

matched road segment IDs and the calculated distance from the start for a subset of the taxi trip. 

Order ID of taxi trip: 5d546bc7354521f7f004bc13f0c9b84b 

Trajectory point Map-matched road segment ID Calculated distance from start 

1 8936 0 m 

2 8936 7.756 m 

3 8936 20.727 m 

4 8938 31.931 m 

5 8938 57.496 m 

6 8938 89.711 m 

7 8938 124.148 m 

8 8938 147.476 m 

. . . 

. . . 

. . . 

311 13018 5044.883 m 

312 13018 5044.883 m 

313 13018 5048.236 m 

314 13032 5062.754 m 

315 13044 5070.023 m 

316 13044 5078.969 m 

317 13078 5135.283 m 

318 13078 5165.206 m 

319 13110 5190.905 m 

320 13504 5202.889 m 
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As illustrated in the previous table, a road segment can have more than one trajectory point 

matched to. This is presented in more detail in Table 12. The 320 trajectory points are map-

matched to 42 different road segments. The number of matched points to a road segment differs 

between 1 and 44. This difference is due to the varying length of the segments, the different 

vehicle speed at each road section and the unequal distribution of the trajectory points. Road 

segment 13018 for example has 44 trajectory points matched to and a length of 182.9 m. Road 

segment 8942, on the other hand, has only one trajectory point matched to and a length of just 

16.9 m. In Figure 39 a), the distance between the trajectory points is not always the same and 

this influences the number of matched points to each road segment as well. Either a higher 

vehicle speed or a decrease in the density of the recorded trajectory points are the reason for 

this occurrence.  

Table 12: Distribution of the matched trajectory points to the 42 different road segments of the 

example taxi trip. 320 GPS signals are map-matched in total. Depending on the length of the segment, 

the speed of the vehicle at each road, and the density of the trajectory points, between one and 44 

points are matched to each road segment. 

In Figure 38, the described results are visualised on the road network. The red points in a) 

represent the 320 GPS signals of the example taxi trajectory. The trip starts south-west and ends 

north-east. The resulting map-matched taxi path is displayed in b). This path is derived by 

connecting each of the mentioned road segments of Table 12. The start and end of the trip are 

now represented by a start and an end road segment, not by a point anymore. While this slightly 

enlarges the path, it is not problematical as the trajectory points are used for both the traffic 

state estimation and the similarity measurement, instead of the road segments. Only the optimal 

path identification algorithm gets affected by this as it works with the closest node of each start 

and end segment to each start and end trajectory point. As explained in the previous chapter, 

however, this change of the original path is miniscule, thus regarded as legitimate. 

Order ID of taxi trip: 5d546bc7354521f7f004bc13f0c9b84b 

Road segment ID Number of matched points Road segment ID Number of matched points 

8936 3 10910 4 

8938 6 10981 1 

8939 41 11165 11 

8942 1 11299 19 

8944 4 11691 5 

8948 6 11692 12 

9082 9 11721 1 

9171 1 12032 6 

9173 2 12033 17 

9176 5 12363 4 

9177 25 12364 4 

9217 11 12654 6 

9374 3 13017 4 

9555 6 13018 44 

9580 9 13032 1 

9798 21 13044 2 

10045 5 13047 1 

10227 3 13055 1 

10455 2 13078 2 

10528 2 13110 1 

10591 8 13504 1 
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Figure 38: Visualisation of the map-matching result of an example taxi trip. In a) the 320 GPS signals, 

that are used as the input for the algorithm, are located on the road network of Chengdu. The resulting 

map-matched taxi path is displayed in b). The start segment of the trip is located south-west and the 

end segment north-east. The trip consists in total of 42 road segments and is approx. 5.2 km long. 

  

a) 

b) 
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A proof that the implemented map-matching algorithm works as explained in Chapter 5 is given 

in Figure 39. Displayed is a section of the discussed example taxi path, where the results appear 

correctly only due to the selected map-matching method. Considering the trajectory points in 

the centre of the visualisation in a), the main part of them tend to be located on the left road 

segment instead of the map-matched segments on the right side. But if the whole section is 

inspected, it becomes clear that the trajectory points must be matched to the road segments on 

the right, as both in the beginning as well as in the end of the section, the trajectory points are 

located exactly on this road. Thus, the right path is identified by the map-matching algorithm 

despite appearing to be different if analysing each point separately. 

 

The situation in b) explains this in more detail. Focusing on point 215, two candidate road 

segments are given. In this case, the road segment 11692 is obviously the correct choice for 

point 215 as it is located closer to it and, as shown in a), all the previous points are matched to 

the same segment. Point 220 is again correctly map-matched even though road segment 12040 

would have been closer. This is again because the forthcoming points are matched to the same 

segment. The choice for point 217 is more complex. This point could potentially be matched to 

road segment 11710, 11712, or 11692. Considering only the distance to each candidate 

segment, road segment 11712 would be chosen instead of segment 11692 as it is the furthest 

candidate segment. Nevertheless,  the algorithm correctly chooses this segment, and therefore 

makes it clear that by considering the previous and forthcoming trajectory points, the taxi trips 

can successfully be map-matched.  

 

This example taxi trip shows how exact the map-matching results can be. Unfortunately, no 

ground truth data is available to make a conclusion on the concrete accuracy of the adopted 

HMM map-matching method. The only option to roughly control the quality of the results is by 

visual analysis of random samples; this means to randomly select order IDs from the database 

and comparing the map-matched paths with the related trajectory points, just like it was done 

for the example trip. This control has shown that most of the trajectory points were map-

matched correctly, hence the overall accuracy is considered to be good.  

 

Nevertheless, as already mentioned in Chapter 5.3, different errors can occur during the map-

matching process. If the distance between two consecutive trajectory points is too big, or 

perhaps an outlier GPS signal is recorded, the algorithm cannot continue computing the needed 

probabilities and fails. Therefore, the input parameters of the algorithm must be chosen wisely 

to minimize such errors. Furthermore, errors influencing the traffic state estimation can appear 

while calculating the network distance of each trajectory point. This is either due to erroneous 

data or problems in the algorithm, but as already mentioned in Chapter 5.4, these errors are later 

corrected by the applied post-processing approach. Additionally, the problem of incorrect map-

matched trajectory points must be considered as well as this is always possible in such methods. 

Otherwise, the accuracy of these approaches would be 100%. The incorrect map-matched 

points, however, do not always have to lead to a completely incorrect reconstructed taxi path 

as only some of its trajectory points are erroneous, thus only a few road segments are wrongly 

added to the reconstructed path. An example of such incorrect map-matched trajectory points 

is given in Figure 40. The path correctly starts at road segment 8531 and would then go through 

segments 8462 and 8449 and follow the rest of the correct matched route. However, segments 

8463 and 8460 are wrongly identified as part of the matched path. The corresponding trajectory 

points, therefore, are map-matched incorrectly. 
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Figure 39: Visual proof that the implemented map-matching method can work as explained in Chapter 

5. By analysing each trajectory point separately, the situation in a) would lead to incorrectly matched 

road segments as the points tend to be closer to the segments on the left side than to the ones one the 

right side. This is explained in more detail in b). Point 217 could potentially be matched to three road 

segments and selecting the closest one would be incorrect. As the algorithm considers the previous and 

forthcoming points of each GPS signal, the correct map-matched taxi path is identified.  

a) 

b) 
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As the information about the map-matched road segments is only used for the traffic state 

estimation, more specifically to calculate the traffic speed and to define the start and end nodes 

of the fastest path, the consequences of these incorrectly selected segments are not too serious. 

For the given example, only wrong speed values would be used to calculate the average speed 

of the road segments 8463 and 8460. As the start segment is matched correctly regardless, the 

right start node of the fastest path is going to be selected.  

 

 

Figure 40: Example of an incorrect map-matched taxi path. The road segments 8463 and 8460 are 

wrongly identified as part of the path. The true path starts at segment 8531 and goes through segments 

8462 and 8449 and follows the rest of the route. The two blue dashed segments are therefore missing.  

By far the biggest source of errors for the map-matching method is related to the Python module 

of ArcGIS named arcpy. For unknown reasons, arcpy produces errors if the map-matching 

algorithm is running for an extended period of time. The result is that after a specific time all 

the trips that are being processed throw an error. As arcpy plays an important part in the applied 

map-matching algorithm, these errors cannot be prevented. Thus, this limitation on the 

successfully map-matched taxi trips is acknowledged for the remaining part of the work. 

 

In detail, this means that only 15'347 trips are successfully map-matched from the original 

41'828 taxi trips. This equals to 3'181'904 instead of 9'053'673 trajectory points. Overall, 36.7% 

of the available taxi trips and 35% of the available trajectory points are map-matched 

successfully. Hence, 65% of the data is lost while map-matching the GPS signals. This seems 

to be grave in the first instance, but fortunately the successfully map-matched trips are equally 

distributed over the whole day and the total number of available trips is still big enough to apply 

the remaining part of the framework and follow the research objective; Figure 41a shows the 

distribution of the remaining taxi trips over the 1st Nov. 2016; in Figure 41b, these numbers are 

visualised in proportion to the total number of successfully map-matched taxi trips, which in 

this case is 15’347. Additionally, this curve is compared to the proportional distribution before 

the map-matching process, where the total number of trips is 41’828. This illustrates that only 

the total amount of available trips is reduced while at the same time the distribution remains the 

same. Therefore, the magnitude of the occurring errors is kept within a reasonable limit. 
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Figure 41a: Visualisation of the distribution of the total number of successfully map-matched taxi trips 

over the 1st Nov. 2016. Due to the errors in the map-matching process, the total number of available 

taxi trips is strongly reduced.  

  

Figure 41b: Visualisation of the comparison between the proportional distribution of successfully 

map-matched taxi trips, given a total of 15’347 trips, and the proportional distribution of available 

trips after the pre-processing step, given a total of 41’828 trips. The sum of the proportions over the 

time equals to 100%. Even if the total number of available taxi trips strongly decreases, the 

distribution over the whole day of the 1st Nov. 2016 remains almost the same. This shows that the 

magnitude of the occurring errors is kept within a limit. 
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6.2 Traffic state estimation 

By using the information on the differences in the location and the time stamp of the 3'181'904 

map-matched trajectory points, the traffic state of the road network in the city centre of Chengdu 

is estimated. As explained in the methodology, the vehicle speed is calculated in the first step. 

Table 13 shows the calculated speed values for a subset of the trajectory points of an example 

taxi trip. This trajectory contains 55 points and is 1.2 km long. The trajectory points in the table 

are ordered by their time stamp and numbered on the left side (the subset contains points 34 to 

53). In the second column, the network distance of each point to the start of the path is given. 

Additionally, the exact time stamp in seconds is provided. Calculating the ratio of the difference 

in the distance values and the difference in the time stamp values, a vehicle speed between e.g. 

point 34 and 35 can be computed. Doing the same for point 35 and 36 results in two different 

speed values. Taking the average of them gives the vehicle speed value for trajectory point 35, 

which is illustrated on the right side of the table. These values are uncorrected, and therefore 

represent the original vehicle speed. In Figure 42, the nine road segments that correspond with 

the 55 trajectory points are visualised and coloured based on these uncorrected vehicle speed 

values. The average of the speed values of all the trajectory points that are map-matched to the 

same road segment is taken as the speed value for this road segment. The same procedure is 

applied to compute the traffic speed of the whole network, the only difference being using all 

the available trips per time window instead of just one example trip as it is the case in this 

figure. The vehicle’s speed at the start and the end of the trip is very small. This is due to start 

and stop movements. The maximum speed is achieved in the curved blue road segment and 

amounts to approximately 42 km/h. Considering all the speed values of the nine road segments, 

an average vehicle speed of 28.2 km/h is computed for the given example taxi trip. 

Table 13: Subset of an example taxi trip containing the calculated vehicle speed values for points 34 to 

53. These values are derived by computing the average of two ratios between differences in the 

distance and time stamp of two points and are uncorrected.  

Order ID of taxi trip: 0e8120b4b81c75780493cc43fbb9940f 

Trajectory point Distance from start Time stamp Orig. vehicle speed  

34 615.443 m 1477967631 s 14.22 km/h 

35 628.400 m 1477967634 s 18.61 km/h 

36 646.462 m 1477967637 s 26.31 km/h 

37 672.245 m 1477967640 s 34.31 km/h 

38 703.640 m 1477967643 s 40.30 km/h 

39 739.416 m 1477967646 s 39.36 km/h 

40 769.234 m 1477967649 s 40.83 km/h 

41 807.468 m 1477967652 s 47.51 km/h 

42 848.422 m 1477967655 s 53.52 km/h 

43 896.665 m 1477967658 s 41.78 km/h 

44 918.052 m 1477967661 s 32.71 km/h 

45 951.177 m 1477967664 s 40.02 km/h 

46 1018.340 m 1477967670 s 42.42 km/h 

47 1055.452 m 1477967673 s 44.55 km/h 

48 1092.584 m 1477967676 s 42.28 km/h 

49 1125.925 m 1477967679 s 28.17 km/h 

50 1157.668 m 1477967686 s 50.76 km/h 

51 1204.995 m 1477967688 s 50.19 km/h 

52 1213.435 m 1477967690 s 7.60 km/h 

53 1213.435 m 1477967691 s 1.52 km/h 
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Figure 42: Computed average speed values of the nine map-matched road segments based on the 

uncorrected values of Table 13. The segments are coloured based on these values. The vehicle speed 

of the start and end segment is very small due to start and stop movements. The top speed is calculated 

for the blue curved segment and amounts to approx. 42 km/h. 

As explained in the methodology of the traffic state estimation, the calculated vehicle speed is 

corrected in two stages. The first correction is related to the individual trajectories. Each taxi 

trip is analysed separately to filter out the mentioned start and stop movements as they should 

not be included in the average speed of the map-matched road segment. The threshold to filter 

them out is, as already explained in the methodology section, 20 km/h. If applied to the example 

taxi trip, the first ten and last four speed values are filtered and kept out of the remaining 

process. As not all trajectory points are listed in Table 13, only the last two points are affected 

by the correction. While computing the average speed of the nine road segments again, different 

values can occur. This is visualised in Figure 43. Both the start and end segments are changed. 

