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Abstract 

Ticks can be found almost everywhere in Switzerland, but very little research has 

been done on the distribution of it. For this the ZHAW developed an app called 

“Zecke”, which gathered crowdsourced data for about 5 years. Users could report 

tick bites on the app with a circle, that marks the area where they were bitten. This 

data contains many variables including the circle given in meters of radius around 

the centre. This inaccuracy is uncertain spatial data, which needs to be considered. 

For this inaccuracy three different methods were developed to calculate the density 

of the tick reports, with concern to the inaccuracy radius. In all methods the KDE 

was used. The normal KDE was used as a standard measure to which comparisons 

could be made. The weighted method puts a weight on the inaccuracies; the bigger 

the radius the smaller the impact and vice versa.  The concurrent and sequential 

methods use a combination of the MCS and KDE to represent the spatial properties 

of the inaccuracy of the tick reports. To analyse the methods and find the 

differences between them small multiples were created, each with four different 

kernel parameters as well as increases of inaccuracy radii to simulate what impact 

the inaccuracies have on the density. To compare the methods better, all 

experiments were done on a local and national scale. The normal KDE calculates the 

highest density, followed closely by the concurrent and sequential KDE. The 

weighted KDE calculates the overall lowest KDE. 
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1.  Introduction 

1.1 Relevance 

Citizen science has gained popularity over the last few years. Citizen scientists are 

non-professional participants in research. They can be involved in any part of the 

project, yet mostly data collection (Bonney et al., 2009; Haklay, 2015). Large 

amounts of data can be costly and difficult to obtain. Citizen science solves both 

problems and engages citizens in science and helps sensitise them to the topic 

(Turrini, Dörler, Richter, Heigl, & Bonn, 2018).  

According to the World Health Organization (WHO) vectors are living organisms 

capable of transmitting infectiou+s diseases from animals to humans or between 

each other. All of them can carry pathogens which are a serious threat to food 

security, public health, and economic activities worldwide (World Health Organization, 

2014). Nine vectors (i.e. mosquitoes, ticks, sandflies, black flies, triatomine bugs, 

tsetse flies, mites, lice, and snails) have been identified by the WHO (World Health 

Organization, 2017). Not all vector-borne diseases are lethal, but patients suffering 

from one might have temporal or chronic disabilities, which prevent victims from 

providing for their households (World Health Organization, 2014).  

Ticks can be found almost everywhere in Switzerland. To help reduce the amount of 

tick bites happening, the ZHAW created an app called "Zecke”. With this app, users 

can report tick bites (A. S. G. ZHAW Spin-off, n.d.). Because tick bites are hard to 

spot and difficult to know when and where exactly the users were bitten, an 

accuracy circle was added. The radius and centre coordinates of this circle including 

other information are sent to a server with each tick report. The collection of data 

with the help from the public is called crowdsourcing. With this crowdsourced data, 

over 40’000 tick reports were sent. 

1.2 Research questions 

As stated above, this master thesis analyses the crowdsourced tick data for 

Switzerland. The used program for the analysis is R as it gives more possibilities 

than ArcGIS, QGIS, SPSS, and tasks could be written to run automatically, which 
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was necessary (11.1 Code). However, a few visualisations at the end were done in 

QGIS. The main goal is to propose methods that estimate density maps which take 

spatial uncertainty factors into account. Following this the research questions are the 

following: 

• What spatio-temporal patterns are visible from crowdsourced tick data? 

• How to estimate tick density from user-generated tick bite data with positional 

uncertainty? 

• What is the relation between the created spatial patterns of the different 

methods, the kernel parameter, and the inaccuracy radii of the trick reports? 

 

1.3 Structure 

The presented thesis is divided into eight main chapters, as well as the index, 

references, table of figures, appendix, and at the beginning the abstract. 

The two subchapters before depict the introduction and the research questions to 

the topic. A small insight into crowdsourcing and ticks was given. 

The second chapter gives background information of the current research state of 

ticks in Switzerland and some tick related projects in other countries. Later, the data 

quality of crowdsourced data will be covered. Examples of upsides and downsides of 

other crowdsourcing projects and how they deal with uncertainties are explained 

later, as well as the kernel density estimation (KDE). 

The next chapter talks about the received crowdsourced data provided by the ZHAW 

(Zürcher Hochschule für Angewandte Wissenschaft). Before using the data, they had 

to be cleaned up of unwanted data points. The standard reports were one factor of 

which the data needed to be cleaned of.  

The 4th chapter discloses the methods used for the analysis. The KDE is explained, 

and how it was adjusted in different ways. The four used methods are going to be 

explained including the used statistical measurements. 
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The 5th chapter explains the experiments that were done for the analysis. Here it 

declares how the methods were used to conduct experiments. The experiments of 

sensitivity and differential analysis were done on a local and national scale. The local 

scale will be visualized by a map in this subchapter 5.2.1 Local scale. 

The results can be found chapter 6. The same structure will be retained from the 

previous chapter. The explorative analysis will show multiple histograms. First, the 

temporal analysis will be shown, then the spatial variables. Afterwards, the small 

multiples of each method for the local and national scale will be investigated. The 

last part of chapter 5.3 Differential analysis.  

Once the small multiples were created, the difference within the small multiples and 

across the methods could be determined. 

To analyse the variance within the small multiples a map was chosen and one 

adjacent differential map to the right/left and top/bottom of it. The differential map 

helps in combination with the statistical measurements to distinguish the deviation 

between the maps within the small multiples. 

For the analysis of the difference between the methods, maps with the same kernel 

parameter and inaccuracy modifier were chosen for both methods. The difference 

between those two maps was calculated including the used statistical measurements. 

In chapter 6 are the differential maps, where the different methods will be compared 

by their impact on the density map. 

Followed by the results is the discussion. There, the most important findings will be 

reviewed, as well as research questions are going to be discussed in the same order 

the results are structured and listed at the beginning in 1.2.  

The last main chapter is the conclusion. Here a summary of the master thesis is 

given. The findings followed by the new research gaps are going to be exemplified. 
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2. Related Work 

2.1 Tick research in Switzerland & other countries 

The research on ticks in Switzerland has been limited. However, it is commonly 

known that ticks are found everywhere in Switzerland, yet very little has been done 

to prevent tick bites.  

One of the first research projects in Switzerland took place in 2010. A paper was 

published with the focus on the molecular epidemiology of tick-born encephalitis 

virus in Switzerland (Gäumann, 2010). For that research project ticks were collected 

in specific locations in Switzerland by the Swiss military and researchers in spring 

2009. Over 62’000 ticks were found in 2009 distributed over 176 locations (see 

Figure 1). This was the first tick collection project in Switzerland. To collect the data, 

the soldiers ran white cloth through the bushes and grass, then counted the ticks 

hanging on the cloth (Gäumann, 2010). There has been no other Swiss-wide tick 

collection until the start of the mobile app “Zecke”. 

In the last 18 years a fluctuation of reports of tick-born infectious diseases and 

medical consultations was found, but the number of reports has risen in the last few 

years. In the year 2018, the state issued a static tick risk map on its geo-webserver 

(map.geo.admin.ch). The state currently uses the same crowdsourced data as for 

this project, but only up until 2018. The most recent available tick sampling data is 

generated by the app “Zecke”, hence is crowdsourced data. Users submitted over 

30’000 tick bite reports with various degrees of precision (ZHAW, 2019). The state’s 

data is not as elaborated as the one in this master thesis, otherwise it is the same. 

In 2019 the state declared Switzerland a nation-wide risk area for tick-born 

encephalitis except the Cantons of Geneva and Ticino. Tick reports with at least one 

FSME confirmed case are see in Figure 2. 
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Figure 1: Tick locations of Gäumann data from 2010 

 

 

Figure 2: Municipalities with FSME (source: map.geo.admin.ch) 



6 

 

 

Figure 3: FSME vaccination recommendation (source: map.geo.admin.ch) 

It is recommended by the Swiss government for every citizen to get a vaccination 

against this disease (see Figure 3) (Bern, 2019; Bern & Bern, 2018). The 

Netherlands has conducted more research about the spread of ticks than Switzerland. 

One project which focuses on mapping tick dynamics and tick bite risk using data-

driven approach and volunteered observations is by Garcia Martí (Garcia Martí, 2019). 

There, volunteers went monthly to their allocated forest site and collected ticks by 

dragging a white cloth through the bushes. The data collection was done between 

2006 and 2016. 

In the north east of the United States, the Department of Biological Sciences from 

the Northern Arizona University launched a campaign in January 2016 for citizen 

scientists to submit and send in ticks. The campaign then investigated the species, 

which stage the ticks were in, their sex, and if they contain any tick-born bacteria. 

The program ran until August 2017. The submissions peaked from the 20th to the 



7 

23rd week of each year. A total of 4261 ticks that were sent in have been found on 

humans (Porter et al., 2019). 

Another tick-born related study from Hungary collected road-kill carcasses in urban 

areas to test whether these are a carrier of tick-borne pathogens. Yet further 

investigations need to be done to see if these animals also increase the spread of 

the bacteria (Szekeres et al., 2019). 

While there has been done some research on ticks and their respective diseases in 

other countries, their results can only help predict the circumstances in Switzerland 

slightly. Research on how to cure the diseases is great and helps a lot; progress has 

been made. But it does not protect the citizens from getting the disease in the first 

place. Informing people where ticks lurk could decrease the chance of getting bitten 

which would lower the cases of tick-borne diseases in Switzerland. It is generally 

known that ticks can be found in the forest, but is the spread of ticks evenly 

distributed over all forests in Switzerland and how to deal with the spatial 

uncertainty of the crowdsourced data? This research gap will be looked into in this 

Master-Thesis. 

2.2 Data Quality of Crowdsourced Data 

Citizen scientists can be of help in any scientific field. Although some might say that 

there are criteria for it to count as citizen science (Robinson L.D., Cawthray, J.L., 

West, S.E., Bonn, A., & Ansine, 2018), there are many different types of citizen 

science. For example, the participants can help collect data or do the research 

themselves. Citizen science categories can be active (OpenStreetMap, n.d.) or 

passive (Bundesamt für Gesundheit BAG, 2020c) and voluntary or involuntary. 

Citizen science categories can include a data framework (Strobl, Etter, Van Meerveld, 

& Seibert, 2019). Citizen science categories can require training. The collection of 

data can be implicit or explicit. The amount and type of information collected can 

differ.  

As the name of the website https://citizensciencegames.com already suggests there 

are citizen science games to be found. Some are quite simple; others are very 

complicated. One of them is called Foldit where people all around the globe try to 
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restructure protein models. Because of citizen science new algorithms of how 

proteins can fold were discovered. The quality of the results rivals the experts’ and 

can lead to scientific breakthroughs (Eiben et al., 2012; Khatib et al., 2011).  

A part of Citizen Science is also the data collection. When citizens voluntarily collect 

data for a project, then this data can be called crowdsourced data. If there happens 

to be a spatial component in the data, then it is the subtype of crowdsourced data 

namely volunteered geographic information (VGI).  

VGI can be explicit or implicit. Explicit geographic information is when the 

contributors lay the focus on mapping the content of the data (e.g. appending 

information on OpenStreetMap). Implicit geographic information is when the location 

of the content is minor matter (e.g. geotagged microblogs) (Craglia, Ostermann, & 

Spinsanti, 2012). 

Crowdsourced data can be divided into either active or passive contribution and into 

data with framework (e.g: Hiking trails) and without framework (sky / stars). In the 

case of the app “Zecke”, the VGI falls into the same category of very active 

crowdsourced GI and leans more towards having a framework than not (See et al., 

2016). Senaratne differs between implicit and explicit, which is like active and 

passive contribution. Implicit VGI brings higher quality concerns than explicit VGI, 

yet more research has been done to resolve quality issues with explicit VGI. 

However, a higher utilization of implicit VGI in geospatial research has been seen. 

Therefore, nowadays more attention should be on resolving quality issues with the 

implicit VGI (Senaratne, Mobasheri, Ali, Capineri, & Haklay, 2017).  

As data gets collected uncertainties arise. There are four different classifications of 

spatial data uncertainties: (a) the inherent uncertainty in nature, (b) uncertainty due 

to limitations of human cognition of the natural world, (c) object measurement error, 

and (d) uncertainties arising through spatial analyses and spatial data processing 

(Shi, 2010). In the case of the collected tick data, most of the existing uncertainties 

arise due to a mix of measurement errors and inherent uncertainty in nature. Most 

humans do not realize when they have been bitten by a tick, thus it is extremely 

difficult to know when and where exactly they were bitten. 



9 

There are many ways to assure high quality data in research in general, yet 

significantly less for crowdsourced data. Questions may be asked about quality 

assurance like development of credibility of crowdsourced data. Fortunately there 

are a variety of broad approaches to secure quality assessments in this field (See et 

al., 2016). 

Using crowdsourced geospatial data scientifically might raise concerns given that 

people report data without attention to scientific standards. The collected tick data 

by the app “Zecke” contains all the typical data quality issues that crowdsourced 

data brings: heterogeneous contribution, uncertain positional records, different data 

capture devices, etc (Goodchild & Li, 2012). 

Some of the crowdsourcing projects implemented a tool to increase the likelihood of 

good quality data, such as the CrowdWater project app where citizen scientists took 

pictures of water streams, and reported the respective water level (Strobl et al., 

2019). It has a feature where users could report low quality pictures or false 

evaluations; for example, if the same picture was reported 15 times it was deleted 

automatically1. Unfortunately, there was no quality guarantee measure in the app 

“Zecke”. However, by changing the accuracy radius, it leaves space to set our own 

standards for quality of the data. 

The VGI collected through the app “Zecke” was available at the beginning of this 

master thesis yet were being updated through the progress of this paper. The used 

data was collected from March 2015 to 24.08.2020 and it is prone to have the same 

problems as other VGI, since the data structures share some related traits such as 

positional accuracies, temporal accuracies, variable quality of the observations, and 

information on participants. Albeit these expected issues, the reported data is of 

sufficient quality if to take only the reports with an uncertainty radius of 2’130m or 

smaller (90% of all reports). 

