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Abstract

The “Spanish” influenza pandemic was one of the most devastating events in
recent human history, claiming an estimated 50 – 100 million lives. This thesis
aims to study the dissemination of the 1918 influenza pandemic in the case of
the Swiss canton of Berne. For that, I received a dataset that contained 143’389
reports of influenza-like illness cases, covering 95% of all the municipalities in
the canton of Berne, and dates ranging from July 1918 – December 1918. Fur-
thermore, I recieved various socio-economic data and information on weather
and accessability through the railway system.

In a first step, conventional statistical and spatio-statistical methods were
applied to characterize the spread of the virus in such a regionally diverse canton
as Berne. In a second step, locally specific factors that may have played a role
the spread were found for each of the two principal waves of the pandemic.
This was achieved by creating a logistic regression model for each wave where
the dependent variables were determined using an automated model selection
process.

The spatio-temporal analysis confirms that the canton of Berne was struck by
two major waves in summer (July/August 1918) and autumn/winter (October
1918 – December 1919). The results of the logistic regression models show a
positive association between tuberculosis mortality and influenza incidence in
both waves. They also show positive associations between railway access and
influenza incidence as well as urbanity and incidence during the first wave.
However, it has to be noted that both models suffered from heteroscedasticity.

These findings are consistent with previous literature covering both the study
area and the 1918 influenza pandemic in general. Further research efforts should
be put into identifying locally specific explanatory factors which may help gov-
ernments to put emergency plans into place that help contain or at least mitigate
future pandemics.

1



Acknowledgments

The completion of this thesis over the last twelve months would not have been
possible without the support and knowledge of various people. First and fore-
most, I would like to thank my supervisors Dr. Oliver Gruebner and Dr. Kaspar
Staub, who always had an open ear in countless virtual meetings. Their conti-
nous support during all the steps of my thesis was essential. I am very thankful
to them for allowing me to work on this project with such exciting data. Sec-
ondly, I would like to express my gratitude to the following people:

• Manuel Bär and Dr. Gereon Kaiping (GIUZ) for their valuable feed-
back and inputs following my concept talk.

• Dr. Hans-Ulrich Schiedt from the University of Berne for sharing their
railway network data with us, for explaining their contents and for their
advice on how to best integrate them in my model.

• Dr. Konstantin Büchel from the University of Berne for sharing his
railway station data with us and for the further inputs given during a
meeting.

• Dr. Magdalena Seebauer (GIUZ) for her patience, and her helpful
inputs which allowed me to share my research in a blog entry on the
GIUZ webpage.

• My fellow students of the Y23-G-19 office for their support, open
ear and motivation, the shared meals and coffee breaks with fruitful dis-
cussions, especially during the summer months.

• My friend Gordon Bühler for his continuous emotional and technical
support, proof-reading and valuable feedback during his free time.

• My parents Erika and Stefan Leuch for their support throughout my
studies.

Last but not least, I would like to thank everyone not named here, who helped
me to stay sane during these crazy times. Thank you for all the discussions,
Skype sessions and online game nights, and for listening to me rambling on
about researching a pandemic, during a pandemic. This thesis would not be
what it is without all of you.

2



Contents

Abstract 1

Acknowledgments 2

1 Introduction 5

2 Related Work 6
2.1 Important epidemiologic definitions . . . . . . . . . . . . . . . . . 6
2.2 The 1918 influenza pandemic: key facts . . . . . . . . . . . . . . 7
2.3 Situation in Switzerland and in the canton of Berne . . . . . . . 11
2.4 Spatio-temporal analysis of influenza pandemics . . . . . . . . . . 14
2.5 Possible determinants of spread . . . . . . . . . . . . . . . . . . . 17
2.6 Research gaps and research questions . . . . . . . . . . . . . . . . 18

3 Methodological approach 22
3.1 Data sources and data preprocessing . . . . . . . . . . . . . . . . 22

3.1.1 The canton of Berne – a short geography . . . . . . . . . 22
3.1.2 Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.3 Outcome variable . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.4 Explanatory variables . . . . . . . . . . . . . . . . . . . . 26
3.1.5 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.1 Research goal 1: Descriptive spatio-temporal analysis of

the influenza data . . . . . . . . . . . . . . . . . . . . . . 33
3.2.2 Research goal 2: Finding determinants of spread . . . . . 35
3.2.3 Effective visualisation of results . . . . . . . . . . . . . . . 38

4 Results 40
4.1 Research Goal 1: Descriptive spatio-temporal analysis of the in-

fluenza data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.1.1 Incidence . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.1.2 Incidence and temporal dimension . . . . . . . . . . . . . 43
4.1.3 Incidence and spatial dimension . . . . . . . . . . . . . . . 44
4.1.4 Incidence, temporal and spatial dimension . . . . . . . . . 46

3



4.2 Research goal 2: Finding determinants of spread . . . . . . . . . 50
4.2.1 First wave: July 1918 – August 1918 . . . . . . . . . . . . 50
4.2.2 Second wave: October 1918 – January 1919 . . . . . . . . 54

5 Discussion 60
5.1 Research goal 1: Descriptive spatio-temporal analysis of the in-

fluenza data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.1.1 Incidence . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.1.2 Incidence and temporal dimension . . . . . . . . . . . . . 61
5.1.3 Incidence and spatial dimension . . . . . . . . . . . . . . . 62
5.1.4 Incidence, spatial and temporal dimension . . . . . . . . . 63

5.2 Research goal 2: Finding determinants of spread . . . . . . . . . 67
5.2.1 First wave: July 1918 – August 1918 . . . . . . . . . . . . 67
5.2.2 Second wave: October 1918 – January 1919 . . . . . . . . 73
5.2.3 Differences between the two waves . . . . . . . . . . . . . 77
5.2.4 Implications for future pandemics . . . . . . . . . . . . . . 77

5.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.3.1 Limitations of the data . . . . . . . . . . . . . . . . . . . 78
5.3.2 Missing data . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.3.3 Limitations of the analysis . . . . . . . . . . . . . . . . . . 80

5.4 Further research . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6 Conclusion 82

Bibliography 83

Appendix A Bivariate choropleth maps 93
A.1 First wave: July/August 1918 . . . . . . . . . . . . . . . . . . . . 93

A.1.1 TB mortality vs. influenza incidence . . . . . . . . . . . . 93
A.1.2 Population density vs. influenza incidence . . . . . . . . . 93
A.1.3 Access to railway network vs. influenza incidence . . . . . 96
A.1.4 Precipitation vs. influenza incidence . . . . . . . . . . . . 97

A.2 Second wave: October 1918 – January 1919 . . . . . . . . . . . . 97
A.2.1 TB mortality vs. influenza incidence . . . . . . . . . . . . 97
A.2.2 Population density vs. influenza incidence . . . . . . . . . 99
A.2.3 Railway access vs. influenza incidence . . . . . . . . . . . 101
A.2.4 Precipitation vs. influenza incidence . . . . . . . . . . . . 102

Appendix B R Code used for the analysis 104

4



1 Introduction

In 1918, when World War I was raging across Europe, a second crisis arose
that would soon be much deadlier than the war itself: The “Spanish” flu. In
today’s history, it is often omitted and if it is thematized, it is treated as a
mere footnote when covering The Great War. To this day surprisingly little is
known about what is sometimes called the “mother of all pandemics” (Morens
and Taubenberger, 2018) and cost an estimate of 50 – 100 million lives over the
course of two years (Greenberger, 2018), a multiple of the estimated 20 million
casualties World War I caused in four years (Royde-Smith and Hughes, 2020).

In 2019, the World Health Organization (WHO) listed the outbreak of a
global pandemic among the top 10 threats to global health: “The world will
face another influenza pandemic – the only thing that we don’t know is when it
will hit and how severe it will be” (World Health Organization, 2019). The world
is currently facing a pandemic. An important difference however, is that the
presently circulating Sars-Cov-2 virus is a corona virus, and not an influenza
virus. However, the symptoms are fairly similar, which might be the reason
why the 2020 corona virus pandemic is often compared with the 1918 influenza
pandemic. The aim of this master’s thesis is to study the spatio-temporal spread
of the “Spanish” flu in the Swiss canton of Berne. The study of historic outbreaks
can provide information on how viruses spread in the past and therefore help in
coping with future outcomes and in improving prevention and interventions. As
a case study, historic disease reports of the Swiss canton of Berne are combined
with other data sources (e.g. population and transportation data). The disease
records provide a unique opportunity to study the dissemination of the virus
on a communal level and therefore learn more about the local dynamics of the
spread. The first step is an in-depth descriptive analysis of these disease data,
to describe the time, location and severity of the pandemic outbreak in the
canton of Berne, Switzerland. In a next step, explanatory factors are identified
in a data-driven approach of building a linear regression model. Finally, these
findings will be effectively visualized to provide a comprehensive overview of the
course of the pandemic in the canton of Berne. The topic inherently contains a
spatial and a temporal dimension, therefore methods from the field of geographic
visualization and analysis are suitable to examine this pandemic outbreak.
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2 Related Work

2.1 Important epidemiologic definitions

In order to understand the dissemination of the “Spanish” flu, a knowledge
of a few basic epidemiological concepts is essential. Morbidity, mortality and
lethality are three of the most important indicators that are used to describe
epidemics and pandemics. Their definitions are important and are therefore
listed here before the state of the art section.

Definition 2.1.1. Morbidity. The morbidity is the incidence of the disease
in the total population. Example: If 50 out of 1000 people are infected, the
morbidity rate is 5%. Morbidity is often used synonymously with the term
incidence (the number of infected people per 100’000 people in a given time
period) (Sonderegger, 1991).

Definition 2.1.2. Mortality. The mortality is the frequency of deaths through
the disease in relation to the entire population. Example: If 5 out of 1000 people
in a population die of a disease, the mortality rate is 0.5% or 5 ‰ (Sonderegger,
1991).

Definition 2.1.3. Lethality. The mortality is the number of deaths in relation
to the number of infected people. This is also often called Case Fatality Rate
(CFR). Example: If 5 die out of 50 infected people, the lethality rate is 10%
(Sonderegger, 1991).

Understanding the difference between these three concepts is key to under-
standing an epidemic. Furthermore, it is important to understand how they are
related to each other. An infectious disease with a high morbidity is not auto-
matically a problem if not many people show any severe complications or die
of it (e.g. many people catch a cold during winter, but as most of them recover
within a few days this does not require any further measures). On the other
hand, a disease with a lower morbidity can become a real threat if its lethality
is high (e.g. in Switzerland, the risk of contracting Ebola is practically 0. How-
ever, due to the lethality of the disease, a suspected infection triggers immediate
public health measures like isolation and contact tracing (Koch, 2020)). As for
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the 1918 influenza pandemic, the morbitidy, mortality and lethality were un-
usually high for an influenza pandemic (Smallman-Raynor, 2004), which makes
it interesting for current research.

2.2 The 1918 influenza pandemic: key facts

The virus that caused the 1918 pandemic was an unusually virulent influenza
virus of the strain H1N1, which spread around the globe with unprecedented
speed, appearing almost everywhere in the world nearly simultaneously (Morens
and Taubenberger, 2018). An influenza virus causes an acute respiratory disease
which is colloquially known as “the flu”. The symptoms include fever, cough,
aches and respiratory complaints which in more severe cases lead to secondary
infections such as pneumonia. While influenza was historically seen as mostly
unpleasant but leaving no permanent damage, the strain of the influenza virus
circulating in 1918 was particularly deadly (Parmet and Rothstein, 2018). It is
impossible to determine an exact number of casualties for the 1918 pandemic.
The virus that causes influenza was only isolated in the early 1930s and before
that, physicians believed that the so-called “Pfeiffer’s bacillus” was responsible
for the disease. Therefore, the only way of diagnosing an ill person was through
clinical procedures (by assessing a patient’s symptoms) which is less reliable
than modern testing (Van Epps, 2006). Finally, it is always difficult to assign
a cause of death for fatal cases. Deaths as a result of cardiovascular disease,
pneumonia, or other pre-existing conditions sometimes did have influenza as
the immediate cause of death, but in some cases the patient would have died
anyway (Patterson and Pyle, 1991). While early research reports an estimated
20 million deaths, more recent studies suggest that the pandemic more likely
caused 50 – 100 million deaths globally (Patterson and Pyle, 1991; Johnson and
Mueller, 2002). As a comparison: today, an annual average of around 400’000
people die of an influenza infection worldwide, which accounts for around 2% of
all respiratory diseases (Paget et al., 2019). Figure 2.1 compares the death toll
of a typical flu season with the biggest outbreaks in the last 100 years. It shows
that the 1918 pandemic caused more casualties than any other pandemic by
orders of magnitude. The two outbreaks 1957 – 58 and 1968 – 69 killed around
2.5 – 4 times as many people as die in an average flu season nowadays. They
seem harmless compared to the “Spanish” flu which killed around 125 – 250 as
many people. The 1918 influenza pandemic shows to be even more virulent,
when one considers that today’s population is far larger than it was 100 years
ago. In 1918, estimates suggest, the global population was around 1.8 billion
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Figure 2.1: Estimated number of deaths of four influenza pandemics in recent
history. The chart shows the deaths in absolute numbers not taking poplation
size into consideration. Reprinted from Roser (2020)

(Our World in Data, 2020). Therefore, the estimate for the global mortality
rate of the 1918 influenza pandemic ranges between 1 – 5.4%. This makes it the
deadliest influenza pandemic in recorded human history. With an estimated 7.7
billion people in 2020 (Our World in Data, 2020), a pandemic with a similar
moratilty rate would cost between 213 – 427 million lives today. However, when
playing with these numbers, one has to consider that today’s medicine is far
more advanced than 100 years ago and therefore, more lives would be saved
(Mills et al., 2004).

Typically, the mortality of influenza by age is described as being “U-Shaped”:
The very young and the elderly are more likely to die of the disease, while most
young adults recover without any damage. However, in the 1918 pandemic the
mortality pattern showed a “W-Shape” with a peak in mortality for 30 year
olds and lower than expected mortality for 60 – 65 year olds. The reason for
this unusual mortality pattern cannot be conclusively determined, but some
studies conclude that this was the consequence of earlier H1 infections during
an 1889 – 90 influenza outbreak which lead to some cross-immunity in the older
population. Young adults, which did not have this prior exposure, were more at
risk of dying of the disease (Mamelund, 2011). Furthermore, the pandemic had
a high frequency of secondary pneumonia for which young adults, particularly
men, seemed to be more suspectible (Jester et al., 2018).

According to Brankston et al. (2007) influenza can be transmitted in the
following four ways:
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1. Direct contact: The transmission occurs as a result of direct physical
contact with an infected person (also known as a host).

2. Indirect contact: Indirect transmission is the result of contact with a
contaminated surface or object (e.g. contaminated surgical instruments,
elevator buttons, money, etc.).

3. Droplets: Larger droplets are ejected when an infected person coughs or
sneezes. Typically these droplets reach a distance of less than one meter
in the host’s immediate environment. They are too large to remain in the
air, therefore special ventilation is not required.

4. Airborne: Airborne particles are similar to droplets but much smaller in
size and they result from evaporation of droplets. Their small size allows
them to remain in the air for a longer period of time and travel further
through air currents. They can infect new people if they are inhaled.
Controling airborne transmission is the hardest of the four transmission
ways because in enclosed spaces it requires control of airflow and special
filtering systems.

The 1918 influenza outbreak is colloquially known as “the Spanish flu”.
Other than the name would suggest, this is not due to the fact that the dis-
ease first broke out in Spain. Many countries involved in World War I censored
the news of the influenza outbreak out of fear of a declining morale among the
population and troops. Neutral Spain did not do so, and therefore Spanish
media were the first to report on the outbreak, leaving many thinking that it
had originated in Spain (Chowell et al., 2014). Today, this name is often criti-
cized as stigmatizing and incorrect (Hoppe, 2018). The WHO recommends that
names of new diseases may not include: geographic locations, people’s names,
animals or food, cultural, population, industry or occupational references, or
terms that “incite undue fear” (World Health Organization, 2015). In this the-
sis, these reccomendations are accounted for by either speaking of the 1918
influenza pandemic or referring to the disease as the “Spanish” flu, with the
word “Spanish” in quotation marks.

There are several hypothesis on where the disease first broke out. Possible
starting places include central Spain; Étaples (France), the French countryside
or Camp Funston (Kansas, USA), where several soldiers fell ill within a short
period of time (Smallman-Raynor, 2004). To this day, it is not certain where
the disease originated. While it is not clear where the disease broke out first,
research suggests that the strain responsible for the pandemic is an avian flu.
This means the virus originated in wild water fowl which would explain why
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it broke out in different places at almost the same time – the birds with their
migratory behaviour spread it all over the world (Morens and Taubenberger,
2018). In the Northern Hemisphere, the pandemic struck in several waves. The
first wave arose in spring 1918. It had a very high morbidity but the mortality
was within normal limits. After this mild first wave, the second by far more
deadly wave followed in fall/winter 1918/1919. This wave killed millions of
people and some places saw a mortality that was three times higher than in
the first wave. Some places saw a third, mild wave in spring 1919, before the
pandemic was over (Smallman-Raynor, 2004).

In 1918, the medicine was far less developed than today: anti-viral medicine
was first developed in the 1950s (Field and De Clercq, 2004). Even if the patient
was not dying from the virus itself, but from secondary bacterial pneumonia,
their chances of survival were not much better, as penicillin was only discovered
ten years later by Alexander Fleming (Fleming, 1929). Remedies included ba-
sic supportive medications such as aspirin, quinine, ammonia, turpentine, salt
water, or topical rubs (Jester et al., 2018). Therefore, the main strategy for
the mitigation of the pandemic consisted of nonpharmazeutical interventions.
These interventions were quite similar to what would today be known as “so-
cial distancing” and included: school, restaurant and church closures, ban of
public gatherings, mandatory mask wearing and disinfection/hygiene measures
(Morens and Taubenberger, 2018). Bootsma and Ferguson (2007) found a neg-
ative correlation between the date of the implementation of social interventions
and mortality for cities in the US. This means the earlier the measures were
implemented, the bigger their effect was. However, most cities relaxed the mea-
sures a few weeks after their implementation which led to an increase in case
numbers and eventually a second wave (Bootsma and Ferguson, 2007).

The pandemic had quite an impact on the demographic structure of the
world. In absolute numbers, it is the biggest demographic shock in human
history (Sonderegger, 1991), despite the fact that other events killed higher
percentages of the population at risk (e.g. the Black Death pandemic killed an
estimated 30 – 50% of the European population between 1347 – 1351 (DeWitte,
2014)). However, Smallman-Raynor (2004) concludes that the “Spanish” flu
was (1) world-wide rather than regional; and (2) concentrated in time (most
deaths occured in a period of just six months). To this day, the reason why
the pandemic was so deadly remains unknown. Some theories suggest war-
time deprivation as a reason for the high amount of deaths. However, these
theories have to be challenged as bot the morbidity and the mortality in North
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America, outside of the European war theatres, were similar to the ones in
Europe (Smallman-Raynor, 2004).

2.3 Situation in Switzerland and in the canton
of Berne

With its location in the heart of Europe, Switzerland was not spared the horrors
of the 1918 influenza pandemic. Within Switzerland, the canton of Berne was
one of the most severely hit regions. This section gives an overview of the
course of the flu pandemic, for Switzerland as a whole and for the canton of
Berne specifically.

Studies suggest, that the 1918 influenza pandemic caused around 2 mil-
lion infections in Switzerland (Sonderegger, 1991). In 1920, Switzerland had a
population of around 4 million (Bundesamt für Statistik, 1921), therefore this
estimate means the morbidity of the “Spanish” flu in Switzerland was around
50% or more simply: 1 in 2 people were infected. In the years before 1918,
influenza deaths were relatively stable with an average of 750 deaths per year.
This number rose to around 25’000 in the two years of the outbreak (Sondereg-
ger, 1991). Considering the population, this means the mortality was around
6.25 ‰ and the lethality was around 12.5 ‰. These numbers show the impact
of the pandemic in Switzerland. Even though they seem really high, compared
to the world-wide numbers discussed in the previous section (see section 2.2),
on average, Switzerland seems to have been less affected. The canton of Berne
was among the most severely hit places in Switzerland. It accounted for 4’658
deaths out of the almost 25’000 deaths, while the second ranked canton only
had half as many deaths (Staub et al.). This means that roughly one in five
people that died of influenza during the 1918 pandemic died in the canton of
Berne. Again, considering the population of the canton of Berne this translates
to a mortality of around 7 ‰ . These numbers show that the canton of Berne
was on average more affected than average Switzerland. As similarly described
in other regions, the mortality pattern was W-shaped, killing many adults be-
tween 20 and 40 years, while the mortality pattern for the other age cohorts
remained relatively similar to the years before. Furthermore, men were more
likely to die than women (Kohli, 2018). Figure 2.2 shows the number of deaths
per age cohort for the years of 1917, 1918, and 1919, (Kohli, 2018). It shows the
unusual mortality pattern of the 1918 influenza pandemic with the exceptionally
high death numbers in the 20 – 49 age cohortes. This lead to a demographic
shock also in Switzerland (Sonderegger, 1991). In 1917, the life expectancy in
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Switzerland was around 55.4 years. In 1918, it decreasased to 46.3 years, before
it again rose to 55 years in 1919 (Kohli, 2018). These numbers further illustrate
the impact that the “Spanish” flu had on the population.

