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Abstract

As the world’s population keeps on rising and more people tend to live in cities rather than in
the countryside the road networks get congested, which leads to an increase in car accidents,
environmental pollution, and fuel consumption. A solution to tackle this is given by ride-sharing
systems that assist in sharing taxis, thus reducing the number of vehicles on a cities’ road
network. Considering information about traffic congestions and vehicle’s speed in such systems
did so far not receive much attention from the research community. To close the given research
gap this work develops a framework on how to identify potential ride-sharing paths from GPS
taxi trajectory data considering the traffic state information, and analyses how such information
influences the identified shared paths and the overall results of a ride-sharing system. The
considered traffic state information is estimated only based on information received from the
GPS records and the road network dataset and directly included into the matching process by
being used as the weight of the shortest respectively fastest path algorithm. By developing and
implementing a new similarity measurement between taxi trips that potentially could be shared,
the complexity of the matching process gets reduced and the system is made more efficiently.
The proposed system is applied to real-world GPS data of the city centre of Chengdu, China:
once considering the estimated traffic state information and once assuming an absence of traffic
congestions. This way the influence of traffic state information on ride-sharing systems is
analysed. By not considering traffic state information a matching rate of 70.57% results.
49.91% of the total travel time and 12.8% of the total travel distance are saved. This leads to a
reduction of 1°705.3 kg CO>. On average the second passenger must wait 2 min 6 s to get picked
up. With the proposed method the taxi fleet is reduced by 27.59%. Considering traffic state
information, a matching rate of 54.86% and savings in the total travel time and distance of
26.72% respectively 8.85% emerge. 1°179.1 kg CO- can be saved while the average waiting
time amounts to 3 min 14 s. 21.15 % of the taxi fleet can be reduced. This analysis shows that
traffic state information leads to more conservative (and thus likely more realistic) matching of
trips, which shows itself in lower respectively worse values for all the calculated measures.
Most affected are the travel time savings and the average waiting. This allows claiming that
ride-sharing system not considering traffic state information distort their results as they are
embellished. This can lead to a decrease in the user-friendliness of a system as unexpected
different waiting times or delays can emerge. This work shows that including traffic state
information can be a very important point to make a ride-sharing system more useful for real-
world applications. Future research should analyse, based on the same data, how much
computation time can be saved by this, due to the similarity measurement, simple, yet efficient
ride-sharing approach and compare its results in absolute numbers to existing systems.

Keywords: ride-sharing system, taxi-sharing, traffic state estimation, GPS trajectory
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1 Introduction

1. Introduction
1.1 Motivation

Since purchasing a vehicle has become possible for a big part of the world's society, our
mobility rapidly increased and shaped our environment in many ways. Places that seemed to be
unreachable have become relatively closer. Nowadays, most households in developed countries
own a vehicle. From having an estimated total amount of 670 million vehicles worldwide in
1996, the number of vehicles on our road networks rapidly increased to approximately 1.32
billion in 2016. Since more economies have become wealthier, not only do developed countries
from the global north affect this increase, but so do developing countries from regions like Asia
or South America. In fact, the number of vehicles in developed countries stabilized in recent
years, while a strong increase can be seen e.g. in Asia. (Petit, 2017)

World Vehicles in Operation
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350,000,000
300,000,000 /
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Figure 1: Development of the number of vehicles in operation worldwide between 2010 and 2016
divided into different regions (Petit, 2017).

As the world's population keeps rising, especially in the latter regions, these numbers are
expected to grow even higher in the coming years. Combining this with the fact that more
people tend to live in cities rather than in the countryside, complications in a city’s road network
are almost inevitable. The most common form of such complications is traffic congestion.
Vehicle passengers can lose more than a hundred hours getting stuck in traffic congestions. The
biggest time loss due to traffic congestion was recorded in 2019 in Bogota, Colombia, with an
average time loss of 191 hours per year (Reed, 2020). These traffic congestions do not only
lead to time loss, but also to an increase in car accidents, air pollution, and fuel consumption
(Shete et al., 2015). Facing these problems gets even more urgent once we take into account the
ongoing global climate change. A first step to address these problems can be done by reducing
the number of vehicles on a city's road network. To achieve this, people started to share cars on
their way to work or school, so that the number of people per car increases and the total amount
of vehicles on the network decreases. This does not only reduce traffic jams, car accidents, and
environmental pollution, but also minimizes the costs of travelling. Sharing cars with people
whose routes are similar is commonly known as carpooling or ride-sharing (Shete et al., 2015).
At first, finding other people to share a ride, had to be done manually. Nowadays, with
smartphone technology, applications based on algorithms automatically assist in finding the
most suitable person to share a ride with.
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1.2 Background

The fact that ride-sharing can save resources has been known already since around the second
world war, where the US government organized a ride-sharing program by using bulletin boards
at work to match people with similar destinations to conserve resources for the war effort.
During an oil crisis in the 1970s, ride-sharing was used to save fuel by reducing the total fuel
consumption of vehicles. Later, the main intention of sharing cars was to cope with problems
of traffic congestions and air quality. Until the beginnings of the 2000s, the people would be
matched together manually by organizations at work or telephone-based ride-sharing. With the
rise of internet technology, though, the matching process could be transacted online. Today,
this process has become ever-so dynamic through smartphone technology and Global
Positioning Systems (GPS). (Chan & Shaheen, 2012)

Using these technologies, many different applications of ride-sharing systems have been
developed by companies and start-ups. The applications differ in their target audience and the
objective which they want to achieve. They can be divided mainly into two groups: ride-sharing
systems, which have been developed to match private persons using their own cars, and ride-
sharing systems, which match taxi or taxi-like requests of customers. The main difference
between these two groups is that ride-sharing for private persons has no financial motivation,
meaning that the price for a ride is only as high as the driver’s costs. On the other hand, ride-
sharing systems of taxis or taxi-like companies are profit-making (Chan & Shaheen, 2012). In
recent years, companies like Carma (formerly known as Avego), Carticipate or Zimride entered
the market of ride-sharing systems offering platforms that match private persons with similar
start and end points to a driver (Agatz et al., 2012). This driver uses the capacity of his car to
give a ride to people with trip destinations similar to his own. This has the benefit that the
individual’s travel costs get reduced and the number of vehicles on the road network decreases
(Barann et al., 2017).

Sharing taxis has been a common transportation method in several developing countries (Hosni
et al., 2014). In Colombia, for example, such taxi providers are called “colectivos”. They
usually have several fixed start and end points in a city and passengers can be dropped off or
picked up on the way. This form of ride-sharing has also become common in developed
countries in the last several years. The main difference is the use of smartphone technology and
GPS to assist in matching suitable trip requests together. This allows the applications to find a
match for people’s requested trips even if their start points are not at the same location. This
user-friendly system is what made them marketable. Therefore, ride-sharing services have
become interesting for transportation companies. Such companies can be taxi providers or taxi-
like transportation companies such as Uber and Lyft. The latter are examples of taxi-like
companies which, besides their normal transportation service, additionally offer ride-sharing
services for some years, commonly known as UberPool or Lyft Line (Schwieterman & Smith,
2018). Another famous example of such a company is Didi-Chuxing, the leading ride-sharing
company in China (Stemler et al., 2019).
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Their applications are based on algorithms which must compute (in a very short amount of
time) which requested trips are similar and therefore suitable to be shared without generating
prohibitive extra costs like an extended waiting time for the second passenger to be picked up
or a bloated travel time in comparison to an individual’s trip (Agatz et al., 2012). Depending
on the characteristics of a user’s trip request, the setup of the algorithm can differ. If a user can,
besides his desired destination, define some points of interest (POI) which the taxi must visit
during the ride, then the similarity of two trips is based on the whole trip. This means that only
trips that are close in space (in sense of shape and distance) and time in their entirety are
considered to be similar and therefore suitable for ride-sharing (Besse et al., 2016). The methods
to measure this similarity can differ substantially between applications and have been analysed
in many research studies. Based on them, clusters can be built to group similar trips together.
Optimal shared paths will then only be computed inside each cluster individually.

On the other hand, if the application allows its users only to define a destination, then the
similarity between the requested trips depends only on the similarity between each start and end
point. Between similar trips, an optimal path can then directly be computed which visits the
start and end point of both trips in the shortest possible way. Characteristics like total savings
of travel time or delay time for the second user can be used to identify the most suitable trips to
be shared. (Santi et al., 2014a)

In general, this means such algorithms assume that start and end points or even complete trips
that are close to each other are less cost-intensive to share than ones far away from each other.
Solving the ride-sharing problem this way presumes that the time to reach a target in space only
depends on the distance. In the real world, however, the time to move on a road network
depends a lot on the traffic state. Therefore, paths or start and end points that are close to each
other in space do not always have to be less cost-intensive to share than others further away.
Thus, to identify potential ride-sharing paths considering real-world circumstances, information
on the traffic state should be included in the algorithms.
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1.3 Aim and structure of the work

Each ride-sharing system is based on different algorithms, and even if they have received a lot
of interest from the research community in the last years, these algorithms leave room for
improvement (Hosni et al., 2014). One point of improvement could be considering retrieved
information about traffic congestions, thus making the models more realistic. Therefore, this
study focuses on creating a framework to identify potential ride-sharing paths more realistically
by considering the traffic state of the underlying road network. The main goals of the work are
to show how potential ride-sharing paths can be identified efficiently from a raw GPS taxi
trajectory dataset and where the estimated traffic state information can be included in this
process. By applying the framework to a dataset of GPS taxi trajectories in the Chinese
megacity Chengdu, the influence of traffic state information on ride-sharing systems is
analysed. As the first step, the data must be pre-processed for further analysis and the recorded
GPS taxi trajectories map-matched to the underlying road network. Subsequently, the traffic
state is computed based on the trajectory points and then included in the identification process
of potential ride-sharing paths. To improve the performance of this identification process, a new
similarity measurement is defined and implemented. By computing the analysis once using
traffic state information and once assuming that the vehicle’s speed is only limited by the
maximum allowed speed of each road segment, it can be evaluated what differences in the
results occur between assuming an absence of traffic congestions and considering the estimated
real-world circumstances. We can therefore analyse the effect such information can have on
ride-sharing systems.

This work is structured as follows. In Chapter 2 an overview of the related work is provided.
Interesting papers in the field of ride-sharing are discussed and insights into studies about map-
matching are provided, as this is a pre-processing step applied in this work. Additionally,
research about traffic state estimation is summarized and interesting findings highlighted.
Finally, the research gap is shown. In Chapter 3 the research questions and hypotheses for this
study are presented. Chapter 4 provides an overview of the two datasets on which the
framework is applied. The different methods and processes of this framework are then
explained in detail in Chapter 5. Starting with the pre-processing of the data, methods about
map-matching, traffic state estimation and the final identification of potential ride-sharing paths
are illustrated. The results of these individual parts, as well as the final ride-sharing paths, are
presented in Chapter 6. Chapter 7 puts the findings into perspective to the research questions
and hypotheses by comparing the results between including traffic state information and
assuming absence of traffic congestions and, furthermore, possible points for improvements are
discussed. The most important results and findings are again highlighted in Chapter 8. This
study is concluded by presenting ideas for future work in this field.



2 Related work

2. Related work

The field of ride-sharing research, in which this work is embedded, is rapidly growing and the
potential of such systems has become clearer in the last several years, especially in combination
with problems related to global climate change. To show what has already been researched and
to what extent this work can contribute new findings regarding the procedure of identifying
potential ride-sharing paths, an insight into conducted studies of ride-sharing will be provided
in this chapter. Studies of Agatz et al. (2012) and Furuhata et al. (2013) deliver a good overview
of the different sub-categories of ride-sharing systems and corresponding research papers. The
presented studies in this chapter mainly can be divided into static and dynamic ride-sharing
systems and differ in their goal and applied methods. As these systems are usually based on
GPS data, locating the recorded signals on the road network is another part of these studies.
This procedure is known as map-matching and several different approaches exist to determine
which road a GPS signal has been recorded on. Research on map-matching methods will
therefore be discussed as the second part of this chapter. Information on traffic state will be
used in this work and included in the process of identifying potential ride-sharing paths to solve
the ride-sharing problem more realistically. Although methods on how such information can be
derived represent its own field of research, they will be also presented here briefly. At the end
of the chapter, considering the discussed studies, the research gap for this work will be
presented and used in Chapter 3 to form the research questions.

2.1 Ride-sharing methods

The division of ride-sharing systems into a) systems focusing on matching private persons with
other private persons, and b) systems focusing on matching trip requests of taxis or taxi-like
companies, explained in the background section of this work, is also presented in the study of
Furuhata et al. (2013). They divide the systems based on the type of service providers into the
so-called service operators or matching agencies. Service operators are companies that provide
their own vehicles to be used for ride-sharing systems. As mentioned in this study, a
characteristic trait for such systems is that most of the decisions are made by the provider and
the users only accept the proposed shared ride or refuse. This a typical situation of a ride-sharing
system provided by a taxi or taxi-like company, where a user can request a ride, and the ride-
sharing system computes an optimal ride-sharing path with another user’s request. The only
decision the user can make is to accept the provided ride-sharing path or to reject the offer.
Matching agencies, on the other hand, are defined as ride-sharing systems that assist in the
process of matching individual vehicle drivers and passengers. To better use the capacity of its
vehicle and to share the travel expenses, a user can register his own vehicle for ride-sharing. In
contrast to systems run by service operators, the driver himself is also seen as a ride-sharing
participant who wants to reach a specific destination.

Irrespective of service operators or matching agencies, ride-sharing systems are normally
constructed to reach at least one specific objective. This can be represented by an optimization
problem. The most common objectives a ride-sharing system can follow are, as explained in
the paper of Agatz et al. (2012), the following three: minimize the total travel distance,
minimize the total travel time or maximize the number of participants of the ride-sharing
system. The total travel distance is the sum of the number of driven kilometres of shared trips
as well as of unshared individual trips. A ride-sharing system following this objective matches
the user’s trip requests where the difference in a sense of distance between two individual trips
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and its shared trip is maximal. This then leads, in a global perspective, to the minimum total
travel distance and additionally minimizes the emerging total travel costs. The total travel time
represents how much time the participants have spent in the vehicles to reach their destinations.
As a road network is highly complex, a vehicle cannot maintain the same speed on each road.
Therefore, the travel time of a trip does not just depend on the driving distance, but also on the
vehicle speed. Because of this, minimizing the total travel distance can result in different
identified ride-sharing paths than minimizing the total travel time. The number of participants
of a ride-sharing system is mainly incumbent on how many requested trips of users can be
successfully matched. A good matching rate tells the user that there is a high chance to find a
ride-sharing trip with this system. Consequently, the number of participants is higher in systems
with good matching rates and this again attracts more potential participants as they rather
register for frequently used rid-sharing systems than for uncommon ones. So, a ride-sharing
system that follows the objective to maximize the number of participants matches the requested
trips in a way so that it identifies as many ride-sharing trips as possible, regardless of how much
travel distance and time is saved. (Agatz et al., 2012)

Other objectives of ride-sharing systems, which are affiliated to the ones defined by Agatz et
al. (2012), can be to minimize the waiting time emerging for a user, if she or he is being picked
up as the second person, what affects the user-friendliness and, therefore, the attraction for
potential participants, or minimizing the total CO2-emissions, which correlates with the total
driving distance and the vehicle speed (Jung et al., 2013, Barann et al., 2017). The latter is
shown in the study of Barann et al. (2017), where they compute how much kg of COz could be
saved by implementing their ride-sharing approach in the city of New York, USA. Resulting
savings of around 532’000 kg of CO2 emissions per week illustrate the potential of ride-sharing
methods to contribute to the mitigation of global warming.

Besides distinguishing between studies about ride-sharing systems based on their service
provider or followed objective, other characteristics like the dimensionality or the dynamics of
the matching problem can be used to subdivide them. The dimensionality of the matching
problem stands for the number of passengers involved in the matching process. A simple case
of a matching problem is when the system only allows matching the requested trips of two
users. For a ride-sharing system provided by a matching agency, this would mean, that only a
driver and one passenger can be matched together. Service operators would limit their system
to match only two participants to a taxi. Allowing the matching of multiple passengers in a ride-
sharing system increases the complexity significantly. The maximum number of matched
passengers is defined by the capacity of the used vehicle, in other words, the empty seats of the
car. In this case, the system would have to match suitable trips of e.g. four persons, by still
fulfilling the requirements of its objective. Considering the objective of minimizing the waiting
time shows the increase in the complexity of a system matching more than two passengers, as
then the overall waiting time for all passengers must be minimized and not only the waiting
time of one person. (Furuhata et al., 2013)

The nomenclature for the different dynamics of ride-sharing systems varies over the research
papers. Terms like static, dynamic, real-time, or on-demand systems are often being used but
differently defined. Shen et al. (2015) e.g. use the terms static and dynamic ride-sharing to
subdivide the systems. They define a static ride-sharing system as a system where both the
origin and destination of the two participants are known in advance and the system matches the
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requested trips before they have started. As soon as a trip has started, the matched ride-sharing
path cannot be changed anymore. Dynamic ride-sharing systems refer to systems where an
algorithm can match requested trips of users in real-time, regardless of whether a vehicle or a
trip has started or not. Considering a situation where a system allows to match more than two
persons, a dynamic system could match a third person to a ride-sharing trip of two users, which
have been matched in advance and are already en route. While doing so, the systems must
assure that the constraints of the first matched trips remain satisfied while at the same time
considering the constraints of the additionally added trip. Agatz et al. (2011) do not use the term
static ride-sharing but refer to the same by using the term dynamic ride-sharing. Dynamic real-
time or on-demand systems are used to represent what was described by Shen et al. (2015)
under the term dynamic systems. So, the underlying concept is the same but named differently.
To avoid potential confusion, the nomenclature used in the study of Shen et al. (2015) will be
applied in this work.

2.1.1 Static ride-sharing

In this section, interesting studies about static ride-sharing systems will be presented, discussed,
and compared with each other. The models of the proposed systems are shown to later
distinguish between them and the created framework of this work. Table 1 will give an overview
of the discussed papers.

Armant & Brown (2014) present in their study a static ride-sharing system aiming to minimize
the total travel distance. Their study represents the case of a system provided by a matching
agency. There are three different types of participants in their model: drivers, riders, and the so-
called shifters. Shifters are participants that can act as drivers or riders. A driver offers a trip, a
rider requests a trip, and a shifter does both. They assume that each participant will complete
their trip, either by a shared trip or individually. In the end, the total travel distance will be the
driving distance of all the shared trips and the individual ones. Additionally, they do not set
fixed start and end points to the trips. They create a set of standard locations, which are e.g.
situated at the main junctions of the road network. Drivers and riders can negotiate over where
to be picked up and dropped off. A rider can be matched to a driver if their defined start and
end point are located in the right order on the path of the driver and they are requested in the
same time window as the driver’s trip. Only the riders who form a shared path that fulfils the
objective of minimizing the total travel distance are matched. This ride-sharing system is then
applied to a randomly generated dataset based on OpenStreetMap (OSM) data of Dublin,
Ireland. The experiment is used to study the effect of changing input parameters of the system,
like the number of participants or the number of different pick-up and drop off locations. The
results show that an increase in participants leads to more saved kilometres and less unmatched
users. Using more different locations leads to less saved kilometres and more unmatched users.
This approach represents a simple ride-sharing system, where the flexibility of the user must be
high, as they have to walk to the negotiated pick up location and matches are only made if the
driver does not have to change his route.

Like the previous study, the work of Stiglic et al. (2015) proposes a static ride-sharing system
that matches trip requests of private people using their own vehicle. Like in Armant & Brown
(2014), Stiglic et al. (2015) allow the location of the users to be unfixed. This means they too
assume that a user is willing to walk a certain distance to a meeting point to be picked up. Their
study aims to analyse how using such meeting points in ride-sharing systems can lead to a
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higher matching rate and bigger travel distance savings. The matching process is configured so
that highest priority is given to match as many users as possible, and then the travel distance
savings are maximized as a second main objective. In their study, they take a vehicle with three
empty seats as the standard. Therefore, up to three riders plus the driver can be matched.
Allowing to match multiple riders can have an influence on the user-friendliness of a system as
a shared route with multiple riders has several stops, potentially causing inconvenience for
certain users. To avoid this problem, they condition that only multiple riders per vehicle are
allowed if they share the same meeting point in the sense of origin and destination. Each rider
must define a start and end location and a certain amount of meeting places around these
locations when using the system. The shared route can start either at the origin or at one of the
surrounding meeting points. Additionally, a time for the earliest departure from the origin and
the latest arrival at the destination must be known. The drivers define a maximum travel time
they would accept. Drivers and multiple riders are then matched so that all the constraints are
met, and the two objectives are followed in order. To study the influence of the meeting points,
they apply their model on generated data from Atlanta, USA. To calculate the travel time of a
driven route, they assume that the vehicle speed is 15 m/h (about 24 km/h) and remains constant
for all roads and does not change in time. By changing the number of considered meeting places
per rider between zero and four, the effect on measures, like percentage of matched users, total
distance savings or average walking time of a user to its meeting point, is detected. They found
out that allowing meeting places in ride-sharing systems and increasing the number of them
leads to an increase in the percentage of matched users and the total distance savings.
Nevertheless, their approach still assumes big flexibility of the users, which is not always given.
The average walking time for a rider to its meeting places is around eight minutes. This is very
high and might not be attractive for new users. Especially for use in cases of taxi ride-sharing
system, this model would not fit very well as taxi customers usually are not that flexible.

The study of Agatz et al. (2011) is based on the same study area and a very similar dataset is
used as in the presented work of Stiglic et al. (2015). The main difference is that in Agatz et al.
(2011), no meeting points exist, and a higher but still constant vehicle speed is given. So, all
the generated trips connect fixed start and end location of the user’s requests. In their study,
they propose a ride-sharing system that can be provided by a matching agency, which is
interested in getting a revenue (a small percentage of the travel cost savings). Each user can be
either a driver or a rider, which means that each user has a vehicle available. Different from the
previous study, multiple matches are only allowed if the riders share the same start and end
location and not just a meeting point. In the beginning, each user enters information about the
earliest departure time and the latest arrival time into the system. The objective of the system
is again to maximize the total distance savings. A match is only used if the resulting travel time
is smaller than the sum of the travel time of the two individual requested trips. As new trip
requests can enter the system at any time, the matching process must be performed repeatedly.
Therefore, they define a time interval, and, always at the end of this interval, the matching
process is performed again for the remaining and newly entered requested trips. They apply two
different algorithms as they consider two cases. In the first case, each user can only be a driver
or a rider, but not both. To find the optimal collocation of the matched trips, which minimizes
the total travel distance, a maximum-weight bipartite matching model is applied. If it is not
known whether a user is a driver or a rider, then a general graph matching model is used. These
algorithms are very complex. In a simple case, an algorithm could always just create a match
between the two trips with the biggest travel distance savings, remove them from the candidate
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list, and search for the next best match. This would be repeated until no trips are left. The results
show, that for the used dataset, the complex algorithms can match about 74% of all the
requested trips, which leads to a total distance saving of 26%. So, they clearly outrun the simple
algorithm (28% matched trips and 12% distance savings). The proposed ride-sharing system is
more realistic than the previously presented ones as the start and end locations are fixed, and
the flexibility of a user does not need to be very high. Nevertheless, the approach was only
applied to generated data and was not tested on a real-world GPS dataset.

The structure of the ride-sharing system proposed in the study of Cai et al. (2019) is to some
degree similar to the three previously discussed papers. However, it is built for a different intent
as this approach is an example of a ride-sharing system provided by a service operator (taxi
company). Cai et al. (2019) create a taxi ride-sharing system based on real-world GPS data.
They analyse the environmental benefits of their method applied to a historical trajectory
dataset of taxis in the city of Beijing, China. These trajectories are recorded by a GPS device in
the taxis. Each trip comes with information about its start and end point, start and end time,
total travel time of the trip, total travel distance, and the average speed value of the vehicle.
Different from the previous studies, only matched trips of a maximum of two users are allowed.
This means a taxi can serve a maximum of two people. The ride-sharing system aims to
maximize the total travel distance savings. Their matching process can be divided into two
phases. First, all shareable trips of the dataset are identified and then the shared trips that create
a global maximum of the travel distance savings are selected. How they decided if two trips are
shareable is explained in Figure 2.

[ | Passenger |
Tripi Tripj | tolerance
(0, D, d, (0, D, d, o
1O, D) t 0,1t D)
l rip time impact check
Candidate shared trip ij yes (It 0,-1 0,]<=0; Irip ¢ and  are
(R.d,t 0.t D, 1 0.tD) t Dt D |<=0; sharable

(0,1 0,|==6;
D1 0,|<=6

no

Tripfundj are
not sharable

Tripiandj arc
not sharable

Figure 2: Framework of shareable trip identification proposed by Cai et al. (2019). O stands for origin,
D for destination, d for distance and e.g. t O for the departure time respectively t 0’ for the departure

delay.

A pair of two trips must pass two tests to get marked as shareable. First, the total distance of
the shared path between a pair of two trips must be smaller than the sum of the distance of the
two individual trips. If this is not the case, combining these two trips will not save travel distance
and is therefore not useful. Second, the shared path of a pair of two trips must fulfil defined
constraints concerning the departure and arrival time. A value of 10 minutes is set as a threshold.
If the difference between the departure time of the individual trip and the shared trip is bigger
than 10 minutes, sharing these two trips will not be considered as it would be inconvenient for
the users. The same applies to the arrival time of the trips. In the end, only trips that save travel
distance and do not lead to big differences in departure and arrival time are marked as shareable.
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From all the identified shareable trips, in a second step, the ride-sharing paths are selected,
which lead to a global maximum in the sense of travel distance savings. A final identified shared
path is a combination of two trips that visits each start and end point in the shortest distance. In
what order these points are visited is not predefined. Therefore, for each combination of two
trips, they define four possible paths. Setting the start points of two trips i and j to Oi and O;,
respectively the end points to Dj and D;, the following collocations are possible: Oi-Oj-Di-D;,
0i-0j-Dj-Di, 0j-0i-Di-Dj, Oj-0i-Dj-Di. The collocation that results in the shortest distance is
selected as the shared path. Cai et al. (2019) estimate the shortest distance connecting two points
based on a linear relation to the Manhattan distance between them. The final distance of the
shared path is, therefore, only an estimation and not an exact measurement. They apply the
described method on the taxi GPS dataset of Beijing and detected that 77% of all trips can be
shared. This means 33% of the total travel distance can be saved by implementing their
approach. To further illuminate the potential environmental benefits of their method, they
assume a linear correlation between emissions and driven kilometres. Doing so, they calculate
annual savings of 28.3 million gallons of gasoline and a reduction of 2°392 tons of CO;
emissions. Compared to the previous studies, the main difference of the proposed ride-sharing
system of Cai et al. (2019) is, besides the different providers, that it is more realistic as it is
based on real-world GPS data. Additionally, the approach is more user-friendly as no walking
distance or multiple stops are assumed. Nevertheless, using an estimation method based on a
linear relation to the Manhattan distance to calculate the distance of the shared path can lead to
inaccuracies. Therefore, working with the shortest path algorithm instead based on the road
network distances could have helped.

This disadvantage is solved in the work of Wang et al. (2018). They propose a rather simple yet
accurate taxi ride-sharing system, where they include the road network distance and
additionally the travel time into the shortest path algorithm. Their system aims to match taxi
users in a way that the total travel costs get minimized. Here, static means, that each user gets
the shared path proposed before the ride starts and the path will not be changed anymore during
the trip. The travel costs can either be the total driving distance or the total travel time. In their
system, each user defines the following parameters when entering a trip request: maximal
waiting time (here the waiting time relates to the time it takes for the system to find a shared
ride), maximal acceptable departure and arrival delay, number of people requesting the trip, and
minimal taxi fare reduction (percentage of taxi fare reduction due to ride-sharing). Additionally,
Wang et al. (2018) define a percentage of the taxi fare a taxi driver must earn extra when serving
a shared ride. For a set of two trips to be accepted as possible ride-sharing paths, all the above-
mentioned constraints must be met. The requested trips are then ordered by their request time
and each of them gets analysed separately. Their system creates a shortest path (either based on
the road network distance or the travel time) between the analysed trip and each trip that has
not been matched so far, and that fulfils the constraints. The shared path that minimizes the
travel costs is selected and gets assigned to a taxi driver, rendering it not a part of the system
anymore. If no shared path is found for the available trips, the analysed trip will be stored to be
eventually matched to a future trip request. If the time a trip is stored exceeds its departure
delay, the trip gets served individually and leaves the system as well. This optimization strategy
results in a local optimum, not in a global optimum as applied in the study of Cai et al. (2019).
This means, that a served shared trip is a combination of two trip requests that minimizes the
travel costs at this moment. From a global perspective, this does not mean, that this combination
was the best possible choice, but it nevertheless highly reduces the complexity of the system.
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This study represents an alternative approach to the global optimum model proposed in the
paper of Cai et al. (2019) and shows that a local optimum can highly reduce the complexity of
a system without suffering a significant loss of accuracy. Moreover, interesting constraints
about the price setting of ride-sharing systems are included, which is not the case in the
previously discussed papers.