The one main advantage of crowd sourced data is that it should be easily gathered 

by the public. However, the quality of the data might be lacking because of that. 

 
1 Personal communication via e-mail  
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Training the participants could have a big effect on the quality, however it might 

faze potential users, resulting in much less citizen scientists participating hence less 

data. Training can also be seen as an indicator of the level of complexity of the role 

a citizen scientist will take in that project (See et al., 2016). 

When dealing with data quality separating the given data into high and low quality is 

important to increase the quality of the overall project. There are different ways to 

triage the data. Some projects require manual triaging, others can be fully 

automated (Goodchild & Li, 2012). A very good example of manual triaging is 

Wikipedia. Contributors review the articles and improve them if necessary. This can 

hardly be done automatically. A well-designed database can eliminate unwanted, 

hence low-quality inputs automatically already before the document gets reported. 

The crowdsourced tick reports fall in-between the manual and automatic triaging, 

since the app “Zecke” reduced the possible temporal inputs on the device but had no 

limit to its spatial component. The radius could be increased immensely, and the 

centre could be placed anywhere on the world. After the initial triaging of the device 

the rest was done mostly manually. 

A lot of research exists on how to prevent low quality data when crowdsourcing, yet 

very little papers can be found on how to deal with uncertainty once low-quality data 

is obtained. One example of the latter is a paper by Amatulli (Amatulli, Peréz-Cabello, 

& de la Riva, 2007). The projects talk about how wildfire occurrences can be 

mapped with the uncertainty of where the ignition point location was. There they 

came up with several ways to calculate the density of the points. One of them is the 

kernel density estimation (KDE) with a moving window of a fixed size. As explained 

by Silverman in 1986, the KDE calculates the density of an area by creating a round 

moving window around each point. All points lying within the windows get weighted 

as to how close they are to the centre. The closer to the centre the higher its impact. 

It gradually decreases outwards until it hits zero outside the windows. The amount 

of points and their proximity to the centre determine the density for that specific 

location. The window moves to the next point and the cycle repeats. The size of the 

moving window is defined by the search radius of the kernel. This method is 

particularly useful when the data consists of finite individual point locations (Bailey, 
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T.C., & Gatrell, 1995; Koutsias, Kalabokidis, & Allgöwer, 2004). 

However, there is little search done on spatial density estimation models under 

uncertainties. 
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Figure 4: Daily reported hours 

3. Data settings 

In the following paragraphs, the data set is being shown. In addition, a standard 

report gets shown in order to explain why certain data is not being taken into 

account. Then at the end, some old collected data will be discussed. 

3.1 Used data 

The original data was received on the 24th August 2020 and started with 47’723 tick 

reports. After only taking reports originating in Switzerland, deleting the standard 

reports, and removing outliers whose inaccuracy radius were above 2’130 meters 

40’579 tick reports are left. That is a 14.967% difference in the number of ticks, 

which is a total of 7’144 non-considered reports. 

The original data shows when the report was sent exact to the minute, the 

geographical, temporal inaccuracy of the report, and the coordinates among other 

things. The temporal inaccuracy of the report shows if the tick bite happened on the 

day the report was sent, the day 

before, or earlier. About 80% of all 

reports were done on the same 

day the tick bite happened or the 

day after. Based on Figure 4 it was 

assumed that most people report 

tick bites in the evening hours, 

because it can take some time 

after the initial bite to  spot them 

on their bodies. This is because of 

the ticks’ small size. Therefore, the 

reported time is not considered. 
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  Figure 5: Standard report 

3.2 Standard report 

The name (Wer: Ich) and date (Wann: 

Heute) would remain constant on each 

device unless changed. A report could 

only be made if a body part and a 

location was chosen. For the body part 

the user had to choose on which one 

he/she got bitten; there are no standard 

settings possible. For the location the 

situation changes depending on the 

device and if geolocation is on or off. In 

a standard report the location and 

uncertainty radius of the tick bite 

remained unchanged and were 

determined by the device. The radius of 

uncertainty of a standard report on a 

device is determined by the size of its 

screen, the bigger the screen, the bigger 

the radius. A standard tick report with 

geolocation switched off and selected 

body part can be seen in Figure 5. 

A standard report could deviate the outcome of the KDE, a selection had to be made. 

As it is unknown if a standard report was done on purpose or by accident. All 

standard reports were filtered out. To find out what a standard report looked like, a 

small experiment was performed. Eleven smartphones were gathered at one place. 

Each device reported a tick bite with and without geolocation on/off and without 

changing the default radius set by the smartphone. Since these were all reports from 

the same location and sent within a minute, the standard reports were found for at 

least 11 smartphones. From the received information the default radius could be 

extracted which was later used to filter out all the standard reports with those radii. 
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4. Methodology 

The main methods used for this project were the kernel density estimation (KDE), 

and the Monte Carlo Simulation (MCS). The KDE was used to find out the density of 

the given data points. Whereas the MCS served the purpose of creating more points 

in similar locations to simulate cases where the point was not located in the centre 

of the uncertainty radius. To use a non-spatial way of utilizing the uncertainty, the 

normal KDE was given a weight of the uncertainty.  

To take these uncertainties into consideration 4 different density estimations were 

used. The first one is a simple KDE without weighting, the second with weighting the 

inaccuracies of the tick reports and the third and fourth are slight modifications of 

each other, whereas the main idea is to create MCS and use those to calculate the 

KDE. 

4.1 Conventional KDE 

In this project the KDE search window is a square and is specified by a unit of 

meters. The reason to use a squared moving window is to model a fixed extent 

more easily with a specific number of cells. This made comparing the different KDE’s 

of the same location easier. 

Additionally, to the kernel size, there are different types of kernel weighting methods. 

The used kernel is the Gaussian (often also known as the normal) kernel. It takes all 

points within the windows into consideration and weights them according to the 

standard deviation. This means that points near the centre have proportionally a 

higher degree of influence on the density than points further away. Other methods 

weigh all the points inside the window equally (uniform) or have the influence 

increase statically to the centre (triangular) (Silverman, 1986). 

 

4.2 Uncertainty weighted KDE 

Two sets of KDE were used. The first is a standard KDE by just using the data points. 

The second is to take the inaccuracy radii of the points into consideration. To ensure 
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that the point with the smallest radius gets weighed the highest and vice versa, the 

inverse was calculated using the following formula: 

 Y=1-(X – min(X)) / (max(X) – min(X)) 

This formula ensures that all tick reports’ inaccuracies fall within the range of 0 to 1, 

where 1 is giving to the smallest inaccuracy and 0 to the largest inaccuracy. 

Example:  

X = 300m  min(X) = 2m  max(X) = 2130m 

Y=1 - (300m – 2m) / (2130m – 2m) = 0.86 

In order to change the inaccuracy and therefore the weight, one could not just 

increase the radii. If the radii would be increased ten times, then the min(X) and 

max(X) values had to be adjusted. This in turn would negate the increase of 

inaccuracy because the relationship between for example 3 to 4 is the same as 30 to 

40. Another suitable option could have been to not adjust the values. Then the 

max(X) would be smaller than 10X. That would produce numbers bigger than 1 and 

favour tick reports with bigger inaccuracies over smaller ones, which is not the 

desired result. By taking the formula shown above and dividing the resulting 

numbers by 0.5, 1, 2, and 10 the problem was solved. The assumption is made that 

if a tick report had a weight of Y then the weight Y should be decreased by the 

factor K if the radii is increased by the same factor K. 

X = 300m → Y=0.86  10X = 3000m → Y/10= 0.086 

By comparing the first and the second KDE map under Figure 25, the impact of the 

inaccuracy radii is shown. 

 

4.3 Monte-Carlo-KDE 

To help find out which method is best to simulate different outcomes of the KDE, the 

MCS was used. The MCS creates another instance of a data set similar to the original 

one. It does so by estimating the properties of the distribution by combing the 
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Figure 6: Gaussian distribution of MCS (source: 
https://simion.com/info/monte_carlo.html) 

existing distribution of random samples (van Ravenzwaaij, 

Cassey, & Brown, 2018). In this project however, the 

properties or boundaries were defined by the inaccuracy radius 

of each tick report. The amount of which MCS could move 

within the radii was regulated with a Gaussian distribution 

around the original tick report (example shown in Figure 6). 

The assumption is being made that the user tries to set the 

centre to the closest most probable tick bite location, yet due 

to human error could be mistaken. This enables the simulation 

instances where the happening of the tick bite is not situated in 

the middle of the inaccuracy circle. This in combination with the KDE enables to 

incorporate the inaccuracy of the tick reports into the density estimation. 

Here two other methods were applied together with the conventional KDE. The first 

method is referred to in the following as “Concurrent”. The second method is 

referred to in the following as “Sequential”. Both methods were used to embody the 

inaccuracies of the tick reports into the KDE by simulating 50-times more tick reports. 

 

4.3.1 Concurrent KDE 

The concurrent KDE simulates each tick report 50 times around the original tick 

report with a Gaussian distribution. Every iteration creates another instance of tick 

reports on the same map. Once all iterations are done, the KDE will be calculated for 

one map with 50-times more tick reports. But because the map now contains 50-

times more tick reports the density is also increased by 50-times, that is why the 

density of the map was then divided by 50 again to be able to compare the different 

maps and methods (see Figure 7). 

4.3.2 Sequential KDE 

The sequential KDE works in a similar way, but instead of simulating the additional 

tick reports on one map, each iteration will be projected onto a separate map. After 

50 iterations 50 maps are created. The KDE is calculated for each map the same 
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way as for the conventional KDE. At the end the mean KDE map is calculated from 

all 50 maps (see Figure 7). 

 

 

Figure 7: Monte-Carlo-Simulation for inaccuracy 

 

4.4 Statistical Measurements 

To measure the differences in between the maps and methods the following four 

measurements were used.  

Mean Error:    𝑀𝐸 =  1/𝑛 ∑ ∆ℎ𝑖
𝑛
𝑖=1  

Mean Absolute Error:   𝑀𝐴𝐸 =  1/𝑛 ∑ |∆ℎ𝑖|
𝑛
𝑖=1  

Root Mean Square Error:  𝑅𝑀𝑆𝐸 =  √(1/𝑛 ∑ (∆ℎ𝑖)2)𝑛
𝑖=1  

Standard Deviation:   𝑆𝐷 =  √(1/(𝑛 − 1) ∑ (∆ℎ𝑖)2)𝑛
𝑖=1  

 

4.4.1 Mean (Absolute) Error (ME/MAE) 

Mean Error:    𝑀𝐸 =  1/𝑛 ∑ ∆ℎ𝑖
𝑛
𝑖=1  
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The ME calculates the difference between raster A and raster B and adds/ subtracts 

the distance from raster A to raster B. Then it divides by the resulting number by the 

amounts of n-values. 

Mean Absolute Error:   𝑀𝐴𝐸 =  1/𝑛 ∑ |∆ℎ𝑖|
𝑛
𝑖=1  

The MAE does the same but calculates the absolute distance, therefore only adds 

the absolute distances (Chai & Draxler, 2014; Kenney, 1939). 

 

4.4.2 Root Mean Square Error (RMSE) 

Root Mean Squared Error:  𝑅𝑀𝑆𝐸 =  √(1/𝑛 ∑ (∆ℎ𝑖)2)𝑛
𝑖=1  

The Root Mean Square Error (RMSE) calculates the MAE, but instead of taking the 

absolute distance values, these numbers are squared. Then the resulting number is 

also divided by the number of units of the original raster. At the end the square root 

is taken, to make the number comparable the MAE. It measures how spread out the 

residuals are; in this project how spread out the values from raster B are compared 

to raster A. Where the MAE gives the same relative weight to all errors, the RMSE 

punishes variance as errors with greater absolute values receive a heavier weigh 

than smaller errors (Chai & Draxler, 2014; Kenney, 1939). 

 

4.4.3 Standard Deviation (SD) 

Standard Deviation:   𝑆𝐷 =  √(1/(𝑛 − 1) ∑ (∆ℎ𝑖)2)𝑛
𝑖=1  

The Standard Deviation (SD) calculation is very similar to the RMSE. Except when 

dividing by n-values, here it is divided by n-1 values. Since the formulas are very 

similar, the resulting numbers are as well. The SD calculates the spread around the 

mean, while the RMSE calculates the distance between raster A and raster B, so how 

much does one raster from another deviate (Kenney, 1940; Papoulis, 2002). 
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5. Experiment 

5.1 Explorative analysis 

To explore multiple factors of the data set, it was sorted. The date a tick report was 

sent was separated into the year, month, week, weekday, and hours. The locations 

of the tick reports were separated into cantons/municipalities they were lying in. The 

population for each canton/municipality was divided by the population for each 

canton/municipality to normalize the data (Bundesamt für Statistik, 2020). To find 

the height at which each data point was set, a Z-coordinate from a height model 

was added (swisstopo, 2014). 

5.2 Sensitivity analysis 

A main part of this master thesis is to compare the impact of inaccuracy radii to the 

parameters of the kernel on density maps, as well as comparing different methods 

that take the inaccuracy radii into account. To compare the influence of the 

inaccuracy against the influence of the kernel parameter, small multiples were 

created to compare the rasters more easily. Small multiples allow for a visual 

comparison and help orient between the rasters. With the visual comparison only 

estimates can be made, therefore quantitative measurements (SD, ME, MAE, RMSE, 

including the sum of the positive and negative values) were also used. 

Because the kernel parameter is a rather arbitrary value, multiple maps with 

different parameters were created. In the subset 4 parameters were chosen to be 

100m ,250m, 500m, and 1’000m. On the scale for Switzerland, the parameters were 

increased to 1’000, 3’000, 5’000m, and 7’000m. To see what influence the 

inaccuracy has on the outcome, they were increased and decreased by a 

multiplicative of 0,5, 1, 2, and 10, further referred to as an inaccuracy modifier, 

whereas 1 is the original size of the radii. This led to the creation of small multiples 

with the different kernels and inaccuracy modifiers. 