Figure 2.2: Number of deaths in Switzerland by age cohorts 1917 – 1919. The
chart shows the spike of deaths in the medium age categories (20 – 49) in 1918.
Reprinted from Kohli (2018).

Similar to other places in the Northern Hemisphere, Switzerland was hit by a
first, milder wave in July/August 1918, where the mortality remained within
the usual limits for an influenza outbreak. It was followed by the much more
severe autumn wave from around October – December 1918 that showed a much
higher mortality. In this context, the “Landesstreik” (Swiss general strike) has
to be mentioned. Fueled by the collapse of the old order and the rise of the
international worker’s movement, Swiss workers gathered for a nationwide strike
in November 1918. During this strike, around 250’000 workers from all over the
country crowded together to protest for better working conditions, causing an
intervention by the Swiss army (Degen, 2012). This strike could have been the
reason for a second peak in the second wave (for weekly infection numbers,
see figure 2.3). After two principal waves, a few local outbreaks occured, but
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generally the infection numbers kept decreasing and reached an endemic level
in July 1919 (Sonderegger, 1991).

As for the spatial dimension, it is unknown how the disease was introduced
to Switzerland. One thesis suggests that the disease reached Switzerland from
a northern and northwestern direction, where the virus was spreading in the
trenches of World War I, and spread via Basel. However, this thesis is not
confirmed by mortality rates at the time of the outbreak (Sonderegger, 1991).
A further thesis suggests a spread of the virus through Switzerland from west
to east: western Switzerland was hit harder by the first wave, while central
and eastern Switzerland recorded more deaths during the second wave (Son-
deregger, 1991). Finally, cities were affected first, leaving the assumption that
they were the starting point of the epidemic (Sonderegger, 1991). According to
Sonderegger (1991), in Berne the course was similar to the cantons in western
Switzerland (big impact of the first wave), with the exception of high mortality
rates in November 1918. The western part and the Jura region were hit harder
by the first wave, the Alpine regions were hit harder by the second wave.

Figure 2.3: Number of cases over time and the interventions in the canton of
Berne. The chart shows that measures were both taken and repealed relatively
fast during the first wave. During the second wave, the ban on assemblies
was kept longer. Furthermore, the graphic shows the general strike and the
subsequent second peak of the second wave. Reprinted from Staub et al..

Like everywhere, the measures taken by the Swiss government consisted of
nonpharmazeutical interventions. Cantons were given the right to ban all public
assemblies in July 1918. Furthermore, it became mandatory to report cases to
the federal authorities in October 1918, something which many physicians saw as
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an unneccessary bureaucratic step (Sonderegger, 1991; Staub et al.). Therefore,
the above-mentioned morbidity and lethality rates remain mere estimates with
high dark figures. In the canton of Berne specifically, the government took
action to contain the spread of the virus, as shown in figure 2.3.

2.4 Spatio-temporal analysis of influenza pan-
demics

Several studies on the transmission of the 1918 influenza pandemic exist. One
early paper was written by Patterson and Pyle (1991). They show the global
spread of the pandemic and report the onset of the disease for different regions of
the world and the demographic consequences the pandemic had. They conclude
(1) that the world had become one epidemiological unit (i.e. the disease spread
with unpreccedented speed and reached almost every corner of the world) and
(2) that the fall wave was responsible for the majority of deaths. Mills et al.
(2004) focus on the general transmission of the virus and try to estimate a
reproduction number of the virus. Their findings show that with the right mea-
sures, antiviral medicine, and generally improved health care, today, a similar
virus could be mitigated even though increased air travel would speed up the
long-distance transmission.

There are several studies that focus on specific locations. Chandra and
Kassens-Noor (2014) describe the spread, mortality and evolution of the virus
in India. They conclude that the pandemic slowed down with time and that
the virus became less virulent. Furthermore, they suggest that weather could
have an influence in the spread of influenza: places with less monsoon-rain than
usual were more severely hit by the pandemic. Reyes et al. (2018) also focus on
India. They collected different demographic and environmetal variables to find
factors for the spread and conclude that long-distance travel via railroad was
an important driver in the spread of the virus.

Olson et al. (2005) focus on the age-specific mortality rate in New York
City by calculating the excess mortality compared to a baseline mortality from
monthly and weekly deaths. Their data show a strong evidence that an early
wave of the pandemic was already present in February – April 1918. These
results are supported by Yang et al. (2014), who focus on the outbreak duration
and calculated the reproductive number (the average number of people one
patient infects). Their findings show that the mortality among young adults
was generally higher than among other age groups and that school children
might have been an important driver in the spread of the pandemic in New
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York City. Gog et al. (2014) focus not on the “Spanish” flu but on the H1N1
influenza pandemic of 2009 which is colloquially known as the “swine flu”. They
received a dataset containing doctor’s visits for influenza-like illnesses and fitted
a transmission model using these data. They conclude that in 2009, short-
distance spread played a dominant role rather than long-distance events. This
short-distance spread was further catalyzed by the opening of schools. This
highlights the dominant roll children play in transmitting influenza. In another
study Eggo et al. (2011) fitted a range of city-to-city models to mortality data
in England, Wales, and the US. Their findings show that long-distance spread
played a big role in the beginning of the outbreak and as the disease became more
widespread, short-distance transmission played a major role in disseminating
the virus. The reason for this seems to be that with time, the disease became
more widespread and measures were taken to prevent the spread. Therefore,
long-distance contacts were shut down, and local transmission became the main
driver for the disease (Eggo et al., 2011). A second study with a focus on England
and Wales was conducted by Chowell et al. (2008). They studied death rates,
transmissibility and various geographic and demographic indicators in English
and Welsh cities, towns and rural areas by estimating the reproductive number
using the deaths as a proxy for incidence. They found varying death rates, where
rural areas were affected more. By contrast, they found no association between
population density and death rate. What they did find was a low correlation
between household size and death rates, both for rural and urban areas for
the winter wave. Furthermore, they found a correlation between urbanness and
onset of the pandemic, where the onset in more urbanized areas was earlier than
in rural areas. They call for further geographic studies to explore the pattern
of the influenza outbreak. Smallman-Raynor et al. (2017) study the pandemic
on both the national and local level in the United Kingdom. Their national
results show the characteristics of the waves. The mild summer wave spread
relatively fast from north to south. The second wave on the other hand was –
apart from its much higher deadliness – slower and moved from south to north.
The third wave had a similar spatial pattern as the first one: faster and moving
from north to south. The spread of all of the waves was characterized by a clear
spatial contagion. The local study focuses on Cambridge, a city which, apart
from the famous university, was also home to a large number of naval troops.
This presents the unique opportunity to study the transmission patterns on local
level among a diverse range of groups with different demographic characteristics.
The starting point of the outbreak was returning naval cadettes but the disease
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spread quickly among the general population. Chowell et al. (2008)’s findings
further show a peak in incidence in the 15 – 35 age group.

Another country which, compared to others, is well-studied is Spain, which
is one of the countries that experienced a very high mortality burden (Chowell
et al., 2014). Spain was struck by three pandemic waves with varying timing and
intensity where the most severe one was the second wave in October – November
1918. Chowell et al. estimated the excess death rates from respiratory deaths
in the provinces of Spain. Then, they explored the associations between the
excess deaths and different socioeconomic factors. They found a north-south
gradient in excess mortality rates with higher mortality in the north. Their
model included latitude, population density and the proportion of children and
explained about 40% of the geographic variation. However, this geographic
variation can be attributed to different factors in each wave. The substantial
unexplained percentage suggests that other factors (that were not included in
their model) played an important role in the dissemination of the disease. These
could for example be co-morbidities, climate, or background immunity. A more
recent study by Cilek et al. (2018) assessed the severity on the three pandemic
waves in Madrid by looking at the age-specific excess death rates for respiratory
diseases and other causes. The findings do not support the before-mentioned
“W-Shaped” mortality pattern but instead a high excess mortality rate among
the youngest and oldest in the population.

A few studies with a focus on Switzerland also exist. Zürcher et al. (2016)
focus on the city of Berne and on Switzerland as a whole. They use Pois-
son regression models to quantify the excess pulmonary tuberculosis deaths
attributable to influenza. Their data show that yearly PTB mortality increased
during the “Spanish” flu. Furthermore, several studies exist on the canton of
Geneva. Chowell et al. (2006) try to estimate the reproductive number of the
“Spanish” flu. Ammon (2002) focuses on studying the socioeconomic burden
of the disease. She studies the disruptions the virus caused, e.g. the frequent
school closures and the overcrowding of the hospitals. According to her, one of
the biggest problems in the 1918 outbreak was the inconsistency of the measures
taken, which further contributed to a climate of insecurity. Furthermore, there
are a few studies that focus on specific cantons in Switzerland. Sonderegger
(1991) has a focus on the canton of Berne. Besorger (2018) focusses on the
canton of Zug in his analysis. The results show that the second wave was far
more virulent in the canton of Zug than the first wave. Further studies with a
focus on Switzerland cover the cantons of Basel Stadt/Land (Tscherrig, 2016),
Nidwalden (Tscherrig, 2018), and Valais (Marino, 2014). These studies are all
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rather qualitiative and show the different courses of the epidemic in the different
cantons. However, a quantitative approach for a canton as regionally diverse as
Berne is still lacking.

Finally, Staub et al. used the same data as used in this project to calculate
relative incidence rate ratios to assess the change in incidence connected to
public health interventions. The findings show that during the first wave, school
closures and restrictions on mass gatherings were associated with a reduction
of new cases. During the second wave, the cantonal authorities hesitated to
take measures, and instead delegated the responsability to the municipalities
and the association between the interventions and the reduction in cases was
less distinctive.

2.5 Possible determinants of spread

In the literature part so far (section 2), several studies were presented that iden-
tified locally specific factors that explain the spread of the influenza pandemic.
Below, some factors that might help explain the dissemination of the disease are
summarised. In a next step, these factors will be used in a logistic regression
model to see if they help explainig the spread of the 1918 influenza strain in the
canton of Berne.

The following socio-economic and physical factors have been included in
previous studies and found to contribute to explaining the spread of the 1918
influenza pandemic:

(a) Proportion of people working in agriculture: Bengtsson et al. (2018)
found notable differences in excess mortality between social classes. They
analyze the risk of death for white collar workers, high-skilled manual
workers, low-skilled manual workers, unskilled manual workers, and farm-
ers. While they found no notable differences between the first four social
classes, people working in agriculture had a significantly lower risk of death
(Bengtsson et al., 2018).

(b) Tuberculosis mortality: Several studies suggest that TB also played a
role in the 1918 influenza pandemic and could have influenced both mor-
bidity and mortality (Mamelund, 2011; Zürcher et al., 2016). Areas that
have been hit harder by tuberculosis might also have been hit harder by in-
fluenza, because the risk of severe cases or contracting bacterial pneumonia
could have been higher, therefore leading to more severe cases (Mamelund,
2011).
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(c) Urban vs. rural settings: Evidence suggests that the panemic first
reached the cities and from there spread to the surroundings (Sondereg-
ger, 1991). Chowell et al. (2008) found no association between population
density and death rates but concluded that the onset of the pandemic was
earlier in urban areas. Since there are no studies that found an associa-
tion between population density and transmission, urbanness rather than
population density is considered in this thesis.

(d) Accessability: In their study, Reyes et al. (2018) found that the num-
ber of passengers travelling on railway lines was an important factor in
explaining the spread of the pandemic in India.

(e) Weather: Roussel et al. (2016); Chandra and Kassens-Noor (2014) and
Reyes et al. (2018) found that weather had an influence on the spread
of the 1918 influenza pandemic. In the case of Reyes et al. (2018) the
rainy season in India showed a negative association with influenza cases.
Chandra and Kassens-Noor (2014) found that places with below-average
monsoon were more severely affected by the pandemic. Roussel et al.
(2016) analyzed different climatic factors such as sunshine, duration or
humidity, and found out that climate may play a role in the spread of
influenza.

This list is by no means absolute, as several potentially important factors are
missing (e.g. literature further states that the age pattern is an important ex-
planatory factor (Mamelund, 2011; Jester et al., 2018)). These are not included
in this list, as there was no data available on a sub-national level.

2.6 Research gaps and research questions

In general, there are not many studies that focus on the spatio-temporal anal-
ysis of the 1918 influenza pandemic as many of the above-presented papers are
merely descriptive studies that estimate numbers of cases and deaths and the
pandemic’s impact on public life. The spatial component of the dissemination is
often omitted in these studies, especially if they focus on Switzerland. Secondly,
most studies focus on death records instead of incidence reports. Therefore, the
following research gaps were identified:
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Research Gap 1: Missing information on how the virus spread in the
canton of Berne (and Switzerland)

So far, no quantitative and geographically comprehensive study of the dissemi-
nation of the “Spanish” flu in the canton of Berne exists. Accounts on this area
are mainly qualitative descriptions of the course of the pandemic. Furthermore,
many studies focus on national or cantonal entities, or on cities. To date, there
are no studies that focus on such a small scale as the municipality level. This
thesis is a first step to overcome this gap by conducting a case study on the
municipality level for the canton of Berne.

Research Gap 2: Missing information on what locally specific fac-
tors contributed to the spread

The influence of different factors (weather, transportation, space, socio-economic
factors, etc.), have been described in various studies in other countries for ex-
ample by Chowell et al. (2014); Eggo et al. (2011); Reyes et al. (2018), etc. (see
section 2.5). Knowing which locally specific factors play a role in the dissemina-
tion of airborne diseases can help to identify measures that help preventing and
mitigating future outbreaks (e.g. by putting an emergency concept into place
as reccomended by the World Health Organization).

Research Gap 3: No effective communication of research

Communication research results is often seen as not that important and there-
fore often largely omitted (Sonderegger, 1991), which leads to the problem that
research results are barely noted outside of the scientific community. With the
“Spanish” flu being such an important part of human history (and an increased
interest due to the ongoing Sars-Cov-2 pandemic), I argue that communication
and presentation of research is of importance. The presentation will be easily
accessible requiring no special skills to understand it. There will be no research
question associated with this research goal, however throughout the answering
of the first two research questions an emphasis will be put on visualisations that
support an effective communication of the results.
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Based on these research gaps, the thesis will address the following research goals
and questions:

Research Goal 1: Descriptive spatio-temporal analysis of the in-
fluenza data

The first part of the project is to conduct a spatio-temporal analysis of the
1918 influenza pandemic in the canton of Berne. This part is mostly descrip-
tive and includes steps like determining the incidence rates and observing how
they change over time. Furthermore, the global and local Moran’s I statistics is
calculated to take spatial distribution into account. This part is a first step to
fill the knowledge gap of how the pandemic spread in such a regionally diverse
canton as Berne.

Research question 1
According to which spatio-temporal patterns did the 1918 influenza spread
in the canton of Berne?

Research Goal 2: Finding determinants of spread

The second part of the analysis is to create a data-driven epidemiologic model
to determine the spread of the influenza pandemic of each of the two waves in
the canton of Berne. Based on various explanatory variables, which are taken
from existing frameworks, contributing factors for the spread are identified.

Research question 2
Which locally specific factors determine the spread of the 1918 influenza
pandemic in each of the two principal waves?

Research Goal 3: Effective visualisation of results

There is no research question associated with the last research goal. How-
ever, special emphasis will be put on the visualisation of the findings in order
to facilitate a better understanding of the results. If maps are created, carto-
graphic standards will be followed and an emphasis will be put on making the
visualisations more accessible (e.g. in resprect to color vision defficencies).
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Based on previous literature (section 2), a hypothesis is created for each research
question.

Hypothesis 1
In the canton of Berne, the national patterns also hold true. This means
the epidemic generally spread from the west towards the east.

Hypothesis 2
The spread of the virus can be explained with locally specific factors such
as socio-economic (e.g. percentage of people working in agriculture, urban-
ity, etc.) or physical (e.g. accessibility, weather) factors. For each factor,
a sub-hypothesis that describes the relationship between the outcome and
each explanatory factor is formulated:

(a) The higher the proportion of people working in agriculture, the lower
the incidence of influenza in a municipality.

(b) The higher the average TB mortality, the higher the incidence rate.

(c) The incidence was higher in the urban spaces than in rural areas.

(d) The better a municipality’s access to the railway system, the higher
the incidence.

(e) The higher the precipitation, the lower the incidence.
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3 Methodological approach

3.1 Data sources and data preprocessing

3.1.1 The canton of Berne – a short geography

Figure 3.1: The greater Regions of the canton of Berne. Additionally, the relief
shows that the Jura and the Oberland region are particularly mountainous.

In order to understand and correctly interpret the data, a few basic facts about
the geography of the canton of Berne have to be established. In 1918, the can-
ton of Berne was the second biggest canton of Switzerland in terms of surface
(6798 km2) and the one with the biggest population (around 675’000 inhab-
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itants) (Bundesamt für Statistik, 1921). The three Swiss geographic regions
can also be found in the canton of Berne: The Jura Mountains in the north,
the Swiss Plateau in the central parts, and the Alps in the south of the can-
ton. Furthermore, the canton of Berne consisted of 497 municipalities and 30
administrative districts. Figure 3.1 gives an overview of the municipalities, the
regions, and the three biggest cities (Berne, Biel, Thun). The Jura region is part
of French-speaking Switzerland while in the rest of the canton, the majority, is
German-speaking. Figure 3.2 shows the population density on a municipality
level for the entire study area. The map shows that the Swiss Plateau was heav-
ily populated especially around the three biggest cities Berne, Biel, and Thun.
The Jura region had some more heavily populated area between sparsely popu-
lated small municipalities. Finally, in the Bernese Oberland the municipalities
around the lakes had a tendency to be a bit more heavily populated while the
regions further in the south and the east were very sparsely populated mountain
areas.

3.1.2 Sample

The outcome dataset is the same as used by Staub et al. and therefore the
sample is the same. It contains raw case numbers of influenza-like illness based
on doctors’ reports. Berne was one of the first cantons to declare influenza
a notable disease immediately after the outbreak in July 1918 (Regierungsrat
des Kantons Bern, 1918). From then on, doctors had to report the number of
influenza cases to the district authorities who were responsible to control that
the doctors fulfilled their reporting duty (Staub et al.). These reports are now
available in the cantonal archives of the canton of Berne (Sanitätsdirektion des
Kantons Bern, 1918).

The received sample includes 143’389 disease reports, among which 131’725
were influenza reports and covers the time period from July 1918 to December
1919. An excerpt of these disease reports is shown in figure 3.3. The sample
includes influenza cases from 472 municipalities (95% of all municipalities). Sev-
eral of these reports had some inaccuracies: in 4723 cases (3.2%), there was no
excact date/number pair available (reports like “10 cases in two weeks”, “many
cases”). For these cases, the middle date of the range was used as a reporting
date or the number of cases from the immediately preceeding or following report
was used. In another 2005 cases (1.4%), no exact municipality was reported but
only the administrative district (“im ganzen Bezirk” – “in the entire district”).
These cases were omitted for the analysis on a municipality level as no exact
municipality could be assigned.
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Figure 3.2: Population density per municipality in 1920. The darker an area, the
higher the population per km2. The Swiss Plateau (Seeland, Bern Mittelland,
Oberaargau, and Voralpen) was more heavily populated than the mountainous
regions (Jura/Laufental and Oberland).

3.1.3 Outcome variable

The outcome variable is the incidence rate of influenza in the canton of Berne.
The raw reports of influenza-like illness had to be standardised by calculating
incidence rates (cases per 100’000 inhabitants) for each municipality. As a stan-
dardisation size, the number of infected people per 100’000 inhabitants is chosen
because it is a known ratio that is also often used nowadays in the presentation
of Covid-19 cases. The population data needed for these calculations originates
from the Swiss federal census of 1920 (Bundesamt für Statistik, 1921). This
population dataset was collected 1 – 2 years after the flu took place, and there-
fore is influenced by the pandemic as well (i.e. places with high death tolls
would have less inhabitants because of the pandemic). However, at the time a
census only took place every ten years, therefore using the one from 1920 is the
most accurate data available.
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Figure 3.3: Excerpt from the original data as found in the cantonal Archives
of Berne (Sanitätsdirektion des Kantons Bern, 1918). For this thesis, the data
was already present in a digital form.

The temporal resolution of the data is 1 day meaning the reports contained an
exact date. However, the analysis on a daily level does not make much sense in
this context as daily disease reports fluctuate quite a bit. Therefore, the daily
reports were temporally aggregated depending on the type of analysis. For
the analysis of the spatial component (see figure 4.5), the were data temporally
aggregated for the entire study period and per municipality, to gain an overview
which areas were overall particularly affected by the pandemic. In the next step,
the data were summed up by month for the months from July 1918 to June
1919, to bring in the temporal aspect and observe which places were affected
when and how severely. For the epidemiological analysis, only the two principal
waves were of interest. The available data covers influenza reports from July
1918 until the end of December 1919. Since this covers more than this time
frame of interest, two subsets were selected:

1. Subset 1 consists of the reports that were dated for the months of June
and July 1019. This was when the first spring/summer wave took place
(see section 2.3)

2. Subset 2 consists of the reports that were dated for the months of October
1918, November 1918, December 1918, and January 1919. This was when
Switzerland was struck by the second, more severe wave (see: section 2.3)

The smallest spatial resolution available is the municipality level. This level
is used throughout all of the project because it allows for a fine-grained analysis
of the pandemic with a potential to capture small-scale regional differences. For
the logistic linear regression model, the data were split into two categories 0 and
1, where 0 is the bottom 80% of the incidences and 1 the top 20% of incidences
for each of the two waves.