As the start segment only contains small speed values below 20 km/h, this trip is not suitable 

to be used to compute the traffic speed of the start segment, and therefore the whole segment is 

left out in this figure. The second change is visible in the end segment. By filtering out the small 

speed values of the last four trajectory points, the average speed value of this segment strongly 

increases and represents now the top speed of the trip with approximately 43 km/h. As so far 

only the start and stop movements are corrected, the part between the start and end segment of 

the path is not changed.  
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Figure 43: Computed average speed values of the nine matched road segments based on the corrected 

values of the example trip. The segments are again coloured based on these values. The small vehicle 

speed of the start and end segment is filtered out, and the average speed of these segments has 

changed. The top speed is now calculated for the end segment and amounts to approx. 43 km/h. 

The second correction is related to the already computed average speed value of a road segment, 

not to the individual values anymore. If unrealistically high average speed values are calculated 

for a road segment, they must be re-corrected so that the traffic state is represented as close to 

reality as possible. The threshold used for this correction is 10 km/h above the maximum 

allowed speed value for the road type of the segment. Road segments containing average speed 

values higher than this threshold get their average speed reduced to the maximum allowed speed 

value. This re-correction is applied to the example trip as well and displayed in Figure 44. The 

first segment is an example of the type primary street. The maximum allowed speed value for 

roads of this type is 60 km/h. The next two road segments represent the type secondary street 

and their maximum allowed speed amounts to 40 km/h. The last five road segments, including 

the end segment, are tertiary streets and its maximum allowed speed value is 30 km/h. The 

calculated values for the segments of the types primary street and secondary street are below 

the threshold, and therefore remain unchanged. From the road segments that are of the type 

tertiary street, only the first two segments contain speed values below the threshold. The last 

three road segments all contain a speed value over 40 km/h, which exceeds the maximum 

allowed speed value by more than 10 km/h. Thus, their speed value is reset to 30 km/h, which 

is the maximum allowed speed for roads that are of the type tertiary street. Consequently, as 

Figure 44 portrays, these three road segments are now coloured in orange and not blue anymore. 

After this two-stage-correction, the average speed value of the example taxi trip amounts to 

29.4 km/h. 
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Figure 44: Computed average speed values of the nine map-matched road segments based on the re-

corrected values of the example trip. The segments are still coloured based on these values. The 

average speed values of the last three road segments are above the defined threshold and are, therefore, 

reset to the maximum allowed speed value for a road of this type. The top speed is now calculated in 

the first segment and amounts to approx. 36 km/h. 

As previously described, the traffic speed for a specific time window gets computed in a similar 

fashion; the only difference is that this time around, all the available map-matched trajectory 

points recorded in this time window are used. First, each taxi trip is filtered based on the start 

and stop movements and then for each road segment the average of the vehicle speeds of the 

map-matched trajectory points is computed. Subsequently, the calculated traffic speed is re-

corrected by resetting unrealistic high speed values to the maximum allowed speed of its road 

type. Figure 45 presents the computed traffic speed maps for the road network of Chengdu 

during the time window in which the example trip started. This is between 10:30 a.m. and 10:45 

a.m. on the 1st Nov. 2016. The speed values used for the map in a) are the uncorrected values 

and in b) the corrected values. At first sight, the traffic speed map of the uncorrected and the 

corrected values appear identical. But focusing on the high speed values in a), coloured in dark 

blue, a difference can be detected. In the map with the uncorrected values, there are small road 

segments in the city centre where the average speed amounts to 70 km/h and higher. This is 

very unrealistic as it is not possible or responsible to drive that fast in a dense city centre. 

Comparing these segments with the ones in b), the effect of the correction becomes visible. As 

they are obviously too high and, therefore, reset to the maximum allowed speed, they are 

coloured differently in the second map and the traffic speed is overall slower. 
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Figure 45: The computed traffic speed maps for the road network of Chengdu between 10:30 a.m. and 

10:45 a.m. on the 1st Nov. 2016. In a) the uncorrected speed values are used for the traffic map. By 

resetting too high average speed values to the maximum allowed speed per road type, the values used 

for the traffic map in b) are corrected. Examples for such corrections are visualised by the red circles. 

In both maps, the grey roads represent the roads where no taxi was recorded during this time window 

and, therefore, no information on the speed is given. 

  

a) 

b) 
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Another difference is displayed in the legend of the maps. In a), there exist speed values up to 

145 km/h and in b) the limit is at 90 km/h. So, the top speed is smaller with the applied 

correction than before. If a road segment of type motorway would be included in the calculated 

segments as well, a limit up to 110 km/h could be possible. In this time window, no taxi was 

recorded on such a motorway and, therefore, the top speed is limited to 90 km/h. The only road 

segments where the traffic speed is very high for both maps is the connection in the north 

between the 3rd and the 2nd ring road, coloured in dark blue. These road segments are of the 

trunk type where a maximum speed of 90 km/h (80 km/h plus the 10 km/h buffer) is allowed. 

So, the applied correction plays an important role in the traffic state estimation even though the 

visible differences are not that obvious. This gets even clearer when considering the 

interpolation process. All the grey coloured road segments in Figure 45 represent roads where 

no taxi was recorded during the analysed time window. As it is important to estimate the traffic 

on those roads as well, the calculated values are used to interpolate these missing values. The 

detailed methodology is explained in Chapter 5.4.1.1. If the unrealistic high speed values are 

now used for the interpolation, even higher and more unrealistic values can be expected. Thus, 

it is very important to first correct the calculated values before applying the interpolation 

algorithm to estimate the traffic state as realistically as possible. The resulting corrected and 

interpolated traffic speed map for the same time window is visualised in Figure 46. 

 

Figure 46: The interpolated traffic speed map for the time window between 10:30 and 10:45 a.m. 

Based on the corrected vehicle speed values, each road segment has an estimated value assigned. 

This figure shows the final estimated traffic state for this specific time window. Most of the 

road segments are coloured orange or yellow, meaning speeds between 10 km/h and 50 km/h 

are the most common ones. This makes sense as the data is collected in a dense urban road 

network. High speed values are only estimated at the already mentioned connection of the 3rd 

and 2nd ring road in the north and the motorway coloured in blue and dark blue in the north-

east. Speed values between 50 km/h and 70 km/h are mostly located on the ring roads or on 

some primary streets connected to them. In the middle of the city centre, speed values below 
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10 km/h are sometimes estimated. Such small speed values are due to traffic congestions 

triggered by traffic lights, jam-packed roads, or car accidents. Overall, the quality of the 

estimated traffic speed is good, especially as there do not exist unrealistic high speed values in 

the middle of the city centre or big changes in the speed values between two connected road 

segments. 

 

To further evaluate the quality of the traffic state estimation, the map in Figure 46 is compared 

to the traffic speed map based on the maximum allowed speed values per road type, illustrated 

in Figure 47. The biggest difference is visible on the ring roads. In Figure 47, speed values 

bigger than 50 km/h are possible on each road segments of a ring road or primary street 

connecting these ring roads. Sometimes, even speed values over 70 km/h are given. Values 

below 10 km/h are barely seen. Only a small section of a living street in the north of the city 

centre contains such speed values. Not a big difference is given for the tertiary streets coloured 

in orange. In both maps, these small roads contain values of 10 km/h to 30 km/h and are 

represented in great quantity. Additionally, the trunk road connecting the 3rd and 2nd ring road 

and the motorway are almost equal for both cases. Overall, in Figure 46, the speed values in the 

city centre are smaller compared to the maximum speeds allowed of Figure 47. This represents 

another quality sign as such differences are expected to occur when considering the traffic state. 

Furthermore, it shows that not working with information on the traffic state assumes too high 

speed values compared to the reality. Thus, by assuming an absence of traffic congestions, the 

real-world circumstances get distorted.  

 

Figure 47: Traffic speed map based on the maximum allowed speed value for each road type. 

  



  6 Results 

79 

 

In theory, traffic state is highly dependent on the time of the day. Thus, the average speed value 

of a road segment normally differs a lot during the day. As in the traffic state estimation part 

the traffic speed is computed for every 15 minutes, the created maps can be analysed on this 

phenomenon. This is done through the visualisation in Figure 48. Shown are four traffic speed 

maps of four different time windows during the 1st Nov. 2016. Focusing on a), the high speed 

values of the ring roads and some primary roads stand out. In general, the road network seems 

to be less congested and the vehicles can drive faster on average. This map represents a situation 

during the night in the city centre of Chengdu. The selected time window is between 3:15 and 

3:30 a.m. In b), the previously discussed time window is given. It is clearly visible that the 

traffic increased and that the network has become more congested. The average traffic speed in 

c) is even slightly smaller than in b). This situation represents the rush hour between 6:30 and 

6:45 p.m. The ring roads are more congested than in b) and overall, for both cases, the traffic is 

slow-moving. The situation relaxes in d), where like in a), the ring roads are less congested, and 

the average speed is higher. The selected time window is between 11:30 and 11:45 p.m. This 

short analysis shows the transformation of the road network conditions of the study area during 

that day and confirms the mentioned theory about the time dependency of traffic state.   

 

Figure 48: Analysis of the estimated traffic state by comparing the traffic speed maps of four different 

time windows. In a) the traffic speed map during the night is shown. The map in b) is the same as in 

the previously discussed time window. In c) the time window is between 6:30 and 6:45 p.m. and d) 

represents the situation a few minutes before midnight (between 11:30 and 11:45 p.m.). 

a) b) 

c) d) 
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The final estimated traffic state can either be represented by the traffic speed as illustrated and 

discussed in Figure 48, or it can be given by the travel time needed to pass a road segment. The 

latter is only available if the traffic speed is estimated. Using these values and the information 

about the length of each road segment, a value given in minutes and seconds is calculated telling 

how much time on average is needed at a specific time of the day to drive through a specific 

road segment of the network. As described in the methodology section, this travel time is then 

used as the weight of the edges in the weighted Dijkstra’s shortest path algorithm. Because of 

the direct connection between travel time and traffic speed, these values vary also during the 

day. To present the scale of the size of these travel times, a map of the estimated travel time per 

road segment for the known time window between 10:30 and 10:45 a.m. is displayed in Figure 

49. Analysing the change in the values during the day would result in the same findings as 

previously detected for the traffic speed, just in a different unit, and therefore is not repeated 

here. The map shows that the travel time discrepancy ranges from a few seconds up to 5 

minutes. The main influence on these values, besides the traffic speed, is given by the length of 

the segment. A long road segment has automatically a longer travel time assigned independent 

of the traffic speed. Thus, this map must be interpreted with caution. The results of including 

the presented estimated traffic state into the identification process of potential ride-sharing paths 

are provided in the subsequent sections. 

 

Figure 49: Visualisation of the estimated travel time per road segment for the time window between 

10:30 and 10:45 a.m. in the city centre of Chengdu. The values vary from a few seconds up to five 

minutes. As the travel time, besides the traffic speed, is strongly dependent on the length of each road 

segment, this map must be interpreted with caution. 
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6.3 Similarity of trajectories 

Before the presented traffic state information is included in the optimal path identification 

process, the similarity between the candidate and the analysed taxi trips is measured not only 

to exclude unsimilar trips, but also to avoid needless fastest shared path computations. The 

similarity is measured between an analysed trip and each candidate trip that started inside the 

defined time window of five minutes. Depending on the number of requested taxi trips and, 

therefore, on the time of the day, the total amount of available candidate trips for the 

identification process can vary. This is visualised in Figure 50. Illustrated are the changes in the 

number of candidate trips over the time of the day for the original data and four variations, 

which is explained in more detail in the following paragraph. The black line represents how 

many candidate trips are generally available over the day. It is visible that during the night, on 

average, fewer candidate trips are available mainly due to the decrease in the requested taxi 

trips. During the day, the availability varies between approximately 130 and 170 candidate trips 

and drops slightly at the end of the day. On average, 140 candidate trips are available for each 

analysed trip.  

 
Figure 50: Comparing the number of available candidate trips over the day between the four different 

applied variations and the original data. The total amount of available candidate trips is smaller for all 

four variations compared to the original data as already identified ride-sharing partners are not 

considered anymore as candidate trips in the identification process.  

As explained in the methodology, when a ride-sharing duo is identified or a trip is marked as 

unsuitable for ride-sharing, the trips get eliminated from the candidate list so that they will not 

be considered for subsequent matching anymore. This means that the total amount of available 

candidate trips can decrease in time if a lot of ride-sharing matches are found. Thus, the black 

line in Figure 50 changes over the day. For better understanding, the available candidate trips 

over the day for each of the in Chapter 5.6 presented four variations are displayed as well. The 

first two variations stand for including the traffic state information in the identification process: 

once excluding the distance savings constraint and once including it. The other two variations 

stand for assuming an absence of traffic congestions: in variation three while excluding the 
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distance constraint and in variation four while including it. This distance constraint means that 

the identified shared paths must save travel distance compared to the sum of the distances of 

the two individual trips. It is clearly visible that especially during the day, the number of 

available candidate trips for all the four variations is smaller compared to the black line. 

Between the four variations, no big difference is visible. This can be seen as well by comparing 

the average of available candidate trips for each variation. In the first case, on average 58 

candidate trips are available. Considering the distance savings constraint in variation two as 

well, the average rises to 66 candidate trips. In situation three, on average only 57 candidate 

trips are available. This number then slightly increases to 62 trips for variation four. The only 

difference is that when the distance savings constraint is included, the average of available 

candidate trips is slightly higher than without this constraint (for considering the traffic state 

the average contains 8 more candidates and for assuming an absence of traffic congestions the 

average amounts to 5 more candidate trips). This allows for an assumption that less ride-sharing 

paths are identified while the additional constraint is included as like this more often only one 

(the analysed trip that is marked as unsuitable for ride-sharing), and not two trips, are eliminated 

from the candidate list and, thus, more candidates are available in the end. 

 

In the first variation, the most similar candidate trips have on average a measured Similarity 

Measurement Index (SMI) of 567.12. This means that both the start and the end points are on 

average 567.12 m away from each other (either the two start respectively end points or one of 

them and the closest trajectory point of the other trip). For the second variation, an average SMI 

of 521.12 is measured for the most similar candidate trips. With 513.36, an even smaller average 

SMI value is given for the variation where neither the traffic state nor the distance constraint is 

considered. The highest average SMI for the most similar candidate trips is measured for the 

fourth variation and amounts to 628.06.  