On each scale four small multiples were created, each with one method. First the 

normal KDE where only the kernel parameters were changed since the inaccuracy 

does not play a role in this method. The second method is the concurrent KDE, 
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which can be seen in Figure 8. The third is sequential and the fourth method is the 

weighted method. Both, the concurrent and sequential method had 50 iterations. As 

a concurrent method simulates multiple tick reports on a single map, the KDE would 

have been 50 times higher. To correct this, the resulting raster of this method was 

divided by 50 again. 

 

Figure 8: National concurrent KDE 

 

5.2.1 Local scale 

For the analysis, two investigation areas were used: the national and local scale. The 

local scale is a subset of the national scale and features a rural area. The selected 

rural area had an extent of 8.9km high and 12km wide and is situated around 

Knutwil, Büron, Geuensee, and Sursee in the north of the canton Lucerne (see 

Figure 9). It is in the midland of Switzerland, had an average looking amount of tick 

reports (n=198) and didn’t have any high mountains in the area. Mountains could 

have distorted the tick locations by accidentally choosing the midpoint of the report 

being above 1’500m. Forests were close by each town, where ticks are commonly 

found, and the local people use as recreation areas. 
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The kernels were chosen to be 100m, 250m, and 1’000m, as they were close to 

some peaks of the inaccuracy of reports. The 500m was chosen for the opposite 

reason and as to have a gap between 250m and 1’000m. The cell size for the local 

scale is a hectare, resulting in the following maps to show the tick density per 

hectare.
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Figure 9: Local extent 
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5.2.2 National scale 

The cell size for the national scale is 3.828km2, resulting in the following maps to 

show the tick density per 3.828km2. The reason for this seemingly arbitrary number 

is that this results in the same amounts of cells for the national extent as for the 

local scale. This in turn makes it easier to compare the numbers between the local 

and national scale. 

5.3 Differential analysis 

Once the small multiples were created, the difference within the small multiples and 

across the methods could be determined. 

To analyse the variance within the small multiples a map was chosen and one 

adjacent differential map to the right/left and top/bottom of it. The differential map 

helps in combination with the statistical measurements to distinguish the deviation 

between the maps within the small multiples. 

For the analysis of the difference between the methods, maps with the same kernel 

parameter and inaccuracy modifier were chosen for both methods. The difference 

between those two maps was calculated including the used statistical measurements. 
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6. Results 

The results are structured into two main parts. The data exploration is separated 

into the temporal and spatial part of the data. Once the data has been examined, 

then the created matrixes will be set into focus. To get a good view of how the 

results vary in scale, local and national extents were used. 

6.1 Explorative data analysis 

6.1.1 Temporal 

To get familiar with the tick data, some data exploration needed to be done. The 

data was collected starting in 2015. In the first 3 years about 1’800 and 3’800 tick 

bites were reported. The first major increase of tick reports happened in the year 

2018. The app “Zecke” got a lot of attention and more than 9’000 tick reports were 

sent that year. The app retained its popularity in 2019 and still more than 8’000 tick 

bites got registered. Around 13’000 tick reports happened in 2020 up until the 10th 

August (see Figure 10). 

As the temperature rises throughout the year, the tick reports also increase. An 

interesting correlation is that even in winter there are still tick reports happening, 

but much less than during other seasons. The high peak of reports is from May to 

June and declines dramatically in July across all years. (see Figure 11). 

Fifty percent of all tick bites get reported between the weeks of 21 up until 27, 

which is comparable to what Porter et al. (2019) has examined. The 21st week of the 

year is around mid-May. Also, almost all reports (90%) have been sent between 

week 12 (mid-March) and 36 (beginning of September) of the year (see Figure 12). 

Figure 13 shows the amount of tick reports depending on the days of the week. 

Weekday 1 represents Monday and Weekday 7 represents Sunday. It is visible that 

during the weekday the amount of tick reports coming in are relatively equal. A 

slight increase happens on Saturday, but the highest amount of reports happens on 

Sunday. The most likely explanation is that many people have more time to go out 

into nature during weekends than weekdays. 
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Figure 10: Count per year Figure 11: Count per month 

Figure 12: Count per week Figure 13: Count per weekday 
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6.1.2 Spatial 

Ticks can be found almost everywhere in Switzerland. To find out where they are 

and how they are distributed, some plots were created. 

When comparing Figure 14 and the areas with urban character (Bundesamt für 

Statistik (BFS), 2014) it is visible that ticks appear everywhere in Switzerland where 

bigger groups of people are. This is logical, because without humans, no tick reports 

could be made. Big clusters are visible around Lausanne, the whole canton of Zurich, 

Basel, and Bern. 

 

 

Figure 14: Crowdsourced data 

 

All 26 cantons show reports of tick bites (see Figure 15 ). Some cantons have a lot 

more tick bites than others. This is partially due to a higher population, but maybe 

also more tick reports. To be able to be sure, a normalized plot was created. (see 

Figure 16) 
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Figure 15: Ticks per canton 

Figure 16: Ticks per canton, normalized 

Basel-City almost shows no ticks per 

population. This is due to several 

factors. It is rather small and the 

canton only holds a few green 

spaces where ticks could actually be 

found. Ticks like a humid and moist 

climate (Perret, Guigoz, Rais, & 

Gern, 2000). The city-canton is also 

quiet dry due to its geographical 

location. It is situated between the 

Jura mountains and the Black Forest, 

which causes a funnel for the 

weather to go through. This in turn 

often creates a high pressure field, 

where it seldom rains (GEO-NET 

Umweltconsulting GmbH, 2019). 

Grisons is almost the complete 

opposite of Basel. It is very large, 

has lots of forest and shows one of 

the highest ratio of ticks per 

population of the cantons; the same 

could be said for the canton of 

Obwalden, Solothurn and Uri, 

although they are smaller, but still 

big compared to Basel-City (see 

Figure 16). 
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Figure 17: Ticks per municipality, normalized 

Figure 18: Top 11 municipalities 

What is interesting to see is that in 

both Figure 15 and Figure 16 the 

canton of Ticino scores relatively high. 

On the official webpage of the BAG it is 

suggested that every canton besides 

the canton of Ticino and Geneva 

should get vaccinated against the 

FSME (Bundesamt für Gesundheit BAG, 

2020a). It seems that there are few 

ticks which carry the FSME virus in 

these cantons, even though there have 

been confirmation on FSME reports, 

but there are a lot of other ticks in 

Ticino (see Figure 2). The figure shows 

municipalities with at least 1 confirmed case of FSME between 2009 and 2018. It is 

unknown to the public which municipalities had how many confirmed cases. It would 

have been interesting to see how this data would have compared to the received 

tick reports. But because of privacy reasons this is not possible. 

In Figure 17 it can be seen 

that 29 out of 2202 

municipalities in Switzerland 

have a higher tick report 

ration per population than 

0.04. 

Surprisingly the municipalities 

with the five highest ticks per 

population were all from the 

southern part of Switzerland 

(with one exception); 

especially a lot from Ticino, 

where the FSME risk is supposedly low (see Figure 18).  



29 

 

Figure 19: Height distribution  

Figure 20: Accuracy distribution 

Also, few tick reports were made on 

the mountainous locations. The 

median height was 555meters 

above sea level. Fifty percent of the 

reports happened between 466m 

and 697m, which is the altitude of 

the midland, whereas only 5% of 

reports surpassed 1’041m. Some 

outliers were even above 2’000m; a 

height where ticks are generally not 

seen (see Figure 19). 

 

When looking at the accuracy of tick reports, a few noticeable spikes are happening. 

(see Figure 20) The second highest spike has the highest accuracy which is good. 

This means that a lot of users are 

certain of the location where they 

have been bitten by a tick. The 

highest and third highest peaks 

(±300m) still have a relatively high 

accuracy, although these were close 

to the standard radii of many 

smartphones with their geolocation 

turned on. The spikes with the 

lowest accuracy are just around 

1’000m, which is also close to the 

standard report of at least 7 

smartphone devices with their 

geolocation turned off. Fifty percent 

of tick reports lay between 122m 

and 715m and the median is 301m. 
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6.2 Sensitivity analysis 

In the following small multiples, the lower map is subtracted from the upper map 

and the right map is subtracted from the left map. As the small multiples are getting 

described column and row wise, the differences between the maps are being 

referred to with the following code: [Kernel size, Uncertainty modifier]-[Kernel size, 

Uncertainty modifier]. 

The difference between each adjacent map was calculated by comparing the sums 

of all positive and negative pixels in addition to calculating the standard deviation 

(SD), mean error (ME), mean absolute error (MAE), and the root mean square error 

(RMSE). All maps are normalized in the sense that they contain the same amounts of 

cells/pixels, so a comparison can be made even between the local and national scale. 

6.2.1 Local Scale (Sursee region, LU) 

Figure 21 shows the extent of the local scale in red and the weighted KDE with a 

kernel of 250m. Nearly all clusters are situated near and around the local 

recreational areas. The ones not in the forest are inside or right at the edges of the 

villages. Quite often the density inside the villages doesn’t reach zero, which means 

that ticks can also be found inside local gardens or other populated green spaces 

just like Mulder et al. (2013) mentions. Interestingly the density of tick reports 

sustains.
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Figure 21: Local extent, weighted 250kernel 
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Normal KDE 

When the normal KDE of tick reports on a local scale gets calculated, the area with 

high densities are getting smaller and denser as the kernel decreases. The SD, MAE 

& RMSE decrease between the maps as the kernel increases. The difference 

[K100,U1]-[K250,U1] has bigger SD, MAE, and RMSE then in [K250,U1]-[K500,U1], 

which in turn shows greater differential measurements than [K500,U1]-[K1000,U1]. 

Clusters are clearly visible with a kernel of 250m and 500m. With a 100m kernel the 

clusters turn into single dots. No clusters can be identified with a kernel of 1’000m 

(see Figure 22).  
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Figure 22: Local matrix, normal KDE 
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Concurrent KDE 

Comparing the matrix concurrent visually column-wise, as the kernel increases the 

clusters get bigger, less dense, and more spread out. The difference between the 

maps going from top to bottom is decreasing in every measurement. A trend of 

having less pronounced clusters in the overall difference is visible as the kernel 

increases. [K100,U0.5]-[K250,U0.5] has a RMSE of 5.31 and a MAE of 1.41 whereas 

[K500,U0.5]-[K1000,U0.5] has a RMSE of 1.22 and a MAE of 0.83. Even when 

comparing [K100,U10]-[K250,U10] with [K500,U10]-[K1000,U10], the pattern 

persists, but the numbers are smaller. 

Now looking at the matrix visually row-wise, the sums of positive and negative 

changes are getting bigger the higher the inaccuracy factor and the smaller the 

kernel gets. Yet a clear variance is only visible as the inaccuracy factor increases to 

10, although this change disappears as the kernel increases to 500 or above (see 

Figure 23). Comparing [K100,U0.5]-[K100,U1] with [K100,U1]-[K100,U2] and 

[K100,U2]-[K100,U10] the change of every statistical measurement increases as the 

inaccuracy increases. With a kernel of 1’000m the changes become smaller when 

looking at [K1000,U0.5]-[K1000,U1] compared to [K100,U0.5]-[K100,U1]. 

Comparing the rows with the columns, the change from the 2x to the 10x modifier in 

the top row ([K100,U2]-[K100,U10]) is generally smaller than the change from the 

100m to the 250m kernel in the most left column ([K100,U0.5]-[K250,U0.5]). Even a 

big increase in the inaccuracy modifier as in [K100,U2]-[K100,U10] changes the 

output less than the increase from 100m to 200m kernel in [K100,U0.5]-[K250,U0.5]. 

With a sample size of 198 tick reports most changes between kernels and inaccuracy 

modifications are rather small. Exceptions will be mentioned. 
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Figure 23: Local matrix, concurrent KDE 
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Sequential KDE 

When looking at the difference between Concurrent and Sequential they are 

seemingly the same. In fact, the difference is so small that the numbers between 

them are neglectable (see Figure 24). 
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Figure 24: Local matrix, sequential KDE 
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Weighted KDE 

With the inverse of the inaccuracy taken into account to put a weight on the KDE, 

the variance between the maps within the matrix increases dramatically compared to 

the two MCS methods. The sum of positive and negative changes between the maps 

decreases as the inaccuracy of the tick reports increases, but also increases as the 

KDE gets bigger row wise but decreases within the same column. This is different 

from the previous methods. The SD, MAE, and RMSE numbers start big in the top 

left and are getting smaller to the bottom right. The ME decreases horizontally with 

an increase of inaccuracy of tick reports, but does not change vertically, this is 

because the weight of the reports decreases by the factors of 0,5, 1, 2, and 10, 

hence the overall mean values decrease. This explains why horizontally there are no 

sums of negative value. One point to mention is that the difference between 

columns decreases from left to right (see Figure 25). 

One would think that the difference between the 2x and 10x inaccuracy modifiers is 

bigger (for example [K100,U2]-[K100,U10]) than between 0.5 and 1 ([K100,U0.5]-

[K100,U1]); visually it appears this way as well. The way the calculation of the 

weighting works is easily explained through an example: 

The weight of a tick report with no modifier is 0.8. If the weight gets changed by the 

modifier 2, then the weight 0.8 gets divided by 2, hence 0.4. If the modifier is 10 the 

weight is therefore 0.08. The difference between 0.4 and 0.08 is 0.32. Now if the 

inaccuracy modifier is 0.5, then the 0.8 gets divided by 0.5, which results in 1.6. The 

difference between 1.6 and 0.8 is 0.8. 0.8 > 0.32. This is why the difference 

decreases from left to right. 
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Figure 25: Local matrix, weighted KDE 
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6.2.2 National scale (Switzerland) 

The kernels were chosen to be 1’000m, 3’000m, and 5’000m, as they were close to 

the multiple of 10 of the local scales. The 7’000m was chosen instead of 10’000m 

because the gap between 5’000m to 10’000m was too extreme; visually nothing 

would have been visible. Because of this I changed the previous 10x250m to 3’000m 

so that the increase is a steady 2’000m. 