25



Figure 3.4: Proportion of people working in agriculture for each municipality.
It is noteworthy that the southern Jura region had low proportions of people
working in agriculture despite its seemingly rural setting.

3.1.4 Explanatory variables

Given their broad nature, the explanatory variables originate from a variety of
sources. The socio-economic variables (proportion of people working in agri-
culture and number of inhabitants per municipality) originate from the Swiss
national census of 1920 (Bundesamt für Statistik, 1921) and were already digi-
tized. The rest of the variables comes from a variety of sources and had to be
calculated first. A detailed overview of the distribution of the data and their
correlation can also be found in the results section, specifically in figure 4.10 for
the first wave/model 1 or figure 4.12 for the second wave/model 2.

Proportion of people working in agriculture

Bengtsson et al. (2018) conclude in their study that areas with a higher pro-
portion of people working in agriculture were less affected than other areas.
The idea was to test whether this also was true for the canton of Berne. The
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number of people working in agriculture was standardised using the number
of inhabitants in each municipality from the Swiss census 1920. This resulted
in the percentage of people working in agriculture for each municipality. The
distribution roughly followed the normal distribution, and it was not further
classified.

The map in 3.4 shows the spatial distribution of the proportion of people
working in agriculture. Generally speaking, the proportion of people working in
agriculture was still quite high in 1920 particularly in the southern and eastern
part of the Bernese Oberland, and south of Lake Biel. Noteworthy are the three
cities Berne, Biel, and Thun that are clearly visible on this map with their
low percentages of people working in agriculture. Furthermore, the southern
part of the Jura region shows low values in the proportion of people working
in agriculture. This can be attributed to the watch making industry which was
resident in the southern Jura region (Fallet, 2020).

TB mortality

Mamelund (2011) finds that tuberculosis was an important explanatory factor
for explaining both high morbidity and mortality of the 1918 influenza pan-
demic. The digital influenza dataset (the main dataset used for the outcome
variable) also contained a few reports of tuberculosis. However, these reports
only covered two municipalities and were not sufficient to be used in the analy-
sis. Therefore, another solution had to be found: Every ten years, the canton of
Berne published statistics that report on the number of tuberculosis deaths on
a municipality level (Staatsarchiv Kanton Bern, 1910). For the purpose of this
analysis, the most recent statistics from the years 1900 – 1910 was used (Staat-
sarchiv Kanton Bern, 1910). This gives an estimate of how high the prevalence
of tuberculosis might have been in the different municipalities.

The map in figure 3.5 shows the spatial distribution of TB mortality in the
canton of Berne. Compared to the rest of the canton, the Jura region had the
highest TB mortality. In the Swiss Plateau, there were some areas that were
slightly more affected, particularly around Lake Biel, north of the city of Berne,
and in the region of Oberaargau. In the Bernese Oberland, the regions closer to
the lake as well as in the very eastern part showed a higher TB mortality in the
years prior to the 1918 influenza pandemic. The southern part of the Bernese
Oberland did not seem to be much affected.

Just like the influenza data, the tuberculosis data was standardised by calcu-
lating the mortality per 100’000 inhabitants. Afterwards, the data was divided
into two categories 0 and 1, where 0 represents the bottom 80% of the mortality
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Figure 3.5: TB mortality (deaths per 100’000 people) in each municipality for
the years 1900 – 1910. The map shows that the Jura region, areas around lake
Brienz, and areas north of Berne were particularly affected by tuberculosis.

and 1 the top 20% with the highest mortality. One point that has to be noted
is that the TB data from 1910 was standardised using the census from 1920
as it was the one available in a digital form. This introduces some potential
inaccuracies. However, it remains open how using a census closer to 1910 would
have influenced the result. Also, later on the data were classified into two cate-
gories, therefore small differences in mortality would have been “swallowed” by
the classification anyway.

Urban vs. rural settings

The canton of Berne at the time of the 1918 influenza pandemic was still very
rural with the exception of the three urban centres Berne, Biel, and Thun.
There was a clear gap between these centres and the periphery with regard
to development, but also in their number of inhabitants (Pfister, 2011). This
classificaton is partially supported by the Swiss census of 1920 which lists Berne
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and Biel as cities (Statistisches Bureau, 1921). Particularly, urban areas showed
an earlier onset of the pandemic: several studies (Sonderegger, 1991; Chowell
et al., 2008) found that urbanity was an explanatory determinant of spread of
the 1918 influenza pandemic. This was considered for the analysis. The three
urban areas Berne, Biel, and Thun were put into a single category and all other
municipalities formed a second category. The idea was to test whether urban
settings behaved differently than rural settings.

Access to the railway network

As stated in section 2, access to the railroad network was an important driver in
the 1918 influenza pandemic in India (Reyes et al., 2018). The idea was to test if
this also holds true for the canton of Berne on a smaller level. For this purpose,
I obtained a dataset containing the Swiss railway stations in the year 1900 from
Egli, Hans-Rudolf, Flury, Philipp, Frey, Thomas, Schiedt (2005) and the Swiss
railway network from Büchel and Kyburz (2018). Several new lines were built
between 1900 and 1918 (e.g. much of the Rhaetian Railway network (Rhätische
Bahn AG, 2020)) and therefore had to be added into the network by hand. This
was done by digitizing the misssing railway stations and lines using the online
geoportal of the Swiss confederation and the tab “Zeitreise – Kartenwerke”
(Bundesamt für Landestopographie (swisstopo), 2020). Furthermore, railway
lines that had a purely touristic purpose were deleted for the purpose of this
analysis (e.g. Rigi Railway, Brienz Rothorn Railway, etc.).

Afterwards, an undirected navigable railroad network was built using R ver-
sion 4.0.2 and the packages igraph (Gsardi and Nepusz, 2006) and tidygraph
(Pedersen, 2020). Unfortunately, no passenger data was available, therefore
another proxy for the importance of a station within the network had to be
found. This was achieved by calculating the node betweenness centrality which
determines the importance of a node in a network by calculating the number
of shortest paths that pass through a network (Geisberger, Robert & Sanders,
Peter & Schultes, 2008). This number was then used as a proxy for how well
a municipality is accessible through the railway network. Initially, the question
was posed whether this analysis should be conducted for the entire country or
just the canton of Berne (i.e. the area of interest). It was decided to use the
entire country as an input because the railway network functions as a national
network. Cutting out just the stations that are on the area of the canton of
Berne would have led to several unconnected graphs which would have led to
false results, especially in the area around the region of Oberaargau, where the
railway lines cross the cantonal boundaries several times.
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Figure 3.6: Node betweenness centrality per municipality in the canton of Berne.
The node betweenness centrality is a measure of how central a node (in this
context a railway station) is in a network. The map shows high values for
the areas around Berne and Biel and particularly in the region of Oberaargau.
Municipalities that have no access to the railway network are shown in light
grey.

In a next step, the nodes were joined to the geometry of the municipalities. If one
municipality had more than one railway station, the one with the largest value
was selected to simulate the highest possible centrality. This way was chosen
because in all cases where a municipality had more than one railway station they
were all part of the same line, thus not making the place more accessible. After
an evaluation of the node betweenness centrality, it was deemed necessary to
split the data into groups, also to make the model easier to interpret. Splitting
the data into quantiles was not possible as there was an excess rate of zeros in the
data (256 municipalities had no railway access at all). Therefore, another way
had to be found. Originally, a binary model with the categories “railway access”
/“no railway access” was considered, but this would have meant an information
loss because it would not have accounted for how central a station was within
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a network (e.g. the muncipalities of Brienz and Berne would have been in the
same category, even though Berne is much more accessible), hence an alternative
way had to be found. All municipalities with no railway station were put into
the same category. Afterwards, the remaining municipalities were split into four
more categories, making a total of five categories. They were split according
to their node betweenness centrality using an algorithm that minimizes the
differences within categories and maximizes the differences between categories
and that was originally developped for the use in cartography (Jenks and Caspal,
1971).

The map in figure 3.6 shows which areas in the canton of Berne were easily
accessible by train. The map also shows that the accessibility is higher around
the three cities Berne, Biel, and Thun. Particularly the region of Oberaargau
contains areas with a high node betweenness centrality. This has to do with
their relatively central location within Switzerland. Furthermore, the southern
part of the Jura also has areas with high node betweenness centrality. In the
Oberland, we see a difference between the low-lying regions around the Lake
Brienz and Lake Thun that were accessible by rail and the harder-to-reach
municipalities in the very south and east.

Precipitation

The weather data was obtained from the Swiss Federal Office of Meteorology
and Climatology MeteoSwiss. The data included 29 stations spread out through
the entire canton of Berne. The precipitation data covered daily measurements
for the years of 1918 and 1919. This data was summed up for (1) the entire
study period (July 1918 until December 1919 – see figure 3.7), (2) the first wave/
model 1 (July and August 1918), and (3) the second wave/model 2 (October
1918 until January 1919). Afterwards, a raster covering the entire extent of the
canton of Berne was interpolated using the IDW (inverse distance weighted)
method (Philip and Watson, 1982) available in the ArcGIS Spatial Analyst
extension (ESRI, 2020a). Using Zonal Statistics (ESRI, 2020b), an average
value for each municipality was calculated. This calculation was done for the
three subsets (1 – 3) mentioned previously. Afterwards, the data was split into
quintiles. Modelling quintiles instead of the raw data has several advantages:
Firstly, precipitation data, by its nature, has a huge range of values, therefore
modelling a one unit increase would not have yielded any meaningful results.
Secondly, the data was interpolated and contained inaccuracies. Therefore,
modelling the data in quintiles allowed to control for general tendencies, and
reduces the risk of misinterpretation due to inaccurate interpolation results.
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Figure 3.7: Total precipitation per Bernese municipality for the entire study
period from July 1918 through December 1919. The mountain regions of the
Alps and the Jura received more precipitation than the lower parts of the canton.

The map in figure 3.7 shows the amount of precipitation received in the canton of
Berne per municipality for the entire study period (July 1918 through December
1919). The pattern follows the general precipitation pattern for Switzerland: the
Oberland received the most precipitation, followed by the also mountainous area
of the Jura region. The amount of precipitation decreases towards the low-lying
areas and reaches its minimum in the area around the city of Berne. Finally,
there are two areas in Thun and in the region of Oberaargau that also received
little precipitation.

3.1.5 Geometry

Originally, most of the data was organized in two datasets. One dataset was
a table containing all the municipalities, their socio-economic factors, a unique
ID, as well as coordinates marking the centre of each municipality, which al-
lows the dataset to be turned into a spatial dataset easily. The second dataset
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contained the disease reports as well as their date and the same unique ID as
the municipality dataset. For the purpose of a better visualization, it was seen
as more meaningful to visualize the data as municipality polygons instead of a
point representation. Unfortunately, no polygon dataset of the municipalities at
the time of the pandemic was available and therefore one had to be created by
hand. The basic dataset was created by the Swiss Federal Office of Topography
and was kindly provided by Egli, Hans-Rudolf, Flury, Philipp, Frey, Thomas,
Schiedt (2005). It contained the municipality boundaries as they were in the
year of 1990. An older dataset was not available and therefore had to be man-
ually created. The Swiss Federal Office of Topporgraphy provides old maps for
Switzerland in their online map application (map.geo.admin.ch) under the tab
“Zeitreise – Kartenwerke”, as well as the possibility to import datasets into the
online map application (Bundesamt für Landestopographie (swisstopo), 2020).
The 1918 municipality polygon geometry was created by importing the available
geometry data set from 1990 and adding missing boundaries by hand. After-
wards, these boundary drawings were downloaded and used to split the existing
polygon geometry from 1990. Finally, the two datasets (the point data and the
newly created polygon data) were matched using a spatial join. This way, the
polygon dataset also contains the unique id of the point dataset which allows
an easy matching of the influenza data with the geometry for the creation of
better visualisations.

3.2 Methods

3.2.1 Research goal 1: Descriptive spatio-temporal anal-
ysis of the influenza data

The idea of this descriptive analysis was to gain an overview of the data, their
potential and limitations. This was an important step for the next research
goal because having a good overview of the data was essential for building a
statistical regression model in a later stage. From an analytical point of view,
the data can be split into three dimensions: (1) the incidence, (2) the temporal
dimension, and (3) the spatial dimension. All three dimensions are related to
each other. This theoretical division into these dimensions allowed to start the
analysis simply by only looking at one dimension. Later on, the complexity
could be increased by subsequently adding the other dimensions which should
yield in more insight into the data and its patterns.
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Incidence

Out of the previously mentioned three dimensions, the content-related dimen-
sion was arguably the most important one. It was also the only one that in
this context could be analysed individually (assessing only the time or only
the space would have made little sense in the context of this research). The
analysis started simply by calculating conventional statistical key figures such
as median, mean, standard deviation, etc. and presenting them in the form of
boxplots in a first approach to describe the simple characteristics of the data.
A second approach for an isolated analysis of the incidences was looking at the
Lorenz curve. The Lorenz curve compares cumulative incidence numbers with
cumulative population size among municipalities (ranked from the municipaliy
with the lowest number of inhabitants to the one with the highest number of
inhabitants) (Lee, 1997). In a Lorenz curve, the main diagonal means perfect
equality, which in this case would have meant an equal distribution of case num-
bers according to their population size (i.e. the incidence is the same in each
municipality). The further away the actual curve is from this main diagonal,
the more inequality is present in the data.

Incidence and temporal dimension

The second step of the analysis was to determine the incidence over time. One
first attempt to achieve this would have been by looking at new infections by
time. This was already done by Staub et al. (see figure 2.3) and was already
discussed in the state of the art section. Another aproach was to look at daily
new disease reports compared to total disease reports. This graphic – although
not as intuitive as looking at the daily (or weekly) new infections – provided
further insights into the data.

Incidence and spatial dimension

One first approach to assess the spatial distribution of the cases was summing
them up by municipality and visualizing them on a choropleth map (Slocum
et al., 2008). This allowed a visual assessment of the data and helped to identify
potential regional differences. Afterwards, the two dimensions were analyzed
in a more formal way by applying spatial autocorrelation analyses. The global
Moran’s I is designed to reject the null hypothesis of spatial randomness in favor
of the alternative hypothesis of clustering. This gave a first insight whether the
incidences are randomly distributed in space or spatially dependent. The global
Moran’s I test does not give any indication as to the location of these clusters
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(Moran, 1948). In order to gain insight into the location and the type of cluster
(high rates or low rates), the local Moran’s I was calculated (Anselin, 1995)
using the software GeoDa (Anselin et al., 2003). The local Moran’s I is an
algorithm that compares the value of each observation with its neighbours and
finds clusters of high-high or low-low rates. Furthermore, a p-value for each
location was calculated which allowed to assess the statistical significance of
each location. When combined with the location of each observation in space,
this allowed a very powerful interpretation: a classification of the significant
locations into clusters of high-high or low-low rates. Furthermore, outliers of
the form high-low and low-high were calculated also using the software GeoDa
(Anselin, 1995).

Incidence, spatial dimension and temporal dimension

In the last step of the discriptive analysis, all the three dimensions were com-
bined. Firstly, the incidences were aggregated per month and municipality to
produce maps that showed incidences per month per municipality. This again
allowed to visualize how the pandemic spread across the canton of Berne. There-
fore, this was a more profound descriptive analysis, that relied on disease data
rather than obervations from historical sources. Secondly, similar maps were
produced with incidence summed up per municipality for the entire duration of
each of the two principal waves. Literature suggests that the different regions of
the canton of Berne had different spatio-temporal characteristics (Sonderegger,
1991)(see section 2). Finally, the local Moran’s I statistic was calculated for
both waves using the software GeoDa (Anselin, 1995). These cluster maps then
serve as a baseline to compare the model residuals to.

3.2.2 Research goal 2: Finding determinants of spread

Model design

For the statistical analysis, two linear logistic regression models were built.
Model 1 included the incidence data from July and August 1918 and Model 2
included the incidence data from October 1918 until January 1919 (for a com-
plete overview of the different variables and how exactly they were classified,
please refer to section 3.1). These two time frames for the models were chosen
based on the spatio-temporal analysis in research question 1 as well as sugges-
tions from literature (Staub et al.). The spatial resolution was the municipality
level, to observe small-scale local changes in the incidence rates. Together with
the odds ratios, this allowed to make statements as to how the locally spe-
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cific explanatory factors may have influenced the incidence rate in a particular
municipality.

Choosing a logistic linear regression model is an easy and efficient way to
“analyze the effect of a group of independent variables on a binary outcome by
quantifying each independent variable’s unique contribution” (Stoltzfus, 2011).
Generally, a logistic regression model has a binary outcome variable, and it
measures the probability of being in one outcome group versus the other. In
the context of this thesis, the model measures the probability of a municipal-
ity being in the top 20% of influenza incidence versus being in the bottom
80% of influenza incidence, based on the characteristics of the municipalities.
Furthermore, a logistic regression identifes the strongest linear combination of
independent variables that increases the likelihood of detecting the observed
outcome through an iterative process. This is known as maximum likelihood
estimation (Stoltzfus, 2011).

As a prerequisite, all potential variables were tested for multicolinearity.
Multicolinearity is present in the dependent variables if two dependent vari-
ables have a high correlation. It can be problematic because if multicolinearity
is involved, it becomes hard to determine which variables are statistically sig-
nificant and which are not (Mansfield and Helms, 1982). Multicolinearity was
ruled out by assessing the pairwise correlation of all of the variables. If any
problematic multicolinearity occured, it was adressed by removing one of the
variables that had a high correlation with another variable.

In order to run a model, the appropriate explanatory variables had to be
found. This was achieved through a data-driven approach: the n best models for
each wave were found by performing an automatic model selection in R (version
4.0.2) using the glmulti package (Calcagno and de Mazancourt, 2010) and the
AIC (Akaike Information Criterion) (Cavanaugh and Neath, 2019) as a criterion
that defined a “good” model. The model with the lowest AIC is generally seen as
the best model, however, Burnham and Anderson (2004) suggest that all models
with an AIC value that is no more than 2 points higher than the smallest AIC
in the group also have substantial support. Therefore, all the models from the
set of best models were asessed and among them, a suitable one was selected
which was then used in an attempt to explain local differences in incidences.

Another point that is briefly mentioned here, is how to interpret a logistic
regression model. In this thesis, the argument is based on the odds ratios, which
is why a brief explanation on how to interpret odds ratio follows here. An odds
ratio is the ratio between the probability of an outcome 0 and the probability of
an outcome 1 (Sperandei, 2014). Generally, odds ratios can have two meanings:
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odds ratios greater than 1 point to a positive association between outcome and
dependent variables, while odds ratios with values between 0 and 1 point to a
negative association. For multinomial variables, the interpretation is slightly
different. The interpretation of multinomial variables (variables that have more
than two outcomes but are categorized – the majority of variables in these
models) is slightly different but still relatively straightforward: the model takes
the first category and compares it to each of the other categories (Sperandei,
2014). As an example: in the models of this thesis, different levels of railway
access were modelled, where the first class is “no railway access”. Therefore, the
model compared the category “no railway access” to the different other levels
of railway access (low, medium, high, etc.).

After a model for each wave was selected and run, a Breusch-Pagan test
was run on the models to test for heteroscedasticity of the model residuals
(Breusch and Pagan, 1980). This test was an attempt to assess model quality.
If heteroscedasticity is present in a model this means that there is some variation
in the outcome variable which cannot be explained by the model. Commonly,
this is regarded as an indicator of at least one missing variable in a model.

Spatial autocorrelation

Another question that was of interest for this thesis, is to see how well the
model performs spatially. This could be achieved by looking at the residuals of
each municipality. These residuals were asessed using the same statistics as in
research goal 1, the global and the local Moran’s I. The difference between this
part and research question 1 was that the correlation measures were based on
the model residuals and not on the incidences themselves. This allowed to assess
the quality of the outcome by comparing the model outcomes with the outcomes
of the raw data. A perfect model would explain all the spatial variation in the
incidences and therefore, no clusters would be present anymore.

In an attempt to visualize the spatially varying influence of the explanatory
factors, bivariate choropleth maps were generated showing the correlation of
influenza incidence with each of the explanatory factors separately. The advan-
tage of a bivariate choropleth map over a univariate one is that the rates of
two variables are shown in the map. This allows to not only observe the spatial
distribution of a variable, but also the correlation between those two variables
(Olson, 1981). This is a useful tool to gain further spatial insights into the
pattern of the data. One inportant point to consider with bivariate choropleth
maps is color. The color scheme had to be carefully chosen in order for the maps
to be better understandable and accessible for people with color vision deficien-
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cies (Robertson and O’Callaghan, 1986). The choropleth maps were generated
using R version 4.0.2 and the package ggplot with the following considerations
for the classification: for the bivariate choropleth maps, the maximum of possi-
ble categories is three. Anything with more than three categories would include
too many colors (e.g. having four categories would mean 16 different colors,
five categories 25 colors, etc.). Therefore, the data had to be categorized dif-
ferently than in the model. Whenever possible, the data was simply split into
terziles. For the variable “access to the railway system” this was not possible
due to the many zero values. Therefore, all the zero values were put into the
same category. The remaining data were split into two categories using Jenk’s
natural breaks algorighm (Jenks and Caspal, 1971). The maps are intended as
an aid to correctly interpret the results of the models. Therefore, they are not
included in the thesis itself but have been moved to appendix A.