 

How the measured SMIs differ between the three most similar candidate trips and an unsimilar 

trip is illustrated in Figure 51a and 51b. In a), an example trip and its most similar candidate 

trip are displayed. Each start and end point is marked, and the distance that represents the value 

for the similarity between both start points and end points is visualised. As for each start point 

the closest point on the other trajectory is not its start point, the distance of 497 m between the 

two start points is measured. For the end point of trajectory two, the closest point on the other 

trip is its end point, but this does not count for the end point of trajectory one. Thus, the 

displayed distance of 273 m is measured. Taking the average of these two values, a final SMI 

of 385 results. This is the smallest SMI for the analysed example trip and, therefore, this 

candidate trip is identified as the most similar one. The candidate trip in b) is the second most 

similar trip. Its SMI of 1’008 is significantly higher and is only considered to be similar because 

the value that represents the distance between both end points is rather miniscule. The two start 

points are located very far from each other. As it can take the taxi a long time to drive from the 

first to the second start point, the emerging waiting time for the second user is potentially bigger 

than the threshold of 15 minutes. Thus, this candidate trip will eventually be excluded in the 

ongoing process. In c) of Figure 51b, the analysed and the third most similar trip are shown. 

Their collocation represents a special situation, where one trip has finished before the other 

even started. As explained in the methodology, the SMI still gets measured the same way. This 

results in a distance for the start points of 2’703 m and a distance for the end points of 337 m. 

For both start points, the closest point on the other trajectory is not its start point and, therefore, 

the direct distance between both points represents the distance value for the start points. 
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Whereas the closest point on the first trajectory for the second end point is its end point, the 

closest point on the second trajectory for the first end point is not its end point. Thus, the short 

distance of 337 m represents the distance value between the end points. Taking the average of 

both values, an SMI of 1’520 results. As this is the third most similar candidate trip, it will be 

used for the matching process, even though it is obviously not a representation of a ride-sharing 

situation as combining these two trips will not result in a shared part. To prevent wrongly 

identifying this collocation as an optimal ride-sharing path, the travel time and distance savings 

constraints are applied. Those dictate that a shared path must reduce the total travel time and, 

in variation two and four, also the total distance compared to the sum of both individual trips. 

As a situation where one trip has finished before the other started cannot surpass these 

constraints, the presented collocation of c) in Figure 51b is excluded in the explained step.  

 

Figure 51a: Visualisation of the analysed and the most similar candidate trip in a) and the analysed and 

the second most similar candidate trip in b). Illustrated with the dashed black line are the distances that 

represent the final distance value between both start and end points and are used for the SMI 

calculation. The collocation in b) is excluded from further processes as it possibly does not fulfil the 

set constraint about the emerging waiting time below 15 minutes. 

a) 

b) 
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As both the second and third most similar candidate trips do not fulfil the set constraints and 

the remaining candidate trip is the most similar one anyways, the fastest path serving both start 

and end points of the analysed and the candidate trip in situation a) will represent the optimal 

identified ride-sharing path for the candidate and the example trip. The situation in d) is an 

example of an unsimilar candidate trip. Besides the fact that both the start and end points are 

located very far away from each other, the two trips are aligned in the opposite direction. So, it 

is obvious that these two trips should not be shared. The big SMI of 5’676.5 confirms this. In 

other ride-sharing systems where each trip is a possible candidate, a lot of needless fastest path 

computations would have been done for such cases. This is prevented with the implemented 

similarity measurement and, thus, the time consumption of the computation is reduced. 

 

Figure 51b: Visualisation of the analysed and the third most similar candidate trip in c) and the 

analysed and an unsimilar candidate trip in d). Illustrated with the dashed black line are the distances 

that represent the final distance value between both start and end points and are used for the SMI 

calculation. Both collocations are excluded from further processes as in c) the set constraints are not 

fulfilled and the candidate trip in d) is not one of the three most similar candidate trips. 

c) 

d) 
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6.4 Identified potential ride-sharing paths 

The result of the similarity measurement for the analysed example trip is the presented three 

most similar candidate trips. As explained in the previous section, only the most similar 

candidate trip is suitable for ride-sharing and fulfils the set constraints, and therefore the result 

of the fastest path computation is only shown for this one. Figure 52 contains three different 

maps. In a), the map-matched trajectory of the analysed example trip is visualised and in b), the 

map-matched trajectory of the most similar candidate trip is given. During the identification 

process of the optimal ride-sharing path, one of the four possible collocations described in 

Figure 34 that leads to the fastest shared path for the two illustrated trips must be selected. As 

shown in c), by the identified optimal ride-sharing path first S2 gets served and then the 

passenger of the analysed trip is picked up. After following the red visualised ride-sharing path, 

the passenger of the analysed trip gets dropped off at E1 and then the shared ride is finished at 

E2. 

 

Figure 52: Visualisation of the identified optimal ride-sharing path for the analysed example trip of the 

previous section. In a), the analysed example trip is illustrated and in b) the most similar candidate trip 

is given. The resulting ride-sharing path that optimises the objective of the system and fulfils all the set 

constraints is displayed by the red line in c). 

 

a) b) 

c) 
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As S2 is located on a road going north, it would be very unsuitable if the shared trip would start 

at S1, because then the taxi would have to first drive more south, change its direction to the 

north, and then pick up the second passenger. This would lead to an unnecessary detour and, 

thus, the algorithm correctly identifies the best collocation of the two start and end points. The 

discussed path represents the identified optimal ride-sharing path for the situation where the 

estimated traffic state information is not included in the identification process, but the distance 

savings constraint must be met. Considering this, the algorithm must find a path that leads 

through road types of high maximum allowed speed limits while keeping the total driving 

distance small. This is maintained as the shared path follows a direct way after picking up the 

second passenger at the start point of the analysed trip through roads of type tertiary street (max. 

allowed speed of 30 km/h) to the trunk running north to south-east, instead of generating a big 

detour to stay on the road of type primary street running north to south-west (60 km/h). On this 

part of the identified path, the maximum allowed speed amounts to 80 km/h. Subsequently, the 

taxi drives through a road of type secondary street (max. allowed speed of 40 km/h) until it 

reaches the road that leads directly to E2 and is again of the tertiary street type. 

 

Summing up the two travel times that would occur if the analysed and the most similar 

candidate trip had been served individually results in a total travel time of 19 min 31 s. The 

total travel time of the identified ride-sharing path amounts to 7 min 53 s. Thus, 11 min 38 s of 

travel time can be saved by implementing the proposed ride-sharing system for this specific 

example. In other words, the shared path leads to a total travel time saving of 59.6%. The second 

passenger, in this case the passenger that requested the analysed trip, must wait only 1 min 53 

s after the trip started until he gets picked up. The travel distance of the analysed taxi trip is 

4.08 km and the candidate trip is 4.41 km long. Summing this up, a total driving distance of 

8.49 km occurs. On the contrary, the shared path leads to a total driving distance of 6.43 km. 

So, besides saving travel time, the shared path can save 2.06 km of travel distance. This equals 

a total driving distance saving of 24.2%. 

 

In addition to reducing the overall travel costs for passengers and the number of vehicles on the 

road networks, ride-sharing can have an influence on emissions as well, most importantly the 

emission of carbon dioxide (CO2). Thus, it is interesting to analyse how much CO2 emissions 

can be saved by implementing a proposed ride-sharing system. Several other studies do the 

same and assume a linear correlation between the driven kilometres and the CO2 emissions. 

Santi et al. (2014b), for instance, show that even though vehicle emissions can be highly non-

linear because of factors like the speed, the traffic signals, or the driver mentality, assuming all 

things being equal is legitimate for the purpose of showing the potential of ride-sharing systems 

in relation to the natural environment. Therefore, in this work, a linear correlation between the 

driven kilometres and the CO2 emissions is assumed as well. As calculated and published by 

Mobitool (2016), a factor of 197.23 g CO2 / km can be used for mobility in Switzerland. Even 

though this study is based on data collected in China, the Swiss factor is applied, as the 

performance of taxis are expected to be similar all over the world. The saved travel distance of 

2.06 km for the discussed example trip leads, therefore, to an emission reduction of 406.29 g 

CO2. The presented fastest shared path is an example of an effectively identified match with a 

short waiting time of less than 2 minutes, travel time savings of more than 50%, and distance 

savings of nearly 25%. All the mentioned results are summarised in Table 14. 
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Table 14: Summary of the resulting measures for the identified optimal ride-sharing path of the 

analysed example trip of this and the previous section. 

The above-presented results refer only to one identified optimal ride-sharing path. Even more 

interesting are the results of these individual measures for all the analysed data. Additionally, 

the differences between the mentioned four variations and with this the influence of the traffic 

state information and the distance saving constraint are of big interest. Therefore, in the 

following two sections, first, the overall results of the ride-sharing system including the 

estimated traffic state information are provided. In the second part, the results for the same 

measures assuming an absence of traffic congestions are shown. To explain how the traffic state 

information and the distance saving constraint influence the matching process, the identification 

of the fastest shared path and the resulting measures of another example trip with its three most 

similar candidate trips are presented and compared between the four possible variations. In the 

end, an overview of the overall results for all four variations of the implemented ride-sharing 

system is provided.  

6.4.1 Including traffic state information 

The results provided in this section are obtained by implementing the proposed ride-sharing 

system while considering the estimated traffic state of the underlying road network. To show 

how the distance saving constraint influences the identified ride-sharing paths, this section 

compares two situations. First, the traffic state information is included, but the distance savings 

constraint ignored. Second, the traffic state information is again included and additionally, the 

distance savings constraint must be met. This comparison is based on another analysed example 

taxi trip and its three most similar candidate trips. The analysed trip (illustrated in red) and each 

candidate trip (the black lines) are visualised in Figure 53 a) to c). In a), the most similar 

candidate trip with an SMI of 499.34 is shown. For the second most similar candidate in b) an 

SMI of 841.43 is measured. With an SMI of 869.90 in c), the third most similar candidate trip 

is displayed. The identified optimal ride-sharing path for the analysed trip given the first 

variation of not including the distance saving constraint is illustrated in d). This shared path is 

a combination of the analysed and the second most similar candidate trip. First, the taxi visits 

S1 before driving through the roundabout to pick up the second passenger. After following the 

red line, the second passenger gets dropped off at E2, and then the ride concludes at E1. The 

main difference to the previous example trip is that this time around, not the most similar but 

the second most similar candidate trip is selected to build the optimal ride-sharing path. As in 

the first variation, only the total travel time must be smaller than the sum of the travel times of 

the two individual trips, which means that all three candidate trips could be potentially selected 

for building the ride-sharing path so far. Whether or not is the final driving distance smaller or 

even bigger than before applying ride-sharing does not matter in this variation. As it can be 

seen in c), the two start points are located quite far from each other and, thus, the emerging 

waiting time is slightly bigger than the threshold of 15 minutes. From the two remaining 

 Travel time Travel distance CO2 emission Waiting time 

Analysed trip 9 min 27 s 4.08 km 804.69 g CO2  

Candidate trip #1 10 min 4 s 4.41 km 869.78 g CO2  

Sum of the individual trips 19 min 31 s 8.49 km 1.675 kg CO2  

Shared trip 7 min 53 s 6.43 km 1.268 kg CO2 1 min 53 s 

Savings [min / km / g CO2] 11 min 38 s 2.06 km 406.29 g CO2  

Savings [%] 59.6% 24.2% 24.2%  
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candidate trips, the one with the analysed trip shared path that minimizes the waiting time and, 

therefore, maximizes the followed objective of the system, is selected as the optimal ride-

sharing path. As sharing the analysed trip with the second most similar candidate trip leads to 

a shorter waiting time of 4 min 4 s than with the most similar candidate trip (4 min 32 s), this 

combination is identified as the optimal ride-sharing path for the analysed trip. The sum of the 

travel times, if the analysed and the second most similar candidate trip had been served 

individually, is 20 min 27 s. The total travel time of the identified shared path is 17 min 3 s and, 

thus, 3 min 24 s of travel time can be saved with the proposed ride-sharing system for the 

analysed taxi trip in variation one. As already mentioned, when the distance saving constraint 

must not be met, the total driving distance of the shared path might even be bigger than the sum 

of the travel distances of the two individual paths. This can occur when the shared path selects 

a road where the driven speed is much higher and, therefore, the travel time in total shorter but 

reaching this road leads to a detour. This is the case in variation one as the driving distance of 

the shared path is 9.82 km long and, thus, 1.13 km longer than the sum of the distances of the 

two individual trips of 8.69 km. By still assuming a linear correlation between driven kilometres 

and CO2 emissions, this identified shared path would lead to an increase in emissions of 13% 

what equals 222.87 g CO2. 

 

Figure 53: Visualisation of the three most similar candidate trips and the optimal ride-sharing path for 

the analysed trip illustrated by the red line in a) to c). The final shared path is displayed in d). This 

path is a combination of the analysed with the second most similar candidate trip. As in variation one 

the distance savings constraint must not be met, the total driving distance of the shared path can be 

bigger than the sum of the distances of the two individual taxi trips, as it is the case in d). A bigger size 

of the figure is given in the appendix of this work. 

a) b) 

c) d) 
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In the second variation, the optimal ride-sharing path must reduce the total driven kilometres in 

comparison to the sum of the two individual trips while the estimated traffic state information 

still is considered. To show what differences in the selection of the optimal candidate trip occur 

using this additional constraint, the same example trip is analysed again. As shown in Figure 

54 a) to c), the three most similar candidate trips remain the same as in Figure 53. As it is 

prohibited that the shared path lets the total driving distance increase, the second most similar 

candidate trip in b) is not an option for sharing the ride with the analysed trip anymore. Only 

the most similar in a) and the third most similar candidate trip in c) remain. As already explained 

in the first variation, in c) the waiting time emerging for the passenger that joins the ride second 

at the start point of the analysed trip is bigger than the set threshold of 15 minutes (16 min 19 

s). Considering the traffic speed map as displayed in Figure 55, besides the big distance between 

the two start points, a second reason for this too big waiting time stands out. When focusing on 

the road segments between S2 and S1 of figure 53 c), in Figure 55 (dashed buffer) mostly orange 

and red coloured lines can be identified. This means that at this time the taxi on average drives 

only between 0 km/h and 10 km/h or 10 km/h and 30 km/h. So, due to the big distance and the 

bad traffic state given, the shared path with this candidate trip is not suitable for ride-sharing. 

The remaining shared path between the analysed and the most similar candidate trip fulfils all 

the set constraints and is, therefore, identified as the optimal ride-sharing path for the analysed 

example trip given the second variation. This ride-sharing path is visualised in Figure 54 d). So, 

in the second variation a different optimal shared path is identified than in the first one and, 

thus, the only difference between Figure 53 and 54 is given in the maps in d). 

 

Figure 54: Visualisation of the three most similar candidate trips in a) to c) and the optimal ride-

sharing path in d) for the analysed trip. The final ride-sharing path of the second variation is a 

combination of the analysed with the most similar candidate trip. A bigger size of it is in the appendix. 

a) b) 

c) d) 
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Figure 55: Traffic speed map for the time window when the third most similar candidate trip would 

have started when served individually. The black dashed line shows the part of the path between both 

start points. As the distance is large and mostly orange and red coloured segments are visible, the 

emerging waiting time for the second user exceeds the set threshold of 15 minutes. 