The proposed ride-sharing system in the study of Santi et al. (2014a) connects the mentioned
characteristics of the systems presented by Cai et al. (2019) and Wang et al. (2018). Their
system is based on a global optimum model and the shortest respectively fastest paths are
computed in the matching process. This results in an accurate and efficient method but leads to
time-intensive computations. With their approach, they assist in matching taxi requests so that
either the number of identified shared trips is maximal or the total travel time is minimal.
Depending on which objective is pursued, different results are obtained. Similar as in the
previous studies, the system of Santi et al. (2014a) identifies a set of two trips as shareable
provided there exists a path that connects each start and end point in the right order so that for
each trip the start point is served before its end point and some specified constraints are met.
Excluded is the collocation where one trip is being served before the other has started, as this
does not represent a shared ride. The built shared path must not lead to a delay bigger than a
threshold set by the user and must result in a total travel distance shorter than the sum of the
two individual trips. For every single path, the trips that have been requested during a time
window, more specifically in a certain amount of time before and after the analysed trip, serve
as candidate trips for ride-sharing. Between each set of two trips, the fastest path connecting all
the origins and destinations is built. As in the study of Cai et al. (2019), four possibilities to
build the fastest path are given. As opposed to the shortest path, the edges used in the algorithm
are weighted by the estimated travel time and not by the distance. This travel time represents
the time a vehicle needs to travel on a specific road segment. Through a heuristic approach, the
travel time gets estimated based on the information of the origin and destination of each trip.
For all the identified fastest paths in a time window that fulfil the constraints, a global optimum
is found that follows one of the two defined objectives. This procedure can be seen in Figure 3.

Figure 3: Visualisation of the process of finding a global optimum for the potential ride-sharing paths.
(A) shows all candidate trips in a time window. In (B) the fastest paths that fulfil the constraints are
displayed. (C) represents the global optimum for maximizing the number of shared trips and is
visualised in (D). The global optimum in (E) and (F) minimizes the total travel time. (Santi et al.,
2014a)
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They apply the presented approach on real-world GPS data from the city of New York. The
threshold for the maximum delay is set to five minutes and the analysed time window to one
minute. This means trips that started one minute before and after the analysed trip serve as
candidates. For the case where maximally two trip requests can be matched and the objective
of minimizing the travel time is followed, 93% of the trips can be shared. This results in travel
time savings of 32%. Changing the objective to maximize the number of shared trips leads to a
matching rate of nearly 100% but to a decrease in the travel time savings. Additionally, they
analyse how the number of users per shared ride affects the results. They conclude that the
improvement in the results by allowing multiple users to be matched is too small to legitimize
the significant increase in the computation complexity. (Santi et al., 2014a)

Besides the presented static ride-sharing studies, other similar works exist as e.g. the study of
Sun et al. (2020). They build a non-profit peer-to-peer ride-sharing model provided by a
matching agency aiming to maximize the total cost saving. The path between two trips that
maximizes these total cost saving represents its’ shared path. By a column generation based
heuristic approach, the optimization problem gets solved. Ota et al. (2015) propose a taxi ride-
sharing system with the objective of minimizing the total driving distance. The matching
process is based on the Dijkstra’s shortest path algorithm and they tested their approach on real-
world data of the city of New York, USA. Similar in principle but still uniquely different is the
ride-sharing study of Barran et al. (2017). They conduct a taxi sharing study based on GPS taxi
data from New York, USA. They do not follow a specific objective and therefore do not try to
optimize their approach. They simply define several constraints which must be met by the
shared path. All trips in a time window are analysed in order of their request time. As soon as
a set of two trips fulfils the constraints, the identified shared path is taken as the final ride-
sharing path. Thus, their approach is based on the principle of first-come-first-served.
Summarizing this section, all the discussed studies are listed again in Table 1.

Study of: Service provider Objective(s) Matching process
Agatz et al. . L . Fastest path based on constant
(2011) Matching agency Minimize total travel distance vehicle speed

Matching if negotiated pick up /
Armant & . A . .

Matching agency Minimize total travel distance drop off points of user are located

Brown (2014) ) ,

on drivers’ path
Barran et al. Service operator No objective (first-come-first- Shortest path
(2017) (taxi sharing) served principle) P
Cai et al Service operator Shortest path based on Manhattan

' . P Minimize total travel distance distance between origin /
(2019) (taxi sharing) destinati
estination
Ota et al. Service operator L .
(2015) (taxi sharing) Minimize total travel distance Shortest path
Santi et al. Service operator Maximize matching rate or Fastest path based on by heuristic
(2014a) (taxi sharing) minimize total travel time approach estimate travel time
Stiglic et al. . Maximize matching rate and Shortest Hath'bfrtween dm./ers.
Matching agency L . and users’ origin and destination

(2015) minimize total travel distance . -

or meeting points
Sun et al. Matching agenc Maximizing the total cost Shortest path where the weights
(2020) g agency saving of the edges are the cost saving
Wang et al. Service operator Minimize total travel distance or
(2018) (taxi sharing) minimize total travel time Shortest path / fastest path

Table 1: Overview of the discussed static ride-sharing studies.
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2.1.2 Dynamic ride-sharing

As in the previous section, in this one dynamic ride-sharing studies will be presented, discussed,
and related to each other. It will be shown why these studies are categorized as dynamic and
not static ride-sharing studies. Table 2 provides an overview of the discussed studies in this
section.

In the study of He et al. (2014) a ride-sharing system that dynamically creates ride-sharing
routes based on GPS trajectories is proposed. Their system represents a case of a matching
agency where multiple passengers can be matched together. A driver can also become a rider if
this optimizes the followed objective of minimizing the total travel distance. Similar to some
of the previously presented studies, they assume that a user is willing to walk a specified
maximum distance to a connection point to be picked up. Figure 4 shows the architecture of
their system. In the first step, frequent routes of users are detected by mining their complete
GPS trajectories. So, this system uses the trajectory in their entirety to compare it with the other
ones and not just the start and end points of a trip. This is, as described in the background section
of this work, often used in ride-sharing systems provided by matching agencies. In the second
step, the stored frequent routes are used to form shared routes. Qualified riders for a route are
selected and ranked by a defined service cost where the best-ranked rider and her or his route
are matched to the original route. The defined service cost is the sum of the following
parameters: the travel cost, which is proportional to the travel distance, the distance a user would
have to walk to a pick-up location, the detour distance, the time a user has to wait to start the
ride and the social distance, which is defined as the distances between the start and end points
of two trips. Between the original route and the route that creates minimal service costs, a shared
route is generated if some additional constraints are met. This procedure is repeated until there
are no empty seats left. This study is categorised as a dynamic ride-sharing system because if a
rider leaves the car, in other words is dropped off, a new rider can be matched to the route,
which can in turn change the shared route again while still meeting the constraints set by the
other passengers. (He et al., 2014)
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Figure 4: Model of the dynamic ride-sharing system proposed by He et al. (2014).
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Similar base characteristics are given in the work of Haddad et al. (2013). They also propose a
dynamic ride-sharing system for multiple passengers representing a matching agency case
where it is assumed that the users are willing to walk to a meeting place. The matching process
is based on the principle of the longest common path. Since the shared route which maximizes
this longest common path is selected as the final ride-sharing path of two or more users, the
objective of their system is to minimize the total travel distance. When a new user registers for
the application, either a request as a driver or a request as a rider can be entered. The driver
enters her or his origin, destination, desired departure time, maximum acceptable deviation, and
some additional information about his vehicle. The system then computes a set of possible
routes for its request based on the Google Maps API, and the driver must select one of them,
which is then stored in a database. The rider, on the other hand, must define its origin,
destination, and desired departure time. Again, routes for the entered information are derived
by the Google Maps API. The system then selects all routes of drivers (empty vehicle or already
serving a shared ride) that are suitable to be matched to the rider and sorts them based on the
longest common path. Finally, the rider selects the driver of its choice (does not necessarily
have to be the one with the longest common path) and gets matched to this trip. Automatically,
the capacity of empty seats of the driver’s vehicle decreases by one. A driver’s trip is available
for sharing until there are no empty seats left in the vehicle. This shows the dynamic part of
their system and therefore the location of every driver must always be updated. This approach
again differs from the case of a taxi sharing system as not only start and end points are
considered for the shared path, but also the path in its entirety. Unfortunately, there exists no
experiment of their approach based on real-world data and, therefore, no information on the
performance of their system is given. (Haddad et al., 2013)

Both presented studies already demonstrate the increasing complexity of dynamic ride-sharing
systems in comparison to static ones due to permanent location updates and having to meet
multiple constraints. An even higher degree of complexity is given in the system proposed by
Tian et al. (2013). Different from the previous works, they create a dynamic ride-sharing system
to match taxi requests of multiple users. They design a model named Noah and apply it to a
GPS dataset of the city of Shanghai, China. Their matching process is based on two user-defined
constraints: the maximum acceptable waiting time to be picked up and the maximum percentage
of a detour to the shortest path between its origin and destination. Its algorithm must identify
all the taxi requests satisfying these constraints while building the shared path. In other words,
for each analysed trip request, the shortest path is generated that connects the origin and
destination point of itself and of each entered and not yet separately finished trip. Only the
computed shared paths that fulfil the constraints are kept. The objective of their system is to
minimize the waiting time occurring for the new user, and therefore the shared path that leads
to the shortest distance between a candidate trip and the pick-up location of the analysed one is
selected as the final shared path. Because the proposed system allows matching multiple users
even en route, the matching process gets much more complex than just described. A taxi that is
already occupied by two users that share a ride and is en route still serves as a possible matching
partner for a new entering request, provided both the old constraints and the newly added ones
are met. Therefore, in this system, a lot of shortest paths must be computed to select the best
fitting one. To tackle the problem of increasing time consumption of this computation, Tian et
al. (2013) included a caching process in their model so that the same shortest path does not get
computed twice. Additionally, and very much like the previous works, the location of a taxi
must be updated all the time to properly compute shortest paths to new requested trips.

14



2 Related work

Tian et al. (2013) then test their approach on the mentioned dataset of Shanghai. An average
waiting time of 4 minutes and an average detour of 12% result. Unfortunately, no findings of
travel time or travel distance savings, matching rate, nor reduction of the taxi fleet are given.
Moreover, characteristics of the underlying road network such as travel speed are ignored in
their approach. Such a dynamic system might be useful as it is flexible and can handle real-time
requests even if taxis are in motion, but as described, the complex architecture leads to a very
time-consuming model.

As written in Bathla et al. (2018), such computation-intensive models can lead to performance
problems if they have a centralized architecture. Centralized means that all the trip requests are
handled on a central server. With the increasing complexity of the systems, these servers can
slow down the performance. To avoid a potential performance loss in a dynamic ride-sharing
system, Bathla et al. (2018) propose an alternative, so-called distributed taxi ride-sharing
solution to the problem. They apply a messaging system based on wireless transmission that
allows the system to handle the requests locally. Their approach differs from the so far presented
architectures as not all trip requests in a time window are considered in the matching process.
Only trip requests within a specified radius are considered. A trip request is then sent by a user
to all the taxis that are located in this specified radius. Each taxi that receives the message stores
it in a temporary schedule. If a shared trip is found, the trip request leaves the temporary
schedule and the shared path is stored in a permanent schedule. Thus, let us assume that a taxi
is en route serving a shared trip and is located inside the defined radius of the new user when a
new trip gets requested. The request is then received by this taxi and the shortest path between
the origins and destinations of the new request and the already shared path will be computed if
there are empty seats available in the moving taxi. To check if the computed shortest path is a
potential ride-sharing path, two constraints must be met. The waiting time for the user to be
picked up must not surpass a defined value, and the delay time must be less than a certain
threshold. Additionally, the constraints of the two users that are already en route must still be
met. After each taxi that received the request has evaluated it, the user receives an answer from
them. The proposed shared trips are then sorted by their costs (how much an individual must
pay for the ride), the number of free seats in the taxi (objective of maximizing the occupancy
of the taxi), and the minimum time it takes to reach its destination. The best one is selected as
the final shared path and the corresponding taxi receives a confirmation from the user. The trip
request then leaves the temporary schedule and the adjusted shared path is restored in the
permanent schedule. All other taxis that were not selected, remove the trip request from their
temporary schedule. This procedure goes on as long as there are empty seats available in a taxi.
If a user is dropped off, a new person can be matched to this ride.

The last point shows why this approach is categorized as a dynamic system. Each taxi must
always compute the shortest path to a newly received request, even if it is already half full. This
again leads to a time-consuming computation, but in comparison to centralized systems, to a
much less complex one as only taxis inside the defined radius of a user are considered. The
presented system is then applied to a GPS dataset of the city of Shanghai. Based on the set
constraints the distributed model achieves a matching rate of 3.5% and a total distance saving
of 2%. In comparison to the results of previous studies, these numbers are very small. This is
due to the limited number of candidate trips respectively taxis inside the short radius. So,
although this alternative approach might be less risky regarding performance issues, it still leads
to a heavy loss of effectiveness. (Bathla et al., 2018)
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There are several other rather interesting studies of dynamic ride-sharing system in the
literature. Yu et al. (2020) e.g. develop a distributed taxi-sharing system based on the model of
Bathla et al. (2018). There are three main differences in their approach, which make the model
even more dynamic. While waiting on the confirmation of a passenger for a shared ride, in
Bathla et al. (2018), the taxi is blocked for handling other requests. In Yu et al. (2020), the taxi
still receives new requests and processes them. After receiving the confirmation from the
passenger, the taxi must check the shared path again on the constraints to see if it still is suitable
to be shared. Only if this is the case, the passenger gets a second confirmation message from
the taxi to fix the shared ride. Therefore, different from the previous study, the taxis can, in a
parallel fashion, handle multiple incoming requests. If sharing the ride request of a passenger
with a taxi is not suitable, the request does not just get disclaimed, but it is transmitted to the
neighbour taxi instead. Through these three changes, the system of Yu et al. (2020) reduces the
average waiting time and increases the matching rate. Another example is the study of Gokay
et al. (2019) which represents a dynamic ride-sharing system provided by a matching agency.
Like in previously presented studies, it is assumed that the users are willing to walk a certain
distance to a pick-up location. Trip requests that have similar start and end points at the same
time window are grouped and a new pick-up and drop-off location for that group is generated.
These requests are then handled as one trip and matched to a driver. If there are empty seats
available in the vehicle, additional individual or grouped trips can be matched. With their
approach, they try to better utilise the resources. They argue that the small decrease in customer
convenience due to walking can be recouped by offering cheaper rides. Additionally, they show
that the total vehicle costs decrease and the matching rate increases. Aydin et al. (2020) propose
a dynamic ride-sharing system to again match private person with private drivers. They analyse
that allowing the driver to be matched to more than one passenger’s request in real-time, which
IS what represents the dynamic aspect, leads to an increase in the matching rate by 33%.
Additionally, a different approach compared to the previous works is chosen. They implement
a social compatibility score JSS, which consists of parameters like age, gender, employment,
and the degree of willingness to meet new people. If the maximizing of this JSS score is chosen
as the systems’ objective instead of maximizing the distance savings, only a small decrease in
the distance savings emerges; at the same time, many qualitative matches are found. So,
different from other studies, besides trying to maximize the distance savings, they focus their
approach on optimizing the social component of the ride-sharing problem as well.

Study of: Service provider  Obijective(s) Matching process

Aydin et al. . Maximize distance savings or

(2020) Matching agency maximizing the JSS score Shortest path

Bathla et al. Service operator Minimize costs and maximize Distributed and not centralized
(2018) (taxi sharing) vehicle’s occupancy solution using shortest paths
Gokay et al. . S . Shortest path after grouping
(2019) Matching agency ~ Minimizing the vehicle costs similar user requests

|(_|2%dld3&;d etal. Matching agency ~ Minimize total travel distance Longest common path

Based on a defined service cost

Heetal. 2014  Matching agency ~ Minimize total travel distance function that is minimized

Tian et al. Service operator Minimize waiting time Shortest path in combination
(2013) (taxi sharing) with a caching model

Yuetal. Service operator Minimize costs and maximize Distributed and not centralized
(2020) (taxi sharing) vehicle’s occupancy solution using shortest paths

Table 2: Overview of discussed dynamic ride-sharing studies.
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2.2 Map-matching

Most of the presented ride-sharing systems have been applied or tested on real-world GPS
trajectory data. As defined by van Kreveld & Luo (2007): “The trajectory of a moving object
is a continuous function 1(t) of time t such that given a time instant t, it returns the position of
the moving object. In reality, the moving object trajectory is recorded by a finite set of
observations at discrete time stamps ty, to, ..., tn.”. Each observation of a trajectory represents a
trajectory point. The position of these trajectory points is recorded by a GPS signal. This means,
that a driven taxi trip is represented through a trajectory consisting of several GPS signals.
These signals were recorded by a GPS device in the corresponding vehicle. High-frequency
GPS devices can record the location, given through the x- and y-coordinates, the exact
timestamp, and sometimes the speed and direction of the vehicle e.g. every second (Greenfeld,
2002 & He et al., 2019). But the recorded coordinates do not represent the exact location where
the vehicle was located at the recorded timestamp as GPS devices in urban environments
normally only have accuracy of about 10 meters (Aly et al., 2016). This means, by visualising
each GPS signal and connecting them, one does not automatically receive the exact driven
vehicle path on the underlying road network as especially in urban road networks, more than
one road can be located inside this error radius of around 10 meters.

To use GPS trajectory data in ride-sharing systems, it is important to know on which road
segment the vehicle truly was during a GPS record. Using information from position systems
like GPS together with road network data to determine on which road segment and where on
this road segment a vehicle was located is called map-matching (Quddus et al., 2007).

As map-matching GPS trajectory data is not only used for ride-sharing systems, many other
studies have been published. With more and more different methods emerging as a product of
these numerous studies, map-matching forms its own field of research. In the following, this
field is shortly presented, and some different approaches are discussed. This is used in the
method section to explain why the chosen map-matching approach was selected.

A good example of why the map-matching process can be very complex where one cannot just
match each GPS signal to the closest road segment in the road network, is provided in Figure
5. Each black dot shows the coordinates of a GPS signal of a moving vehicle. Due to the
accuracy error, it is not clearly visible which road segment a GPS signal belongs to if each dot
is analysed separately. Simply matching each GPS signal to the closest road segment would
lead to an incorrect vehicle path as in this case location 2 and 3 would be matched to the wrong
road. By considering the 3 locations together, it is clear which road segment the GPS signals
belong to.
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actual path

Figure 5: Visualisation of the map-matching problem by Newson & Krumm (2009). The black dots
represent the GPS signals and the light grey curve shows the vehicle’s actual path. Each dot could be
assigned to more than one road segment.

However, because it is not possible to visually analyse each GPS trajectory of a dataset
containing several thousand of them, different methods that automatically map-match the
trajectory points have been created. Quddus et al. (2007) offer a good overview of these
different map matching methods and studies. They categorise the different approaches mainly
into four groups: geometric, topological, probabilistic, and advanced techniques.

Geometric methods represent the naive approach of just considering the geometry of the road
network. This means that the connection and therefore the topology of the road segments is not
considered. Only the shape of them is used to determine the exact location of the vehicle. Such
methods are e.g. point-to-point matching, point-to-curve matching, or curve-to-curve matching.
(Quddus et al., 2007)

As described by Bernstein & Kornhauser (1996), in a point-to-point matching approach, the
closest point on the road network for each GPS signal is searched. Each road segment consists
of at least two nodes (start and end node) and an edge connecting these nodes. Complex road
segments can additionally have some shape points (vertices between the start and end nodes).
For each node or shape point in a reasonable radius, the Euclidean distance to the GPS signal
is calculated, and the signal is then matched to the node or shape point with the shortest distance.
The more shape points a road segment has, the better the result. A point-to-curve approach is
similar, but rather than the closest point, the closest edge is searched. Therefore, the distance
between the GPS signal and each edge must be computed. In curve-to-curve approaches, not
only one GPS signal is used, but also several others that form a curve or a line. The goal is then
to compute the distance between this curve and the surrounding edges in order to find the
shortest one. As already the publication date of the mentioned study tells, such naive geometric
approaches are very old and not up to date anymore. Especially in dense urban road networks,
such map-matching methods are not used any longer as they are very erroneous.
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Topological map-matching methods are algorithms that also make use of the topology of the
road network to define the exact location of a GPS signal and, therefore, consider the
information of connectivity and contiguity of the edges (Quddus et al., 2007). A prime example
of this method is the enhanced weight-based topological map-matching algorithm proposed by
Yang et al. (2013). Based on the study of Velaga et al. (2009), they define four weights related
to topological information and calculate them for each candidate road segment. Additionally,
they define weight coefficients depending on the density of the road network, meaning that e.g.
some weights are more important in dense road networks than in sparse areas. Based on the
total weight score, the best candidate road segment is selected for each GPS signal. The four
weights are proximity, heading, edge connectivity, and turn restriction. The proximity is the
distance between the GPS signal and each candidate edge and is calculated like in the geometric
point-to-curve method. The heading depends on the angle between the moving direction of the
vehicle (some GPS devices also record this information) and the direction of the candidate edge.
If an edge is connected to a junction, then the edge connectivity and at best information about
turn restriction is considered as well. This already gives significantly more accurate results as
not only the closest point or edge is searched. Yang et al. (2013) test the presented approach on
real-world GPS data and show that in dense urban areas, around 97% of the trajectory points
are correctly map-matched by their method.

Probabilistic map-matching methods are based on topological inputs but use probabilistic
measurements rather than absolute weight scores to determine which road segment a vehicle
was located on (Quddus et al., 2007). Therefore, with such methods, for each candidate trip, a
probability is measured that this road segment is the one where the vehicle was driving at the
given timestamp. Ochieng et al. (2004) propose such a probabilistic map-matching method in
their study. They define an elliptical error region based on the error variances of the GPS device
and for all candidate road segments inside of this error region, the probability of being the
correct road segment for a GPS signal is computed based on information like heading,
connectivity, or closeness. In the study of Bierlaire et al. (2013), they go even further by
computing the possibility for a whole trajectory instead of individual trajectory points only.
They created multiple hypothetical paths made up of connected road segments and computed
the probability that such a path would lead to the measured GPS signals. Assuming a normal
distribution of the GPS error, they computed, for each trajectory point of this hypothetical path,
the probability that the distance between this point and the measured point is smaller than the
estimated error. Building an integral over all the probabilities of the trajectory points gives a
probability value for each hypothetical path. The most probable one is then selected as the map-
matched path.

The fourth category of map-matching methods consists of advanced techniques which are
methods that are based on more sophisticated and complex algorithms (Quddus et al., 2007).
Most of them follow the principle of probabilistic approaches but in a more complicated way.
They too result in probabilities for each candidate road segment, and the estimated location of
the GPS signal is selected by these values. Examples of such complex algorithms are the
Extended Kalman Filter used in the study of Obradovic et al. (2006), the Dempster-Shafer
theory of evidence in Yang et al. (2003), a fuzzy logic-based approach by Syed & Cannon
(2004), or a Hidden Markov model presented in studies of Ren & Karimi (2009) and Newson
& Krumm (2009). The Hidden Markov model is based on the optimization of the product of
emission and transition probabilities of the different candidate road segments. The emission
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probability of a road segment stands for the likelihood that a GPS signal would be recorded if
the vehicle is driving on that segment. The transition probability represents the chance that the
vehicle is driving on a certain path given the connectivity of the road segments. The Viterbi
algorithm is then used to find the optimal path that maximizes the product of the two
probabilities, and therefore is most likely the truly driven path of the vehicle.

Hashemi & Karimi (2014) compared in their work the accuracies of some of the presented map-
matching methods in this chapter. Most of the advanced map-matching methods lead to an
accuracy higher than 90% correct identified road segments. By comparing the methods of the
different categories, topological, probabilistic, and advanced techniques most of the time outrun
simple geometric approaches. This is illustrated in Figure 6, where simple algorithms stand for
geometric approaches, weight-based algorithms for topological methods, and probabilistic and
advanced techniques are represented by the advanced algorithms. When using map-matching
methods, it is important to consider the data in the sense of GPS accuracy, frequency of the
records, and density of the road network. The more accurate the methods get, the more complex
and time-consuming the computations will be. Therefore, using complex map-matching
methods in sparse rural areas makes less sense than in dense urban regions as in these cases,
simpler algorithms can lead to satisfactory results as well. Considering this, the accuracy values
of such methods must always be regarded with suspicion as each model only works that
accurate for specific conditions. In the end, selecting the right map-matching method is a trade-
off between accuracy and performance regulated by the type of data.

Simplicity

Simple
algorithms

Weight-based
algorithms

Advanced
algorithms

65 70 75 80 85 90 95 100
Correct link identification

Figure 6: Accuracy of the different categories of map-matching methods analysed and illustrated in the
work of Hashemi & Karimi (2014).
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2.3 Traffic state estimation

Information on traffic state in a city’s road network can be very useful for any kind of mobility
analyzation as traffic congestions highly affect the travel time on a road network. As already
mentioned in the introduction to this work, the traffic state information will be used in the
proposed ride-sharing approach and, therefore, a short overview on how such information is
derived and used in other studies is given.

Methods on traffic state estimation are either used to reconstruct traffic patterns like traffic
congestion and mean travel time for a specific road segment or help compute short time
predictions of traffic flow. Besides observing traffic state through video cameras or loop
detectors, GPS trajectories from probe vehicles can be used to estimate quantities like flow,
speed, or density (Sunderrajan et al., 2016). Asakura et al. (2017) analyse probe vehicle’s GPS
trajectories to identify traffic incidents that lead to traffic congestion by comparing the travel
time of two connected road segments. They apply their method on a highway segment in the
city of Tokyo, Japan, where they divide this road into segments of equal length. As they work
with GPS signals recorded every second, based on vehicle speed and length of the segments,
the travel time of each vehicle for each segment can be exactly calculated. Using characteristics
like the absolute travel time difference, the ratio of the travel time difference, and the flow rate
difference ratio, two consecutive road segments are compared. Wherever the distance
difference and ratio are big enough combined with a decrease in the traffic flow, an incident,
and a subsequent traffic congestion, is detected.

De Fabritiis et al. (2008) and Kerner et al. (2005) use floating car data to compute mean travel
speed, and thus the differences in mean travel time of a road network. This information then
serves as an input for short time predictions of traffic speed. The former use floating car data
of the Rome Ring Road in Italy containing information about the vehicle speed at each GPS
signal. To estimate the current speed of each road segment, the average of the vehicle’s speed
measures in combination with previously calculated average speed values on that road segment
is computed every 3 minutes. Similarly, Kerner et al. (2005) use average traffic speed values to
assign them to each road segments as its average speed depending on the time. The travel time
is then calculated in combination with the length of the segments.

Nanthawichit et al. (2003) propose a more complex method to estimate traffic state; they also
additionally predict traffic flow by applying a macroscopic model and a Kalman filtering
technique on a mix of probe vehicle data and data from stationary detectors. The travel time for
each road segment based on the GPS signals is again calculated as in studies like Kerner et al.
(2005). This is then combined with information about traffic speed and density of stationary
detectors. Using this as an input to the algorithm, short time predictions are made. The presented
studies are papers that completely focus on traffic state estimation or prediction and their
methods, as the study of Nanthawichit et al. (2003) shows, can, therefore, be quite complex. If
traffic state information is used in a study where it is not its main focus, it sometimes makes
more sense to apply a less complex and, therefore, less time-consuming method.
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Two of the presented ride-sharing systems in the section about static ride-sharing work as well
with information on the travel time of the road segments, and therefore also, with information
on the traffic state. Wang et al. (2018) compute the average taxi travel time for each road
segment based on real-world GPS data. As described in their study, they use taxi trajectory data
collected over six months to calculate the traffic state. The result is the travel time for each road
segment for every hour. It is not mentioned when the data was collected, hence, it is not given
that the system truly works with traffic information derived by the same analysed dataset as the
data of these six months could have been collected earlier. Moreover, it is not explained how
the average travel time is estimated.

Santi et al. (2014a), on the other hand, explain in detail how they estimate the travel times used
in their ride-sharing system. Due to the lack of trajectory and speed information in their dataset,
they estimate the travel time only based on the pick-up and drop off times of their analysed
trips. This means they do not include each GPS signal into their computation as proposed in the
presented study of Kerner et al. (2005). First, each pick-up and drop off GPS location is matched
to the closest intersection in the road network. Then, knowing the travel time between every
pick-up and drop off point lets them estimate the travel time for each road segment of a trip. As
a road segment can be part of several trips, the estimation must be done for all trips of a time
window at the same time. Like this, they can divide the known travel time of a trip to the
individual road segments so that the average relative error (the difference between the actual
travel time of a trip and the summed up travel time of the estimated values for each road
segment) is minimized. This is done every hour, and therefore 24 different travel time
estimations surface as a result. As only 91.7% of the streets of the road network form part of a
trip, some road segments without information on the travel time remain. By using a weighted
average of the surrounding segments with such information, the missing values are added. This
estimated travel time is then used in their fastest path algorithms. Their approach is a good
alternative if there is a lack of information in GPS trajectory points, but it only partially
represents the real-world circumstances as only two of possible dozens to hundreds of GPS
signals per trip are considered.

22



2 Related work

2.4 Research gap

The presented literature review shows the variety of ride-sharing systems that already have been
studied and how they can differ in their objective, their provider, the used algorithm, its
performance, and the overall architecture of the model. Nevertheless, there is still room for
further research. Besides showing the potential of their system in a sense of e.g. matching rate,
total travel distance, or time savings, some studies do as well analyse the influence on the
overall results of changes in parameters like the number of passengers per vehicle, the flexibility
of the users, the complexity of the algorithms, or user-defined constraints. Considering the
scope of research on this problem thus far, what has not yet been analysed is the influence of
real-world circumstances like travel speed or traffic congestions on ride-sharing algorithms.

As mentioned in the introduction, the majority of ride-sharing studies assume that the time to
reach a destination on a road network only depends on the distance. Just a few studies include
information on the travel speed of the vehicles. But except the studies of Wang et al. (2018)
and Santi et al. (2014a), all of them assume a constant speed for each road segment, meaning
that the traffic state is not taken into consideration. As ride-sharing can not only influence traffic
congestions, but is as well affected by it, considering information on traffic state is important
to solve the ride-sharing problem more realistically. Two pick-up locations might be close in
space, but if the connecting road segment is congested, it could make more sense to share a ride
with another user where the traffic state is better. This would not be considered if traffic state
information is not used and, therefore, the circumstances of the road network would not be
represented realistically enough. Wang et al. (2018) and Santi et al. (2014a) developed a ride-
sharing system that uses such information, but as explained in the traffic state estimation section
of this chapter, they either compute it based on a different dataset than the analysed one, or they
only use a small part of the available GPS signals. Furthermore, they simply include it in their
algorithm but do not analyse the influence such information could have on the overall results
of a ride-sharing system.