3.2.3 Effective visualisation of results

One additional goal of this thesis that is not associated with a research question
was the effective visualisation of results of my research. The current Sars-Cov-2
pandemic is a good reminder why this is of great importance. Researchers have
since the outbreak called for “clear, honest and valid information” (Finset et al.,
2020), to make the public understand the severity of the situation without caus-
ing panic. Furthermore, the February 2020 editorial of The Lancet, one of the
most renowned and widely cited medical journals, expressed the need for easy
and effective communication as a means for fighting conspiracy and inaccuracies
that spread through social media and the internet, concluding: “There may be
no way to prevent a COVID-19 pandemic in this globalised time, but verified
information is the most effective prevention againt the disease of panic” (Amit
Kumar Mandal , Paulami Dam , Octavio L. Franco , Hanen Sellami , Sukhendu
Mandal , Gulten Can Sezgin , Kinkar Biswas , Partha Sarathi Nandi, 2020).
This to some extent also holds true for this thesis as it has gathered growing
interest since the start of the pandemic. For example: upon publishing a blog
entry about my thesis on the University of Zurich Department of Geography’s
website (Leuch, 2020), I received several messages from interested people. This
demonstrates a potentially greater interest in the topic since the outbreak of
the Covid-19 pandemic.

One main output of the thesis are maps. One advantage of using maps is that
many people are somewhat familiar with the use of maps. They allow the quick
visual analysis of large datasets and the recognition of spatial patterns. This
follows an interdisciplinary approach known as visual analytics (Andrienko et al.,
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2010). There are well-established principles of how information can be conveyed
in maps one of which is color (Bertin, 1983). The concept of color is described as
being a combination of the three components color hue, saturation and lightness
(Slocum et al., 2008). Brewer (1994) describes four color scemes: qualitative,
binary, sequential, and diverging. Relevant for this paper were the latter two.
When the data has quantitative steps from low to high, a sequential scheme
was used, where low values were represented by light colors and high values by
darker colors. Where the data was quantitative but had an obvious midpoint
(e.g. for visualising residuals), a diverging scheme was used. It consists of two
different sequential color hues that become lighther, the closer the values are to
the midpoint. Finally, what had to be considered in making maps accessible was
perception by people with color vision deficency. Luckily, there are numerous
tools that allow a user to test a color palette for different kinds of color deficiency
(Lu and Meeks, 2020; Brewer et al., 2002) which were used for the creation of
maps in this thesis.
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4 Results

4.1 Research Goal 1: Descriptive spatio-temporal
analysis of the influenza data

4.1.1 Incidence

Figure 4.1: Distribution of incidences per municipality for the entire pandemic.
The histogram is skewed to the right with some extreme outliers on the right
side.

The histogram in figure 4.1 shows the distribution of the incidences, where the
data was summed up for each municipality and the entire study period. Instead
of raw case numbers, the incidences per 100’000 inhabitants is shown on the
x-axis to make the data more comparable. The incidence numbers can easily
be converted into morbidity in percent by dividing the number by 1000. The
data does not seem to be normally distributed, but is a bit skewed to the right.
Furthermore, the data contains some outliers on the higher end of the scale:
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some municipalities reported more than 90’000 cases per 100’000 inhabitants,
or more than 90% of the population was infected.

Figure 4.2: Boxplot of the incidences for the entire period (left plot), the first
wave (July and August 1918; middle plot), and the second wave (October 1918
– January 1919; right plot). The plots show that both the variance and the
mean were much smaller in the first wave but the first wave had more outliers.

The boxplot of the incidences (figure 4.2) underlines what the histogram
already shows: the data contains some statistical outliers where the reported
incidence was higher than statistically expected. There are three boxplots:
one that includes the entire study period, and one for each of the two waves.
This was a first step towards looking at the temporal dimension of the data.
Generally speaking, incidence rates were higher during the second wave. The
mean incidence for the entire study period was 16’505 cases per 100’0000 people
(16.5% of the population). For the two waves the mean incidence was 3828
per 100’000 people (3.8% of the poulation, first wave) and 12’254 cases per
100’000 people (12.3% of the population, second wave). This means the burden
of disease was higher in the second wave.

The variance was also higher in the second wave, while the first wave had
the most outliers. However, it would not be wise to simply remove these outliers
from the dataset. First, the spatial temporal dimensions have to be considered
as well. It could well be that while these data points are outliers in the statisti-
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Figure 4.3: The Lorenz curve describes the cumulative incidence (in ascending
order, x-axis) as a function of the cumulative population at municipality level.
The grey dashed line signifies perfect equality, which in this case would mean
that the incidence is equal in every municipality. The purple line represents the
actual data and shows that there is moderate heterogeneity in the data. The
curve is bent downwards, which means larger municipalities were more affected
on average.

cal sense, there is a better explanation for their value and thus, removing them
would draw an incomplete picture.

The Lorenz curve (figure 4.3) and the Gini coefficient confirm that there is
some heterogenity in the data. This means that case numbers are not a linear
function of population size. The graph shows that the 50% of the population
from the smallest municipalities only accounted for about 25% of the total in-
cidence while the 25% of the population from the largest municipalities was
responsible for around half of the incidence. The Gini Coefficient is 0.73 which
means that there is moderate heterogenity in the data. This confirms that the
case numbers could not only be explained through the population size and that
there had to be other factors that had an association with the case numbers.
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4.1.2 Incidence and temporal dimension

Figure 4.4: Daily new cases in relation to the total cases. If the curve has
a positive slope, it means daily new infections were on average rising, and if
the slope is negative, daily new infections were dropping. Note: This graph,
even though it shows the pattern of the two waves, does not allow to make any
statement about the temporal course as the x-axis is the total cases and not the
time.

Figure 4.4 shows the the 7-day average of new cases in relation to total cases.
Although the curve was smoothened through a 7-day rolling average, it still has
some sharp turns and edges, indicating big differences in the daily reports. This
curve allows to gain insights into how fast the pandemic was expanding and
when daily new infections were decreasing, in other words, how the canton of
Berne managed to “flatten the curve”. Firstly, the curve shows the course of
the pandemic with the two waves and allows to make comparisions as to their
case numbers and how much they attributed to the entire pandemic. After a
sharp increase in the beginning of the pandemic, the steep negative slope of the
first wave indicates that infection rates went down relatively quickly. The curve
does not allow to make any statement to how long (in terms of time) the case
numbers were low in between the two waves. The course of the second wave
indicates that case numbers rose slower than during the first wave, but stayed
high for a longer period of time: the values on the y-axis were not necessarily
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higher, but the total case number attributable to the second wave was higher,
therefore indicating that the second wave must have lasted longer. Overall, the
second wave shows several ups and downs, indicating that the case numbers kept
rising and falling a bit. Finally, the case numbers slowly decended. The third
smaller bump indicates a slight rise in infection numbers towards the end of the
pandemic. The curve allows to tell roughly how many cases can be attributed
to each of the two waves: during the first wave, around 30’000 infections were
reported, while the second wave accounted for roughly 100’000 cases. This
shows that the second wave had around three times as many infections as the
first one.

4.1.3 Incidence and spatial dimension

Figure 4.5: Incidence on a municipality level for the entire study period. The
darker a municipality, the higher was the incidence. The map underlines the
tendency that the Swiss Plateau was more heavily affected when considering
the entire pandemic period.
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The spatial distribution of incidence (cases per 100’000 inhabitants) over the
entire study period (July 1918 – December 1919) does not provide a clear pic-
ture. The mountainous regions of the Jura and the Oberland were less affected
than the lower-lying regions. Furthermore, municipalities with more inhabi-
tants were generally more affected than smaller rural municipalities. This does
however not hold true everywhere: there are also a few municipalities with only
a few inhabitants that had a really high incidence. Interestingly enough, the
Laufental (the northeastern part of the Jura) was particularly affected, contrary
to the surrounding areas of the Jura. Finally, the municipality of Gsteig in the
south-western corner of the canton was particularly affected.

Figure 4.6: The local indicator of spatial association (LISA) shows local clusters
of high-high (red) and low-low (blue) incidences, indicating that high rates were
found next to high rates (or low rates next to low rates). The map further
underlines that parts of the Jura region were significantly less affected, while the
Swiss Plateau was significantly more affected, considering the entire pandemic
period.

Looking at spatial autocorrelation provides further insight into the data. To test
for spatial autocorrelation, a global Moran’s I statistic was calculated which
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suggests moderate positive autocorrelation (Moran’s I = 0.33; p = <0.001).
This means that the distribution of the incidences in space is not random and
there are clusters of high and low incidences. Maps that show the local Moran’s
I are often called LISA (local indicators of spatial autocorrelation) maps. The
map 4.6 shows this local spatial autocorrelation in clusters with statistically
significant high-high rates and low-low rates and spatial outliers with high-low
or low-high rates. The biggest cluster of the low-low rates can be found in the
eastern part of the Jura region. Other than that, there are a few scattered
clusters with significantly low rates. Sometimes, these “clusters” consist of
only one municipality, indicating that the municipality and its neighbours both
had high values. There are several high-high clusters spread out in the Swiss
Plateau. One big cluster can be found south of Lake Biel and another one in
the region of Oberaargau. Furthermore, there are a few areas with high-high
rates north and east of the city of Berne. Finally, there are a few outliers. In
the Jura region, some high-low outliers (high incidence but neighbours with low
incidences) are present. In the Bernese Oberland, the opposite is the case; there
are a few municipalities that have low incidences but their neighbours have high
incidences between Lake Thun and Lake Brienz.

4.1.4 Incidence, temporal and spatial dimension

Looking at all the three dimensions (incidence, space and time) allows to see the
course of the 1918 influenza pandemic in the canton of Berne (see figure 4.7).
The disease first broke out in the Jura region which was particularly affected
during the first wave in July and August 1918. The rest of the canton was not
particularly affected, especially the Bernese Oberland. Afterwards, the infection
rates went down in September 1918, before the second wave started in October
1918. This second wave affected the central regions first, before fully reaching
the Oberland which was heavily affected in December 1918. In Janaury, the
second wave was coming to an end and incidences in the municipalities were no
longer as high. After that, there were a few more local outbreaks before the
pandemic was eventually over, but these are not of interest for the scope of this
thesis. Generally speaking, the pandemic lasted longer in the heavily populated
Swiss Plateau than in the sparsely populated mountain areas. Finally, the data
shows that the two waves behaved differently.

Based on these results, two additional maps are presented here for complete-
ness, showing the incidences for each wave separately. This is a further step
towards designing a model that includes locally specific factors that determine
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Figure 4.7: Monthly incidence rates on a communal level (July 1918 - June
1919). The legend is the same for all the maps, darker areas show high incidence
rates. Note: these maps were originally created as part of an animation which
can be found here: https://tinyurl.com/SpanishFluGIF.
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Figure 4.8: Incidence rates per municiality for each of the two waves. A different
scale for each map was chosen because the second wave lasted longer and had
much higher incidences. With the same scale, the spatial differences in the
first wave would not have been visible. The map underlines that the Jura and
especially the Laufental region were hit hardest by the first wave, while the
Swiss Plateau and the Oberland were hit harder by the second wave.

the spread of the influenza virus (see figure 4.8). These two maps nicely show
the spatial differences during the waves. During the first wave, the Jura moun-
tains were heavily affected. However, this was not true for the entire region:
while the Laufental region and the more southern part were heavily affected,
many municipalities did not report any data during the first wave. In the rest of
the canton, the Swiss Plateau was also affected while in the Alpine region only
a few municipalities were somewhat more affected, while most municipalities
were only mildly affected. During the second wave, it was the opposite: the
Jura was not particularly affected, while the Swiss Plateau was heavily affected.
In the Seeland region, south of Lake Biel, there seemed to be an entire cluster
of municipalities that were heavily affected by the second wave. Furthermore,
there was a second area east of the city of Biel that shows high incidences. In
the Alpine region, the municipalities around the lakes were particularly affected.
Again, the municipality of Gsteig stood out with its high incidence surrounded
by municipalities with low incidences.

A Moran’s I test further supports the observations of the raw incidences. The
global Moran’s I was statistically significant for both the first (Moran’s I =
0.188; p = <0.001) and the second wave (Moran’s I = 0.347; p = <0.001),
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Figure 4.9: The local indicators of spatial association (LISA) maps show sta-
tistically significant clusters with high-high (red) and low-low (blue) incidences.
The map shows areas where high rates were found next to high rates (or low
rates next to low rates). This can be an indicator as to where locally specific
factors may have had an influence. Furthermore, this map can be used as a
baseline, to see how well the model performance is.

therefore rejecting the null hypothesis of spatial randomness. The spatial au-
tocorrelation was mild for the first wave and moderate for the second wave.
Additionally, local indicators of spatial autocorrelation in 4.9 show the local
Moran’s I in each municipality and the location of the clusters with high or low
incidences. Again, differences between the first and the second wave become
apparent. The first wave shows only a few clusters with high-high rates. The
biggest one can be found in the Laufental, with a few other small ones in the
Jura and the Mittelland. The Oberland shows an area with significant low-low
clustering, illustrating that it was not particularly affected during the summer
wave. During the second wave, the Swiss Plateau (Regions of Seeland, Mittel-
land and Oberaargau) show clusters with high-high incidence while the Jura
region shows many low-low clusters. In both waves, a few outliers are visible.
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4.2 Research goal 2: Finding determinants of
spread

4.2.1 First wave: July 1918 – August 1918

Model prerequisites

Before fitting a model, the colinearity of the variables was assessed to rule
out multicolinearity. Figure 4.10 shows the distribution of each variable, the
correlation coefficient between the variables and some scatterplots. Its results
indicate no problematic colinearity, therefore all of the explanatory variables
can be kept for the model selection process.

Model selection process

The automatic model selection process returned a set of nine candidate models
(models with an AIC no more than two points higher than the minimum AIC)
shown in table 4.1. The variable urbanity appeared in all the models. The
rest of the variables appeared in various combinations. From this large set of
candidate models, the third model (incidence˜ 1 + urbanity + TB + railway +
precipitation) was chosen as the final model 1.

Table 4.1: The nine candidate models returned from the model selection process
for model 1. According to Burnham and Anderson (2004), all the models from
this selection provide a good fit for the data.

model aic weights
1 Top incidence ˜ 1 + urbanity + railway + precipitation 362.77 0.15
2 Top incidence ˜ 1 + urbanity + TB + agriculture 362.96 0.14
3 Top incidence ˜ 1 + urbanity + TB + railway + precipitation 363.38 0.11
4 Top incidence ˜ 1 + urbanity + TB + railway +precipitation + agriculture 363.84 0.09
5 Top incidence ˜ 1 + urbanity + TB + railway + agriculture 364.09 0.08
6 Top incidence ˜ 1 + urbanity + railway + precipitation + agriculture 364.13 0.08
7 Top incidence ˜ 1 + urbanity + precipitation + agriculture 364.26 0.07
8 Top incidence ˜ 1 + urbanity + TB + precipitation + agriculture 364.50 0.06
9 Top incidence ˜ 1 + urbanity + agriculture 364.52 0.06

Model results

Table 4.2 shows the results of the regression model for the model 1, which covers
the first wave and the months of July and August 1918 (N = 376 municipalities,
AIC = 383.48). The right column of the table contains the odds ratios and
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Figure 4.10: The pairwise correlation plot gives insights into the explanatory
variables. In the upper right corner, the correlation coefficient between two
variables is shown. The diagonal shows the distribution of the data and the left
lower corner shows scatterplots between two variables with the red line as the
correlation function. Note: the raw distributions of the variables are shown in
this plot. Data source: Sanitätsdirektion des Kantons Bern (1918).

the confidence intervals. The table shows that most of the odds ratios were
statistically significant at least on a 0.05 level with the exception of the highest
two categories of the precipitation variable (indicating high precipitation). The
odds ratio of urbanity was very high which means that the three cities Berne,
Biel, and Thun were more likely to have an incidence rate in the highest quintile.
However, the standard error for this variable was also quite high, and therefore
the variable has to be interpreted with caution. The odds ratio for the TB
variable was 1.5 (CI = (0.83, 2.17)), indicating that municipalities in the highest
quintile of TB mortality were more likely to be in the highest quintile of influenza
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Table 4.2: Model results of the logistic model for model 1. The left column
shows the model coefficients (and the standard errors). The right column shows
the odds ratios (and the confidence intervals). Asterisks behind the numbers
indicate various levels of statistical significance.

Dependent variable:

incidence
coefficients odds ratio

(1) (2)

Top TB Quintile 0.41 (0.34) 1.50∗∗∗ (0.83, 2.17)
urbanityCity 16.77 (832.95) 19,261,371.00∗∗∗ (19,259,738.00, 19,263,003.00)
railway2 0.57 (0.40) 1.77∗∗∗ (0.99, 2.56)
railway3 1.49∗∗∗ (0.39) 4.42∗∗∗ (3.65, 5.20)
railway4 0.40 (0.61) 1.50∗ (0.30, 2.69)
railway5 1.34 (1.45) 3.82∗∗ (0.98, 6.65)
rain2 0.19 (0.41) 1.21∗∗ (0.41, 2.00)
rain3 0.36 (0.40) 1.43∗∗∗ (0.65, 2.21)
rain4 −1.06∗ (0.50) 0.35 (−0.63, 1.33)
rain5 −0.52 (0.46) 0.59 (−0.31, 1.49)

Observations 376 376
Log Likelihood −170.74 −170.74
Akaike Inf. Crit. 363.48 363.48

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

incidence. The railway variable did not show a clear tendency, except that
municipalities with railway access had a higher chance of having an incidence
rate in the highest quintile. The railway group 5, with the best railway access,
had the highest odds ratio of 3.82 (CI = (0.98, 6.65)), meaning municipalities
with the highest railway access were almost four times more likely to be in
the group with the high incidence. The precipitation finally showed a divided
picture: while the second (OR = 1.21; CI = (0.41, 2.0)) and the third category
(OR = 1.43; CI = (0.65, 2.21)) had odds ratios larger than 1 (indicating that
municipalities in these categories were more likely in the top incidence group),
this did not hold true for the two highest categories which had an odds ratio of

52



0.35 (CI = (-0.63, 1.33)) and 0.59 (CI = (-0.31, 1.49)) respectively. However,
these two odds ratios were not statistically significant.

Finally, a Breusch Pagan test was run to test the model for heteroscedasticity
as an attempt to assess the model fit. The Breusch pagan test (BP = 28.5; p
= 0.001) indicates that the model suffers from heteroscedasticity.

Local spatial autocorrelation of the model results

Figure 4.11: Local spatial autocorrelation of the residuals of the first wave
model. The map shows clusters of high-high (and low-low) residuals, where
high residuals indicate that the model underestimated the incidence rate and
low residuals stand for an overestimation of the incidence rate. This means that
areas with high residuals were found next to other values with high residuals
(or low residuals next to low residuals). Some clusters still remain, despite the
model’s attempt to explain the spatial variation.
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In an attempt to assess the model performance of model 1 in space, the spatial
global and local spatial autocorreltation of the model residuals were calculated.
In this context, a Moran’s I test allows to test whether the residuals are randomly
distributed in space. The global Moran’s I test of the first wave (Moran’s I =
0.057; p = 0.046) was statistically significant with the Moran’s I statistic being
close to zero. This indicates that there is practically no spatial autocorrelation
present in the residuals which means that the distribution of the residuals in
space is random and the model assumptions of the used regression model are
not violated.

As already done for the descriptive analysis in research question 1, the local
spatial autocorrelation for the municipalities was calculated. The map in fig-
ure 4.11 is shown for completeness, despite the fact that the global Moran’s I
indicated practically no global spatial autocorrelation. Other than in the pre-
vious section, this map shows the autocorrelation of the residuals and not of
the incidences. Again, high-high clusters are areas where the residual value of
a municipalitiy and its neighbours was high, therefore indicating areas where
the model underestimated influenza incidence (and in contrast, low-low clus-
ters show where the model overestimated the incidence). The map also shows
that the model could explain some clusters (see figure 4.9). There were still two
small high-high clusters, one in the Jura region and one just north of Berne. The
model managed to explain the high-high cluster nort-north-east of Berne. When
looking at low-low clusters, there are also fewer of them. The low-low cluster in
the northern Jura region disappeared, while a new, smaller one appeared in the
north-eastern part in between the two high-high clusters. Furthermore, in the
Oberaargau region, there are still some unexplained low-low clusters but they
are considerably smaller. The model worked particularly well in the Bernese
Oberland, where all the clusters have disappeared with the exception of some
low-high outliers between the two lakes. Throughout the rest of the canton,
there are a few more scattered low-high outliers and two high-low outliers.

4.2.2 Second wave: October 1918 – January 1919

Model prerequisites

Before fitting a model, the colinearity of the variables was assessed to rule out
multicolinearity which was done the same way as in model 1. Figure 4.12 shows
the distribution of each variable, the correlation coefficient between the variables
and the scatterplotts between all the explanatory variable pairs. The colineari-
ties and distributions show a fairly similar picture as in the first wave. This has
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Figure 4.12: The pairwise correlation plot gives some insights into the explana-
tory variables. In the upper right half, the correlation coefficient between two
variables is shown. The diagonal shows the distribution of the data and the left
lower half shows scatterplots between two variables. Note: the graph shows the
distribution of the raw data, classifications are not considered in this illustration.
Data Source: Sanitätsdirektion des Kantons Bern (1918).

to do with the data sources of these dependent variables. With the exception
of the precipitation variable, the same data was used in both waves, with minor
changes due to slightly varying sets of municipalities (during the second wave,
more municipalities reported data than during the first one, therefore more data
entries were considered during the second wave). The precipitation variable con-
tains different data covering the months from October 1918 to December 1918.
There was no problematic colinearity between any of the variables, therefore all
of the variables were kept for the following model selection process.
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Model selection process

The next step in the modelling was an automated model selection process, just
like for model 1. Again, a candidate model was defined as the model with an
AIC two or less points bigger than the minimum AIC in the moedel set. For
model 2 (second wave: October 1918 – January 1919), the automated model
selection algorithm returned a candidate set of five models (the candidate models
are shown in 4.3) that potentially provide a good fit for the data. From this
candidate set, the fourth model (Top Incidence ˜ 1 + urbanity + TB + railways
+ precipitation) was chosen, because it contained exactly the same explanatory
variables as the model used for model 1. This is a convenient choice, because
it allows to make comparisons between the two waves and potentially yields
information whether the same factors had the same influence in both models.