The identified optimal shared path begins at S1, goes through the roundabout and then north to 

pick up the second passenger. After following the same way back to the roundabout and heading 

on to E2, the end point of the most similar candidate trip, the passenger that joined second gets 

dropped off. The ride is finished at E1. The emerging waiting time for the second passenger 

amounts to 4 min 32 s. The sum of the travel times of the two individual trips is 17 min 42 s 

and the total travel time of the shared path is 15 min 15 s. With 2 min 27 s, a total travel time 

saving of 13.9% is achieved. Considering the distance, a total value of 7.69 km for the shared 

path emerges. As the sum of the travel distances of the two individual trips amounts to 7.83 km, 

140 m of distance is saved. Including the additional constraint leads therefore, notwithstanding 

the reduction of the total travel time savings, to a decrease in the driving distance, though a very 

small one. In comparison to the first variation, the second one saves 27.61 g CO2 for the 

analysed example. Table 15 provides an overview on all the presented measures of the two 

variations. Variation one stands for including the traffic state information and ignoring the 

distance savings constraint, and in variation two, the traffic state is still considered, but, 

additionally, the distance savings constraint must be met. The differences in the results of the 

two discussed variations show how important it is to include the distance savings constraint for 

it has a substantially positive impact on our environment. Otherwise, the problem of too high 

emissions only moves from having too many vehicles on the network to enlarging each driving 

distance. 
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Table 15: Summary of the measures of both variations including the estimated traffic state. Displayed 

are the results of the identification process of ride-sharing paths for the analysed example trip. In 

variation one the travel distance slightly increases by the proposed ride-sharing method. A - stands for 

a negative influence on the travel distance and CO2 emissions, meaning an increase in these measures. 

The measures presented in Table 15 are calculated based on only one identified ride-sharing 

path. To assess how effective a developed ride-sharing system is, the overall results must be 

analysed as well. This means that for the waiting time, an average value of all the resulting 

waiting times must be calculated. The travel time and distance savings are also computed for 

all the processed taxi trips (shared and unshared). Just like that, an incomparably more 

significant statement can be made about the savings of CO2 emissions. In addition to this, and 

with the overall results in mind, a value for the taxi fleet reduction can be calculated as well. 

This shows to what extent the total number of taxis could be reduced thanks to ride-sharing and, 

thus, how such a system could contribute to an overall reduction of the number of vehicles on 

the road network. To calculate this reduction, the number of unique taxi IDs of all the involved 

taxi trips must be counted first; this represents how many taxis are in service without ride-

sharing involved. When an analysed trip is shared with a candidate trip, it is assumed that the 

taxi of the analysed trip will serve the shared ride. Therefore, for all shared paths, the number 

of unique taxi IDs of the analysed trips is elaborated. The taxi trips that are unsuitable for ride-

sharing are served individually by its assigned taxi. So, the final number of taxis in service, 

when ride-sharing is implemented, is the sum of the unique taxi IDs of the analysed trips of the 

shared paths and the unique taxi IDs of the individually served trips. The difference between 

the two counted numbers gives the potential taxi fleet reduction. Another measure that only 

makes sense when considering all the identified ride-sharing paths is the matching rate of the 

systems. This value shows how many taxi trips can be shared by the proposed method. The 

higher this number, the more attractive a system gets for the users; and with more users 

involved, normally a higher reduction in the CO2 emissions and the number of vehicles on the 

road network can one expect to achieve. The matching rate of the proposed system in this work 

is calculated by counting how many of the 15’347 available map-matched taxi trips are involved 

in the identified ride-sharing paths. The rest of the taxi trips are served individually.  

 

The mentioned measures are again computed for the case where the distance savings constraint 

is not considered and for the case where this constraint must be met. For both variations, the 

estimated traffic state of the underlying road network is included. The resulting values are given 

in Table 16. When traffic state information is used during the identification process, but the 

distance savings constraint must not be met, 7’412 ride-sharing paths result. This means that 

only 523 of the 15’347 available taxi trips are not involved in a ride-sharing path. Thus, the 

matching rate for this variation amounts to 96.59%. On average, the passenger that joins the 

 Variation 1 Variation 2 Difference 

Travel time savings [min] 3 min 24 s 2 min 27 s  57 s 

Travel time savings [%] 16.6% 13.9%  2.7% 

Travel distance savings [km] - 1.13 km 0.14 km  1.27 km 

Travel distance savings [%] - 13% 1.7%  14.7% 

CO2 emission savings [g CO2] - 222.87 g CO2 27.61 g CO2  250.48 g CO2 

CO2 emission savings [%] - 13% 1.7%  14.7% 

Waiting time [min] 4 min 4 s 4 min 32 s  28 s 
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ride second must wait 3 min 24 s until the taxi arrives at its pickup location. If all 15’347 trips 

of the analysed day would be served individually, a total travel time of 2’930 h 36 min and a 

total driving distance of 67’554.6 km would emerge. Applying the proposed ride-sharing 

system leads to a total travel time of 1’904 h 16 min and, as the distance savings constraint must 

not be met, potentially leading to an increase in the distance, to a total driving distance of 

75’374.7 km. The travel time savings are, therefore, 1’026 h 20 min or 35.02%, while no travel 

distance is saved as 7’820.1 km more are driven, which equals an increase of 11.57%. As 

already seen by the analysed example trip, the proposed ride-sharing system in variation one 

does not reduce the total CO2 emissions, but in fact lets them increase by 1’542.3 kg CO2. This 

equals a rise of 11.57%. The 15’347 available trips would be served by 10’760 different taxis 

if no ride-sharing is applied. This number decreases to 6’535 taxis if the proposed system under 

variation one is implemented. So, 4’225 taxis can be saved and removed from the road network. 

This equals a taxi fleet reduction of 39.27%. 

 

When traffic state information is used and the distance savings constraint is required to be met, 

the resulting measures differ. From the 15’347 available taxi trips, 8’420 trips are involved in 

the identified ride-sharing paths. This means that 4’210 shared paths are found, and 6’927 trips 

are served individually. The resulting matching rate, therefore, drops to 54.86%. The average 

waiting time for the second passenger to be picked up decreases slightly and amounts to 3 min 

14 s. The total travel time and the total driving distance that emerges when all the trips would 

be served individually are still 2’930 h 36 min and 67’554.6 km. By applying the proposed 

system considering the distance savings constraint, a total travel time of 2’147 h 38 min and a 

total driving distance of 61’576.4 km results. So, 782 h 58 min or 26.72% travel time and, 

different from the previous variation, 5’978.2 km or 8.85% driving distance are saved. This 

leads to savings of 1’179.1 kg in CO2 emissions, which equals a reduction by 8.85%. The size 

of the taxi fleet, granted the trips are served individually, remains the same with 10’760 taxis. 

By applying the ride-sharing system including the distance savings constraint, the number drops 

to 8’484 different taxis. So, here only 2’276 taxis can be removed from the road network, which 

equals a taxi fleet reduction of 21.15%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 16: Resulting measures for the developed ride-sharing system based on real-world GPS taxi data 

of Chengdu, China. In the first variation the estimated traffic state is included but the distance savings 

constraint is not considered. In the second variation both the traffic state and the distance savings 

constraint are included. The main differences are visible in the matching rate, the travel distance 

savings, and the CO2 emission reduction. A - stands for a negative influence on the travel distance and 

CO2 emissions, meaning an increase in these measures. 

 Variation 1 Variation 2 Difference 

Matching rate [%] 96.59% 54.86%  41.73% 

Waiting time [min] 3 min 24 s 3 min 14 s  10 s 

Travel time savings [h, min] 1’026 h 20 min 782 h 58 min  243 h 22 min 

Travel time savings [%] 35.02% 26.72%  8.3% 

Travel distance savings [km] - 7’820.1 km 5’978.2 km  13’798.3 km 

Travel distance savings [%] - 11.57% 8.85%  20.42% 

CO2 emission savings [g CO2] - 1’542.3 kg CO2 1’179.1 kg CO2  2’721.4 kg CO2 

CO2 emission savings [%] - 11.57% 8.85%  20.42% 

Taxi fleet reduction [taxis] 4’225 taxis 2’276 taxis  1’949 taxis 

Taxi fleet reduction [%] 39.27% 21.15%  18.12% 
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6.4.2 Assuming absence of traffic congestions 

The results provided in this section are obtained by implementing the proposed ride-sharing 

system while assuming an absence of traffic congestions on the underlying road network. This 

means that the vehicle speed is a static value that only depends on the type of the road segment 

and its maximum allowed speed. Therefore, travel time in this vacuum does not depend on the 

time of the day. To show how the distance savings constraint and the traffic state information 

influence the identified ride-sharing paths, this section again compares the results between not 

considering the distance savings constraint and including this additional constraint. 

Furthermore, the findings are compared with the previous section. The comparison is based on 

the same analysed example trip as before, but the three most similar candidate trips have slightly 

changed. Figure 56 provides again the overview of the analysed and its three most similar 

candidate trips in a) to c). The most similar candidate trip in a) is the same as while including 

the traffic state information and still contains an SMI of 499.34. The second most similar 

candidate trip in the previous section does no longer count as a candidate for the analysed trip, 

as it is already used in a ride-sharing path with a trip that started earlier. This difference is due 

to the change in the travel time values. While considering the estimated traffic state, this old 

candidate trip is not suitable to be shared with the taxi trip that started earlier than the analysed 

one as either the travel time is not reduced or the waiting time is too long because of the bad 

traffic state. Without traffic state information this shared path can be driven in less time and the 

waiting time gets reduced as well. Thus, this combination is considered as the most suitable one 

for the earlier trip and is not available anymore for the analysed example trip. The second most 

similar candidate trip for the analysed example trip is, therefore, the previously as third most 

similar candidate selected trip. So, in Figure 56 b), the same candidate trip as in Figure 53 c) 

and 54 c) is illustrated. The SMI of this trip is still 869.90. The third most similar candidate trip 

in Figure 56 c) given the assumption of an absence of traffic congestions is a new candidate. In 

the first and the second variation, this candidate trip is ranked as the fourth most similar 

candidate trip. As in the third variation the ranking changes, the mentioned candidate is no 

longer the fourth but third most similar candidate trip with an SMI of 1’013.26. 

 

Each candidate trip would lead to a shared path that fulfils the two set constraints in this 

variation. The most similar candidate trip is already considered to be suitable when the 

estimated traffic state is included and hence, here again. The candidate given in Figure 56 b) is 

not considered to be suitable for ride-sharing when traffic state information is used. It is argued 

that there is a too long waiting time sourcing from the big distance between both start points 

and the bad traffic state on the driven road segments, as displayed in Figure 55. Figure 57 shows 

the same dashed line around the subject road segments but with the maximum allowed speed 

value of each road type. During most of the analysed part of the path speed values of 40 km/h 

and 60 km/h are allowed. So, in the third variation the vehicles on average can drive much faster 

due to the absence of traffic congestions and therefore the emerging waiting time for the shared 

path of Figure 56 b) is clearly smaller than the threshold of 15 minutes. Thus, while not using 

traffic state information, this trip is considered to be suitable as well. The third most similar 

candidate trip is obviously less suitable to be shared with the analysed trip than e.g. the most 

similar candidate trip, but it still fulfils the set constraints because of the allowed high speed 

values and is therefore considered to be suitable for ride-sharing too. If more than one candidate 

trip fulfils the constraints the trip with the shortest waiting time is identified as the optimal ride-

sharing path. Following this rationale, the optimal shared path for the analysed trip given the 

third variation is built with the most similar candidate trip and visualised in Figure 56 d). 
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Figure 56: Visualisation of the three most similar candidate trips in a) to c) and the optimal ride-

sharing path in d) for the analysed example trip. The final ride-sharing path of the third variation is a 

combination of the analysed with the most similar candidate trip. A bigger size of it is in the appendix. 

 

Figure 57: Visualisation of the maximum allowed speed values per road type. The black dashed line 

shows the same part of the path between both start points like in Figure 55. As the sub paths’ average 

speed value is quite high, the emerging waiting time is smaller than the threshold of 15 minutes. 

a) b) 

c) d) 
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The identified shared path is the same as in variation two, given in Figure 54 d) and goes through 

the same road segments in the same order. Due to the absence of traffic congestions, the 

emerging waiting time for the second passengers is now only 2 min 16 s. The sum of the travel 

times of the two individual trips is still 17 min 42s but the total travel time of the shared path 

amounts now to 7 min 46 s. The travel time of the shared path is now clearly shorter because 

of the higher speed values. Like this, 9 min 56 s of travel time is saved what equals 56.13%. As 

the path is exactly the same, the sum of the travel distances of the two individual trips still 

amounts to 7.83 km and the distance of the shared path 7.69 km. The travel distance savings of 

140 m remain the same for this variation and so do the CO2 emission savings of 27.61 g CO2. 

The assumption of an absence of traffic congestions thus only affects the travel time savings 

and the emerging waiting time for this example trip but not the route and the distance of the 

shared path compared to the second variation.  

 

In the fourth variation again an absence of traffic congestions is assumed but different from the 

third variation, the distance savings constraint must be met. This means that as in the second 

variation, the sum of the driving distances of the two individual trips must be bigger than the 

driving distance of the shared path. Analysing the example trip, the three most similar candidate 

trips are again slightly different than before. All the trips are shown in Figure 58 a) to c) and in 

d) the identified ride-sharing path is visible. Completely different from all the other three 

variations, the most similar candidate trip is a new and even more similar trip than the most 

similar one has been so far. This trip given in a) is combined with an earlier started trip for the 

first three variations. Due to the higher allowed speed values and the set distance savings 

constraint, it represents in this variation the most similar candidate trip for the analysed example 

trip with an SMI of 445.77. The previously most similar candidate trip is now ranked as the 

second most similar candidate trip with the same SMI of 499.34 and is displayed in b). The 

third most similar candidate trip given in c) is the same as the second most similar candidate in 

the first two variations with an SMI of 841.43. The in the third variation as the second most 

similar candidate ranked trip is combined with an earlier started taxi trip for this case and is 

thus not represented anymore in the three most similar candidate trips. 

 

As for the combination in a) the first part of the path until the roundabout is equal for both trips 

and the end points are located close to each other, their shared path fulfils all the set constraints 

including the distance savings constraint. The second most similar candidate trip already fulfils 

the set constraints in the second variation where the additional constraint is included as well. 