Therefore, this work tries to fill the described research gap by estimating the traffic state based
on all the GPS trajectory points that are used in the proposed taxi ride-sharing system,
subsequently including this information in the matching process, and finally analysing its
influence on the identified ride-sharing paths. As a second contribution, a new similarity
measure is introduced to speed up the matching process and hence improve the performance.
Last, a taxi ride-sharing system considering real-world circumstances has, to the best of found
knowledge, not yet been applied to the used dataset of the city of Chengdu, China. Applying
ride-sharing methods to new cities is always useful as each road network has its own
characteristics, and therefore can, deliver new findings for the research field of ride-sharing.
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3. Research objective

This work aims to develop a framework for the identification of potential ride-sharing paths
from GPS taxi trajectory data by considering the traffic state of the underlying road network
and implementing a newly developed similarity measurement. By doing so, an attempt is made
to solve the ride-sharing problem efficiently and more realistically. The method is only based
on GPS taxi trajectory data and road network data. No further inputs are needed. The framework
contains all the steps from map-matching the GPS signals, estimating the traffic state to
identifying suitable ride-sharing paths. The new approach is based and evaluated on historical
data, and thus represents a static ride-sharing system. It is applied to a GPS taxi trajectory
dataset of the city centre of Chengdu, China. The overall objective of the system is to minimize
the waiting time imposed on the passenger that joins second. Only a maximum of two trip
request per taxi is considered for the matching process, as, explained by Cai et al. (2019), the
benefit of allowing more than two trip requests to be matched is marginal in comparison to the
increase in time consumption of the computation. By comparing the results of the new approach
considering the estimated traffic state of the underlying road network and assuming an absence
of traffic congestions, the influence of using traffic state information on ride-sharing methods
is analysed.

3.1 Research questions

In this study, the following research questions are addressed by working out the framework and
used to analyse the influence of traffic state information on ride-sharing systems:

1. How can traffic state information be estimated and included in the process of
identifying potential ride-sharing paths?

Traffic state information is estimated based on the GPS taxi trajectory dataset and available in
the form of average speed values for a particular road segment at a particular time of the day.
This can be used to calculate the resulting travel time of the mentioned road segment. The travel
time can be included either while computing a shared path of two trip requests that could be
matched together, or as well to select the most suitable computed shared path for an analysed
trip request from a set of potential ride-sharing paths. How exactly is this information obtained
and where is it included best is addressed by this research question.

2. How can potential ride-sharing paths be efficiently identified from a large GPS taxi
trajectory dataset?

The goal of developing a ride-sharing system is to identify the most suitable paths to be shared
that fulfil the set constraints and follow the objective of the method. How this result can be
efficiently achieved starting with raw GPS signals will be shown by the developed framework.
By defining and implementing a new similarity measurement, it is attempted to improve the
performance of the identification process of the potential ride-sharing paths, therefore making
the system more efficient.
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3. What is the influence of considering traffic state information in ride-sharing systems
on its results?

This research question analyses the effect of considering information about the estimated traffic
state in ride-sharing systems by comparing the results of the developed ride-sharing system
between including traffic state information and assuming an absence of traffic congestions.
Besides the identified ride-sharing paths, resulting measures like the matching rate, the average
waiting time, total saved travel time, total saved driving distance, and the degree of saved CO-
emissions can be compared. This allows to demonstrate the extent to which other studies are
not representing real-world circumstances by assuming an absence of traffic congestions.

3.2 Hypotheses

Concerning the third research question, the following hypotheses were established before the
analysis was started. They will be discussed in Chapter 7 based on the results of Chapter 6.

1. Less potential ride-sharing paths are identified when including traffic state information
compared to assuming an absence of traffic congestions.

2. The average waiting time for the second passenger is higher when including traffic state
information compared to assuming an absence of traffic congestions.

3. Savings in total travel time and total travel distance are smaller when including traffic state
information compared to assuming an absence of traffic congestions.
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4. Data

The created framework of this study is applied to real-world GPS trajectory data to analyse the
influence traffic state information can have on ride-sharing systems. This data consists of two
different datasets. One dataset contains the information about the taxi trips, meaning the GPS
taxi trajectories, and the other dataset comprises of information about the underlying road
network of the study area. In the following section, the study area and the two used datasets are
described and its essential characteristics highlighted, to better understand the applied methods
of Chapter 5.

4.1 Study area

The study area for this work is situated in the city centre of Chengdu, China. Chengdu is the
provincial capital of Sichuan Province, located in south-west China. It is one of its major cities
and serves as an economic, cultural, logistical, and technological centre for this region. It has a
population of approximately 14 million in a total area of 12°390 km? (urban and rural area). The
road network consists of a traditional grid-based structure in the centre with four ring roads
connecting the different regions. (Qin, 2015)

Figure 7: Location of Chengdu in China, the provincial capital of Sichuan Province (Liu et al., 2014).

The city centre is located inside the first three ring roads. Limited by the extract where the GPS
taxi trajectories are provided by Didi-Chuxing, the analysed study area only covers the upper
part of the centre as it can be seen in Figure 8. This equals an area of 76.9 km?.
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Q Kuan Alley
and Zhai Alley

Figure 8: The city centre of Chengdu with its three ring roads and the grid-based structure of smaller
streets. The study area of this work is illustrated by the red rectangle located in the upper part of the
city centre. The shape of the study area is given by the availability of the data. (Source: Google Maps)

4.2 OpenStreetMap road network

The data of the road network of Chengdu is obtained by the open-source community
OpensStreetMap (OSM) and downloaded as a shapefile with the BBBike Extract Service. As
mentioned above, the extracted area has an extent of about 77 km?2. The dataset contains 3’136
road segments that are stored as an ordered set of nodes. These nodes can be start and end nodes
or additional vertices that represent the shape of the road segment. The selected road network
contains 1°038.3 km of road segments. The length of the individual segments differs from 1.4
meters to 6.1 kilometres. On average, a road segment has a length of 331.1 meters. The provided
attributes for the road segments are listed in Table 3.

Name Type Description

osm_id Integer OSM 1D of the road segment

name Text Street name in Chinese

ref Text Reference number or code of the street if available

type Text Road type of the segment

oneway Boolean Information if the segment is a one-way or a two-way street

bridge Boolean Information if the segment is a bridge

maxspeed Integer Information on the maximum allowed speed for the segment if available
length Double Length of the road segment in meters

Table 3: Attributes of the OSM road network dataset.
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The attributes about the name, the reference number, and the maximum allowed speed are not
given for all the road segments. Only a small part contains this information. The other attributes
are always given. The segments can be divided into 23 different types. They are listed in Table
4; some of them are segments that can only be passed by foot and not by vehicle; some are not
located inside the study area. Those are not considered in the further process anymore. As
information on the maximum allowed speed is not available for each road type, these values
must be added manually. By considering the available values and information provided by
Wikitravel (2008), a maximum allowed speed value is set for each road type.

Road type Max. allowed speed Considered in study
bus stop - no
construction - no
cycleway - no
footway - no
living street 10 km/h yes
motorway 100 km/h yes
motorway link 60 km/h yes
path 20 km/h yes
pedestrian - no
primary 60 km/h yes
primary link 60 km/h yes
residential 20 km/h yes
road - no
secondary 40 km/h yes
secondary link 40 km/h yes
service 30 km/h yes
steps - no
tertiary 30 km/h yes
tertiary link 30 km/h yes
track 30 km/h yes
trunk 80 km/h yes
trunk link 40 km/h yes
unclassified 30 km/h yes

Table 4: The 23 different road types available in the OSM road network dataset and information on the
maximum allowed speed as well as whether or not will the road type be considered in this study.
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As there are many road types with equal or similar maximum allowed speed values, six new
categories of road types are built to reduce the complexity of the dataset. Each category has one
maximum speed value assigned, which will be later used in the analysis part. The new
categories are shown in Table 5. Figure 9 illustrates how many road segments of the study area
are assigned to each category. In Figure 10, all the road segments of this part of the road network
are coloured concerning their category.

Zhang et al. (2015) analyse in their study the quality of the described OSM road network and
show that the dataset for Chengdu has, based on the Shannon-Wiener index, high diversity
between 2.13 and 2.46 and high road density between 3.35 and 18.42 km/km?. The Shannon-
Wiener index tells us how well distributed the different road types are. The highest score can
be achieved if the number of road segments per road type is equal for all of them. In both
categories, Chengdu is part of the group with the highest values for China. Therefore, the quality
of this road network is assumed to be adequate enough for it to be used in this study.

Road type category Max. allowed speed Grouped road types
Living street 20 km/h living street, residential, path
Motorway 100 km/h motorway
Primary street 60 km/h primary, primary link, motorway link
Secondary street 40 km/h secondary, secondary link, trunk link
Tertiary street 30 km/h tertiary, tertiary link, track, service, unclassified
Trunk 80 km/h trunk

Table 5: The six newly generated road type categories with its maximum allowed speed.
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Figure 9: Statistical distribution of the number of road segment per road type category.
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Road segments coloured by their road type category
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Figure 10: The OSM road network of the city centre of Chengdu. Each road segment inside of the
study area is coloured according to its road type category.

4.3 GPS taxi trajectory data

The GPS taxi trajectory dataset used in this study is generated and provided by the Chinese
company Didi Chuxing Technology Co. Through their GAIA Open Dataset Initiative, they
share part of their collected data for scientific use. Didi Chuxing Technology Co. (in short Didi)
is the biggest ride-sharing and -hailing company in China with over 400 million users (Ye,
2018). They even took over Uber in China and see themselves situated in a near-monopoly
situation on the Chinese market (Crabtree, 2018). The obtained data is a trajectory dataset of
the above-presented study area recorded in the year 2016. It is available in the form of two CSV
files. As already mentioned, GPS records outside of the study area are not provided.

The first file contains anonymized information about the routes of their vehicles collected from
the 1% until the 30" November 2016 in the form of trajectories. This means that each point of
these trajectories has an entry in this CSV file. Table 6 shows the stored attributes for each
trajectory point and contains an example entry. The taxi ID is used to identify the vehicle and
the order ID to match each trajectory point with a taxi trip. The longitude and latitude represent
the coordinates of each GPS record. The time stamp shows the exact time when the GPS signal
was recorded. This time is given as a Unix Time Stamp. This temporal reference system counts
the number of seconds since its origin on the 1% January 1970 (Cox & Little, 2020). For the
given example in Table 6, this means that the Unix time 1477959044 stands for the 1% Nov.
2016 at 00:10 a.m. This is the Coordinated Universal Time (UTC) and must then be translated
to the China Standard Time (CST). So, the example GPS signal was recorded at the 1% Nov.
2016 at 08:10 a.m. in the city centre of Chengdu.

30



4 Data

Taxi ID 5a25883efb40a7246962ea767ed6f065
Order ID 914ch27d35ba86df0ee95051c0b411f2
Longitude 104.05447960734
Latitude 30.6878976313132

Time stamp 1477959044

Table 6: Example GPS record with its attributes stored in the first CSV file of the trajectory dataset.

The second file contains information about the individual trips and can be linked to the first file
by the order ID. Table 7 shows all its attributes. The start and stop time are again given as a
Unix Time Stamp and represent the time it took for a taxi to drive a trip. The pick-up and drop
off longitudes and latitudes stand for the coordinates of the first and last trajectory point of each
trip, in other words their GPS signal.

Order ID 914cb27d35ba86df0ee95051c0b411f2
Start time 1477957963
Stop time 1477959332
Pick-up longitude 104.065129
Pick-up latitude 30.712609
Drop off longitude 104.04777
Drop off latitude 30.68346

Table 7: Example GPS record with its attributes stored in the second CSV file of the trajectory dataset.

While the OSM road network is projected in the WGS-84 coordinate system, the data of the
trajectory dataset is projected in the GCJ-02 coordinate system. This is the Chinese coordinate
system that is used in its territory. The trajectory points were recorded every 2 to 4 seconds and,
therefore, the GPS devices have a high frequency. Around 32 million trajectory points are
recorded by these devices per day. These points have been collected by approximately 35’000
taxis (calculated for one day), which equals a total of about 180°000 trips a day. Summing this
up to a month, there would have been around 960 million trajectory points and approximately
5.4 million different trips recorded. These numbers show not only the amount of information
available for the study, but also indicate the big size of the dataset. The latter is a crucial point
for the analysis conducted in this study. As using all the available data would go beyond the
scope of this work, only GPS taxi trajectory data of one day will be used from now on. The
analysed day is the 1% November 2016, which is a Tuesday. Data from all the 24 hours of that
day are analysed.

Figure 11 shows the distribution of the requested trips over the analysed day. It can be seen that
during the night, fewer taxi trips were requested on this day. During the morning rush-hour, the
number of requested trips rises and remains high until the end of the evening rush-hour. There
are two peaks. One in the morning and one in the afternoon. The most trips were requested in
the afternoon with approximately 3’250 taxi trips.
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Distribution of requested trips over the 1st Nov. 2016
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Figure 11: Number of requested trips over the 1% Nov. 2016.

By locating and visualising the trajectory points of these taxi trips in Figure 12, it can be
surmised that all the GPS signals were recorded inside the study area. An example trajectory is
displayed in Figure 13 to show the density of the available trajectory points for each trip.
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Figure 12: Visualisation of the trajectory points recorded on 1% Nov. 2016 inside of the study area. No
GPS records are available outside of the study area.
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Example of a taxi trip driven on the 1st Nov. 2016
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Figure 13: Visualisation of an example taxi trip represented by 385 trajectory points to show the
density of the GPS records.
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5. Methods

This study aims to identify potential ride-sharing paths from GPS taxi trajectory data and
analyse the influence of traffic state information on the ride-sharing results by including the
estimated traffic state of the underlying road network into the matching process. To achieve
this, a framework is built to explain the steps involved in identifying suitable ride-sharing paths
from raw GPS records. This framework is then applied to the previously presented real-world
GPS taxi data to conduct the mentioned analysis. By studying the different ride-sharing systems
of the related work presented in Chapter 2, suitable insights about the main steps of identifying
ride-sharing paths have been gained. Furthermore, opportunities for improvement in the
individual steps and the presented research gap were detected. These assist in analysing the best
way to include the traffic state information into the system and to build the framework presented
in Figure 15.

The four main steps applied in this work are illustrated in Figure 14. First, the real-world GPS
and road network dataset must be pre-processed to be used in the next part. Then, these two
datasets are map-matched to locate the driven taxi trips on the road network. Using this, the
traffic state of the network is computed to later being included in the matching process. This
allows identifying the potential ride-sharing paths and analyse the influence that traffic state
information can have on ride-sharing systems and their results.

—— e — — S
—» ~ —» !

-»>
OSM o re" 'oTre
T G i
Pre-processing Map-matching Traffic state estimation Identifying ride-sharing

paths

Figure 14: The four main steps of the process of identifying potential ride-sharing paths from GPS taxi
trajectory data applied in this work.

Figure 15 illustrates the framework of this study that contains additional sub-processes of the
mentioned four main steps. In the pre-processing step, both the GPS and the road network data
are slightly changed. Coordinate transformation and resizing form part of these processes. The
map-matching step also includes calculating the distance of each trajectory point to the start of
its map-matched path, which is later used in the traffic state estimation. There, first, a speed
value for each road segment gets calculated and then used for the interpolation. This allows
assigning a speed value to each road segment in the network. Finally, the travel time per road
segment per time window is computed. In the fourth step, the similarity between a subset of the
requested trips is calculated and for similar ones, the fastest shared path is computed. By finding
a local optimum, for each trip the ride-sharing path that accomplishes the objective of
minimizing the waiting time is identified. By comparing the new method between using traffic
state information and assuming an absence of traffic congestion the effect such information can
have on ride-sharing systems is analysed. The remainder of this chapter delivers detailed
explanations of all the mentioned methods elaborated and applied in this work and an
experimental design describes how these methods are used to analyse the influence of traffic
state information on ride-sharing systems.
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Figure 15: Framework including all the elaborated and applied methods in this work.
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5.1 Tools

The methods and processes that are presented in this chapter are computed using different tools.
For the coordinate transformation in the pre-processing step, the software environment R 3.5.1
is used (R Core Team, 2018). All the data, original and modified, are stored with the database
management system (DBMS) PostgreSQL 12. PostgreSQL is an open-source relational DBMS
that originally does not provide a spatial extension, but the open-source solution PostGIS
version 3.0 can be installed so that this DBMS can be used with spatial data (Piérkowski, 2011).
Most of the analysis part of this study is processed with Python 3.6.10. The code is written
using PyCharm 2019.3.1, an integrated development environment (IDE). Table 8 gives an
overview of the most relevant Python modules used in this work. Additionally, two Geographic
Information Systems (GIS) are used for visualising purposes and analysations. QGIS 3.12.2, an
open-source software, is used for all the visualisations and with ArcGIS 10.7 the results of the
in Python computed methods are checked. Furthermore, its Python module arcpy is included in
several scripts, e.g. the map-matching or interpolation script.

Module

arcpy
geopandas

mapmatcher
math
matplotlib
networkx
pandas
psycopg2
shapely

Table 8: List of most relevant Python modules used in the analysis part of this work.

5.2 Pre-processing

Before an analysis can be conducted, the data typically must be pre-processed. In this study,
this needs to be done for both datasets, the GPS trajectories and the OSM road network. First,
the pre-processing of the road network and later the pre-processing of the GPS trajectories are
explained in detail.

5.2.1 OSM road network

As described in the data section, the original OSM road network consists of road segments
which can significantly differ in their length. There are very small road segments of less than 2
meters length and some very large ones of more than 6 kilometres length. As the traffic state is
calculated per road segment, it would lead to an inaccurate representation of the traffic
conditions if a road segment of 6 km length would only have one traffic state information value
for the whole segment assigned. Additionally, the original road segments do not end at
intersections, which again would lead to inaccurate results, as an intersection can have a strong
influence on the average speed of vehicles on a road segment. Considering this, the original
OSM road network is reshaped in two stages.
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First, the problem of road segments not divided by intersections is addressed. Each road
segment that contains an intersection is divided into two individual segments. This leads to an
increase in the number of road segments, but the newly created segments are still referenced to
the original road segment by its OSM ID, and, therefore, still contain all the information on e.g.
the road type or the maximum allowed speed. As especially long road segments are prone to be
divided by this method, the problem with the different lengths is addressed as well. To solve it
entirely, in the second step, each road segment that is longer than 500 m is divided into two
segments of equal length. This is repeated until no road segments longer than 500 m are left.

The pre-processing of the road network leads to a new total of 8’368 road segments with an
average length of 124.1 m. The total length of the road network remains the same and the
longest road segment is now 499.8 m long. The statistical distribution of the different road type
categories mentioned in the data section has slightly changed, as not all road types are affected
equally by these two reshaping steps. How this distribution has changed is visualised in Figure
16.

Distribution of pre-processed and original road segments over
the different categories
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Figure 16: Visualisation of the total number of road segments per road type category. The dark colours
represent the numbers for the original data and the light colours the ones for the pre-processed data.
The distribution slightly changed as now there exist e.g. more primary streets than living streets.
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5.2.2 GPS taxi trajectory data

The original GPS taxi trajectory dataset provided by Didi is recorded in the GCJ-02 coordinate
system. This is a Chinese coordinate system, which differs from the common WGS-84 system
by an applied shifting algorithm. This algorithm can be used to protect the security of China’s
geographic information and thus using it in combination with data stored in the WGS-84
coordinate system would produce position errors. (Jia et al., 2016)

As the OSM road network dataset is stored in the WGS-84 coordinate system, such position
errors are a problem. To solve this, a coordinate transformation must be executed on the
trajectory dataset, so that both datasets are stored in the same coordinate system. Lin (2018)
published an in R written function on GitHub, a collaborative software development repository,
to cope with this transformation. It removes the position shift mathematically and delivers very
reliable results. As one day of the dataset already contains around 32 million trajectory points,
this transformation can be time-consuming. To speed up the process, these 32 million points
are divided into several subsets and then reunited again projected in the WGS-84 coordinate
system. An example of these position errors and the trajectory points after the coordinate
transformation is shown in Figure 17.

Location of GPS signals stored in the GCJ-02 coordinate system
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Figure 17: Example taxi trip stored in the GCJ-02 coordinate system (up) and after the transformation
to the WGS-84 coordinate system (down), same as the underlying road network. The arrows on the
upper hand indicate the effect of the applied shifting algorithm of the Chinese system.
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In the second pre-processing step, the transformed GPS trajectories must be filtered by their
location. As already mentioned in the data section, Didi only provides data inside the study
area, but the taxi trips do not have to stop at the border of this area. This means that a taxi trip
can leave the study area and stop outside of it or even return to the study area. The stored GPS
signals cover only the part inside the area and the path driven outside of it is missing. Figure 18
shows an example of such a situation, where the taxi trip leaves the study area for a while before
returning and finishing the trip inside the study area. Here only the two single parts inside the
area are recorded respectively provided and no information is given about the driven path
outside the study area.

Recorded GPS signals only available inside the study area — part of the trajectory is missing
/ * trajectory point

road inside of study area
road outside of study area
park

river

0 250 500 m \
| ] N

Figure 18: Example trajectory where part of it is missing because only GPS signals inside the study
area are provided by Didi. The trip starts north, leaves the study area, and finishes in the south. Using
such trajectories would lead to incorrect paths and potential errors.

Considering these incomplete trajectories in the analysis part would lead to incorrect paths and
could produce errors. To solve this, only taxi trips that never left the study area are considered
in this work. First, all trajectory points are connected by their order IDs and transformed into
line features. Subsequently, a rectangle approximately 150 m smaller on each side as the study
area is inserted and only the line features, and thus the trips, that are located completely inside
this rectangle are kept. The buffer of 150 m is chosen as assuming a maximum vehicle speed
of 110 km/h (100 km/h plus a set buffer of 10 km/h) and the longest time gap between two GPS
signals of four seconds, a taxi could reach around 123 m outside the rectangle during this time.
Therefore, if a taxi has left the study area but the created line feature still is completely inside
this area (possible if the taxi leaves the area and does not return or both, the last GPS record
before leaving the area and the first after returning to it, are connected) it will not be selected
as itis not located completely inside the rectangle. Additionally, the dataset contains trajectories
with a duration of less than one minute. As such taxi trips are not suitable to be considered in a
ride-sharing study, they are deleted as well. The GPS signals are recorded every 2-4 seconds,
S0 assuming again the slowest sampling frequency of four seconds would mean that a trip with
a duration of one minute is represented by a minimum of 15 trajectory points. This is taken as
the threshold to filter out these unsuitable short taxi trips. These pre-processing steps reduces
the number of available taxi trips by 76.7%. The corrected dataset contains around 42’000 trips,
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driven by 19°000 different taxis, represented by approximately 9 million trajectory points. The
pre-processing of the GPS dataset might have an influence as well on the distribution of the taxi
trips over the time of the day, but as it is shown in Figure 19, both curves are very similar.
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Figure 19: Comparison of the distribution of the number of taxi trips requested per time of the day
between the original dataset and the pre-processed dataset. Displayed are the numbers in proportion to
the total number of requested trips for both cases.

5.3 Map-matching

To work with the pre-processed data, it is important to know on which road segment each
trajectory point is recorded. As already explained in Chapter 2, this process is called map-
matching. From all the presented possible methods, in this work, the Hidden Markov Model
(HMM) approach provided by the study of Newson & Krumm (2009) is applied. This method
is selected because using a simpler approach would lead to inaccurate results, as the road
network is dense, and the average GPS error is around 10 meters. Furthermore, their method
can provide very reliable matches and is already implemented into a Python script, which is
published by Schneider (2017) and freely available for scientific use. In the following section,
an explanation of the HMM approach in general and the detailed implementation of Newson &
Krumm (2009) is provided. Additionally, a small extension to the existing Python script is
presented, to calculate the distance on the route of each map-matched trajectory point.

A Markov model is a statistical model that represents the special case of a Markov process and
is named after the Russian mathematician Markov. Given a system with several states, it is used
to calculate the probability that a change of state in the system occurs. In a normal Markov
model, this probability depends on the transition probability, that shows how likely it is that a
state transitions to another, and the initial state probability, that stands for the likeliness that a
specific state is detected. In this case, the states refer to observable events. In a Hidden Markov
Model, these events are not directly observable, but can be observed through another set of
measurements. Differently from a normal Markov model, an HMM, therefore, includes an
emission probability, that shows how likely it is, that a measurement can be observed given the
state. (Rabiner, 1989)
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Newson & Krumm (2009) apply this statistical model to the map-matching problem by using
the knowledge about the connectivity of the road network. In their approach, the states of the
HMM are represented by the road segments and the state measurements by the GPS signals.
The aim is to find for each longitude/latitude measurement pair z; the road segment on that the
vehicle actually was driving. To reduce the computation complexity, a maximum search radius
is defined that limits the candidate road segments for each measurement z;. Each measurement
21, 2, ... zn has a specific amount of candidate road segments, on which the vehicle could have
been driving. This is illustrated in Figure 20, where r; stands for the individual road segments.
As can be seen, already with only three measurements there are several possible combinations
(paths). The method aims to find the most probable one of them. This path must respect both
the reasonability of zj being measured on rjand that the road segments are connected like this
based on the connectivity of the network. This is represented by the introduced emission
probability (called measurement probability) and the transition probability. Those must be
calculated for each GPS signal to find in the end the most probable path.
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Figure 20: Visualisation of Newson & Krumm (2009). The black dots represent the candidate road
segments and their connection stands for the different possible combinations between the three
measurements zi. The white dots are not inside the search radius and therefore ignored. The algorithm
must find the path with the biggest probability in the sense of emission and transition probability.

The emission probability stands for the likeliness that a measurement is observed due to a
certain state, meaning each road segment inside the search radius of z; has an emission
probability that shows the likeliness that zi would be observed if the vehicle actually was on
road segment rj. This can be expressed as p(zi|rj). In general, the further away a road segment is
located from the measurement, the less probable it is to be the correct one. How far away a road
segment is located gets measured by the great circle distance of the surface of the earth from
the measurement z; to the closest point on the road segment rj, denoted as X;j. The great circle
distance stands for the distance between two points measured on the surface of the earth while
assuming the earth to be nearly spherical. The remaining distance for the correct match is
assumed to be the GPS error, that can be modelled as zero-mean Gaussian. This is used to
calculate p(zilr;), as this equals the probability density function of a Gaussian distribution in this
form:
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o stands for the standard deviation of the GPS signals. If ground truth data is available, this
value can be calculated exactly. In this work, ground truth data is not given and, therefore, this
value must be set based on analysing a subset of the GPS signals and testing it in the Python
script. In addition to the emission probability, the initial state probability 7i must be computed
as well. This normally tells the likelihood that a state can occur. In this approach, for the initial
state probability, the probability of the first road segment in each path is taken, based on the
first measurement. In other words, ;i is given by p(zi|rj).

The transition probability shows the likeliness that a vehicle was moving between two matched
road segments given zi: and zit+1. This probability is calculated by considering the difference
between two distances. First, the distance between the closest point on the first road segment
and the closest point on the second is analysed. This distance is represented by the shortest path
from Xizj to Xit+1,i and stands for the route distance. The second is the already described great
circle distance between zi: and ziw+1. The smaller the difference between these two distances,
the more probable is the analysed path because having to make complicated manoeuvres (what
leads to a long route distance and a big overall difference) is unlikely in high-frequency GPS
vehicle data. This relation between the difference in these two distances and the probability can
be modelled as an exponential probability distribution in the form of:

p(d;) = %B_Tdt )
Where

d; = |||Zi,t — Zi,t+1||great circle distance — ||xi_t,j - xi_t+1li||route distance| 3)

and B again could be calculated if ground truth data would be available, but as before with
the o, this is not the case for this study. As B represents the tolerance of non-direct routes, this
value must be chosen in a trade-off between accuracy and successfully matched GPS signals.
In the end, p(d:) assigns the transition probability. The relation between the two distances used
in this calculation is illustrated in Figure 21.
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Figure 21: Explanation of the difference between the two distances based on Figure 4 of Newson &
Krumm (2009). z; has two and z;1 has one candidate road segment. For each candidate there exists

the closest point Xit1, Xi3 OF Xit1.2. The smaller the difference between the route distance of X1 and
Xi+1,2 respectively Xiys and Xi 1,2 and the great circle distance, the bigger the transition probability.

After calculating these two probabilities (emission and initial state probability taken as one) for
each trajectory point of a taxi trip the aim is to find the optimal path with the highest probability.
This path maximizes the product of emission and transition probability for each trajectory point
of the trip. Here, they apply the Viterbi algorithm to find this optimal path for each taxi trip.
The Viterbi algorithm is a dynamic programming algorithm that is useful together with an
HMM as it does not have to compute the probability for each possible collocation in a network
(in this case a road network) and is, therefore, less time-consuming (Theodoridis &
Koutroumbas, 2009).

