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Abstract 
Over the last 40 years, Ethiopia has been affected by immense deforestation and forest degradation caused by 

different drivers. On the one hand, extreme weather events such as droughts, wildfires, or floods lead to strong 

forest degradation. On the other hand, anthropogenic activities have resulted in large-scale deforestation due to the 

rapidly increasing population demanding a stable livelihood. Consequently, the wild coffee forest and with it the 

wild coffee species ‘coffea arabica’ originating in Ethiopia are threatened.  

For this reason, Participatory Forest Management (PFM) has been introduced approximately 20 years ago in 

wild coffee forest regions. The approach aims for forest conservation while simultaneously strengthen the 

cooperative’s autonomy, facilitate access to the forest product market, and offer a higher price for the wild coffee in 

comparison to coffee growing on plantations. Therefore, the project leader party, for example Caritas Switzerland, 

works directly with the local communities and together they establish a forest management plan. The agreement 

allows for individual farmers to pick the wild coffee fruits and sell them for a raised price to receive a sustainable 

income and at the same time protect the natural forest.  

Satellite remote sensing provides useful methods and interesting datasets to monitor and quantify the ongoing 

forest loss and document the impact of conservation efforts. Besides, it supports PFM evaluation by providing 

information on the forest extent and the existing land cover classes in the project regions and further enables 

understanding the impact of PFM measures on the forest. In this thesis, the applied approaches are supervised land 

cover classification, post-classification comparison for the change detection and the Continuous Degradation 

Detection (CODED) algorithm which is used to identify forest degradation. The results reveal less deforestation in 

PFM than in non-PFM regions over the measurement period of 20 years. Hence, PFM appears to have been applied 

successfully and it is recommended that more PFM projects are implemented in order to reduce forest loss.  

In conclusion, the utilized remote sensing methods seem adequate to measure forest disturbances in coffee 

forest areas in Ethiopia. However, future research is suggested to include field data, local people’s knowledge as 

well as forest expert opinions for the data validation. Furthermore, specific information on measurable 

characteristics of the different coffee forest systems, for example of wild and semi-wild coffee forests, would help 

distinguish them.  
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1 Introduction 
The importance of monitoring the Ethiopian tropical forest has increased due to high amounts of deforestation 

and degradation (DeVries et al. 2016). Since the 1960s, the country has been affected by large-scale forest loss 

(Gashaw et al. 2014) which resulted in the remaining forest area of 11.4% (Hailemariam et al. 2016). The related 

land use and land cover (LULC) changes are a major concern (Hailemariam et al. 2016), particularly in the 

southwestern part of Ethiopia (Wubie 2015). Generally, the drivers can be distinguished in natural causes 

(Hailemariam et al. 2016) and human-induced forest damage (Wubie 2015). The Afromontane rain forests in 

Ethiopia are in danger due to the continuing forest loss and degradation (Schmitt et al. 2006). Consequently, the 

wild coffee species ‘coffea arabica’ growing in the rain forests is threatened (Tadesse et al. 2014). Furthermore, the 

coffee production intensification and the introduction of cultivar species endanger the original arabica coffee 

(Hylander et al. 2013; Aerts et al. 2017). As the arabica coffee constitutes a quarter of the total export profits of 

Ethiopia, it is the main agricultural good and crucial for the livelihood of the coffee farmers (Moat et al. 2017). 

Hence, the wild arabica coffee species must be conserved (Aerts et al. 2017). Participatory Forest Management 

(PFM) is one example of a sustainable coffee forest management process and has been applied in Ethiopia since the 

late 1990s (Lemenih et al. 2015). The approach protects the forest environment and simultaneously improves the 

livelihoods of the community applying it (Winberg 2011). In other words, this coffee certification system attempts 

to encourage the farmers to manage the forest sustainably and in exchange, they are able to sell the certified wild 

coffee for a higher price (Bewket 2002; Takahashi et al. 2017). Caritas Switzerland functioning as a leading party 

in the implementation of PFM projects in southern Ethiopia intends to monitor the PFM areas with satellite data. 

Therefore, the organization approached the National Point of Contact for satellite images (NPOC) at University of 

Zurich (UZH) and provided a specified field of research matching their interests. Subsequently, this thesis has been 

established as a cooperative work between UZH and Caritas Switzerland in order to explore the potential of 

satellite data and methods for the monitoring of Caritas Switzerland’s forest conservation projects.  

In literature, the impacts of forest conservation programs on deforestation and degradation remain largely 

unexamined (Takahashi et al. 2017). The studies lack of an elaborated monitoring system to understand the 

performance of the sustainable forest management (Winberg 2011). Generally, research focuses strongly on the 

analysis of the social aspects and neglects the environmental part of PFM (Winberg 2011). Due to high costs for 

frequent field trips, forest monitoring is not conducted (Winberg 2011). Although satellite-based remote sensing 

enables regular forest examination through land cover change and tropical deforestation detection, such 

observations are limited in Ethiopia (Dupuis et al. 2020). Existing LULC products are not suitable for local scale 

studies in the mountainous regions of that country and therefore researchers created novel LULC products suiting 

their need (Hailu et al. 2018). In summary, in depth analysis of the last two decades of coffee forest changes in 

southern Ethiopia using the full archive of freely available remote sensing data has not yet been undertaken and a 

thorough evaluation of the PFM impacts on the forest is missing.  

Hence, this thesis extends on previous work by exploring the forest and land cover changes in Ethiopian coffee 

growing areas since 2000. This year has been chosen due to PFM project introductions starting around that time. 

The goal of the study is to measure the forest cover extent and forest degradation by using satellite remote sensing 

over the selected timespan and link it to sustainable forest management practices. Accordingly, this research aims 

to profoundly analyse forest alterations in the study areas over the last 20 years and to measure the rate of forest 

change, its magnitude and time of occurrence. Moreover, the objective is to find drivers of forest change processes 

and to compare PFM and non-PFM coffee forest areas. Whether remote sensing approaches can distinguish 

between the different coffee forest systems is intended to be investigated as an additional research goal. 
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2 Research Background 
This chapter explains in more depth the reasons for deforestation and forest degradation in Ethiopia and 

describes the connected consequences. Furthermore, the four different coffee forest systems including wild forest, 

semi-forest, and garden coffee as well as coffee plantations are reviewed. After that, Participatory Forest 

Management is introduced in the context of coffee conservation. The last subchapter is devoted to previous work 

and the advantages of the use of satellite remote sensing for the monitoring of deforestation and forest degradation.  

2.1 Deforestation and forest degradation in Ethiopia 

The drivers of the deforestation and degradation in Ethiopia are diverse and can be categorized into five groups 

illustrated in Figure 2. First, the rapidly increasing population (Wubie 2015; Gashaw et al. 2014) causes pressure on 

the forest which is expressed in resettlements (Wubie 2015) and urbanization (Hailemariam et al. 2016). Due to 

scarcity of forest resources in some parts of Ethiopia, people move to areas where they are still able to sustain their 

livelihood (Wubie 2015). Usually, the income can be secured by living close to a village or city. Consequently, 

trees are cut down to create space for the growing towns (Hailemariam et al. 2016). Second, low control of 

agricultural practices leads to extensive cultivation (Wubie 2015) and overgrazing (Winberg 2011) resulting in 

increased forest degradation. Commercial farming and agricultural land expansion are typical phenomena to meet 

the needs of the population and particularly those of the farmers (Winberg 2011). Furthermore, the forest is 

converted into plantations to reach higher yields and sell more coffee (Hylander et al. 2013). Third, the forest 

resources in southern Ethiopia are exploited (Wubie 2015) and used unsustainably (Dresen 2011b). Mainly, 

commercial and informal logging destroy very large forest areas (Dessie et al. 2007; Hailemariam et al. 2016). 

Equally important, large amounts of wood are collected for household tasks, construction and as firewood (Wubie 

2015). Additional examples of resource abuse in the Ethiopian forests are wildlife hunting as well as the illegal 

extraction of forest products (Winberg 2011). The fourth driver of deforestation and degradation is political 

instability as it contributes to uncontrolled remote forested regions with changing land property rights and 

concessions for coffee (Dresen 2011b). The fifth group contains natural causes including floods, intense 

precipitation (FAO 2011) and wildfires (Pasquarella et al. 2016).  

The consequences of forest degradation and deforestation affect multiple fields described in Figure 2. The forest 

is threatened by a higher probability for landslides (Dresen 2011b) and soil erosion (Hailemariam et al. 2016) 

because the protective root system has been removed. Moreover, the forest biodiversity and its related ecosystem 

services are reduced and species become extinct (Hailemariam et al. 2016). In addition, deforestation provokes 

increasing greenhouse gas emissions (Moges et al. 2010; Hailemariam et al. 2016). Another effect related to a 

changing climate are extreme weather conditions such as droughts (Hailemariam et al. 2016). The concerned 

communities rely on a stable income based on the forest resources (Moat et al. 2017) which is not guaranteed in 

degraded forests. Therefore, the environmental degradation decreases the food security and more forest areas 

become exploited and damaged (Winberg 2011). Thus, the awareness towards tropical forests in Ethiopia rose as 

alterations of the ecosystem influence the worldwide climate change and biodiversity loss (DeVries et al. 2016). 

The future of the forest and the people living there are closely linked and depend on each other (Dresen 2011b).  
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Figure 2 Illustration depicting the drivers of deforestation and forest degradation in Ethiopia as well as the resulting consequences which in 
turn reinforce the drivers  

2.2 Coffee forest systems 

Depending on the management type and intensity as well as on the yield, four typical coffee growing systems 

are distinguished (Hylander et al. 2013) demonstrated in Figure 3. Since the wild forest coffee is unmanaged, the 

farmers picking the wild coffee fruits is not counted as intervention (Craves 2011). In comparison, the semi-forest 

coffee is sustainably managed by the farmer cooperatives (Hylander et al. 2013) through the thinning of canopy and 

removing of competitive undergrowth shrubs (Workie 2015; Craves 2011). These procedures enhance the coffee 

plant growing conditions (Hylander et al. 2013) and intend to rise the wild arabica coffee yield (Craves 2011). 

Regions with semi-forest coffee management strategies indicated lower deforestation rates because otherwise the 

land would be converted to cropland, grazing land or plantations (Aerts et al. 2017; Hylander et al. 2013). Thus, 

those two coffee growing systems are promoted in protected forest areas (Wiersum et al. 2008). However, as the 

yield is lower compared to garden coffee or plantations, wild and semi-wild coffee forest is removed in favour of 

the higher yield growing systems (Takahashi et al. 2017; Moat et al. 2017). Although the modern coffee growing 

systems increase the sales and therefore the income, the drawbacks are active deforestation, soil erosion and 

chemical runoff (Takahashi et al. 2017).  

 
Figure 3 Visualization of the four different coffee growing systems in Ethiopia emphasizing their differences in management type and 
intensity as well as in the yield 
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2.3 Wild coffee conservation and Participatory Forest Management (PFM) 

Wild coffee forest conservation is crucial for the natural environment so as to protect the biodiversity and wild 

species of the forest, such as the wild arabica coffee (Takahashi et al. 2017). However, difficulties and obstacles 

arise for the implementation of sustainable coffee forest management systems. For instance, the farmers demand a 

sustainable income and a direct profit from the coffee protection (Aerts et al. 2017). Therefore, adapted measures 

are proposed to support the farmers’ requirements (Hylander et al. 2013). There exist multiple examples of 

certification systems (Aerts et al. 2017) all having the primary goal to prevent further deforestation and conversions 

of wild forest into plantations (Hylander et al. 2013). 

One commonly applied coffee conservation approach in Ethiopia is called Participatory Forest Management 

(PFM) (Winberg 2011). A pivotal aspect of that system is the active participation of the village community in the 

forest conservation process (O’Hara 2013). While participatory managed forests belong to the state (Walle et al. 

2019), the individual farmers receive the right to harvest wild coffee in their allocated forest area (Takahashi et al. 

2017). When PFM is implemented, the leader party discusses a tailored management plan with the community, 

illustrated in Figure 4. PFM includes a social and an environmental part (Winberg 2011), however, efforts and time 

usually concentrate on one depending strongly on the community’s essentials (Takahashi et al. 2017). The social 

part contains for instance improving governmental support and enhancing the communication between 

stakeholders, whereas the environmental part aims to reduce biodiversity loss, forest degradation and deforestation 

(Winberg 2011).  

 

 
Figure 4 Graphic showing a usual PFM implementation process emphasizing the environmental and social part, their goals, and outcomes 
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2.4 Satellite remote sensing for the monitoring of deforestation and forest degradation 

Sustainable forest management systems such as PFM require a way to monitor and evaluate the applied actions 

(Winberg 2011; Foody 2003). Primarily, in the beginning of PFM implementation the forest extent needs to be 

measured and forest maps created (Winberg 2011). Accordingly, satellite remote sensing provides powerful 

datasets and methods to continuously collect information on deforestation and degradation with high spatial 

resolution (DeVries et al. 2015; 2016). For its various advantages, remote sensing has been employed in forest-

related studies for a long time (Lillesand et al. 2015). For instance, the costs and time investment are lower when 

using satellite remote sensing instead of gathering field data (Hadi et al. 2018). Another benefit is the small effort 

necessary to regularly monitor large and remote areas (Hadi et al. 2018).  

In Ethiopia, several studies have already used remote sensing and Geographic Information System (GIS) 

approaches to analyse the land cover transitions in coffee forest areas (Wubie 2015; Gashaw et al. 2014). More 

specifically, land use and land cover changes (LULC) are observed, quantified and mapped (Hailemariam et al. 

2016). These land cover maps provide an informed basis for the decision makers (Aerts et al. 2017). By exploiting 

space-born data with high temporal resolution, forest disturbances including degradation can be measured (Hansen 

et al. 2008; DeVries et al. 2016). For this reason, sustainable forest planning is supported by enabling the adaption 

of sustainable management criteria based on the analysis outputs (Wubie 2015; DeVries et al. 2015). 
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3 Study areas and their characteristics 
The main study zone Keffa and the four additional zones are described in detail in the following section. 

Thereafter, the ten study kebeles which relate to PFM are specified and mapped. The typical coffee forest 

environment climate is presented in subsection 3.3.  

3.1 Study zones 

The main study area is Keffa zone, emphasized in Figure 5, which serves as the pilot region to develop a 

satellite remote sensing-based coffee forest monitoring approach. It is located in the ‘Southern Nations, 

Nationalities, and Peoples’ (SNNP) region and has been chosen because sustainable coffee forest management 

actions have been applied since 2004 (GIZ 2016). The zone covers an area of over 10’500 km2 (El Ouaamari et al. 

2014) listed in Table 1 and the vegetation consists of evergreen rain forest with optimal coffee plant growing 

conditions (DeVries et al. 2016). Commonly, the wild coffee grows in the humid mountainous forests in South 

Ethiopia between 1‘000 and 2’000 meters above sea level (m.a.s.l) as an understory tree (Schmitt et al. 2006; 

Tadesse et al. 2014; Moat et al. 2017; Aerts et al. 2017). 

In Keffa an UNESCO Biosphere Reserve (BR) called Kafa was established in 2010 and lies in the northern part 

of the zone (Dresen 2011b). It promotes forest and wild coffee protection actions, for instance by restoring the 

natural forest and sensitize people to the sustainable use of forest resources (DeVries et al. 2016). Usually, a BR 

consists of three different sectors. Namely, a protected core with targeted conservation programs (Aerts et al. 

2017), a buffer zone with mixed nature-related land uses, and an agriculturally dominated transition sector (Dresen 

2011b).  

Bale, Bench Maji, Illubabor and Sheka are the four additional study zones analysed in this thesis (Wubie 2015; 

Hailemariam et al. 2016). The selection is based on the fact that most PFM intervention areas are located in the 

Oromia and SNNP regions (Winberg 2011) which are the major coffee growing areas in southern Ethiopia (Moat et 

al. 2017). Illubabor and Sheka contain UNESCO Biosphere Reserves that were accepted in 2010, respectively 2012 

(Aerts et al. 2017).  

Table 1 List of the five study zones displaying the region name, zone name, capital city and the zone size. Highlighted with a frame is the 
main study zone Keffa (OCHA 2017). 

 

  

Region name Zone name Capital city of the zone Zone size [km2] 

SNNP Keffa Bonga 10’520 

Oromia Bale Robe 54’640 

SNNP Bench Maji Mizan Teferi 18’990 

Oromia Illubabor Metu 15’530 

SNNP Sheka Masha 2’350 
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Figure 5 Map illustrating the location of the five study zones and their capital cities in Ethiopia. The main study zone Keffa is highlighted in 
light blue (openAfrica 2019). 