As in the fourth variation the average speed value of the road segments is much higher than in 

the second, the shared path will be even faster and the waiting time shorter and thus this trip is 

again considered to be suitable for sharing the ride with the analysed example trip. The 

candidate trip in c) is very similar to the candidate in a). The only difference is that the third 

most similar candidate trip will lead to a bigger waiting time as the start points are located a 

little bit further away from each other. Nevertheless, this candidate fulfils all the set constraints 

as well. So again the situation is given where all three candidate trips are suitable for sharing 

the ride with the example trip. As the most similar candidate trip starts at the same place as the 

analysed trip, no waiting time emerges and therefore this trip is identified as the final ride-

sharing candidate. The optimal shared path of this combination is displayed in d). It starts for 

both passengers in the north, goes east until the roundabout and then south to E2. After dropping 

off the first passenger, the trip is finished at E1, the end point of the analysed trip. 

 



  6 Results 

96 

 

 

Figure 58: Visualisation of the three most similar candidate trips in a) to c) and the optimal ride-

sharing path in d) for the analysed trip. The final ride-sharing path of the fourth variation is a 

combination of the analysed with the most similar candidate trip. A bigger size of it is in the appendix. 

The sum of the travel times of the two individual trips amounts to 19 min 10 s. The travel time 

of the shared path is only 6 min 41 s. Thus, 12 min 29 s of travel time is saved what equals a 

decrease of 64.88%. The decrease can be explained as most of the shared path goes through 

road segments of type primary street, where the speed limit amounts to 60 km/h. So, compared 

to the situation where the traffic state is considered, the average speed is almost three times 

higher and thus a much shorter travel time occurs. Summing up the length of both paths, a total 

driving distance of 8.78 km emerges. The shared path on the other hand, is 5.98 km long. The 

2.8 km saved travel distance represent a reduction of 31.89%. The identified optimal ride-

sharing path saves 552.24 g CO2 and reduces these emissions by 31.89%. All the presented 

measures of both variations are as in the previous section summarized in Table 17. 

 

By comparing the resulting measures between the variations where for both cases the distance 

savings constraint is included but once the traffic state is excluded, especially the smaller travel 

time savings stand out for the situation of considering the estimated traffic state. Comparing the 

situation where for both cases the traffic state is not included but only once the distance savings 

constraint must be met, a big difference in the travel distance savings is given. As soon as this 

constraint must be met, the savings in the distance strongly increase. So, besides the effect on 

the selection of the three most similar candidate trips and moreover, on the identification of the 

optimal combination for the final ride-sharing path, after analysing only one example trip, for 

both the traffic state information and the distance savings constraints, an influence on the 

resulting measures can be detected. 

a) b) 

c) d) 
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Table 17: Summary and comparison of the measures of the third and fourth variation. Displayed are 

the resulting values of the identification process of the optimal ride-sharing path for the analysed 

example trip. The values of the fourth variation for the example trip are better in each category. 

To analyse the influence traffic state information and the additional constraint can have on the 

whole system, the overall results must be checked as well for the situation of assuming an 

absence of traffic congestions. Thus, the in the previous section mentioned measures are again 

computed for this situation. Once the distance savings constraint is considered and then ignored. 

The resulting measures for the whole system are listed in Table 18. If instead of the estimated 

traffic state information the travel times resulting from the maximum allowed speed values are 

used during the identification process and the system does not have to save travel distance, 

7'626 ride-sharing paths result. From the 15'347 available taxi trips, 15'252 trips are involved 

in ride-sharing and only 95 trips are not suitable to be used in the proposed system. This equals 

a matching rate of 99.38%. The average waiting time that emerges for the passenger that is 

picked up second amounts to 2 min 8 s. 

 

As the data used to calculate the total travel time if all trips would have been served individually 

is the same as for the case where the traffic state is considered, the total travel time remains 

2'930 h 36 min for the 15'347 taxi trips. The same counts for the total driving distance of 

67'554.6 km. A difference occurs by applying the ride-sharing system without the traffic state 

involved, as this leads to a total travel time of 1'185 h 24 min and if the distance constraint is 

ignored, to a total driving distance of 68'925.85 km. In other words, the travel time savings are 

1'745 h 12 min, which equals 59.56% and the travel distance is lengthened by 1'371.25 km or 

2.03%. These values are better for the case of the travel time and more optimal for the travel 

distance compared to considering the estimated traffic state in the first variation. The same 

counts for the CO2 emissions. With 270.4 kg CO2 or 2.03%, even more emissions are generated 

than without ride-sharing, though the magnitude shrinks. Focusing on the taxi fleet reduction, 

the in the third variation proposed system lets the number of taxis decrease from 10'760 to 

6'386. So, 4'374 taxis can be saved and removed from the road network. This represents a taxi 

fleet reduction of 40.65%. 

 

If an absence of traffic congestions is assumed but additionally the distance savings constraint 

must be met, the resulting measures differ again, as it was the case for the first two variations. 

10'830 of 15'347 taxi trips form part of a ride-sharing path. So, 5'415 different shared paths are 

identified, and 4'517 trips are served individually. This results in a decrease in the matching 

rate to 70.57%. The average waiting time that occurs for the second passenger gets slightly 

shorter with 2 min 6 s. Again, no changes are made to the values of the total travel time and 

travel distance given each trip is served individually. Thus, a travel time of 2'930 h 36 min and 

 Variation 3 Variation 4 Difference 

Travel time savings [min] 9 min 56 s 12 min 29 s  2min 33 s 

Travel time savings [%] 56.13% 64.88%   8.75% 

Travel distance savings [km] 0.14 km 2.8 km  2.66 km 

Travel distance savings [%] 1.7% 31.89%  30.19% 

CO2 emission savings [g CO2] 27.61 g CO2 552.24 g CO2  524.63 g CO2 

CO2 emission savings [%] 1.7% 31.89%  30.19% 

Waiting time [min] 2 min 16 s 0 s  2 min 16 s 
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a travel distance of 67'554.6 km are given. Different from the third variation, while considering 

the additional constraint, a total travel time after applying the ride-sharing approach of 1'467 h 

52 min results. The new total driving distance is 58'908.5 km. This means, that 1'462 h 44 min 

or 49.91% of travel time and 8'646.1 km, which equals 12.8%, of travel distance, are saved. 

This leads to a reduction of 1'705.3 kg CO2. So, in other words 12.8% of the CO2 emissions can 

be avoided by the proposed system and the given circumstances. The number of taxis that are 

needed to serve all the requests if no ride-sharing is involved remains 10'760. Due to ride-

sharing, in the fourth variation, 2'969 taxis can be removed from the road network, which leads 

to a taxi fleet size of 7'791 vehicles. So, compared to variation three, the taxi fleet reduction 

amounts only to 27.59%. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 18: Resulting measures for the developed ride-sharing system based on real-world GPS taxi 

trajectory data of Chengdu, China. In the third variation an absence of traffic congestions is assumed, 

and the distance savings constraint is not considered. In the fourth variation the traffic state is still not 

included but the distance savings constraint considered. The main differences are visible in the 

matching rate, the travel distance savings, and the CO2 emission reduction. A - stands for a negative 

influence on the travel distance and CO2 emissions, meaning an increase in these measures. 

In the last column of Table 16 and Table 18, the differences in the resulting measures between 

the different variations are listed. These differences occur due to the distance savings constraint 

and thus by looking at these absolute numbers and percentages, the influence this constraint has 

on the results can be assessed. If the traffic state information is included in the identification 

process, the additional constraint leads to a decrease in the matching rate of 41.73%. Assuming 

an absence of traffic congestions, this decrease amounts only to 28.81%. So, the distance 

savings constraint has a stronger influence on the results when the traffic state is considered. 

This can be explained as with the additional constraint more direct paths must be created and 

these can lead through areas of bad traffic state. Hence, the travel time increases and can exceed 

the threshold of the sum of the travel times of the two individual trips. Consequently, more 

shared paths are filtered out and thus the matching rate decreases stronger. The average waiting 

does for both situations, with traffic state or without, slightly decrease due to the additional 

constraint, but there is no specific influence detectable on this measure, as still the objective of 

the system is to minimize this waiting time and, thus, it remains short for both cases. 

Considering the distance savings constraints worsens the travel time savings as well. For 

including the traffic state, the savings decrease by 8.3% and for assuming an absence of traffic, 

they decrease by 9.65%. As these two values are quite similar, the traffic state information does 

not affect the influence of the additional constraint on the travel time savings. The decrease 

 Variation 3 Variation 4 Difference 

Matching rate [%] 99.38% 70.57%  28.81% 

Waiting time [min] 2 min 8 s 2 min 6 s  2 s 

Travel time savings [h, min] 1'745 h 12 min 1'462 h 44 min  282 h 28 min 

Travel time savings [%] 59.56% 49.91%  9.65% 

Travel distance savings [km] - 1'371.25 km 8'646.1 km  10'017.35 km 

Travel distance savings [%] - 2.03% 12.8%  14.83% 

CO2 emission savings [g CO2] - 270.4 kg CO2 1'705.3 kg CO2  1'975.7 kg CO2 

CO2 emission savings [%] - 2.03% 12.8%  14.83% 

Taxi fleet reduction [taxis] 4’374 taxis 2'969 taxis  1'405 taxis 

Taxi fleet reduction [%] 40.65% 27.59%  13.06% 
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occurs because most of the shared paths that save a lot of time are not allowed anymore as they 

normally tend to increase the travel distance (driving through ring roads of high speed values 

which are not located very close to the original path). A significant improvement by the 

additional constraint is visible in the travel distance savings. For using traffic state information, 

the savings increase by 20.42% and for not using this information, 14.83% more distance is 

saved as when this constraint is not an obligation. These values are rather high as the distance 

savings values change from negative savings, meaning an increase in the distance, to positive 

savings of 8.85% respectively 12.8%. The bigger change is visible in the situation, where the 

traffic state information is used, but this is only due to the stronger increase in the travel distance 

caused in the variation where the distance savings constraint is not considered. Focusing only 

on the savings in variation two respectively four, the value is higher while assuming an absence 

of traffic congestions. Thus, traffic state information negatively influences the effect the 

additional constraint has on the distance savings, as again more direct ways are possible if no 

bad traffic state is given. In other words, the road network is not congested. 

 

In addition, these numbers show how important the distance savings constraint for the positive 

impact of ride-sharing systems on the natural environment is. This impact is first discussed by 

the analysed example trip in Chapter 6.4.1 but expounded upon with these presented values. 

Not forcing the ride-sharing system to identify only shared paths that save travel distance results 

in more driven kilometres and hence more CO2 emissions. With this additional constraint, the 

conserved travel distance of 8.85% and 12.8% leads to an emission reduction of 1’179.1 kg 

CO2 and 1’705.3 kg CO2 for just the 15’347 available taxi trips. This reduction could be even 

bigger if extended to the whole taxi fleet of Didi in Chengdu. In general, the distance savings 

constraint has a negative influence on all the measures except the travel distance savings, the 

CO2 emissions, and the average waiting time. However, the additional constraint should be 

included in the algorithm of a ride-sharing system to achieve useful results, as the three 

positively influenced measures are amongst the most important ones of such a system. 

 

To analyse the influence traffic state information can have on the different measures in more 

detail, what is used in the next section to discuss the related research question, Tables 19 and 

20 compare the provided values between variation one and three respectively variation two and 

four. The last column delivers once again the differences between the retrieved values. The 

difference in the matching rate when the distance constraint must not be met is rather small. 

Both rates are very high, and the traffic state does not have a special influence on that. If the 

additional constraint is included, the traffic state information leads to a worse matching rate 

than simply assuming an absence of traffic congestions. The reason for this, as already 

explained in the previous paragraph, are the areas of bad traffic where the more direct shared 

paths pass through. The resulting too big travel times consequently reduce the matching rate. 

The strongest impact traffic state information has, is given in the average waiting time and the 

travel time savings. The former decreases in both situations by more than a third when the 

traffic state information is not included in the identification process. The main reason for this 

might be the higher average speed of the vehicles when no traffic congestions are given and the 

resulting shorter travel time from one start point to the other. The same counts for the increase 

in the travel time savings when no traffic state is considered. As shown in Chapter 5.4, the travel 

speeds are for the biggest part of the study area below the maximum allowed speed value and 

thus the shared paths take more time to be completed when traffic state information is included 

than without. Consequently, considering the traffic state in the system negatively influences the 
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travel time savings. As it is shown in Tables 19 and 20, the distance savings, and linearly 

correlated to this the reduction of CO2 emissions, slightly increase (Table 20) and are more 

optimal without traffic state information (Table 19). Additionally, it is apparent that excluding 

traffic state information has a stronger effect on these two measures when the distance savings 

constraint must not be met. Focusing on the differences in the taxi fleet reduction, it can be 

surmised that including traffic state information negatively influences this decrease, even 

though only slightly. This means that for both situations, considering the traffic state of the 

underlying road network removes fewer taxis from this network as when an absence of traffic 

congestions is assumed. Overall, the results show that including the estimated traffic state the 

way it is proposed in this work negatively affects all the presented and discussed measures, 

independent of adding a third constraint or not. To summarise the discussed results of this 

section, Table 21 delivers an overview of all the computed measures for all four variations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 19: Comparison of the resulting measures for the developed ride-sharing system between the 

variation where the distance savings constraint is not considered, once with the traffic state 

information included (variation 1) and once excluded (variation 3). In the last column, the difference 

that shows the influence traffic state information can have on the results is given. A - stands for a 

negative influence on the travel distance and CO2 emissions, meaning an increase in these measures.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 20: Comparison of the resulting measures for the developed ride-sharing system between the 

variation where the distance savings constraint must be met, once with the traffic state information 

included (variation 2) and once excluded (variation 4). In the last column, the difference that shows 

the influence traffic state information can have on the results is given. 