Table 4.3: The set of candidate models for model 2. Burnham and Anderson
(2004) suggest that all of these possible models have substantial support.

model aic weights
1 Top incidence ˜ 1 + railway + precipitation 458.82 0.19
2 Top incidence ˜ 1 + TB + railway + precipitation 459.12 0.16
3 Top incidence ˜ 1 + urbanity + railway + precipitation 459.47 0.14
4 Top incidence ˜ 1 + urbanity + TB +railway + precipitation 459.77 0.12
5 Top incidence ˜ 1 + railway + precipitation + agriculture 460.53 0.08

Model results

Table 4.4 shows the results of model 2 (N = 460; AIC = 461.66). From the
odds ratios in the right column, half of them were statistically significant at
least on the level 0.05. The urbanity did not have an influence in this second
wave which is indicated by the odds ratio of 0 (CI = (-2309, 2309)). Again, this
variable has an extremely high standard error which means that it has to be
interpreted with caution. The variable TB had a positive association, meaning
if the municipalitiy was in the top quintile of TB mortality, it was more likely to
be in the top quintile for influenza incidence (OR = 1.48; CI = (0.9, 2.07)). For
the variable access to the railway network there was no clear association. For
this variable, different levels of railway access were compared to the category “no
railway” access. As an example, between the first category (no railway access)
and the third category (medium railway access) there was a negative association
(OR = 0.75; CI = (-0.18, 1.68)), meaning municipalities with no railway access
at all were more likely to be in the highest 20% of incidences than municipalities
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in the third category with medium railway access. However, it has to be noted
that this association was not statistically significant. Furthermore, the highest
category of railway access had an odds ratio of 0 (CI = (-2116.21, 2116.31))
which means that there did not seem to be an association between having very
high railway access and influenza incidence. For the variable precipitation, there
was also no clear association. The second (indicating low precipitation) and the
third category (indicating medium precipitation) had the highest odds ratios
with 1.92 (CI = (1.23, 2.61)) and 1.3 (CI = 0.58, 2.01)) respectively. For the
two higher categories (indicating even higher precipitation), the odds ratios
showed a negative association which means municipalities in this category were
less likely to be in the top incidence group.

As done for model 1, a Breusch-Pagan test was run in oder to assess model fit
and test the model for heteroscedasticity. The Breusch-Pagan test (BP = 20.95,
p = 0.021) indicates that the model indeed suffers from heteroscedasticity.

Spatial autocorrelation of the model residuals

In an attempt to assess model performance in space, the global Moran’s I of
the residuals was calculated (Moran’s I = 0.323; p < 0.001). The test indicates
that the model residuals are not randomly distributed in space, despite the fact
that the Moran’s I of the model residuals was lower than the moran’s I of the
raw incidences. This is a hint that there is another explanatory factor which
is missing in model 2. The local spatial autocorrelation map of the residuals
for the second wave supports the above-presented gloal Moran’s I outcome (see
4.13). Just like in the model of the first wave, high residuals indicate that the
model underestimated the incidences, while low values indicate areas where the
model overestimated the incidence. In the Jura mountains there are no longer
any clusters (with the exception of a single municipality in the Laufental region
that has a statistically significant low-low result), which means that the model
managed to explain all the spatial variation of incidences in those regions. In
the Seeland region, there are still two larger high-high clusters, one south of
Lake Biel and the other one just east of the city of Biel. In these areas, munici-
palities with high residuals have neighbours that also show a high residuals (i.e.
the model underestimated the incidence rates). Furthermore, there is another
high-high cluster in the northern part of the Oberaargau region but the model
managed to explain the cluster just north of the city of Berne (see 4.9). Apart
from those clusters, there are also some low-low clusters in the Swiss Plateau
with a particularly large one located in between the cities of Berne and Thun.
Furthermore, there are some more scattered low-low areas distributed around
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Table 4.4: Model results of the logistic model for model 2. The left column
shows the model coefficients (and the standard errors). The right column shows
the odds ratios and the confidence intervals.

Dependent variable:

Top_Inz
coefficients odds ratio

(1) (2)

Top TB mortality 0.39 (0.30) 1.48∗∗∗ (0.90, 2.07)
urbanityCity −15.04 (1,178.45) 0.0000 (−2,309.72, 2,309.72)
railway2 0.63 (0.37) 1.87∗∗∗ (1.14, 2.60)
railway3 −0.29 (0.47) 0.75 (−0.18, 1.68)
railway4 1.31∗∗ (0.45) 3.72∗∗∗ (2.83, 4.61)
railway5 −14.68 (1,079.77) 0.0000 (−2,116.31, 2,116.31)
rain2 0.65 (0.35) 1.92∗∗∗ (1.23, 2.61)
rain3 0.26 (0.37) 1.30∗∗∗ (0.58, 2.01)
rain4 −0.71 (0.43) 0.49 (−0.35, 1.34)
rain5 −0.33 (0.40) 0.72 (−0.07, 1.50)

Observations 460 460
Log Likelihood −219.83 −219.83
Akaike Inf. Crit. 461.66 461.66

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

the canton, with a few low-high outliers, particularly north of Berne. These
outliers indicate areas with low model residuals surounded by areas with high
model residuals. In the Bernese Oberland, a new high-high cluster appeared in-
dicating an area where the incidences were higher than predicted by the model.
Apart from that, there is an outlier cluster of low-high values just north of that,
indicating an area with low residuals surounded by an area with high residu-
als. Finally, the low-low clusters that were previously present in the Bernese
Oberland disappeared, indicating that the model managed to explain the spatial
variation of the incidences in this area.
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Figure 4.13: Local spatial autocorrelation of the model residuals of model 2.
The map shows areas where high residuals were found next to high residuals
(or low residuals next to low residuals). High residuals indicate that he model
underestimated the incidence rate (i.e. it was in fact higher than predicted
by the model) and low resdiuals indicate an underestimation of the incidences.
The map has large high-high clusters in the regions of Seeland, Oberaargau and
Oberland. Furthermore, there are some scattered low-low clusters in the regions
of Mittelland, Voralpen and Oberaargau.
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5 Discussion

The research presented in this thesis adds to the previous research provided in
section 2 in various ways. First and foremost, it shows that, just like in most
places, in the canton of Berne the pandemic struck in a mild summer wave
(July/August 1918) followed by a more severe winter wave (October 1918 –
January 1919). Furthermore, the analysis shows that there were locally specific
factors that help explain why certain municipalities showed high incidences.
Finally, the analysis shows the complexity of the topic and that innovative
visualizations can help interpreting the results.

5.1 Research goal 1: Descriptive spatio-temporal
analysis of the influenza data

The descriptive spatio-temporal analysis shows the complexity of the research
field and that the outcome variable alone contains various layers and dimensions.
Therefore, it can be very helpful to start with a basic analysis to get a first idea
of the data, and later on increase the complexity of the data by adding more
dimensions.

5.1.1 Incidence

Looking at the incidence of influenza-like illness in an isolated manner reveals
that the data violates some statistical assumptions. First of all, the data is not
normally distributed which has implications as to how it should be modelled
in a regression model. Both the histogram (see figure 4.1) and the boxplots
(see figure 4.2) show that the data has outliers. These outliers are all above
the statistically expected values, with none below. This lies in the nature of
these data; a municipality cannot have less than zero cases of an illness, and the
municipalities that did not report any data were not considered in the analysis.
Furthermore, the question remains whether these values are in fact outliers and
should be treated as such, or if there is a better explanation why these values
are so high, and they should be left within the data. The boxplot shows that
particularly in the first wave, outliers occur. From literature, it is known that
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the Jura region was more affected than the rest of the canton (Sonderegger,
1991). Therefore, it could well be that these values are in fact not outliers but
the more heavily affected Jura region which means that removing them would
draw an incomplete picture of the course of the “Spanish” flu pandemic. The
same goes for the outliers visible in the histogram. The canton of Berne is
an extremely regionally diverse canton whose municipalities had anything from
44 (municipality of Ballmoos) to 104’626 (city of Berne) inhabitants (Statis-
tisches Bureau, 1921) in 1920. Small municipalities can have large incidences,
because already a small number of cases as for example a single infected family
can lead to a high incidence.

The other question that raw case numbers (or incidences) can answer, is how
population size is related to incidence. In an ideal case, the incidence would be
the same in all the municipalities. This would mean that the infection numbers
are proportional to the poulation size, and therefore the explanation for the
spread would be simply “more inhabitants equals more cases”. However, the
Lorenz curve (see figure 4.3) shows that this is not the case for the “Spanish”
flu and that municipalities with more inhabitants disproportionally contributed
to the overall incidence. This may be contrary to what Chowell et al. (2008)
found in their study, as their findings showed a higher mortality in rural areas.
However, these results have to be compared with caution, as their study used
mortality rates while this project is based on incidence rates. A high mortality
rate can point to a higher incidence rate but other locally specific factors may
be involved as well.

5.1.2 Incidence and temporal dimension

To add a second layer of complexity, one can look at the temporal course of the
pandemic. One fundamental way to do this is by looking at the new infections
for a given time period in a bar chart. This was already done by Staub et al.
with the exact same data (see figure 2.3), and was therefore not repeated in
this thesis. As an alternative, the daily new infections were plotted against
cumulative case numbers (see figure 4.4) which provides a nice alternative to
the graph of the daily new infections. This image gives an overview of the
structure of the pandemic and shows after how many cases the canton of Berne
managed to “flatten the curve”. Contrary to figure 2.3 which has time as a
scale, figure 4.4 has the total case numbers as a scale. This allows to quantify
the share of case numbers attributable to each wave. As already found by other
studies, the 1918 influenza pandemic struck the canton of Berne in two waves,
where the second wave was more severe by orders of magnitude, with more than
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three times more cases of influenza-like illness than the first wave (Sonderegger,
1991; Sonderegger and Tscherrig, 2016). The sharp increase of case numbers at
the beginning of the first wave suggests that the disease was already circulating
in the population before the reporting mandate started in July 1918. However,
without any data it is not possible to know when the disease was introduced in
the canton of Berne.

5.1.3 Incidence and spatial dimension

One good starting point for the spatial analysis of the 1918 influenza pandemic
is to look at the overall distribution of the incidences in the study area. Gener-
ally, the map of overall incidence rates (see figure 4.5) does not provide a very
clear picture, but still, some things have to be put into a greater context in
order to be understood. Firstly, the region of Laufental stands out with its very
high incidence, despite its seemingly not very central location within the canton.
However, a map that only shows the canton of Berne provides an incomplete
picture: the region of Laufental is close to the city of Basel and was therefore
more acesssible from there. Furthermore, the Laufental region was connected
with Basel via the railway network and therefore much more accessible from
Basel than from within the canton of Berne. Another similar example is the
municipality of Gsteig. Again, the municipality does not seem very central but
was in fact well-accessible through the canton of Vaud. These examples show
the shortcomings of a model that only considers a region with boundaries that
are arbitrary for the spread of a disease, such as state or regional boundaries:
the cut leads to missing information that could lead to wrong interpretations.
The map also shows that the more urbanized Swiss Plateau was more affected,
which poses a contradiction to the findings of Chowell et al. (2008) who found
that mortality was higher in rural areas but again, it is somewhat inaccurate
to compare incidence and mortality rates. Literature suggests that on average
in Switzerland, around half of the population was infected (Sonderegger, 1991).
With the map alone, it is hard to tell how high the morbidity in the canton of
Berne was. However, this can be achieved by looking at the raw case numbers:
the data contain 143’389 disease reports (Sanitätsdirektion des Kantons Bern,
1918) and the population was around 666’000 (Statistisches Bureau, 1921). This
leaves a morbidity rate of only around 21%. Furthermore, Staub et al. state
that the reporting of case numbers was seen by many doctors as an unnecessary
bureaucratic step. Therefore, not all cases might have been reported. Addition-
ally, the canton of Berne accounted for a high number of deaths (almost 1 in 5
deaths were reported in the canton of Berne) which is a further hint, that not
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all cases were reported. Finally, the fact that the canton of Berne was such a
heavily affected region makes it an ideal study area for this thesis.

The map of the local spatial autocorrelation (see figure 4.6) provides a sta-
tistical estimation of the distribution of the incidences in space. This highlights
potential areas of interest. The map shows several clusters on the border of
the canton which have to be interpreted with caution. By its nature, the local
Moran’s I compares an entity with all of its spatial neighbours (Anselin et al.,
2003). Therefore, if a municipality lies on the edge of the study area, it has
fewer neighbours, and the individual neighbours have more weight. This poten-
tial bias could be overcome if the incidene of the neighbouring municipalities
in other cantons (or possibly an average of that canton as an estimate) were
available. These data were not available and therefore, potential edge effects
have to be kept in mind when interpreting this map. The map statistically un-
derlines what the incidence map already shows: the Swiss Plateau was overall
more heavily affected than the more rural areas in the canton of Berne.

5.1.4 Incidence, spatial and temporal dimension

In order to gain a complete picture of the spatio-temporal characteristics of
the pandemic, one has to combine all the three dimensions. The facet map
in figure 4.7 provides a complete spatio-temporal picture of the 1918 influenza
pandemic in the canton of Berne. The map confirms several findings noted by
previous literature. First of all, it again confirms that there were two waves and
additionally shows their spatial characteristics. Furthermore, it demonstrates
how the French speaking part was hit harder by the first wave while the Ger-
man speaking part was much more affected by the second wave. Therefore,
these results map onto the findings of Sonderegger (1991) who notes that the
pandemic in Switzerland generally moved from the west to the east. Further-
more, the findings in this study contribute to existing research by providing a
quantification to Sonderegger (1991)’s more qualitative research. Additionally,
Sonderegger and Tscherrig (2016) found that a thesis, according to which the
pandemic was introduced via Basel, was not confirmed by mortality rates. How-
ever, the data finds some evidence that Basel might have played an important
role in the spread of the virus in Switzerland: the Laufental region, which was
relatively well-connected with Basel, was heavily affected early on in the pan-
demic. However, without any data covering Basel, it is not possible to definitely
prove or disprove this hypothesis.

The facet map demonstrates that the pandemic first reached cities and other
well-accessible places. These findings were already noted by Sonderegger (1991)
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for the canton of Berne and by Chowell et al. (2008) in their study about Spain.
The data show that the second wave lasted for approximately four months,
which is longer than the second wave observed by Chowell et al. (2014) in
Spain. Furthermore, this nicely pairs with the findings of Eggo et al. (2011),
who found that cities were an important driver in the beginning of the pan-
demic, but with rising case numbers, between-city contacts where shut down
and local spread became the main driver for the pandemic. Other studies (e.g.
Olson et al. (2005)) found evidence of a spring wave as early as April 1918,
which can neither be confirmed nor rejected, as the date only covers the time
from July onward.

Based on the evidence of the facet map, it makes sense to provide the addi-
tional maps showing the impact of the two waves separately, since they were
very different, as already noted by Sonderegger (1991). The map in figure 4.8
highlights the different characteristics of the two waves even better due to the
different scales used for each of them. Using one single scale for the entire
pandemic tends to “suffocate” finer characteristics of the first wave because the
range of the incidences in the second wave is much bigger. This map also allows
to draw conclusions, and contributes to previous research in different ways.

Earlier research suggests that the first wave was more virulent in the French
speaking part (Sonderegger, 1991), however, this was not true for the entire
region. While the southern and central part of the Jura, as well as the Laufental
region, were heavily affected, large northern portions were mostly spared the
virus. Reasons why the Laufental region might have been affected in such an
early stage have already been discussed in the previous section (the proximity
to Basel may have had an influence). One potential reason why the southern
Jura was heavily affected at this early stage could have been the watch-making
industry. Contrary to what one might think, the southern Jura region was not
primarily a difficult-to-access rural area, but home to many watch factories that
offered jobs to unskilled labourers form the surounding areas (Fallet, 2020). This
is undermined by the map in figure 3.4 which shows indeed that the proportion
of people working in agriculture was very low in the southern part of the Jura,
indicating that the people there held other jobs. A further hint of this thesis is
the map in figure 3.2 which shows that the area was not that heavily populated,
which means that the population from surounding areas also found jobs in the
watch factories. The watch industry might have contributed to the spread of the
influenza virus for two possible reasons. Firstly, the working conditions in the
watch factories may have been favourable for a spread of an airborne/droplet
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infection: hundreds of unskilled workers worked in close proximity on production
lines (Fallet, 2020). Secondly, the watch industry led to a certain exchange with
other parts of the world, which may have favoured an early introduction of the
disease into the area. In the context of literature, this maps onto the findings
of Bengtsson et al. (2018), who found that people working in agriculture had
a significantly lower risk of infection. This proves true for the Jura region in
the sense that the northern parts where a higher percentage of people worked in
agriculture were less affected. Furthermore, it is noteworthy that during the first
wave, the incidence was high in the three biggest cities Berne, Biel, and Thun,
as well as in their surounding areas. The fact that cities were an important
factor in early spread was pointed out in different earlier studies (Sonderegger,
1991; Eggo et al., 2011; Chowell et al., 2008). This seems to manifest in this
case study of the canton of Berne and can be seen as a contribution to Chowell
et al. (2008)’s call for further geographically comprehensive studies.

During the second wave, the Swiss Plateau was heavily affected by influenza,
while the Jura region was not particularly affected this time. Again, this was
already described by Sonderegger (1991), and the data quantifies this. Contrary
to the first wave, the three cities Berne, Biel, and Thun do not stand out with
their high infection rates anymore. This again could be an indicator that local
spread was the main driver of the second wave as noted by Eggo et al. (2011).
Furthermore, areas of the Bernese Oberland were heavily affected, while others
were largely spared the horrors of the pandemic. For one, areas around Lake
Thun and Lake Brienz tended to be more affected. One possible explanation
for this could be that they were simply easier to access which may have led
to increased exchange with other places. In turn, this may have led to higher
incidences by favouring an introduction into the municipality. Finally, many
of the heavily affected areas were known tourist resorts such as Grindelwald
and Lauterbrunnen that were more easily accessible (Dubler, 2009). Due to the
ongoing World War I, it is questionnable whether tourism in fact played a role
during the time of the 1918 influenza pandemic.

Again, the map of local spatial autocorrelation (see figure 4.9) provides in-
sights into the dynamics of each of the waves. For the subsequent modelling
process, the two principal waves were analysed, therefore these maps provide an
important baseline to which the results of the models can be compared to. The
map gives an overview into potential areas of interest. However, the map has
two main shortcomings that are adressed at this point. The issue of polygons
on the edge of the canton, where only a few neighbours account for the result,
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has already been discussed in a previous section and it also prevails in these
maps. Furthermore, municipalities with no incidence data turn out to be an-
other shortcoming in the map of local spatial autocorrelation. As an example,
the statistical analysis does not show any clustering for the greater region of
Berne, despite the fact that the map of incidences (figure 4.8) shows high inci-
dences in this area. This was the base for the previously discussed hypothesis
that Berne may have been significantly affected at an early stage. However, the
municipalities of Ittigen and Ostermundigen just east of Berne did not report
any data, therefore interrupting a potential high-high cluster. This also may
hold true for the cities of Biel and Thun, which both were not part of a cluster
but bordered municipalities that did not report any influenza data. For the
other areas discussed in the previous section, the map does show a significant
high-high cluster for the region of Laufental, further supporting the thesis that
its proximity to Basel may have been a factor for an early onset of the pandemic.
For the southern Jura region, the map does not show a significant high-high clus-
ter, instead producing one in the central part of the Jura region. Again, this has
to be interpreted with caution. The local Moran’s I considers all direct spatial
neighbours and does not take topography into account. This proves as another
shortcoming for a region that is heavily influenced by its topography such as
the Jura region. As the relief in map 3.1 shows, the Jura consists of several
steep valleys. Therefore, municipality A, which is not a spatial neighbour but
within the same valley as municipality B, may actually have a bigger influence
on municipality B’s incidence than municipality C, which is a spatial neighbour
but not within the same vallley, making the two not well-connected.

For the second wave, the map largely adds to the previously discussed find-
ings. Generally, there are more high-high clusters, an interpretation for which
may be that the second wave was simply more virulent than the first one. This
interpretation maps onto the findings of various literature (Sonderegger, 1991;
Sonderegger and Tscherrig, 2016). There are some scattered high-high clusters
in the Swiss Plateau, indicating that it was indeed heavily affected. In the
Bernese Oberland, the map further shows a high-high cluster around the previ-
ously discussed touristic areas, indicating that the incidence during the second
wave was higher than during the first wave.
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5.2 Research goal 2: Finding determinants of
spread

The results of the descriptive spatio-temporal analysis yield two main findings.
Firstly, that incidence is not only a function of population size, meaning that
there must have been other factors that helped or hindered the spread of the
virus. Secondly, that the two waves hit different areas with a different magnitude
and therefore different locally specific factors may have played a role. As an
additional help for interpreting the results, the bivariate choropleth maps from
appendix A are considered. It is important to understand that interpretations
based on associations only represent possible reasons why the disease spread the
way it spread. These interpretations may have been true (to some degree) or
completely false, as it is impossible to determine the real reason of the spread
100 years after the pandemic.