3.2 Study kebeles 

In Ethiopia, the smallest administrative unit is called ‘kebele’. Their size varies between 15 and 100 km2 and 

kebeles can be composed of one or more organized cooperatives which are responsible for the sustainable 

utilization of the community forest (Plan Vivo 2014). For this thesis, ten kebeles listed in Table 2 have been chosen 

in order to analyse the effect of PFM on the forest (Winberg 2011; Dresen 2011a). Four kebeles will be evaluated 

in detail and are called Keshi, Giz Meret, Chebere and Sodu Lelaftu mapped in Figure 6.  

Table 2 List of the 10 study kebeles displaying information on the zone name, kebele name, PFM status and kebele size. The four kebeles 
analysed in detail are emphasized with a black frame. 

Zone name Kebele name PFM (Yes/No) Kebele size [km2] 

Keffa Keshi Yes 35 

Bench Maji Giz Meret Yes 17 

Illubabor Chebere No 24 

Bale Sodu Lelaftu No 167 

Keffa Muti No 12 

Keffa Keja Araba Yes 51 

Keffa Mankira Yes 10 

Bench Maji Bergi Yes 14 

Bench Maji Seriti No 23 

Sheka Ganga No 38 
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Figure 6 Left: Overview map of all five study zones containing the 10 study kebeles. From top left to bottom right: Keffa zone, location of the 
study zones in Ethiopia, Bench Maji zone, Sheka zone, Bale zone, Illubabor zone. Marked with a light blue frame are the in depth discussed 
kebeles (openAfrica 2019; Services ArcGIS 2015). 
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3.3 Typical climate in coffee forest areas 

Generally, the climate in the coffee forest areas is described as cool-tropical and contains three distinct seasons 

(Hylander et al. 2013) summarized in Figure 7. The dry season lasting from October to February is the coffee 

harvesting period. The time between February and May is regarded as the start of the wet season if the precipitation 

pattern is unimodal which refers to one rain season per year. Otherwise the same period represents a distinct short 

rain season and the rainfall pattern is called bimodal. The subsequent months are the main wet season. In average, 

the annual precipitation lies between 1’500 and 2’100 mm (Moat et al. 2017) and the ideal coffee growing 

temperature is around 20° Celsius (Workie 2015).  

 
Figure 7 Typical climate diagram for a coffee forest area. This example shows the climate for the zonal capital city Bonga located in Keffa 
with an unimodal precipitation pattern (World Weather Online 2020).  
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4 Data  
This section starts with a description of the input Landsat images and their compositing followed by the 

definition of the classifier training data. Subchapter 4.2 considers supplementary data which contains material on 

the rainfall in Ethiopia and the water and urban masking data used for the supervised classification.  

4.1 Input data 

4.1.1 Satellite data: Landsat 5, 7 and 8 imagery  

Satellite imagery data collected by the Landsat mission 5, 7 and 8 build an earth surface observation time series 

of over 30 years at moderate temporal and spatial resolution (Roy et al. 2016; Lillesand et al. 2015). Landsat data is 

commonly used to monitor earth resources and processes (Lillesand et al. 2015) and to analyse land cover changes 

(Sidhu et al. 2018). Particularly in forest environments, the extracted information supports disturbance detection 

(Cohen et al. 2017). Different sensor types are mounted on the various satellites. Landsat 5 carries the Thematic 

Mapper (TM), Landsat 7 the Enhanced Thematic Mapper Plus (ETM+) and Landsat 8 the Operational Land Imager 

(OLI) (Lillesand et al. 2015; Roy et al. 2016). Due to differences in calibration and wavebands in the spectral 

resolution, a harmonization between OLI and ETM+/TM is conducted with appropriate statistical transformations 

between the sensor bands (Roy et al. 2016). Level one terrain corrected (L1T) products are used because they are 

radiometrically calibrated and georeferenced as well as atmospherically corrected (Pasquarella et al. 2016).  

Due to technical problems of the satellite missions 5 and 7, useful Landsat data over Ethiopia is missing 

between June 2003 and April 2008 (Chen et al. 2012) as well as from November 2011 to February 2013 until 

Landsat 8 was launched successfully (Roy et al. 2016) visualized in Figure 8. On May 31st ,2003 the scan line 

corrector (SLC) of Landsat 7 failed which usually shifts the sensor line of sight backwards and thus compensates 

the satellite’s forward movement. All subsequently gathered images show a zig zag pattern along the ground track 

(Lillesand et al. 2015) and around 22% of the pixels in a scene remain unscanned (Chen et al. 2012). Gap filling 

algorithms try to overcome this issue (USGS 2004). Nevertheless, the usefulness of recent Landsat 7 data varies 

greatly depending on the purpose (Chen et al. 2012). At the same time, the solar array drive of Landsat 5 was 

malfunctioning and therefore affecting the data availability (Chen et al. 2012). Moreover, the Thematic Mapper 

carried on Landsat 5 was shut down in November 2011 due to an electronic failure (Chen et al. 2012).  

 

 
 

 

 
 

Figure 8 Top: Timeline of the general imagery availability of Landsat 5, 7 and 8 (1995-2020) with the SLC-off status marked as hatched bar, 
Bottom: Timeline of the Landsat 5, 7 and 8 imagery availability (1995-2020) over the study zones in Ethiopia with the missing years marked 
in red  

Clouds, shadow, haze and missing pixels are typical concerns using optical remote sensing data, principally in 

tropical forest regions (Pimple et al. 2018) such as over the Ethiopia rain forest (Dorais et al. 2011). Hence, the 

temporal resolution of Landsat is not high enough to acquire completely disturbance-free scenes (Dorais et al. 

2011) which may result in faulty land cover classifications and change detections (Pimple et al. 2018). A common 

way to minimize the issues is creating median composites (Lillesand et al. 2015; Dorais et al. 2011) although minor 

disturbances remain. The compositing method stacks multi-temporal satellite data and extracts the median band 

value per pixel which is then represented in a newly created image (Flood 2013; Lillesand et al. 2015).  
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With yearly dry season composites covering all years between 2000 and 2020, several problems emerge. For 

example, composites containing Landsat 7 data show disturbances even though a gap filling algorithm has been 

applied. Consequently, the classification is disrupted. Furthermore, a dry season of seven months is too long to 

obtain comparable inter-annual vegetation states. Therefore, another approach has been selected which aggregates 

five median dry season composites to one collection and after that extract the median band value. With this 

technique, a shorter dry season of three months is implemented (1st of December to 1st of March). As Landsat 7 

generally contaminates the analysis, its data is excluded. Final high-quality composites exist for the years 1995-

2000 (Landsat 5), followed by the 2010-2015 composite (Landsat 5 and 8) and the 2015-2020 image composed by 

Landsat 8 scenes exclusively.  

The Normalized Difference Vegetation Index (NDVI) is crucial for vegetation monitoring purposes. Therefore, 

it is attached as a separated band to the images so as to add valuable information to each pixel. Vegetation 

commonly represents high NDVI values whereas other land cover types show low values (Lillesand et al. 2015). In 

some cases, the use of the Enhanced Vegetation Index (EVI) is more appropriate with its adjustment factor that 

reduces soil background effects (Lillesand et al. 2015). 

4.1.2 Classifier training data 

The ESA Sentinel-2A land cover product of the year 2016 is utilized as training data for the supervised 

classification (CCI Land Cover (LC) Team 2016). Having a high spatial resolution of 20 meters and being 

relatively recent, it suits the purpose. Nonetheless, the thematic map is continuously refined and not yet a finalised 

product. Table 3 lists the final chosen land cover classes.  

Table 3 List of the seven final land cover classes selected based on a pre-study. In addition, their original class value and class name before 
the reclassification are displayed together with the class definition (CCI Land Cover (LC) Team 2016) 

Final 
class 
value 

Final class 
name 

Original class value 
and name  

Original class definition 

0 Forest 1 - Tree cover area - tree canopy covers more than 15% of the pixel area 
- tree canopy cover > shrub cover > grassland cover 
- a tree is a woody plant with a single stem and has a defined crown, the 
plant is at minimum three meters in height 

1 Shrubland 2 - Shrub cover area - shrubland covers more than 15% of the pixel area 
- shrub cover > tree canopy cover> grassland cover 
- a shrub is a woody stemmed plant and is smaller than three meters in 
height 

2 Grassland 3 - Grassland - grassland covers more than 15% of the pixel area  
- grassland cover > tree canopy cover > shrub cover 
- grassland consists of herbaceous plants without stem and no definite 
firm structure 

3 Bare land 7 - Bare areas - sum of the vegetation canopy cover is less than 4% 
- no artificial cover made by humans 
- possible covers include bare rock, sand and deserts 

4 Cropland 4 - Cropland - covers more than 50% of the pixel area 
- a cropland area is minimal 30 meters wide and sowed or planted 
- can be harvested at a minimum of once per year 
- definition from a remote sensing view 
- can have trees or woody vegetation with less than 20% canopy cover 
- consists mainly of herbaceous cover 

5 Water 10 - Open water - covers more than 50% of the pixel area 
- permanent water cover except under particular conditions 
- based on the Global Surface Water product from JRC/EC 

6 Urban 8 - Built-up  - covering more than 50% of the pixel area 
- defined on the Global Human Settlement Layer from JRC/EC and on the 
Global Urban Footprint from DLR 
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4.2 Supplementary data 

4.2.1 Precipitation data 

In this study, the precipitation data stems from satellite and in-situ measurements merged in the Climate 

Hazards Group InfraRed Precipitation with Station Data (CHIRPS) dataset (Google Earth Engine 2020). The 

average daily precipitation is computed for all the five study zones and its capital cities. In addition, world weather 

(World Weather Online 2020) provides mean monthly rainfall data for the capital cities. Rainfall or its absence 

might be a reason for forest degradation processes and is therefore included in the analysis of the forest loss results.  

4.2.2 Data for the water and urban masks 

Water and urban are two classes that are added as masks to the classified land cover map. In other words, the 

urban mask is integrated first to the thematic map because otherwise urban would obscure parts of the water bodies. 

The urban mask has been tested with the nightlight dataset which looked promising first but turned out to be 

inappropriate in rural areas of Ethiopia as they do not show enough light. Therefore, the ‘United Nations adjusted 

population density’ has finally been chosen (Google Earth Engine 2020). It provides a layer for every five years 

and the threshold is set to 400 estimated persons per square kilometre to detect the most critical cities and villages. 

For the water mask, several datasets have been checked. Some already offer ready-to-use mask products, whereas 

others need some processing first. A mask based on Sentinel-2 was created in the beginning, but it missed vital 

water bodies and produced noisy results lacking a clear shape visualized in Figure 9. In the end, the Hansen water 

mask is chosen due to its spatial resolution of 30 meters and the coverage of lakes and larger rivers illustrated in 

Figure 10. Generally, the chosen study zones contain little water areas.  

 
Figure 9 Water mask created with a Sentinel-2 one-year composite. The water mask does not cover the real water areas, for example the 
lakes in the middle of the scene are not detected. 

 
Figure 10 Water mask based on the Hansen dataset. The important water bodies are identified and even smaller water surfaces such as 
rivers are masked. 
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5 Methods 
The methods chapter elucidates the major methods and their accuracy assessment applied in this thesis which 

are the supervised classification for the land cover detection, the post-classification comparison used to identify 

land cover change areas and the Continuous Degradation Detection (CODED) illustrated in Figure 11. However, 

the section starts with a description of the processing tool Google Earth Engine and additionally explains briefly the 

unsupervised classification that has been tested initially.  

 
Figure 11 Flowchart of the used data and applied methods. The blue boxes indicate the main applied methods while the grey boxes are 
either the processing tool or final outputs.  

5.1 Processing Tool: Google Earth Engine 

Google Earth Engine (GEE) is a cloud-based platform with high computational capabilities that is particularly 

advantageous for the processing of remote sensing data (Gorelick et al. 2017). More specifically, it supports 

deforestation and degradation monitoring (Kennedy et al. 2018) and is therefore used in this thesis as the main 

computation tool. The data catalogue consists of pre-processed space-and airborne data collected by different 

systems as well as geospatial datasets and hosts more than seven million Landsat images (Kennedy et al. 2018; 

Gorelick et al. 2017) for which top-of-atmosphere and surface reflectance scenes are available (Hadi et al. 2018). 

Google Earth Engine is controlled via the JavaScript application programming interface (API) (Sidhu et al. 2018). 

The system applies a specific processing architecture type (Sidhu et al. 2018) which distributes the computation 

chunks and merges them again later (Gorelick et al. 2017). However, this process impedes debugging as different 

calculations cannot be run separately (Gorelick et al. 2017). Another drawback is the difficult handling of complex 

functions in the JavaScript API (Sidhu et al. 2018).  
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5.2 Unsupervised classification 

While the unsupervised classification approach aggregates spectral clusters automatically which are labelled by 

the user in a second step, the supervised classification method trains the classifier with data selected beforehand 

(Lillesand et al. 2015). An advantage of the unsupervised classification result is that it provides information on the 

study area for image analysts unfamiliar with the region (Hailemariam et al. 2016). 

In this study, the unsupervised classification approach includes the following spectral bands for training: all 

Landsat satellite bands, a Normalized Difference Vegetation Index (NDVI) band, a Normalized Difference Water 

Index (NDWI) band, the brightness, greenness and wetness bands of the Tasseled Cap procedure and a Digital 

Elevation Model (DEM). 5’000 randomly selected points are defined as the input sample for the ‘weka means’ 

clusterer which automatically calculates 30 groups based on the spectral properties of the sample points. In order to 

merge and reduce the groups to eight initially defined land cover classes (forest, woodland, shrubland, grassland, 

bare land, cropland, water, urban), the resulting cluster map is compared to a Landsat 8 composite for the same 

year (2016) as the training Landsat imagery.  

Multiple detected issues in this process enable the development of an improved supervised classification. In a 

wide range of places, a discrepancy between the class identified on the Landsat 8 composite and the class displayed 

on the land cover map exists due to similar spectral properties. For instance, urban and bare land are not separated 

accurately because of an alike spectral signature particularly in the visible wavelength range demonstrated in 

Figure 12.  

 
Figure 12 Graphic comparing the spectral signatures of three urban and three bare land examples. The bands of the visible spectrum are 
marked with a black frame.  

Hence, in the supervised classification the urban areas will be masked to avoid confusion with bare land. 

Similarly, problems with the accurate detection of water occur and consequently this class is masked as well. 

Furthermore, to better detect cropland, a narrow timeframe with comparable growing conditions in different years 

is desirable. The final merged map in Figure 13 shows five classes that were distinguishable with visual inspection. 

Fundamentally, bare land is included even though it is likely a minor class in Keffa but otherwise the classification 

for Bale zone lacks one of its main classes. The initial idea to train the supervised classification with results from 

the unsupervised approach is refused. However, the unsupervised classification helps receiving an overview of the 

class occurrences and distributions over the study area. 
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Figure 13 From left to right: Landsat 8 composite (5 month dry season, '2015-11-01', '2016-04-01') of Keffa zone (Google Earth Engine 
2020), 30 classes automatically computed by the ‘weka means’ clusterer and visualized in random colours, map of five distinguishable 
merged classes 

5.3 Supervised classification 

The supervised classification is an automated process to identify target features in imagery with the objective to 

categorize the pixels into pre-defined classes (Lillesand et al. 2015). Accordingly, known land cover types at the 

sample point location are linked to measured spectral properties in the same place. Subsequently, applied statistical 

decision rules determine the land cover class in different imagery (Lillesand et al. 2015). Classification results are 

displayed in thematic land cover maps visualizing the classified surface features (Apan 1997) or the areal extent of 

individual classes is calculated (Lillesand et al. 2015).  

5.3.1 Class definition  

Based on diverse sources, such as literature, visual inspection of existing land cover products and the pre-

calculated unsupervised classification, major land cover classes for the study zones have been selected. The seven 

most relevant classes are chosen. A random sample of 5’000 training points is collected over the five study zones 

because generally large samples are recommended (Banko 1998). Centrally, the sample points are distributed 

equally over all zones to evenly represent the five study zones and their classes. The Sentinel-2A land cover 

product is sampled at the location of the 5’000 points and class values are assigned. Water and built-up areas are 

excluded from the sampling so as to not confuse the classification process because both classes will be masked 

later. After the first iteration of the entire classification process, noticeably, forest is detected in unobvious places. 

To check the correctness, the classified forest areas are visually compared to a Landsat 8 composite of 2016. 