Defined clusters are less common on a large scale like Switzerland, but still occur 

where there are a lot of people. The Zurich area for example is one of them; many 

people, and a lot of reports. Though the differences between the maps are smoother 

than on a local scale. 

Normal KDE 

The clusters scatter and the differential measurements decrease as the kernel 

increases. On all the national scaled maps, the MAE is severely increased compared 

to the locally scaled maps. This is because the accumulated amounts of small 

differences are much bigger than when the sample size is smaller. The SD, ME, 

RMSE, and sums of positive and negative values are smaller on a national scale. 

[K1000,U1]-[K3000,U1] shows much bigger changes than [K5000,U1]-[K7000,U1] 

even though the increase of the kernel is constant. (see Figure 26). 
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Figure 26: National matrix, normal KDE 
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Concurrent & Sequential KDE 

As the two methods yield similar results, the descriptions of the small multiples are 

identical. Looking at the row of 1’000m kernel, the sharpness of the density clusters 

is diminishing as the inaccuracy gets bigger. With an increase of the kernel radius 

the clusters are getting blurred. This is confirmed by looking at [K1000,U0.5]-

[K1000,U1] and [K1000,U2]-[K1000,U10]. The changes increase, but not as much as 

when the kernel increases from 1’000m to 3’000m, although this difference gets 

smaller the more the kernel increases. [K7000,U0.5]-[K7000,U1] shows almost no 

difference at all. (see Figure 27 & Figure 28). 

With the highest RMSE/SD of 1.00 with a cell size of 3.828km2 no influential 

difference is being made by varying the kernel or the inaccuracy manipulation. The 

MAE is in both directions (row-/column-wise) much bigger than on a local scale, 

because the number of variables is higher on a national scale. 
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Figure 27: National matrix, concurrent KDE 
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Figure 28: National matrix, sequential KDE 
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Weighted KDE 

In contrast to the two MC methods, the weighted method remains its impact also on 

a national level. The way the formula works is that the weight of each report only 

decreases as the inaccuracy radii increases. Therefore, only positive values can be 

seen in each row. As the KDE radius rises, the clusters fade, and contours lose focus. 

The MAE of Switzerland is much higher compared to the weighted method of the 

local scale as the scale is bigger and more values are considered. As already 

explained on the local scale, horizontally no sums of negative values exist, because 

the map to the right only has smaller values, because the values get divided by the 

factor of 1, 2, or 10 respectively. Where there is almost no change between 

[K1000,U10]-[K3000,U10] and [K5000,U10]-[K7000,U10], there is a much greater 

change between [K1000,U0.5]-[K3000,U0.5] and [K5000,U0.5]-[K7000,U0.5]. (see 

Figure 29). 
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Figure 29: National matrix, weighted KDE 
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6.3 Differential analysis 

6.3.1 Local scale (Sursee region, LU) 

The maps in this chapter have different colour scales in order to show more 

information in each map. This way the comparison is more difficult to make between 

the methods, but the visual aids are much better. 

Whenever a figure shows the difference between two methods ([sequential & 

weighted] or [sequential & normal]), then the sequential map is subtracted from the 

other map ([weighted-sequential] or [normal-sequential]). The red rectangle 

indicates which (differential) map is being described. 

In the middle of Figure 30 the weighted KDE method of the local scale is shown. As 

indicated the top map shows the difference between 100m and 250m kernel each 

with no inaccuracy modifier. Here it is visible that as the kernel gets bigger the 

density of clusters spreads outwards, as to where the clusters of the smaller kernel 

stay in a small area but with a higher density. 

The bottom map shows only positive numbers, which means the map with a 250m 

kernel and no inaccuracy modifier has an overall higher density than the map with 

also a 250 kernel but a two times inaccuracy modifier. The clusters remain the same.  

The SD and RMSE are much higher in the top map than in the bottom one. This is 

because the difference between the 100m kernel and the 250m kernel is bigger than 

the step from a 1x to a 2x modifier in inaccuracy. 
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Figure 30: Local difference within weighted 
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Here in Figure 31 the difference between the methods with the same kernel and 

inaccuracy modifier is being investigated. The weighted map was subtracted by the 

sequential. The sequential method calculates a higher or the same density of tick 

reports almost everywhere. This is visible on the differential map as well as reflected 

in the measurements. The big difference on the right is located north of Geuensee in 

the local recreational area. A secluded view of the differential map can be seen in 

Figure 32. There, it is visible that the area with the biggest difference has a high 

variety of inaccuracies and a lot of overlap. Since the sequential method takes the 

spatial features of the tick data into account it calculates a higher density than the 

weighted method. Only where there are single tick reports without any overlap with 

the weighted method calculates a higher density than the sequential one. The 

sequential method can simulate tick reports within the inaccuracy radii, therefore the 

density in the overlapping area increases the more overlaps exist in an area. 
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Figure 31: Local difference, weighted vs sequential 
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Figure 32: Difference weighted-sequential [K250, U1] 
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The next Figure 33 displays the same methods as above, but this time the 

differential maps between the 100m kernel and the 250m kernel are shown. No 

changes were made to the inaccuracy of the tick reports. If the values are negative, 

then the sequential has a higher value, if it’s green then the weighted method has a 

higher value. The sequential method spreads the cluster outwards, whereas the 

weighted has smaller clusters but with a higher density. Some bigger clusters have 

shifted sideways a bit. This could be because of the Monte Carlo Simulation used in 

the sequential method, which creates other instances of points within the inaccuracy 

radii of tick reports. With a RMSE of 1.08 it is rather high.  
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Figure 33: Local difference, weighted vs sequential, column 
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The next Figure 34 displays the same methods as above, but this time the 

differential maps between the 1x and 2x inaccuracy of tick reports are shown. The 

kernel is 250m for both maps. The middle map shows the differential map between 

the top and bottom map. Since the differential map has mostly positive numbers, 

this leads to the conclusion that the weighted method creates a bigger difference 

between the 1x and 2x inaccuracy manipulation. With a SD of 1.45 and a RMSE of 

1.61 the gap is considerably large. 
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Figure 34: Local difference, weighted vs sequential, row 

 



56 
 

In Figure 35 the sequential method with a 250m kernel was subtracted from the 

normal method with also 250m kernel. The normal method calculates smaller and 

denser clusters, because of the MCS the sequential creates more dots inside their 

respective inaccuracy radii. This causes the sequential method to spread out the 

density, but keep it contained within an area. 
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Figure 35: Local difference, normal vs sequential 
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6.3.2 National Scale (Switzerland) 

The red square in the top right corner indicates which (differential) map is being 

described. 

The overall difference between the two methods is that the sequential method 

calculates a higher density of tick reports than the weighted method. The variance 

might be rather small yet is still there even on a national scale (see Figure 36). 
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Figure 36: National difference, weighted vs sequential 
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Judging by the differential measurements, the weighted map changes the density 

from the 1’000m to the 3’000m kernel slightly more than the sequential. No clear 

trends of the way the cells change values are visible (see Figure 37). 

 

Figure 37: National difference, weighted vs sequential, column 
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The difference between the changes in inaccuracy in Figure 38 shows that the 

sequential method changes much less by increasing the inaccuracy factor than the 

weighted method. With a SD of 0.71 and a RMSE of 0.81 on a national scale, these 

differences are rather large. 

 

Figure 38: National difference, weighted vs sequential, row 



62 
 

Between the normal and the sequential methods is little change on a national level. 

The ME is 0.00 and the MAE is 0.05. No noticeable difference is being recorded 

except for 3 out of 10782 cell, where the difference is extremely high (see Figure 

39). 

 

Figure 39: National difference, normal vs sequential  
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7. Discussion 

In the discussion part all research questions will be discussed in order. 

7.1. What spatio-temporal patterns are visible from 

crowdsourced tick data? 

There has been a general trend of increasing tick bites over the years, though this is 

due to the app getting more popular. In the year 2020 over 13’000 tick reports were 

made until the 10th of August. The actual reasons for this extreme increase are 

unknown, but speculations can be made about the impact of COVID-19 in 2020. 

Because of the lockdown that happened from spring until mid-summer, almost 

everyone stayed at home. People were still allowed to go outside for walks in their 

area (Bundesamt für Gesundheit BAG, 2020b). This could have led to a major 

increase in visitors in the local recreational areas and their gardens. These are areas 

that are favoured by ticks (Hansford et al., 2017; Mulder et al., 2013; Paul, Cote, Le 

Naour, & Bonnet, 2016). 

As all years show the same pattern in the months, May and June are the peak 

months where over 60% of all tick bites happen. As it gets hotter, the dry periods 

get longer. Ticks are sensitive to dry condition and can die if no rain falls for a long 

time. Over the months the temperatures drop, but the rain periods are not 

increasing significantly (MeteoSchweiz, 2019; Perret et al., 2000). The lower 

temperatures can cause ticks to die or hide. Both reasons reinforce the drop of tick 

reports over the following months. 

As ticks can survive several years without sucking blood, it appears that this is the 

reason why even some tick reports happen during winter, when their habitat is 

usually wet.  

Ticks prefer humid conditions and can die quite quickly in arid weather (Perret et al., 

2000). May and June are usually the wettest months of the year (MeteoSchweiz, 

2019). This explains the high number of tick reports from the 21st to the 27th week 

of the year.  
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The working weekdays show no big fluctuation, but there is an increase on Saturday 

and Sunday. Many people don’t have to work during the weekend, which is when 

they have time to go to the green places. Some tick bites are discovered on the 

same day, but also a large portion get only discovered the next day as they are hard 

to spot. This is interesting to see but is not of importance to this project. 

As seen in Figure 14, ticks can be found all over Switzerland with varying 

occurrences. The maps roughly follow the same patterns as to where humans live. 

This is logical, because tick reports can only happen where people are, and people 

are mostly in habitable areas. The canton of Zurich has the most tick reports of the 

Swiss cantons, which is reflected with the highest human population. 

Looking at the tick bites per population, 4 out of the top 5 cantons are in the 

southern half of Switzerland (see Figure 17). A rough pattern could be seen, that 

more tick bites happen in predominantly rural cantons, such as Grisons and Valais, 

than in urban cantons, such as Basel (Bundesamt für Statistik (BFS), 2014). 

Although this is only true for the cantons at the very top and bottom of Figure 17. As 

the data shows, ticks can be found almost everywhere in Switzerland, including 

Ticino and Geneva. In both cantons FMSE cases are confirmed yet no vaccination 

against FMSE is recommended. Especially in Ticino, which scores three times in the 

top 5 (Figure 15, Figure 16, and Figure 17), a recommended vaccination is strongly 

advised and should be made public by the state. It isn’t surprising to see most tick 

reports are found in the midland, which is where most of the people live and local 

recreational areas reside. 

The reasons are unknown why so many accuracy radii are around the standard 

report values. Reasons could be that people were not sure that they had the ability 

to change the accuracy of their reports and accidentally changed it by changing the 

location, or they were already happy with the predefined settings and did not feel 

the need to change the radius a lot. This has a negative impact on the quality of the 

crowdsourced data. No measurement tool is implemented in the app “Zecke” to see 

how big the chosen radius is in numbers. 
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7.2. How to estimate tick density from user-generated tick bite 

data with positional uncertainty? 

The easiest way to handle low quality data is to prevent it from happening at the 

source. Sometimes collecting uncertainties is necessary for the project. It can give 

you great inside information about the userbase. With the crowdsourced tick reports, 

the uncertainty of tick bite location is necessary, because people do not realize when 

they are bitten by a tick.  

The first thing to do is to minimize the low-quality uncertainty from the necessary 

uncertainty. For this all tick reports were filtered out with an inaccuracy of more than 

2’130 meters. The smaller the radius of inaccuracy, the higher the quality of the tick 

report. Later the standard report inaccuracies were taken out. Which then left me 

with 40’579 out of the starting 47’723 tick reports.  

After cleaning the data, 3 methods were developed: the weighted KDE, concurrent 

KDE, and sequential KDE. By using the KDE, the density could be calculated, and the 

kernel and other factors could be changed, giving the option to change the kernel 

search radius among other things.  

To have a comparison on what an impact the inaccuracy has on the density it was 

set in contrast to the kernel parameter. By increasing and decreasing the existing 

inaccuracies with the inaccuracy modifier, the simulation of lower or higher quality 

data could be made. A combination of the kernel parameters and the inaccuracy 

modifier created small multiples. These allowed for visual comparison as well as 

comparing the differences between other maps of the same and of another method. 

Statistical measurements were used for quantification of the divergences of two 

maps. 

With the small multiples and the statistical measurements, the comparison could be 

made between the methods with the same extent, inaccuracy modifier, and kernel 

parameter. 

All three methods have (dis-)advantages under circumstances. The weighted method 

has the advantage of always having an influence on the outcome, no matter the 
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inaccuracy radii or the scale. It calculates the overall lowest density of ticks out of 

the four methods. Another advantage is that any other input could be used as 

weights, therefore it is more flexible than the other methods, but unlike the 

sequential or concurrent methods it does not represent the spatial features of the 

inaccuracy on a spatial level but as numbers.  

The sequential or concurrent methods share the same pros and cons. On a local 

level they show the inaccuracy of the tick reports by simulating more tick reports 

within their radii. They calculate the threat of tick bites in a wider area than the two 

methods and show that tick bites do not necessarily only happen in their specific 

coordinates. A big disadvantage is the lack of impact on large scale (e.g. national 

scale). There the additional simulations within inaccuracies are too small to create a 

significant difference between the sequential / concurrent and the normal method. 

When it comes to the normal method, it calculates the highest tick density out the 

four methods. It was the fastest and easiest to calculate but does not consider any 

spatial features apart from the tick bite locations themselves.  
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7.3 What is the relation between the created spatial patterns 

of the different methods, the kernel parameter, and the 

inaccuracy radii of the trick reports? 