5.2.1 First wave: July 1918 – August 1918

Modelling process

One major advantage of using a logistic regression model is that it requires rel-
atively few model prerequisites to be fulfilled (Stoltzfus, 2011). This makes it
an easy application for the type of data available in this project, where various
sources of data are combined into a single model. Another question that initially
posed itself is how exactly to code the data into the two categories required for
a logistic regression. During the modelling process, several ways of spliting the
incidence data into categories were discussed. Finally, the decision was made to
classify the quintile with the highest incidence vs. the lower four quintiles. This
allows to study, which areas were particularly affected by the pandemic and to
find potential reasons for why they were so heavily affected. The dependent
variables were also grouped in different ways. Firstly, this makes the interpre-
tation of them easier, and for some of them it makes the interpretation more
meaningful (e.g. the node betweenness centrality is a network measure that not
all readers might be familiar with, therefore grouping the results into variables
with different levels of railway access makes it easier to interpret the data). The
dependent variables and how each of them is classified is covered in section 3.1.

During the modelling process, a data-driven approach was followed. In the
context of this project, this meant using an automated model selection to de-
termine which model best fits the data. This approach seems suitable for the
research question, as the literature suggests a variety of potential explanatory
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factors (see section 2.5) and one of the objectives of the thesis was to find locally
specific explanatory factors that contributed to the spread of the 1918 influenza
pandemic in the case of the canton of Berne. One critical step consisted of select-
ing the “right” model from a set of models that the automatic model selection
process returned (for all the candidate models, see table 4.1). One obvious ap-
proach would have been to simply select the model with the lowest AIC which
was briefly considered as a choice. However, seeing that the difference in AIC
was minimal led to the choice of the finally used model which contains a variety
of different factors that cover various aspects: Firstly, the mortality from TB
represents the health aspect, and shows how the population dealt with the ex-
posure of a respiratory disease in the past. Secondly, the access to the railway
system represents the geographic aspect by showing how central (or peripheral)
a location is within the canton of Berne, which could be an indicator of how
much exchange with outside locations took place. Furthermore, the weather
covers the physical aspect of how the environment shaped the spread of the
1918 influenza pandemic. Finally, the variable urbanity serves as an attempt to
take into account the different living conditions in rural and urban spaces.

Model results

The results of model 1 show that the association of some variances was of statis-
tical significance (see table 4.2). However, the reason behind these associations
is a matter of interpretation and cannot be definetely determined. One vari-
able that model 1 controlled for was TB mortality in the years prior to the
1918 influenza pandemic. The model indicates a positive association between
TB mortality and influenza incidence which means places that showed a high
incidence were also more likely to be in the highest quintile of TB mortality.
Therefore the initial hypothesis 2a) in section 2.6 is assumed to be true. In
order to ease the interpretation, bivariate choropleth maps were created (see
appendix A, specifically figure A.1). These maps add spatial information to
the information gained by a traditional correlation analysis. Combined with
the human ability of pattern recognition, this poses a powerful tool to assess
the dynamics of the 1918 influenza pandemic. For the findings concerning the
association between TB and influenza, several interpretations are possible. In
literature, the correlation between pulmonary tuberculosis and influenza is al-
ready documented. A study found that in the city of Berne and Switzerland,
the pulmonary tuberculosis deaths increased during the 1918 influenza pandemic
(Zürcher et al., 2016). While the results of this thesis only show a positive as-
sociation between TB in the years prior to the 1918 pandemic and influenza,
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Zürcher et al. (2016) argue that influenza led to more TB deaths. Still, the
question how the two illnesses influenced each other, remains unanswered. One
possible interpretation of the results in this thesis could be that TB mortality
functions as a proxy for TB incidence in the years before the 1918 influenza
pandemic. This higher incidence is associated with widerspread lung damage
due to earlier TB infections which increased the risk of falling severely ill from
influenza and needing medical assistance. Secondly, the positive association be-
tween influenza and TB could simply mean that the overall conditions for the
spread of an airborne virus were ideal but actually other factors were drivers
(e.g. people working in a factory in close proximity). The map A.1 in appendix
A shows that there are some areas, particularly in the Jura and Laufental re-
gions, where both TB mortality and influenza incidence were high during the
first wave. However, in many more municipalities, there was a high TB mor-
tality in the years prior to the 1918 influenza pandemic but a low influenza
incidence during the first wave. This makes the interpretation that the positive
association is a sign for generally favorable conditions less likely. These are just
two attempts to explain the weak positive association between TB mortality and
influenza incidence. Finally, it is impossible to determine if any of the above
or which one was actually the real reason. Therefore, the only statement that
can definitely be made is that tuberculosis and influenza were somehow linked,
which maps onto previous literature (Zürcher et al., 2016; Mamelund, 2011).

At this point it also has to be noted that the use of the TB mortailty statis-
tics of 1900 – 1910 is not the most ideal solution, as it does not contain any
information on the situation in the municipalities at the time of the 1918 in-
fluenza pandemic. Therefore, some uncertainty remains as to how the situation
in the municipalities was in 1918. This could be improved by obtaining more
accurate tuberculosis data. Furthermore TB data from 1910 were standardised
using the population data from 1920. Using matching population data may also
lead to a small improvement of these data.

The second variable that was included in model 1 was urbanity (i.e. Berne,
Biel, Thun vs. the rest of the canton). The odds ratio returns very high val-
ues, indicating that the three cities were almost certainly in the highest quintile
during the first wave, which may be an indicator that cities were an important
factor in the early stages of the pandemic and indicating that hypothesis 2b) in
section 2.6 also cannot be rejected for the first wave. This maps to findings of
previous studies which showed that urban spaces showed an earlier onset of the
pandemic than rural spaces (Chowell et al., 2008). Furthermore, it adds to the
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findings of Sonderegger (1991) who observed that the panemic reached cities at
an early stage before spreading to rural areas. When the pandemic reached the
cities cannot be said with certainty, because the first data originate from July
1918, when the case numbers were already quite high. Therefore, from these
data only, it is not possible to determine the onset of the pandemic in a specific
municipality. These results support the findings of Eggo et al. (2011) who found
that long-distance transmission was an important factor in the beginning stages
of the pandemic, because cities tended to be better connected with places that
are further away. Again, the model does not allow to make any statements
about the exact transmission ways of the pandemic, but the fact that all the
major cities were so heavily affected by the first wave is an indicator that they
played an important role in the introduction of the virus into the canton of
Berne.

The third variable that model 1 controlled for was railway access. Contrary
to the first two variables, this variable does not show a clear tendency. While
generally there seems to be a positive association between railway access and
influenza incidence, the association does not become stronger with increasing
railway access. This makes it hard to accept or reject hypothesis 2c) in section
2.6. The hypothesis cannot be seen as fully satisfied, but it is also not entirely
wrong. However, the findings of this thesis map to the findings of Reyes et al.
(2018) who found that railway lines were an important explanatory factor for
the spread of the pandemic. For the interpretation of this factor in particu-
lar, figure A.3 proofs as insightful, as it helps to better understand the model
results by adding spatial information. The map shows that indeed, there is
some degree of correlation in the southern Jura region, and in the bigger cities.
Furthermore, the northern part of the Jura region and the southern part of the
Oberland region show areas that had no railway access and also showed a low
incidence during the first wave of the 1918 influenza pandemic. Particularly
in the Swiss Plateau, however, there are areas where the the correlation does
not hold true. Therefore, it seems that the association between influenza and
railway was stronger in hard-to-reach areas.

The data that describes the variable access to the railway system contains
several shortcomings that have to be adressed. Firstly, calculating the node be-
tweenness centrality for entire Swizerland and using it as a proxy for how well
accessible a place was leads to several inaccuracies within the canton. Some
regions, particularly in the region of Oberaargau and in the eastern part of the
Voralpen region, contain places that have a high node betweenness centrality
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because of their central location within Switzerland which results in many short-
est paths leading through those railway lines. However, when only the canton
of Berne is considered, they are not very central at all. Furthermore, the node
betweenness centrality only calculates the shortest paths (in terms of horizontal
distance) and does not consider topography which is an important factor in a
mountainous country such as Switzerland. Another shortcoming of using the
node betweenness centrality is that it does not consider passenger or train infor-
mation: the algorithm does not take into account a) how many trains pass at a
station per day, b) whether they stop, and c) how many passengers board and
exit the train at a given station. All these factors potentially make a station
seem more important than it actually is. Additionally, only using the railway
system as a proxy for accessability ignores the fact that there are other means
of transport. While cars may not have been very common, stagecoaches were
an important means of transportation, particularly (but not exclusively) in the
Alpine regions. Finally, the variable does not consider forms of local movement
such as a person commuting to the next village for work, etc.

Even considering that all the factors discussed above introduced uncertainty
into the results, some broad tendencies remain. Similar to the findings of Reyes
et al. (2018), the railway system could have made an impact in the dissemination
of the disease in the sense that it helped introduce the virus to a municipality.
However, with the current data and methods, it remains difficult to link the
railway system to the dissemination of the 1918 influenza pandemic.

The fourth and final variable that model 1 controlled for is precipitation. Again,
model tendencies do not show a clear association. While the second and third
group (indicating low to medium precipitation) show a positive association be-
tween precipitation and influenza incidence, the relationship is reversed for the
highest two groups (which indicate high precipitation). Initially, I hypothesized
that there would be a negative association between precipitation and influenza
incidence (see 2.6, hypothesis 2d)). While the model shows a negative associa-
tion for areas that received high amounts of precipitation, hypothesis 2d) from
section 2.6 does not prove to be true for areas that receive a medium amount of
precipitation. Again, the bivariate choropleth map A.4 in appendix A provides
further insights into the spatial relation of influenza incidence and precipitation.
The map shows a broad tendency where the Bernese Oberland and the north-
ern Jura received a higher amount of precipitation but had a lower influenza
incidence, and in the more low-lying areas (and parts of the Jura region) the
pattern was reversed. The map also shows that there are outliers in each cate-
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gory, highlighting that in this map only one explanatory factor is considered in
an isolated manner, which is not capable of explaining all of the spatial varia-
tion of incidences. These findings prove contrary to the findings of Reyes et al.
(2018) who found that rainfall helped explain the spatial variation of excess
deaths in India. However, the findings of this thesis link to Roussel et al. (2016)
who found no statistically significant association between the weather and the
epidemic but conclude that the climate may have an impact on the spread of
influenza on an intra-annual scale. Furthermore, they conclude that it remains
unclear which climatic factor exactly contributed to the spread.

The precipitation data used for this thesis also contain some shortcomings.
First of all, the data are not very accurate. While the measurements at the
individual stations may have a high accuracy, the interpolation process is unable
to accurately display local variations. Having data at a higher resolution would
help to better capture local patterns. Furthermore, it remains questionnable
whether “precipitation” is the best variable to picture weather and if available
variables such as temperature or humidity may yield better results (see Roussel
et al. (2016)).

Finally, it remains hard to say whether precipitation had an influence on in-
fluenza incidence during this first summer wave of the 1918 influenza pandemic.
Using more precise data might yield better results but as Roussel et al. (2016)
pointed out, it remains difficult to identify climatic factors that explain spatial
variation of influenza incidences.

Local spatial autocorrelation

The local spatial autocorrelation was also used in the first research question to
determine whether clusters of high (or low) incidence are present in the data
(see figure 4.1.4). After creating a model, the same technique was used on the
model residuals to gain an understanding of how well model 1 performs in space
(i.e. how well model 1 manages to explain spatial variations in incidence). With
an ideal model, the residuals would show no more clusters and no spatial auto-
correlation because the model would manage to explain all the spatial variation
in incidence. On a global scale, the Moran’s I index decreased to almost zero,
which means that there is practically no spatial autocorrelation in the model
residuals. Indeed the map of the local spatial autocorrelation of the model resid-
uals for the first wave shows very few clusters. Comparing the left map of figure
4.9 with figure 4.11 allows to determine in wich areas the model managed to
explain spatial variations in incidence. The maps show that the model managed
to explain most of the clusters in the Bernese Oberland, where many low-low
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clusters were present in the initial data. Hovever, some clusters do remain, par-
ticularly in the Jura region and north of Berne. This means that the model did
not manage to explain the spatial variation of influenza incidence in the case
of high-high clusters and the model was better at explaining why the incidence
was low in certain areas than why it was high in other areas. This is a hint
that there must be at least one more locally specific factor, or that there are
spatial interaction effects (i.e. incidence or explanatory factors of neighbour-
ing municipalities have an additional effect on the incidence). Model 1 suffered
from heteroscedasticity. This supports the thesis that the model was lacking at
least one important explanatory factor but does not question the validity of the
regression model.

5.2.2 Second wave: October 1918 – January 1919

Modelling process

For the modelling of the second wave, the same methods were used. They are
extensively discussed in section 5.2.1 and are not repeated here. Noteworthy
at this point is the model selection for the second wave. Among the candidate
models that the model selection returned, one of the models was the same one
as model 1, which included the explanatory variables TB mortality, urbanity,
railway access and precipitation. Therefore this model was chosen as model 2, as
the reasons that led to the selection of model 1 also hold true for model 2. Since
the two models are the same for both waves, this leads to further possibilities
to explore and compare the two waves (e.g. did the same factors play the same
role in the spread during both waves?; are some tendencies even reversed?)

Model results

Model 2 also returned some statistically significant results. Around half of the
variables have statistically significant odds ratios. The first variable the model
controlled for was TB mortality. The result of model 2 (second wave) returns
similar results as model 1 (first wave). Therefore, the initial hypothesis 2a) 2.6
also cannot be rejected for the second wave. As already discussed in the first
wave, this maps to the findings of Zürcher et al. (2016) who found that TB and
influenza seem to be related. As in the first wave, one possible explanation is
that municipalities that had a higher TB mortality also had a higher influenza
incidence. This then led to more severe influenza cases in the following influenza
epidemic due to the lung damage caused by TB. Another possible explanation
could be that the positive association between TB mortality and influenza inci-
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dence is just a general sign that conditions for the spread of an airborne virus
were favorable in certain municipalities. The map in appendix A again shows
the spatial correlation between TB mortality and influenza incidence which can
be of help for the interpretation. The map shows that areas with both high TB
mortality and high influenza incidence include regions north of Berne, south of
Lake Biel and in between Lake Brienz and Lake Thun, just to name a few. The
Jura region, despite its high TB mortality in the years of 1900 – 1910, was not
much affected by the second wave of the 1918 influenza pandemic. However,
the study does not allow to make a final statement about the actual reason why
TB mortality and influenza incidence are linked.

The model results of model 2 show that the odds ratio of the urbanity were
not statistically significant during the second wave (October 1918 – January
1919). Furthermore, their odds ratio was 0, indicating that the variable “ur-
banity” (i.e. Berne, Biel, Thun vs. the rest of the canton) did not have an
influence on the dissemination of the influenza virus. Therefore, hypothesis 2b)
from section 2.6 has to be rejected, as it cannot be said that urban spaces had
higher incidences during the second wave. In this respect, the first and the
second wave were different: In the first wave model, urbanity had an extremely
high odds ratio, indicating that urbanity was an important explanatory factor
for the spread. At this point, it again has to be mentioned, that the standard
error for the variable urbanity was high in both models which means that the
variable did not provide a good fit for the data. However, together with the
descriptive analysis and the findings of Sonderegger (1991) it is still safe to say
that cities had an influence, particularly during the first wave.

The odds ratios of the variable railway access also do not draw a clear picture,
neither in respect to statistical significance nor in the direction of association.
This means that the hypothesis formulated in section 2.6 has to be rejected, as
it cannot be definitely said that railway access helps explain the spread of the
influenza virus. In this respect, the results are also different for the first and
the second wave. While the results of model 1 did not show a strictly positive
association between railway access and influenza incidence, at least there was a
clear difference between the groups that had railway access and the group that
did not. This is not the case in the second wave, as the results from model 2 in-
dicate that group 3 (which translates to medium railway access) had a negative
association. Therefore, hypothesis 2c) in section 2.6 cannot be accepted. The
map in figure A.7 shows indeed that there is a less clear picture than for the
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first wave. One reason for the negative association in group 3 could be the Jura
region, which was practically not affected but relatively well-connected to the
railway network. On the other hand, areas in the Bernese Oberland that did not
have railway access were heavily affected. While this does not agree with the
findings of Reyes et al. (2018) who found that long-distance railway access had
an influence on the spatial variation of the 1918 influenza pandemic, it does pro-
vide a quantification for the results of Sonderegger (1991), who concluded that
the German speaking parts were more heavily affected during the second wave.
One potential explanation as to why the correlation between railway access and
influenza incidence does not provide a clear picture during the second wave,
could be Eggo et al. (2011)’s conclusion that in the initial phase, long-distance
transmission was of importance while in the later stages local spread became
dominant. In the context of this case study, this would mean that during the
first wave, long-distance transmission along the railway lines was an important
driver of spread. In the second wave, local spread became important, therefore
railway access did not play such a big role anymore, or it could simlply be the
case, that the second wave was so virulent and widespread, that the railway
lines did not matter anymore. Of course this is only a hypothesis that cannot
be definitely proven. The data is the same as used for model 1 and therefore
has the same shortcomings (for an extensive discussions of them, please refer to
5.2.1). A more accurate modelling of general accessability could prove insightful
in further studies.

The last variable, precipitation, also failed to provide a clear picture. While
groups 2 and 3 (low and medium precipitation) showed a positive association,
groups 4 and 5 (high and very high precipitation) had a negative association,
however the odds ratio was not statistically significant. Therefore, hypothesis
2d) (see section 2.6) has to be rejected, as the evidence does not support it. Fur-
thermore, the results of model 2 also don’t support those of Reyes et al. (2018)
who found that precipitation was an explanatory factor for the 1918 influenza
pandemic in India. However, the findings in this study are similar to the ones
in Roussel et al. (2016) who found no statistically relevant association between
climatic variables and incidence on an epidemic level. The map in figure A.8
shows that the precipitation variable does show the common pattern associated
with precipitation in Switzerland (more precipitation in the mountain regions
than in the flat lands), but no clear pattern correlation with influenza incidence.
Therefore, precipitation is not such a good variable for explaining the spread of
the influenza virus during the second wave. This is consistent with the results
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of model 1 where precipitation also failed to provide a clear association with
influenza incidence. Hence, the seasons also did not seem to have an impact
when it comes to precipitation. Potentially better results could be achieved
with different climatic data such as temperature or humidity, which may play a
role, as suggested by Roussel et al. (2016).

Local spatial autocorrelation

Again, the map in figure 4.13 shows the local spatial autocorrelation of the model
residuals of model 2. Compared to the residual map of model 1 (see figure 4.11),
the map shows considerably more and larger clusters. This indicates that the
model performance was worse during the second wave. This is also undermined
by the global Moran’s I which was considerably higher than for model 1. The
global Moran’s I for model 2 was considerably higher than for model 1.

Again, comparing the LISA (local indicators of spatial autocorrelation) map
of the model residuals to the LISA map of the incidences (see figure 4.9) allows
to assess how well the model explained the spatial variation of the incidence. On
a global level, the Moran’s I of the model residuals is lower than the Moran’s I
of the incidence rates, which indicates that the model managed to explain some
of the spatial variation of the incidences. Just like model 1, model 2 managed
to explain a large portion of the low-low clusters in the regions that were not
very much affected (e.g. the Oberland region for model 1 and the Jura region
for model 2). Despite the fact that the model managed to explain some of the
high-high clusters spread out across the Swiss Plateau, substantial clusters of
both high-high and low-low type remain. Furthermore, the residual map shows
new low-low clusters, particularly in the area between Berne and Thun. This
indicates that in this area, the model overestimated the influenza incidence. The
reason why this was the case remains unclear. Possibly, the model omitted an
important explanatory factor or spatial interaction effects had an influence (i.e.
the incidence or explanatory factors of neighbouring municipalities influenced
the incidence). Furthermore, a new high-high cluster appeared in the Bernese
Oberland, south of Lake Brienz. One potential explanation for this new cluster
may be the tourism industry. The municipalities that belong to this high-high
cluster were well-known tourism resorts such as Wengen or Grindelwald, which
is why they were relatively well-connected to to other places, despite the fact
that they seem very isolated mountain regions, particularly since the model
does not consider influences such as tourism. However, due to the fact that
World War I was just ending at the time, it remains questionnable whether
tourism in fact played a role. Finally, it has to be noted that model 2 suffered
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from heteroscedasticity, just like model 1. This means that some variation in
the incidence is not well-explained in the model, and hints that at least one
important explanatory variable is omitted. These findings go well with the
LISA map which still shows substantial clustering, indicating that there is still
missing information that may explain the local variation of the spread more
accurately.