However, those forest samples were not wrong but based on a definition where forest refers to tree cover areas with 

tree canopy covering 15% of the pixel area. Yet, areas with more than 15% tree cover per pixel are preferred to 

represent forest areas. Accordingly, the forest sample points are manually relocated to areas with higher tree cover 

proportions. All land cover classes are systematically controlled to receive as homogeneous classes as possible and 

the final number of points per class is displayed in Table 4. After the adaptions, the class consistency improved. 

Table 4 Table listing the five study zones and the land cover classes with the final number of sample points per class and zone after the 
manual relocation of some points 

 Forest Shrubland Grassland Bare land Cropland Sum 

Bale 324 932 501 109 268 2’134 

Bench Maji 492 196 548 0 200 1’436 

Illubabor 708 9 92 1 45 855 

Keffa 336 52 36 0 6 430 

Sheka 135 4 6 0 0 145 

Sum 1’995 1’193 1’183 110 519 5’000 
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5.3.2 Random Forest classifier 

The Random Forest (RF) classifier is frequently used to categorize forest areas (DeVries et al. 2016). 

Advantages are the high classification accuracy and the possibility to compute various statistical data 

measurements, for example a regression (Cutler et al. 2007). Due to an ensemble of decision trees, overfitting is 

eliminated (Pimple et al. 2018). Moreover, the RF is able to classify differently scaled data and analyse large 

datasets fast (Griffiths et al. 2014). In the standard classification procedure, the observations contain known classes 

and the classifier establishes rules to predict further observations (Cutler et al. 2007). In the Random Forest model, 

the novel observations are assessed separately by each of the n-decision trees and the predicted class for a specific 

observation is based on the majority vote of the n-predictions (Hu et al. 2019; Pimple et al. 2018; Griffiths et al. 

2014; Cutler et al. 2007).  

In this thesis, the Random Forest classifier is selected based on a classifier performance assessment. Three 

different classifiers called support vector machine (SVM), CART (Classification and Regression Tree) and RF 

which are commonly applied in land cover classification have been tested. For the test area, very high-resolution 

satellite imagery with 2 meters spatial resolution is available (Google Earth Engine 2020) illustrated in Figure 14. 

10’000 sample points are collected and compared in their training overall accuracy and the validation overall 

accuracy which showed no performance difference. Therefore, 13 sample positions are examined and the assigned 

class of the three classifiers compared to the very-high resolution imagery. The RF classifier performed best in 

forest areas compared to the other two classifiers which often labelled forest pixels as savanna or grassland.  

 

 

 

 

Figure 14 From left to right: Landsat 8 (2015/2016) composite for a forested area, very high-resolution imagery from Planet Sky data 
(2015/2016) (Google Earth Engine 2020), classification of the Landsat 8 imagery with the Random Forest classifier  

In this study, the applied supervised classification procedure, the RF has 10 decision trees and the training land 

cover data of 2016 is connected to the spectral properties of the three-month dry season composite from the same 

year.  

5.3.3 Accuracy assessment of the classification 

The accuracy assessment of the classification is a crucial step before interpreting the results (Banko 1998). 

Accuracy connected to classifications refers to the degree of exactness, in other words, how much of the resulted 

land cover map agrees with the ‘truth’ (Foody 2002; Hailemariam et al. 2016). The reality also called reference 

data may origin from diverse sources, such as other remote sensing information or field measurements (Lillesand et 

al. 2015). In addition, an alternative approach to gather reference data is splitting the training data in two groups 

while one serves training and the other one validation purposes (Hailemariam et al. 2016). 

Although multiple accuracy measures have already been applied in classification processes (Banko 1998), typically 

an ‘error matrix’ also known as ‘confusion matrix’ or ‘contingency table’ is calculated (Banko 1998). This matrix 

contains the real values in the rows and the classified values in the columns, for instance visible in  

Table 6 (Banko 1998). The overall, the producer’s and the user’s accuracy can be derived from the error matrix 

(Stehman 1997; Hailemariam et al. 2016). Accordingly, the overall accuracy is the division between the total 

number of correctly classified pixels and the total number of reference pixels (Hailemariam et al. 2016). As high 

overall accuracy results represent homogeneous training areas and spectrally separable classes (Lillesand et al. 

2015), remote sensing researchers expect a target overall accuracy of over 85% (Foody 2002).  

In this thesis, two reference datasets validate the classification. Firstly, the PROBA-V land cover product with 100 

meters spatial resolution from 2015 listed in Table 5 represents the reference data because it is close to the training 

data year and has medium spatial resolution (ESA 2019). 5’000 randomly sampled points were classified from the 
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land cover map providing the validation dataset. Essentially, only classified pixels are assessed in contrast to 

masked pixels which could confuse the classification validation. Secondly, the splitting method has been 

implemented with 70% training and 30% validation data represented in Table 7. 

Table 5 PROBA-V dataset (ESA 2019), list of the seven final land cover classes with their original class value and class name before the 
reclassification to the final values 

 

Table 6 Validation error matrix based on the PROBA-V dataset with a validation overall accuracy of approximately 28% 
(1’391/5’000=0.2782). The correctly classified pixels are emphasized in the diagonal. 

ground truth                                                             prediction 

 0 - forest 1 - shrubland 2 - grassland 3 - bare land 4 - cropland sum 

0 - forest 694 817 506 98 327 2’442 

1 - shrubland 0 238 197 368 330 1’133 

2 - grassland 0 68 126 23 167 384 

3 - bare land 0 0 0 12 0 12 

4 - cropland 18 420 202 68 321 1’029 

sum 712 1’543 1’031 569 1’145 5’000 
 

Table 7 Validation error matrix with a validation overall accuracy of around 86% (1’246/1’447=0.8619) using 30% of the training sample 
points for validation. The correctly classified pixels are emphasized in the diagonal. 

ground truth                                                                    prediction 

 0 - forest 1 - shrubland 2 - grassland 3 - bare land 4 - cropland sum 

0 - forest 557 10 2 0 0 569 

1 - shrubland 20 271 46 0 6 343 

2 - grassland 12 61 260 0 15 348 

3 - bare land 0 1 0 34 1 36 

4 - cropland 2 8 15 2 124 151 

sum 591 351 323 36 146 1’447 
 

5.4 Change Detection 

Change detection in the context of remote sensing refers to quantifying changes in multispectral imagery (Coppin 

et al. 2004). A land cover conversion means the change from one class into another, in comparison to the land 

cover modification which is defined as a feature change but not sufficiently that a class change happens (Coppin et 

al. 2004). Accordingly, deforestation is determined as a land cover conversion from forest to another land cover 

class while degradation is considered as forest carbon loss resulting from natural or human-induced activities 

lacking a land cover class change (Bullock, Woodcock, and Olofsson 2020). Change detection analysis attempts to 

derive multiple outputs, such as the area change, change rate or spatial distribution of the change (Lu et al. 2004).  

  

Final class 
value 

Final class name Original class value  Original class name  

0 Forest 112 Evergreen broadleaf closed forest  

114 Deciduous broadleaf closed forest 

122 Evergreen broadleaf open forest 

124 Deciduous broadleaf open forest 

1 Shrubland 20 Shrubs 

2 Grassland 30 Herbaceous vegetation 

3 Bare land 60 Bare/sparce vegetation 

4 Cropland 40 Cropland 

5 Water 80 Permanent water bodies 

6 Urban 50 Urban  
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Various approaches allow change detection (Foody 2002). A frequently used method is the ‘post-classification 

comparison’ (Foody 2002) defined by the pixel change detection of two classified images gathered on different 

dates (Lillesand et al. 2015). An important advantage is an enhanced understanding of the type and magnitude of 

LULC changes over time (Pimple et al. 2018). Furthermore, this technique calculates the matrix of change 

directions providing information that is less influenced by atmospheric or environmental irritations in the images 

(Lu et al. 2004).  

The post-classification comparison is applied on the five year dry season composites because it is proposed to 

have a minimum of five years between observations to detect anthropogenic or natural forest disturbances (Coppin 

et al. 2004). In order to calculate changes happening during the last 20 years, the 1995-2000 composite is compared 

to the 2015-2020 composite. With focus on the forest changes and to facilitate understanding the results, the values 

in the change matrix are reclassified in five novel classes: ‘no change’, ‘forest to urban’, ‘to urban’, ‘from forest’ 

and ‘to forest’. ‘No change’ refers to no class conversion. ‘Forest to urban’ counts exclusively the forest pixels that 

are transformed to urban, while ‘to urban’ includes all the other classes. ‘From forest’ is the forest loss and ‘to 

forest’ is defined as forest gain.  

5.4.1 Change detection validation  

In this study, the change detection is compared and thus validated with the Hansen forest change dataset. The 

Hansen dataset uses Landsat data at a spatial resolution of 30 meters to quantify global forest changes by applying 

a consistent method (Hansen et al. 2013). Forest loss in this dataset is defined as the complete removal of tree 

canopy cover or the replacement by another land cover at a pixel size of 30 meters. The baseline forms the tree 

cover of the year 2000 (Hansen et al. 2010). For the assessment, six sample regions per study zone illustrated in 

Figure 15 are examined qualitatively through visual inspection concentrating on the criterion loss detection and loss 

shape. Out of the 30 investigated regions, our forest loss calculations detected deforestation better than the Hansen 

dataset in 11 cases while the Hansen global forest change performed better in 2 examples. For the remaining 

regions both outputs were similar, or it lasts unclear whether loss is detected accurately or not. Figure 16 visualizes 

one example of an evaluated loss area.  

 
Figure 15 Map of Keffa emphasizing the forest loss areas in red and the validation areas are framed with their corresponding number  
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Figure 16 Area 1 forest loss: From top left to bottom right: Calculated forest loss areas in red overlaid on the composite 1995-2000 and on 
the composite 2015-2020, Landsat imagery composite 1995-2000 and composite 2015-2020, Hansen forest loss in red overlaid on the 
composite 1995-2000 and on the composite 2015-2020 (Google Earth Engine 2020) 

To validate the gain areas the same process was applied with the overview of the gain areas in Keffa visualized 

in Figure 17 and one example in Figure 18. However, only two validation regions per study zone were chosen and 

the calculated gain is not compared to the Hansen forest gain because the Hansen dataset seldomly identifies forest 

gain over the last 20 years in the study zones which leads to incomparability. Special focus lies on the visual 

inspection of the composites and the corresponding calculated forest gain. Out of the 10 gain areas two cases 

detected real gain according to our view.  
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Figure 17 Map of Keffa emphasizing the forest gain areas in green and the validation areas are framed with their corresponding number  

  

  
Figure 18 Area 1 forest gain: Top: Calculated forest gain areas in green overlaid on the composite 1995-2000 on the left hand side and on 
the composite 2015-2020 on the right hand side, Bottom: Landsat imagery composite 1995-2000 and composite 2015-2020 (Google Earth 
Engine 2020) 
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5.4.2 Continuous Degradation Detection (CODED) 

There has been a gradual shift from traditional image comparison methods, limited to studying particular points 

in time, to continuous time-series techniques due to an increased amount of available remote sensing data (DeVries 

et al. 2016) and related to that higher temporal resolutions (Lillesand et al. 2015).  

Level one terrain corrected (L1T) products are georeferenced and radiometrically calibrated (Pasquarella et al. 

2016). For this reason, they can directly be utilized to compare pixels over time, which is a major advantage for 

time series analysis (Pasquarella et al. 2016). Effective forest management is based on accurate forest disturbance 

information extracted from time series exploitation (Shimizu et al. 2019). Landsat Time Series (LTS) are prominent 

to describe forest change trajectories and frequently used to conduct forest disturbance detection with a temporal 

segmentation algorithm (DeVries et al. 2016). For example, the frequently mentioned LandTrendR algorithm 

which works with regression and a point-to-point fitting method to identify linear trends such as disturbance or 

recovery (Cohen et al. 2010).  

The CODED algorithm uses Landsat pixel time series and a spectral mixture analysis to detect forest 

degradation and deforestation (Bullock, Woodcock, and Olofsson 2020). The spectral endmember fractions green 

vegetation (GV), non-photosynthetic vegetation (NPV), shade (SHADE) and soil (SOIL) are computed which serve 

as input for the Normalized Difference Fraction Index (NDFI) calculation (Bullock, Woodcock, and Olofsson 

2020; Dupuis et al. 2020). While dense forests show high proportions of GV, and low SOIL and NPV fractions, 

thinned forest demonstrates decreased GV portions and cleared forest has higher SOIL and NPV fractions (Bullock, 

Woodcock, and Olofsson 2020; Souza et al. 2013). The NDFI computes values between -1 and 1. Accordingly, a 

NDFI value of 1 defines dense canopy forest while a value of -1 likely represents a forest clearing (Bullock, 

Woodcock, and Olofsson 2020).  

The change detection is performed by the regression-based break algorithm applied on the time series of the 

NDFI (Bullock, Woodcock, Souza, et al. 2020). After every detected break a new regression model is calculated 

along the time series continuing until the end of the imagery series is reached (Bullock, Woodcock, and Olofsson 

2020). Subsequently, the trained Random Forest classifier assigns land cover categories to every segment and pixel 

(Bullock, Woodcock, and Olofsson 2020). After the classification all non-forest classes are merged to one category 

(Bullock, Woodcock, Souza, et al. 2020). Deforestation is consequently referred to the conversion from the forest 

class to the non-forest class (Bullock, Woodcock, Souza, et al. 2020). The change threshold value mentioned in 

Table 8 further classifies the disturbance (Souza et al. 2013). All disturbances have a change date indicated in year 

information and a change magnitude which refers to a decrease in NDFI and represents an approximation to the 

amount of tree removal or canopy damage in a pixel (Bullock, Woodcock, and Olofsson 2020). 

In this study, the CODED algorithm was used to gather additional information on deforestation and particularly 

on degradation in the study zones and kebeles. As the Random Forest requires training data, 100 sampling points 

per class were created supported by a supervised classified image for the year 2016. The outputs of the CODED 

algorithm are classified maps illustrating the four classes deforestation, forest degradation, forest and non-forest. 

Furthermore, the change date and change magnitude are computed and mapped separately. Typical deforestation 

and forest degradation NDFI trajectories are represented in Figure 19, respectively Figure 20. It becomes apparent 

that forest degradation does not show negative NDFI values, whereas deforestation incorporates values around -1.  
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Figure 19 Typical NDFI trajectory for a deforestation pixel over a time series of 36 years  

 
Figure 20 Typical NDFI trajectory for a forest degradation pixel over a time series of 36 years  

Table 8 Parameter values entered to the CODED algorithm (Bullock 2018) 

Parameter name Parameter definition Parameter value 

cfThreshold Minimum cloud fraction threshold  0.05 

consec Consecutive observations to classify a change 3 

thresh Change threshold based on the residual 4 

start Start analysis year 200 

end End analysis year 2019 

trainDateEnd Start year for training period 2016 

trainDateStart End year for training period 2013 

trainLenght Number of years of the training period 3 

soil Endmember ‘soil’ 2000,3000,3400,5800,6000,5800 

gv Endmember ‘green vegetation’ 500,900,400,6100,3000,1000 

npv Endmember ‘non-photosynthetic vegetation’ 1400,1700,2200,3000,5500,3000 

shade Endmember ‘shade’ 0,0,0,0,0,0 

cloud Endmember ‘cloud’ 9000,9600,8000,7800,7200,6500 

forestLabel Forest label assigned in the training data 1 

window Maximum number of years in the monitoring period 4 

minYears Minimum number of years between disturbances 3 

numChanges Number of changes to export 3 

minObs Minimum number of observations for model fitting 6 

startDOY Start day of the year 1 

endDOY End day of the year 365 
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6 Results 

6.1 Land cover changes in the study zones over the last 20 years  

6.1.1 Analysis of the main study zone Keffa 

In the main study zone, clustered forest areas can be found in the northern part and in the central parts mapped 

in Figure 21. While cropland is mostly found at the zone boundaries, shrubland grows directly at the forest edges. 

The only classified urban area in Keffa is the city of Bonga lying in the zone centre. Over the 20 years the areal 

extent of forest seems changing, but the forest locations remain the same. Generally, the forest areas appear more 

homogeneous and compact in the classifications after 2000.  

   

   
Figure 21 Top: Landsat imagery composites 1995-2000, 2010-2015 and 2015-2020 for Keffa zone (Google Earth Engine 2020), Bottom: 
Classified composites 1995-2000, 2010-2015 and 2015-2020  

Grassland is the biggest land cover class in Keffa, stressed in Figure 22, with an extent of around 3’700 km2 in 

the 2015-2020 composite. It decreased over the last 20 years from an initial extent of 4’400 km2 in the 1995-2000 

composite. Water is a minor land class in Keffa with 2 km2 areal coverage. While shrubland and urban have 

increased over two decades, cropland remained approximately on the same level. The city of Bonga grew by 2 km2. 