The discussion of this question starts with the global relations within the different 

methods. Examples will be given on a local scale, but on a national scale most 

observations of the different methods and their relations stay true but are less 

prominent. Then the differential maps between the methods are inspected on a local 

and national scale. 

With each method, the clusters behave differently when modifying the inaccuracy or 

the kernel bandwidth. In the case of the normal KDE, the inaccuracy has no impact 

at all, therefore only the kernel parameter can be changed. On a local scale with a 

search radius of 100m clear dots are visible. As the kernel increases the dots begin 

to merge in to bigger clusters and the density is spread out in a wider area, until it 

almost vanishes with a kernel of 1’000m (see Figure 22). 

The concurrent and sequential methods are practically the same and show the same 

patterns and relation to a change in inaccuracy and kernel parameter. With a kernel 

of 100m an increase in inaccuracy scatters the existing small clusters in the near 

area. With a ten times bigger inaccuracy small clusters are so spread out that they 

dissipate. Bigger clusters remain, and some might have merged a little with 

neighbouring clusters. With higher kernel bandwidths, the change in inaccuracy 

decreases until almost no change is visible with a kernel of 1’000m. A 250m kernel 

still shows the scattering of the tick reports and some clusters are less defined (see 

Figure 23 and Figure 24). 

The local weighted kernel is interesting. With a decrease of inaccuracy to a 0.5 

modifier and a 100m kernel, the dots become bigger and more prominent, but 

almost vanish with an increase of inaccuracy. This trend becomes truer the bigger 

the kernel gets. With an increase in the bandwidth of the kernel, the clusters 

become less dense but bigger (see Figure 25 and Figure 30). 

In every case the kernel factor had a bigger impact on the resulting map than the 

inaccuracies. The changes made from 1x to 2x increase of inaccuracy radii are not 
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very striking. Changes were evident only after the radii were increased by a factor of 

10. 

The difference between the weighted and the sequential map in Figure 31 shows 

that the sequential method calculates almost everywhere a higher density than the 

weighted method, except for a few separated tick reports with no neighbours. If a 

lot of tick reports with small and large inaccuracy radii are present, like the big red 

area seen in Figure 31, then the sequential method calculates a much larger cluster 

with a higher density than the weighted method. This is not the case for places with 

many tick reports near each other and of the same size like in the middle and very 

south of the map (see Figure 32). There a similar density was calculated. Only 

where the big radius to the right of it comes into play does the density slightly 

change between the methods. 

When comparing the influence of the kernel parameter between the methods 

weighted and sequential, the change isn’t as dramatic as to comparing the 

calculated KDE in the paragraph above (see Figure 33). The weighted method 

calculates a higher density in the centre of the clusters whereas the sequential 

method has the centre of its clusters slightly shifted due to the MCS. The overall 

density of the rasters stays the same seen by the ME of 0.00. 

With changing the inaccuracy modifier from 1 to 2, the weighted method changes 

more than the sequential one, because the weighted method divides all values by 2 

after the normalization, whereas the increase of inaccuracy spreads out the density, 

but doesn’t reduce it (see Figure 34). 

As for the difference between the normal and sequential method, the normal KDE 

calculates a higher density with smaller, more defined clusters. The sequential 

method increases the area of the clusters, but also lowers the density of these 

clusters, but the overall density of both rasters is similar, seen by the ME of 0.02 

(see Figure 35). 

On a national scale the sequential method calculates a higher density than the 

weighted method (see Figure 36). The same patterns are visible on the national 

scale as on the local scale but to a lesser degree.  
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The influence of the kernel search radius of the differential maps decreased 

dramatically from the local to the national scale. The overall difference might still be 

the same (ME=0.00), but the RMSE went from a 1.08 to a 0.2 and the MAE from a 

0.41 to a 0.09 (see Figure 33 and Figure 37). 

The impact of the 2-times inaccuracy modifier changed from the local to the national 

level by also dividing almost every statistical measurement by two. The SD dropped 

from 1.45 to 0.71, the ME from 0.71 to 0.38, the MAE from 0.72 to 0.38, and the 

RMSE went from a 1.61 to a 0.81. This shows that the increase of the inaccuracy 

has a lower significance on a national scale than on a locale scale when comparing 

the weighted with the sequential method (see Figure 34 and Figure 38). 

The same trend holds true for the comparison of the normal and the sequential 

method (see Figure 39). Here the difference between the local and national scale is 

bigger. With a RMSE of 0.18 on a national level where it was 0.53 on a local level, 

the difference between the methods is miniscule (see Figure 35 and Figure 39).  
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8. Conclusion 

This master thesis is the first Swiss-wide thorough analysis of crowdsourced tick 

data. Before the analysation could begin, the data was cleaned of standard reports 

and ones with an accuracy radius of over 2’130m. Then, the temporal attributes of 

the tick data were explored. A huge upsurge of data happened in the year 2020 

compared to the years before. This could have been because of the COVID-19 virus 

that emerged the same year. Over the years, most tick reports happened during the 

week 21 and 27 which lied in May and June. Most tick reports were sent during the 

weekend, with the presumption that more people go to green places during the 

weekend than weekdays. For spatial exploration, it was found that ticks can be 

found almost everywhere in Switzerland. Many ticks were reported from the cantons 

Zurich, Bern, Vaud, and Aargau. When normalized with the cantons’ population, then 

the top 4 are Obwald, Grisons, and Solothurn; closely followed by Ticino. The height 

distribution is centred around 466 and 697meters above sea level. The accuracy radii 

of tick reports show three spikes around 100, 300, and 1’000meters. The standard 

reports had similar numbers, which could lead to believe if the standard reports were 

changed, so would also the radii. 

Afterwards the small multiples of the different methods were analysed by comparing 

the differences within the small multiples visually and through statistical 

measurements. Locally the inaccuracies of tick reports have a small impact, whereas 

the kernel parameter has a much bigger one. On a national scale the inaccuracy’s 

impact was neglectable, but with the weighted method it could still be relevant. This 

method however did not take the spatial properties of the tick data correctly into 

account. The differential analysis showed that the normal KDE calculates the overall 

highest density, followed by the concurrent and sequential at the same position and 

the weighted method calculates the lowest density.  

With the explorative data analysis, tick reports happen all over Switzerland, mostly in 

local recreational areas. The canton of Ticino has a lot of municipalities with very 

high tick reports per population numbers in Switzerland. The FSME map (Figure 2) 

shows that Ticino has confirmed FMSE cases. Comparing this with the high number 

of tick reports in that canton, making Ticino also a risk area for FSME and 
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recommending a vaccination might be a good idea. The months May and June are 

especially dangerous for getting bitten by a tick. With the weighted method, all types 

of uncertainty can be weighted and visualized with the KDE. Yet the concurrent, and 

sequential methods are more suitable for spatial uncertainty, because they better 

show the spatial properties and can simulate the extent of the uncertainty and 

create a KDE afterwards.  

The arbitrary number of kernel search radii and the inaccuracy modifier could be 

varied to yield additional results. To further know when many tick bites happen, the 

weather could be used as an indicator to predict future tick bites. By looking at past 

weather reports and the following tick count, relations could maybe be seen.  

What would be interesting to see next is how many of the gathered tick cases were 

reported with FSME. Are there clusters as well? Since this data is very private and 

doctors are bound to professional discretion, it would be hard to come by. 

With more tick reports being send, another analyses could be made with updated 

data, however it is unlikely that the outcome of the maps will change a lot if the 

same procedure will be done with more data, especially on a big scale like 

Switzerland. On the small scale it will have an impact, especially in places where 

there haven’t been any or very few tick reports.  

The tick data also contains temporal uncertainties (e.g. when did the tick bite 

happen? Today, yesterday, or before?), which could be investigated. How accurate 

is the temporal perception of people when they find a tick bite? 
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file:///C:/Users/Shadowpriest1/Documents/GitHub/ticks/Mather%20Thesis09_5.docx%23_Toc52319294
file:///C:/Users/Shadowpriest1/Documents/GitHub/ticks/Mather%20Thesis09_5.docx%23_Toc52319295
file:///C:/Users/Shadowpriest1/Documents/GitHub/ticks/Mather%20Thesis09_5.docx%23_Toc52319296
file:///C:/Users/Shadowpriest1/Documents/GitHub/ticks/Mather%20Thesis09_5.docx%23_Toc52319298
file:///C:/Users/Shadowpriest1/Documents/GitHub/ticks/Mather%20Thesis09_5.docx%23_Toc52319299
file:///C:/Users/Shadowpriest1/Documents/GitHub/ticks/Mather%20Thesis09_5.docx%23_Toc52319300
file:///C:/Users/Shadowpriest1/Documents/GitHub/ticks/Mather%20Thesis09_5.docx%23_Toc52319301
file:///C:/Users/Shadowpriest1/Documents/GitHub/ticks/Mather%20Thesis09_5.docx%23_Toc52319302
file:///C:/Users/Shadowpriest1/Documents/GitHub/ticks/Mather%20Thesis09_5.docx%23_Toc52319303
file:///C:/Users/Shadowpriest1/Documents/GitHub/ticks/Mather%20Thesis09_5.docx%23_Toc52319304
file:///C:/Users/Shadowpriest1/Documents/GitHub/ticks/Mather%20Thesis09_5.docx%23_Toc52319305
file:///C:/Users/Shadowpriest1/Documents/GitHub/ticks/Mather%20Thesis09_5.docx%23_Toc52319306
file:///C:/Users/Shadowpriest1/Documents/GitHub/ticks/Mather%20Thesis09_5.docx%23_Toc52319307
file:///C:/Users/Shadowpriest1/Documents/GitHub/ticks/Mather%20Thesis09_5.docx%23_Toc52319308
file:///C:/Users/Shadowpriest1/Documents/GitHub/ticks/Mather%20Thesis09_5.docx%23_Toc52319309
file:///C:/Users/Shadowpriest1/Documents/GitHub/ticks/Mather%20Thesis09_5.docx%23_Toc52319310
file:///C:/Users/Shadowpriest1/Documents/GitHub/ticks/Mather%20Thesis09_5.docx%23_Toc52319311
file:///C:/Users/Shadowpriest1/Documents/GitHub/ticks/Mather%20Thesis09_5.docx%23_Toc52319312
file:///C:/Users/Shadowpriest1/Documents/GitHub/ticks/Mather%20Thesis09_5.docx%23_Toc52319315
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11. Appendix 

11.1 Code snippets 

The code snippets are structured in a similar way the paper is structured. First the 

loading of the data happens, then some cleaning of the data happens and after that 

the explorative data analysis begins by creating histograms. Afterwards the KDE 

function is shown. The MCS function is under section 11.2.3, rather at the beginning, 

after loading the subset (local scale). Then one example is showing how the MCS 

and KDE were combined to create the 500m kernel of the concurrent small multiple. 

If this would be continued for the other kernels as well a small multiple could be 

created which is shown further below in 11.2.3. 

11.1.1 Histograms 

#load packages 

```{r directorySetup,comment=FALSE, message = FALSE, 

echo=FALSE,warning=TRUE} 

library(sf)   

library(dplyr) 

library(lubridate) 

library(tidyverse) 

library(tmap) 

library(raster) 

library(openxlsx) 

library(rgdal) 

library(ggplot2) 

library(cowplot) 

library(tidyr) 

library(colorspace) 

``` 

 