As the data used in this work is different from the one used in the study of Newson & Krumm
(2009), the previously mentioned parameters must be newly set for the map-matching script.
The search radius is set to 50 m due to the dense road network in the city centre. o, is set to 50
m as well. The average GPS error, analysed by a subset of the data, is about 10 m, but using 50
m as the parameter gives more successfully map-matched taxi trips. B, the last parameter, is set
to 3000 m as sometimes there are big gaps between two trajectory points in the used dataset
and these trips would not be map-matched with a lower B. Nevertheless, there can still be some
taxi trips that produce errors and cannot be map-matched successfully.
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The explained HMM map-matching approach provided by Newson & Krumm (2009) is, as
already mentioned, implemented into a Python script, mainly based on arcpy, and provided on
GitHub (Schneider, 2017). Only the road network, the trajectory points of a trip ordered by time
and the mentioned parameters are needed as the input. The script calculates the presented
emission-, initial state- and transition probabilities based on these parameters. The output of the
original script is a complete path containing the matched road segments and its ID. For each
trajectory point, the nearest road segment of this matched path is selected, which in this case
must be the map-matched road segment, and its ID is added to the point. Like this, each
trajectory point of a trip that is map-matched successfully contains the ID of the matched road
segment. To improve the performance of this method unnecessary trajectory points of the input
trip are removed so that only the important ones that keep the shape of the trip are left. By trying
and resetting the degree of simplification it is assured that this process does not negatively
influence the result but leads to a less time-consuming computation. Furthermore, an addition
to the script is made, that calculates the distance each trajectory point has to the start of its
assigned path. As the output of the map-matching algorithm is a complete matched path, each
trajectory point can be located on that path and the distance from the start of the path to the
trajectory point represents its distance value. It is important to mention that with this step, for
each point the network distance instead of the Euclidean distance is calculated as every turn is
considered in the computation. Especially in dense urban road networks, the Euclidean distance
between two points can be smaller than the network distance, as the mentioned turns and
junctions lead to a larger distance than just taking the direct way. This is illustrated in Figure
22 for better understanding. The calculated distances respectively the distance between two
trajectory points are used in the traffic state estimation and, therefore, this step forms an
important part.
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Figure 22: The black line shows the matched path containing eight road segments. The seven
trajectory points are located on the route for the distance computation. Using the network distance
gives AT2-T1 = R1+R2 and using the Euclidean distance gives AT2-T1 = Ery12. The former is larger
as it considers the involved turn. The same situation appears at T6/T7. This shows that working with
the Euclidean distance would lead to inaccurate measurements what later would affect the quality of
the traffic state estimation.
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5.4 Traffic state estimation

The main goal of this work is to identify potential ride-sharing paths including information on
the traffic state of the underlying road network and analyse the influence such information can
have on the results. The information on traffic state is not given or derived from any source and
must, therefore, be estimated first. As one of the contributions of this work, in the following
section, it is presented how traffic state can be estimated from raw GPS taxi trajectory data.
Information used from the dataset is the vehicle speed, the maximum allowed speed per road
segment, the type of the road segment, and the length of it. Normally GPS data used in traffic
state estimation or prediction studies contain information on the speed of the vehicle at each
GPS record. Unfortunately, such information is not given in the used dataset of this work.
Therefore, the first step is to estimate the vehicle speed at each GPS signal. Subsequently, an
average speed value per time window per road segment is computed. This gives information on
how fast a vehicle is driving on average at a particular time on a particular road segment. The
final estimated traffic state is then represented by the travel time for each road segment. In this
section, first, the vehicle speed calculation method is explained in detail, then an interpolation
approach is presented to estimate the traffic state on every road segment of the network and
finally the method on computing the travel time is described.

5.4.1 Vehicle speed

To calculate how fast a taxi was driving at each GPS record, the pre-processed and map-
matched data is used. As each trajectory point comes with information about the exact time it
was recorded and thanks to the map-matching process as well with information about the
distance to the start of the trip, the differences in this information between several points can
be used. In other words, the difference in the time stamps and the distance of two trajectory
points is used to calculate the vehicle speed. Let us consider the situation illustrated in Figure
23, where a trip only contains trajectory point A, B, and C. Each trajectory point contains
information about its exact recording time, given in seconds, and the distance to the start of the
trip. Furthermore, the 1D of the map-matched road segment is stored for each point as well.
How the vehicle speed is calculated depends on the position in the order of the trajectory points.

Time stamp: 1477965604 &

Distance: 50 m
Time stamp: 1477963600 & Time stamp: 1477963607 &
Distance: 0 m BRI Distance: 80 m B2

......................................................

Adist BA Adist CB
% 3.6 vgelkm/h] = ® 3.6
Atime BA z.c [km/h]

vas [km/h] = ArimeCE

Vag T 1
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2

Figure 23: Explanation of the vehicle speed calculation for trajectory point B based on the driven
speed between A-B and B-C. The speed is derived by using the differences in time and distance.
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To calculate e.g. the speed of trajectory point B, the average of the speed between point A and
B and point B and C is taken. The speed between A and B is simply calculated by:

, (distance of point B — distance of point A)
vehicle speed [km/h] = — _ _ _ x3.6 (4)
(time stamp of point B — time stamp of point A)

The distance stands for the in the map-matching part calculated network distance to the start of
the trip, meaning the real distance the taxi was driving, which is important to get a more accurate
speed value. As the distance is given in meters and the time stamp in seconds, the result must
be converted into km/h to be in the same format as the given maximum allowed speed per road
segment. Equation 4 is used the same way for calculating the speed between point B and C.
Considering the values given in Figure 23, the vehicle speed between point A and B is 45 km/h
and between B and C 36 km/h. The average of these two speed values, 40.5 km/h, represents
how fast the vehicle was driving at the GPS record B. While calculating the vehicle speed for
point A or C, there is only one other trajectory point available. Because of this, the speed for
point A or C is not the average of its surrounding speeds, but just the vehicle speed calculated
between point A and B (45 km/h) respectively between B and C (36 km/h).

The described method is used to calculate an average speed value for each road segment based
on the trajectory points’ vehicle speed. As the trajectory points are recorded over a whole day
and the vehicle speed at a particular road segment is not equal all the time, the 24 hours of the
1%'Nov. 2016 must be divided into short time windows. For each time window, only information
of trajectory points that are recorded inside this window is used to estimate the traffic state.
Santi et al. (2014a) work with a time window of one hour and in Kong et al. (2013) they
calculate the traffic state every four minutes. Regarding the time-consuming computations, in
this work, a time window size between the two mentioned ones of 15 minutes is set. This means
the 24 hours are divided into 96 equal intervals. Getting back to Figure 23, to calculate the
average speed value at the given time window for the road segments R1 and R2, the following
is done. First, all the trajectory points are filtered by their time stamp, so that only trajectory
points inside the specific time window are considered. In this example, this means all the points
that are recorded between 10 a.m. and 10:15 a.m. Here, only the three points are given, so no
other points must be filtered out. To calculate the average speed for road segment R1, from the
remaining points, only the ones which are map-matched to R1 are selected. Now, the average
of all the speed values of these points represents the vehicle speed for road segment R1 between
10 a.m. and 10:15 a.m. As in Figure 23 only trajectory point A is map-matched to R1, the
average vehicle speed of R1 is 45 km/h for that time window. R2 has two map-matched
trajectory points and therefore the average of 40.5 km/h and 36 km/h represents the speed value
for this road segment, which equals 38.25 km/h. Like this, the road segments contain
information about how fast on average a vehicle drives at a particular time of the day, which
represents the first way to estimate the traffic state. The second one will be represented by the
estimated travel time, which is explained later.

While a taxi is picking-up or dropping off a customer, its speed value drops to 0 km/h. Because
this is a special behaviour of the taxis’ movement, it does not represent the speed a taxi normally
could drive on the specific road segment. Therefore, these start- and stop movements of a taxi
trip must be filtered out before computing the average speed value per road segment. If during
the trip the taxi must stop, because of traffic or traffic lights, it can be seen as a representation
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of the state at this location. To not mix these two patterns, only trajectory points at the start and
the end of the trip are analysed. In more detail, starting with the first trajectory point, if the
calculated speed value is lower than 20 km/h, all the following trajectory points are filtered out
until its speed exceeds the 20 km/h threshold. The same is done for the last trajectory point of
each trip. This threshold is set because the minimum of the allowed speed values of the network
equals 20 km/h for streets of type residential (excluding living streets with a maximum speed
of 10 km/h as they are very rare). So, speed values at the start an end of a trip below 20 km/h
are classified as not normal, and thus, as start- and stop movements. For better understanding,
such a situation is illustrated in Table 9.

a)
Trajectorypoint | Ty T, Tz Ta Ts Te Tz Tg To¢ Tio Tuu Tz Tz T
Speed [km/h] 0 5 21 4 0 0 15 28 37 45 23 10 0 0

b)

Trajectorypoint | T: T, T3 Tsa Ts T T7 Tg Tg Tw Tu Tz Tz Tua
Speed[km/h] | - - 21 4 0 0 15 28 37 45 23

Table 9: a) shows the calculated speed values per trajectory point for an example trip. b) shows the
remaining speed values after filtering out the start- and stop movements. The speed values below 20
km/h during the trip are not classified as such a movement and, therefore, included in the average
speed calculation for the road segments.

As either the GPS records can be erroneous or the distance calculation in the map-matching
part can produce wrong values, unrealistically high speed values are possible after the vehicle
speed computation. For each road type a maximum allowed speed is given and, therefore, too
high speed values can be detected easily. Including them in further processes would lead to a
bad representation of the estimated traffic state. Thus, these detected values must be corrected.
To set the threshold to the maximum allowed speed per road type would be unrealistic, as
vehicles may drive faster than allowed. In China usually after driving more than 10 km/h faster
than allowed a fine is issued (Angloinfo China, 2020). Considering this, the threshold for too
high speed values is set to 10 km/h above the given maximum allowed speed. If a calculated
speed value of a trajectory point is more than 10 km/h higher than the maximum allowed speed,
the calculated value is replaced by the maximum allowed one. So, if for some reason a trajectory
point, that is matched to a road segment of type “primary”, has a speed value of 90 km/h
assigned, this value is replaced by 60 km/h, the maximum allowed speed for roads of type
“primary”. With the mentioned steps of filtering and correcting, each road segment where a taxi
was driving has reasonable vehicle speed values for the 96 time intervals assigned.

5.4.1.1 Interpolation

The pre-processed road network contains 8’368 road segments, but not all of them are visited
by a taxi during the 1% Nov. 2016. This means, that there exist road segments with no GPS
records assigned to and, therefore, no speed value estimated. If focusing on the 96 time intervals
individually, even less segments are visited. As a potential ride-sharing path can lead through
each of the 8’368 segments, the traffic state must be estimated for all of them. This assures that
there is no information missing while computing e.g. the resulting travel or waiting time of a
shared path. The unvisited road segments get a speed value assigned by interpolating the already
estimated values. This is done by applying a Kriging interpolation method.
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Kriging is a geostatistical approach to estimate unknown values based on the autocorrelation in
the distance to the measured values. The basic principle is that the further away the unknown
point lies from the measured one, the less autocorrelated they are. The missing value can be
estimated by the sum of a trend of observable factors and a random error component. The spatial
autocorrelation is found in this error component. By plotting the variance over the lag distance
of the known values, an experimental variogram is created that models this component. After
fitting a curve to the variogram, important parameters can be detected, that serve as an input to
the Kriging model. They are known as the nugget, the partial sill and the range. The nugget
represents the variation that remains unresolved, the partial sill stands for the spatially
correlated variance and the range gives the threshold distance at which the variance stabilizes.
The curve that is fitted to the variogram and detects the presented parameters is represented
either by an exponential, spherical or Gaussian model. Besides the model of the curve and the
three parameters, the type of Kriging interpolation must be chosen as well based on the given
data as an input to the function. If the mentioned trend of observable factors is known, then the
Simple Kriging method can be used. If the trend depends on explanatory variables, the
Universal Kriging approach should be applied. If explanatory information is lacking, the
Ordinary Kriging method fits best. (Oliver & Webster, 2014 and Wang & Kockelman, 2009)

The work of Wang & Kockelman (2009) shows that the described Kriging interpolation method
is a useful approach for transportation studies. They analyse the utility of Kriging to interpolate
traffic count values on a road network in Texas, USA. As a pre-processing step, they divide the
road segments based on their type into several groups so that only similar road segments are
used to estimate the missing value of a road of the same type. Then, the described parameters
and the model of the curve are analysed for each group individually and later used as an input
to the global Ordinary Kriging model (assuming a lack of explanatory information).
Additionally, they show that using the Euclidean distance instead of the network distance does
not severely worsen the quality of the interpolation but significantly reduce the complexity. The
result is a continuous distribution of traffic count values over the whole study area for each
group of road segments. Based on the location of the road segments, the interpolated value of
the underlying Kriging surface can be extracted and assigned to the segments’ attributes.

Based on their study, the procedure of the interpolation of the speed values is implemented
similarly in this work. The Ordinary Kriging model is applied to the estimated speed values per
road segment. As it does not make sense to include speed values of road segments of the type
“living street” to interpolate a missing value of a road segment type of “motorway” (on average
totally different speed values), the road network first must be divided into sub-networks based
on the road type categories presented in Chapter 4. Like this, the 8’368 road segments are
divided into six sub-networks, shown in Table 10. The Ordinary Kriging is applied to each sub-
network individually, to assure that only speed values of the same range are used to estimate
the missing values. As the used speed values of a sub-network are similar over the whole study
area, it is waived to apply a local interpolation and, thus, global Ordinary Kriging interpolation
is implemented. Furthermore, the interpolation must be done 96 times, meaning for each time-
window separately, as the estimated values per road segment differ in time. The global Ordinary
Kriging is, therefore, run 576 times. To reduce the time consumption of this process, the
parameters and curve model are analysed only once per sub-network and not 96 times. The time
window used for analysing the variograms of the six sub-networks is between 12:00 p.m. and
12:15 p.m. The six variograms including the chosen parameters are illustrated in Figure 24.
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Sub-network

Number of road segments

Living street 570
Motorway 4
Primary street 426
Secondary street 404
Tertiary street 1238
Trunk 96

Table 10: The six sub-networks used for the interpolation and the number of road segments per sub-

Sub-nefwork «primary sireeb»

- Curve: Exponential model
Nugget: 170305

= Major range; 132701

- Partial sill: 72.87

Sub-network «motorway »

- Curve Gaussian model
Nugget: 0.78
Major range: 1157.69
- Partial sill: 778.60

Sub-network «tertiary streeb»

= Curve Exponential model
Nugget: 39.54

= Major range; 2086.15

- Partial sill: 26.77

network.

Subnetwork «living street»

Curve: Gaussian model
Nugget: 19.76

Major range; 603,22
Partial sill: 6.86

Sub-network «secondary street»

Curve: Exponential model
Nugget 93.75

Major range: 2279 30
Partial sill: 41.03

Sub-network «trunk»

Curve: Gaussian model
Nugget: 327.17

Major range: 180755
Partial sill: 287 85

R B

Figure 24: VVariograms and used parameters of the six sub-networks. The parameters are analysed for
the time window between 12:00 p.m. and 12:15 p.m. and taken as the input for the Ordinary Kriging
interpolation method. A bigger size of the figure is given in the appendix of this work.
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The already estimated speed values are assigned to a road segment, meaning they represent an
attribute for a feature of the geometry type line. As these input measurements, on which the
interpolation is based, must be given as point geometries for the Kriging function, this problem
first must be solved. Therefore, the vertices of each road segment of each sub-network are
extracted. Complex line features can have more than two vertices to store the shape of the line
and thus, these vertices must not only be the start and end points. Each extracted point contains
an attribute that keeps the connection to its road segment ID and an attribute that stands for the
speed value estimated for this segment. The Ordinary Kriging interpolation is then run 96 times
for each sub-network based on these point features with its speed value and the analysed
parameters of Figure 24. The result is a continuous distribution of the speed values over the
whole study area. The road segments with the missing speed values are represented as well by
their vertices as explained before. The interpolated speed value of the continuous distribution
is then extracted at the exact location of each vertex and assigned to its attributes. Through this
step, each vertex of the sub-network has an estimated speed value assigned. In the end, the
geometry type representing the road segments must again be a line feature and, therefore, the
original road segments must be reconstructed. If a road segment where no taxi was recorded, is
split into e.g. three vertices, then all of them can potentially become slightly different speed
values assigned, as their distance to the given points is not equal. The reconstructed road
segment of these three vertices can only have one speed value assigned, thus, the three newly
estimated values must be transformed into one. This is done by computing the average speed
value of the three individual ones. For better understanding, an example for the time window
between 12:00 p.m. and 12:15 p.m. of the sub-network “trunk” is illustrated in Figure 25.

a) Road segments of sub-network "trunk" as line features

L\ segment to be estimated

k! — segment used for interpolation
4 road inside the study area
‘ road outside the study area
I park

;r \ river

0 L 2 km
L otih, o ¥
b) Road segments of sub-network "trunk" as point features
A . :
P { 4
” S o 4
;! =, st sl 2 g
{ i T

\ * vertex to be estimated
%

* vertex used for interpolation
road inside the study area
‘ road outside the study area

B oo
/—- e park
b & river

§

£

50



5 Methods

C) Continuous distribution of the interpolated speed values
inside the study arca for the sub-network "trunk"

- vertex to be estimated
+  vertex used for interpolation
road inside the study area
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Interpolation surface:
B 12 - 30 kmfh
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[T 46 - 60 kmfh
| 61 -75 km/h
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d)
Extraction of the interpolated speed values for each vertex and
transforming them to one value for its road segment

Road segment ID: 13538
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Figure 25: a) shows the sub-network and the road segments with the missing values. In b) the line
features are split into its vertices. The resulting interpolated speed values are illustrated in c). As
shown in d), the average of the speed values of the three vertices, that are extracted from the Kriging
surface, represents the final interpolated speed value for the specific road segment. A bigger size of the
figure is given in the appendix of this work.

A special case of the explained procedure is when for a given time window no road segment of
the whole sub-network is visited by a taxi. This means, that not even one speed value is available
and could be used for the interpolation. To deal with such situations, for each road segment in
the sub-network, the average of the estimated speed values of one time window before and one
after the missing time window is calculated and assigned to the analysed road segment. If only
one value is given, either before or after the analysed time window, then this value represents
the speed for the specific road segment. Through this, an average value of the time windows
before and after the analysed one is calculated, and this is likely to be accurate because the
speed value usually does not change significantly in 15 minutes at the same road segment.
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Additionally, a post-processing method is applied, as there is no upper boundary of the
interpolated speed values, meaning that if a road segment is located far away from the other
segments of its type, the assigned speed value might be unreasonably high (as it occurred before
the interpolation). To cope with this problem, the same correction as before the interpolation
step is done again. Thus, the speed values more than 10 km/h higher as the maximum allowed
speed value of this road type are readjusted and set to the maximum allowed speed.

5.4.2 Travel time

Besides vehicle speed values for each road segment depending on the time, the travel time of a
road segment can represent the traffic state as well. Moreover, it is a very useful way of
informing on the traffic state, as the travel time can be included in the trip duration of e.g. a taxi
ride. Through the presented interpolation and re-correcting method, each road segment in the
study area has 96 speed values assigned. As mentioned in the data section, for each road
segment the length in meters is given as well. By transforming this length to kilometres and
using the calculated speed value, the travel time for each road segment and for all the 96 time
windows is computed. The resulting time is given in hours. As most of the road segments’ travel
times are much shorter than one hour, the travel time will be stored and later used in minutes.

5.5 Identifying potential ride-sharing paths

Without the presented steps of pre-processing, map-matching and traffic state estimation, the
final identification of potential ride-sharing paths would not be possible or at least the influence
of using traffic state information could not be analysed. The following methods aim to use the
gained information most effectively. The general procedure to identify the potential ride-
sharing paths, as presented in studies of e.g. Santi et al. (2014a), Barran et al. (2017) or Wang
et al. (2018), would be to select a subset of all the requested or driven taxi trips and compute
between all of them individually a shared path. These paths would then be ranked by some
characteristics and either based on a local or a global optimum, the ride-sharing paths that
maximize the objective of the method are chosen.

5.5.1 Time window size

The mentioned subset is based on a time window where the selected taxi trips act as candidate
trips for ride-sharing. This is necessary as it does not make sense to share a ride with a user that
requests a trip several hours later than the first user. Therefore, only trips that are requested at
a similar time are useful to potentially be shared. How big this time window is, depends on how
long a user is willing to wait until a ride-sharing partner is found. In general, the bigger the time
window is, the more candidate trips are available and, therefore, the percentage of matched
trips, or simply the “matching rate” increases. The implemented time windows in the literature
differ from one minute up to ten minutes. Santi et al. (2014a) analyse in their work how
significant the impact of enlarging the time window is on the matching rate and based on this
select the most effective time window. They show that using a time window of one minute is
the most effective choice for their data as enlarging it would lead to a relatively bigger increase
in the computation time than in the matching rate. As this result might be different depending
on the given data, a similar evaluation is done for the dataset used in this study.
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Figure 26 shows the relation between a bigger time window and a bigger candidate trip
repertory. Enlarging the time window by one minute, from one minute to two minutes, doubles
the number of available candidate trips. Considering another minute more, the increase in
candidate trips is slightly reduced to 150%. The curve visualises the decline in the increase of
the candidate trips. After four minutes there is a too small increase considering the rising
computation time and the decrease in the user-friendliness of the system, as a user must
potentially wait longer to be matched to a ride-sharing partner with a bigger time window.

Relation between the enlargement of the time window in minute
steps and the percentage increase of candidate trips

200

50

Increase of candidate trips [%]

1 min 2 min 3 min 4 min 5 min 6 min 7 min 8 min 9 min

Enlargement of the time window in minutes

Figure 26: The decline in the percentage increase of candidate trips by an enlargement of the time
window of one minute. Starting with 46 candidate trips, by enlarging the time window one minute the
number of candidate trips gets doubled. Adding another minute enlarges the 92 candidate trips by
again 46 candidates, what equals an increase of 150%. After the enlargement of four minutes, the
percentage increase is too small to justify the arising increase in the computation time and the decrease
in the user-friendliness of the system.

Considering this short analysis, a time window of five minutes (enlargement of the original
time window of one minute by four minutes) is implemented in the ride-sharing approach
presented in this study. This means for an analysed taxi trip Tt all the trips started five minutes
before and five minutes after this trip are considered as candidate trips for ride-sharing.
Depending on the number of taxi trips in the dataset and their temporal distribution during the
day, there can be dozens, hundreds or thousands of candidate trips selected. The system of Santi
et al. (2014a) would then compute a fastest shared path between the analysed trip and each of
the candidate trips individually. Filtering and ranking them based on specified constraints and
characteristics lets the system identify the ride-sharing paths that globally optimise their
objective of minimizing the total travel time. Such an approach is very time intensive and a lot
of fastest path computations are conducted between sets of two paths that are not useful to be
shared at all. To reduce the time consumption and prevent unnecessary computations, in this
work a new simple yet reliable similarity measurement is presented and implemented to filter
out unsuitable candidate trips before computing the optimal ride-sharing paths that locally
optimise the objective of minimizing the waiting time for the second passenger to be picked up.
Figure 27 provides an overview of the so far and in the following explained methods.
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Figure 27: Illustration of the steps implemented in the identification process of potential ride-sharing
paths in this work. Different from previous studies, a similarity measurement is developed to reduce
the time consumption and prevent unnecessary fastest shared path computations.

5.5.2 Similarity measurement

There is a higher probability that the optimal ride-sharing path for a trip is combined with a
very similar candidate trip than with a less similar one and therefore two trips must be similar
to a certain degree in order to count as suitable to be shared, so that minimal detour emerges to
pick up the second passenger. Thus, measuring the similarity between the analysed and the
candidate trip can be used to filter out unnecessary candidates and reduce the time consumption
of the computation. In ride-sharing studies where the service provider is a matching agency, a
common way to measure the similarity between two vehicle trajectories is to compare the two
trips in their entirety through methods like Dynamic-Time-Warping (DTW) or Longest-
Common-Subsequence (LCSS) (Besse et al., 2016). This means two trajectories are only
similar if a significant part of the two trips are similar in route. Thus, the similarity depends a
lot on the vehicles’ chosen path. To show this, one can assume that two start and end points are
very close in space, but the rest of the trips take completely different paths and are far away
from each other. This would lead to a small similarity measure despite the fact the start and end
points are close. Such route choices are realistic, as it can be that a driver needs to pass a certain
place on her or his path before the destination is reached. An example could be a kindergarten,
where a father needs to drop off his child. Generally, it can be defined that considering the two
trips in their entirety makes sense for vehicle trajectory data of ride-sharing systems provided
by matching agencies, as there can exist hidden patterns in their paths that influence the
shareability of the trips. In a taxi ride-sharing system the similarity between the two paths in
their entirety is not relevant because the final optimal shared path will visit both start and end
points in the fastest possible way and the route of the two individual trips does not influence
that. Therefore, a different similarity measurement must be applied. To the best of found
knowledge, there does not exist a taxi ride-sharing study that implements a similarity
measurement and thus the presented method in this section represents a novelty in the research
field of ride-sharing.
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The developed and implemented similarity measurement only considers the distance between
each start and end point of two taxi trips and, if necessary, the closest trajectory point of the
opposite trip to either a start or end point. It thus does not consider the distances between all
trajectory points of both paths. This assumes that trips whose start and end points, and
sometimes the closest point of the other trip, are to some extent close in space and time (already
taken into account by the applied time window to select the candidate trips) are similar and,
therefore, suitable to be shared. A naive approach would be to simply measure the Euclidean
distance between both start and end points. This is functionally insufficient as it would not
consider when a start point is located rather far away from the first passenger’s start point but
very close on the way of this passenger, and therefore could be picked-up while en route (at the
closest point of the first trip to the secondary passengers’ start point, illustrated in Figure 29).
Such special cases must be included in the measurement as well. Thus, the similarity
measurement assumes three different collocations of two taxi trips which cover all the possible
positions two trips can have to each other. In the following, these collocations are explained
based on the start points. The same situations apply as well for the end points.

1. Considering Figure 28, in this collocation the closest point of the second trajectory T to the
start point of the first trajectory St1 equals the start point of the second trajectory St2. The
same is valid for the other way around, meaning that the closest point of the first trajectory
T1 to the start point of the second trajectory Sto is equal to the start point of the first
trajectory St1. This represents the simplest collocation.

T1
St Ep

o l ' o

T2

St T —O0 Ep

Figure 28: 1% possible collocation of two taxi trips, where the closest point of the other trajectory is for
both its start point. This represents the simplest case.

2. As shown in Figure 29, in this collocation the closest point of the second trajectory T to
the start point of the first trajectory St1 is one of its trajectory points Tt but not its start
point Sto. On the other hand, the closest point of the first trajectory T: to the start point of
the second trajectory St2 equals the start point of the first trajectory St1. The same counts
as well if the closest point of the first trajectory T to the start point of the second trajectory
St2 is one of its trajectory points Tt1 but not is start point St1.
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Figure 29: 2" possible collocation of two taxi trips, where the closest point of the other trajectory is
not for both its start point. This represents a more complex case, where one passenger could be picked
up on the way of the other passenger without generating a big detour.
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3. Figure 30 represents the collocation where the closest point of the second trajectory T to
the start point of the first trajectory St1 is one of its trajectory points Ttz but not its start
point St2. The closest point of the first trajectory T1 to the start point of the second trajectory
Stz is as well one of its trajectory points T1 but not its start point St1.
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Figure 30: 3" possible collocation of two taxi trips, where the closest point of the other trajectory for
both is not its start point. This represents the most complex case, as picking up a passenger on the way
would only be possible if the other passenger would be willing to walk to a meeting location.

Depending on the given collocation of the two trips, the distance between the two start and end
points can be calculated slightly different. In the end one distance value, given in meters, for
the two start points and one for the two end points is computed. The overall Similarity
Measurement Index (SMI), that shows how similar two trips are, is the average of the distance
between the two start and the two end points. A small SMI signifies a short average distance
between the start and end points of both trips and represents, therefore, high similarity. How
the distance is calculated for the three collocations is explained in the following:

1. The value that represents the distance between the two start points (the same is valid for end
points) in the 1% collocation, visualised in Figure 28, is retrieved by calculating the
Euclidean distance between both start points. As for each start point the closest point on the
other trajectory is its start point, no other distance than the one between these two points is
possible.

2. Given the situation in Figure 29, only for one start point (respectively end point) the closest
point on the other trajectory is its start point. For the second there is a closer point on the
first passenger’s trajectory. This can be used to pick up this passenger in a more efficient
way as driving from St1 to Sto2. The closest point X on T, notated as X2, represents the
location from where the detour to St1 begins and therefore, the value showing the distance
of the start points between these two trips is calculated by measuring the Euclidean distance
between Xt and St1 (red arrow in Figure 29). As this distance is always shorter than the
distance between St1 and St, the latter is no option for this collocation.

3. In the 3" collocation, for each start point the closest point on the other trajectory is not its
start point but a trajectory point Xtz, respectively Xt1. Driving from Stz to Xt1 or from St1
to X2 to pick up the other passenger would assume that the users are willing to walk to a
meeting point, because driving e.g. from Stz to Xt1 to St1 is illegitimate and therefore, no
better option. As forcing passengers to walk is not user-friendly and thus, excluded in this
system, the best option is to directly drive from St2 to Sti. Consequently, the value
representing the distance between the two start points in this collocation is again calculated
by measuring the Euclidean distance between them (blue arrow in Figure 30).
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The distance used to calculate the SMI in all the three explained cases is the Euclidean distance
and not the network distance. This is chosen as implementing the network distance would mean
that the shortest path must be calculated for each distance (either between X2 and Sti,
respectively Xr1 and Stz or between St1 and St2). This increases the time consumption of the
method, what would be off-target as with this similarity measurement the computation time
should be minimized. Thus, using the Euclidean distance assures the sought time reduction.
The technical details of the developed similarity measurement are notated in the algorithm
illustrated in Figure 31.