Moreover, bare land does not occur as land cover class in Keffa.  
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Figure 22 Graphic illustrating the areal size of the different land cover classes per classified composite for Keffa zone  

6.1.2 Comparison of all five study zones  

Compared to the four other study zones, similarities as well as differences to Keffa are observed. All zones have 

a small proportion of water which is around 0.01% of the total zone area. Similarly, the classified urban areas cover 

around 0.1% of the zone area. However, in all study zones with cities the urban area increased over the last 20 

years by 2 km2 (Keffa, Illubabor), 4 km2 (Bench Maji) and 6 km2 (Bale). Interestingly, in four zones except Bale, 

forest increased continuously over the 20 years when considering the areal extent calculations of the classification. 

In Bale the forest is decreasing, nevertheless, it might be treated as a minor land cover class compared to the whole 

zone as only some western parts are covered by forest. This class represents in Bale around 5% of the whole zone 

area. In comparison, bare land plays a major role in Bale as it increased over time and is the third largest class. 

Grassland mostly decreased except in Bench Maji and shrubland expanded in four zones without Sheka. 

Differences among the study zones are for example found in the cropland cover. In Sheka and Bench Maji cropland 

decreased in comparison to the increases in Illubabor and Bale zone illustrated in Figure 23.  

 
Figure 23 Overview of the percentages of the land cover classes per zone and per classified composite  
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For the change detection, various novel categories have been created concentrating on forest changes. In order 

to understand the land cover conversions in more depth, the classes with the major proportion on the change are 

summed up and plotted in Figure 24. Forest loss happened mostly at cost of increasing shrubland followed by 

grassland. On the other hand, shrubland often turned to forest as well. Shrubland, grassland and cropland 

transformed to urban. Undoubtedly, forest was never the class with the highest proportion converting to urban.  

 
Figure 24 Graphic visualizing the number of appearances of the land cover class with the highest proportion on the categories forest loss, 
forest gain and to urban  

6.2 Forest change detection in the study zones over the last 20 years 

6.2.1 Analysis of the main study zone Keffa  

In Keffa, forest loss occurs at the forest edges distributed over the whole zone mapped in Figure 25. However, 

at the northern peak, a connected forest patch seems unaffected compared to other places where large areas are 

concerned. With the CODED method, deforestation and forest degradation areas are recorded. Most disturbances 

are categorized as degradation whereas fewer areas are detected as forest loss. The degradation areas are clustered 

around the forest edges and rarely in the middle of a forest.  

   
Figure 25 From left to right: Calculated forest loss displayed in red for Keffa zone, calculated loss in red overlaid on the classified composite 
2015-2020, degradation in orange and deforestation in red calculated with the CODED algorithm overlaid on the Landsat imagery 
composite 2015-2020  
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Considering the disturbance date spread plotted in Figure 26, more disturbances happened after 2010. The exact 

disturbance years reveal two significant years, namely 2007 and 2011, with the highest number of disturbances. 

However, also 2012, 2014 and 2017 are years expressing several disturbances. The disturbance magnitudes are 

concentrated on the lower values visible on the map and confirmed by the histogram in Figure 27 with most pixels 

between the values 6 and 8.  

 

 

Figure 26 Left: Disturbance dates calculated with the CODED algorithm for Keffa zone, Right: Corresponding histogram showing the number 
of pixels labelled as disturbance for every year during the study period  

 

 

Figure 27 Left: Disturbance magnitudes calculated with the CODED algorithm for Keffa zone, Right: Corresponding histogram showing the 
number of pixels labelled as disturbance for the different magnitudes  

Disturbances may correlate with natural weather phenomena such as the average seasonal precipitation, 

highlighted in Figure 28. However, in the example of Keffa, neither the average precipitation of the whole zone nor 

the rainfall in the city of Bonga demonstrate a similar or opposite trend to the number of disturbed pixels per year. 

Strikingly, the rainfall increased significantly from 2018 to 2019. The same phenomenon has been observed for the 

four other study zones illustrated in the appendix.  

    1.2     1.4      1.6      1.8     2.0      2.2 x100’000 Easting 

UTM 37N 

Northing 

8.6 x100’000 

 

8.4 

 

8.2 

 

8.0 

 

7.8 

 

7.6 

 

7.4 

 

7.2 

 

7.0 

    1.2     1.4      1.6      1.8     2.0      2.2 x100’000 Easting 

UTM 37N 

Northing 

8.6 x100’000 

 

8.4 

 

8.2 

 

8.0 

 

7.8 

 

7.6 

 

7.4 

 

7.2 

 

7.0 



33 

 

 
Figure 28 Histogram showing the number of pixels labelled as disturbance for every year during the analysis period for Keffa zone, the light 
blue line demonstrates the precipitation data from world weather for the city of Bonga (World Weather Online 2020), the dark blue line 
refers to the average precipitation extracted from the Chirps data (Google Earth Engine 2020)  

6.2.2 Comparison of all five study zones 

In Bench Maji, the forest loss areas are located in the North, western from the capital city Mizan Teferi shown 

in Figure 29. Another large loss area is found in the centre of the zone around a relatively small forested region. 

The CODED disturbances map reveals various degraded forest areas and less forest loss regions. One loss region is 

the south eastern zone boundary. The histogram in Figure 30 illustrates more disturbances happening in recent 

years, for instance in 2017 compared to the small number of disturbances in the first decade after 2000. Most 

magnitude values are rather low with values between 4 and 8.  

   
Figure 29 From left to right: Calculated forest loss displayed in red for Bench Maji zone, calculated loss in red overlaid on the classified 
composite 2015-2020, degradation in orange and deforestation in red calculated with the CODED algorithm overlaid on the Landsat 
imagery composite 2015-2020  
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Figure 30 Histogram showing the number of pixels labelled as disturbance for every year during the study period for Bench Maji  

Comparing the number of disturbances per year summed up for all zones, Figure 31 shows an increasing trend 

in disturbances from 2002 to 2009. The following years remain on a high number of disturbances until 2017. 

Recently, however, a decreasing trend has been computed and less forest areas seem to be lost or degraded. 

Considering the sum of the disturbance magnitude pixels in Figure 32, all study areas demonstrate low change 

magnitudes with value of 4 or 8.  

 
Figure 31 Histogram showing the number of pixels labelled as disturbance for every year during the analysis period summed up for all study 
zones  
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Figure 32 Histogram showing the number of pixels labelled as disturbance for the different disturbance magnitudes summed up for all study 
zones  

Table 9 reveals the highest absolute forest loss over the last 20 years happened in Keffa zone, followed by 

Illubabor. In general, over all the zones substantial forest areas are lost. However, even more significant in size are 

the forest gain areas that have been detected, indicating more zones with a net forest gain instead of loss. The 

relative values illustrated in Figure 33 are defined as the proportion of forest loss area related to the initial forested 

area in the 1995-2000 composite. Keffa zone is again the region expressing the highest forest loss with the removal 

of one fourth of the primary forest area. Bench Maji lost around 16% of the forest.  

Table 9 Calculated areal forest loss, forest gain and the difference between them for all zones 

Zone Areal forest loss Areal forest gain Difference  

Keffa 690 km2  1’052 km2 362 km2 

Sheka 172 km2 445 km2 273 km2 

Illubabor 383 km2 1’764 km2 1’381 km2 

Bench Maji 221 km2 939 km2 718 km2 

Bale 370 km2 328 km2 -42 km2 
 

 
Figure 33 Graphic of the relative forest loss defined as the size of the forest loss area related to the total forested area in 1995-2000 for that 
zone  
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6.3 Land cover changes, forest change detection and Participatory Forest Management in 

the kebeles 

Participatory Forest Management is examined detailed with the presented results for four kebeles.  

6.3.1 Analysis of Keshi kebele 

Keshi kebele is located in Keffa zone and has already implemented a PFM system. The kebele land cover 

consists mostly of forest and shrubland areas visualized in Figure 34. The total forest area is decreasing over time 

even though on the classified map the tree cover seems less fragmented. However, particularly along the north 

eastern boundary forest loss occurred. Grassland and cropland increased over the last 20 years in Keshi plotted in 

Figure 35. Cropland expanded in the southern part of the kebele.  

   

   
Figure 34 Landsat imagery composites 1995-2000, 2010-2015 and 2015-2020 for Keshi kebele (Google Earth Engine 2020), Bottom: 
Classified composites 1995-2000, 2010-2015 and 2015-2020  

 
Figure 35 Graphic illustrating the areal size of the different land cover classes per composite for Keshi kebele  
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On the forest loss change detection scene, it is clearly visible that the north eastern kebele part and the forest 

edges are affected by deforestation. In other words, Keshi has lost 2,23 km2 forest area and the lost areas converted 

to shrub- or grassland. With the CODED method, the same areas are detected but labelled as degradation rather 

than deforestation in Figure 36. However, small-scale forest loss has been identified in various places.  

   
Figure 36 From left to right: Calculated forest loss displayed in red for Keshi kebele, calculated loss in red overlaid on the classified 
composite 2015-2020, degradation in orange and deforestation in red calculated with the CODED algorithm overlaid on the Landsat 
imagery composite 2015-2020  

The disturbance date histogram in Figure 37 shows several disturbances happened in 2005, 2007 and 2015. 

While the years in between show a high number of degradation and forest loss, before 2005 and after 2015 less 

disturbances occurred in Keshi. The majority if the disturbances lie between the values 4 and 8.  

 
Figure 37 Histogram showing the number of pixels labelled as disturbance for every year during the study period for Keshi kebele  

6.3.2 Analysis of Chebere kebele 

Chebere kebele which is located in Illubabor zone does not yet have applied PFM projects. The satellite imagery 

composites and the corresponding classifications in Figure 38 show a clear deforestation region along the south 

western boundary of the kebele. While in the 1995-2000 composite the forest is still there, it has been removed in 

subsequent composites. Shrubland being the biggest land cover class in Chebere increased over the two decades 

time period whereas cropland decreased visualized in Figure 39.  
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Figure 38 Landsat imagery composites 1995-2000, 2010-2015 and 2015-2020 for Chebere kebele (Google Earth Engine 2020), Bottom: 
Classified composites 1995-2000, 2010-2015 and 2015-2020  

 
Figure 39 Graphic illustrating the areal size of the different land cover classes per composite for Chebere kebele  

In Chebere 1.27 km2 forest area has been removed and converted mostly to shrubland or cropland. Clearly, the 

largest loss occurs at the southwestern border, however, deforestation is distributed over the whole kebele. The 

CODED approach measures clear deforestation at the boundary as well and degradation processes occurring in 

several other forested parts mapped in Figure 40.  
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Figure 40 From left to right: Calculated forest loss displayed in red for Chebere kebele, calculated loss in red overlaid on the classified 
composite 2015-2020, degradation in orange and deforestation in red calculated with the CODED algorithm overlaid on the Landsat 
imagery composite 2015-2020  

The disturbance date distribution expresses numerous disturbances between 2005 and 2012 which correspond to 

the large loss that happened after 2000 and before 2010 in Figure 41. The change magnitudes lie between 5 and 9.  

 
Figure 41 Histogram showing the number of pixels labelled as disturbance for every year during the study period for Chebere kebele  

6.3.3 Analysis of Giz Meret kebele 

Bench Maji zone contains the Giz Meret kebele which has applied PFM projects. On the satellite imagery 

composites in Figure 42, apart from the village in the south-central part, the main street running through the kebele 

stands out. Over the years the street appears developing. On the classified composites, forest area seems relatively 

stable although it first decreased and after that increased over the course of the last 20 years. The cropland class 

expands while grassland reduces visible in Figure 43.  
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Figure 42 Landsat imagery composites 1995-2000, 2010-2015 and 2015-2020 for Giz Meret kebele (Google Earth Engine 2020), Bottom: 
Classified composites 1995-2000, 2010-2015 and 2015-2020  

 
Figure 43 Graphic illustrating the areal size of the different land cover classes per composite for Giz Meret kebele  

Giz Meret has lost 1.07 km2 forest area and mainly in favour of cropland. In comparison to other kebeles, the 

loss is low. According to the CODED version, most forest areas appear degraded rather than deforested mapped in 

Figure 44.  
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Figure 44 Giz Meret, From left to right: Calculated forest loss displayed in red for Bench Maji zone, calculated loss in red overlaid on the 
classified composite 2015-2020, degradation in orange and deforestation in red calculated with the CODED algorithm overlaid on the 
Landsat imagery composite 2015-2020  

The disturbance dates visualized in Figure 45 highlight two points in time with an elevated number of 

disturbances. The years regarded are 2011 and 2014. During the course of the 20 years, the forest in Giz Meret has 

not been disturbed much despite those two exceptions. The change magnitude varying between the values 5 and 8 

is low.  

 
Figure 45 Histogram showing the number of pixels labelled as disturbance for every year during the study period for Giz Meret kebele  

6.3.4 Analysis of Sodu Lelaftu kebele 

Sodu Lelaftu, a kebele located in Bale zone has not yet implemented PFM strategies. The forest area in that 

Keble has been decreasing continuously illustrated in Figure 46. Particularly, areas with already existing forest 

clearings observed in the 1995-2000 composite are further affected by deforestation. Simultaneously, cropland, 

shrubland as well as grassland increased gradually in Sodu Lelaftu observed in Figure 47.  
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Figure 46 Landsat imagery composites 1995-2000, 2010-2015 and 2015-2020 for Sodu Lelaftu kebele (Google Earth Engine 2020), Bottom: 
Classified composites 1995-2000, 2010-2015 and 2015-2020  

 
Figure 47 Graphic illustrating the areal size of the different land cover classes per composite for Sodu Lelaftu kebele  
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Tree cover removal happens largely at the forest boundaries mapped in Figure 48. The CODED degradation 

detection confirms multiple degraded and deforested areas at the forest edges. In Sodu Lelaftu 16.16 km2 forest 

area has been cut down during the last 20 years. A wide range of those areas transitioned to shrubland or in fewer 

places to grassland.  

   
Figure 48 From left to right: Calculated forest loss displayed in red for Sodu Lelaftu kebele, calculated loss in red overlaid on the classified 
composite 2015-2020, degradation in orange and deforestation in red calculated with the CODED algorithm overlaid on the Landsat 
imagery composite 2015-2020  

The peak expressing most disturbances was reached in 2010 and also the years before show a large number of 

disturbances visualized in Figure 49. Interestingly, again in the last two years several disturbances have been 

detected. A substantial number of pixels identified as disturbance belong to a change magnitude category between 

5 and 9.  

 
Figure 49 Histogram showing the number of pixels labelled as disturbance for every year during the study period for Sodu Lelaftu  
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6.3.5 Comparison of all ten study kebeles  

In general, the kebeles show diverse deforestation and degradation patterns. For example, Giz Meret having less 

deforestation and implemented PFM strategies, while Keshi being a PFM Kebele as well still has high deforestation 

rates. Over all ten study kebeles, the non-PFM areas show higher relative forest loss illustrated in Figure 50. 

Almost all lost forest areas converted to shrubland.  

 
Figure 50 Graphic of the relative forest loss defined as the size of the forest loss area related to the total forested area in 1995-2000 of that 
kebele, orange-brown coloured are the non-PFM kebeles and green marked are the PFM kebeles  

Over the last 20 years, an overview of the forest loss areas in all known kebeles shows that in Keffa the PFM 

kebeles express less deforested areas than the non-PFM kebeles mapped in Figure 51. Generally, the same is 

observed in the other four study zones even though in some PFM kebeles exceptions exist. In Illubabor, in the 

Biosphere Reserve less forest has been removed in comparison to the remaining zone.  
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Figure 51 Maps of the study zones highlighting the forest loss to directly compare deforestation in PFM-and non-PFM areas (UNESCO 2020; 
Dresen 2011a; Plan Vivo 2014) 
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7 Discussion 
The following section discusses the utilized data basis and the applied methods. Furthermore, it reviews the 

results and outlines additional topics.  

7.1 Data 

The availability of useful imagery over Ethiopia is limited due to satellite problems explained in section 4.1.1. 

Moreover, optical satellite data, such as the used Landsat imagery, is affected by environmental and atmospheric 

factors caused by the tropical climate conditions over the Afromontane rain forest in Ethiopia (Dorais et al. 2011). 