5.2.3 Differences between the two waves

Sonderegger (1991); Eggo et al. (2011); Smallman-Raynor (2004); Patterson and
Pyle (1991) note that the second wave of the 1918 influenza pandemic was more
severe by orders of magnitude, which is something which these data also show.
Furthermore, the French-speaking part of the canton of Berne was hit harder
by the first wave and largely spared by the second wave, while the pattern
is reversed for large areas in the German-speaking part of the canton. This
provides a quantification to the findings of Sonderegger (1991) and therefore,
hypothesis 1 from section 2.6 can be accepted: the pandemic, broadly speaking,
spread from west to east. At the model level, it is noteworthy that the model
performance was better in model 1 with an AIC of 363.46, compared to model
2 which had an AIC of 461.66, meaning the model fit was better for model 1.
Furthermore, the results of the explanatory variables produced outcomes that
were clearer and more statisticallly sound than in model 1. One possible way of
explaining this fact is that due tothe incidences being generally higher during
the second wave, the disease was also more widespread than during the first
wave. This makes it harder to find meaningful explanatory variables. This
is just a possible explanation as to why the model performance was worse in
model 2. The real reason remains unknown, just like it remains unknown why
the second wave was so much more virulent. Finally, both models suffred from
heteroscedasticity, which indicates that some information is missing that would
help to explain the spread even further but does not question the validity of the
two models.

5.2.4 Implications for future pandemics

These findings provide a broad idea as to what might have contributed to the
spread of the 1918 influenza pandemic. The question remains what these results
can teach us and how they can help to be better prepared for a future pandemic.
The current Sars-Cov-2 pandemic teaches the world that preparedness is of
essence, especially in a world as globalized as our world is today. The current
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pandemic shows that in our globalized world, a virus has the potential to spread
much faster both on a global scale, where air travel makes it possible to reach
even the most remote places within hours. On a local scale, increased local
exchange (e.g. through commuting) helps to accelerate the spread. Covid-19
teaches us that when a new disease develops, the available means to fight it are
no different from the means available during the 1918 influenza pandemic, at
least in the beginning stages until effective medication or a vaccine are invented.
This means, governments rely on nonpharmazeutical interventions at least in
the beginning stages. Therefore, it is of great importance to learn from past
pandemics to be prepared for the next one. The results from this thesis show two
associations that could have implications for future pandemics. Firstly, cities
were affected at an early stage of the pandemic, therefore showing the possibility
that long-distance connections were an important driver in the initial stages
of the pandemic. Secondly, the access to the railway network showed some
association, therefore giving hints that traffic ways are an important driver
of spread, which for a current pandemic might extend to air travel as well.
These two findings have possibly even bigger implications today due to the
before-mentioned possibility of an accelerated spread. Therefore, governments
should be prepared to act quickly in order to contain or at least delay a possible
outbreak.

5.3 Limitations

Like every research project, this one has its limitations. For the sake of structure,
limitations are split into three categories: (1) limitations of the data which
show how better or different data could lead to better results, (2) limitations
in the analysis that show how a different modelling process coluld lead to even
more accurate results, and (3) limitations in the analysis that show how more
advanced modelling techniques could produce more accurate results.

5.3.1 Limitations of the data

The different data variables all have their limitations. Firstly, the urbanity vari-
able is a simple binary classification that compares the three biggest cities to the
rest of the canton which resulted in a high standard error in the data. To ob-
tain a better result, a more advanced method could be developed that possibly
includes other factors such as tourism or industry. This would allow to cap-
ture the structure of the settlement more accurately. Secondly, the tuberculosis
variable contains the TB mortality from the years before the actual pandemic.

78



This may lead to an incomplete picture, as it does not capture more recent out-
breaks. Furthermore, the TB mortality from 1910 does not make any statements
about the real incidence other than the presumption that a higher TB mortality
points to higher influenza case numbers. Therefore, obtaining more accurate TB
data (if available) could lead to improved results. Additionally, the access to
the railway system is modelled with a simple network measure. This does not
capture a complete picture as it makes some train stations more central than
they seem in the model compared to reality, and it does not allow to make a
statement as to how frequently a line is used. A more advanced approach could
lead to better results concerning access to the railway network. The weather
data consisted of a simple interpolation of precipitation measurements from the
Federal Office of Meteorology and Climatology. Recently, I was made aware
of more precise historical weather data, originally intended to study climate
change. The data includes high-resolution temperature and precipitation data
(Pfister, 2019). Using these data may yield more accurate results, particularly
the use of temperature data seems an interesting opportunity, as for the current
models no temperature data was available.

Finally, some limitations in the outcome data have to be discussed. As stated
in the previous paragraph, two facts are important to consider when working
with the outcome data. Firstly, in 1918 the only way to diagnose influenza
was by clinical methods – assessing the symptoms a patient showed. Having
no test available to definitely say whether a patient had a common cold or
was in fact suffering from influenza introduced inaccuracies and can lead to a
reporting bias. This means a patient was diagnosed with influenza when in fact
they were not suffering from influenza or vice versa. Secondly, even though the
reporting of influenza cases was mandatory for doctors, they often saw it as an
unnecessary bureaucratic step (Staub et al.). Therefore, this also introduces
some inaccuracies, as doctors might not have reported all the data or reported
data inaccurately.

5.3.2 Missing data

The issue of missing data has two dimensions. The first dimension is relatively
simple to discuss and concerns the fact that not all municipalities reported
data, particularly during the first wave. Given the locations of some of them
(e.g. Ostermundigen and Ittigen just east of Berne) which were surrounded by
municipalities with high incidences, it seems very unlikely that they did not
have any cases. This is a limitation that is almost impossible to overcome but
it has to be kept in mind when interpreting the model outcomes.
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Secondly, the model outcomes point to some missing variables. Mamelund
(2011) and Jester et al. (2018) suggest that young adults were more likely to
die from influenza. It remains questionnable whether the age structure has an
influence on the incidence rate. However, it is possible that young adults, due to
their tendency to have more severe courses, led to more medical consultations
which might manifest in a higher reported incidence.

Additionally, the data has shown that accessability played a role in the
spread of the 1918 influenza pandemic. However, part of how well accessi-
ble a municipality was, was completely omitted by not considering roads and
stagecoach lines. Including information on how well connected to the road and
stagecoach network a municipality was could yield better results, particularly
in the Bernese Oberland. Also, the current modelling of accessability does not
consider local spread, which previous studies identified as an important driver
in the later stages of the pandemic (Eggo et al., 2011).

Finally, it remains questionnable whether there is data for all phenomena
that may have contributed to the spread of the influenza virus. It is now known
that the general strike was associated with increasing case numbers during the
peak of the second wave (Staub et al.). It is highly questionnable whether there
is any data that could be included in any model to help explain the variations
of the spread afterwards. Furthermore, other factors such as co-morbidities or
background immunity may also have played a role as suggested by Chowell et al.
(2014). It is questionnable whether good data to capture these factors can be
found.

5.3.3 Limitations of the analysis

Last but not least, the way the analysis was conducted contains some inaccura-
cies. The models consist of simple logistic regression models. Their advantage
is that they have relatively few model assumptions and therefore, they are rel-
atively easy to use and interpret. However, they are somewhat limited in the
statements they allow to make. Therefore, using a more advanced modelling
technique such as general additive models might provide further and more ac-
curate insights.

The model also has another particular shortcoming. The standard error and
the odds ratio of the urbanity variable is extremely high, which means the data
does not provide a good fit for the model. One possible explanation for this lies
within the way the data was modelled. The variable contains three points in
one class (Biel, Berne, and Thun) and all the rest of the datapoints belonged to
another class. Naturally, this classification does not provide a good fit as also
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other areas had similar incidence rates as the three cities. Therefore, the model
can be improved by coming up with a better classification scheme that captures
urbanness, or the settlement structure in genereal, better. However, modelling
this variable more accurately would have been a considerable effort and would
have been out of scope for this thesis. Finally, the TB variable used data from
1900 – 1910 and was standardised using the census data from 1920 which could
lead to inaccurate results due to population movements (e.g. because of World
War I). Using population data from the 1910 census may lead to more accurate
results.

5.4 Further research

The results of this thesis represent a first step towards a better understanding
of the 1918 influenza pandemic and its determinants of spread. This thesis is
by no means conclusive and further research should be conducted in order to
understand the “Spanish” flu even better. After writing this thesis, I see further
research potential in three areas.

The first area concerns how the current approach could be improved by using
more accurate data and building more advanced models. Firstly, by including
additional variables such as the age structure or general indicators of population
health, better results may be achieved simply due to the fact that these data
are missing in the current analysis. Secondly, most explanatory variables are
modelled relatively simply as putting more effort into modelling them more
precisely would have been out of scope for this thesis. Putting more effort in
modelling the explanatory variables as precisely as possible could yield better
results (e.g. a better classification for urbanness and railway access). Therefore,
this could be adressed in a further research project. Additionally, the models
used for this thesis were relatively simple and building more advanced models
may yield more insights.

Another big area that could be interesting for further research is the tempo-
ral resolution. The current approach incorporates the temporal dimension by
comparing the two waves to each other. Using a finer temporal resolution (i.e.
weeks or months) could lead to further insights and help to capture the spread
even better.

Finally, the third area where I see potential is in the effective communication
of the research through appealing visualizations. Earlier in this thesis, the point
was made that an effective communication of research is important in the case
of pandemics in order to allow access to information without causing panic.
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6 Conclusion

The research in this thesis contributes to our understanding of the 1918 influenza
pandemic, a pandemic that is sometimes described as the greatest demographic
shock in human history. The canton of Berne represents a unique case study
with a regionally very diverse setting, stretching from the northern border with
France to remote places in the Swiss Alps and high case numbers. This paper
yields two main findings: First of all, it adds to current literature that the Swiss
canton of Berne, like many places in the Northern Hemisphere, was struck in
two waves. The first wave was a relatively mild summer wave in July/August
1918 and it was followed by a much more virulent second wave that lasted
from around October 1918 to January 1919. Furthermore, this thesis agrees
with previous research that the Jura region was affected more by the first wave,
while the rest of the canton was struck harder by the second wave. Secondly, the
thesis identified locally specific factors that may have had an influence on the
spread of the virus. In this case study, especially traffic routes and urbanness
seemed to have had an influence. The model results show, that particularly
for the second wave, the model performence could be improved. Therefore,
more effort should be put in finding locally specific factors that help explain
the spread of the much more virulent winter wave as well as more advanced
modelling techniques.

Finally, the thesis argues that the study of past pandemics can be a great help
in developing an emercency plan for future pandemics. The current Sars-Cov-2
pandemic is a great reminder that, despite greatly improved possibilities through
modern medicine – if a new virus arises, in the beginning, the available measures
are no different than the ones available 100 years ago, before the development
of modern medication. Therefore, identifying possible determinants of spread
and coping mechanisms is one of the most valuable tools available to prepare for
a future pandemic. Because one thing is certain: “The world will face another
influenza pandemc – the only thing we don’t know is when it will hit and how
severe it will be” (World Health Organization, 2019).
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A Bivariate choropleth maps

As an aid for the the interpretation of the model outputs, bivariate choropleth
maps were created to show the correlation in space between influenza incidence
and each variable.

A.1 First wave: July/August 1918

A.1.1 TB mortality vs. influenza incidence

The choropleth map in figure A.1 shows the correlation between tuberculosis
mortality and influenza incidencce during the first wave of the pandemic and
adds spatial information to it. The map is a bit difficult to understand at
first, which is why a few reading examples are given here. The values that are
probably most interesting for the correlation of these two variables are the dark
grey to blue values on the main diagonal of the legend. Those values indicate
a positive correlation between tuberculosis mortality and influenza incidence,
meaning a municipality had either a low influenza incidence and low tuberculosis
mortality or high values in both of the indicators. There are no clear tendencies,
but for example in the Bernese Oberland, there were quite a few municipalities
that had low-low values. Furthermore, in the Jura region and the Laufental,
some dark blue municipalities can be found which indicates high-high values.
Green values mean a high tuberculosis mortality but a low influenza incidence.
This is the case for some municipalities in the Mittelland between Berne and
Thun as well as in the northern part of the Jura. Pink values, which make up
the majority of the municipalities, are the ones that showed a high influenza
incidence but a low TB mortality. Dark grey municipalities did not report any
influenza data and therefore no correlation could be calculated.

A.1.2 Population density vs. influenza incidence

Figure A.2 shows the correlation between population density and influenza in-
cidence. This is a bit inconsistent with the models, where urbanity and not
population density was modelled. However, a similar map with the urbanity
variable would not have produced meaningful results which is why the pop-
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Figure A.1: Bivariate choropleth map of the variables TB mortality and in-
fluenza incidence during the first wave which gives insight into spatial dynamics
of the correlation. Grey-blue values indicate a positive correlation. Green val-
ues indicate a low influenza incidence but a high TB mortality, and pink values
indicate a high influenza incidence and low TB mortality.

ulation density was modelled instead. The Jura region is somewhat divided:
the southern part has areas that are both densely populated and have a high
incidence. However, they are next to municipalities with a low population den-
sity, therefore there is no clear pattern. The northern region also shows some
isolated areas with a medium-high population density but a low influenza in-
cidence. The Laufental region was hit hard by this first wave, no matter the
population density of its municipalities. In the Swiss Plateau, there is no clear
pattern visible. What stands out at first glance are the cities of Biel and Berne
and their surrounding areas that both had a high population density and a high
influenza incidence. This also holds true for the city of Thun. Apart from that,
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Figure A.2: Bivariate choropleth map that shows the correlation between popu-
lation density and influenza incidence during the first wave. It gives insight into
spatial dynamics of the correlation. Grey-blue values indicate a positive corre-
lation. Green values indicate a low influenza incidence but a high population
density, and pink values indicate a high influenza incidence and low population
density.

there are some scattered municipalities that were both densely populated and
had a high incidence. In the Oberaargau region, there seems to be an entire
cluster of municipalities that had a medium-high population density but were
not particularly affected by the first wave of the 1918 influenza pandemic. In
the Bernese Oberland, there is a difference visible between the more low-lying
municipalities around the lakes and the more mountainous regions: the areas
around the lakes were both densely populated and had a high incidence. Finally,
in the southern and eastern part of the Oberland region, there are also many
municipalities with both a low incidence and a low mortality.
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A.1.3 Access to railway network vs. influenza incidence

Figure A.3: Bivariate choropleth map showing the correlation between railway
access and influenza incidence during the first wave which gives insight into
spatial dynamics of the correlation. Grey-blue values indicate a positive cor-
relation. Green values indicate a low influenza incidence but good access to
the railway network, and pink values indicate a high influenza incidence and no
access to the railway network.

The correlation between the access to the railway system and influenza incidence
during the first wave in figure A.3 reveals that the railway access might have
played an important part in some areas of the canton. Particularly the south of
the Jura region had both a high incidence and good access to the railway system.
In the northern neighbouring valley, there was no railway access, but incidences
were still high. Again north of that, there were municipalities that did have
railway access but low influenza incidence. Furthermore, in the Seeland region,
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the city of Biel stands out with a high incidence and high railway access but
also the region south of Lake Biel. This region showed medium-high incidences
despite having no access to the railway system. In the Oberaargau region, there
are municipalities with high influenza incidence but no railway access and areas
with good raiway access but fewer cases, therefore showing negative correlation
between railway access and influenza incidence in this particular area. Finally
in the Oberland, the city of Thun and its surrounding areas strike out with good
railway access and high incidences. The eastern part of the Oberland was also
less affected for some reason, even though it had access to the railway network.
The southern part of the Bernese Oberland towards the Valais finally, had no
access to the railway network but was also not particularly affected.

A.1.4 Precipitation vs. influenza incidence

The correlation between precipitation and influenza incidence during the first
wave (see A.4) shows clearer tendencies than the two previous maps. The Jura
region had little to medium precipitation and the incidences show the well-
known pattern, that the southern part and the Laufental region were more
affected than the northern part. Around the Seeland region, the pattern was
farely similar with a medium-high flu incidence and little precipitation. In the
eastern part of the canton, in the Oberaargau region, there is a cluster with
both high incidences and high precipitation, whereas in the northern part of the
Oberaargau region, the municipalities received less precipitation and sho<wed
lower incidences. Towards the Alpine region in the south, the precipitation
gradually increases. Generally speaking, the incidences in that region were low,
with the exception of Thun and its surrounding municipalities as well as some
more municipalities around the two lakes, while the precipitation was high.

A.2 Second wave: October 1918 – January 1919

A.2.1 TB mortality vs. influenza incidence

Figure A.5 shows a bivariate choropleth map which shows the correlation be-
tween incidence and tuberculosis mortality during the second wave of the 1918
influenza pandemic. It adds to what previous findings in this thesis have already
shown: Firstly, much of the Jura region was only mildly affected by the second
wave but there are areas that had a high mortality from tuberculosis. Again, the
southernmost valley of the Jura region was affected most while having a lower
TB mortality than the rest of the region. Secondly, the Laufental also seems
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Figure A.4: Bivariate choropleth map showing the correlation of precipitation
and influenza incidence during the first wave which gives insights into the spatial
dynamics of the correlation. Grey-blue values indicate a positive correlation.
Green values indicate a low influenza incidence but a high precipitation, and
pink values indicate a high influenza incidence and low precipitation.

to have been more affected. In the Seeland region, there is a cluster south of
Lake Biel, where both the incidence and tuberculosis mortality were high. The
Mittelland region shows a north-south gradient when it comes to tuberculosis
mortality, while incidences were high in most municipalities of the regions. In
the Oberaargau region, there almost seems to be a negative correlation between
tuberculosis and influenza: the eastern part seems to have suffered more from
influenza while the eastern part had medium-high TB mortality. The Oberland
region does not show a clear picture. There is an area of both high incidence and
high TB mortality inbetween Lake Thun and Lake Brienz. Furthermore, the
eastern part also shows medium-high tuberculosis mortalty, with low-medium
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Figure A.5: Bivariate choropleth map showing the correlation of TB mortality
and influenza incidence during the second wave and how the correlation is dis-
tributed in space. Grey-blue values signify a positive correlation. Green values
mean a negative correlation, with high TB mortality and low influenza inci-
dence. Finally, pink values also mean a negative correlation where the influenza
incidence is high and the TB mortality is low.

incidences. Towwards the southern tip of the canton of Berne, many municipal-
ities were not particularly affected by tuberculosis but did have varying degrees
of influenza incidence.

A.2.2 Population density vs. influenza incidence

Figure A.6 shows the correlation between population density and influenza inci-
dence during the second wave of the 1918 influenza pandemic. Again, the use of
the population density rather than the urbanity is inconsistent with the models
but yields more meaningful results. In the Jura region, many municipalities had
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Figure A.6: Bivariate choropleth map showing the correlation between popula-
tion density and influenza incidence and how the correlation is distributed in
space. Grey-blue values signify a positive correlation. Green values mean a
negative correlation, with high population density and low influenza incidence.
Finally, pink values also mean a negative correlation where the influenza inci-
dence is high and the population density is low.

both a low population density and a low incidence. Again, the southern part
of the Jura region stands out with its higher population density and incidence
compared to the rest of the Jura region. Particularly affected by the second wave
of the 1918 influenza pandemic was the region on the southern border of Lake
Biel, despite the fact that the majority of the municipalites only had a medium
population density. Contrary to that, the northern part had a high population
density but only low-medium incidences of influenza. Interestingly, the cities of
Biel and Berne, though heavily populated, were not in the highest category for
incidence. Furthermore, in the Oberaargau region there is no clear tendency in
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incidence, even though it was generally more densely populated. In the Bernese
Oberland, many municipalities had medium-high incidences, even though they
were not very densely populated. Generally, there is a tendency in the Ober-
land, that the municipalities that were closer to the lakes were more heavily
populated than the ones far away and many of those more densely populated
municipalities were heavily affected by the second wave.

A.2.3 Railway access vs. influenza incidence

Figure A.7: Bivariate choropleth map showing the correlation between railway
access and influenza incidence during the second wave and how the correlation
is distributed in space. Grey-blue values signify a positive correlation. Green
values mean a negative correlation, with high railway access and low influenza
incidence. Finally, pink values also mean a negative correlation where the in-
fluenza incidence is high and the railway access is low.
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Figure A.7 shows the correlation between railway access and influenza inci-
dence during the second wave. The pattern in the bivariate choropleth map is
less clear than during the first wave. Along the southern Jura railway line, there
is no clear pattern, there are a few municipalities with a medium or high inci-
dence. In the rest of the Jura region, many municipalities did not have railway
access but were not particularly affected by the second wave. In the Seeland
region, there is a cluster with municipalities that all had a high incidence but no
railway access on the southern bank of Lake Biel, while the northern part was
less affected despite the fact that the access to the railway system was better.
One area where railway access (or rather having no railway access) may have
played a role is in the southern Oberaargau region in the east, where there is a
cluster with no railway access and low incidences. In the northern part of the
Oberaargau region, there are some areas that had both good railway access and
high incidences. In the Bernese Oberland, there is no clear correlation between
railway access and influenza incidence. Many municipalities were affected no
matter their railway access.

A.2.4 Precipitation vs. influenza incidence

The comparison between the two variables precipitation and incidence (A.8)
looks clearer than the other bivariate choropleth maps at first sight. This has to
do with the nature of the precipitation variable, that has a smaller degree of local
variation than the rest of the variables. The Jura region mostly received high
precipitation but low influenza incidence. The Laufental region was also more
affected by influenza while receiving less precipitation than the neighbouring
Jura region. The Seeland region as a whole received a medium amount of
precipitation. Again, the difference in incidence between the north and the
south is visible. In the Mittelland region, there are differing degrees of influenza
incidences with little precipitation. The Oberaargau region in the east received
a medium amount of precipitation with differing degrees of influenza incidence
in the medium-high categories in the northern parts and a low incidence in
the southern part. The Alpine region received a high amount of precipitation.
There is a cluster of high-high values south of Lake Brienz and Lake Thun. The
rest of the Oberland showed low-medium incidences.
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Figure A.8: Bivariate choropleth map showing the correlation between precip-
itation and influenza incidence during the second wave and giving insight into
the spatial dynamics of the correlation. Grey-blue values indicate a positive cor-
relation. Green values indicate a low influenza incidence but high precipitation,
and pink values indicate a high influenza incidence and low precipitation.
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B R Code used for the analysis

Note: the data source files used in this code are not provided with this thesis. On
its own, the code is not executable. The code itself is commented throughout to
facilitate its understanding. The code is also available in the following GitHub
repository: (https://github.com/coleuc/SpanishFlu).