Algorithm Similarity measurement

Input: (l) An analysed taxi tl’ip T, = {Ton, Tit1, ..oy TnTl} with Tor1 = Stpand Tomi= Ent
(2) A candidate taxi trlp T2 = {TOTZ, Tj_'rz, ceey TnTZ} with To'rz = STz and TnT2 = ETz
Output:  Similarity Measurement Index SMI in meters
for St1 do
find the closest trajectory point Xr, of Ta;
if X12 = St2 then
a =1 and d, = EuclideanDistance (St1, St2);
else if Xt2 = Tit2 or X12 = Er2 and Xt2 # Stz then
a =2 and d, = EuclideanDistance (St1, Xt2);
end if
end for
for STz do
find the closest trajectory point X1 on Ty;
if X11 = Sty then
b =1 and d, = EuclideanDistance (St2, St1);
else if Xt1 = Tit1 or X711 = E11 and X711 # Sti then
b =2 and d, = EuclideanDistance (Stz, Xt1);
end if
end for
ifa=21andb=1then
distance between start points AS = da = db;
elseifa=1and b =2 then
AS = dp;
elseifa=2and b =1 then
AS =dg;
elseifa=2and b =2 then
AS = EuclideanDistance (St1, St2);
end if
for Er1 do
find the closest trajectory point X2 of Ta;
if X2 =Epr then
a=1and d, = EuclideanDistance (Er1, Et2);
else if Xr2 = Tirz or X12 = Stz and X1z # Er2 then
a =2 and d, = EuclideanDistance (Et1, X12);
end if
end for
for Er, do
find the closest trajectory point X1 on Ty;
if X1 =En then
b =1 and d, = EuclideanDistance (Er, Et1) ;
else if X1 = Tir1 or X11 = St1 and X1 # E11 then
b =2 and d, = EuclideanDistance (Etz, X11);
end if
end for
ifa=21andb=1then
distance between end points AE = d, = db;
elseifa=1and b =2 then
AE =dp;
elseifa=2and b=1then
AE = da,
elseifa=2and b =2 then
AE = EuclideanDistance (Et1, Et2);
end if
SMlty 12 = (AS + AE) 12;

Figure 31: Algorithm of the new developed and implemented similarity measurement.
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Besides the presented three possible collocations, there exist two special cases; for one start
point the closest point on the other trajectory is its end point. This represents a situation where
the first trip has already finished before the second trip is started and is therefore not considered
as a ride-sharing situation. Nevertheless, this end point is treated as a normal trajectory point.
Such a situation is illustrated in Figure 32. The distance gets calculated like in Figure 29 and
this could lead to a very small SMI and would therefore incorrectly signal a high similarity. If
such a trip collocation occurs and would be selected as one of the most similar candidate trips
for ride-sharing, it would get eliminated in the next step, as only ride-sharing paths that reduce
the total travel time of the shared path compared to the sum of the two individual paths are
considered to be suitable for ride-sharing systems. Therefore, this special case is not added as
a 4" possible collocation, but rather represented by the 2" collocation. The mentioned condition
is explained in more detail in the next section. The same elimination counts for the situation
illustrated in Figure 33 (same distance calculation method for the start points as in the 3™
collocation, and same method for the end points as in the 1% one), where two trips are allocated
in the opposite direction as sharing these two trips would again not reduced the total travel time
if the two start points must be visited first. Once again there is no 4" collocation needed.

Figure 32: Collocation where the first trip has already finished before the second one even started and
is therefore not considered as a ride-sharing situation. Nevertheless, Ev; is treated like a normal
trajectory point T+1 and the red arrow shows the distance used for the SMI. In the next process such
wrongly similar candidate trips would get eliminated.

Figure 33: The situation where two taxi trips are collocated in the opposite direction. The blue arrow
shows the distanced used for the similarity between the two start points (as in the 3™ collocation) and
the red arrow represents the similarity between the two end points (as in the 1% collocation). If such a
candidate trip is selected as one of the most similar ones it would again get eliminated in the upcoming
process.

The presented similarity measurement is applied to all the candidate trips of an analysed trip
and each set of two paths gets an SMI appended. By ordering them from small to big, the three
smallest SMI values, if available, and in relation to this the three most similar candidate trips
are selected as the remaining candidates for the identification of the optimal ride-sharing path.
All the other candidate trips are considered as unsuitable for sharing their ride with the analysed
trip and are discarded. This reduces the computation time and portrays the utility of the
developed method. The approach is quite simple yet reliable as it considers the different
possible collocations of two taxi trajectories. Using this method in real-time applications,
instead of the recorded trajectory (which in this case would not be available) the shortest path
connecting the known start and end point of a trip could be used.
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5.5.3 Optimal path computation

Due to the similarity measurement, instead of considering all candidate trips, an optimal ride-
sharing path must only be computed between each analysed trip and a maximum of three other
taxi trips. This optimal ride-sharing path is identified by applying a set of fastest path algorithms
and constraints to the three (or less) possible combinations of the analysed and the candidate
trip. The taxi trips get analysed ordered by their start time. For the primary taxi trip of the 1%
Nov. 2016 initially all the candidate trips are selected based on the time window of five minutes
(in this case only trips that started up to five minutes after the first one as there are no trips
available before this time stamp) and then the similarity measurement is applied. From the
remaining candidate trips the optimal ride-sharing path is selected which represents the fastest
path for the given combination of analysed and candidate trip, fulfils the set constraints, and
maximizes the objective. The identified ride-sharing path is then stored, and the two input taxi
trips are removed from the candidate list. This means that they are no longer an option for
sharing a ride with a trip started later. If for some reason for an analysed trip no optimal path
that fulfils the constraints is identified or no candidate trips are found and therefore the
similarity measurement cannot be applied, then this path is stored to be driven individually and
as well removed from the candidate list to not be considered anymore. Subsequently, the next
taxi trip in order of their start time that is not removed so far from the candidate list is analysed.
As for each trip the optimization problem is solved independently from the following trips and
their possible optimal paths, the matching process of this system represents a local optimum
case and not a global optimum as implemented in the study of Cai et al. (2019). This means that
for the analysed trip at this moment the identified ride-sharing path is the optimal solution, but
on a global perspective potentially its ride-sharing partner could have been matched to an even
more optimal trip to share the ride. On the point of a strong increase in the computation time
and the complexity of the method, it is decided to work with a local optimum as just described.
Moreover, Wang et al. (2018) show, that finding a local optimum instead of a global one, can
deliver very reliable results as well.

5.5.3.1 Fastest path

The optimal ride-sharing path must visit each start and end point of the two combined taxi trips
in the fastest but not necessarily the shortest way. This way it is ensured that the travel time,
depending on the driven speed, is considered to find the optimal path and not its distance. This
travel time can have two different sources, meaning the considered speed values are derived
differently. First, as the speed values the given maximum allowed speed per road segment can
be used, which represents the travel time needed to pass a road segment assuming an absence
of traffic congestion. Second, and this represents a new approach, the in the traffic state
estimation calculated speed values, or directly the estimated travel time, can be implemented
into the fastest path algorithm. By this function, the necessary time to travel on a road segment
based on the raw GPS taxi trajectory points is used and thus the traffic state information is
included in the identification process of potential ride-sharing paths. To find the fastest path, a
weighted Dijkstra’s shortest path algorithm is implemented. Given a start node, an end node
and a network graph, the algorithm computes the shortest path between the two nodes on the
underlying graph (Goldberg & Tarjan, 1996). A normal Dijkstra’s shortest path algorithm
would identify the shortest path based on the total distance, given by the length of the individual
edges of the graph (road segments). By using a weighted Dijkstra’s shortest path algorithm, a
weight can be added that replaces the length of the edges. This weight is either the travel time
based on the maximum allowed speed values or the travel time calculated in the traffic state
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estimation. The sum of the travel times of each selected edge must be minimal for the fastest
path. The results of this fastest path algorithm are the edges of the path and the total travel time.
As a shared path must visit four nodes but the Dijkstra’s shortest path algorithm only works
with two nodes, more than one fastest path is computed for an optimal shared path. Given the
first start point Sy, the first end point E1, the second start point Sz and the second end point E,
for the complete shared path, three fastest paths must be computed. Additionally, there is more
than one possible order of how the points are visited. The only rule is that both start points must
be visited before serving an end point and dropping off a passenger, as the opposite would not
represent a ride-sharing situation. Thus, the following four collocations are possible:

Iy & » 52 » E) » B
YIS » 52 » B » E)
3 5 » 5] » E» » E)
4y 52 » 51 » E) »E;

Figure 34: The four different collocations of the start and end points of the two trips to be shared. For
each collocation three fastest paths must be computed and summed up to the final shared path of this
collocation. The collocation that leads to the shortest total travel time represents the fastest path for the
combination of the two matched trips.

For the first collocation e.g., the fastest path between S; and Sz, between S, and E1 and between
E: and E> must be computed. Considering this, for an optimal path, 12 fastest paths are
computed. Summing up the total travel time and edges of the three sub-paths give the end
measures for each collocation. The one leading to the shortest total travel time represents the
final fastest shared path for the combination of the analysed trip with this candidate trip. This
is done a maximum of three times if there are three very similar candidates left, and each trip
combination is represented by one fastest shared path. Later, these paths are tested on the
constraints and the one of the remaining paths that maximizes the objective is identified as the
final ride-sharing path.

As aforementioned, the weighted Dijkstra’s shortest path algorithm needs as the input the two
nodes, the network graph and the weight of the edges. If for the weight the travel time based on
the maximum allowed speed is used, the weight of the edges remains the same over the whole
day. On the contrary, when using the travel time calculated in the traffic state estimation
depending on the start time of the two trips that are shared a different weight is used, as the
travel time is always given for a time window of 15 minutes. Before running the fastest path
algorithm, the estimated travel time for the time window in which the second trip started must
first be selected and added as the weight to the algorithm. The time window of the start time of
the second trip is chosen as the shared path will not start earlier because the trip request of the
second user is not available until this time. Of course, a shared trip can have a duration longer
than 15 minutes and then the traffic state and with this the travel time might change. However,
it is assumed that taxi drivers like to stick to the at the beginning computed route and thus the
travel time of only one time window is considered. The network graph is represented by nodes
and edges and is based on the start and end vertices of the road segments. Furthermore, the
information on the one-way restrictions is included, meaning a two-way road segment is
included twice in the network graph (once with inverted order of the nodes). This ensures that
the optimal path only considers road segments where it is allowed to drive.
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As the origin and destination of a taxi trip are only given as a trajectory point that is map-
matched to the road network, meaning the ID of the map-matched road segment is stored as its
attribute but the point itself is not part of the segment, these origin and destinations are not
available in form of nodes. Thus, besides including the one-way restriction and selecting the
right travel time for the weights of the edges, the origin and destination of each input trip must
be transformed to start and end nodes of the network graph to be used in the algorithm. There
exist three different approaches on how to transform the origin and destination of a trip to start
and end nodes of the network graph. These approaches are visualised in Figure 35. One possible
way is to select the closest start or end vertex of the map-matched road segment to the first and
last trajectory point of a trip, meaning the closest node representing this segment in the network
graph (Figure 35b). To make this method more accurate, as seen in Figure 35c, the road
segments could be split into smaller segments so that the distance to the closest node of the
map-matched road segment gets smaller. Unfortunately, this leads to a strong increase in the
complexity of the network graph and therefore to a loss of performance, as there would be
created a lot of new nodes. The third approach, visualised in Figure 35d, is to snap each start
and end trajectory point of a trip to the map-matched road segment and divide it into two new
segments. This would again lead to an increase in the complexity and the time consumption as
each new road segment means two new nodes are inserted in the network graph. Due to the
mentioned downsides of the other methods, the approach visualised in Figure 35b is
implemented in this work.

a) A Ist node b) A 15t node

* Start trajectory point
* Nodes of the network graph
— Edge representing the segment
Road

= Start trajectory point
* Nodes of the network graph
= Edge representing the segment
Distance measurement
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., Start point
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Figure 35: a) shows the problem that the start trajectory point of a trip is not part of the map-matched
segment and, therefore, not stored as a node in the network graph. In b), the closer node of the map-
matched segment is chosen as the start node that represents the start trajectory point. The method in c)
divides the road into smaller segments so that the nearest node of it is even closer to the start trajectory
point. In d), the start trajectory point gets snapped to the segment and divides it at this location so that
the start trajectory point is directly represented in the graph.
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The selected approach measures the Euclidean distance from the start trajectory point to both
start and end vertex of the map-matched road segment. The node that represents the vertex with
the closer distance to the start trajectory point is chosen as the start node of this taxi trip. In the
case of figure 35b, the 2" node is chosen as the start node of that trip. The same is done for the
end trajectory points and the vertices of its map-matched road segment. With this method, each
start and end point of a taxi trip is represented by a start and end node in the network graph and
can be used as an input for the weighted Dijkstra’s shortest path algorithm. As seen in Figure
35b, with this approach the location of the start point gets moved slightly (in this case 32.4 m).
The average length of a road segment is 331.1 m and thus the average maximum shift is around
165 m. This is not a significant shift and both the start and end point get shifted randomly,
meaning the trip could be enlarged or shortened with the same likelihood. With this considered
as well as the utility of the method, the choice of the approach is regarded as legitimate.

5.5.3.2 Objective and constraints

From the computed fastest paths, the one that fulfils all the constraints and maximizes the
objective of the ride-sharing system is identified as the optimal ride-sharing path for the given
combination of the analysed and the candidate trip. Different from the presented studies in
Chapter 2, the objective of the system of this work is to minimize the emerging waiting time
for the second user to be picked up. Another possible objective would have been to minimize
the total travel time and with this the total driven kilometres and therefore the total CO»-
emissions. Following this objective makes sense as in a global perspective the aim of a ride-
sharing system is to some extent to minimize the CO2-emissions, but the more important aspect
will be the user-friendliness of the system which is highly related to the waiting time. A ride-
sharing system only works if the users are willing to join, and this depends, in some part, on
additional costs like the mentioned waiting time. Therefore, in a holistic view, a ride-sharing
system aiming to minimize the COz-emissions might not save more CO.-emissions than a
system that focuses on the user-friendliness, as fewer users will join the system and thus less
shared rides are identified.

Before the fastest path that minimizes the waiting time can be identified, the remaining paths
must be tested on three constraints. Only the fastest shared paths that lead to a total travel time
smaller than the sum of the travel times of the two individual trips are suitable for ride-sharing.
This means that only ride-sharing paths that save time remain. The others are removed from
further analysis as they will not save CO2-emissions and are not user-friendly. The second set
constraint is that the shared path must also save distance compared to the situation without any
ride-sharing involved. In other words, the total driven kilometres must be less for the shared
path than the sum of the driven kilometres of the two individual trips. Here again CO2-emissions
and user-friendliness are the reason to remove the unsuitable paths. The last constraint is related
to the objective of the system. By setting a maximum acceptable waiting time, it is prevented
that a user would have to wait for too long until the taxi arrives and decides to not use the ride-
sharing system. In the study of Cao et al. (2015) they apply a maximum acceptable waiting time
of 15 minutes. As Rayle et al. (2014) analyse in their survey, 90% of the users of taxi-like
transportation systems as e.g. Uber or Lyft say that they wait on average less than ten minutes
for the requested vehicle to arrive. Only a few users specified a waiting time bigger than ten
minutes and barely any users mentioned waiting times over 20 minutes. Therefore, the applied
maximum waiting time of 15 minutes by Cao et al. (2015) is regarded as reasonable and will
be used in this study as well. So, if the computed fastest shared path leads to a waiting time
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bigger than this threshold, it is not considered as suitable anymore and will be removed. After
applying the fastest path algorithm, all three or less computed shared paths are checked on the
mentioned constraints. Only shared trips that fulfil all the set constraints are considered to be
suitable for ride-sharing. As soon as one constraint is not met, the candidate trip is removed
from the list. The remaining shared paths are ordered by their waiting time and the one that
minimizes this waiting time is identified as the optimal shared path for the analysed trip. As
already mentioned, this shared path with its indicators is stored and both the analysed and the
candidate trip are removed from the list for further combinations of ride-sharing paths. If no
shared trip fulfils all constraints, the analysed trip is considered as unsuitable for ride-sharing
and will be served individually. This information is stored as well, and the trip is removed from
further computations. Subsequently, the next taxi trip in order of its start time is analysed. The
total distance of the shared and the two individual trips is derived by summing up the lengths
of each road segment that is part of the path. The waiting time equals the time needed to get
from the first start point to the second one. This sub-path is represented by the computed fastest
path from Si to Sz or vice versa. The resulting travel time of this fastest sub-path stands,
therefore, for the emerging waiting time of the final shared trip.

5.6 Experimental design

To analyse the influence of considering traffic state information in ride-sharing systems, the
described optimal path identification process is applied twice. First, the travel time calculated
in the traffic state estimation is used as the weight of the edges in the Dijkstra's algorithm.
Second, the travel time based on the maximum allowed speed value of each road type is taken
as the weight. This leads to potentially different results in measures like the average waiting
time, the saved total travel time, or the reduction in the size of the needed taxi fleet. Analysing
these differences is used to answer and comment on some of the presented research questions
and hypotheses of Chapter 3. Furthermore, the computation is done first without considering
the constraint on the distance reduction and then with including this addition. This means, once
only the travel and waiting time constraints are applied and therefore the identified shared path
must not necessarily reduce the total travel distance. This is used to show the influence such a
constraint can have on the overall results of a ride-sharing system and its importance regarding
the impact of ride-sharing on the natural environment. So, the whole process is run four times:

1) Using traffic state information but not considering the constraint on saving distance
2} Using traffic state information and considering the constraint on saving distance

3) Not including information on traffic and not considening the distance constraint

4} Not including information on traffic but considering the distance constraint

Figure 36: The four different variations of implementing the identification process of the optimal ride-
sharing path.

All results of these four variations are presented and compared in the next chapter. Based on
them, in Chapter 7, the influence of using traffic state information is discussed and the results
are put into perspective to the research questions and hypotheses of Chapter 3. Figure 37 shows
the algorithm that delivers again a detailed view of the described process of identifying the
optimal ride-sharing path and is connected to the developed similarity measurement. Presented
is the variation where the traffic state information is included, and the distance constraint
considered. The algorithms for the other three variations are very similar.
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Algorithm Identification of optimal ride-sharing paths

Input: (1) All map-matched taxi trips Tn = {Totn, T1, ..., Tntn} With Totn = Stn and Tatn= ETn
(2) The road network R including the one-way restrictions and the max allowed speeds
(3) Traffic state information trntn given for each road segment at each time interval

Output: Optimal ride-sharing paths with its indicators and individually driven trips

create graph G based on R
for each trip Tn do
calculate travel time timern
calculate distance distancern
select node Gn where minDist (Gn, Stn) as start node
select node Gm where minDist (Gm, Etn) as end node
select trips started +/- 5 min of start time of Stn as candidate trips Ctn
if Cn is not empty then
for each candidate trip Cnrn in Cta do
calculate SMI = Similarity measurement (Tn, CnTn)
end for
select the Cnn With the 3 (or less) smallest SMI values as Cutw
for each Cora do
select node Gi where minDist (Gi, Scatn’) as start node
select node Gj where minDist (Gj, Scaty’) as end node
set weight of edge We = trntn Where maxTime {Stn, Scata’} in time interval tn
create weighted graph weighted_G = weightedGraph (G, we)
for each collocation [A-B-C-D] = {(S1-S2-E1-E2),(S1-S2-E2-E1),(S2-S1-E1-E2),(S2-S1-E2-E1)}
do
travel_time_1, path_1 = weighted Dijkstra’s_shortest_path (weighted_G, A, B)
travel_time_2, path_2 = weighted Dijkstra’s_shortest _path (weighted_G, B, C)
travel_time_3, path_3 = weighted Dijkstra’s_shortest_path (weighted_G, C, D)
end for
total_travel_time = travel_time_1 + travel_time_2 + travel_time_3
shared_path = path_1 + path_2 + path_3
fastest_shared_path sharedcata’ = shared_path where min (total_travel_timegas,c,oj)
time_sharedcate = total_travel_time
waiting_timecatn' = travel_time_1
distance_sharedcnta' = sum of lengths of Rn in sharedcarn’
timecna = travel time of Curw
distancecntn’ = sum of lengths of Rn in Curn
end for
for each sharedcatn’ do
if time_sharedcar > (timecary’ + timern)
or
if distance_sharedc.r.' > (distancec.r»' + distancern)
or
if waiting_timec,7.> > 15 min then
drop sharedcatn’
end if
end for
if remaining trips Cur > 0 then
optimal shared path sharedrs,catn = sharedcata> where min (waiting_timecatn>)
save sharedtn,cntn, time_sharedrs,caa, Waiting_timern,cota, distance_sharedrn,cotn
remove Tn and Caro from the candidate list of the up-following trips
else
save: Tn is unsuitable for ride-sharing and served individually
remove Tn from the candidate list of the up-following trips
end if
else
save: Tn is unsuitable for ride-sharing and served individually
remove Tn from the candidate list of the up-following trips
end if
end for

Figure 37: Algorithm of the identification process of the optimal ride-sharing paths.
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6. Results

This chapter presents the results of applying the developed framework and its methods to the
real-world GPS taxi trajectory and the OSM road network data. As each sub-process produces
its results, this chapter is divided into these respective processes. First, the results of the applied
map-matching method are presented. Based on example taxi trips, it is shown how the resulting
map-matched trips look like and statistics about the successfully map-matched trajectories are
provided. In Chapter 6.2, the estimated traffic state information is described. Results about the
vehicle speed calculation, the interpolation of these values, and the estimated travel times are
delivered. By providing examples of traffic maps, the final estimated traffic state is illustrated.
Before presenting the main results of the optimal path identification, the product of the
implemented similarity measurement is shown. Subsequently, examples of the identified ride-
sharing paths are visualised, and different measures provided. These ride-sharing results are
described for each of the explained variations in Figure 36 of Chapter 5.6. The presented results
are then discussed in Chapter 7 and related to the research questions and hypotheses of this
work.

6.1 Map-matching

By applying the map-matching algorithm, for each trajectory point of a taxi trip the ID of the
map-matched road segment results. Furthermore, a distance value measured from the start of
the trip is given for each point. By connecting all the map-matched road segment IDs, the path
where the taxi was most likely to be driving is reconstructed. Table 11 shows the resulting map-
matched road segment IDs and calculated distance values for an example taxi trip. This taxi
trajectory consists of 320 GPS records and has a length of approximately 5.2 km.

Order ID of taxi trip: 5d546bc7354521f7f004bc13f0c9b84b

Trajectory point Map-matched road segment ID Calculated distance from start
1 8936 Om
2 8936 7.756 m
3 8936 20.727 m
4 8938 31.931 m
5 8938 57.496 m
6 8938 89.711 m
7 8938 124.148 m
8 8938 147.476 m
311 13018 5044.883 m
312 13018 5044.883 m
313 13018 5048.236 m
314 13032 5062.754 m
315 13044 5070.023 m
316 13044 5078.969 m
317 13078 5135.283 m
318 13078 5165.206 m
319 13110 5190.905 m
320 13504 5202.889 m

Table 11: Example of the map-matching algorithm results in written form. Shown are the map-
matched road segment IDs and the calculated distance from the start for a subset of the taxi trip.
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As illustrated in the previous table, a road segment can have more than one trajectory point
matched to. This is presented in more detail in Table 12. The 320 trajectory points are map-
matched to 42 different road segments. The number of matched points to a road segment differs
between 1 and 44. This difference is due to the varying length of the segments, the different
vehicle speed at each road section and the unequal distribution of the trajectory points. Road
segment 13018 for example has 44 trajectory points matched to and a length of 182.9 m. Road
segment 8942, on the other hand, has only one trajectory point matched to and a length of just
16.9 m. In Figure 39 a), the distance between the trajectory points is not always the same and
this influences the number of matched points to each road segment as well. Either a higher
vehicle speed or a decrease in the density of the recorded trajectory points are the reason for
this occurrence.

Order ID of taxi trip: 5d546bc7354521f7f004bc13f0c9b84b
Road segment ID  Number of matched points  Road segment ID  Number of matched points

8936 3 10910 4
8938 6 10981 1
8939 41 11165 11
8942 1 11299 19
8944 4 11691 5
8948 6 11692 12
9082 9 11721 1
9171 1 12032 6
9173 2 12033 17
9176 5 12363 4
9177 25 12364 4
9217 11 12654 6
9374 3 13017 4
9555 6 13018 44
9580 9 13032 1
9798 21 13044 2
10045 5 13047 1
10227 3 13055 1
10455 2 13078 2
10528 2 13110 1
10591 8 13504 1

Table 12: Distribution of the matched trajectory points to the 42 different road segments of the
example taxi trip. 320 GPS signals are map-matched in total. Depending on the length of the segment,
the speed of the vehicle at each road, and the density of the trajectory points, between one and 44
points are matched to each road segment.

In Figure 38, the described results are visualised on the road network. The red points in a)
represent the 320 GPS signals of the example taxi trajectory. The trip starts south-west and ends
north-east. The resulting map-matched taxi path is displayed in b). This path is derived by
connecting each of the mentioned road segments of Table 12. The start and end of the trip are
now represented by a start and an end road segment, not by a point anymore. While this slightly
enlarges the path, it is not problematical as the trajectory points are used for both the traffic
state estimation and the similarity measurement, instead of the road segments. Only the optimal
path identification algorithm gets affected by this as it works with the closest node of each start
and end segment to each start and end trajectory point. As explained in the previous chapter,
however, this change of the original path is miniscule, thus regarded as legitimate.
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Figure 38: Visualisation of the map-matching result of an example taxi trip. In a) the 320 GPS signals,
that are used as the input for the algorithm, are located on the road network of Chengdu. The resulting
map-matched taxi path is displayed in b). The start segment of the trip is located south-west and the
end segment north-east. The trip consists in total of 42 road segments and is approx. 5.2 km long.
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A proof that the implemented map-matching algorithm works as explained in Chapter 5 is given
in Figure 39. Displayed is a section of the discussed example taxi path, where the results appear
correctly only due to the selected map-matching method. Considering the trajectory points in
the centre of the visualisation in a), the main part of them tend to be located on the left road
segment instead of the map-matched segments on the right side. But if the whole section is
inspected, it becomes clear that the trajectory points must be matched to the road segments on
the right, as both in the beginning as well as in the end of the section, the trajectory points are
located exactly on this road. Thus, the right path is identified by the map-matching algorithm
despite appearing to be different if analysing each point separately.

The situation in b) explains this in more detail. Focusing on point 215, two candidate road
segments are given. In this case, the road segment 11692 is obviously the correct choice for
point 215 as it is located closer to it and, as shown in a), all the previous points are matched to
the same segment. Point 220 is again correctly map-matched even though road segment 12040
would have been closer. This is again because the forthcoming points are matched to the same
segment. The choice for point 217 is more complex. This point could potentially be matched to
road segment 11710, 11712, or 11692. Considering only the distance to each candidate
segment, road segment 11712 would be chosen instead of segment 11692 as it is the furthest
candidate segment. Nevertheless, the algorithm correctly chooses this segment, and therefore
makes it clear that by considering the previous and forthcoming trajectory points, the taxi trips
can successfully be map-matched.

This example taxi trip shows how exact the map-matching results can be. Unfortunately, no
ground truth data is available to make a conclusion on the concrete accuracy of the adopted
HMM map-matching method. The only option to roughly control the quality of the results is by
visual analysis of random samples; this means to randomly select order 1Ds from the database
and comparing the map-matched paths with the related trajectory points, just like it was done
for the example trip. This control has shown that most of the trajectory points were map-
matched correctly, hence the overall accuracy is considered to be good.

Nevertheless, as already mentioned in Chapter 5.3, different errors can occur during the map-
matching process. If the distance between two consecutive trajectory points is too big, or
perhaps an outlier GPS signal is recorded, the algorithm cannot continue computing the needed
probabilities and fails. Therefore, the input parameters of the algorithm must be chosen wisely
to minimize such errors. Furthermore, errors influencing the traffic state estimation can appear
while calculating the network distance of each trajectory point. This is either due to erroneous
data or problems in the algorithm, but as already mentioned in Chapter 5.4, these errors are later
corrected by the applied post-processing approach. Additionally, the problem of incorrect map-
matched trajectory points must be considered as well as this is always possible in such methods.
Otherwise, the accuracy of these approaches would be 100%. The incorrect map-matched
points, however, do not always have to lead to a completely incorrect reconstructed taxi path
as only some of its trajectory points are erroneous, thus only a few road segments are wrongly
added to the reconstructed path. An example of such incorrect map-matched trajectory points
is given in Figure 40. The path correctly starts at road segment 8531 and would then go through
segments 8462 and 8449 and follow the rest of the correct matched route. However, segments
8463 and 8460 are wrongly identified as part of the matched path. The corresponding trajectory
points, therefore, are map-matched incorrectly.
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Figure 39: Visual proof that the implemented map-matching method can work as explained in Chapter
5. By analysing each trajectory point separately, the situation in a) would lead to incorrectly matched
road segments as the points tend to be closer to the segments on the left side than to the ones one the
right side. This is explained in more detail in b). Point 217 could potentially be matched to three road

segments and selecting the closest one would be incorrect. As the algorithm considers the previous and

forthcoming points of each GPS signal, the correct map-matched taxi path is identified.
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As the information about the map-matched road segments is only used for the traffic state
estimation, more specifically to calculate the traffic speed and to define the start and end nodes
of the fastest path, the consequences of these incorrectly selected segments are not too serious.
For the given example, only wrong speed values would be used to calculate the average speed
of the road segments 8463 and 8460. As the start segment is matched correctly regardless, the
right start node of the fastest path is going to be selected.

Example of incorrect matched trajectory points

—— missing true segments
— map-matched path
road
* trajectory points

incorrect map-matched segments:
8463
8460

missing true segments:
8462
8449

Figure 40: Example of an incorrect map-matched taxi path. The road segments 8463 and 8460 are
wrongly identified as part of the path. The true path starts at segment 8531 and goes through segments
8462 and 8449 and follows the rest of the route. The two blue dashed segments are therefore missing.

By far the biggest source of errors for the map-matching method is related to the Python module
of ArcGIS named arcpy. For unknown reasons, arcpy produces errors if the map-matching
algorithm is running for an extended period of time. The result is that after a specific time all
the trips that are being processed throw an error. As arcpy plays an important part in the applied
map-matching algorithm, these errors cannot be prevented. Thus, this limitation on the
successfully map-matched taxi trips is acknowledged for the remaining part of the work.