Examples of atmospheric disturbances are high water vapour content, haze (Sahle et al. 2018), aerosols and clouds 

(Asner 2009). Furthermore, the measured spectral properties might be affected by the different growing conditions 

of tropical canopies due to various chemical and structural features originating from different species (Asner 2009). 

Hence, the recorded spectral information contains an uncertainty and influences the deforestation and degradation 

measurements (Asner 2009). In this study, compositing aided reducing the effects of clouds, shadow, haze and 

missing data (Pimple et al. 2018). The application of the median compositing method to extract dry season scenes 

particularly supported minimizing cloud cover. However, minor imagery disturbances remained and might have 

resulted in errors in the land cover classification and change detection. Additionally, there exists a data gap of 10 

years between the first and second composite due to missing high-quality Landsat imagery over Ethiopia for that 

period.  

The Sentinel-2A land cover product of Ethiopia has been selected as training data. Despite its advantages such 

as the high spatial resolution and recent release year, it is regarded as a prototype that still needs improvements. 

Hence, the product possibly causes problems in the classification because it is not specifically developed for 

Ethiopia or rain forest environments but for land cover maps of the entire continent Africa. Moreover, it is a yearly 

land cover product not centring particularly on the dry season and has a lower temporal resolution compared to 

todays possibilities because in 2016 Sentinel-2B imagery was not available.  

Overall, the Landsat images of the missions 5 and 8 and the Sentinel-2A land cover product offer interesting 

information for forest change detection purposes. However, compositing as a way of pre-processing is strongly 

recommended for the satellite scenes in particular when observing tropical forests and for the training data it is 

proposed that it should be validated especially if utilizing a not yet finalized product.  

7.2 Methods 

Generally, the selected approach in this thesis starts with traditional techniques by conducting a supervised 

classification and applying the post-classification comparison technique, and fluently shifts to modern and more 

recent methods by using time series to compute the forest degradation. At the same time, in the beginning, the data 

has been analysed on the zonal level to obtain an overview of the forest loss at a large scale and continued with the 

examination of the local level (kebeles) to profoundly evaluate PFM impacts on the forest.  

7.2.1 Unsupervised classification 

Challenges identified in the unsupervised classification approach helped improving the supervised classification 

process. A major problem detected in the beginning is the transferability from one zone to another because not all 

five selected study zones contain the same land cover classes. For instance, Keffa does not have bare land and thus 

Bale zone would not be represented appropriately due to missing land cover categories. Therefore, all zones have 

been considered when choosing the land cover classes. Based on the gained experience during this research, it is 

suggested to include all possible classes existing in the different study regions if more than one area of interest is 

selected. Furthermore, the training data should be sampled in the study areas in order to prevent misclassification 

due to different spectral properties. Although the unsupervised classification has not been used as training data, it 

enhanced the class definition process because multiple classes and their distribution are mapped automatically 

without prior knowledge of the area of interest. It might further support the selection of valuable field data sample 

locations.  
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The class woodland was excluded after the application of the unsupervised classification. Usually, it refers to 

the transition between forest and shrubland and is found in altitudes around 1’300 m.a.s.l (Hylander et al. 2013). 

However, woodland is not sufficiently defined for remote sensing applications. Consequently, it is hard to detect 

this class in satellite imagery. Thus, the five study zones contain either the class forest (dense and open) or 

shrubland and woodland is considered as included in the forest class.  

7.2.2 Class definition for the supervised classification 

A challenge with the supervised classification is related to finding characteristic feature descriptions in the 

context of remote sensing because accurate class representations improve the classifiers training data and 

accordingly the classification. By visual inspection, some sample points are manually relocated to typical locations 

of the class based on our perspective and knowledge. After this step, the classes appear more homogenous. 

However, it must be acknowledged that the classifier is trained on the spectral properties of all bands which are not 

directly visible by researchers and therefore detected classification errors might not be real as a person solely 

identifies know features observed in a limited number of bands. Nevertheless, the sensor might be influenced as 

well by diverse types of soil, different topography and vegetation density in the five study zones and therefore the 

same class might be represented by varying spectral signatures which could result in misclassifications 

(Hailemariam et al. 2016). 

An additional possibility to enhance the class definition is the inclusion of seasonality with NDVI time series. 

This could support differentiating between cropland and plantations which is useful information to develop forest 

management strategies. Even though the use of an existing land cover product as training data works, it is vital to 

check the classification results. Crucially, the supervised classification being based on the training data adopts its 

quality and expresses similar accuracy.  

7.2.3 Accuracy assessment of the supervised classification 

The accuracy assessment of the land cover classification in this study is conducted with a confusion matrix. A 

wide range of factors contribute to an uncertainty in the classification and its validation. For example, imagery 

interpretation mistakes, data entry errors (Lillesand et al. 2015), distinct sensor properties or ground conditions 

(Foody 2002). As the validation mostly happens at the final product stage, errors introduced in an earlier step such 

as an inappropriate sampling method or number of samples are not directly assessed (Banko 1998).  

A basic assumption using a contingency table relates to reference data representing reality but in fact, ground 

truth information is also a classification and may contain errors (Foody 2002). Therefore, it is essential to 

understand that the quality of the accuracy estimation depends directly on the reference data (Lillesand et al. 2015) 

which may originate from field trips or might be different remotely sensed information (Lillesand et al. 2015). Two 

different reference datasets are used in this thesis. First, an independent land cover product was included. The 

confusion matrix showed very low accuracies around 28% which might be connected to a lower spatial resolution 

of 100 meters in the PROBA-V dataset or the difference of one year between the training and reference data. 

Moreover, the initial classes of the training and the validation dataset are not the same, but both are categorized into 

the previously selected final classes in order to compare them. Another reason for the low accuracy might be the 

manual relocation process of sample points in the training data which was not conducted with the reference data. 

Secondly, a confusion matrix with the splitting approach has been computed which uses 30% of the Sentinel-2A 

training data for the validation. Implementing this approach, the accuracy of the validation error matrix increased to 

a level of 86% and is therefore over the 85% strived by remote sensing researchers. Essentially, the accuracy 

assessment method and reference data should appropriately reflect the use of the classification (Lillesand et al. 

2015).  

Hence, a confusion matrix provides a description of the classification accuracy and serves as an initial 

information source for the supervised classification validation (Foody 2002) but has to be assessed as well.  
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7.2.4 Change detection 

The timing of the image acquisition plays a role for natural vegetation mapping and change detection (Lillesand 

et al. 2015) for example in this study the dry season has been chosen to measure the largest possible difference 

between evergreen forest and dry grassland or cropland. As a rule it is crucial to measure at the same time of the 

year to ensure alike environmental conditions, such as the atmospheric composition (Lillesand et al. 2015). By 

using composites with a similar vegetation state but gathered from different years, such as the implemented median 

compositing approach, significant change detection is enabled (Coppin et al. 2004).  

The accuracy of the post-classification comparison technique depends on the quality of the primary training data 

and the accuracy of the individual classifications which are compared (Coppin et al. 2004; Lu et al. 2004). 

Therefore, the challenge is to produce consistent and accurate classifications before conducting the change 

detection as errors might be introduced by misclassifications (Coppin et al. 2004). It is possible that in the 

calculated change detection contains misclassified pixels and thus incorrectly detects conversions that occur due to 

the quality of the satellite imagery and the classification.  

Through the comparison of two classified images with a time-lag of 20 years, some land cover changes 

happening in between are missed. For this reason, time series analysis, for example the Continuous Degradation 

Detection (CODED) algorithm better depicts all conversions and further detects gradual changes. While the post-

classification comparison detects deforestation, CODED additionally analyses forest degradation.  

7.2.5 Validation of the change detection 

Generally, there is a limited number of recent and validated high spatial resolution land cover products for 

Ethiopia. However, the Hansen forest change product is available for the entire world having a spatial resolution of 

30 meters and starting in the year 2000. Therefore, it serves as the validation dataset for the forest loss. Even 

though the calculated forest loss values and the Hansen dataset show differences, the latter is a global product and 

not specifically developed for Ethiopia. A visual based validation has been conducted and documented. 

Nevertheless, image analysts might be biased, and therefore the interpretation underlies an uncertainty. However, 

the developed change detection algorithm works locally and seems better adapted to the area than the Hansen 

dataset. While the loss areas are captured very well, the gain areas demonstrate some problems. Mostly, the issues 

are connected to the first composite 1995-2000 where only Landsat 5 data is included. In the gain areas 

atmospheric disturbances such as haze, fog, smoke, or cloud rests appear to cover parts of the underlying forest. 

Therefore, the forest is not identified because the spectral properties do not match the forest training data and the 

pixels are misclassified as grassland, shrubland or cropland. The newer the imagery, the fewer atmospheric 

disturbances are visible. In other words, on the Landsat 8 composite 2015-2020, forest seems to be detected 

correctly. The forest gain depends substantially on the quality of the composite imagery and the classification 

accuracy. Nonetheless, the same could apply to the forest loss detection as similar problems including atmospheric 

disturbances could result in misclassifications and thus an inaccurate change detection although in the validated 

loss areas this issue is not observed.  

7.2.6 Continuous Degradation Detection (CODED) 

The accuracy of the CODED results depends on the land cover class training data that has been defined 

manually. Furthermore, the output is also based on the initial parameter setting. An appropriate parameter 

combination is essential for a successful degradation detection. Analogue numerous other algorithms, the accurate 

detection of low magnitude disturbances remain a challenge because it cannot be clearly distinguished between 

spectral noise and real effects (Cohen et al. 2017). This might explain the detection of multiple low magnitude 

disturbances which are consequently attributed with forest degradation rather than deforestation. Importantly, high 

magnitude changes are identified with higher certainty (Cohen et al. 2017). Thus, the automated classification 

conducted by using the CODED method demonstrates limitations and uncertainties (Bullock, Woodcock, and 

Olofsson 2020). However, this approach can serve in a subsequent step as input for a stratification creating 

sampling points that are interpreted with the tool and validated by field visits at the sample locations (Bullock 

2018). For this step, forest experts and field data collectors are necessary with a view to professionally assessing 

the selected sample areas.  

 

  



49 

 

7.3 Results 

7.3.1 Land cover changes and forest disturbances in the study zones 

Comparing all study zones with a focus on the forest loss, Keffa shows the highest absolute and relative 

deforestation rates with almost a quarter of the forested area being removed, although a UNESCO Biosphere 

Reserve has been established and PFM strategies have been implemented for about 10 years. The other study zones 

have lost between 10 and 15% of the forested area. It is likely, that without PFM application efforts and lack of the 

Biosphere Reserve, there would have taken place even more deforestation over the last 20 years. Mostly, forest 

transitioned to shrubland or grassland which could be due to the fact that the forest is surrounded mainly by those 

two land cover categories. However, even though the forest has not been lost directly to increasing urban areas or 

cropland, it is clear when comparing to Google Earth for example that in the Keffa zone multiple deforestation 

areas are related to the expansion of agricultural activities. Forest might have been cut down to provide wood as 

construction material for the new inhabitants. A possible explanation for the conversions from shrubland to urban is 

that the area around the cities has been deforested before the selected analysis period began and is therefore already 

shrubland. As forest loss commonly happens at the forest boundaries in Keffa, existing forest clearings are 

extended to support alternative land uses.  

In Bench Maji, clearly visible in the northern part close to the capital city Mizan Teferi is an area affected by 

large-scale deforestation and degradation. Direct communication with Caritas Switzerland revealed that the 

observed area with an accurate road network and distributed settlements could be transport roads and forest product 

storages for understory forest products such as coffee. Further research confirms that it is the Bebeka coffee estate 

being Ethiopia’s oldest and largest coffee plantation with a size of about 100 km2 (Horizon Plantations 2020). 

Evidently, forest is lost and degraded in favour of the coffee plantation. Additionally, this sample case proves the 

importance of forest experts and local people’s opinion to examine the reasons for ongoing deforestation detected 

with satellite imagery since it is valuable information for the researcher as well as for the cooperatives to establish 

an automated monitoring system approach.  

The observed forest gain in multiple study zones can be explained in different ways. Possibly, a real gain is 

observed owing to the application of forest management strategies or controlled afforestation. Furthermore, other 

studies demonstrated transitions from shrubland to forest (Kedir et al. 2018) which is alike our findings that mostly 

shrubland turned to forest which could be connected to a forest regeneration, mainly in PFM areas. Likely, those 

are abandoned or protected areas transforming back to forest. On the other hand, it could reflect misclassifications 

in the two first composite which both include Landsat 5 data and as the training of the classifier has been calculated 

on a Landsat 8 dry season composite of 2016, it could lead to some minor discrepancy due to sensor differences. 

However, a harmonization was performed particularly for this reason. Moreover, researchers might be biased and 

perceive forest even though the classifier is perhaps able to better distinguish because it decides based on the 

measured spectral properties. Despite concentrating on forest changes which include forest gain, this study 

primarily focused on the forest loss since the validation of various forest gain areas showed confusing results. 

Therefore, less attention is paid to these outputs. Future research could centre on forest gain regions and validate 

those by comparison to other datasets or collecting field data.  

The precipitation data neither correlates with the number of disturbances over the 20 years in the study zone 

Keffa nor in the four other study zones. For this reason, it is interpreted that anthropogenic drivers lead to the forest 

degradation and deforestation instead of natural causes. Interestingly, in 2019 the amount of rainfall significantly 

increased in all study zones. All diagrams displaying the phenomenon are presented in chapter 11 Appendix II 

Results.  

Regarding the change magnitudes, numerous pixels express low magnitudes and therefore more degradation 

instead of deforestation areas appear. Nevertheless, it has been discussed in the CODED section that usually more 

areas with low magnitudes are found due to spectral noise. Reasons for forest degradation in the study areas are 

probably naturally based such as fires, windfall, flooding and insect damage or human-induced including selective 

logging or damage from surrounding activities (Bullock, Woodcock, and Olofsson 2020) which should be 

evaluated in more detail with in-situ data.  

Considering the change dates over all zones, the number of forest disturbances increased until 2011 the peak has 

been reached. Undoubtedly, after 2017 the disturbances decrease. This could be due to PFM and conservation 
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measures being applied around 2010 and showing their impacts after 2017. In other words, the UNESCO Biosphere 

Reserves were designated in 2010 in Keffa and Illubabor and 2012 in Sheka (UNESCO 2020).  

7.3.2 Participatory Forest Management 

In Keshi kebele, a village is detectable on the 5-year dry season composites that seems growing over time 

following the development of new streets. Therefore, the deforestation in Keshi likely happened due to population 

growth and agricultural expansion, which is cross validated with Google Earth (Google Earth 2020). The village 

itself did not directly lead to forest loss but the need for agricultural land put the forest under pressure. Even though 

Keshi kebele has PFM, large forest areas have been lost over the last 20 years.  

In Chebere kebele, various forest areas converted to shrubland or cropland. This is linked to an increasing 

necessity for agricultural areas. Today, the deforested areas show regions with farmhouses and crop fields 

distributed over a large region along the river (Google Earth 2020). Interestingly, the same process happened at the 

other riverbank. Chebere is a non-PFM kebele and expresses several deforestation areas that happened in the 

beginning of the 20 years measurement period. Probably, Participatory Forest Management could have helped to 

stop further loss.  

The deforestation in Giz Meret kebele is considered as low in comparison to other kebeles. The village 

Chismariet seems relatively stable in areal size but is better visible on the satellite imagery composites after 2000. 

Furthermore, the forest loss is distributed around the village and the main street. The forest clearing in the north 

eastern part of the kebele consists of a community forest pulping station and coffee store (Google Earth 2020) and 

thus demonstrates applied PFM strategies. The minor forest loss that has happened in Giz Meret might be caused 

by road developments and urbanization. However, as the deforestation rate is small, it is concluded that PFM 

actions functioned.  

In Sodu Lelaftu, the change dates demonstrate multiple disturbances up to the present. Forest loss in this kebele 

could be due to the expansion of grazing land and cropland in the forest clearings. The cleared patches in the north 

show single houses and agriculturally used fields (Google Earth 2020). PFM might be helpful in Sodu Lelaftu in 

order to reduce the ongoing deforestation.  

By comparing the 10 study kebeles, non-PFM kebeles show higher rates of forest loss than PFM areas. 

Generally, this supports the assumption that PFM aids reducing deforestation, already concluded in earlier studies 

(Takahashi et al. 2017). Ongoing deforestation in Ethiopian kebeles result from anthropogenic activities due to 

population growth and related to that expanding villages as well as the need for agricultural land. The introduction 

of PFM has a wide range of advantages for the forest such as less deforestation and soil erosion (Winberg 2011). It 

demonstrates slower forest loss rates and in some areas the forest even increases through the conversion of 

shrubland to forest (Kedir et al. 2018). On the other hand, several obstacles stemming from different sources, 

hinder the success of PFM projects such as social, administrative or policy related issues (Winberg 2011). Another 

crucial factor to effectiveness is to measure the environmental impact by understanding the forest extent and its 

changes (Winberg 2011) for instance with the use of satellite remote sensing.  