#loading data + everything into the Global Environment 

```{r, warning=TRUE, message=TRUE, fig.align="center"} 

getwd() 

wd <- setwd(getwd()) 

 

# read in main tick data 

tick <- read.csv("data/20200810-tick-reports-48000.csv", sep = ",", 

                        encoding = "UTF-8", 

                        stringsAsFactors = FALSE) #load in data 

tick = st_as_sf(tick, coords=c("x","y"), crs=21781) 

#str(tick)           ##checks how R is reading the data (geometry, numbers, 

characters, etc.) 

tick$date2 <-as.POSIXct(x = tick$date, format= "%d.%m.%Y %H:%M") 

tick <- filter(tick, date2 >= "2015-01-01 00:00")           ##there were 

about 5 entries from 1970? this way they are removed 

tick <- filter(tick, acc. != 1064, acc. != 68903, acc. != 1153, acc. != 

74650, acc. != 1014, acc. != 333, acc. != 974, acc. != 63040, acc. != 302, 

acc. != 994, acc. != 64349, acc. != 73102, acc. != 1129, acc. != 1044, acc. 

!= 67607,  acc. != 972, acc. != 62963) ##removes all the standard reports 

(from experiment) 
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mutate(tick, datum=as.Date(date2))  ##ergänzen, creates new column in 

ticks. convenience variables 

tick <- mutate(tick, year=year(date2), month=month(date2), 

week=week(date2), day=day(date2), hour=hour(date2), 

weekday=as.POSIXlt(tick$date2)$wday) # adds convenience variables year, 

month, week, day, hour, and weekday 0=Sunday & 1=Monday) 

tick$weekday[tick$weekday==0] <- 7 

ticksf_dataframe <- st_as_sf(tick, coords = c("x", "y"), crs= 21781)      

##sf is better than spatial_data_frame. Nils thinks so 

 

 

#read in swiss boundaries 

ch_boundaries_sf1 <- 

read_sf("Schweiz/swissBOUNDARIES3D_1_3_TLM_KANTONSGEBIET.shp")  ##reads in 

the shp of Switzerland and its Cantons 

ch_boundaries_sf = st_transform(ch_boundaries_sf1, crs = 

st_crs(ticksf_dataframe))   ## transforms the projection to the same as the 

tick data (crs=21781) 

#st_geometry(ch_boundaries_sf)   ##checks the projection type (crs=?) 

 

#only taking ticks withing Switzerland 

union_CH <-st_zm(st_union(ch_boundaries_sf)) #unites the 42 polygons 

(Kantone) together to one big polygon 

boolian_CH <-st_contains(union_CH, ticksf_dataframe, sparse = FALSE)[1,] 

#show me all the ticks withing Switzerland 

zecken <-filter(ticksf_dataframe, boolian_CH) #only take the ticks withing 

Switzerland 

  boxplot(zecken$acc. , outline = FALSE) 

  boxplot.stats(zecken$acc.)$stats 

  # #      Min.    1st Qu.  Median    3rd Qu.    Max.   

  #[1]    2.0000  138.4105  301.7485  910.0000 2130 

zecken <- filter(zecken, acc. <= 2130) #only shows the ticks which are 

2065.5218m radius of smaller (95% of all reports in CH) 

 

#create subset SG of zecken 

SG <- subset(ch_boundaries_sf, ch_boundaries_sf$NAME == c("St. 

Gallen","Appenzell Innerrhoden","Appenzell Innerrhoden"))  #only takes 

St.Gallen from the boundaries. 

union_CH <-st_zm(st_union(SG)) #since there are 2 polygons, it unites them 

boolian_CH <-st_contains(union_CH, zecken, sparse = FALSE)[1,] #yes/no 

which points lie within SG? 

SG <-filter(zecken, boolian_CH) #only take points within SG 

 

 

tickbuffer <-st_buffer(zecken, zecken$acc.) #creates a buffer around the 

tick reports --> makes them into polygons 

 

gemeinde <- read_sf("ag-b-00.03-875-gg20/ggg_2020-LV95/shp/g1g20.shp")     

#reading in  municipality boundaries 

gemeinde_sf = st_transform(gemeinde, crs = st_crs(ticksf_dataframe))       

#make gemeinde have the same csr as zecken 

 

 

zecken <- st_join(zecken, ch_boundaries_sf) #works 

names(zecken)[names(zecken) == "NAME"] <- "kanton" #works changes the 

column name "NAME" to kanton 

zecken <-                #creates new column with the abbreviations of each 

kanton 

    mutate(zecken, abkurz = case_when(kanton == "Aargau" ~ 'AG', 

                              kanton == "Appenzell Ausserrhoden"~ 'AR', 
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                              kanton == "Appenzell Innerrhoden"~ 'AI', 

                              kanton == "Basel-Landschaft"~ 'BL', 

                              kanton == "Basel-Stadt"~ 'BS', 

                              kanton == "Bern"~ 'BE', 

                              kanton == "Fribourg"~ 'FR', 

                              kanton == "Genève"~ 'GE', 

                              kanton == "Glarus"~ 'GL', 

                              kanton == "Graubünden"~ 'GR', 

                              kanton == "Jura"~ 'JU', 

                              kanton == "Luzern"~ 'LU', 

                              kanton == "Neuchâtel"~ 'NE', 

                              kanton == "Nidwalden"~ 'NW', 

                              kanton == "Obwalden"~ 'OW', 

                              kanton == "Schaffhausen"~ 'SH', 

                              kanton == "Schwyz"~ 'SZ', 

                              kanton == "Solothurn"~ 'SO', 

                              kanton == "St. Gallen"~ 'SG', 

                              kanton == "Ticino"~ 'TI', 

                              kanton == "Thurgau"~ 'TG', 

                              kanton == "Uri"~ 'UR', 

                              kanton == "Vaud"~ 'VD', 

                              kanton == "Valais"~ 'VS', 

                              kanton == "Zug"~ 'ZG', 

                              kanton == "Zürich"~ 'ZH')) 

kanton_amount <- as.data.frame(table(zecken$abkurz)) #works returns number 

of reports from each Kanton 

#kanton_amount 

 

 

zg_join <- st_join(zecken, gemeinde_sf) 

gemeinde_amount <- as.data.frame(table(zg_join$GMDNAME)) #works returns 

number of reports from each municipality 

#gemeinde_amount 

 

 

dh = raster("datahöhenmodell/DHM200.asc")  #loads in the elevation model of 

Switzerland 

 

unloadNamespace("tidyverse") #unload to unload modelr 

unloadNamespace("modelr") #unload to unload broom 

unloadNamespace("broom") #unload to unload tidyr 

unloadNamespace("tidyr") #unload because another extract is used by the 

raster package 

zg_join$height <-  extract(dh, zecken)      #creates a new column in 

zg_join and assigns every data point a specific height 

zecken$height <-  extract(dh, zecken)  

##for extract to work tidyverse needs to be turned off. 

 

users <- unique(zecken$X..uuid.)  #17116 unique users 

#### 

 

``` 

 

#Plotting histogram 

```{r, warning=FALSE, message=FALSE} 

zecken %>% group_by(year = year(date2)) %>% count() %>% ggplot(aes(year,n)) 

+ geom_col() + scale_x_continuous(breaks = 2015:2020, labels = 2015:2020) # 

shows yearly count 

# 
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zecken %>% group_by(month) %>% count() %>% ggplot(aes(month,n)) + 

geom_col() + scale_x_continuous(breaks = 1:12, labels = 1:12) #shows 

monthly count 

# 

zeck <- filter(zecken, week>=15) 

zeck <- filter(zeck, week<=30 ) 

zeck %>% group_by(week) %>% count() %>% ggplot(aes(week,n)) + geom_col() + 

scale_x_continuous(breaks = seq(16,30, 2)) 

# 

ggplot(zecken, aes(weekday))+geom_histogram()#shows on which weekdays how 

many ticks happened 

zecken %>% group_by(weekday) %>% count() %>% ggplot(aes(weekday,n)) + 

geom_col() + scale_x_continuous(breaks = 1:7, labels = 1:7) #shows weekday 

count 

# 

ggplot(zecken, aes(acc.))+geom_histogram(binwidth = 50) 

#   min5%    1st quart  median   3rd quart   max 95% 

#   2.0000   122.0000  301.7485  715.0000   1604.4765 

ggplot(zecken, aes(date.acc.)) +geom_histogram(binwidth=216000) 

zeck <- filter(zecken, height<=2000 ) 

ggplot(zeck, aes(height))+geom_histogram() + scale_x_continuous(breaks = 

seq(0,2000, 250)) 

boxplot.stats(zecken$acc.)$stats 

#   min5%    1st quart  median   3rd quart  max 95% 

#  193.0000  466.5025  555.6000  696.5000   1041.2980 

zeck <- filter(zecken, height <=2000) 

boxplot.stats(zeck$height)$stats 

# 

kanton_amount %>% 

  mutate(name= fct_reorder(Var1, desc(Freq))) %>% 

  ggplot(aes(x=name, y=Freq)) + 

    geom_bar(stat="identity", fill="#f68060", alpha=.6, width=.4) + 

    coord_flip() + 

    xlab("") + 

    theme_bw() 

        #plots all kantons and orders them in ascending order in how many 

reports were taken in which canton. 

gemein <- st_read("Gemeindeanzahl.xlsx") 

zg_join2 <- read.csv("zg_join2.csv", sep = ",", 

                        encoding = "UTF-8", 

                        stringsAsFactors = FALSE) 

names(gemein)[names(gemein) == "BevÃ.lkerung"] <- "population" #renames the 

colum to an easier name 

as.data.frame(gemein) 

gemeinde_amount <- as.data.frame(table(zg_join2$GMDNAME))  

mergeGemein <- merge(gemeinde_amount, gemein, by.x="Var1", by.y="Gemeinde") 

#joins the pop density with the amount of ticks per municipality 

mergeGemein <- mutate(mergeGemein, norm_tick= Freq/population) 

 

mergeGemein_filter <- filter(mergeGemein, norm_tick >= 0.04) #only takes 

the norm_tick which are higher than 1 

 

mergeGemein_filter %>% 

  mutate(name= fct_reorder(Var1, desc(norm_tick))) %>% 

  ggplot(aes(x=name, y=norm_tick)) + 

    geom_bar(stat="identity", fill="#f68060", alpha=.6, width=.4) + 

    coord_flip() + 

    xlab("") + 

    theme_bw() 
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#creates a plot that shows which Kanton has the highest tick reports per 

population density (hence normalized data) 

##read in data 

kanton_pop <- st_read("kanton_pop_density.xlsx") 

as.data.frame(kanton_pop) 

zecken_INkanton <- as.data.frame(table(zecken$abkurz)) 

mergeKanton_pop <- merge(zecken_INkanton, kanton_pop, by.x="Var1", 

by.y="Kanton") #joins the pop density with the amount of ticks per Kanton 

mergeKanton_pop <- mutate(mergeKanton_pop, norm_tick= Freq/population) 

 

mergeKanton_pop %>% 

  mutate(name= fct_reorder(Var1, desc(norm_tick))) %>% 

  ggplot(aes(x=name, y=norm_tick)) + 

    geom_bar(stat="identity", fill="#f68060", alpha=.6, width=.4) + 

    coord_flip() + 

    xlab("") + 

    theme_bw() 

zecken_INkanton %>% 

  mutate(name= fct_reorder(Var1, desc(Freq))) %>% 

  ggplot(aes(x=name, y=Freq)) + 

    geom_bar(stat="identity", fill="#f68060", alpha=.6, width=.4) + 

    coord_flip() + 

    xlab("") + 

    theme_bw() 

 

``` 
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11.1.2 KDE 

#4.6 Appendix VII: Custom functions 

The following function is a helper function for "kernel_density"". It takes 

an "extent" object and enlarges it so that it is a multiple of "cellsize". 

The function returns a new, adjusted "extent" object. 

https://github.zhaw.ch/pages/FightingBitesWithBytes/GIS_Exposure/index.html 

https://github.zhaw.ch/pages/FightingBitesWithBytes/GIS_Exposure/appendix.h

tml#appendix-vii-custom-functions 

```{r} 

extent_by_cellsize <- function(extent_old, cellsize){ 

  require(raster) 

   

  xrange <- c(extent_old[2], extent_old[1]) 

  yrange <- c(extent_old[3], extent_old[4]) 

   

  xrange_diff <- abs(diff(xrange)) 

  yrange_diff <- abs(diff(yrange)) 

   

  enlarge_x <- ((ceiling(xrange_diff/cellsize)*cellsize)-xrange_diff)/2 

  enlarge_y <- ((ceiling(yrange_diff/cellsize)*cellsize)-yrange_diff)/2 

   

   

  extent_new <- extent( 

    matrix( 

      c( 

        extent_old[1]-enlarge_x, 

        extent_old[2]+enlarge_x, 

        extent_old[3]-enlarge_y, 

        extent_old[4]+enlarge_y 

      ),2,2,TRUE) 

  ) 

   

   

  extent_new 

} 

``` 

The following function is mainly a wrapper around spatstat::density to work 

with sf objects. Additionally, it also simplifies said function to suit the 

needs in a more succinct manner. Input: 

```{r} 

#    -"sf_object": A point-object of class "sf" 

#    -"cellsize": Cellsize in units of the input data (usually meters). The 

resulting raster tries to match the cellsize exactly by modifying          

(enlarging) the output extent with "extent_by_cellsize" 

#    -"sigma": is directly passed on to "spatstat::density.ppp()". 

Basically, this is the search radius in units of the input data 

#    -"boundary": An "sf"-polygon of the boundary within which densities 

should be estimated (e.g. country border). The function "st_union" will       

be performed on this object, and it should contain only one feature after 

this operation. I don’t know what will happen if this is not the       

case. 

#    -"holes": An "sf"-polygon of the holes within the boundry, wehere no 

densities should be estimated (for example “lakes”). If the polygon          

itself #contains holes, these will be removed. I don’t know what will 

happen if this object is a multipolygon or if these holes are              

outside "boundary" 

#    -"weights", "edge", "varcov"… are directly passed on to 

spatstat::density.ppp() 

 

sf_object <- zecken 
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cellsize <- 2000 

 

 

kernel_density <- function(sf_object,            #my tick points sf_object 

<- zk_join 

                           cellsize,             #what my cellsize should 

be. define before. in meters. 

                           sigma=NULL,   

                           boundary = NULL,     #if NULL take the extend of 

my data set and make that my boundaries 

                           holes = NULL,  

                           weights=NULL,         #need to define the 

inverse of my acc. if I want this to take part 

                           edge=TRUE,   

                           varcov=NULL,  

                           at="pixels",  

                           leaveoneout=TRUE,  

                           adjust=1,  

                           diggle=FALSE,  

                           se=FALSE,  

                           kernel="gaussian",     #maybe I want another 

version of KDE 

                           scalekernel=is.character(kernel),  

                           positive=FALSE,   

                           verbose=TRUE){ 

  require(spatstat) 

  require(maptools) 

  require(sf) 

  require(raster) 

  start <- Sys.time()      #just starts a timer to show me how long 

everything took until a certain point. 

  stopifnot(!(is.null(boundary) & !is.null(holes)))    #if I have no 

boundaries, but I have holes (example: lake), it will stop the function, 

because it would be weird. 

   

  if(!is.null(boundary)){               #if i have boundaries set, do 

something. 

    boundary_union <- st_union(boundary) 

    stopifnot(length(boundary_union)==1) 

    boundary_union_coords <- (st_coordinates(boundary_union)) 

     

    poly <- list(list(x = rev(boundary_union_coords[,1]), y = 

rev(boundary_union_coords[,2]))) 

    ex <- extent(boundary) 

  } else{ 

    ex <- extent(sf_object)              #if I don't have boundaries, take 

the extend of sf_object (mydataset). 

    poly <- NULL 

  } 

  if(!is.null(holes)){ 

     

    # holes_remove <- st_as_sfc(lapply(st_geometry(holes), function(x) 

st_polygon(x[1]))) 

    holes_coordinates <- holes %>%         #cuts out lakes etc. (everything 

I dont want) and adds it to boundaries. 

      st_geometry() %>% 

      lapply(function(x){ 

        mat <- x[1] 

        list(x = mat[[1]][,1], 

             y = mat[[1]][,2]) 

      }) 
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    for(i in seq_along(holes_coordinates)){ 

      poly[[i+1]] <- holes_coordinates[[i]] 

    } 

     

  } 

   

   

  ex_new <- extent_by_cellsize(extent_old = ex,cellsize = cellsize) #takes 

the cellsize and enhances the extend so that the cellsize fits nicely into 

it.  

   

  xrange <- c(ex_new[1],ex_new[2]) 

  yrange <- c(ex_new[3],ex_new[4]) 

   

   

  # create an observation window from polygon and holes 

  w <- owin(xrange = xrange, yrange = yrange, poly = poly, unitname = 

c("meter","meters"))   #owin = observation window. 

  sf_coords <- st_coordinates(sf_object) 

  x <- ppp(sf_coords[,1], sf_coords[,2],window = w,marks = 

st_set_geometry(sf_object,NULL))  #turns the sf_object into a ppp-object + 

window 

   

   

   

  dimyx <- 

round(c((abs(diff(yrange)))/cellsize,(abs(diff(xrange)))/cellsize))     

#tells me how many cells are on the X and Y axis. 

   

  des <- density.ppp(x, sigma=sigma, dimyx = dimyx, weights=weights, 

edge=edge, varcov=varcov, at=at, leaveoneout=leaveoneout, adjust=adjust, 

diggle=diggle, se=se, kernel=kernel, scalekernel=scalekernel, 

positive=positive, verbose=verbose)       #the KDE function 

   

  ras <- raster(des)   #makes a raster out of it 

  crs(ras) <- crs(sf_object)  #not sure anymore 

  print(difftime(Sys.time(),start))  #stops the time that we started at the 

beginning 

  ras  #shows the KDE on the map 

} 

 