In detail, this means that only 15'347 trips are successfully map-matched from the original
41'828 taxi trips. This equals to 3'181'904 instead of 9'053'673 trajectory points. Overall, 36.7%
of the available taxi trips and 35% of the available trajectory points are map-matched
successfully. Hence, 65% of the data is lost while map-matching the GPS signals. This seems
to be grave in the first instance, but fortunately the successfully map-matched trips are equally
distributed over the whole day and the total number of available trips is still big enough to apply
the remaining part of the framework and follow the research objective; Figure 41a shows the
distribution of the remaining taxi trips over the 1% Nov. 2016; in Figure 41b, these numbers are
visualised in proportion to the total number of successfully map-matched taxi trips, which in
this case is 15°347. Additionally, this curve is compared to the proportional distribution before
the map-matching process, where the total number of trips is 41°828. This illustrates that only
the total amount of available trips is reduced while at the same time the distribution remains the
same. Therefore, the magnitude of the occurring errors is kept within a reasonable limit.

70



6 Results
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Figure 41a: Visualisation of the distribution of the total number of successfully map-matched taxi trips
over the 1% Nov. 2016. Due to the errors in the map-matching process, the total number of available
taxi trips is strongly reduced.
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Figure 41b: Visualisation of the comparison between the proportional distribution of successfully
map-matched taxi trips, given a total of 15’347 trips, and the proportional distribution of available
trips after the pre-processing step, given a total of 41°828 trips. The sum of the proportions over the
time equals to 100%. Even if the total number of available taxi trips strongly decreases, the
distribution over the whole day of the 1** Nov. 2016 remains almost the same. This shows that the
magnitude of the occurring errors is kept within a limit.
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6.2 Traffic state estimation

By using the information on the differences in the location and the time stamp of the 3'181'904
map-matched trajectory points, the traffic state of the road network in the city centre of Chengdu
is estimated. As explained in the methodology, the vehicle speed is calculated in the first step.
Table 13 shows the calculated speed values for a subset of the trajectory points of an example
taxi trip. This trajectory contains 55 points and is 1.2 km long. The trajectory points in the table
are ordered by their time stamp and numbered on the left side (the subset contains points 34 to
53). In the second column, the network distance of each point to the start of the path is given.
Additionally, the exact time stamp in seconds is provided. Calculating the ratio of the difference
in the distance values and the difference in the time stamp values, a vehicle speed between e.g.
point 34 and 35 can be computed. Doing the same for point 35 and 36 results in two different
speed values. Taking the average of them gives the vehicle speed value for trajectory point 35,
which is illustrated on the right side of the table. These values are uncorrected, and therefore
represent the original vehicle speed. In Figure 42, the nine road segments that correspond with
the 55 trajectory points are visualised and coloured based on these uncorrected vehicle speed
values. The average of the speed values of all the trajectory points that are map-matched to the
same road segment is taken as the speed value for this road segment. The same procedure is
applied to compute the traffic speed of the whole network, the only difference being using all
the available trips per time window instead of just one example trip as it is the case in this
figure. The vehicle’s speed at the start and the end of the trip is very small. This is due to start
and stop movements. The maximum speed is achieved in the curved blue road segment and
amounts to approximately 42 km/h. Considering all the speed values of the nine road segments,
an average vehicle speed of 28.2 km/h is computed for the given example taxi trip.

Order ID of taxi trip: 0e8120b4b81c75780493cc43fbb9940f

Trajectory point Distance from start Time stamp Orig. vehicle speed
34 615.443 m 1477967631 s 14.22 km/h
35 628.400 m 1477967634 s 18.61 km/h
36 646.462 m 1477967637 s 26.31 km/h
37 672.245 m 1477967640 s 34.31 km/h
38 703.640 m 1477967643 s 40.30 km/h
39 739.416 m 1477967646 s 39.36 km/h
40 769.234 m 1477967649 s 40.83 km/h
41 807.468 m 1477967652 s 47.51 km/h
42 848.422 m 1477967655 S 53.52 km/h
43 896.665 m 1477967658 s 41.78 km/h
44 918.052 m 1477967661 s 32.71 km/h
45 951.177 m 1477967664 s 40.02 km/h
46 1018.340 m 1477967670 s 42.42 km/h
47 1055.452 m 1477967673 s 44.55 km/h
48 1092.584 m 1477967676 S 42.28 km/h
49 1125.925 m 1477967679 s 28.17 km/h
50 1157.668 m 1477967686 s 50.76 km/h
51 1204.995 m 1477967688 s 50.19 km/h
52 1213.435m 1477967690 s 7.60 km/h
53 1213.435m 1477967691 s 1.52 km/h

Table 13: Subset of an example taxi trip containing the calculated vehicle speed values for points 34 to
53. These values are derived by computing the average of two ratios between differences in the
distance and time stamp of two points and are uncorrected.
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Figure 42: Computed average speed values of the nine map-matched road segments based on the
uncorrected values of Table 13. The segments are coloured based on these values. The vehicle speed
of the start and end segment is very small due to start and stop movements. The top speed is calculated
for the blue curved segment and amounts to approx. 42 km/h.

As explained in the methodology of the traffic state estimation, the calculated vehicle speed is
corrected in two stages. The first correction is related to the individual trajectories. Each taxi
trip is analysed separately to filter out the mentioned start and stop movements as they should
not be included in the average speed of the map-matched road segment. The threshold to filter
them out is, as already explained in the methodology section, 20 km/h. If applied to the example
taxi trip, the first ten and last four speed values are filtered and kept out of the remaining
process. As not all trajectory points are listed in Table 13, only the last two points are affected
by the correction. While computing the average speed of the nine road segments again, different
values can occur. This is visualised in Figure 43. Both the start and end segments are changed.
As the start segment only contains small speed values below 20 km/h, this trip is not suitable
to be used to compute the traffic speed of the start segment, and therefore the whole segment is
left out in this figure. The second change is visible in the end segment. By filtering out the small
speed values of the last four trajectory points, the average speed value of this segment strongly
increases and represents now the top speed of the trip with approximately 43 km/h. As so far
only the start and stop movements are corrected, the part between the start and end segment of
the path is not changed.
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Average speed value based on corrected
vehicle speed of an example trip
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Figure 43: Computed average speed values of the nine matched road segments based on the corrected
values of the example trip. The segments are again coloured based on these values. The small vehicle
speed of the start and end segment is filtered out, and the average speed of these segments has
changed. The top speed is now calculated for the end segment and amounts to approx. 43 km/h.

The second correction is related to the already computed average speed value of a road segment,
not to the individual values anymore. If unrealistically high average speed values are calculated
for a road segment, they must be re-corrected so that the traffic state is represented as close to
reality as possible. The threshold used for this correction is 10 km/h above the maximum
allowed speed value for the road type of the segment. Road segments containing average speed
values higher than this threshold get their average speed reduced to the maximum allowed speed
value. This re-correction is applied to the example trip as well and displayed in Figure 44. The
first segment is an example of the type primary street. The maximum allowed speed value for
roads of this type is 60 km/h. The next two road segments represent the type secondary street
and their maximum allowed speed amounts to 40 km/h. The last five road segments, including
the end segment, are tertiary streets and its maximum allowed speed value is 30 km/h. The
calculated values for the segments of the types primary street and secondary street are below
the threshold, and therefore remain unchanged. From the road segments that are of the type
tertiary street, only the first two segments contain speed values below the threshold. The last
three road segments all contain a speed value over 40 km/h, which exceeds the maximum
allowed speed value by more than 10 km/h. Thus, their speed value is reset to 30 km/h, which
is the maximum allowed speed for roads that are of the type tertiary street. Consequently, as
Figure 44 portrays, these three road segments are now coloured in orange and not blue anymore.
After this two-stage-correction, the average speed value of the example taxi trip amounts to
29.4 km/h.
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Average speed value based on re-corrected
vehicle speed of an example trip
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Figure 44: Computed average speed values of the nine map-matched road segments based on the re-
corrected values of the example trip. The segments are still coloured based on these values. The
average speed values of the last three road segments are above the defined threshold and are, therefore,
reset to the maximum allowed speed value for a road of this type. The top speed is now calculated in
the first segment and amounts to approx. 36 km/h.

As previously described, the traffic speed for a specific time window gets computed in a similar
fashion; the only difference is that this time around, all the available map-matched trajectory
points recorded in this time window are used. First, each taxi trip is filtered based on the start
and stop movements and then for each road segment the average of the vehicle speeds of the
map-matched trajectory points is computed. Subsequently, the calculated traffic speed is re-
corrected by resetting unrealistic high speed values to the maximum allowed speed of its road
type. Figure 45 presents the computed traffic speed maps for the road network of Chengdu
during the time window in which the example trip started. This is between 10:30 a.m. and 10:45
a.m. on the 1t Nov. 2016. The speed values used for the map in a) are the uncorrected values
and in b) the corrected values. At first sight, the traffic speed map of the uncorrected and the
corrected values appear identical. But focusing on the high speed values in a), coloured in dark
blue, a difference can be detected. In the map with the uncorrected values, there are small road
segments in the city centre where the average speed amounts to 70 km/h and higher. This is
very unrealistic as it is not possible or responsible to drive that fast in a dense city centre.
Comparing these segments with the ones in b), the effect of the correction becomes visible. As
they are obviously too high and, therefore, reset to the maximum allowed speed, they are
coloured differently in the second map and the traffic speed is overall slower.
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Figure 45: The computed traffic speed maps for the road network of Chengdu between 10:30 a.m. and
10:45 a.m. on the 1% Nov. 2016. In a) the uncorrected speed values are used for the traffic map. By
resetting too high average speed values to the maximum allowed speed per road type, the values used
for the traffic map in b) are corrected. Examples for such corrections are visualised by the red circles.
In both maps, the grey roads represent the roads where no taxi was recorded during this time window
and, therefore, no information on the speed is given.
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Another difference is displayed in the legend of the maps. In a), there exist speed values up to
145 km/h and in b) the limit is at 90 km/h. So, the top speed is smaller with the applied
correction than before. If a road segment of type motorway would be included in the calculated
segments as well, a limit up to 110 km/h could be possible. In this time window, no taxi was
recorded on such a motorway and, therefore, the top speed is limited to 90 km/h. The only road
segments where the traffic speed is very high for both maps is the connection in the north
between the 3 and the 2" ring road, coloured in dark blue. These road segments are of the
trunk type where a maximum speed of 90 km/h (80 km/h plus the 10 km/h buffer) is allowed.
So, the applied correction plays an important role in the traffic state estimation even though the
visible differences are not that obvious. This gets even clearer when considering the
interpolation process. All the grey coloured road segments in Figure 45 represent roads where
no taxi was recorded during the analysed time window. As it is important to estimate the traffic
on those roads as well, the calculated values are used to interpolate these missing values. The
detailed methodology is explained in Chapter 5.4.1.1. If the unrealistic high speed values are
now used for the interpolation, even higher and more unrealistic values can be expected. Thus,
it is very important to first correct the calculated values before applying the interpolation
algorithm to estimate the traffic state as realistically as possible. The resulting corrected and
interpolated traffic speed map for the same time window is visualised in Figure 46.
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Figure 46: The interpolated traffic speed map for the time window between 10:30 and 10:45 a.m.
Based on the corrected vehicle speed values, each road segment has an estimated value assigned.

This figure shows the final estimated traffic state for this specific time window. Most of the
road segments are coloured orange or yellow, meaning speeds between 10 km/h and 50 km/h
are the most common ones. This makes sense as the data is collected in a dense urban road
network. High speed values are only estimated at the already mentioned connection of the 3™
and 2" ring road in the north and the motorway coloured in blue and dark blue in the north-
east. Speed values between 50 km/h and 70 km/h are mostly located on the ring roads or on
some primary streets connected to them. In the middle of the city centre, speed values below
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10 km/h are sometimes estimated. Such small speed values are due to traffic congestions
triggered by traffic lights, jam-packed roads, or car accidents. Overall, the quality of the
estimated traffic speed is good, especially as there do not exist unrealistic high speed values in
the middle of the city centre or big changes in the speed values between two connected road
segments.

To further evaluate the quality of the traffic state estimation, the map in Figure 46 is compared
to the traffic speed map based on the maximum allowed speed values per road type, illustrated
in Figure 47. The biggest difference is visible on the ring roads. In Figure 47, speed values
bigger than 50 km/h are possible on each road segments of a ring road or primary street
connecting these ring roads. Sometimes, even speed values over 70 km/h are given. Values
below 10 km/h are barely seen. Only a small section of a living street in the north of the city
centre contains such speed values. Not a big difference is given for the tertiary streets coloured
in orange. In both maps, these small roads contain values of 10 km/h to 30 km/h and are
represented in great quantity. Additionally, the trunk road connecting the 3 and 2" ring road
and the motorway are almost equal for both cases. Overall, in Figure 46, the speed values in the
city centre are smaller compared to the maximum speeds allowed of Figure 47. This represents
another quality sign as such differences are expected to occur when considering the traffic state.
Furthermore, it shows that not working with information on the traffic state assumes too high
speed values compared to the reality. Thus, by assuming an absence of traffic congestions, the
real-world circumstances get distorted.
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Figure 47: Traffic speed map based on the maximum allowed speed value for each road type.
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In theory, traffic state is highly dependent on the time of the day. Thus, the average speed value
of a road segment normally differs a lot during the day. As in the traffic state estimation part
the traffic speed is computed for every 15 minutes, the created maps can be analysed on this
phenomenon. This is done through the visualisation in Figure 48. Shown are four traffic speed
maps of four different time windows during the 1% Nov. 2016. Focusing on a), the high speed
values of the ring roads and some primary roads stand out. In general, the road network seems
to be less congested and the vehicles can drive faster on average. This map represents a situation
during the night in the city centre of Chengdu. The selected time window is between 3:15 and
3:30 a.m. In b), the previously discussed time window is given. It is clearly visible that the
traffic increased and that the network has become more congested. The average traffic speed in
c) is even slightly smaller than in b). This situation represents the rush hour between 6:30 and
6:45 p.m. The ring roads are more congested than in b) and overall, for both cases, the traffic is
slow-moving. The situation relaxes in d), where like in a), the ring roads are less congested, and
the average speed is higher. The selected time window is between 11:30 and 11:45 p.m. This
short analysis shows the transformation of the road network conditions of the study area during
that day and confirms the mentioned theory about the time dependency of traffic state.
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Figure 48: Analysis of the estimated traffic state by comparing the traffic speed maps of four different
time windows. In a) the traffic speed map during the night is shown. The map in b) is the same as in
the previously discussed time window. In c) the time window is between 6:30 and 6:45 p.m. and d)

represents the situation a few minutes before midnight (between 11:30 and 11:45 p.m.).
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The final estimated traffic state can either be represented by the traffic speed as illustrated and
discussed in Figure 48, or it can be given by the travel time needed to pass a road segment. The
latter is only available if the traffic speed is estimated. Using these values and the information
about the length of each road segment, a value given in minutes and seconds is calculated telling
how much time on average is needed at a specific time of the day to drive through a specific
road segment of the network. As described in the methodology section, this travel time is then
used as the weight of the edges in the weighted Dijkstra’s shortest path algorithm. Because of
the direct connection between travel time and traffic speed, these values vary also during the
day. To present the scale of the size of these travel times, a map of the estimated travel time per
road segment for the known time window between 10:30 and 10:45 a.m. is displayed in Figure
49. Analysing the change in the values during the day would result in the same findings as
previously detected for the traffic speed, just in a different unit, and therefore is not repeated
here. The map shows that the travel time discrepancy ranges from a few seconds up to 5
minutes. The main influence on these values, besides the traffic speed, is given by the length of
the segment. A long road segment has automatically a longer travel time assigned independent
of the traffic speed. Thus, this map must be interpreted with caution. The results of including
the presented estimated traffic state into the identification process of potential ride-sharing paths
are provided in the subsequent sections.

Estimated travel time per road segment

0-18s
18-36s
36s-1minl8s
1 min 18 s - 3 min
3 -5 min

Figure 49: Visualisation of the estimated travel time per road segment for the time window between
10:30 and 10:45 a.m. in the city centre of Chengdu. The values vary from a few seconds up to five
minutes. As the travel time, besides the traffic speed, is strongly dependent on the length of each road
segment, this map must be interpreted with caution.
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6.3 Similarity of trajectories

Before the presented traffic state information is included in the optimal path identification
process, the similarity between the candidate and the analysed taxi trips is measured not only
to exclude unsimilar trips, but also to avoid needless fastest shared path computations. The
similarity is measured between an analysed trip and each candidate trip that started inside the
defined time window of five minutes. Depending on the number of requested taxi trips and,
therefore, on the time of the day, the total amount of available candidate trips for the
identification process can vary. This is visualised in Figure 50. Illustrated are the changes in the
number of candidate trips over the time of the day for the original data and four variations,
which is explained in more detail in the following paragraph. The black line represents how
many candidate trips are generally available over the day. It is visible that during the night, on
average, fewer candidate trips are available mainly due to the decrease in the requested taxi
trips. During the day, the availability varies between approximately 130 and 170 candidate trips
and drops slightly at the end of the day. On average, 140 candidate trips are available for each
analysed trip.

Available candidate trips over time compared between the 4
variations and the original data
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Figure 50: Comparing the number of available candidate trips over the day between the four different
applied variations and the original data. The total amount of available candidate trips is smaller for all
four variations compared to the original data as already identified ride-sharing partners are not
considered anymore as candidate trips in the identification process.

As explained in the methodology, when a ride-sharing duo is identified or a trip is marked as
unsuitable for ride-sharing, the trips get eliminated from the candidate list so that they will not
be considered for subsequent matching anymore. This means that the total amount of available
candidate trips can decrease in time if a lot of ride-sharing matches are found. Thus, the black
line in Figure 50 changes over the day. For better understanding, the available candidate trips
over the day for each of the in Chapter 5.6 presented four variations are displayed as well. The
first two variations stand for including the traffic state information in the identification process:
once excluding the distance savings constraint and once including it. The other two variations
stand for assuming an absence of traffic congestions: in variation three while excluding the
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distance constraint and in variation four while including it. This distance constraint means that
the identified shared paths must save travel distance compared to the sum of the distances of
the two individual trips. It is clearly visible that especially during the day, the number of
available candidate trips for all the four variations is smaller compared to the black line.
Between the four variations, no big difference is visible. This can be seen as well by comparing
the average of available candidate trips for each variation. In the first case, on average 58
candidate trips are available. Considering the distance savings constraint in variation two as
well, the average rises to 66 candidate trips. In situation three, on average only 57 candidate
trips are available. This number then slightly increases to 62 trips for variation four. The only
difference is that when the distance savings constraint is included, the average of available
candidate trips is slightly higher than without this constraint (for considering the traffic state
the average contains 8 more candidates and for assuming an absence of traffic congestions the
average amounts to 5 more candidate trips). This allows for an assumption that less ride-sharing
paths are identified while the additional constraint is included as like this more often only one
(the analysed trip that is marked as unsuitable for ride-sharing), and not two trips, are eliminated
from the candidate list and, thus, more candidates are available in the end.

In the first variation, the most similar candidate trips have on average a measured Similarity
Measurement Index (SMI) of 567.12. This means that both the start and the end points are on
average 567.12 m away from each other (either the two start respectively end points or one of
them and the closest trajectory point of the other trip). For the second variation, an average SMI
of 521.12 is measured for the most similar candidate trips. With 513.36, an even smaller average
SMI value is given for the variation where neither the traffic state nor the distance constraint is
considered. The highest average SMI for the most similar candidate trips is measured for the
fourth variation and amounts to 628.06.

How the measured SMIs differ between the three most similar candidate trips and an unsimilar
trip is illustrated in Figure 51a and 51b. In a), an example trip and its most similar candidate
trip are displayed. Each start and end point is marked, and the distance that represents the value
for the similarity between both start points and end points is visualised. As for each start point
the closest point on the other trajectory is not its start point, the distance of 497 m between the
two start points is measured. For the end point of trajectory two, the closest point on the other
trip is its end point, but this does not count for the end point of trajectory one. Thus, the
displayed distance of 273 m is measured. Taking the average of these two values, a final SMI
of 385 results. This is the smallest SMI for the analysed example trip and, therefore, this
candidate trip is identified as the most similar one. The candidate trip in b) is the second most
similar trip. Its SMI of 1°008 is significantly higher and is only considered to be similar because
the value that represents the distance between both end points is rather miniscule. The two start
points are located very far from each other. As it can take the taxi a long time to drive from the
first to the second start point, the emerging waiting time for the second user is potentially bigger
than the threshold of 15 minutes. Thus, this candidate trip will eventually be excluded in the
ongoing process. In c) of Figure 51b, the analysed and the third most similar trip are shown.
Their collocation represents a special situation, where one trip has finished before the other
even started. As explained in the methodology, the SMI still gets measured the same way. This
results in a distance for the start points of 2’703 m and a distance for the end points of 337 m.
For both start points, the closest point on the other trajectory is not its start point and, therefore,
the direct distance between both points represents the distance value for the start points.
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Whereas the closest point on the first trajectory for the second end point is its end point, the
closest point on the second trajectory for the first end point is not its end point. Thus, the short
distance of 337 m represents the distance value between the end points. Taking the average of
both values, an SMI of 1°520 results. As this is the third most similar candidate trip, it will be
used for the matching process, even though it is obviously not a representation of a ride-sharing
situation as combining these two trips will not result in a shared part. To prevent wrongly
identifying this collocation as an optimal ride-sharing path, the travel time and distance savings
constraints are applied. Those dictate that a shared path must reduce the total travel time and,
in variation two and four, also the total distance compared to the sum of both individual trips.
As a situation where one trip has finished before the other started cannot surpass these
constraints, the presented collocation of c) in Figure 51b is excluded in the explained step.

a) SMI calculation between an example trip and the most similar candidate trip
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Figure 51a: Visualisation of the analysed and the most similar candidate trip in a) and the analysed and
the second most similar candidate trip in b). lllustrated with the dashed black line are the distances that
represent the final distance value between both start and end points and are used for the SMI
calculation. The collocation in b) is excluded from further processes as it possibly does not fulfil the
set constraint about the emerging waiting time below 15 minutes.
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As both the second and third most similar candidate trips do not fulfil the set constraints and
the remaining candidate trip is the most similar one anyways, the fastest path serving both start
and end points of the analysed and the candidate trip in situation a) will represent the optimal
identified ride-sharing path for the candidate and the example trip. The situation in d) is an
example of an unsimilar candidate trip. Besides the fact that both the start and end points are
located very far away from each other, the two trips are aligned in the opposite direction. So, it
is obvious that these two trips should not be shared. The big SMI of 5°676.5 confirms this. In
other ride-sharing systems where each trip is a possible candidate, a lot of needless fastest path
computations would have been done for such cases. This is prevented with the implemented
similarity measurement and, thus, the time consumption of the computation is reduced.

C) SMI calculation between an example trip and the 3rd most similar candidate trip
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Figure 51b: Visualisation of the analysed and the third most similar candidate trip in c) and the
analysed and an unsimilar candidate trip in d). Illustrated with the dashed black line are the distances
that represent the final distance value between both start and end points and are used for the SMI
calculation. Both collocations are excluded from further processes as in c) the set constraints are not
fulfilled and the candidate trip in d) is not one of the three most similar candidate trips.
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6.4 lIdentified potential ride-sharing paths

The result of the similarity measurement for the analysed example trip is the presented three
most similar candidate trips. As explained in the previous section, only the most similar
candidate trip is suitable for ride-sharing and fulfils the set constraints, and therefore the result
of the fastest path computation is only shown for this one. Figure 52 contains three different
maps. In a), the map-matched trajectory of the analysed example trip is visualised and in b), the
map-matched trajectory of the most similar candidate trip is given. During the identification
process of the optimal ride-sharing path, one of the four possible collocations described in
Figure 34 that leads to the fastest shared path for the two illustrated trips must be selected. As
shown in c), by the identified optimal ride-sharing path first S2 gets served and then the
passenger of the analysed trip is picked up. After following the red visualised ride-sharing path,
the passenger of the analysed trip gets dropped off at E1 and then the shared ride is finished at
E2.

a) Map-matched trajectory of the analysed taxi trip b) Map-matched trajectory of the most similar candidate trip
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Figure 52: Visualisation of the identified optimal ride-sharing path for the analysed example trip of the

previous section. In a), the analysed example trip is illustrated and in b) the most similar candidate trip

is given. The resulting ride-sharing path that optimises the objective of the system and fulfils all the set
constraints is displayed by the red line in c).
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As S2 is located on a road going north, it would be very unsuitable if the shared trip would start
at S1, because then the taxi would have to first drive more south, change its direction to the
north, and then pick up the second passenger. This would lead to an unnecessary detour and,
thus, the algorithm correctly identifies the best collocation of the two start and end points. The
discussed path represents the identified optimal ride-sharing path for the situation where the
estimated traffic state information is not included in the identification process, but the distance
savings constraint must be met. Considering this, the algorithm must find a path that leads
through road types of high maximum allowed speed limits while keeping the total driving
distance small. This is maintained as the shared path follows a direct way after picking up the
second passenger at the start point of the analysed trip through roads of type tertiary street (max.
allowed speed of 30 km/h) to the trunk running north to south-east, instead of generating a big
detour to stay on the road of type primary street running north to south-west (60 km/h). On this
part of the identified path, the maximum allowed speed amounts to 80 km/h. Subsequently, the
taxi drives through a road of type secondary street (max. allowed speed of 40 km/h) until it
reaches the road that leads directly to E2 and is again of the tertiary street type.

Summing up the two travel times that would occur if the analysed and the most similar
candidate trip had been served individually results in a total travel time of 19 min 31 s. The
total travel time of the identified ride-sharing path amounts to 7 min 53 s. Thus, 11 min 38 s of
travel time can be saved by implementing the proposed ride-sharing system for this specific
example. In other words, the shared path leads to a total travel time saving of 59.6%. The second
passenger, in this case the passenger that requested the analysed trip, must wait only 1 min 53
s after the trip started until he gets picked up. The travel distance of the analysed taxi trip is
4.08 km and the candidate trip is 4.41 km long. Summing this up, a total driving distance of
8.49 km occurs. On the contrary, the shared path leads to a total driving distance of 6.43 km.
So, besides saving travel time, the shared path can save 2.06 km of travel distance. This equals
a total driving distance saving of 24.2%.

In addition to reducing the overall travel costs for passengers and the number of vehicles on the
road networks, ride-sharing can have an influence on emissions as well, most importantly the
emission of carbon dioxide (CO.). Thus, it is interesting to analyse how much CO, emissions
can be saved by implementing a proposed ride-sharing system. Several other studies do the
same and assume a linear correlation between the driven kilometres and the CO> emissions.
Santi et al. (2014b), for instance, show that even though vehicle emissions can be highly non-
linear because of factors like the speed, the traffic signals, or the driver mentality, assuming all
things being equal is legitimate for the purpose of showing the potential of ride-sharing systems
in relation to the natural environment. Therefore, in this work, a linear correlation between the
driven kilometres and the CO> emissions is assumed as well. As calculated and published by
Mobitool (2016), a factor of 197.23 g CO. / km can be used for mobility in Switzerland. Even
though this study is based on data collected in China, the Swiss factor is applied, as the
performance of taxis are expected to be similar all over the world. The saved travel distance of
2.06 km for the discussed example trip leads, therefore, to an emission reduction of 406.29 g
COz. The presented fastest shared path is an example of an effectively identified match with a
short waiting time of less than 2 minutes, travel time savings of more than 50%, and distance
savings of nearly 25%. All the mentioned results are summarised in Table 14.
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////////////////////////////% Travel time  Travel distance COzemission  Waiting time

Analysed trip 9min 27 s 4.08 km 804.69 g CO; %
Candidate trip #1 10 minds 4.41 km 869.78 g CO> %
Sum of the individual trips | 19 min31s 8.49 km 1.675 kg CO; %
Shared trip 7min53s 6.43 km 1.268 kg CO> 1min53s

Savings [min/ km /g COz] 11 min38s 2.06 km 406.29 g CO; |
Savings [%6] 59.6% 24.2% 24.2% |

Table 14: Summary of the resulting measures for the identified optimal ride-sharing path of the
analysed example trip of this and the previous section.

The above-presented results refer only to one identified optimal ride-sharing path. Even more
interesting are the results of these individual measures for all the analysed data. Additionally,
the differences between the mentioned four variations and with this the influence of the traffic
state information and the distance saving constraint are of big interest. Therefore, in the
following two sections, first, the overall results of the ride-sharing system including the
estimated traffic state information are provided. In the second part, the results for the same
measures assuming an absence of traffic congestions are shown. To explain how the traffic state
information and the distance saving constraint influence the matching process, the identification
of the fastest shared path and the resulting measures of another example trip with its three most
similar candidate trips are presented and compared between the four possible variations. In the
end, an overview of the overall results for all four variations of the implemented ride-sharing
system is provided.