Analysing all known PFM and non-PFM kebeles located in the five study zones, the PFM kebeles generally 

show less deforestation on the maps. In the Biosphere Reserves different outputs become apparent. In Illubabor 

zone, less deforestation is measured in the Biosphere Reserve compared to other places in the zone, while in Keffa 

and Sheka in the BR still high forest loss amounts are detected. However, the BRs have a zoning system where 

only the core sector strictly protects the forest and therefore deforestation is still possible. In general, PFM appears 

to work successfully in the applied kebeles. However, some PFM kebeles still show high amounts of forest loss. 

The cause might be connected to unconfirmed PFM areas and likely some PFM kebeles have not yet started with 

their project implementation. Moreover, PFM projects do not always centre on the environmental aspect but rather 

on the social aims, hence leading to continuing high deforestation rates. Besides, another reason is that after the 

project ending the PFM kebeles remain uncontrolled and increasing forest loss occurs. Furthermore, coffee 

producers profit from the certification and therefore intend to increase their coffee area which consequently causes 

higher amounts of forest degradation (Takahashi et al. 2017).  
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7.3.3 Place names 

The issue of official place names has already been noticed in the beginning. The location naming is confusing 

because one spot is called differently in various sources. Furthermore, place names sometimes change. Evidently, 

Ethiopia lacks an official naming system and the boundaries are not fixed, at least not at the smallest administrative 

unit level (kebele). This topic relates to the basic right about ownership. Holding property is not secured in the 

country and the rights may change. Since the local government is responsible for the land property, the situation is 

regarded as complicated. Additionally, in discussion with Caritas Switzerland they also mentioned that problem, 

mostly connected to maps. For the farmers, the land insecurity is a major problem as they need to know their farm 

boundaries and coffee picking areas in the forest. For this reason, the introduction of conservation measures is 

difficult due to ongoing boundary disputes (Winberg 2011).  

7.3.4 Recommendations for Caritas Switzerland  

In this research, it has been discovered that PFM strategies helped reducing the forest loss. With satellite remote 

sensing techniques, PFM project leaders for example Caritas Switzerland are able to map the land cover of their 

regions of interest and measure the forest changes. Another advantage is gaining pre-knowledge of an area and 

identifying possible zones for actions or field data collection at relatively low cost. In addition, it enables the 

establishment of a monitoring system which supports the decision on specific environmental PFM goals. Landsat 5 

and 8 imagery with a spatial resolution of 30 meters provide a high-quality data basis with a long time-series and 

PFM is one of the most successful approaches in Ethiopia to motivate communities to actively and sustainably 

manage their forest areas (O’Hara 2013). Moreover, the communities seem encouraged if they receive the right to 

sustainably extract alternative forest products which secure a continuous income (O’Hara 2013).Therefore, the 

evaluation of the environmental side of the PFM project is suggested to be included as much as possible as it partly 

defines the success of PFM measurements. It is essential to provide a forest observation system, for example based 

on satellite remote sensing data and methods, that remains after the projects ending to control the forest, its 

resources as well as the advances happening after PFM implementation. However, the developed process for the 

automatic forest change detection can be improved using additional available information, for instance collected 

field data. Crucially, the community stakeholders should be included in the local forest monitoring process and 

profit from the knowledge of the research and reversed.  

7.4 Additional topics 

7.4.1 Wild and semi-wild coffee forest 

An interesting discussion is about whether satellite imagery allows distinguishing between the wild and semi-

wild coffee forest. The arabica coffee species growing in Ethiopia is very difficult to observe from space as the 

plant is an understory shrub (Hylander et al. 2013). Moreover, plantations or garden coffee might not be 

differentiated from wild and semi-wild coffee forest based on the spectral signature, particularly on coarse spatial 

resolution imagery (Hylander et al. 2013). Therefore, in this study forest in general is studied and not coffee forest 

particularly although the observed forest is assumed to contain coffee forest plants. Another difficulty is the 

missing official definition of the semi-wild coffee forest for remote sensing applications. For satellite imagery 

analysis, a definition based on physical or optical measurable plant properties is desirable. Possible approaches 

debate the exploitation of shape, size or texture in order to detect tree species or to take into account seasonal 

vegetation differences (Lillesand et al. 2015). However, the plant is still hidden under the larger trees canopy 

(Lillesand et al. 2015). Therefore, it is crucial to know wild and semi-wild forest locations so as to compare them 

with multi-or hyperspectral instruments (Lillesand et al. 2015). Field data additionally supports developing a 

definition based on measurable characteristics (Hylander et al. 2013). Including radar data or very high-resolution 

data around 0.5 meters are further options to test for the detection of coffee plants (Cho et al. 2015).  

7.4.2 Climate 

The climate over the last 50 years has shown a mean temperature increase by 1.3 degrees Celsius which may 

influence the growing condition of the coffee plant (Moat et al. 2017). The climate forecast predicts rising 

temperatures and rainfall in south western Ethiopia (Hylander et al. 2013). Probably, the coffee forest environment 

reacts sensitively to climate change (Hylander et al. 2013) which in turn has implications for the coffee farmers. 

They need to understand the influence of the climate change on coffee production (Moat et al. 2017). Depending on 

the weather shifts, particular areas become unsuitable for coffee farming and have to be relocated (Moat et al. 

2017). Possibly, coffee production moves to higher altitudes due to changing tree cover in lower elevations (Moat 
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et al. 2017; Hylander et al. 2013). However, in this thesis no influence of a changing climate has been measured 

although in 2019 it rained significantly more than in the years before. 

7.4.3 Sentinel-2 

Up to now, Sentinel-2 has been providing imagery since 2015. The temporal resolution improved since the 

launch of Sentinel-2B in 2017 to a revisit time of 5 days. Due to its high spatial resolution of 10 meters for the 

visible and near infrared bands, Sentinel-2 is a valuable information source for the coffee forest monitoring in 

Ethiopia. However, until now the high-quality data availability over Ethiopia is limited (Frampton et al. 2013).  

 

8 Conclusion and Outlook 
The purpose of this thesis was to examine the coffee forest changes, its causes and implications for the 

application of sustainable forest management systems in Ethiopia. Thus, remote sensing approaches were used to 

create thematic land cover maps in Ethiopian coffee forest areas. Furthermore, change detection methods were 

applied to analyse the forest changes in Participatory Forest Management (PFM) and non-PFM regions over the last 

20 years. It is found that satellite remote sensing techniques are useful for the monitoring of coffee forest and its 

changes in Ethiopia. Particularly, it saves costs and time as less field trips are necessary, and an automated 

measuring system can be established to control the remote mountainous forest regions. However, accurate analysis 

of deforestation and forest degradation remains challenging and requires appropriate validation datasets and 

assessment methods.  

In this study, a process to analyse forest changes was developed and applied which suited the purpose of 

investigating PFM and non-PFM areas. Nevertheless, further work needs to explore the potential of recent methods 

in greater detail for instance near real-time monitoring by the fusion of Landsat and MODIS data (Tang et al. 2019) 

or the use of a mixture of LiDAR, Synthetic Aperture Radar (SAR) and very high-resolution imagery in order to 

collect available information on tropical forest degradation. These datasets measure for example the forest structure 

or biomass (Dupuis et al. 2020; Shimizu et al. 2019; Lillesand et al. 2015). Moreover, further techniques suggest 

implementing an ensemble of change detection algorithms to receive disturbance maps with higher accuracy 

(Healey et al. 2018). In addition, secondary data such as field information or interviews with farmers is desirable in 

order to derive deforestation and forest degradation causes. Whether wild and semi-wild coffee forest can be 

distinguished with satellite remote sensing remains to be determined in future research.  
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10 Appendix I Methods 

10.1 Study on the land cover classes occurring in the Ethiopian study zones 

Table 10-1 Table displaying the number of times each land cover class has been mentioned in 19 used sources (Bewket 2002; Gashaw et al. 
2014; Hailemariam et al. 2016; Minale 2013; Tadesse et al. 2014; Wubie 2015; Kindu et al. 2013; Mekonnen et al. 2016; Kibret et al. 2016; 
Kindu et al. 2016; Sahle et al. 2018; Moges et al. 2010; “Ethiopia’s Forest Reference Level Submission to the UNFCCC” 2017; Google Earth 
Engine 2020; CCI Land Cover (LC) Team 2016; ESA 2019; Institute of Biodiversity Conservation (IBC) 2012)  

 

Number of 
occurrences 

Land cover class Alternative names mentioned 

19 forest primary forest, afroalpine forest, natural forest, high forest, evergreen 
broadleaf open/closed forest, montane forest, submontane forest, lowland 
forest  

9 woodland dense woodland, open woodland 

12 shrubland bushland, different shrublands 

17 grassland grazing lands, different grasslands 

11 urban area built up, settlements 

13 bare land soil, rock, sparse vegetation, degraded land 

14 water  open water, water body 

18 agriculture  cultivated land, farmland, cropland, plantation 

 

10.2 Study on the classifier performance 

Table 10-2 Thirteen test areas to assess the performance of three different classifiers (Random Forest, Classification and Regression Tree, 
Support Vector Machine) by comparing the classified locations to the real value on the very high resolution imagery. Emphasized with a 
black frame are the correctly classified forest locations by the Random Forest classifier  

Location Real value (very high 
resolution imagery) 

Random Forest 
(RF) 

Classification and 
Regression Tree (CART) 

Support Vector 
Machine (SVM) 

34.2607, 7.62905 Forest Forest Savanna Grassland 

34.26035, 7.6202 Forest Forest Forest Savanna 

34.21564, 7.61723 Forest Forest Savanna Grassland 

34.21632, 7.62029 Forest Forest Savanna Forest 

34.25799, 7.59968 Forest Forest Savanna Savanna 

34.24087, 7.63003 Water  Savanna Savanna Forest 

34.20817, 7.62586 Water  Savanna Grassland Forest 

34.26091, 7.61991 Forest Savanna Forest Grassland 

34.21589, 7.61786 Forest Forest Savanna Grassland 

34.26048, 7.62931 Forest Forest Savanna Savanna 

34.21126, 7.62373 Water  Savanna Forest Savanna 

34.22443, 7.62548 Savanna Grassland Savanna Forest 

34.22263, 7.65778 Grassland Grassland Savanna Savanna 
 



67 

 

 
Figure 10-1 Location and extent of the very high resolution satellite data in red in comparison to the study zones (Google Earth Engine 2020) 

10.3 Supervised classification validation assessment 

Table 10-3 Training resubstitution error matrix using the Sentinel-2 land cover dataset with a training overall accuracy of over 97%  
(4’867/5’000=0.9734). Highlighted with a black frame are the correctly classified pixels.  

ground truth                                                         prediction 

 0 - forest 1 - shrubland 2 - grassland 3 - bare land 4 - cropland sum 

0 - forest 1’990 3 2 0 0 1’995 

1 - shrubland 25 1’150 16 0 2 1’193 

2 - grassland 11 40 1’127 0 5 1’183 

3 - bare land 0 0 0 109 1 110 

4 - cropland 5 12 10 1 491 519 

sum 2’031 1’205 1’155 110 499 5’000 
 

Table 10-4 Training resubstitution error matrix with a training overall accuracy of around 97% (3’450/3’553=0.971) using 70% of the sample 
points for training. Highlighted with a black frame are the correctly classified pixels.  

ground truth                                                          prediction 

 0 - forest 1 - shrubland 2 - grassland 3 - bare land 4 - cropland sum 

0 - forest 1’424 2 0 0 0 1’426 

1 - shrubland 14 816 19 0 1 850 

2 - grassland 4 42 784 0 5 835 

3 - bare land 0 0 0 74 0 74 

4 - cropland 4 6 4 2 352 368 

sum 1’446 866 807 76 358 3’553 
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10.4 Documentation of the change detection validation 

10.4.1 Keffa zone 

Area 1 forest loss 

   

   
Figure 10-2 Area 1 forest loss: From left to right: Calculated forest loss areas in red overlaid on the composite 1995-2000 on top and on the 
composite 2015-2020 on the bottom, Landsat imagery composite 1995-2000 on top and composite 2015-2020 on the bottom, Hansen 
forest loss in red overlaid on the composite 1995-2000 on top  and on the composite 2015-2020 on the bottom (Google Earth Engine 2020) 

Area 2 forest loss 

   

   
Figure 10-3 Area 2 forest loss: From left to right: Calculated forest loss areas in red overlaid on the composite 1995-2000 on top and on the 
composite 2015-2020 on the bottom, Landsat imagery composite 1995-2000 on top and composite 2015-2020 on the bottom, Hansen 
forest loss in red overlaid on the composite 1995-2000 on top  and on the composite 2015-2020 on the bottom (Google Earth Engine 2020) 
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Area 3 forest loss 

   

   
Figure 10-4 Area 3 forest loss: From left to right: Calculated forest loss areas in red overlaid on the composite 1995-2000 on top and on the 
composite 2015-2020 on the bottom, Landsat imagery composite 1995-2000 on top and composite 2015-2020 on the bottom, Hansen 
forest loss in red overlaid on the composite 1995-2000 on top  and on the composite 2015-2020 on the bottom (Google Earth Engine 2020) 

Area 4 forest loss 

   

   
Figure 10-5 Area 4 forest loss: From left to right: Calculated forest loss areas in red overlaid on the composite 1995-2000 on top and on the 
composite 2015-2020 on the bottom, Landsat imagery composite 1995-2000 on top and composite 2015-2020 on the bottom, Hansen 
forest loss in red overlaid on the composite 1995-2000 on top  and on the composite 2015-2020 on the bottom (Google Earth Engine 2020) 
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Area 5 forest loss 

   

   
Figure 10-6 Area 5 forest loss: From left to right: Calculated forest loss areas in red overlaid on the composite 1995-2000 on top and on the 
composite 2015-2020 on the bottom, Landsat imagery composite 1995-2000 on top and composite 2015-2020 on the bottom, Hansen 
forest loss in red overlaid on the composite 1995-2000 on top  and on the composite 2015-2020 on the bottom (Google Earth Engine 2020) 

Area 6 forest loss 

   

   
Figure 10-7 Area 6 forest loss: From left to right: Calculated forest loss areas in red overlaid on the composite 1995-2000 on top and on the 
composite 2015-2020 on the bottom, Landsat imagery composite 1995-2000 on top and composite 2015-2020 on the bottom, Hansen 
forest loss in red overlaid on the composite 1995-2000 on top  and on the composite 2015-2020 on the bottom (Google Earth Engine 2020) 
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Area 1 forest gain 

  

 
 

Figure 10-8 Area 1 forest gain: From left to right: Calculated forest loss areas in red overlaid on the composite 1995-2000 on top and on the 
composite 2015-2020 on the bottom, Landsat imagery composite 1995-2000 on top and composite 2015-2020 on the bottom, Hansen 
forest loss in red overlaid on the composite 1995-2000 on top  and on the composite 2015-2020 on the bottom (Google Earth Engine 2020) 

Area 2 forest gain 

  

  
Figure 10-9 Area 2 forest gain: From left to right: Calculated forest loss areas in red overlaid on the composite 1995-2000 on top and on the 
composite 2015-2020 on the bottom, Landsat imagery composite 1995-2000 on top and composite 2015-2020 on the bottom, Hansen 
forest loss in red overlaid on the composite 1995-2000 on top and on the composite 2015-2020 on the bottom (Google Earth Engine 2020) 
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10.4.2 Sheka zone 

Overview of the forest loss and forest gain validation areas 

  
Figure 10-10 Left: Map of Sheka emphasizing the forest loss areas in red and the validation areas are framed with their corresponding 
number, Right: Map of Sheka emphasizing the forest gain areas in green and the validation areas are framed with their corresponding 
number 

Area 7 forest loss 

   

   
Figure 10-11 Area 7 forest loss: From left to right: Calculated forest loss areas in red overlaid on the composite 1995-2000 on top and on the 
composite 2015-2020 on the bottom, Landsat imagery composite 1995-2000 on top and composite 2015-2020 on the bottom, Hansen 
forest loss in red overlaid on the composite 1995-2000 on top and on the composite 2015-2020 on the bottom (Google Earth Engine 2020) 
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Area 8 forest loss 

   