 Variation 1 Variation 3 Difference 

Matching rate [%] 96.59% 99.38%  2.79% 

Waiting time [min] 3 min 24 s 2 min 8 s  1 min 16 s 

Travel time savings [h, min] 1’026 h 20 min 1'745 h 12 min  718 h 52 min 

Travel time savings [%] 35.02% 59.56%  24.54% 

Travel distance savings [km] - 7’820.1 km - 1'371.25 km  6448.85 km 

Travel distance savings [%] - 11.57% - 2.03%  9.54% 

CO2 emission savings [g CO2] - 1’542.3 kg CO2 - 270.4 kg CO2  1'271.9 kg CO2 

CO2 emission savings [%] - 11.57% - 2.03%  9.54% 

Taxi fleet reduction [taxis] 4’225 taxis 4’374 taxis  149 taxis 

Taxi fleet reduction [%] 39.27% 40.65%  1.38% 

 Variation 2 Variation 4 Difference 

Matching rate [%] 54.86% 70.57%  15.71% 

Waiting time [min] 3 min 14 s 2 min 6 s  1min 8 s 

Travel time savings [h, min] 782 h 58 min 1'462 h 44 min  679 h 46 min 

Travel time savings [%] 26.72% 49.91%  23.19% 

Travel distance savings [km] 5’978.2 km 8'646.1 km  2’667.9 km 

Travel distance savings [%] 8.85% 12.8%  3.95% 

CO2 emission savings [g CO2] 1’179.1 kg CO2 1'705.3 kg CO2  526.2 kg CO2 

CO2 emission savings [%] 8.85% 12.8%  3.95% 

Taxi fleet reduction [taxis] 2’276 taxis 2'969 taxis  693 taxis 

Taxi fleet reduction [%] 21.15% 27.59%  6.44% 
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Table 21: Summary of all the resulting measures after applying the developed ride-sharing system to 

real-world GPS taxi trajectory data. The results are computed for four different variations. In the first 

two variations traffic state information is included in the identification process and in the last two 

variations an absence of traffic congestions is assumed. Variation one and two respectively three and 

four differ as once the distance savings constraint is ignored and once it must be met. A - stands for a 

negative influence on the travel distance and CO2 emissions, meaning an increase in these measures.  
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7. Discussion 

By developing and implementing a framework on how to identify potential ride-sharing paths 

from raw GPS taxi trajectory data, the conducted analysis addressed the influence considering 

traffic state information has on the results of a ride-sharing system. Additionally, the effect of 

including a third constraint focusing on the total distance reduction of ride-sharing paths was 

outlined. By introducing a new similarity measurement for taxi trips and describing how to 

estimate traffic state information based on raw GPS data, additionally two new contributions 

were made to the research field of ride-sharing. In this section, the newly developed methods 

and the resulting measures are put into perspective to the three research questions and the 

hypotheses of Chapter 3.2 are discussed. Furthermore, the approaches and findings are related 

to the presented literature in Chapter 2. At the end of the chapter, the limitations of this work 

are described. 

7.1 Estimating traffic state information 

The first research question addresses how traffic state information can be estimated given the 

available data sources and how this information can be included in the process of identifying 

potential ride-sharing paths. As explained in detail in the method section, only the road network 

and the raw GPS records are needed for the presented approach. By using the differences in the 

distance and the time stamps of the GPS signals, speed values for the individual trajectory points 

can be calculated. By simply taking the average of the speed values of all records that are map-

matched to the same segment, the overall estimated speed value for a road segment is derived. 

This procedure is repeated 96 times as the traffic state is estimated for time windows of 15 

minutes during the whole day. Based on these traffic speed values and the information about 

the length of the individual road segments, derived from the OSM dataset, the travel time of 

each road segment for the different time windows is calculated. This information is then 

integrated into the algorithm that identifies the optimal ride-sharing paths by adding it as the 

weight to the Dijkstra’s shortest path algorithm. Besides using the traffic state information for 

computing the potential ride-sharing paths, this information is as well used while selecting the 

for ride-sharing suitable paths and identifying the optimal solution by calculating the travel time 

and the waiting time based on that information. 

 

Compared to existing approaches in the literature, the developed process is very simple and 

does not depend on additional data sources or complex probability functions as e.g. in 

Nathawhichti et al. (2003), where they use a complex macroscopic model and additional data 

from stationary detectors. In the study of Santi et al. (2014a), due to incomplete data they are 

forced to apply a quite complex estimation method as well. The results of this are expected to 

represent the reality less accurate than with the proposed approach of this work as only a small 

part of the real-world data is considered in the estimation. Wang et al. (2018) presumably 

estimate the average traffic state based on historic data and not only on the same dataset as 

analysed by the ride-sharing method. This means, that again additional data is needed in their 

approach. 
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The strength of the proposed traffic state estimation method is that the values are only based on 

the input data to the ride-sharing system and still produce reliable results. This is shown in 

Chapter 6.2, where the traffic speed maps of different time windows are analysed and 

compared. No unrealistic values or abrupt changes in the road network are detectable. The 

disadvantages of this method are the strong dependency on the quality of the GPS data and the 

map-matching approach, as well as the decreasing accuracy when not many location fixes are 

available. If the GPS data is erroneous, the vehicle speed cannot be calculated accurately 

enough. Incorrect map-matched trajectory points make this even worse. Nevertheless, the traffic 

state estimation method presented in this work is very simple to be applied while delivering 

reliable results and includes the estimated values in the fastest path computation and selection 

of the optimal shared ride to produce real-world circumstance based findings. 

7.2 Identifying ride-sharing paths from raw GPS data 

The second research question focuses on how potential ride-sharing paths can be efficiently 

identified from a large GPS taxi trajectory dataset. The complete framework of all the involved 

steps that are developed and explained in detail in this work is given in Figure 15 of Chapter 5. 

The first three main steps can be seen as preliminary processes that must be done to successfully 

identify ride-sharing paths from raw GPS data. These steps include the pre-processing of both 

input datasets, the map-matching of the trajectory points and the traffic state estimation. 

Without these steps, the whole process is dysfunctional as the subsequent approaches need 

correct information about the exact location of the trips on the road network and the conditions 

of this network in sense of traffic state or maximum allowed speed values. The final 

identification process consists again of two sub-steps. These are the newly developed similarity 

measurement and the matching process itself. By computing the fastest paths between the 

analysed trips and a set of candidate trips, which are selected based on the similarity 

measurement, a local optimum solution for each analysed trip is found. These optimal shared 

paths must reduce the total travel time compared to the sum of the travel times of the two 

individual trips, lead to a waiting time below the set threshold of 15 minutes and in two of the 

four different analysed situations to a reduction in the total distance of the shared path compared 

to the sum of the two individual trips. Moreover, they must follow the objective of the system 

by minimizing the occurring waiting time for the second passenger of each ride. Thanks to the 

implemented similarity measurement, only a few fastest paths must be computed for each 

analysed trip, and therefore the ride-sharing paths can be identified more efficiently. 

 

As discussed in the related work section of Chapter 2, many different ride-sharing systems have 

been developed and presented in the last several years. Because the basic settings of these 

systems are very similar, it is interesting to show how the proposed ride-sharing system of this 

work can be distinguished from already existing ones and how the architecture of the 

identification process is built to achieve higher efficiency. Pre-processing and map-matching 

the GPS data form part of almost every study if the system is applied to real-world data. Here, 

different approaches are chosen to map-match the trajectories but mostly no detailed 

explanation about the method is given, as it is simply seen as a basic step of each system. The 

main differences occur in the matching process. These have been identified as on what type of 

algorithm the shared paths are built, what conditions must be met, what the objective of the 

whole system is and if the results represent a local or a global maximum. The most similar 

architectures of ride-sharing systems compared to the presented one are provided by the works 

of Cai et al. (2019), Wang et al. (2018) and Santi et al. (2014a). 
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All of them develop a static taxi-sharing system based on real-world GPS data, as it is the case 

in this study. Cai et al. (2019) and Santi et al. (2014a) both are identifying a global optimum 

solution with their matching process. Different from them and similar to Wang et al. (2018), 

the proposed system focuses on a local optimum. The constraints included in these three studies 

differ from saving driving distance, not creating a too big delay, or waiting time, to reducing 

the taxi fare. Given the three constraints applied in this work, in this aspect, the system does not 

strongly differ from the others. A novelty compared to the three similar systems is the followed 

objective of this model. Minimizing the waiting time has so far not often been addressed as the 

main goal of a system. They rather follow objectives like minimizing the total driven distance, 

minimizing the total travel time, or maximizing the matching rate. The reason for following this 

objective and not a more common one is already explained in the method chapter. Like in Santi 

et al. (2014a) and Wang et al. (2018) this system works with the fastest path algorithm to build 

the potential ride-sharing paths. Cai et al. (2019) on the other hand, use the shortest path 

algorithm as no information on travel time is included. 

 

The main difference from the discussed papers and in general from the existing literature is the 

number of considered candidate trips for building a shared path with an analysed trip. In the 

three mentioned studies, the shortest or the fastest path is computed between an analysed trip 

and a big number of candidate trips, which is only limited by a defined time window. In some 

studies, even shared paths between all available trips are built and then tested on the constraints. 

Like that, a lot of fastest paths are computed between candidate and analysed trips which are 

not suitable to be shared at all. They are then excluded in a subsequent step as they do not fulfil 

the set constraints and are therefore needlessly computed. 

 

Due to the developed similarity measurement, this work suggests a different approach as only 

the three most similar candidate trips are analysed in detail and only between them shared paths 

are built. Assuming that the fastest path computation is equally time-consuming for both 

systems, the proposed ride-sharing system could therefore identify the potential ride-sharing 

paths more efficiently. This is intensified because only a local optimum and not a global 

optimum is searched, as the complexity of a system strongly increases with global optimization 

problems. Thus, by the developed framework and especially by the implemented similarity 

measurement, an alternative simple and efficient ride-sharing system is proposed in this work. 

7.3 The influence of using traffic state information in ride-sharing systems 

With the third and last research question, the effect of considering traffic state information in a 

ride-sharing system on the resulting measures is analysed. To be able to analyse this influence, 

the in the experimental design presented four variations of the proposed ride-sharing system are 

applied to real-world GPS taxi trajectory data of the city centre of Chengdu, China. By 

comparing the differences in the resulting measures of Chapter 6.4, this research question is 

addressed. Subsequently, the three established hypotheses regarding the influence of traffic 

state information are discussed.  

 

The effect the additional constraint about the savings of driving distance has on the resulting 

measures is already presented in the last part of the result chapter. The conclusion is that 

regardless of including traffic state information or not; the matching rate, the travel time savings 

and the taxi fleet reduction decrease while the waiting time gets shorter and the total driving 

distance savings as well as the reduction of CO2 emissions increase. This additional constraint 
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does not affect the resulting measures 100% positively. Nevertheless, as a ride-sharing system 

should have a positive impact on the natural environment, what is not given without this 

constraint, the positive impact on the waiting time, the distance savings and the emission 

reduction outmatch the negative effects. Hence, it is considered necessary to include this 

additional constraint in ride-sharing systems. Therefore, to analyse the influence traffic state 

information can have, only the differences in the measures of the second and fourth variation 

are discussed. The significance of this is that the results between the situation where the traffic 

state information is included and the distance savings constraint must be met and the situation 

where an absence of traffic congestions is assumed but the distance constraint still must be 

fulfilled, are compared. 

 

Considering real-world circumstances by including the estimated traffic state in the proposed 

ride-sharing system lets the matching rate decrease by 15.71% from 70.57% to 54.86%. Thus, 

only slightly more than half of the available taxi trips form part of a shared ride. This is 

explained by the fact that in general the traffic state is congested for the study area and thus the 

travel times of the shared trips and additionally the travel distances increase. This then leads in 

many cases to not fulfilling the set constraints anymore and therefore less shared rides can be 

identified. This effect is further confirmed by the change in the total travel time savings and the 

reduction of the total driving distance. Including the traffic state lets the travel time savings 

decrease by 46.47%. When no traffic congestions are given, 1'462 h 44 min or 49.91% travel 

time can be saved by applying ride-sharing. These numbers shrink to 782 h 58 min or 26.72% 

due to the mentioned reasons after considering the traffic state information. For the travel 

distance, 8'646.1 km or 12.8% are saved while an absence of traffic congestions is assumed and 

only 5'978.2 km respectively 8.85% of travel distance can be reduced with real-world 

circumstances considered. This equals a decrease of 2'667.9 km or 30.86% in the distance 

savings. As a linear correlation between the driven distance and the CO2 emissions is assumed, 

as well 30.86% less CO2 can be reduced due to the traffic state. Instead of 1'705.3 kg, only 

1'179.1 kg CO2 is saved by the applied ride-sharing system under the given circumstances. The 

second positive effect of ride-sharing systems, besides reducing emissions, is a potential 

reduction in the taxi fleet size and thus a decrease in the number of vehicles on the road network. 

While assuming an absence of traffic congestions, 2'969 taxis are removed from the network, 

which equals a taxi fleet reduction of 27.59%. These values are also influenced by the traffic 

state and diminish to 2'276 removed taxis respectively a taxi fleet reduction of 21.15%. The 

traffic state information lets this positive effect decrease by 23.34%. The last measure that gets 

influenced by the real-world circumstances is the waiting time that emerges for the second 

passenger. While this measure amounts to 2 min 6 s when no traffic congestions are given, it 

increases by 53.81% to 3 min 14 s as soon as traffic state information is included. 

 

Focusing on the research question, generally, the findings are that considering traffic state 

information in ride-sharing systems has a negative influence on all the presented measures. This 

results from the smaller average vehicle speed triggered by congestions, traffic lights or 

accidents. As the speed is directly connected to the travel time, this measure and additionally 

the waiting get influenced the most by traffic state information. Other measures like the distance 

savings or taxi fleet reduction are negatively influenced as well, but less severely. This negative 

effect is coupled with the influence on the travel time as the given circumstances a shared ride 

tries to lead through streets where a higher speed value is possible and this lets the distance 

increase and, hence, the savings decrease. 
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Before conducting the presented analysis of this work, three hypotheses connected to the third 

research question were constructed. In the following, these three hypotheses are discussed.   

 

1. Less potential ride-sharing paths are identified when including traffic state information 

compared to assuming an absence of traffic congestions. 

 

This hypothesis was constructed due to the thought that considering traffic state normally leads 

to speed values smaller than the maximum allowed ones as traffic congestions that trigger this 

decrease exist in almost every city centre. Smaller speed values and resulting bigger travel times 

can produce problems with the set constraints and, thus, less ride-sharing paths were expected 

to be marked as suitable. As shown in Chapter 6.2, the traffic state of the city centre is bad, and 

the network congested. This means, that on average the possible vehicle speed is, as expected, 

smaller than the maximum allowed one. This indeed leads to the described effect and reduces 

the number of identified potential ride-sharing paths. Expressed in numbers, this means that 

assuming an absence of traffic congestions 5'415 potential ride-sharing paths are identified with 

the presented system for the 15'347 available taxi trips. Including the traffic state, this number 

decreases by 22.25% to 4'210 identified potential ride-sharing paths. Thus, this hypothesis is 

corroborated. 