6.4.1 Including traffic state information

The results provided in this section are obtained by implementing the proposed ride-sharing
system while considering the estimated traffic state of the underlying road network. To show
how the distance saving constraint influences the identified ride-sharing paths, this section
compares two situations. First, the traffic state information is included, but the distance savings
constraint ignored. Second, the traffic state information is again included and additionally, the
distance savings constraint must be met. This comparison is based on another analysed example
taxi trip and its three most similar candidate trips. The analysed trip (illustrated in red) and each
candidate trip (the black lines) are visualised in Figure 53 a) to c). In a), the most similar
candidate trip with an SMI of 499.34 is shown. For the second most similar candidate in b) an
SMI of 841.43 is measured. With an SMI of 869.90 in c), the third most similar candidate trip
is displayed. The identified optimal ride-sharing path for the analysed trip given the first
variation of not including the distance saving constraint is illustrated in d). This shared path is
a combination of the analysed and the second most similar candidate trip. First, the taxi visits
S1 before driving through the roundabout to pick up the second passenger. After following the
red line, the second passenger gets dropped off at E2, and then the ride concludes at E1. The
main difference to the previous example trip is that this time around, not the most similar but
the second most similar candidate trip is selected to build the optimal ride-sharing path. As in
the first variation, only the total travel time must be smaller than the sum of the travel times of
the two individual trips, which means that all three candidate trips could be potentially selected
for building the ride-sharing path so far. Whether or not is the final driving distance smaller or
even bigger than before applying ride-sharing does not matter in this variation. As it can be
seen in c), the two start points are located quite far from each other and, thus, the emerging
waiting time is slightly bigger than the threshold of 15 minutes. From the two remaining
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candidate trips, the one with the analysed trip shared path that minimizes the waiting time and,
therefore, maximizes the followed objective of the system, is selected as the optimal ride-
sharing path. As sharing the analysed trip with the second most similar candidate trip leads to
a shorter waiting time of 4 min 4 s than with the most similar candidate trip (4 min 32 s), this
combination is identified as the optimal ride-sharing path for the analysed trip. The sum of the
travel times, if the analysed and the second most similar candidate trip had been served
individually, is 20 min 27 s. The total travel time of the identified shared path is 17 min 3 s and,
thus, 3 min 24 s of travel time can be saved with the proposed ride-sharing system for the
analysed taxi trip in variation one. As already mentioned, when the distance saving constraint
must not be met, the total driving distance of the shared path might even be bigger than the sum
of the travel distances of the two individual paths. This can occur when the shared path selects
a road where the driven speed is much higher and, therefore, the travel time in total shorter but
reaching this road leads to a detour. This is the case in variation one as the driving distance of
the shared path is 9.82 km long and, thus, 1.13 km longer than the sum of the distances of the
two individual trips of 8.69 km. By still assuming a linear correlation between driven kilometres
and CO2 emissions, this identified shared path would lead to an increase in emissions of 13%
what equals 222.87 g COs..

Map-matched path of the analysed and the most similar candidate trip Map-matched path of the analysed and the second most similar candidate trip
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Figure 53: Visualisation of the three most similar candidate trips and the optimal ride-sharing path for
the analysed trip illustrated by the red line in a) to c). The final shared path is displayed in d). This
path is a combination of the analysed with the second most similar candidate trip. As in variation one
the distance savings constraint must not be met, the total driving distance of the shared path can be
bigger than the sum of the distances of the two individual taxi trips, as it is the case in d). A bigger size
of the figure is given in the appendix of this work.
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In the second variation, the optimal ride-sharing path must reduce the total driven kilometres in
comparison to the sum of the two individual trips while the estimated traffic state information
still is considered. To show what differences in the selection of the optimal candidate trip occur
using this additional constraint, the same example trip is analysed again. As shown in Figure
54 a) to c), the three most similar candidate trips remain the same as in Figure 53. As it is
prohibited that the shared path lets the total driving distance increase, the second most similar
candidate trip in b) is not an option for sharing the ride with the analysed trip anymore. Only
the most similar in a) and the third most similar candidate trip in c) remain. As already explained
in the first variation, in c) the waiting time emerging for the passenger that joins the ride second
at the start point of the analysed trip is bigger than the set threshold of 15 minutes (16 min 19
s). Considering the traffic speed map as displayed in Figure 55, besides the big distance between
the two start points, a second reason for this too big waiting time stands out. When focusing on
the road segments between S2 and S1 of figure 53 ¢), in Figure 55 (dashed buffer) mostly orange
and red coloured lines can be identified. This means that at this time the taxi on average drives
only between 0 km/h and 10 km/h or 10 km/h and 30 km/h. So, due to the big distance and the
bad traffic state given, the shared path with this candidate trip is not suitable for ride-sharing.
The remaining shared path between the analysed and the most similar candidate trip fulfils all
the set constraints and is, therefore, identified as the optimal ride-sharing path for the analysed
example trip given the second variation. This ride-sharing path is visualised in Figure 54 d). So,
in the second variation a different optimal shared path is identified than in the first one and,
thus, the only difference between Figure 53 and 54 is given in the maps in d).
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Figure 54: Visualisation of the three most similar candidate trips in a) to ¢) and the optimal ride-
sharing path in d) for the analysed trip. The final ride-sharing path of the second variation is a
combination of the analysed with the most similar candidate trip. A bigger size of it is in the appendix.
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Estimated traffic speed per road segment
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Figure 55: Traffic speed map for the time window when the third most similar candidate trip would
have started when served individually. The black dashed line shows the part of the path between both
start points. As the distance is large and mostly orange and red coloured segments are visible, the
emerging waiting time for the second user exceeds the set threshold of 15 minutes.

The identified optimal shared path begins at S1, goes through the roundabout and then north to
pick up the second passenger. After following the same way back to the roundabout and heading
on to E2, the end point of the most similar candidate trip, the passenger that joined second gets
dropped off. The ride is finished at E1. The emerging waiting time for the second passenger
amounts to 4 min 32 s. The sum of the travel times of the two individual trips is 17 min 42 s
and the total travel time of the shared path is 15 min 15 s. With 2 min 27 s, a total travel time
saving of 13.9% is achieved. Considering the distance, a total value of 7.69 km for the shared
path emerges. As the sum of the travel distances of the two individual trips amounts to 7.83 km,
140 m of distance is saved. Including the additional constraint leads therefore, notwithstanding
the reduction of the total travel time savings, to a decrease in the driving distance, though a very
small one. In comparison to the first variation, the second one saves 27.61 g CO for the
analysed example. Table 15 provides an overview on all the presented measures of the two
variations. Variation one stands for including the traffic state information and ignoring the
distance savings constraint, and in variation two, the traffic state is still considered, but,
additionally, the distance savings constraint must be met. The differences in the results of the
two discussed variations show how important it is to include the distance savings constraint for
it has a substantially positive impact on our environment. Otherwise, the problem of too high
emissions only moves from having too many vehicles on the network to enlarging each driving
distance.
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//////////////////////% Variation 1 Variation 2 Difference

Travel time savings [min] 3min24s 2min27s {57s
Travel time savings [%6] 16.6% 13.9% 12.7%
Travel distance savings [km] -1.13 km 0.14 km 1 1.27 km
Travel distance savings [%6] -13% 1.7% T 14.7%
CO2 emission savings [g CO2] -222.87g CO, 27.61 g CO; 1 250.48 g CO;
CO: emission savings [%] -13% 1.7% T 14.7%
Waiting time [min] 4minds 4min32s 128s

Table 15: Summary of the measures of both variations including the estimated traffic state. Displayed
are the results of the identification process of ride-sharing paths for the analysed example trip. In
variation one the travel distance slightly increases by the proposed ride-sharing method. A - stands for
a negative influence on the travel distance and CO- emissions, meaning an increase in these measures.

The measures presented in Table 15 are calculated based on only one identified ride-sharing
path. To assess how effective a developed ride-sharing system is, the overall results must be
analysed as well. This means that for the waiting time, an average value of all the resulting
waiting times must be calculated. The travel time and distance savings are also computed for
all the processed taxi trips (shared and unshared). Just like that, an incomparably more
significant statement can be made about the savings of CO> emissions. In addition to this, and
with the overall results in mind, a value for the taxi fleet reduction can be calculated as well.
This shows to what extent the total number of taxis could be reduced thanks to ride-sharing and,
thus, how such a system could contribute to an overall reduction of the number of vehicles on
the road network. To calculate this reduction, the number of unique taxi IDs of all the involved
taxi trips must be counted first; this represents how many taxis are in service without ride-
sharing involved. When an analysed trip is shared with a candidate trip, it is assumed that the
taxi of the analysed trip will serve the shared ride. Therefore, for all shared paths, the number
of unique taxi IDs of the analysed trips is elaborated. The taxi trips that are unsuitable for ride-
sharing are served individually by its assigned taxi. So, the final number of taxis in service,
when ride-sharing is implemented, is the sum of the unique taxi IDs of the analysed trips of the
shared paths and the unique taxi IDs of the individually served trips. The difference between
the two counted numbers gives the potential taxi fleet reduction. Another measure that only
makes sense when considering all the identified ride-sharing paths is the matching rate of the
systems. This value shows how many taxi trips can be shared by the proposed method. The
higher this number, the more attractive a system gets for the users; and with more users
involved, normally a higher reduction in the CO. emissions and the number of vehicles on the
road network can one expect to achieve. The matching rate of the proposed system in this work
is calculated by counting how many of the 15’347 available map-matched taxi trips are involved
in the identified ride-sharing paths. The rest of the taxi trips are served individually.

The mentioned measures are again computed for the case where the distance savings constraint
is not considered and for the case where this constraint must be met. For both variations, the
estimated traffic state of the underlying road network is included. The resulting values are given
in Table 16. When traffic state information is used during the identification process, but the
distance savings constraint must not be met, 7’412 ride-sharing paths result. This means that
only 523 of the 15’347 available taxi trips are not involved in a ride-sharing path. Thus, the
matching rate for this variation amounts to 96.59%. On average, the passenger that joins the
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ride second must wait 3 min 24 s until the taxi arrives at its pickup location. If all 15’347 trips
of the analysed day would be served individually, a total travel time of 2°930 h 36 min and a
total driving distance of 67°554.6 km would emerge. Applying the proposed ride-sharing
system leads to a total travel time of 1’904 h 16 min and, as the distance savings constraint must
not be met, potentially leading to an increase in the distance, to a total driving distance of
75°374.7 km. The travel time savings are, therefore, 1’026 h 20 min or 35.02%, while no travel
distance is saved as 7°820.1 km more are driven, which equals an increase of 11.57%. As
already seen by the analysed example trip, the proposed ride-sharing system in variation one
does not reduce the total CO2 emissions, but in fact lets them increase by 1°542.3 kg COz. This
equals a rise of 11.57%. The 15’347 available trips would be served by 10°760 different taxis
if no ride-sharing is applied. This number decreases to 6’535 taxis if the proposed system under
variation one is implemented. So, 4’225 taxis can be saved and removed from the road network.
This equals a taxi fleet reduction of 39.27%.

When traffic state information is used and the distance savings constraint is required to be met,
the resulting measures differ. From the 15’347 available taxi trips, 8’420 trips are involved in
the identified ride-sharing paths. This means that 4’210 shared paths are found, and 6’927 trips
are served individually. The resulting matching rate, therefore, drops to 54.86%. The average
waiting time for the second passenger to be picked up decreases slightly and amounts to 3 min
14 s. The total travel time and the total driving distance that emerges when all the trips would
be served individually are still 2’930 h 36 min and 67°554.6 km. By applying the proposed
system considering the distance savings constraint, a total travel time of 2°147 h 38 min and a
total driving distance of 61°576.4 km results. So, 782 h 58 min or 26.72% travel time and,
different from the previous variation, 5°978.2 km or 8.85% driving distance are saved. This
leads to savings of 1’179.1 kg in CO2 emissions, which equals a reduction by 8.85%. The size
of the taxi fleet, granted the trips are served individually, remains the same with 10’760 taxis.
By applying the ride-sharing system including the distance savings constraint, the number drops
to 8’484 different taxis. So, here only 2’276 taxis can be removed from the road network, which
equals a taxi fleet reduction of 21.15%.

////////////////////////////////% Variation 1 Variation 2 Difference

Matching rate [%] 96.59% 54.86% 4 41.73%
Waiting time [min] 3min24s 3min14s 4105
Travel time savings [h, min] 1’026 h 20 min 782 h 58 min 4 243 h 22 min
Travel time savings [%] 35.02% 26.72% 18.3%
Travel distance savings [km] -7°820.1 km 5°978.2 km 1 13°798.3 km
Travel distance savings [%6] -11.57% 8.85% 1 20.42%
CO: emission savings [ COz] | -1°5423kgCO, 1'179.1kgCO,  12°721.4 kg CO;
CO: emission savings [%] -11.57% 8.85% 1 20.42%
Taxi fleet reduction [taxis] 4’225 taxis 2’276 taxis 4 17949 taxis
Taxi fleet reduction [%0] 39.27% 21.15% 1 18.12%

Table 16: Resulting measures for the developed ride-sharing system based on real-world GPS taxi data
of Chengdu, China. In the first variation the estimated traffic state is included but the distance savings
constraint is not considered. In the second variation both the traffic state and the distance savings
constraint are included. The main differences are visible in the matching rate, the travel distance
savings, and the CO, emission reduction. A - stands for a negative influence on the travel distance and
CO; emissions, meaning an increase in these measures.
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6.4.2 Assuming absence of traffic congestions

The results provided in this section are obtained by implementing the proposed ride-sharing
system while assuming an absence of traffic congestions on the underlying road network. This
means that the vehicle speed is a static value that only depends on the type of the road segment
and its maximum allowed speed. Therefore, travel time in this vacuum does not depend on the
time of the day. To show how the distance savings constraint and the traffic state information
influence the identified ride-sharing paths, this section again compares the results between not
considering the distance savings constraint and including this additional constraint.
Furthermore, the findings are compared with the previous section. The comparison is based on
the same analysed example trip as before, but the three most similar candidate trips have slightly
changed. Figure 56 provides again the overview of the analysed and its three most similar
candidate trips in a) to ¢). The most similar candidate trip in a) is the same as while including
the traffic state information and still contains an SMI of 499.34. The second most similar
candidate trip in the previous section does no longer count as a candidate for the analysed trip,
as it is already used in a ride-sharing path with a trip that started earlier. This difference is due
to the change in the travel time values. While considering the estimated traffic state, this old
candidate trip is not suitable to be shared with the taxi trip that started earlier than the analysed
one as either the travel time is not reduced or the waiting time is too long because of the bad
traffic state. Without traffic state information this shared path can be driven in less time and the
waiting time gets reduced as well. Thus, this combination is considered as the most suitable one
for the earlier trip and is not available anymore for the analysed example trip. The second most
similar candidate trip for the analysed example trip is, therefore, the previously as third most
similar candidate selected trip. So, in Figure 56 b), the same candidate trip as in Figure 53 c)
and 54 c) is illustrated. The SMI of this trip is still 869.90. The third most similar candidate trip
in Figure 56 c) given the assumption of an absence of traffic congestions is a new candidate. In
the first and the second variation, this candidate trip is ranked as the fourth most similar
candidate trip. As in the third variation the ranking changes, the mentioned candidate is no
longer the fourth but third most similar candidate trip with an SMI of 1°013.26.

Each candidate trip would lead to a shared path that fulfils the two set constraints in this
variation. The most similar candidate trip is already considered to be suitable when the
estimated traffic state is included and hence, here again. The candidate given in Figure 56 b) is
not considered to be suitable for ride-sharing when traffic state information is used. It is argued
that there is a too long waiting time sourcing from the big distance between both start points
and the bad traffic state on the driven road segments, as displayed in Figure 55. Figure 57 shows
the same dashed line around the subject road segments but with the maximum allowed speed
value of each road type. During most of the analysed part of the path speed values of 40 km/h
and 60 km/h are allowed. So, in the third variation the vehicles on average can drive much faster
due to the absence of traffic congestions and therefore the emerging waiting time for the shared
path of Figure 56 b) is clearly smaller than the threshold of 15 minutes. Thus, while not using
traffic state information, this trip is considered to be suitable as well. The third most similar
candidate trip is obviously less suitable to be shared with the analysed trip than e.g. the most
similar candidate trip, but it still fulfils the set constraints because of the allowed high speed
values and is therefore considered to be suitable for ride-sharing too. If more than one candidate
trip fulfils the constraints the trip with the shortest waiting time is identified as the optimal ride-
sharing path. Following this rationale, the optimal shared path for the analysed trip given the
third variation is built with the most similar candidate trip and visualised in Figure 56 d).
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a) Map-matched path of the analysed and the most similar candidate trip b) Map-matched path of the analysed and the sccond most similar candidate trip
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Figure 56: Visualisation of the three most similar candidate trips in a) to c) and the optimal ride-
sharing path in d) for the analysed example trip. The final ride-sharing path of the third variation is a
combination of the analysed with the most similar candidate trip. A bigger size of it is in the appendix.

Maximum allowed speed value per road segment

— 70 - 100 km/h

Figure 57: Visualisation of the maximum allowed speed values per road type. The black dashed line
shows the same part of the path between both start points like in Figure 55. As the sub paths’ average
speed value is quite high, the emerging waiting time is smaller than the threshold of 15 minutes.
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The identified shared path is the same as in variation two, given in Figure 54 d) and goes through
the same road segments in the same order. Due to the absence of traffic congestions, the
emerging waiting time for the second passengers is now only 2 min 16 s. The sum of the travel
times of the two individual trips is still 17 min 42s but the total travel time of the shared path
amounts now to 7 min 46 s. The travel time of the shared path is now clearly shorter because
of the higher speed values. Like this, 9 min 56 s of travel time is saved what equals 56.13%. As
the path is exactly the same, the sum of the travel distances of the two individual trips still
amounts to 7.83 km and the distance of the shared path 7.69 km. The travel distance savings of
140 m remain the same for this variation and so do the CO2 emission savings of 27.61 g CO..
The assumption of an absence of traffic congestions thus only affects the travel time savings
and the emerging waiting time for this example trip but not the route and the distance of the
shared path compared to the second variation.

In the fourth variation again an absence of traffic congestions is assumed but different from the
third variation, the distance savings constraint must be met. This means that as in the second
variation, the sum of the driving distances of the two individual trips must be bigger than the
driving distance of the shared path. Analysing the example trip, the three most similar candidate
trips are again slightly different than before. All the trips are shown in Figure 58 a) to ¢) and in
d) the identified ride-sharing path is visible. Completely different from all the other three
variations, the most similar candidate trip is a new and even more similar trip than the most
similar one has been so far. This trip given in a) is combined with an earlier started trip for the
first three variations. Due to the higher allowed speed values and the set distance savings
constraint, it represents in this variation the most similar candidate trip for the analysed example
trip with an SMI of 445.77. The previously most similar candidate trip is now ranked as the
second most similar candidate trip with the same SMI of 499.34 and is displayed in b). The
third most similar candidate trip given in c) is the same as the second most similar candidate in
the first two variations with an SMI of 841.43. The in the third variation as the second most
similar candidate ranked trip is combined with an earlier started taxi trip for this case and is
thus not represented anymore in the three most similar candidate trips.

As for the combination in a) the first part of the path until the roundabout is equal for both trips
and the end points are located close to each other, their shared path fulfils all the set constraints
including the distance savings constraint. The second most similar candidate trip already fulfils
the set constraints in the second variation where the additional constraint is included as well.
As in the fourth variation the average speed value of the road segments is much higher than in
the second, the shared path will be even faster and the waiting time shorter and thus this trip is
again considered to be suitable for sharing the ride with the analysed example trip. The
candidate trip in c) is very similar to the candidate in a). The only difference is that the third
most similar candidate trip will lead to a bigger waiting time as the start points are located a
little bit further away from each other. Nevertheless, this candidate fulfils all the set constraints
as well. So again the situation is given where all three candidate trips are suitable for sharing
the ride with the example trip. As the most similar candidate trip starts at the same place as the
analysed trip, no waiting time emerges and therefore this trip is identified as the final ride-
sharing candidate. The optimal shared path of this combination is displayed in d). It starts for
both passengers in the north, goes east until the roundabout and then south to E2. After dropping
off the first passenger, the trip is finished at E1, the end point of the analysed trip.
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a) Map-matched path of the analysed and the most similar candidate trip b) Map-matched path of the analysed and the second most similar candidate trip
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Figure 58: Visualisation of the three most similar candidate trips in a) to ¢) and the optimal ride-
sharing path in d) for the analysed trip. The final ride-sharing path of the fourth variation is a
combination of the analysed with the most similar candidate trip. A bigger size of it is in the appendix.

The sum of the travel times of the two individual trips amounts to 19 min 10 s. The travel time
of the shared path is only 6 min 41 s. Thus, 12 min 29 s of travel time is saved what equals a
decrease of 64.88%. The decrease can be explained as most of the shared path goes through
road segments of type primary street, where the speed limit amounts to 60 km/h. So, compared
to the situation where the traffic state is considered, the average speed is almost three times
higher and thus a much shorter travel time occurs. Summing up the length of both paths, a total
driving distance of 8.78 km emerges. The shared path on the other hand, is 5.98 km long. The
2.8 km saved travel distance represent a reduction of 31.89%. The identified optimal ride-
sharing path saves 552.24 g CO> and reduces these emissions by 31.89%. All the presented
measures of both variations are as in the previous section summarized in Table 17.

By comparing the resulting measures between the variations where for both cases the distance
savings constraint is included but once the traffic state is excluded, especially the smaller travel
time savings stand out for the situation of considering the estimated traffic state. Comparing the
situation where for both cases the traffic state is not included but only once the distance savings
constraint must be met, a big difference in the travel distance savings is given. As soon as this
constraint must be met, the savings in the distance strongly increase. So, besides the effect on
the selection of the three most similar candidate trips and moreover, on the identification of the
optimal combination for the final ride-sharing path, after analysing only one example trip, for
both the traffic state information and the distance savings constraints, an influence on the
resulting measures can be detected.
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Variation 3 Variation 4 Difference
Travel time savings [min] 9min56s 12min29s T 2min 33s
Travel time savings [%] 56.13% 64.88% T 8.75%
Travel distance savings [km] 0.14 km 2.8 km 12.66 km
Travel distance savings [%6] 1.7% 31.89% 130.19%
CO2 emission savings [g CO2] 27.61 g CO; 552.24 g CO, 1 524.63 g CO;
CO: emission savings [%] 1.7% 31.89% 130.19%
Waiting time [min] 2min16s 0s y2min16s

Table 17: Summary and comparison of the measures of the third and fourth variation. Displayed are
the resulting values of the identification process of the optimal ride-sharing path for the analysed
example trip. The values of the fourth variation for the example trip are better in each category.

To analyse the influence traffic state information and the additional constraint can have on the
whole system, the overall results must be checked as well for the situation of assuming an
absence of traffic congestions. Thus, the in the previous section mentioned measures are again
computed for this situation. Once the distance savings constraint is considered and then ignored.
The resulting measures for the whole system are listed in Table 18. If instead of the estimated
traffic state information the travel times resulting from the maximum allowed speed values are
used during the identification process and the system does not have to save travel distance,
7'626 ride-sharing paths result. From the 15'347 available taxi trips, 15252 trips are involved
in ride-sharing and only 95 trips are not suitable to be used in the proposed system. This equals
a matching rate of 99.38%. The average waiting time that emerges for the passenger that is
picked up second amounts to 2 min 8 s.

As the data used to calculate the total travel time if all trips would have been served individually
is the same as for the case where the traffic state is considered, the total travel time remains
2'930 h 36 min for the 15'347 taxi trips. The same counts for the total driving distance of
67'554.6 km. A difference occurs by applying the ride-sharing system without the traffic state
involved, as this leads to a total travel time of 1'185 h 24 min and if the distance constraint is
ignored, to a total driving distance of 68'925.85 km. In other words, the travel time savings are
1'745 h 12 min, which equals 59.56% and the travel distance is lengthened by 1'371.25 km or
2.03%. These values are better for the case of the travel time and more optimal for the travel
distance compared to considering the estimated traffic state in the first variation. The same
counts for the CO> emissions. With 270.4 kg CO2 or 2.03%, even more emissions are generated
than without ride-sharing, though the magnitude shrinks. Focusing on the taxi fleet reduction,
the in the third variation proposed system lets the number of taxis decrease from 10760 to
6'386. So, 4'374 taxis can be saved and removed from the road network. This represents a taxi
fleet reduction of 40.65%.

If an absence of traffic congestions is assumed but additionally the distance savings constraint
must be met, the resulting measures differ again, as it was the case for the first two variations.
10'830 of 15'347 taxi trips form part of a ride-sharing path. So, 5'415 different shared paths are
identified, and 4'517 trips are served individually. This results in a decrease in the matching
rate to 70.57%. The average waiting time that occurs for the second passenger gets slightly
shorter with 2 min 6 s. Again, no changes are made to the values of the total travel time and
travel distance given each trip is served individually. Thus, a travel time of 2'930 h 36 min and
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a travel distance of 67'554.6 km are given. Different from the third variation, while considering
the additional constraint, a total travel time after applying the ride-sharing approach of 1'467 h
52 min results. The new total driving distance is 58'908.5 km. This means, that 1'462 h 44 min
or 49.91% of travel time and 8'646.1 km, which equals 12.8%, of travel distance, are saved.
This leads to a reduction of 1'705.3 kg CO». So, in other words 12.8% of the CO, emissions can
be avoided by the proposed system and the given circumstances. The number of taxis that are
needed to serve all the requests if no ride-sharing is involved remains 10'760. Due to ride-
sharing, in the fourth variation, 2'969 taxis can be removed from the road network, which leads
to a taxi fleet size of 7'791 vehicles. So, compared to variation three, the taxi fleet reduction
amounts only to 27.59%.

| Variation 3 Variation 4 Difference
Matching rate [%6] 99.38% 70.57% 1 28.81%
Waiting time [min] 2min8s 2min6s l2s
Travel time savings [h, min] 1'745 h 12 min 1'462 h 44 min 4 282 h 28 min
Travel time savings [%6] 59.56% 49.91% 1 9.65%
Travel distance savings [km] -1'371.25 km 8'646.1 km 110'017.35 km
Travel distance savings [%6] - 2.03% 12.8% 1 14.83%
CO2 emission savings [g CO2] - 270.4 kg CO, 1'705.3 kg CO> 1 1'975.7 kg CO,
CO2 emission savings [%6] - 2.03% 12.8% 1 14.83%
Taxi fleet reduction [taxis] 4°374 taxis 2'969 taxis  1'405 taxis
Taxi fleet reduction [%0] 40.65% 27.59%  13.06%

Table 18: Resulting measures for the developed ride-sharing system based on real-world GPS taxi
trajectory data of Chengdu, China. In the third variation an absence of traffic congestions is assumed,
and the distance savings constraint is not considered. In the fourth variation the traffic state is still not

included but the distance savings constraint considered. The main differences are visible in the
matching rate, the travel distance savings, and the CO, emission reduction. A - stands for a negative
influence on the travel distance and CO; emissions, meaning an increase in these measures.

In the last column of Table 16 and Table 18, the differences in the resulting measures between
the different variations are listed. These differences occur due to the distance savings constraint
and thus by looking at these absolute numbers and percentages, the influence this constraint has
on the results can be assessed. If the traffic state information is included in the identification
process, the additional constraint leads to a decrease in the matching rate of 41.73%. Assuming
an absence of traffic congestions, this decrease amounts only to 28.81%. So, the distance
savings constraint has a stronger influence on the results when the traffic state is considered.
This can be explained as with the additional constraint more direct paths must be created and
these can lead through areas of bad traffic state. Hence, the travel time increases and can exceed
the threshold of the sum of the travel times of the two individual trips. Consequently, more
shared paths are filtered out and thus the matching rate decreases stronger. The average waiting
does for both situations, with traffic state or without, slightly decrease due to the additional
constraint, but there is no specific influence detectable on this measure, as still the objective of
the system is to minimize this waiting time and, thus, it remains short for both cases.
Considering the distance savings constraints worsens the travel time savings as well. For
including the traffic state, the savings decrease by 8.3% and for assuming an absence of traffic,
they decrease by 9.65%. As these two values are quite similar, the traffic state information does
not affect the influence of the additional constraint on the travel time savings. The decrease
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occurs because most of the shared paths that save a lot of time are not allowed anymore as they
normally tend to increase the travel distance (driving through ring roads of high speed values
which are not located very close to the original path). A significant improvement by the
additional constraint is visible in the travel distance savings. For using traffic state information,
the savings increase by 20.42% and for not using this information, 14.83% more distance is
saved as when this constraint is not an obligation. These values are rather high as the distance
savings values change from negative savings, meaning an increase in the distance, to positive
savings of 8.85% respectively 12.8%. The bigger change is visible in the situation, where the
traffic state information is used, but this is only due to the stronger increase in the travel distance
caused in the variation where the distance savings constraint is not considered. Focusing only
on the savings in variation two respectively four, the value is higher while assuming an absence
of traffic congestions. Thus, traffic state information negatively influences the effect the
additional constraint has on the distance savings, as again more direct ways are possible if no
bad traffic state is given. In other words, the road network is not congested.

In addition, these numbers show how important the distance savings constraint for the positive
impact of ride-sharing systems on the natural environment is. This impact is first discussed by
the analysed example trip in Chapter 6.4.1 but expounded upon with these presented values.
Not forcing the ride-sharing system to identify only shared paths that save travel distance results
in more driven kilometres and hence more CO. emissions. With this additional constraint, the
conserved travel distance of 8.85% and 12.8% leads to an emission reduction of 1°179.1 kg
CO2 and 1°705.3 kg COz for just the 15’347 available taxi trips. This reduction could be even
bigger if extended to the whole taxi fleet of Didi in Chengdu. In general, the distance savings
constraint has a negative influence on all the measures except the travel distance savings, the
CO:2 emissions, and the average waiting time. However, the additional constraint should be
included in the algorithm of a ride-sharing system to achieve useful results, as the three
positively influenced measures are amongst the most important ones of such a system.