   
Figure 10-12 Area 8 forest loss: From left to right: Calculated forest loss areas in red overlaid on the composite 1995-2000 on top and on the 
composite 2015-2020 on the bottom, Landsat imagery composite 1995-2000 on top and composite 2015-2020 on the bottom, Hansen 
forest loss in red overlaid on the composite 1995-2000 on top  and on the composite 2015-2020 on the bottom (Google Earth Engine 2020) 

Area 9 forest loss 

   

   
Figure 10-13 Area 9 forest loss: From left to right: Calculated forest loss areas in red overlaid on the composite 1995-2000 on top and on the 
composite 2015-2020 on the bottom, Landsat imagery composite 1995-2000 on top and composite 2015-2020 on the bottom, Hansen 
forest loss in red overlaid on the composite 1995-2000 on top  and on the composite 2015-2020 on the bottom (Google Earth Engine 2020) 
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Area 10 forest loss 

   

   
Figure 10-14 Area 10 forest loss: From left to right: Calculated forest loss areas in red overlaid on the composite 1995-2000 on top and on 
the composite 2015-2020 on the bottom, Landsat imagery composite 1995-2000 on top and composite 2015-2020 on the bottom, Hansen 
forest loss in red overlaid on the composite 1995-2000 on top  and on the composite 2015-2020 on the bottom (Google Earth Engine 2020) 

Area 11 forest loss 

   

   
Figure 10-15 Area 11 forest loss: From left to right: Calculated forest loss areas in red overlaid on the composite 1995-2000 on top and on 
the composite 2015-2020 on the bottom, Landsat imagery composite 1995-2000 on top and composite 2015-2020 on the bottom, Hansen 
forest loss in red overlaid on the composite 1995-2000 on top  and on the composite 2015-2020 on the bottom (Google Earth Engine 2020) 
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Area 12 forest loss 

   

   
Figure 10-16 Area 12 forest loss: From left to right: Calculated forest loss areas in red overlaid on the composite 1995-2000 on top and on 
the composite 2015-2020 on the bottom, Landsat imagery composite 1995-2000 on top and composite 2015-2020 on the bottom, Hansen 
forest loss in red overlaid on the composite 1995-2000 on top  and on the composite 2015-2020 on the bottom (Google Earth Engine 2020) 

Area 3 forest gain 

  

  
Figure 10-17 Area 3 forest gain: From left to right: Calculated forest loss areas in red overlaid on the composite 1995-2000 on top and on 
the composite 2015-2020 on the bottom, Landsat imagery composite 1995-2000 on top and composite 2015-2020 on the bottom, Hansen 
forest loss in red overlaid on the composite 1995-2000 on top  and on the composite 2015-2020 on the bottom (Google Earth Engine 2020) 
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Area 4 forest gain 

  

  
Figure 10-18 Area 4 forest gain: From left to right: Calculated forest loss areas in red overlaid on the composite 1995-2000 on top and on 
the composite 2015-2020 on the bottom, Landsat imagery composite 1995-2000 on top and composite 2015-2020 on the bottom, Hansen 
forest loss in red overlaid on the composite 1995-2000 on top  and on the composite 2015-2020 on the bottom (Google Earth Engine 2020) 

10.4.3 Illubabor zone 

Overview of the forest loss and forest gain validation areas 

  
Figure 10-19 Left: Map of Illubabor emphasizing the forest loss areas in red and the validation areas are framed with their corresponding 
number, Right: Map of Illubabor  emphasizing the forest gain areas in green and the validation areas are framed with their corresponding 
number 
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Area 13 forest loss 

   

   
Figure 10-20 Area 13 forest loss: From left to right: Calculated forest loss areas in red overlaid on the composite 1995-2000 on top and on 
the composite 2015-2020 on the bottom, Landsat imagery composite 1995-2000 on top and composite 2015-2020 on the bottom, Hansen 
forest loss in red overlaid on the composite 1995-2000 on top  and on the composite 2015-2020 on the bottom (Google Earth Engine 2020) 

Area 14 forest loss 

   

   
Figure 10-21 Area 42 forest loss: From left to right: Calculated forest loss areas in red overlaid on the composite 1995-2000 on top and on 
the composite 2015-2020 on the bottom, Landsat imagery composite 1995-2000 on top and composite 2015-2020 on the bottom, Hansen 
forest loss in red overlaid on the composite 1995-2000 on top  and on the composite 2015-2020 on the bottom (Google Earth Engine 2020) 
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Area 15 forest loss 

   

   
Figure 10-22 Area 15 forest loss: From left to right: Calculated forest loss areas in red overlaid on the composite 1995-2000 on top and on 
the composite 2015-2020 on the bottom, Landsat imagery composite 1995-2000 on top and composite 2015-2020 on the bottom, Hansen 
forest loss in red overlaid on the composite 1995-2000 on top  and on the composite 2015-2020 on the bottom (Google Earth Engine 2020) 

Area 16 forest loss 

   

   
Figure 10-23 Area 62 forest loss: From left to right: Calculated forest loss areas in red overlaid on the composite 1995-2000 on top and on 
the composite 2015-2020 on the bottom, Landsat imagery composite 1995-2000 on top and composite 2015-2020 on the bottom, Hansen 
forest loss in red overlaid on the composite 1995-2000 on top  and on the composite 2015-2020 on the bottom (Google Earth Engine 2020) 
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Area 17 forest loss 

   

   
Figure 10-24 Area 72 forest loss: From left to right: Calculated forest loss areas in red overlaid on the composite 1995-2000 on top and on 
the composite 2015-2020 on the bottom, Landsat imagery composite 1995-2000 on top and composite 2015-2020 on the bottom, Hansen 
forest loss in red overlaid on the composite 1995-2000 on top  and on the composite 2015-2020 on the bottom (Google Earth Engine 2020) 

Area 18 forest loss 

   

   
Figure 10-25 Area 18 forest loss: From left to right: Calculated forest loss areas in red overlaid on the composite 1995-2000 on top and on 
the composite 2015-2020 on the bottom, Landsat imagery composite 1995-2000 on top and composite 2015-2020 on the bottom, Hansen 
forest loss in red overlaid on the composite 1995-2000 on top  and on the composite 2015-2020 on the bottom (Google Earth Engine 2020) 
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Area 5 forest gain 

  

  
Figure 10-26 Area 5 forest gain: From left to right: Calculated forest loss areas in red overlaid on the composite 1995-2000 on top and on 
the composite 2015-2020 on the bottom, Landsat imagery composite 1995-2000 on top and composite 2015-2020 on the bottom, Hansen 
forest loss in red overlaid on the composite 1995-2000 on top  and on the composite 2015-2020 on the bottom (Google Earth Engine 2020) 

Area 6 forest gain 

  

  

Figure 10-27 Area 6 forest gain: From left to right: Calculated forest loss areas in red overlaid on the composite 1995-2000 on top and on 
the composite 2015-2020 on the bottom, Landsat imagery composite 1995-2000 on top and composite 2015-2020 on the bottom, Hansen 
forest loss in red overlaid on the composite 1995-2000 on top  and on the composite 2015-2020 on the bottom (Google Earth Engine 2020) 
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10.4.4 Bench Maji zone 

Overview of the forest loss and forest gain validation areas 

  
Figure 10-28 Left: Map of Bench Maji emphasizing the forest loss areas in red and the validation areas are framed with their corresponding 
number, Right: Map of Bench Maji emphasizing the forest gain areas in green and the validation areas are framed with their corresponding 
number 

Area 19 forest loss 

   

   
Figure 10-29 Area 19 forest loss: From left to right: Calculated forest loss areas in red overlaid on the composite 1995-2000 on top and on 
the composite 2015-2020 on the bottom, Landsat imagery composite 1995-2000 on top and composite 2015-2020 on the bottom, Hansen 
forest loss in red overlaid on the composite 1995-2000 on top and on the composite 2015-2020 on the bottom (Google Earth Engine 2020) 
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Area 20 forest loss 

   

   
Figure 10-30 Area 20 forest loss: From left to right: Calculated forest loss areas in red overlaid on the composite 1995-2000 on top and on 
the composite 2015-2020 on the bottom, Landsat imagery composite 1995-2000 on top and composite 2015-2020 on the bottom, Hansen 
forest loss in red overlaid on the composite 1995-2000 on top  and on the composite 2015-2020 on the bottom (Google Earth Engine 2020) 

Area 21 forest loss 

   

   
Figure 10-31 Area 21 forest loss: From left to right: Calculated forest loss areas in red overlaid on the composite 1995-2000 on top and on 
the composite 2015-2020 on the bottom, Landsat imagery composite 1995-2000 on top and composite 2015-2020 on the bottom, Hansen 
forest loss in red overlaid on the composite 1995-2000 on top  and on the composite 2015-2020 on the bottom (Google Earth Engine 2020) 
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Area 22 forest loss 

   

   
Figure 10-32 Area 22 forest loss: From left to right: Calculated forest loss areas in red overlaid on the composite 1995-2000 on top and on 
the composite 2015-2020 on the bottom, Landsat imagery composite 1995-2000 on top and composite 2015-2020 on the bottom, Hansen 
forest loss in red overlaid on the composite 1995-2000 on top  and on the composite 2015-2020 on the bottom (Google Earth Engine 2020) 

Area 23 forest loss 

   

   
Figure 10-33 Area 23 forest loss: From left to right: Calculated forest loss areas in red overlaid on the composite 1995-2000 on top and on 
the composite 2015-2020 on the bottom, Landsat imagery composite 1995-2000 on top and composite 2015-2020 on the bottom, Hansen 
forest loss in red overlaid on the composite 1995-2000 on top  and on the composite 2015-2020 on the bottom (Google Earth Engine 2020) 
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Area 24 forest loss 

   

   
Figure 10-34 Area 24 forest loss: From left to right: Calculated forest loss areas in red overlaid on the composite 1995-2000 on top and on 
the composite 2015-2020 on the bottom, Landsat imagery composite 1995-2000 on top and composite 2015-2020 on the bottom, Hansen 
forest loss in red overlaid on the composite 1995-2000 on top  and on the composite 2015-2020 on the bottom (Google Earth Engine 2020) 

Area 7 forest gain 

  

  
Figure 10-35 Area 7 forest gain: From left to right: Calculated forest loss areas in red overlaid on the composite 1995-2000 on top and on 
the composite 2015-2020 on the bottom, Landsat imagery composite 1995-2000 on top and composite 2015-2020 on the bottom, Hansen 
forest loss in red overlaid on the composite 1995-2000 on top  and on the composite 2015-2020 on the bottom (Google Earth Engine 2020) 
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Area 8 forest gain 

  

  
Figure 10-36 Area 8 forest gain: From left to right: Calculated forest loss areas in red overlaid on the composite 1995-2000 on top and on 
the composite 2015-2020 on the bottom, Landsat imagery composite 1995-2000 on top and composite 2015-2020 on the bottom, Hansen 
forest loss in red overlaid on the composite 1995-2000 on top and on the composite 2015-2020 on the bottom (Google Earth Engine 2020) 

10.4.5 Bale zone 

Overview of the forest gain and forest loss validation areas 

  
Figure 10-37 Left: Map of Bale emphasizing the forest loss areas in red and the validation areas are framed with their corresponding 
number, Right: Map of Bale emphasizing the forest gain areas in green and the validation areas are framed with their corresponding 
number 
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Area 25 forest loss 

   

   
Figure 10-38 Area 25 forest loss: From left to right: Calculated forest loss areas in red overlaid on the composite 1995-2000 on top and on 
the composite 2015-2020 on the bottom, Landsat imagery composite 1995-2000 on top and composite 2015-2020 on the bottom, Hansen 
forest loss in red overlaid on the composite 1995-2000 on top  and on the composite 2015-2020 on the bottom (Google Earth Engine 2020) 

Area 26 forest loss 

   

   
Figure 10-39 Area 26 forest loss: From left to right: Calculated forest loss areas in red overlaid on the composite 1995-2000 on top and on 
the composite 2015-2020 on the bottom, Landsat imagery composite 1995-2000 on top and composite 2015-2020 on the bottom, Hansen 
forest loss in red overlaid on the composite 1995-2000 on top  and on the composite 2015-2020 on the bottom (Google Earth Engine 2020) 
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Area 27 forest loss 

   

   
Figure 10-40 Area 27 forest loss: From left to right: Calculated forest loss areas in red overlaid on the composite 1995-2000 on top and on 
the composite 2015-2020 on the bottom, Landsat imagery composite 1995-2000 on top and composite 2015-2020 on the bottom, Hansen 
forest loss in red overlaid on the composite 1995-2000 on top and on the composite 2015-2020 on the bottom (Google Earth Engine 2020) 

Area 28 forest loss 

   

   
Figure 10-41 Area 28 forest loss: From left to right: Calculated forest loss areas in red overlaid on the composite 1995-2000 on top and on 
the composite 2015-2020 on the bottom, Landsat imagery composite 1995-2000 on top and composite 2015-2020 on the bottom, Hansen 
forest loss in red overlaid on the composite 1995-2000 on top and on the composite 2015-2020 on the bottom (Google Earth Engine 2020) 
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Area 29 forest loss 

   

   
Figure 10-42 Area 29 forest loss: From left to right: Calculated forest loss areas in red overlaid on the composite 1995-2000 on top and on 
the composite 2015-2020 on the bottom, Landsat imagery composite 1995-2000 on top and composite 2015-2020 on the bottom, Hansen 
forest loss in red overlaid on the composite 1995-2000 on top and on the composite 2015-2020 on the bottom (Google Earth Engine 2020) 

Area 30 forest loss 

   

  
 

Figure 10-43 Area 30 forest loss: From left to right: Calculated forest loss areas in red overlaid on the composite 1995-2000 on top and on 
the composite 2015-2020 on the bottom, Landsat imagery composite 1995-2000 on top and composite 2015-2020 on the bottom, Hansen 
forest loss in red overlaid on the composite 1995-2000 on top and on the composite 2015-2020 on the bottom (Google Earth Engine 2020) 
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Area 9 forest gain 

  

  
Figure 10-44 Area 9 forest gain: From left to right: Calculated forest loss areas in red overlaid on the composite 1995-2000 on top and on 
the composite 2015-2020 on the bottom, Landsat imagery composite 1995-2000 on top and composite 2015-2020 on the bottom, Hansen 
forest loss in red overlaid on the composite 1995-2000 on top and on the composite 2015-2020 on the bottom (Google Earth Engine 2020) 

Area 10 forest gain 

  

  
Figure 10-45 Area 10 forest gain: From left to right: Calculated forest loss areas in red overlaid on the composite 1995-2000 on top and on 
the composite 2015-2020 on the bottom, Landsat imagery composite 1995-2000 on top and composite 2015-2020 on the bottom, Hansen 
forest loss in red overlaid on the composite 1995-2000 on top  and on the composite 2015-2020 on the bottom (Google Earth Engine 2020) 
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Evaluation of the forest loss and forest gain validation areas 

Table 10-5 List depicting the loss validation areas with the zone name, their performance and related to that the explanation. Highlighted 
with a frame are the areas where the calculated loss performed better than the Hansen forest loss.  