``` 
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11.1.3 creating small multiples 

   

#load in necessary data 

```{r} 

library(sf)   

library(dplyr) 

library(lubridate) 

library(tidyverse) 

library(tmap) 

library(raster) 

library(rgdal) 

library(ggplot2) 

library(cowplot) 

library(tidyr) 

library(colorspace) 

library(Metrics) 

 

getwd() 

wd <- setwd(getwd()) 

 

# 

knutwil_sf <- read_sf("data/Ausschnitt/new_knutwilV2.shp") 

knutwil <- st_as_sf(knutwil_sf, coords = c("x", "y"), crs= 21781)    

knutwil = st_transform(knutwil, crs = st_crs(21781)) 

knutwil <-st_cast(knutwil, "POINT", group_or_split = FALSE) 

knutwil <- filter(knutwil, acc. <= 2130) 

# 

extent_sub <- read_sf("data/extent_subset_LU/subset_LU.shp") 

 

 

``` 

#creating a Monte-Carlo-Simulation function 

```{r} 

n = 50 #how many iterations? 

 

#tmap_mode("view") #makes the map interactive 

#tmap_mode(mode = c("plot", "view"))  #makes the map not interactive 

point <- knutwil$geometry 

sf_object <- knutwil 

maxdist <- knutwil$acc. 

 

move_point <- function(point, maxdistance){ 

   

  n_points <- length(point) 

   

  angle_deg <- runif(n_points,1,360) 

   

  distance <- rnorm(n_points,mean = 0,sd = maxdistance/2) 

   

  angle_rad <- (angle_deg * pi) / (180) 

   

  point_old <- st_coordinates(point) 

   

  xoffset <- cos(angle_rad) * distance 

  yoffset <- sin(angle_rad) * distance 

   

  point_new <- point_old + matrix(c(xoffset,yoffset), ncol = 2) 

   

  point_new <- point_new %>% 

    split(1:nrow(.)) %>% 
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    map(~st_point(.x))%>% 

    st_sfc() 

   

  point_new 

} 

``` 

#matrix maps for concurrent 

##500 

```{r} 

#1 acc-radius 

oneMonte <- map_dfr(1:n, function(x){       # a map with tons of points on 

it 

  at <-move_point(knutwil$geometry, knutwil$acc.)  #assigns the move_point 

function to at 

  #at <- st_as_sf(at, crs=21781)     #assigns all the list-points a 

projection 

  at <- st_set_crs(at,21781) 

  st_as_sf(at) 

}) 

 

kdeoneMonte <-  kernel_density(sf_object = oneMonte, cellsize =100, sigma = 

500, boundary = extent_sub) #takes the oneMonte and turns it into a KDE-map 

kdeoneMonte <-kdeoneMonte/50 

crs(kdeoneMonte) <- st_crs(21781)$proj4string #gives correct projection 

kdeoneMonte <- kdeoneMonte*1000000 

##tm_shape(kdeoneMonte) + tm_raster(alpha = 0.5, midpoint = NA, palette="-

RdYlGn") #### saved as: SG_c100_s500/50oneMCS 

#writeRaster(kdeoneMonte,"knutwilkm_kde_concurrent_500.tiff") 

mean_concurrent1_500 <- cellStats(kdeoneMonte, stat = 'mean') 

mean_concurrent1_500 

knutwil_concurrent1_500 <- kdeoneMonte 

 

#0.5 acc-radius 

knutwil$acc.2 <- knutwil$acc.*0.5 

oneMonte <- map_dfr(1:n, function(x){       # a map with tons of points on 

it 

  at <-move_point(knutwil$geometry, knutwil$acc.2)  #assigns the move_point 

function to at 

  #at <- st_as_sf(at, crs=21781)     #assigns all the list-points a 

projection 

  at <- st_set_crs(at,21781) 

  st_as_sf(at) 

}) 

kdeoneMonte500_05 <-  kernel_density(sf_object = oneMonte, cellsize= 100, 

sigma = 500, boundary = extent_sub) #takes the oneMonte and turns it into a 

KDE-map 

kdeoneMonte500_05 <-kdeoneMonte500_05/50 

crs(kdeoneMonte500_05) <- st_crs(21781)$proj4string #gives correct 

projection 

kdeoneMonte500_05 <- kdeoneMonte500_05*1000000 

##tm_shape(kdeoneMonte500_05) + tm_raster(alpha = 0.5, midpoint = NA, 

palette="-RdYlGn") #### saved as: SG_c100_s500/50oneMCS 

#writeRaster(kdeoneMonte500_05,"knutwilkm_kde_concurrent0.5_500.tiff") 

mean_concurrent05_500 <- cellStats(kdeoneMonte500_05, stat = 'mean') 

mean_concurrent05_500 

knutwil_concurrent05_500 <- kdeoneMonte500_05 

 

#2 acc-radius 

knutwil$acc.2 <- knutwil$acc.*2 

oneMonte <- map_dfr(1:n, function(x){       # a map with tons of points on 

it 
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  at <-move_point(knutwil$geometry, knutwil$acc.2)  #assigns the move_point 

function to at 

  #at <- st_as_sf(at, crs=21781)     #assigns all the list-points a 

projection 

  at <- st_set_crs(at,21781) 

  st_as_sf(at) 

}) 

kdeoneMonte500_2 <-  kernel_density(sf_object = oneMonte, cellsize= 100, 

sigma = 500, boundary = extent_sub) #takes the oneMonte and turns it into a 

KDE-map 

kdeoneMonte500_2 <-kdeoneMonte500_2/50 

crs(kdeoneMonte500_2) <- st_crs(21781)$proj4string #gives correct 

projection 

kdeoneMonte500_2 <- kdeoneMonte500_2*1000000 

##tm_shape(kdeoneMonte500_2) + tm_raster(alpha = 0.5, midpoint = NA, 

palette="-RdYlGn") #### saved as: SG_c100_s500/50oneMCS 

#writeRaster(kdeoneMonte500_2,"knutwilkm_kde_concurrent2_500.tiff") 

mean_concurrent2_500 <- cellStats(kdeoneMonte500_2, stat = 'mean') 

mean_concurrent2_500 

knutwil_concurrent2_500 <- kdeoneMonte500_2 

 

 

#10 acc-radius 

knutwil$acc.2 <- knutwil$acc.*10 

oneMonte <- map_dfr(1:n, function(x){       # a map with tons of points on 

it 

  at <-move_point(knutwil$geometry, knutwil$acc.2)  #assigns the move_point 

function to at 

  #at <- st_as_sf(at, crs=21781)     #assigns all the list-points a 

projection 

  at <- st_set_crs(at,21781) 

  st_as_sf(at) 

}) 

kdeoneMonte500_10 <-  kernel_density(sf_object = oneMonte, cellsize= 100, 

sigma = 500, boundary = extent_sub) #takes the oneMonte and turns it into a 

KDE-map 

kdeoneMonte500_10 <-kdeoneMonte500_10/50 

crs(kdeoneMonte500_10) <- st_crs(21781)$proj4string #gives correct 

projection 

kdeoneMonte500_10 <- kdeoneMonte500_10*1000000 

##tm_shape(kdeoneMonte500_10) + tm_raster(alpha = 0.5, midpoint = NA, 

palette="-RdYlGn") #### saved as: SG_c100_s500/50oneMCS 

#writeRaster(kdeoneMonte500_10,"knutwilkm_kde_concurrent10_500.tiff") 

mean_concurrent05_500 <- cellStats(kdeoneMonte500_10, stat = 'mean') 

mean_concurrent05_500 

knutwil_concurrent10_500 <- kdeoneMonte500_10 

``` 

 

``` 

#difference withing matrix 

```{r} 

rounding <- function(x,k) trimws(format(round(x, k), nsmall=k)) #rounding 

# creates a function which spits out the different distribution errors 

measure <- function(diffraster, r1, r2){ 

  #prep 

  diffraster1 <- as.data.frame(diffraster, xy = TRUE)%>% na.omit() 

  r1 <- as.data.frame(r1, xy = TRUE)%>% na.omit() 

  r2 <- as.data.frame(r2, xy = TRUE)%>% na.omit() 

  mean <- mean(diffraster1$layer, na.rm=TRUE) 

  #standard deviation = SD   mean(variance^2) 
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  print(paste0("SD=",   (rounding((sd (values(diffraster), na.rm=TRUE)),2)) 

," | ", 

               #mean error = ME 

               "ME=",   (rounding((mean(diffraster1$layer, na.rm=TRUE)),2)) 

,"\n", 

               #mean absolute error = MAE 

               "MAE=",  (rounding(mae(r1$layer, r2$layer),2)), "|", 

               #Root Mean Square Error = RMSE 

               "RMSE=", (rounding(rmse(r1$layer, r2$layer),2)))) #anzahl 

pixel (ohne NA) 

} 

# 

##now just to see if the change is positive or negative. 1=negative, 

2=positive 

reclass_df <- c( 

  -999, 0, 1 , 

  0  ,999, 2) 

 

reclass_m <- matrix(reclass_df, 

                    ncol = 3, 

                    byrow = TRUE) 

 

``` 

#measuring differences within matrix 

##concurrent 

###columns (top to bottom, left ro right) 

```{r} 

d05a <- knutwil_concurrent05_100-knutwil_concurrent05_250 

d05a_neg <- rounding(sum(d05a[d05a<0]),0) 

d05a_pos <- rounding(sum(d05a[d05a>0]),0) 

#d05a <- reclassify(d05a,reclass_m) 

# 

d05b <- knutwil_concurrent05_250-knutwil_concurrent05_500 

d05b_neg <- rounding(sum(d05b[d05b<0]),0) 

d05b_pos <- rounding(sum(d05b[d05b>0]),0) 

#d05b <- reclassify(d05b,reclass_m) 

# 

d05c <- knutwil_concurrent05_500-knutwil_concurrent05_1000 

d05c_neg <- rounding(sum(d05c[d05c<0]),0) 

d05c_pos <- rounding(sum(d05c[d05c>0]),0) 

#d05c <- reclassify(d05c,reclass_m) 

# 

d1a <- knutwil_concurrent1_100-knutwil_concurrent1_250 

d1a_neg <- rounding(sum(d1a[d1a<0]),0) 

d1a_pos <- rounding(sum(d1a[d1a>0]),0) 

#d1a <- reclassify(d1a,reclass_m) 

# 

d1b <- knutwil_concurrent1_250-knutwil_concurrent1_500 

d1b_neg <- rounding(sum(d1b[d1b<0]),0) 

d1b_pos <- rounding(sum(d1b[d1b>0]),0) 

#d1b <- reclassify(d1b,reclass_m) 

# 

d1c <- knutwil_concurrent1_500-knutwil_concurrent1_1000 

d1c_neg <- rounding(sum(d1c[d1c<0]),0) 

d1c_pos <- rounding(sum(d1c[d1c>0]),0) 

#d1c <- reclassify(d1c,reclass_m) 

# 

d2a <- knutwil_concurrent2_100-knutwil_concurrent2_250 

d2a_neg <- rounding(sum(d2a[d2a<0]),0) 

d2a_pos <- rounding(sum(d2a[d2a>0]),0) 

#d2a <- reclassify(d2a,reclass_m) 



90 
 

# 

d2b <- knutwil_concurrent2_250-knutwil_concurrent2_500 

d2b_neg <- rounding(sum(d2b[d2b<0]),0) 

d2b_pos <- rounding(sum(d2b[d2b>0]),0) 

#d2b <- reclassify(d2b,reclass_m) 

# 

d2c <- knutwil_concurrent2_500-knutwil_concurrent2_1000 

d2c_neg <- rounding(sum(d2c[d2c<0]),0) 

d2c_pos <- rounding(sum(d2c[d2c>0]),0) 

#d2c <- reclassify(d2c,reclass_m) 

# 

d10a <- knutwil_concurrent10_100-knutwil_concurrent10_250 

d10a_neg <- rounding(sum(d10a[d10a<0]),0) 

d10a_pos <- rounding(sum(d10a[d10a>0]),0) 

#d10a <- reclassify(d10a,reclass_m) 

# 

d10b <- knutwil_concurrent10_250-knutwil_concurrent10_500 

d10b_neg <- rounding(sum(d10b[d10b<0]),0) 

d10b_pos <- rounding(sum(d10b[d10b>0]),0) 

#d10b <- reclassify(d10b,reclass_m) 

# 

d10c <- knutwil_concurrent10_500-knutwil_concurrent10_1000 

d10c_neg <- rounding(sum(d10c[d10c<0]),0) 

d10c_pos <- rounding(sum(d10c[d10c>0]),0) 