 

2. The average waiting time for the second passenger is higher when including traffic state 

information compared to assuming an absence of traffic congestions. 

 

The second hypothesis was again established due to the expected increasing travel times caused 

by considering the traffic congestions. As on average for each road segment, more time is 

needed to pass it, the time emerging driving from one start point to the other is increasing as 

well. Thus, the average waiting time is expected to be longer with traffic state information 

included than while assuming an absence of traffic congestions. This hypothesis is corroborated 

by comparing the two average waiting times of both scenarios. Not considering the traffic state 

leads to an average waiting time of 2 min 6 s. Including this information, the average waiting 

time rises by 1 min 8 s or 53.81% to 3 min 14 s and is clearly higher. 

 

3. Savings in total travel time and total travel distance are smaller when including traffic 

state information compared to assuming an absence of traffic congestions. 

 

The last hypothesis was established due to the same reasons as already explained in the two 

previously discussed hypotheses. It was expected that the due to traffic congestions on average 

bigger travel time per road segment leads to an increase in the total travel times of most of the 

identified shared paths. As the sum of the travel times of the two individual trips that are 

combined in a shared path remains the same, the difference between their travel time and the 

travel time of the shared path was predicted to decrease or in other words, the travel time savings 

to shrink. As to diminish the loss of travel time savings the shared path tries to lead through 

road segments where a higher vehicle speed is possible, normally an increase in the travel 

distance can be forecasted, as it does not represent a very direct way anymore. Hence, the 

average travel distance of a shared path was expected to increase as well. This would lead to a 

shrinkage in the total travel distance savings. These expectations are confirmed by the 

conducted analysis. If no traffic state information is given, 49.91% of the total travel time can 

be saved by the ride-sharing system. Considering real-world circumstances shrinks the savings 
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by 46.47% and results in 26.72% saved total travel time. The same is valid for the travel distance 

savings as without traffic state information included 12.8% of the total driving distance is saved 

with the proposed method and while considering the traffic state only 8.85% of the total driving 

distance can be reduced. Hence, the total travel distance savings decrease by 30.86% due to 

including traffic state information. 

 

To assess the efficiency of the proposed approach and highlight again the influence of traffic 

state information, some of the resulting measures can be compared to the results of related 

studies. Starting with the matching rate, studies of Aydin et al. (2020), Barann et al. (2017), Cai 

et al. (2019) or Stiglic et al. (2015) produce matching rates of 65.75%, 48.34%, 77% or 74.83%. 

As all these studies do not include traffic state information, their values are compared to the 

value of the proposed system for the situation where an absence of traffic congestions is 

assumed. With 70.57%, the resulting matching rate of this work is part of the upper range of 

the given measures of other studies and therefore represents a solid value. The distance savings 

differ between the four studies from 33.48%, 18.98%, 33% to 29.63%. As the computed total 

distance savings amount only to 12.8% in the proposed ride-sharing system, this measure is 

rather small compared to other studies. 

 

A reason for this might be the different objective of the system. Most of the other studies follow 

the objective of maximizing the distance savings or the matching rate while the system of this 

work follows the objective of minimizing the waiting time. As the waiting time is coupled with 

the travel time, this measure is on average small as well. Hence, the travel time savings of 

49.91% of this work are very high compared to e.g. the travel time savings in Barran et al. 

(2017) of 22.42%. The same study computes a taxi fleet reduction of 24.17% which is in the 

same range as the taxi fleet reduction of the system of this work with 27.59%. As the presented 

measures of the other studies are computed based on different data, the results must be analysed 

with caution as comparing them only allows to study if they are more or less in the same range 

but not to calculate numerical differences in the absolute values. In general, this comparison 

shows that the proposed ride-sharing system produces results that are in the same range of 

results of other studies while having a very simple architecture thanks to the developed 

similarity measurement. The strength can be seen in the travel time savings whereas the 

weakness is given by the distance savings. 

 

As already described, the compared values are computed for the situation where traffic state 

information is not considered. If this information is included, the values of the matching rate, 

the travel time savings, the distance savings, and the taxi fleet reduction shrink to 54.86%, 

26.72%, 8.85% and 21.15%. These values are clearly smaller and for most of the measures not 

in the range of the presented results of the other studies anymore. This highlights again the 

negative influence traffic state information can have on ride-sharing systems. Considering this, 

the conclusion can be made that ride-sharing studies that do not include traffic state information, 

as in some of the mentioned papers, distort their results as they are embellished. Working with 

real circumstances of the underlying road network would lead to worse measures. The users of 

such systems might have to wait longer for a taxi to arrive as calculated or the trip duration 

unexpectedly increases. As this is not user-friendly, the traffic state information should be 

considered in ride-sharing systems to be useful for real-world applications. 
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7.4 Limitations of this work 

In this subchapter, some limitations of this work are presented. The first two are related to the 

used subset of the data. Originally one month of GPS taxi trajectory data is available. Due to 

the time consumption of the methods based on the rather slow server infrastructure and the 

limited time window in which this work is done, only one day of the dataset is analysed. 

Analysing all the available data would be interesting especially for the traffic state estimation. 

With data of only one day, the changes in the traffic state between working days and weekends 

cannot be analysed. Considering this, further conclusions could be made on the differences in 

the influence of traffic state information based on different weekdays. Additionally, using more 

data would improve the accuracy of the estimation method. The second limitation, which 

represents the biggest limitation, is given by the problems while map-matching the GPS taxi 

trajectory data. The errors occurring with the arcpy Python module significantly reduce the size 

of the data. Though still enough trips are left to conduct the analysis, having more data available 

would lead to better and more accurate results.   

 

During the interpolation process of the calculated vehicle speed values, a global Kriging 

approach is implemented. It is argued that as the speed values of the generated sub-networks 

are in the same range, independent from the location on the network, using a local interpolation 

method is not required. Nevertheless, it would be an improvement to show the differences in 

the two methods and then decide based on this which one truly is more suitable. Another 

improvement could be done by considering more than one traffic state time window for the 

weights of the Dijkstra’s shortest path algorithm for trips with a duration bigger than 15 

minutes. As aforementioned in Chapter 5.5.3.1, the rather simple approach of only considering 

one time window is legitimated with the fact that taxi drivers like to stick to the at the beginning 

computed route. Nonetheless, by changing this more detailed results could be obtained. 

 

The last limitation is related to the similarity measurement. As the goal of this method is to 

reduce the complexity of the matching process and make the system more efficient, it would be 

nice to monitor the computation time of this step to analyse how much more efficient the system 

gets compared to already existing ones. Unfortunately, this additional analysis is not conducted 

in the study, as it would go beyond the scope of this work.
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8. Conclusion 

This work shows how potential ride-sharing paths can be efficiently identified starting with raw 

GPS taxi trajectory data while considering the estimated traffic state of the underlying road 

network. By applying the developed framework to real-world GPS data, it is analysed what 

influences such information about the traffic state can have on ride-sharing systems. The major 

findings are that traffic state information leads to more conservative (and thus likely more 

realistic) matching of trips, which shows itself in lower respectively worse values for the 

calculated measures. Most affected by the traffic state are the total travel time savings, which 

get reduced by 46.47%, and the average waiting time with an increase of 53.81%. The total 

distance savings (reduction of 30.86%), the CO2 emission savings (decrease of 30.86%), the 

taxi fleet reduction (23.34% fewer savings) and the matching rate (reduction of 15.71%) are 

affected less severely. 

 

Comparing the resulting measures with existing ride-sharing studies for the situation where the 

traffic state information is not considered shows that besides being built less complex and more 

efficient, the results of the proposed system can keep up with the other studies. Analysing the 

differences between results of existing literature and the resulting measures when the traffic 

state information is included highlights the negative effect traffic state information has on ride-

sharing systems. This allows claiming that ride-sharing system not considering traffic state 

information distort their results as they are embellished. This can lead to a decrease in the user-

friendliness of a system as unexpected different waiting times or delays can emerge. Thus, this 

study shows that including traffic state information can be a very important point to make a 

ride-sharing system more useful to real-world applications. 

 

Another finding is that not forcing an identified ride-sharing path to result in a shorter travel 

distance than the sum of the travel distances of the two individual trips that build this shared 

path, has a rather strong influence on the measures of a ride-sharing system. The matching rate, 

the travel time savings and the taxi fleet reduction are negatively affected; meaning they 

decrease, while the waiting time, the total distance savings and the CO2 emission reduction are 

influenced positively. This means that the waiting time gets reduced and the total distance 

savings as well as the savings of CO2 emissions increase. Despite not affecting all the resulting 

measures positively, it is shown that this additional constraint should be included in the 

matching process of a ride-sharing system to have a positive impact on the natural environment. 

 

In addition to the presented major findings, this work provides three further contributions. First, 

a framework containing all the necessary steps beginning with raw GPS taxi trajectory data and 

a road network to efficiently identify potential ride-sharing paths is developed. Different from 

previous ride-sharing studies, by considering the information on the traffic state of the 

underlying road network, real-world circumstances are included in the ride-sharing system. 

Second, with the described traffic state estimation method an alternative approach to existing 

methods in the literature is presented that is based only on the already in the ride-sharing system 

used data. No further inputs are needed. Moreover, the result of this estimation is included twice 

in the identification process of potential ride-sharing paths to solve the problem more 

realistically. 
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The third contribution is represented by a newly developed similarity measurement that filters 

out unsimilar and thus for ride-sharing unsuitable taxi trips that initially serve as candidates to 

build a ride-sharing path with an analysed trip. Different to existing similarity measurements in 

the literature, this method is built for ride-sharing systems of taxis and only measures the 

distance between the start and end points of two taxi trips respectively between start or end 

points and the closest point of the opposite trip. The significance of this is that the route of a 

trip is less important while the start and end points are weighted stronger. Being able to filter 

out highly unsimilar candidate trips and having to compute only the fastest paths for a maximum 

of three times between an analysed trip and its three most similar candidates, allows the 

complexity of the system to decrease and leads to higher efficiency. Besides considering real-

world circumstances, due to the similarity measurement, the framework can represent a 

compared to existing ride-sharing systems less complicated and more efficient solution. 

 

For future research, the presented ride-sharing system of this work must be compared in more 

detail, in sense of time consumption and quality, to systems of other studies. Analysing the 

same dataset with the proposed system and an existing one allows to monitor how much time 

is needed for the computations of both systems and what the resulting measures are. Through 

this method it will be shown if because of the implemented similarity measurement, the system 

truly is more efficient and if yes, how much computation time can be saved. Furthermore, by 

comparing the absolute values of the measures, what is not possible given results based on 

different datasets, it can be validated whether besides being more efficient in computation time, 

the quantity and quality of the results can keep up with existing systems. 

 

In addition, future research studies about ride-sharing systems including traffic state 

information must analyse the influence such information has on the resulting taxi fare. The 

aspect of the price of a shared ride is not considered in this work, but eventually, it is influenced 

by traffic state information as well. Normally, the taxi fare of a trip or at least the range of it, if 

requested through an application, is known before starting the ride. If no traffic state 

information is included, the algorithm potentially computes a too short travel time or distance, 

which could lead to an incorrect taxi fare. How including the traffic state influences this price 

and to what extent the taxi company and the users earn respectively spend more, must be 

addressed in future work. Last, the proposed static ride-sharing system must be transformed 

into a dynamic system keeping the structure of the approach (using the traffic state information 

and simplify the matching process by the similarity measurement). This way it can be 

implemented into a mobile application to be used in real-world scenarios.



  Literature 

111 

 

Literature 

Agatz, N. A. H., Erera, A. L., Savelsbergh, M. W. P. & Wang, X. (2011). Dynamic ride-sharing: 

A simulation study in metro Atlanta. Transportation Research Part B: Methodological, 

45 (9), 1450–1464. 

Agatz, N., Erera, A., Savelsbergh, M. & Wang, X. (2012). Optimization for dynamic ride-

sharing: A review. European Journal of Operational Research, 223(2), 295–303. 

Aly, H., Basalamah, A. & Youssef, M. (2016). Robust and ubiquitous smartphone-based lane 

detection. Pervasive and Mobile Computing, 26, 35–56. 

Angloinfo China (2020). Speed Limits and Types of Roads. https://www.angloinfo.com/how-

to/china/transport/driving/on-the-road [Accessed: 11.03.2020]. 

Armant, V. & Brown, K. N. (2014). Minimizing the Driving Distance in Ride Sharing Systems. 

IEEE 26th International Conference on Tools with Artificial Intelligence, 568–575. 

Asakura, Y., Kusakabe, T., Nguyen, L. X. & Ushiki, T. (2017). Incident detection methods 

using probe vehicles with on-board GPS equipment. Transportation Research Part C: 

Emerging Technologies, 81, 330–341. 

Aydin, O. F., Gokasar, I. & Kalan, O. (2020). Matching algorithm for improving ridesharing 

by incorporating route splits and social factors. PLoS ONE, 15(3), 1–23.  

Barann, B., Beverungen, D. & Müller, O. (2017). An open-data approach for quantifying the 

potential of taxi ridesharing. Decision Support Systems, 99, 86–95. 

Bathla, K., Raychoudhury, V., Saxena, D. & Kshemkalyani, A. D. (2018). Real-Time 

Distributed Taxi Ride Sharing. 21st International Conference on Intelligent 

Transportation Systems (ITSC), 2044–2051. 

Bernstein, D. & Kornhauser, A. (1996). An Introduction to Map Matching for Personal 

Navigation Assistants. New Jersey TIDE Center, 1–16. 

Besse, P. C., Guillouet, B., Loubes, J. M. & Royer, F. (2016). Review and Perspective for 

Distance-Based Clustering of Vehicle Trajectories. IEEE Transactions on Intelligent 

Transportation Systems, 17(11), 3306–3317. 

Bierlaire, M., Chen, J. & Newman, J. (2013). A probabilistic map matching method for 

smartphone GPS data. Transportation Research Part C, 26, 78–98. 

Cai, H., Wang, X., Adriaens, P. & Xu, M. (2019). Environmental benefits of taxi ride sharing 

in Beijing. Energy, 174, 503–508. 

Cao, B., Alarabi, L., Mokbel, M. F. & Basalamah, A. (2015). SHAREK: A Scalable Dynamic 

Ride Sharing System. Proceedings - IEEE International Conference on Mobile Data 

Management, 1, 4–13. 

Chan, N. D. & Shaheen, S. A. (2012). Ridesharing in North America: Past, Present, and Future. 

Transport Reviews, 32(1), 93–112. 