Area number and 
study zone 

Performance Explanation 

1- Keffa the loss calculation works better it detects the shape and the amount of forest loss, Hansen 
detects the shape but not enough forest loss area 

2- Keffa both are similar in shape and forest loss area detection 

3- Keffa the loss calculation works better Hansen misses some forest loss places 

4- Keffa both are similar in shape and forest loss area detection 

5- Keffa both are similar in shape and forest loss area detection 

6- Keffa the loss calculation works better Hansen detects not all forest loss areas 

7- Sheka the loss calculation works better Hansen underestimates the forest loss 

8- Sheka the loss calculation works better Hansen underestimates the forest loss areas but detects the 
shape correctly 

9- Sheka both are similar in shape and forest loss area detection 

10- Sheka the loss calculation works better Hansen underestimates the forest loss areas 

11- Sheka the loss calculation works better Hansen underestimates the forest loss areas 

12- Sheka both are similar in shape and forest loss area detection 

13- Illubabor both are similar in shape and forest loss area detection 

14- Illubabor the loss calculation works better Hansen underestimates the forest loss areas 

15- Illubabor the loss calculation works better Hansen underestimates the forest loss areas 

16- Illubabor both are similar in shape and forest loss area detection 

17- Illubabor the loss calculation works better Hansen misses some forest loss areas 

18- Illubabor both are similar in shape and forest loss area detection 

19- Bench Maji unclear whether there is forest loss or not 

20- Bench Maji unclear both are almost the same, do not see clear differences between 
the two datasets  

21- Bench Maji both are similar in shape and forest loss area detection 

22- Bench Maji Hansen works better The calculated forest loss detection misses some forest loss 
places 

23- Bench Maji Hansen works better too many forest loss places are detected 

24- Bench Maji the loss calculation works better Hansen misses some forest loss areas 

25- Bale both are similar in shape and forest loss area detection 

26- Bale both are similar in shape and forest loss area detection 

27- Bale both are similar in shape and forest loss area detection 

28- Bale unclear both do not detect the forest loss areas correctly 

29- Bale unclear both do not detect the forest loss areas correctly 

30- Bale both are similar in shape and forest loss area detection 
 

Table 10-6 List depicting the gain validation areas with the zone name, their performance and related to that the explanation. Highlighted 
with a frame are the two real gain areas 

Area number and 
study zone 

Performance Explanation 

1- Keffa appears to be no real gain greyish brownish colour on the forest 

2- Keffa appears to be no real gain greyish brownish colour on the forest 

3- Sheka appears to be no real gain greyish brownish colour on the forest 

4- Sheka appears to be no real gain greyish brownish colour on the forest 

5- Illubabor appears to be no real gain greyish brownish colour on the forest 

6- Illubabor appears to be no real gain greyish brownish colour on the forest 

7- Bench Maji appears to be no real gain greyish brownish colour on the forest 

8- Bench Maji seems to be real gain more forest cover is detected 

9- Bale seems to be real gain more forest cover is detected 

10- Bale appears to be no real gain greyish brownish colour on the forest 
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10.5 Google Earth Engine scripts 

Unsupervised Classification 

https://code.earthengine.google.com/b91a3f487169f95ed0eedc60a2d697f1 

Supervised Classification (yearly composites) 

https://code.earthengine.google.com/03fe4011346ff05e6b5e060f7df9fbc1 

5-year dry season composites and change detection  

https://code.earthengine.google.com/9eca94f7fa9550b6df3cd2ab30f46b50 

CODED Calculation 

https://code.earthengine.google.com/4abe2dbdb7e7cc203c065ca5efff1cf1 

CODED Visualization study zones 

https://code.earthengine.google.com/980767e75054cd58e44d193f722d7aa2 

CODED Visualization study kebeles 

https://code.earthengine.google.com/00a4e72b010005213af2acae42be1ca8 

Hansen forest loss 

https://code.earthengine.google.com/2b7d388a81d804336c3c6f9f1d2ab505 

CHIRPS precipitation data 

https://code.earthengine.google.com/ad93fa5c67b04b052f8ef0c892d16cdd 

Sentinel-2 supervised classification 

https://code.earthengine.google.com/0202f858753e0cb40f421de9c485bbb1 
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11 Appendix II Results 

11.1 Sheka zone 

   

   
Figure 11-1 Top: Landsat imagery composites 1995-2000, 2010-2015 and 2015-2020 for Sheka zone (Google Earth Engine 2020), Bottom: 
Classified composites 1995-2000, 2010-2015 and 2015-2020 

 
Figure 11-2 Graphic illustrating the areal size of the different land cover classes per classified composite for Sheka zone 
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Figure 11-3 From left to right: Calculated forest loss displayed in red for Sheka zone, calculated loss in red overlaid on the classified 
composite 2015-2020, degradation in orange and deforestation in red calculated with the CODED algorithm overlaid on the Landsat 
imagery composite 2015-2020 

  

Figure 11-4 Left: Disturbance dates calculated with the CODED algorithm for Sheka zone, Right: Corresponding histogram showing the 
number of pixels labelled as disturbance for every year during the study period 

 
 

Figure 11-5 Left: Disturbance magnitudes calculated with the CODED algorithm for Sheka zone, Right: Corresponding histogram showing 
the number of pixels labelled as disturbance for the different magnitudes 
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Figure 11-6 Histogram showing the number of pixels labelled as disturbance for every year during the analysis period for Sheka zone, the 
light blue line demonstrates the precipitation data from world weather for the city of Masha (World Weather Online 2020), the dark blue 
line refers to the average precipitation extracted from the Chirps data (Google Earth Engine 2020) 

11.2 Illubabor zone 

   

   
Figure 11-7 Top: Landsat imagery composites 1995-2000, 2010-2015 and 2015-2020 for Illubabor zone (Google Earth Engine 2020), Bottom: 
Classified composites 1995-2000, 2010-2015 and 2015-2020 
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Figure 11-8 Graphic illustrating the areal size of the different land cover classes per classified composite for Illubabor zone 

   
Figure 11-9 From left to right: Calculated forest loss displayed in red for Illubabor zone, calculated loss in red overlaid on the classified 
composite 2015-2020, degradation in orange and deforestation in red calculated with the CODED algorithm overlaid on the Landsat 
imagery composite 2015-2020 

  
Figure 11-10 Left: Disturbance dates calculated with the CODED algorithm for Illubabor zone, Right: Corresponding histogram showing the 
number of pixels labelled as disturbance for every year during the study period 
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Figure 11-11 Left: Disturbance magnitudes calculated with the CODED algorithm for Illubabor zone, Right: Corresponding histogram 
showing the number of pixels labelled as disturbance for the different magnitudes 

 
Figure 11-12 Histogram showing the number of pixels labelled as disturbance for every year during the analysis period for Illubabor zone, 
the light blue line demonstrates the precipitation data from world weather for the city of Metu (World Weather Online 2020), the dark blue 
line refers to the average precipitation extracted from the Chirps data (Google Earth Engine 2020) 

11.3 Bench Maji zone 

 
Figure 11-13 Graphic illustrating the areal size of the different land cover classes per classified composite for Bench Maji zone 

  

0

100000

200000

300000

400000

500000

0 8 16n
u

m
b

er
 o

f 
p

ix
el

s 
la

b
el

le
d

 d
is

tu
rb

an
ce

disturbance magnitude

0

1000

2000

3000

4000

5000

0

50000

100000

150000

200000

2
0

0
2

2
0

0
3

2
0

0
4

2
0

0
5

2
0

0
6

2
0

0
7

2
0

0
8

2
0

0
9

2
0

1
0

2
0

1
1

2
0

1
2

2
0

1
3

2
0

1
4

2
0

1
5

2
0

1
6

2
0

1
7

2
0

1
8

2
0

1
9

av
er

ag
e 

p
re

ci
p

it
at

io
n

 [m
m

]

n
u

m
b

er
 o

f 
p

ix
el

s 
la

b
el

le
d

 
d

is
tu

rb
an

ce

disturbance year

number of pixels CHIRPS data precipitation Metu

1

10

100

1000

10000

1995-2000 2010-2015 2015-2020

ar
ea

 [k
m

2]

classified 5-year dry season median composite

forest shrubland grassland cropland

water urban bare land

UTM 37N 
Northing 

Easting



97 

 

Figure 11-14 Disturbance dates calculated with the CODED algorithm for Bench Maji zone  

  

Figure 11-15 Left: Disturbance magnitudes calculated with the CODED algorithm for Bench Maji zone, Right: Corresponding histogram 
showing the number of pixels labelled as disturbance for the different magnitudes 

 
Figure 11-16 Histogram showing the number of pixels labelled as disturbance for every year during the analysis period for Bench Maji zone, 
the light blue line demonstrates the precipitation data from world weather for the city of Mizan Teferi (World Weather Online 2020), the 
dark blue line refers to the average precipitation extracted from the Chirps data (Google Earth Engine 2020) 
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11.4 Bale zone 

   

   
Figure 11-17 Top: Landsat imagery composites 1995-2000, 2010-2015 and 2015-2020 for Bale zone (Google Earth Engine 2020), Bottom: 
Classified composites 1995-2000, 2010-2015 and 2015-2020 

 
Figure 11-18 Graphic illustrating the areal size of the different land cover classes per classified composite for Bale zone 
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Figure 11-19 From left to right: Calculated forest loss displayed in red for Bale zone, calculated loss in red overlaid on the classified 
composite 2015-2020, degradation in orange and deforestation in red calculated with the CODED algorithm overlaid on the Landsat 
imagery composite 2015-2020 

 

 
Figure 11-20 Left: Disturbance dates calculated with the CODED algorithm for Bale zone, Right: Corresponding histogram showing the 
number of pixels labelled as disturbance for every year during the study period 

 

 
Figure 11-21 Left: Disturbance magnitudes calculated with the CODED algorithm for Bale zone, Right: Corresponding histogram showing the 
number of pixels labelled as disturbance for the different magnitudes 
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Figure 11-22 Histogram showing the number of pixels labelled as disturbance for every year during the analysis period for Bale zone, the 
light blue line demonstrates the precipitation data from world weather for the city of Robe (World Weather Online 2020), the dark blue line 
refers to the average precipitation extracted from the Chirps data (Google Earth Engine 2020) 

11.5 Keshi kebele 

Figure 11-23 Left: Disturbance dates calculated with the CODED algorithm for Keshi kebele 

  

Figure 11-24 Left: Disturbance magnitudes calculated with the CODED algorithm for Keshi kebele, Right: Corresponding histogram showing 
the number of pixels labelled as disturbance for the different magnitudes 
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11.6 Chebere kebele 

 
Figure 11-25 Disturbance dates calculated with the CODED algorithm for Chebere kebele 

 
 

Figure 11-26 Left: Disturbance magnitudes calculated with the CODED algorithm for Chebere kebele, Right: Corresponding histogram 
showing the number of pixels labelled as disturbance for the different magnitudes 

11.7 Giz Meret kebele 

 
Figure 11-27 Disturbance dates calculated with the CODED algorithm for Giz Meret kebele 

  
Figure 11-28 Left: Disturbance magnitudes calculated with the CODED algorithm for Giz Meret kebele, Right: Corresponding histogram 
showing the number of pixels labelled as disturbance for the different magnitudes 
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11.8 Sodu Lelaftu kebele 

 
Figure 11-29 Disturbance dates calculated with the CODED algorithm for Sodu Lelaftu kebele 

  
Figure 11-30 Left: Disturbance magnitudes calculated with the CODED algorithm for Sodu Lelaftu kebele, Right: Corresponding histogram 
showing the number of pixels labelled as disturbance for the different magnitudes 

11.9 Bergi kebele 

   

   
Figure 11-31 Top: Landsat imagery composites 1995-2000, 2010-2015 and 2015-2020 for Bergi kebele (Google Earth Engine 2020), Bottom: 
Classified composites 1995-2000, 2010-2015 and 2015-2020 
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Figure 11-32 Graphic illustrating the areal size of the different land cover classes per classified composite for Bergi kebele 

   
Figure 11-33 From left to right: Calculated forest loss displayed in red for Bergi kebele, calculated loss in red overlaid on the classified 
composite 2015-2020, degradation in orange and deforestation in red calculated with the CODED algorithm overlaid on the Landsat 
imagery composite 2015-2020 

  
Figure 11-34 Disturbance dates calculated with the CODED algorithm for Bergi kebele, Right: Corresponding histogram showing the number 
of pixels labelled as disturbance for every year during the study period 
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Figure 11-35 Left: Disturbance magnitudes calculated with the CODED algorithm for Keffa zone, Right: Corresponding histogram showing 
the number of pixels labelled as disturbance for the different magnitudes 

11.10 Mankira kebele 

   

   
Figure 11-36 Top: Landsat imagery composites 1995-2000, 2010-2015 and 2015-2020 for Mankira kebele (Google Earth Engine 2020), 
Bottom: Classified composites 1995-2000,  2010-2015 and 2015-2020 
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Figure 11-37 Graphic illustrating the areal size of the different land cover classes per classified composite for Mankira kebele 

 
 

 
Figure 11-38 From left to right: Calculated forest loss displayed in red for Mankira kebele, calculated loss in red overlaid on the classified 
composite 2015-2020, degradation in orange and deforestation in red calculated with the CODED algorithm overlaid on the Landsat 
imagery composite 2015-2020 

  
Figure 11-39 Left: Disturbance dates calculated with the CODED algorithm for Mankira kebele, Right: Corresponding histogram showing the 
number of pixels labelled as disturbance for every year during the study period 
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Figure 11-40 Left: Disturbance magnitudes calculated with the CODED algorithm for Mankira kebele, Right: Corresponding histogram 
showing the number of pixels labelled as disturbance for the different magnitudes 

11.11 Keja Araba kebele 

   

   
Figure 11-41 Top: Landsat imagery composites 1995-2000, 2010-2015 and 2015-2020 for Keja Araba kebele (Google Earth Engine 2020), 
Bottom: Classified composites 1995-2000, 2010-2015 and 2015-2020 

 
Figure 11-42 Graphic illustrating the areal size of the different land cover classes per classified composite for Keja Araba kebele 
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Figure 11-43 From left to right: Calculated forest loss displayed in red for Keja Araba kebele, calculated loss in red overlaid on the classified 
composite 2015-2020, degradation in orange and deforestation in red calculated with the CODED algorithm overlaid on the Landsat 
imagery composite 2015-2020 

 
 

Figure 11-44 Left: Disturbance dates calculated with the CODED algorithm for Keja Araba kebele, Right: Corresponding histogram showing 
the number of pixels labelled as disturbance for every year during the study period 

 

 
Figure 11-45 Left: Disturbance magnitudes calculated with the CODED algorithm for Keja Araba kebele, Right: Corresponding histogram 
showing the number of pixels labelled as disturbance for the different magnitudes 
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11.12 Seriti kebele 

   

   
Appendix Figure 11-46 Top: Landsat imagery composites 1995-2000, 2010-2015 and 2015-2020 for Seriti kebele (Google Earth Engine 
2020), Bottom: Classified composites 1995-2000, 2010-2015 and 2015-2020 

 
Figure 11-47 Graphic illustrating the areal size of the different land cover classes per classified composite for Seriti kebele 

   
Figure 11-48 From left to right: Calculated forest loss displayed in red for Seriti kebele, calculated loss in red overlaid on the classified 
composite 2015-2020, degradation in orange and deforestation in red calculated with the CODED algorithm overlaid on the Landsat 
imagery composite 2015-2020 
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Figure 11-49 Disturbance dates calculated with the CODED algorithm for Seriti kebele, Right: Corresponding histogram showing the number 
of pixels labelled as disturbance for every year during the study period 

  
Figure 11-50 Left: Disturbance magnitudes calculated with the CODED algorithm for Seriti kebele, Right: Corresponding histogram showing 
the number of pixels labelled as disturbance for the different magnitudes 

11.13 Muti kebele 

   

   
Figure 11-51 Top: Landsat imagery composites 1995-2000, 2010-2015 and 2015-2020 for Muti kebele (Google Earth Engine 2020), Bottom: 
Classified composites 1995-2000, 2010-2015 and 2015-2020 
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Figure 11-52 Graphic illustrating the areal size of the different land cover classes per classified composite for Muti kebele 

   
Figure 11-53 From left to right: Calculated forest loss displayed in red for Muti kebele, calculated loss in red overlaid on the classified 
composite 2015-2020, degradation in orange and deforestation in red calculated with the CODED algorithm overlaid on the Landsat 
imagery composite 2015-2020 

  
Figure 11-54 Left: Disturbance dates calculated with the CODED algorithm for Muti kebele, Right: Corresponding histogram showing the 
number of pixels labelled as disturbance for every year during the study period 
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Figure 11-55 Left: Disturbance magnitudes calculated with the CODED algorithm for Muti kebele, Right: Corresponding histogram showing 
the number of pixels labelled as disturbance for the different magnitudes  

11.14 Ganga kebele 

   

   
Figure 11-56 Top: Landsat imagery composites 1995-2000, 2010-2015 and 2015-2020 for Ganga kebele (Google Earth Engine 2020), 
Bottom: Classified composites 1995-2000, 2010-2015 and 2015-2020 

 
Figure 11-57 Graphic illustrating the areal size of the different land cover classes per classified composite for Ganga kebele 
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Figure 11-58 From left to right: Calculated forest loss displayed in red for Ganga kebele, calculated loss in red overlaid on the classified 
composite 2015-2020, degradation in orange and deforestation in red calculated with the CODED algorithm overlaid on the Landsat 
imagery composite 2015-2020 

 

 
Figure 11-59 Left: Disturbance dates calculated with the CODED algorithm for Ganga kebele, Right: Corresponding histogram showing the 
number of pixels labelled as disturbance for every year during the study period 

 

 
Figure 11-60 Left: Disturbance magnitudes calculated with the CODED algorithm for Ganga kebele, Right: Corresponding histogram showing 
the number of pixels labelled as disturbance for the different magnitudes 

11.15 All study kebeles 

 
Figure 11-61 Graphic visualizing the number of appearances of the land cover class with the highest proportion on the categories forest loss, 
forest gain and to urban 
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