#d10c <- reclassify(d10c,reclass_m) 

# 

``` 

###rows (left ro right, top to bottom) 

```{r} 

d1000a <- knutwil_concurrent05_1000-knutwil_concurrent1_1000 

d1000a_neg <- rounding(sum(d1000a[d1000a<0]),0) 

d1000a_pos <- rounding(sum(d1000a[d1000a>0]),0) 

#d1000a <- reclassify(d1000a,reclass_m) 

# 

d1000b <- knutwil_concurrent1_1000-knutwil_concurrent2_1000 

d1000b_neg <- rounding(sum(d1000b[d1000b<0]),0) 

d1000b_pos <- rounding(sum(d1000b[d1000b>0]),0) 

#d1000b <- reclassify(d1000b,reclass_m) 

# 

d1000c <- knutwil_concurrent2_1000-knutwil_concurrent10_1000 

d1000c_neg <- rounding(sum(d1000c[d1000c<0]),0) 

d1000c_pos <- rounding(sum(d1000c[d1000c>0]),0) 

#d1000c <- reclassify(d1000c,reclass_m) 

# 

d500a <- knutwil_concurrent05_500-knutwil_concurrent1_500 

d500a_neg <- rounding(sum(d500a[d500a<0]),0) 

d500a_pos <- rounding(sum(d500a[d500a>0]),0) 

#d500a <- reclassify(d500a,reclass_m) 

# 

d500b <- knutwil_concurrent1_500-knutwil_concurrent2_500 

d500b_neg <- rounding(sum(d500b[d500b<0]),0) 

d500b_pos <- rounding(sum(d500b[d500b>0]),0) 

#d500b <- reclassify(d500b,reclass_m) 

# 

d500c <- knutwil_concurrent2_500-knutwil_concurrent10_500 

d500c_neg <- rounding(sum(d500c[d500c<0]),0) 

d500c_pos <- rounding(sum(d500c[d500c>0]),0) 

#d500c <- reclassify(d500c,reclass_m) 

# 

d250a <- knutwil_concurrent05_250-knutwil_concurrent1_250 

d250a_neg <- rounding(sum(d250a[d250a<0]),0) 



91 
 

d250a_pos <- rounding(sum(d250a[d250a>0]),0) 

#d250a <- reclassify(d250a,reclass_m) 

# 

d250b <- knutwil_concurrent1_250-knutwil_concurrent2_250 

d250b_neg <- rounding(sum(d250b[d250b<0]),0) 

d250b_pos <- rounding(sum(d250b[d250b>0]),0) 

#d250b <- reclassify(d250b,reclass_m) 

# 

d250c <- knutwil_concurrent2_250-knutwil_concurrent10_250 

d250c_neg <- rounding(sum(d250c[d250c<0]),0) 

d250c_pos <- rounding(sum(d250c[d250c>0]),0) 

#d250c <- reclassify(d250c,reclass_m) 

# 

d100a <- knutwil_concurrent05_100-knutwil_concurrent1_100 

d100a_neg <- rounding(sum(d100a[d100a<0]),0) 

d100a_pos <- rounding(sum(d100a[d100a>0]),0) 

#d100a <- reclassify(d100a,reclass_m) 

# 

d100b <- knutwil_concurrent1_100-knutwil_concurrent2_100 

d100b_neg <- rounding(sum(d100b[d100b<0]),0) 

d100b_pos <- rounding(sum(d100b[d100b>0]),0) 

#d100b <- reclassify(d100b,reclass_m) 

# 

d100c <- knutwil_concurrent2_100-knutwil_concurrent10_100 

d100c_neg <- rounding(sum(d100c[d100c<0]),0) 

d100c_pos <- rounding(sum(d100c[d100c>0]),0) 

#d100c <- reclassify(d100c,reclass_m) 

# 

``` 

 

``` 

#concurrent cowplot 

##creating ggplot for cowplot 

```{r} 

#beide 

b <- function(normal_kde, rechts_pos, rechts_neg, rechts_measure, rr1, rr2, 

oben_pos, oben_neg, oben_measure, ro1){ 

  as.data.frame(normal_kde, xy=TRUE) %>%drop_na() %>% mutate(rechts = 

print(paste0("pos: ",rechts_pos,"  | ","neg: ", rechts_neg, "\n", 

print(measure(rechts_measure, rr1, rr2)))), 

                                                             oben= 

print(paste0("pos: ",oben_pos," | ","neg: ", oben_neg, "\n", 

print(measure(oben_measure, ro1, rr1))))) %>% 

  ggplot() + geom_raster(aes(x=x, y=y, fill=layer)) +  

  scale_fill_gradientn(colours = hcl.colors(10, "YlGnBu"), breaks = c(10,5, 

-0.001), trans = "reverse", limits =c(10,-0.001), na.value="navyblue")+ 

  theme(legend.position = "none", axis.title.x=element_blank(), 

        axis.text.x=element_blank(),axis.ticks.x=element_blank(), 

axis.title.y=element_blank(), axis.text.y=element_blank(), 

        axis.ticks.y=element_blank())+  

    facet_grid(rechts~.~oben) 

} 

 

 

b5dots <- b(normal_kde = knutwil_concurrent05_250, rechts_pos = d250a_pos, 

rechts_neg = d250a_neg, rechts_measure = d250a, rr1 = 

knutwil_concurrent05_250, rr2 = knutwil_concurrent1_250, #done 

            oben_pos = d05a_pos,    oben_neg = d05a_neg,    oben_measure = 

d05a, ro1 = knutwil_concurrent05_100) 
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b6dots <- b(normal_kde = knutwil_concurrent1_250, rechts_pos = d250b_pos, 

rechts_neg = d250b_neg, rechts_measure = d250b, rr1 = 

knutwil_concurrent1_250, rr2 = knutwil_concurrent2_250, #done 

            oben_pos = d1a_pos,    oben_neg = d1a_neg,    oben_measure = 

d1a, ro1 = knutwil_concurrent1_100) 

 

b7dots <- b(normal_kde = knutwil_concurrent2_250, rechts_pos = d250c_pos, 

rechts_neg = d250c_neg, rechts_measure = d250c, rr1 = 

knutwil_concurrent2_250, rr2 = knutwil_concurrent10_250, #done 

            oben_pos = d2a_pos,    oben_neg = d2a_neg,    oben_measure = 

d2a, ro1 = knutwil_concurrent2_100) 

 

b9dots <- b(normal_kde = knutwil_concurrent05_500, rechts_pos = d500a_pos, 

rechts_neg = d500a_neg, rechts_measure = d500a, rr1 = 

knutwil_concurrent05_500, rr2 = knutwil_concurrent1_500, #done 

            oben_pos = d05b_pos,    oben_neg = d05b_neg,    oben_measure = 

d05b, ro1 = knutwil_concurrent05_250) 

 

b10dots <- b(normal_kde = knutwil_concurrent1_500, rechts_pos = d500b_pos, 

rechts_neg = d500b_neg, rechts_measure = d500b, rr1 = 

knutwil_concurrent1_500, rr2 = knutwil_concurrent2_500, #done 

             oben_pos = d1b_pos,    oben_neg = d1b_neg,    oben_measure = 

d1b, ro1 = knutwil_concurrent1_250) 

 

b11dots <- b(normal_kde = knutwil_concurrent2_500, rechts_pos = d500c_pos, 

rechts_neg = d500c_neg, rechts_measure = d500c, rr1 = 

knutwil_concurrent2_500, rr2 = knutwil_concurrent10_500, #done 

             oben_pos = d2b_pos,    oben_neg = d2b_neg,    oben_measure = 

d2b, ro1 = knutwil_concurrent2_250) 

 

b13dots <- b(normal_kde = knutwil_concurrent05_1000, rechts_pos = 

d1000a_pos, rechts_neg = d1000a_neg, rechts_measure = d1000a, rr1 = 

knutwil_concurrent05_1000, rr2 = knutwil_concurrent1_1000, #done 

             oben_pos = d05c_pos,    oben_neg = d05c_neg,    oben_measure = 

d05c, ro1 = knutwil_concurrent05_500) 

 

b14dots <- b(normal_kde = knutwil_concurrent1_1000, rechts_pos = 

d1000c_pos, rechts_neg = d1000b_neg, rechts_measure = d1000b, rr1 = 

knutwil_concurrent1_1000, rr2 = knutwil_concurrent2_1000,  

             oben_pos = d1c_pos,    oben_neg = d1c_neg,    oben_measure = 

d1c, ro1 = knutwil_concurrent1_500) 

 

b15dots <- b(normal_kde = knutwil_concurrent2_1000, rechts_pos = 

d1000c_pos, rechts_neg = d1000c_neg, rechts_measure = d1000c, rr1 = 

knutwil_concurrent2_1000, rr2 = knutwil_concurrent10_1000,  

             oben_pos = d2c_pos,    oben_neg = d2c_neg,    oben_measure = 

d2c, ro1 = knutwil_concurrent2_500) 

 

 

########################## 

#right 

 

r <- function(normal_kde, rechts_pos, rechts_neg, rechts_measure, rr1, rr2, 

olabel){ 

  as.data.frame(normal_kde, xy=TRUE) %>%drop_na() %>% mutate(rechts = 

print(paste0("pos: ",rechts_pos,"  | ","neg: ", rechts_neg, "\n", 

print(measure(rechts_measure, rr1, rr2)))), oben = print(paste0(olabel))) 

%>% 

   ggplot() + geom_raster(aes(x=x, y=y, fill=layer)) + 
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   scale_fill_gradientn(colours = hcl.colors(10, "YlGnBu"), breaks = 

c(10,5, -0.001), trans = "reverse", limits =c(10,-0.001), 

na.value="navyblue")+ 

   theme(legend.position = "none", axis.title.x=element_blank(), 

        axis.text.x=element_blank(),axis.ticks.x=element_blank(), 

axis.title.y=element_blank(), axis.text.y=element_blank(), 

        axis.ticks.y=element_blank())+  

    facet_grid(rechts~.~oben) 

} 

 

r1dots <- r(normal_kde = knutwil_concurrent05_100, rechts_pos = d100a_pos, 

rechts_neg = d100a_neg, rechts_measure = d100a, rr1 = 

knutwil_concurrent05_100, rr2 = knutwil_concurrent1_100, 0.5) #done 

r2dots <- r(normal_kde = knutwil_concurrent1_100, rechts_pos = d100b_pos, 

rechts_neg = d100b_neg, rechts_measure = d100b, rr1 = 

knutwil_concurrent1_100, rr2 = knutwil_concurrent2_100, 1) #done 

r3dots <- r(normal_kde = knutwil_concurrent2_100, rechts_pos = d100c_pos, 

rechts_neg = d100c_neg, rechts_measure = d100c, rr1 = 

knutwil_concurrent2_100, rr2 = knutwil_concurrent10_100, 2) #done 

 

########################## 

#up 

o <- function(normal_kde, oben_pos, oben_neg, oben_measure, ro1, ro2, 

rlabel ){ 

  as.data.frame(normal_kde, xy=TRUE) %>%drop_na() %>% mutate(oben= 

print(paste0("pos: ",oben_pos,"  | ","neg: ", oben_neg, "\n", 

print(measure(oben_measure, ro1, ro2)))), rechts = print(paste0(rlabel))) 

%>% 

  ggplot() + geom_raster(aes(x=x, y=y, fill=layer)) + 

  scale_fill_gradientn(colours = hcl.colors(10, "YlGnBu"), breaks = c(10,5, 

-0.001), trans = "reverse", limits =c(10,-0.001), na.value="navyblue")+ 

  theme(legend.position = "none", axis.title.x=element_blank(), 

        axis.text.x=element_blank(),axis.ticks.x=element_blank(), 

axis.title.y=element_blank(), axis.text.y=element_blank(), 

        axis.ticks.y=element_blank())+  

    facet_grid(rechts~.~oben) 

} 

 

o8dots <- o(normal_kde = knutwil_concurrent10_250, oben_pos = d10a_pos,    

oben_neg = d10a_neg,    oben_measure = d10a, ro1 = 

knutwil_concurrent10_100, ro2 = knutwil_concurrent10_250, 250) 

o12dots <- o(normal_kde = knutwil_concurrent10_500, oben_pos = d10b_pos,    

oben_neg = d10b_neg,    oben_measure = d10b, ro1 = 

knutwil_concurrent10_250, ro2 = knutwil_concurrent10_500, 500) 

o16dots <- o(normal_kde = knutwil_concurrent10_1000, oben_pos = d10c_pos,    

oben_neg = d10c_neg,    oben_measure = d10c, ro1 = 

knutwil_concurrent10_500, ro2 = knutwil_concurrent10_1000, 1000) 

 

########################### 

#nothing 

#up 

n <- function(normal_kde, olabel, rlabel){ 

  as.data.frame(normal_kde, xy=TRUE) %>%drop_na() %>% mutate(oben = 

print(paste0(olabel)),rechts = print(paste0(rlabel))) %>% 

  ggplot() + geom_raster(aes(x=x, y=y, fill=layer)) + 

  scale_fill_gradientn(colours = hcl.colors(10, "YlGnBu"), breaks = c(10,5, 

-0.001), trans = "reverse", limits =c(10,-0.001), na.value="navyblue")+ 

  theme(legend.position = "none", axis.title.x=element_blank(), 

        axis.text.x=element_blank(),axis.ticks.x=element_blank(), 

axis.title.y=element_blank(), axis.text.y=element_blank(), 

        axis.ticks.y=element_blank())+  
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    facet_grid(rechts~.~oben) 

} 

 

n4dots <- n(normal_kde = knutwil_concurrent10_100, 10, 100) 

 

``` 

##cowplot plotting 

```{r} 

plot_grid(r1dots, r2dots, r3dots, n4dots, b5dots, b6dots, b7dots, o8dots, 

b9dots, b10dots, b11dots, o12dots, b13dots, b14dots, b15dots, o16dots) 

 

``` 
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