  Literature 

112 

 

Cox, S. & Little, C. (2020). Time Ontology in OWL. https://www.w3.org/TR/2020/CR-owl-

time-20200326/ [Accessed: 25.06.2020]. 

Crabtree, J. (2018). Didi Chuxing took on Uber and won. Now it’s taking on the world. 

https://www.wired.co.uk/article/didi-chuxing-china-startups-uber [Accessed: 

05.11.2019]. 

De Fabritiis, C., Ragona, R. & Valenti, G. (2008). Traffic Estimation And Prediction Based On 

Real Time Floating Car Data. IEEE Conference on Intelligent Transportation Systems, 

197–203. 

Furuhata, M., Dessouky, M., Ordóñez, F., Brunet, M. E., Wang, X. & Koenig, S. (2013). 

Ridesharing: The state-of-the-art and future directions. Transportation Research Part B: 

Methodological, 57, 28–46. 

Gökay, S., Heuvels, A. & Krempels, K. H. (2019). On-demand Ride-sharing Services with 

Meeting Points. VEHITS 2019 - Proceedings of the 5th International Conference on 

Vehicle Technology and Intelligent Transport Systems, 117–125.  

Goldberg, A. V. & Tarjan, R. E. (1996). Expected Performance of Dijkstra ’ s Shortest Path 

Algorithm. Princeton University, Computer Science Department, 1-6. 

Greenfeld, J. S. (2002). Matching GPS Observations to Locations on a Digital Map. 

Transportation Research Board, 3, 13. 

Haddad, Y., Cohen, Y. & Goldsmith, R. (2013). A Dynamic Real Time Car Sharing System. 

International Conference on Soft Computing and Software Engineering, 1-7. 

Hashemi, M. & Karimi, H. A. (2014). A critical review of real-time map-matching algorithms: 

Current issues and future directions. Computers, Environment and Urban Systems, 48, 

153–165. 

He, M., Zheng, L., Cao, W., Huang, J., Liu, X. & Liu, W. (2019). An enhanced weight-based 

real-time map matching algorithm for complex urban networks. Physica A: Statistical 

Mechanics and Its Applications, 534, 122318, 1-13.  

He, W., Hwang, K. & Li, D. (2014). Intelligent Carpool Routing for Urban Ridesharing by 

Mining GPS Trajectories. IEEE Transactions on Intelligent Transportation Systems, 

15(5), 2286–2296. 

Hosni, H., Naoum-Sawaya, J. & Artail, H. (2014). The shared-taxi problem: Formulation and 

solution methods. Transportation Research Part B, 70, 303–318. 

Jia, T., Luo, W., Jia, H., Zhu, H. & Li, X. (2016). Research on Remote Diagnosis System Based 

on Baidumap API and OBD II diagnosis technology. 2016 International Conference on 

Communication Problem-Solving, 1–3. 

Jung, J., Jayakrishnan, R. & Park, J. Y. (2013). Design and Modeling of Real-time Shared-Taxi 

Dispatch Algorithms. Transportation Research Board, 1–20. 

Kerner, B. S., Demir, C., Herrtwich, R. G., Klenov, S. L., Rehborn, H., Aleksić, M. & Haug, 

A. (2005). Traffic State Detection with Floating Car Data in Road Networks. IEEE 

Conference on Intelligent Transportation Systems, 700–705. 



  Literature 

113 

 

Kong, Q. J., Zhao, Q., Wei, C. & Liu, Y. (2013). Efficient Traffic State Estimation for Large-

Scale Urban Road Networks. IEEE Transactions on Intelligent Transportation Systems, 

14(1), 398–407. 

Lin, S. (2018). ChinaCoordinate. https://github.com/versey-sherry/ChinaCoordinate 

[Accessed: 23.11.2019]. 

Liu, Y., Xu, J. & Luo, H. (2014). An integrated approach to modelling the economy-society-

ecology system in urbanization process. Sustainability, 6, 1946–1972. 

Mobitool (2016). mobitool-Faktoren v2.0. https://www.mobitool.ch/admin/data/files/tool/ 

tool_file_de/5/mobitool-faktoren-v2.0.2.xlsm?lm=1491413883 [Accessed: 20.08.2020]. 

Nanthawichit, C., Nakatsuji, T. & Suzuki, H. (2003). Application of Probe Vehicle Data for 

Real-Time Traffic State Estimation and Short-Term Travel Time Prediction on a Freeway. 

TRB 2003 Annual Meeting, 1–16. 

Newson, P. & Krumm, J. (2009). Hidden Markov Map Matching Through Noise and 

Sparseness. Proceedings of the ACM International Symposium on Advances in 

Geographic Information Systems, 336–343. 

Obradovic, D., Lenz, H. & Schupfner, M. (2006). Fusion of Map and Sensor Data in a Modern 

Car Navigation System. Journal of VLSI Signal Processing, 45, 111–122. 

Ochieng, W. Y., Quddus, M. A. & Noland, R. B. (2004). Positioning algorithms for transport 

telematics applications. Journal of Geospatial Engineering, 6(2), 10–30. 

Oliver, M. A. & Webster, R. (2014). A tutorial guide to geostatistics: Computing and modelling 

variograms and kriging. Catena, 113, 56–69. 

Ota, M., Vo, H., Silva, C. & Freire, J. (2015). A Scalable Approach for Data-Driven Taxi Ride-

Sharing Simulation. 2015 IEEE International Conference on Big Data, 888–897. 

Petit, S. (2017). World Vehicle Population Rose 4.6% in 2016. https://wardsintelligence. 

informa.com/WI058630/World-Vehicle-Population-Rose-46-in-2016  

[Accessed: 12.03.2020]. 

Piórkowski, A. (2011). MySQL Spatial and PostGIS - Implementations of spatial data 

standards. Electonic Journal of Polish Agricultural Universities, 14(1), 1–8. 

Qin, B. (2015). City profile: Chengdu. Cities, 43, 18–27. 

Quddus, M. A., Ochieng, W. Y. & Noland, R. B. (2007). Current map-matching algorithms for 

transport applications: State-of-the art and future research directions. Transportation 

Research Part C: Emerging Technologies, 15(5), 312–328. 

R Core Team. (2018). R: A language and environment for statistical computing. R Foundation 

for Statistical Computing, Vienna, Austria. 

Rabiner, L. R. (1989). A Tutorial on Hidden Markov Models and Selected Applications in 

Speech Recognition. Proceedings of the IEEE, 77(2), 257–286. 

 



  Literature 

114 

 

Rayle, L., Shaheen, S., Chan, N., Dai, D. & Cervero, R. (2014). App-Based, On-Demand Ride 

Services: Comparing Taxi and Ridesourcing Trips and User Characteristics in San 

Francisco. University of California Transportation Center, 1-19. 

Reed, T. (2020). Global Traffic Scorecard. INRIX Research, 1, March, 1-20. 

Ren, M. & Karimi, H. A. (2009). A hidden Markov Model-Based Map-Matching Algorithm 

for Wheelchair Navigation. Journal of Navigation, 62, 383–395. 

Santi, P., Resta, G., Szell, M., Sobolevsky, S., Strogatz, S. H. & Ratti, C. (2014a). Quantifying 

the benefits of vehicle pooling with shareability networks. Proceedings of the National 

Academy of Sciences of the United States of America, 111(37), 13290–13294. 

Santi, P., Resta, G., Szell, M., Sobolevsky, S., Strogatz, S. & Ratti, C. (2014b). Supporting 

Information for quantifying the benefits of vehicle pooling with shareability networks. 1–

24. 

Schneider, S. (2017). Map matching in ArcGIS https://github.com/simonscheider/ 

mapmatching/wiki/Map-matching-in-ArcGIS [Accessed: 12.01.2020]. 

Schwieterman, J. & Smith, C. S. (2018). Sharing the ride: A paired-trip analysis of UberPool 

and Chicago Transit Authority services in Chicago, Illinois. Research in Transportation 

Economics, 71, 9–16. 

Shen, B., Huang, Y. & Zhao, Y. (2015). Dynamic Ridesharing. SIGSPATIAL Special, 7(3), 3–

10. 

Shete, A., Bhandare, V., Londhe, L. & P.B.Mali, P. B. M. (2015). Intelligent Carpooling 

System. International Journal of Computer Applications, 118(4), 26–31. 

Stemler, A., Evans, J. & Himebaugh, B. (2019). The Chinese Experiment: Lessons from the 

Regulation of Ridesharing in China. Indiana University Kelley School of Business 

Research Paper, 19–48, 1–54. 

Stiglic, M., Agatz, N., Savelsbergh, M. & Gradisar, M. (2015). The benefits of meeting points 

in ride-sharing systems. Transportation Research Part B: Methodological, 82, 36–53. 

Sun, Y., Chen, Z. L. & Zhang, L. (2020). Nonprofit peer-to-peer ridesharing optimization. 

Transportation Research Part E, 142, 1–26. 

Sunderrajan, A., Viswanathan, V., Cai, W. & Knoll, A. (2016). Traffic State Estimation Using 

Floating Car Data. Procedia Computer Science, 80, 2008–2018. 

Syed, S. & Cannon, M. E. (2004). Fuzzy Logic Based-Map Matching Algorithm for Vehicle 

Navigation System in Urban Canyons. Proceedings of the National Technical Meeting, 

982–993. 

Theodoridis, S. & Koutroumbas, K. (2009). Chapter 9 - Context-Dependent Classification. In 

Theodoridis, S. & Koutroumbas, K. (2009). Patter Recognition, 4, 521-565. 

Tian, C., Huang, Y., Liu, Z., Bastani, F. & Jin, R. (2013). Noah: A dynamic ridesharing system. 

Proceedings of the ACM SIGMOD International Conference on Management of Data, 

985–988. 



  Literature 

115 

 

van Kreveld, M. & Luo, J. (2007). The Definition and Computation of Trajectory and 

Subtrajectory Similarity. Proceedings of the 15th International Symposium on Advances 

in Geographic Information Systems, 1–4. 

Velaga, N. R., Quddus, M. A. & Bristow, A. L. (2009). Developing an enhanced weight-based 

topological map-matching algorithm for intelligent transport systems. Transportation 

Research Part C: Emerging Technologies, 17(6), 672–683. 

Wang, X. & Kockelman, K. M. (2009). Forecasting network data spatial interpolation of traffic 

counts from texas data. Transportation Research Record, 2105, 100–108. 

Wang, Y., Zheng, B. & Lim, E. P. (2018). Understanding the effects of taxi ride-sharing — A 

case study of Singapore. Computers, Environment and Urban Systems, 69, 124–132. 

Wikitravel (2008). Driving. http://www.china.org.cn/travel/beijingguide/2008-

06/04/content_15616950_3.htm [Accessed: 19.04.2020]. 

Yang, D., Cai, B. & Yuan, Y. (2003). Improved Map-Matching Algorithm Used in Vehicle 

Navigation System. Proceedings of Intelligent Transportation Systems Conference, 2, 

1246–1250. 

Yang, H., Cheng, S., Jiang, H. & An, S. (2013). An enhanced weight-based topological map 

matching algorithm for intricate urban road network. Procedia - Social and Behavioral 

Sciences, 96, 1670–1678. 

Ye, J. (2018). Big Data at Didi Chuxing. SIRIP: Industry Days, 18, 1341–1341. 

Yu, H., Raychoudhury, V. & Silwal, S. (2020). Dynamic Taxi Ride Sharing using Localized 

Communication. ICDCN 2020: Proceedings of the 21st International Conference on 

Distributed Computing and Networking, 1–10. 

Zhang, Y., Li, X., Wang, A., Bao, T. & Tian, S. (2015). Density and diversity of 

OpenStreetMap road networks in China. Journal of Urban Management, 4, 135–146.  

   

 



  Appendix 

116 

 

Appendix 

In this appendix, figures which appear slightly too small in the main text are again illustrated 

in bigger size. The numbering of them remains the same. This means that each figure in this 

appendix is labelled with the same number as in the main text. Hence, in the figure catalogue 

the figures of the appendix are not repeated. 

 

 

 

 

 

  

Sub-network «primary street» 

- Curve: Exponential model 

- Nugget: 170.305 

- Major range: 1327.01 

- Partial sill: 72.87 
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Sub-network «living street» 

- Curve: Gaussian model 

- Nugget: 19.76 

- Major range: 603.22 

- Partial sill: 6.86 

 

Sub-network «motorway» 

- Curve: Gaussian model 

- Nugget: 0.78 

- Major range: 1157.69 

- Partial sill: 778.66 
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Sub-network «secondary street» 

- Curve: Exponential model 

- Nugget: 93.75 

- Major range: 2279.30 

- Partial sill: 41.03 

 

Sub-network «tertiary street» 

- Curve: Exponential model 

- Nugget: 39.54 

- Major range: 2086.15 

- Partial sill: 26.77 
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Figure 24: Variograms and used parameters of the six sub-networks. The parameters are analysed for 

the time window between 12:00 p.m. and 12:15 p.m. and taken as the input for the Ordinary Kriging 

interpolation method. 

 

 

 

Sub-network «trunk» 

- Curve: Gaussian model 

- Nugget: 327.17 

- Major range: 1807.55 

- Partial sill: 287.85 

 

a) 
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Figure 25: a) shows the sub-network and the road segments with the missing values. In b) the line 

features are split into its vertices. The resulting interpolated speed values are illustrated in c). As 

shown in d), the average of the speed values of the three vertices that are extracted from the Kriging 

surface represents the final interpolated speed value for the specific road segment. 

 

 
 

d) 
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Figure 53: Visualisation of the three most similar candidate trips and the identified optimal ride-

sharing path for the analysed example trip illustrated by the red line in a) to c). The final ride-sharing 

path is displayed in d). This path is a combination of the analysed with the second most similar 

candidate trip. As in variation one the distance savings constraint must not be met the total driving 

distance of the shared path can be slightly bigger than the sum of the driving distances of the two 

individual taxi trips, as it is the case in d). 
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Figure 54: Visualisation of the three most similar candidate trips in a) to c) and the identified optimal 

ride-sharing path in d) for the analysed example trip. The final ride-sharing path of the second 

variation is a combination of the analysed with the most similar candidate trip. 
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Figure 56: Visualisation of the three most similar candidate trips in a) to c) and the identified optimal 

ride-sharing path in d) for the analysed example trip. The final ride-sharing path of the third variation 

is a combination of the analysed with the most similar candidate trip. 
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Figure 58: Visualisation of the three most similar candidate trips in a) to c) and the identified optimal 

ride-sharing path in d) for the analysed example trip. The final ride-sharing path of the fourth variation 

is a combination of the analysed with the most similar candidate trip.
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