To analyse the influence traffic state information can have on the different measures in more
detail, what is used in the next section to discuss the related research question, Tables 19 and
20 compare the provided values between variation one and three respectively variation two and
four. The last column delivers once again the differences between the retrieved values. The
difference in the matching rate when the distance constraint must not be met is rather small.
Both rates are very high, and the traffic state does not have a special influence on that. If the
additional constraint is included, the traffic state information leads to a worse matching rate
than simply assuming an absence of traffic congestions. The reason for this, as already
explained in the previous paragraph, are the areas of bad traffic where the more direct shared
paths pass through. The resulting too big travel times consequently reduce the matching rate.
The strongest impact traffic state information has, is given in the average waiting time and the
travel time savings. The former decreases in both situations by more than a third when the
traffic state information is not included in the identification process. The main reason for this
might be the higher average speed of the vehicles when no traffic congestions are given and the
resulting shorter travel time from one start point to the other. The same counts for the increase
in the travel time savings when no traffic state is considered. As shown in Chapter 5.4, the travel
speeds are for the biggest part of the study area below the maximum allowed speed value and
thus the shared paths take more time to be completed when traffic state information is included
than without. Consequently, considering the traffic state in the system negatively influences the
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travel time savings. As it is shown in Tables 19 and 20, the distance savings, and linearly
correlated to this the reduction of CO2 emissions, slightly increase (Table 20) and are more
optimal without traffic state information (Table 19). Additionally, it is apparent that excluding
traffic state information has a stronger effect on these two measures when the distance savings
constraint must not be met. Focusing on the differences in the taxi fleet reduction, it can be
surmised that including traffic state information negatively influences this decrease, even
though only slightly. This means that for both situations, considering the traffic state of the
underlying road network removes fewer taxis from this network as when an absence of traffic
congestions is assumed. Overall, the results show that including the estimated traffic state the
way it is proposed in this work negatively affects all the presented and discussed measures,
independent of adding a third constraint or not. To summarise the discussed results of this
section, Table 21 delivers an overview of all the computed measures for all four variations.

/ Variation 1 Variation 3 Difference
Matching rate [%6] 96.59% 99.38% 12.79%
Waiting time [min] 3min24s 2min8s d1min16s
Travel time savings [h, min] 1’026 h 20 min 1'745 h 12 min 1 718 h 52 min
Travel time savings [%] 35.02% 59.56% 1 24.54%
Travel distance savings [km] - 7°820.1 km -1'371.25 km 1 6448.85 km
Travel distance savings [%6] -11.57% - 2.03% 1 9.54%
CO2 emission savings [g CO2] -1’542.3kg CO,  -270.4 kg CO, 11'271.9 kg CO»
CO; emission savings [%] -11.57% - 2.03% 1 9.54%
Taxi fleet reduction [taxis] 4°225 taxis 4’374 taxis 1 149 taxis
Taxi fleet reduction [%] 39.27% 40.65% 1 1.38%

Table 19: Comparison of the resulting measures for the developed ride-sharing system between the
variation where the distance savings constraint is not considered, once with the traffic state
information included (variation 1) and once excluded (variation 3). In the last column, the difference
that shows the influence traffic state information can have on the results is given. A - stands for a
negative influence on the travel distance and CO, emissions, meaning an increase in these measures.

////////////////////////////////% Variation 2 Variation 4 DTlfference
Matching rate [%] 54.86% 70.57% 15.71%
Waiting time [min] 3min14s 2min6s d1min8s
Travel time savings [h, min] 782 h 58 min 1'462 h 44 min 1679 h 46 min
Travel time savings [%0] 26.72% 49.91% 123.19%
Travel distance savings [km] 5°978.2 km 8'646.1 km 12°667.9 km
Travel distance savings [%6] 8.85% 12.8% 13.95%
CO2 emission savings [g CO2] 1’179.1 kg CO> 1'705.3 kg CO> 1 526.2 kg CO
COz2 emission savings [%0] 8.85% 12.8% 13.95%
Taxi fleet reduction [taxis] 2°276 taxis 2'969 taxis 1 693 taxis
Taxi fleet reduction [%] 21.15% 27.59% 1 6.44%

Table 20: Comparison of the resulting measures for the developed ride-sharing system between the

variation where the distance savings constraint must be met, once with the traffic state information

included (variation 2) and once excluded (variation 4). In the last column, the difference that shows
the influence traffic state information can have on the results is given.
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Table 21: Summary of all the resulting measures after applying the developed ride-sharing system to
real-world GPS taxi trajectory data. The results are computed for four different variations. In the first

two variations traffic state information is included in the identification process and in the last two
variations an absence of traffic congestions is assumed. Variation one and two respectively three and

four differ as once the distance savings constraint is ignored and once it must be met. A - stands for a

negative influence on the travel distance and CO, emissions, meaning an increase in these measures.
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7. Discussion

By developing and implementing a framework on how to identify potential ride-sharing paths
from raw GPS taxi trajectory data, the conducted analysis addressed the influence considering
traffic state information has on the results of a ride-sharing system. Additionally, the effect of
including a third constraint focusing on the total distance reduction of ride-sharing paths was
outlined. By introducing a new similarity measurement for taxi trips and describing how to
estimate traffic state information based on raw GPS data, additionally two new contributions
were made to the research field of ride-sharing. In this section, the newly developed methods
and the resulting measures are put into perspective to the three research questions and the
hypotheses of Chapter 3.2 are discussed. Furthermore, the approaches and findings are related
to the presented literature in Chapter 2. At the end of the chapter, the limitations of this work
are described.

7.1 Estimating traffic state information

The first research question addresses how traffic state information can be estimated given the
available data sources and how this information can be included in the process of identifying
potential ride-sharing paths. As explained in detail in the method section, only the road network
and the raw GPS records are needed for the presented approach. By using the differences in the
distance and the time stamps of the GPS signals, speed values for the individual trajectory points
can be calculated. By simply taking the average of the speed values of all records that are map-
matched to the same segment, the overall estimated speed value for a road segment is derived.
This procedure is repeated 96 times as the traffic state is estimated for time windows of 15
minutes during the whole day. Based on these traffic speed values and the information about
the length of the individual road segments, derived from the OSM dataset, the travel time of
each road segment for the different time windows is calculated. This information is then
integrated into the algorithm that identifies the optimal ride-sharing paths by adding it as the
weight to the Dijkstra’s shortest path algorithm. Besides using the traffic state information for
computing the potential ride-sharing paths, this information is as well used while selecting the
for ride-sharing suitable paths and identifying the optimal solution by calculating the travel time
and the waiting time based on that information.

Compared to existing approaches in the literature, the developed process is very simple and
does not depend on additional data sources or complex probability functions as e.g. in
Nathawhichti et al. (2003), where they use a complex macroscopic model and additional data
from stationary detectors. In the study of Santi et al. (2014a), due to incomplete data they are
forced to apply a quite complex estimation method as well. The results of this are expected to
represent the reality less accurate than with the proposed approach of this work as only a small
part of the real-world data is considered in the estimation. Wang et al. (2018) presumably
estimate the average traffic state based on historic data and not only on the same dataset as
analysed by the ride-sharing method. This means, that again additional data is needed in their
approach.
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The strength of the proposed traffic state estimation method is that the values are only based on
the input data to the ride-sharing system and still produce reliable results. This is shown in
Chapter 6.2, where the traffic speed maps of different time windows are analysed and
compared. No unrealistic values or abrupt changes in the road network are detectable. The
disadvantages of this method are the strong dependency on the quality of the GPS data and the
map-matching approach, as well as the decreasing accuracy when not many location fixes are
available. If the GPS data is erroneous, the vehicle speed cannot be calculated accurately
enough. Incorrect map-matched trajectory points make this even worse. Nevertheless, the traffic
state estimation method presented in this work is very simple to be applied while delivering
reliable results and includes the estimated values in the fastest path computation and selection
of the optimal shared ride to produce real-world circumstance based findings.

7.2 ldentifying ride-sharing paths from raw GPS data

The second research question focuses on how potential ride-sharing paths can be efficiently
identified from a large GPS taxi trajectory dataset. The complete framework of all the involved
steps that are developed and explained in detail in this work is given in Figure 15 of Chapter 5.
The first three main steps can be seen as preliminary processes that must be done to successfully
identify ride-sharing paths from raw GPS data. These steps include the pre-processing of both
input datasets, the map-matching of the trajectory points and the traffic state estimation.
Without these steps, the whole process is dysfunctional as the subsequent approaches need
correct information about the exact location of the trips on the road network and the conditions
of this network in sense of traffic state or maximum allowed speed values. The final
identification process consists again of two sub-steps. These are the newly developed similarity
measurement and the matching process itself. By computing the fastest paths between the
analysed trips and a set of candidate trips, which are selected based on the similarity
measurement, a local optimum solution for each analysed trip is found. These optimal shared
paths must reduce the total travel time compared to the sum of the travel times of the two
individual trips, lead to a waiting time below the set threshold of 15 minutes and in two of the
four different analysed situations to a reduction in the total distance of the shared path compared
to the sum of the two individual trips. Moreover, they must follow the objective of the system
by minimizing the occurring waiting time for the second passenger of each ride. Thanks to the
implemented similarity measurement, only a few fastest paths must be computed for each
analysed trip, and therefore the ride-sharing paths can be identified more efficiently.

As discussed in the related work section of Chapter 2, many different ride-sharing systems have
been developed and presented in the last several years. Because the basic settings of these
systems are very similar, it is interesting to show how the proposed ride-sharing system of this
work can be distinguished from already existing ones and how the architecture of the
identification process is built to achieve higher efficiency. Pre-processing and map-matching
the GPS data form part of almost every study if the system is applied to real-world data. Here,
different approaches are chosen to map-match the trajectories but mostly no detailed
explanation about the method is given, as it is simply seen as a basic step of each system. The
main differences occur in the matching process. These have been identified as on what type of
algorithm the shared paths are built, what conditions must be met, what the objective of the
whole system is and if the results represent a local or a global maximum. The most similar
architectures of ride-sharing systems compared to the presented one are provided by the works
of Cai et al. (2019), Wang et al. (2018) and Santi et al. (2014a).
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All of them develop a static taxi-sharing system based on real-world GPS data, as it is the case
in this study. Cai et al. (2019) and Santi et al. (2014a) both are identifying a global optimum
solution with their matching process. Different from them and similar to Wang et al. (2018),
the proposed system focuses on a local optimum. The constraints included in these three studies
differ from saving driving distance, not creating a too big delay, or waiting time, to reducing
the taxi fare. Given the three constraints applied in this work, in this aspect, the system does not
strongly differ from the others. A novelty compared to the three similar systems is the followed
objective of this model. Minimizing the waiting time has so far not often been addressed as the
main goal of a system. They rather follow objectives like minimizing the total driven distance,
minimizing the total travel time, or maximizing the matching rate. The reason for following this
objective and not a more common one is already explained in the method chapter. Like in Santi
et al. (2014a) and Wang et al. (2018) this system works with the fastest path algorithm to build
the potential ride-sharing paths. Cai et al. (2019) on the other hand, use the shortest path
algorithm as no information on travel time is included.

The main difference from the discussed papers and in general from the existing literature is the
number of considered candidate trips for building a shared path with an analysed trip. In the
three mentioned studies, the shortest or the fastest path is computed between an analysed trip
and a big number of candidate trips, which is only limited by a defined time window. In some
studies, even shared paths between all available trips are built and then tested on the constraints.
Like that, a lot of fastest paths are computed between candidate and analysed trips which are
not suitable to be shared at all. They are then excluded in a subsequent step as they do not fulfil
the set constraints and are therefore needlessly computed.

Due to the developed similarity measurement, this work suggests a different approach as only
the three most similar candidate trips are analysed in detail and only between them shared paths
are built. Assuming that the fastest path computation is equally time-consuming for both
systems, the proposed ride-sharing system could therefore identify the potential ride-sharing
paths more efficiently. This is intensified because only a local optimum and not a global
optimum is searched, as the complexity of a system strongly increases with global optimization
problems. Thus, by the developed framework and especially by the implemented similarity
measurement, an alternative simple and efficient ride-sharing system is proposed in this work.

7.3 The influence of using traffic state information in ride-sharing systems

With the third and last research question, the effect of considering traffic state information in a
ride-sharing system on the resulting measures is analysed. To be able to analyse this influence,
the in the experimental design presented four variations of the proposed ride-sharing system are
applied to real-world GPS taxi trajectory data of the city centre of Chengdu, China. By
comparing the differences in the resulting measures of Chapter 6.4, this research question is
addressed. Subsequently, the three established hypotheses regarding the influence of traffic
state information are discussed.

The effect the additional constraint about the savings of driving distance has on the resulting
measures is already presented in the last part of the result chapter. The conclusion is that
regardless of including traffic state information or not; the matching rate, the travel time savings
and the taxi fleet reduction decrease while the waiting time gets shorter and the total driving
distance savings as well as the reduction of CO, emissions increase. This additional constraint
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does not affect the resulting measures 100% positively. Nevertheless, as a ride-sharing system
should have a positive impact on the natural environment, what is not given without this
constraint, the positive impact on the waiting time, the distance savings and the emission
reduction outmatch the negative effects. Hence, it is considered necessary to include this
additional constraint in ride-sharing systems. Therefore, to analyse the influence traffic state
information can have, only the differences in the measures of the second and fourth variation
are discussed. The significance of this is that the results between the situation where the traffic
state information is included and the distance savings constraint must be met and the situation
where an absence of traffic congestions is assumed but the distance constraint still must be
fulfilled, are compared.

Considering real-world circumstances by including the estimated traffic state in the proposed
ride-sharing system lets the matching rate decrease by 15.71% from 70.57% to 54.86%. Thus,
only slightly more than half of the available taxi trips form part of a shared ride. This is
explained by the fact that in general the traffic state is congested for the study area and thus the
travel times of the shared trips and additionally the travel distances increase. This then leads in
many cases to not fulfilling the set constraints anymore and therefore less shared rides can be
identified. This effect is further confirmed by the change in the total travel time savings and the
reduction of the total driving distance. Including the traffic state lets the travel time savings
decrease by 46.47%. When no traffic congestions are given, 1'462 h 44 min or 49.91% travel
time can be saved by applying ride-sharing. These numbers shrink to 782 h 58 min or 26.72%
due to the mentioned reasons after considering the traffic state information. For the travel
distance, 8'646.1 km or 12.8% are saved while an absence of traffic congestions is assumed and
only 5'978.2 km respectively 8.85% of travel distance can be reduced with real-world
circumstances considered. This equals a decrease of 2'667.9 km or 30.86% in the distance
savings. As a linear correlation between the driven distance and the CO> emissions is assumed,
as well 30.86% less CO- can be reduced due to the traffic state. Instead of 1'705.3 kg, only
1'179.1 kg CO:z is saved by the applied ride-sharing system under the given circumstances. The
second positive effect of ride-sharing systems, besides reducing emissions, is a potential
reduction in the taxi fleet size and thus a decrease in the number of vehicles on the road network.
While assuming an absence of traffic congestions, 2'969 taxis are removed from the network,
which equals a taxi fleet reduction of 27.59%. These values are also influenced by the traffic
state and diminish to 2'276 removed taxis respectively a taxi fleet reduction of 21.15%. The
traffic state information lets this positive effect decrease by 23.34%. The last measure that gets
influenced by the real-world circumstances is the waiting time that emerges for the second
passenger. While this measure amounts to 2 min 6 s when no traffic congestions are given, it
increases by 53.81% to 3 min 14 s as soon as traffic state information is included.

Focusing on the research question, generally, the findings are that considering traffic state
information in ride-sharing systems has a negative influence on all the presented measures. This
results from the smaller average vehicle speed triggered by congestions, traffic lights or
accidents. As the speed is directly connected to the travel time, this measure and additionally
the waiting get influenced the most by traffic state information. Other measures like the distance
savings or taxi fleet reduction are negatively influenced as well, but less severely. This negative
effect is coupled with the influence on the travel time as the given circumstances a shared ride
tries to lead through streets where a higher speed value is possible and this lets the distance
increase and, hence, the savings decrease.
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Before conducting the presented analysis of this work, three hypotheses connected to the third
research question were constructed. In the following, these three hypotheses are discussed.

1. Less potential ride-sharing paths are identified when including traffic state information
compared to assuming an absence of traffic congestions.

This hypothesis was constructed due to the thought that considering traffic state normally leads
to speed values smaller than the maximum allowed ones as traffic congestions that trigger this
decrease exist in almost every city centre. Smaller speed values and resulting bigger travel times
can produce problems with the set constraints and, thus, less ride-sharing paths were expected
to be marked as suitable. As shown in Chapter 6.2, the traffic state of the city centre is bad, and
the network congested. This means, that on average the possible vehicle speed is, as expected,
smaller than the maximum allowed one. This indeed leads to the described effect and reduces
the number of identified potential ride-sharing paths. Expressed in numbers, this means that
assuming an absence of traffic congestions 5'415 potential ride-sharing paths are identified with
the presented system for the 15'347 available taxi trips. Including the traffic state, this number
decreases by 22.25% to 4'210 identified potential ride-sharing paths. Thus, this hypothesis is
corroborated.

2. The average waiting time for the second passenger is higher when including traffic state
information compared to assuming an absence of traffic congestions.

The second hypothesis was again established due to the expected increasing travel times caused
by considering the traffic congestions. As on average for each road segment, more time is
needed to pass it, the time emerging driving from one start point to the other is increasing as
well. Thus, the average waiting time is expected to be longer with traffic state information
included than while assuming an absence of traffic congestions. This hypothesis is corroborated
by comparing the two average waiting times of both scenarios. Not considering the traffic state
leads to an average waiting time of 2 min 6 s. Including this information, the average waiting
time rises by 1 min 8 s or 53.81% to 3 min 14 s and is clearly higher.

3. Savings in total travel time and total travel distance are smaller when including traffic
state information compared to assuming an absence of traffic congestions.

The last hypothesis was established due to the same reasons as already explained in the two
previously discussed hypotheses. It was expected that the due to traffic congestions on average
bigger travel time per road segment leads to an increase in the total travel times of most of the
identified shared paths. As the sum of the travel times of the two individual trips that are
combined in a shared path remains the same, the difference between their travel time and the
travel time of the shared path was predicted to decrease or in other words, the travel time savings
to shrink. As to diminish the loss of travel time savings the shared path tries to lead through
road segments where a higher vehicle speed is possible, normally an increase in the travel
distance can be forecasted, as it does not represent a very direct way anymore. Hence, the
average travel distance of a shared path was expected to increase as well. This would lead to a
shrinkage in the total travel distance savings. These expectations are confirmed by the
conducted analysis. If no traffic state information is given, 49.91% of the total travel time can
be saved by the ride-sharing system. Considering real-world circumstances shrinks the savings
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by 46.47% and results in 26.72% saved total travel time. The same is valid for the travel distance
savings as without traffic state information included 12.8% of the total driving distance is saved
with the proposed method and while considering the traffic state only 8.85% of the total driving
distance can be reduced. Hence, the total travel distance savings decrease by 30.86% due to
including traffic state information.

To assess the efficiency of the proposed approach and highlight again the influence of traffic
state information, some of the resulting measures can be compared to the results of related
studies. Starting with the matching rate, studies of Aydin et al. (2020), Barann et al. (2017), Cai
etal. (2019) or Stiglic et al. (2015) produce matching rates of 65.75%, 48.34%, 77% or 74.83%.
As all these studies do not include traffic state information, their values are compared to the
value of the proposed system for the situation where an absence of traffic congestions is
assumed. With 70.57%, the resulting matching rate of this work is part of the upper range of
the given measures of other studies and therefore represents a solid value. The distance savings
differ between the four studies from 33.48%, 18.98%, 33% to 29.63%. As the computed total
distance savings amount only to 12.8% in the proposed ride-sharing system, this measure is
rather small compared to other studies.

A reason for this might be the different objective of the system. Most of the other studies follow
the objective of maximizing the distance savings or the matching rate while the system of this
work follows the objective of minimizing the waiting time. As the waiting time is coupled with
the travel time, this measure is on average small as well. Hence, the travel time savings of
49.91% of this work are very high compared to e.g. the travel time savings in Barran et al.
(2017) of 22.42%. The same study computes a taxi fleet reduction of 24.17% which is in the
same range as the taxi fleet reduction of the system of this work with 27.59%. As the presented
measures of the other studies are computed based on different data, the results must be analysed
with caution as comparing them only allows to study if they are more or less in the same range
but not to calculate numerical differences in the absolute values. In general, this comparison
shows that the proposed ride-sharing system produces results that are in the same range of
results of other studies while having a very simple architecture thanks to the developed
similarity measurement. The strength can be seen in the travel time savings whereas the
weakness is given by the distance savings.

As already described, the compared values are computed for the situation where traffic state
information is not considered. If this information is included, the values of the matching rate,
the travel time savings, the distance savings, and the taxi fleet reduction shrink to 54.86%,
26.72%, 8.85% and 21.15%. These values are clearly smaller and for most of the measures not
in the range of the presented results of the other studies anymore. This highlights again the
negative influence traffic state information can have on ride-sharing systems. Considering this,
the conclusion can be made that ride-sharing studies that do not include traffic state information,
as in some of the mentioned papers, distort their results as they are embellished. Working with
real circumstances of the underlying road network would lead to worse measures. The users of
such systems might have to wait longer for a taxi to arrive as calculated or the trip duration
unexpectedly increases. As this is not user-friendly, the traffic state information should be
considered in ride-sharing systems to be useful for real-world applications.
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7.4 Limitations of this work

In this subchapter, some limitations of this work are presented. The first two are related to the
used subset of the data. Originally one month of GPS taxi trajectory data is available. Due to
the time consumption of the methods based on the rather slow server infrastructure and the
limited time window in which this work is done, only one day of the dataset is analysed.
Analysing all the available data would be interesting especially for the traffic state estimation.
With data of only one day, the changes in the traffic state between working days and weekends
cannot be analysed. Considering this, further conclusions could be made on the differences in
the influence of traffic state information based on different weekdays. Additionally, using more
data would improve the accuracy of the estimation method. The second limitation, which
represents the biggest limitation, is given by the problems while map-matching the GPS taxi
trajectory data. The errors occurring with the arcpy Python module significantly reduce the size
of the data. Though still enough trips are left to conduct the analysis, having more data available
would lead to better and more accurate results.

During the interpolation process of the calculated vehicle speed values, a global Kriging
approach is implemented. It is argued that as the speed values of the generated sub-networks
are in the same range, independent from the location on the network, using a local interpolation
method is not required. Nevertheless, it would be an improvement to show the differences in
the two methods and then decide based on this which one truly is more suitable. Another
improvement could be done by considering more than one traffic state time window for the
weights of the Dijkstra’s shortest path algorithm for trips with a duration bigger than 15
minutes. As aforementioned in Chapter 5.5.3.1, the rather simple approach of only considering
one time window is legitimated with the fact that taxi drivers like to stick to the at the beginning
computed route. Nonetheless, by changing this more detailed results could be obtained.

The last limitation is related to the similarity measurement. As the goal of this method is to
reduce the complexity of the matching process and make the system more efficient, it would be
nice to monitor the computation time of this step to analyse how much more efficient the system
gets compared to already existing ones. Unfortunately, this additional analysis is not conducted
in the study, as it would go beyond the scope of this work.
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8. Conclusion

This work shows how potential ride-sharing paths can be efficiently identified starting with raw
GPS taxi trajectory data while considering the estimated traffic state of the underlying road
network. By applying the developed framework to real-world GPS data, it is analysed what
influences such information about the traffic state can have on ride-sharing systems. The major
findings are that traffic state information leads to more conservative (and thus likely more
realistic) matching of trips, which shows itself in lower respectively worse values for the
calculated measures. Most affected by the traffic state are the total travel time savings, which
get reduced by 46.47%, and the average waiting time with an increase of 53.81%. The total
distance savings (reduction of 30.86%), the CO> emission savings (decrease of 30.86%), the
taxi fleet reduction (23.34% fewer savings) and the matching rate (reduction of 15.71%) are
affected less severely.

Comparing the resulting measures with existing ride-sharing studies for the situation where the
traffic state information is not considered shows that besides being built less complex and more
efficient, the results of the proposed system can keep up with the other studies. Analysing the
differences between results of existing literature and the resulting measures when the traffic
state information is included highlights the negative effect traffic state information has on ride-
sharing systems. This allows claiming that ride-sharing system not considering traffic state
information distort their results as they are embellished. This can lead to a decrease in the user-
friendliness of a system as unexpected different waiting times or delays can emerge. Thus, this
study shows that including traffic state information can be a very important point to make a
ride-sharing system more useful to real-world applications.

Another finding is that not forcing an identified ride-sharing path to result in a shorter travel
distance than the sum of the travel distances of the two individual trips that build this shared
path, has a rather strong influence on the measures of a ride-sharing system. The matching rate,
the travel time savings and the taxi fleet reduction are negatively affected; meaning they
decrease, while the waiting time, the total distance savings and the CO> emission reduction are
influenced positively. This means that the waiting time gets reduced and the total distance
savings as well as the savings of CO2 emissions increase. Despite not affecting all the resulting
measures positively, it is shown that this additional constraint should be included in the
matching process of a ride-sharing system to have a positive impact on the natural environment.

In addition to the presented major findings, this work provides three further contributions. First,
a framework containing all the necessary steps beginning with raw GPS taxi trajectory data and
a road network to efficiently identify potential ride-sharing paths is developed. Different from
previous ride-sharing studies, by considering the information on the traffic state of the
underlying road network, real-world circumstances are included in the ride-sharing system.
Second, with the described traffic state estimation method an alternative approach to existing
methods in the literature is presented that is based only on the already in the ride-sharing system
used data. No further inputs are needed. Moreover, the result of this estimation is included twice
in the identification process of potential ride-sharing paths to solve the problem more
realistically.
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The third contribution is represented by a newly developed similarity measurement that filters
out unsimilar and thus for ride-sharing unsuitable taxi trips that initially serve as candidates to
build a ride-sharing path with an analysed trip. Different to existing similarity measurements in
the literature, this method is built for ride-sharing systems of taxis and only measures the
distance between the start and end points of two taxi trips respectively between start or end
points and the closest point of the opposite trip. The significance of this is that the route of a
trip is less important while the start and end points are weighted stronger. Being able to filter
out highly unsimilar candidate trips and having to compute only the fastest paths for a maximum
of three times between an analysed trip and its three most similar candidates, allows the
complexity of the system to decrease and leads to higher efficiency. Besides considering real-
world circumstances, due to the similarity measurement, the framework can represent a
compared to existing ride-sharing systems less complicated and more efficient solution.

For future research, the presented ride-sharing system of this work must be compared in more
detail, in sense of time consumption and quality, to systems of other studies. Analysing the
same dataset with the proposed system and an existing one allows to monitor how much time
is needed for the computations of both systems and what the resulting measures are. Through
this method it will be shown if because of the implemented similarity measurement, the system
truly is more efficient and if yes, how much computation time can be saved. Furthermore, by
comparing the absolute values of the measures, what is not possible given results based on
different datasets, it can be validated whether besides being more efficient in computation time,
the quantity and quality of the results can keep up with existing systems.

In addition, future research studies about ride-sharing systems including traffic state
information must analyse the influence such information has on the resulting taxi fare. The
aspect of the price of a shared ride is not considered in this work, but eventually, it is influenced
by traffic state information as well. Normally, the taxi fare of a trip or at least the range of it, if
requested through an application, is known before starting the ride. If no traffic state
information is included, the algorithm potentially computes a too short travel time or distance,
which could lead to an incorrect taxi fare. How including the traffic state influences this price
and to what extent the taxi company and the users earn respectively spend more, must be
addressed in future work. Last, the proposed static ride-sharing system must be transformed
into a dynamic system keeping the structure of the approach (using the traffic state information
and simplify the matching process by the similarity measurement). This way it can be
implemented into a mobile application to be used in real-world scenarios.
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Appendix

Appendix

In this appendix, figures which appear slightly too small in the main text are again illustrated
in bigger size. The numbering of them remains the same. This means that each figure in this
appendix is labelled with the same number as in the main text. Hence, in the figure catalogue
the figures of the appendix are not repeated.
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Sub-network «secondary street»
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Sub-network «trunk»
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Figure 24: Variograms and used parameters of the six sub-networks. The parameters are analysed for
the time window between 12:00 p.m. and 12:15 p.m. and taken as the input for the Ordinary Kriging

interpolation method.
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b) Road segments of sub-network "trunk" as point features
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9) Extraction of the interpolated speed values for each vertex and
transforming them to one value for its road segment
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Figure 25: a) shows the sub-network and the road segments with the missing values. In b) the line
features are split into its vertices. The resulting interpolated speed values are illustrated in c). As
shown in d), the average of the speed values of the three vertices that are extracted from the Kriging
surface represents the final interpolated speed value for the specific road segment.
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b)
Map-matched path of the analysed and the second most similar candidate trip
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d) Identified optimal ride-sharing path between the analysed
and the second most similar candidate trip
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Figure 53: Visualisation of the three most similar candidate trips and the identified optimal ride-
sharing path for the analysed example trip illustrated by the red line in a) to c). The final ride-sharing
path is displayed in d). This path is a combination of the analysed with the second most similar
candidate trip. As in variation one the distance savings constraint must not be met the total driving
distance of the shared path can be slightly bigger than the sum of the driving distances of the two
individual taxi trips, as it is the case in d).
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b)
Map-matched path of the analysed and the second most similar candidate trip
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d)

Identified optimal ride-sharing path between the analysed
and the most similar candidate trip
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Figure 54: Visualisation of the three most similar candidate trips in a) to ¢) and the identified optimal
ride-sharing path in d) for the analysed example trip. The final ride-sharing path of the second
variation is a combination of the analysed with the most similar candidate trip.
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b)

Map-matched path of the analysed and the second most similar candidate trip
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< Identified optimal ride-sharing path between the analysed

and the most similar candidate trip

— ride-sharing path
road
park
water

0 250+ 500 m
{0 A8 R A

Figure 56: Visualisation of the three most similar candidate trips in a) to ¢) and the identified optimal
ride-sharing path in d) for the analysed example trip. The final ride-sharing path of the third variation
is a combination of the analysed with the most similar candidate trip.
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b)
Map-matched path of the analysed and the second most similar candidate trip
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d) Identified optimal ride-sharing path between the analysed
and the most similar candidate trip
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Figure 58: Visualisation of the three most similar candidate trips in a) to ¢) and the identified optimal

ride-sharing path in d) for the analysed example trip. The final ride-sharing path of the fourth variation
is a combination of the analysed with the most similar candidate trip.
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