Descriptive visualisations

Histogram

1 # make histogram : this code prepares the data and afterwards

creates a nice looking histogram

2 # set up part ----

3 # define standard repo for rpackages

4 local ({r <- getOption (" repos ")

5 r["CRAN"] <- "http://cran.r- project .org"

6 options ( repos =r)

7 })

8

9 # function : checks if a package is installed or not

10 # if installed --> loads package

11 # else --> installs package

12

13 pkgTest <- function (x)

14 {

15 if (! require (x, character .only = TRUE))

16 {

17 install . packages (x,dep=TRUE)

18 if(! require (x, character .only = TRUE)) stop(" Package not found ")

19 }

20 }

21

22 # import packages using function

23 pkgTest (" tidyverse ")

24 pkgTest ("here")

25 pkgTest ("sf")

26 pkgTest (" lubridate ")

27

28
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29 # set data folder and R folder

30 dataFolder <- here :: here("data")

31 RFolder <- here :: here ()

32 outputFolder <- here :: here(" output ")

33

34 # set up coordinate system projection strings

35 WGS84 <- "+init=epsg :4326 "

36 LV03 <- "+init=epsg :21781 "

37

38 # read the data -> this part is hard - coded . Change if code needs to

be executed

39 gemeinden <- read.csv(file = paste0 ( dataFolder , ’/ SpanischeGrippe _

Gemeinden .csv ’), sep= ’;’, encoding = "UTF -8") %>% rename (GEM_

ID= X.U.FEFF.GEM_ID) # have to rename the id number to match it

40 grippe <- read.csv(file = paste0 ( dataFolder , ’/ SpanischeGrippe _

Faelle .csv ’), sep= ’;’, encoding = "UTF -8")

41

42 # get only the influenza cases and sum them up by district /year

43 grippe <- grippe %>% filter ( CatDisease == 1) %>% select (District ,

NumbCasesAdjust2 , GEM_ID , Year , Month , Day) # %>% group _by(GEM_

ID) %>% summarise ( totalCases = sum( NumbCasesAdjust2 )) %>%

ungroup ()

44

45 # joining the gemeinden data to the disease data

46 grippe _ gemeinden <- left_join(grippe , gemeinden , by = ’GEM_ID ’)

47

48 # check for N/As

49 na <- grippe _ gemeinden %>% filter (is.na(N)) %>% as_ tibble () # data

contains some entries that could not be matched with a district

. These data are omitted for now

50 # nas seem to be things that are aggregated by districts --> good

that they are na , so that they aren ’t accidentally included in

the analysis

51

52 # grippe _ gemeinden <- drop_na( grippe _gemeinden , c(N,E)) %>% select (

Gemeinde _Name , totalCases , Wohnb , E, N, GEM_ID , BfS_GEM_ID)

53 # if not summarized by district , use following code

54 grippe _ gemeinden <- drop_na( grippe _gemeinden , c(N,E)) %>% select (

Gemeinde _Name , NumbCasesAdjust2 , Wohnb , E, N, GEM_ID , BfS_GEM_

ID , Year , Month , Day) %>%

55 unite (Date , c(Year , Month , Day), sep = "/")

56

57 # calculate morbitity

58 grippe _ gemeinden <- grippe _ gemeinden %>% group _by(GEM_ID) %>%

mutate ( inccidence = sum( NumbCasesAdjust2 )/ Wohnb * 100000) %>%

59 select (GEM_ID , inccidence , Gemeinde _Name , Wohnb ) %>% unique ()#

calculate cases per 1000 inhabitants

60

105



61 # make a histogram --> one value for each municipality

62 ggplot (data = grippe _gemeinden , aes( grippe _ gemeinden $ inccidence )) +

63 geom_ histogram (fill="#7 a0177 ", alpha =0.8 , bins = 60) +

64 expand _ limits (x = 10000) + # make sure axis labels arent being

cut off

65 ggplot2 :: labs( title = " Burden of Disease in Bernese

Municipalities ",

66 subtitle = " Histogram of the influenza incidence

Jul. 1918 - Dec. 1918",

67 y = " Number of municipalities ",

68 x = " Incidence ( cases /100 ’000 inhabitants )",

69 caption = " Source : Cantonal Arcives Berne ,

70 Author : Corina Leuch ") +

71 theme _ minimal () +

72 theme (axis. title .x= element _text( vjust = -0.5 , size = 12, face="bold

"),

73 axis. title .y = element _text( vjust =2, size =12 , face= "bold"),

74 axis.text = element _text(size = 8) ,

75 plot. title = element _text(size =16 , face = "bold"),

76 plot. caption = element _text(size =8) ,

77 plot. subtitle = element _text(size = 12)) +

78 theme ( legend . position = "none", plot. margin =unit(c

(0.5 ,0.5 ,0.5 ,0.5) ,"cm"))

Boxplots

1 # boxplots ----

2 # write csv

3

4 grippe _ levels <- read.csv( grippe _levels , path = paste0 ( outputFolder

, "/ Grippe _ Final .csv"))

5 first _ levels <- read.csv( first _final , path = paste0 ( outputFolder , "

/ First _Wave_ Final .csv"))

6 second _ levels <- read.csv( second _final , path = paste0 ( outputFolder ,

"/ Second _Wave_ Final .csv"))

7

8 # the incidence data seems to have some outliers . Create boxplot

9 colnames ( first _ levels )[3] <- "Inz"

10 first _ levels $wave <- " First wave"

11

12

13 colnames ( second _ levels )[3] <- "Inz"

14 second _ levels $wave <- " Second wave"

15

16 grippe _ levels $wave <- " Entire period "

17

18 dat <- bind_rows( grippe _levels , first _levels , second _ levels )
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19 dat$wave <- factor (dat$wave , levels = c(" Entire period ", ’First

wave ’, ’Second wave ’))

20

21 ggplot (dat , aes(x=wave , y=Inz), group _by(wave)) +

22 geom_ boxplot (fill="#7 a0177 ", alpha =0.8) +

23 theme _ minimal () +

24 scale _x_ discrete (name = "Wave") +

25 ggplot2 :: labs( title = " Distribution of incidences ",

26 subtitle = " Incidence for the entire study period

and the two waves ",

27 y = " Incidence ( cases /100 ’000 inhabitants )",

28 x = "Wave",

29 caption = " Source : Cantonal Archives Berne ,

30 Author : Corina Leuch ") +

31 theme _ minimal () +

32 theme (axis. title .x= element _text( vjust = -0.5 , size = 10, face="bold

"),

33 axis. title .y = element _text( vjust =2, size =10 , face= "bold"),

34 axis.text = element _text(size = 10) ,

35 plot. title = element _text(size =12 , face = "bold"),

36 plot. caption = element _text(size =8) ,

37 plot. subtitle = element _text(size = 10))

Lorenz curve

1 # this script draws a lorenz curve to show the inequality in

incidence rates

2

3 # set up part ----

4 # define standard repo for rpackages

5 local ({r <- getOption (" repos ")

6 r["CRAN"] <- "http://cran.r- project .org"

7 options ( repos =r)

8 })

9

10 # function : checks if a package is installed or not

11 # if installed --> loads package

12 # else --> installs package

13

14 pkgTest <- function (x)

15 {

16 if (! require (x, character .only = TRUE))

17 {

18 install . packages (x,dep=TRUE)

19 if(! require (x, character .only = TRUE)) stop(" Package not found ")

20 }

21 }

22

107



23 # import packages using function

24 pkgTest (" tidyverse ")

25 pkgTest ("here")

26 pkgTest ("sf")

27 pkgTest (" lubridate ")

28 pkgTest ("zoo")

29 pkgTest (" scales ")

30 pkgTest (" gglorenz ")

31

32 # set data folder and R folder

33 dataFolder <- here :: here("data")

34 RFolder <- here :: here ()

35 outputFolder <- here :: here(" output ")

36

37 # set up coordinate system projection strings

38 WGS84 <- "+init=epsg :4326 "

39 LV03 <- "+init=epsg :21781 "

40

41 grippe <- read.csv(file = paste0 ( dataFolder , ’/ SpanischeGrippe _

Faelle .csv ’), sep= ’;’, encoding = "UTF -8")%>%

42 filter ( CatDisease == 1) %>% select ( NumbCasesAdjust2 , GEM_ID) %>%

drop_na () %>% group _by(GEM_ID) %>%

43 mutate ( Cases = sum( NumbCasesAdjust2 )) %>% select (GEM_ID , Cases )

%>% unique ()

44

45 gemeinden <- read.csv(file= paste0 ( dataFolder , ’/ SpanischeGrippe _

Gemeinden .csv ’), sep= ’;’, encoding = "UTF -8") %>%

46 rename (GEM_ID=X.U.FEFF.GEM_ID)

47

48 grippe <- left_join(grippe , gemeinden , by= "GEM_ID")

49 grippe <- grippe %>% select (Wohnb , Cases ) %>% rename ( Population =

Wohnb ) %>% ungroup () %>% select (Cases , Population ) %>% mutate (

Inz = Cases / Population * 100000)

50

51 ggplot ( grippe ) +

52 stat_ lorenz (aes(Inz),color ="#7 a0177 ", size =1)+

53 coord _ fixed ()+

54 geom_ abline ( linetype = " dashed ") +

55 theme _ minimal () +

56 theme (axis. title .x= element _text( vjust = -0.5 , size = 10, face="bold

"),

57 axis. title .y = element _text( vjust =2, size =10 , face= "bold"),

58 axis.text = element _text(size = 10) ,

59 plot. title = element _text(size =12 , face = "bold"),

60 plot. subtitle = element _text(size = 10) ,

61 plot. caption = element _text(size = 8))+

62 hrbrthemes :: scale _x_ percent () +

63 hrbrthemes :: scale _y_ percent () +
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64 labs(x = " Cumulative percentage of population ",

65 y = " Cumulative percentage of incidence ",

66 title = " Distribution of Cases Among the Population on a

Municipality Level ",

67 subtitle = " Canton of Berne , July 1918 - December 1919",

68 caption = " Source : Cantonal Arcives Berne ,

69 Author : Corina Leuch ") +

70 annotate _ineq( grippe $ Cases ) +

71 theme ( legend . position = "none", plot. margin =unit(c

(0.5 ,0.5 ,0.5 ,0.5) ,"cm"))

“Flatten the curve”

1 # this script creates a line graph with the 7-day rolling average

on the y axis and the total cases on the x axis. Therefore , it

creates a graph that shows the ’flattening of the curve ’

2 # in the Swiss canton of Berne .

3

4 # set up part ----

5 # define standard repo for rpackages

6 local ({r <- getOption (" repos ")

7 r["CRAN"] <- "http://cran.r- project .org"

8 options ( repos =r)

9 })

10

11 # function : checks if a package is installed or not

12 # if installed --> loads package

13 # else --> installs package

14 pkgTest <- function (x)

15 {

16 if (! require (x, character .only = TRUE))

17 {

18 install . packages (x,dep=TRUE)

19 if(! require (x, character .only = TRUE)) stop(" Package not found ")

20 }

21 }

22

23 # import packages using function

24 pkgTest (" tidyverse ")

25 pkgTest ("here")

26 pkgTest ("sf")

27 pkgTest (" lubridate ")

28 pkgTest ("zoo")

29 pkgTest (" scales ")

30

31

32

33 # set data folder and R folder
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34 dataFolder <- here :: here("data")

35 RFolder <- here :: here ()

36 outputFolder <- here :: here(" output ")

37

38 # set up coordinate system projection strings

39 WGS84 <- "+init=epsg :4326 "

40 LV03 <- "+init=epsg :21781 "

41

42 grippe <- read.csv(file = paste0 ( dataFolder , ’/ SpanischeGrippe _

Faelle .csv ’), sep= ’;’, encoding = "UTF -8")

43

44 # get only the influenza cases and sum them up by district /year

45 grippe <- grippe %>% filter ( CatDisease == 1) %>% select (District ,

NumbCasesAdjust2 , GEM_ID , Year , Month , Day)

46 grippe $ Month <- sprintf ("%02d", as. numeric ( grippe $ Month ))

47 grippe $Day <- sprintf ("%02d", as. numeric ( grippe $Day))

48

49 # if not summarized by district , use following code

50 grippe <- drop_na(grippe , NumbCasesAdjust2 ) %>% select (

NumbCasesAdjust2 , Year , Month , Day) %>%

51 unite (Date , c(Day , Month , Year), sep = ".")

52

53 grippe <- grippe %>% mutate (Date = as.Date( grippe $Date , "%d.%m.%Y")

) %>% select ( NumbCasesAdjust2 , Date) %>% group _by(Date) %>%

54 mutate ( Cases = sum( NumbCasesAdjust2 )) %>% select (Date , Cases ) %>%

unique () %>% ungroup ()# %>%

55 # mutate (Date = format (Date , "%d.%m.%Y"))

56

57 grippe <- grippe %>% arrange (Date) %>%

58 dplyr :: mutate ( cases07 = zoo :: rollmean (Cases , k =7, fill = NA))

%>%

59 dplyr :: mutate ( totalDay = cumsum ( Cases ))

60

61 # need to drop N/A s or it screws up ggplot later

62 grippe _narm <- grippe %>% drop_na ()

63

64 # make the actual graph

65 ggplot (data= grippe _narm) + geom_line(aes(x=totalDay , y= cases07 ),

size =1, color ="#7 a0177 ") +

66 theme _bw () +

67 labs( title = "’Flatten the Curve ’ During the 1918 Influenza

Pandemic ",

68 subtitle = "New cases (7- day avg .) vs. total cases per

Bernese municipality 1918/19",

69 y = "New cases ",

70 x = " Total cases ",

71 caption = " Source : Cantonal Arcives Berne ,

72 Author : Corina Leuch ") +
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73 scale _x_ continuous ( labels = comma ) +

74 theme _ minimal () +

75 theme (axis. title .x= element _text( vjust = -0.5 , size = 10, face="bold

"),

76 axis. title .y = element _text( vjust =2, size =10 , face= "bold"),

77 axis.text = element _text(size = 10) ,

78 plot. title = element _text(size =12 , face = "bold"),

79 plot. caption = element _text(size =8) ,

80 plot. subtitle = element _text(size = 10))

Incidence maps and GIF

1 # this script works as a baseline for various maps showing the

incidence per month . The maps themselves were later created in

2 # QGIS and illustrator using the shapefiles generated in this code.

3

4 # set up part

5 local ({r <- getOption (" repos ")

6 r["CRAN"] <- "http://cran.r- project .org"

7 options ( repos =r)

8 })

9

10 # function : checks if a package is installed or not

11 # if installed --> loads package

12 # else --> installs package

13

14 pkgTest <- function (x)

15 {

16 if (! require (x, character .only = TRUE))

17 {

18 install . packages (x,dep=TRUE)

19 if(! require (x, character .only = TRUE)) stop(" Package not found ")

20 }

21 }

22

23 # import packages using function

24 pkgTest (" tidyverse ")

25 pkgTest ("here")

26 pkgTest ("sf")

27 pkgTest ("tmap")

28 pkgTest (" rgdal ")

29

30

31 # set data folder and R folder

32 dataFolder <- here :: here("data")

33 RFolder <- here :: here ()

34 outputFolder <- here :: here(" output ")

35
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36 # projection strings

37 WGS84 <- "+init=epsg :4326 "

38 LV03 <- "+init=epsg :21781 "

39

40 # prepare the data

41 dat <- read.csv(file = paste0 ( dataFolder , ’/ SpanischeGrippe _ Faelle .

csv ’), sep= ’;’, encoding = "UTF -8")

42 gemeinden <- read.csv(file = paste0 ( dataFolder , ’/ SpanischeGrippe _

Gemeinden .csv ’), sep= ’;’, encoding = "UTF -8") %>% rename (GEM_

ID= X.U.FEFF.GEM_ID) # have to rename the id number to match it

43

44 # clean up dataset ----

45 # join together disease data and district data in order to get the

number of inhabitants . Furthermore : some rows have no Gemeinde

associated with it ( things like

46 # "Im Amt", "im ganzen Bezirk "). These can not be used for this

analysis and are removed

47 dat <- left_join(dat , gemeinden , by = ’GEM_ID ’) %>% drop_na(GEM_ID)

48 dat$ Month <- sprintf ("%02d", as. numeric (dat$ Month )) # convert 1 to

01 in month --> easier sorting

49

50

51 # group by month , calculate incidence per district and month

52 dat_ grouped <- dat %>% filter ( CatDisease == 1) %>% select ( Gemeinde _

Name , NumbCasesAdjust2 , Wohnb , GEM_ID , Year , Month , BfS_GEM_ID ,

E, N) %>% group _by(GEM_ID , Gemeinde _Name , Year , Month , Wohnb ,

BfS_GEM_ID , E, N) %>%

53 summarise ( montlyCases = sum( NumbCasesAdjust2 )) %>% unite (Month , c

(Year , Month ), sep = "_") %>% mutate (Inz = montlyCases / Wohnb *

100000) %>% ungroup ()

54

55 write _csv(dat_grouped , paste0 (RFolder , " Monthly _ Cases .csv"))

56

57 # check for N/A

58 na <- dat_ grouped %>% filter (is.na(GEM_ID)) %>% as_ tibble ()

59

60 geometry <- st_read(dsn = paste0 ( dataFolder , "/Bern_ Punkt _id.shp"))

%>% ‘st_crs <- ‘(LV03)

61

62 dat_ grouped _sf <- left_join(geometry , dat_grouped , "GEM_ID") %>% na

.omit(dat_ grouped _sf$ Month )

63 # st_ write (dat_ grouped _sf , paste0 ( outputFolder ,’/ Monthly _ Incidences

.shp ’) , driver = ’ESRI Shapefile ’) # issue here: doesn ’t write

date; seems to be a known problem

64 months <- read.csv(file= paste0 ( dataFolder , "/ months .csv"), sep = ";

", encoding ="UTF -8") %>% rename ( Month = X.U.FEFF. Month )

65
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66 dat_ grouped _sf <- left_join(dat_ grouped _sf , months , by=" Month ") #

could be used to make title pretty , but doesn ’t work for now

67

68 month _list <- dat_ grouped %>% distinct ( Month ) %>% pull ()

69

70 # this function creates a shapefile with the incidence per

municipality for each month

71 createMonthlyData <- function (month , data=dat_ grouped _sf){

72 monthly <- data %>% filter ( Month == month )

73 st_ write (monthly , paste0 ( outputFolder , "/07_ monthly _ incidence ",

month , ".shp"))

74 }

75

76 lapply ( month _list , createMonthlyData )

77 # use same breaks as in gif

78

79 lapply ( month _list , createStaticMaps , field ="Inz", name="01_ Monthly _

Incidence _")

80

81

82 #### if all the maps are prepared and exported to pngs , this code

creates a nice looking gif

83 files <- list. files (path = enFOlder , pattern = "*.png", full. names =

TRUE)

84 all_im <- image _read( files )

85 scaled <- image _ scale (all_im ,"1000!")

86

87 animation <- image _ animate (all_im , fps = 1, dispose = " previous ")

88 image _ write (animation , paste0 ( outputFolder , "/01_ Cases _ Month _EN.gif

"))

89

90

91 # the code beow creates a shapefile for each wave which can then be

turned into a map using QGIS/Ilu

92

93 # select data of first wave and bring to form we want

94 first _wave <- dat %>%

95 filter ( CatDisease == 1) %>%

96 select ( Gemeinde _Name , NumbCasesAdjust2 , Year , Month , Wohnb ,GEM_ID

) %>%

97 group _by(GEM_ID , Gemeinde _Name , Wohnb , Year , Month ) %>%

98 unite (Month , c(Year , Month ), sep = "_") %>%

99 filter ( Month == "1918_07"| Month == "1918_08") %>% ungroup () %>%

100 group _by(GEM_ID , Wohnb , Gemeinde _Name) %>%

101 summarise ( overallCases = sum( NumbCasesAdjust2 )) %>%

102 mutate (Inz = overallCases / Wohnb * 100000) %>% ungroup ()

103

104 first _wave_sf <- left_join(geometry , first _wave , by="GEM_ID")
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105 st_ write ( first _wave_sf , paste0 ( outputFolder ,’/ Incidences _1st_wave.

shp ’), driver = ’ESRI Shapefile ’) # issue here: doesn ’t write

date; seems to be a known problem

106

107 # select data for second wave and bring to form we want

108 second _wave <- dat %>%

109 filter ( CatDisease == 1) %>%

110 select ( Gemeinde _Name , NumbCasesAdjust2 , Year , Month , Wohnb ,GEM_ID

) %>%

111 group _by(GEM_ID , Gemeinde _Name , Wohnb , Year , Month ) %>%

112 unite (Month , c(Year , Month ), sep = "_") %>%

113 filter ( Month == "1918_10"| Month == "1918_11"| Month == "1918_12"

| Month == "1919_01") %>% ungroup () %>%

114 group _by(GEM_ID , Wohnb , Gemeinde _Name) %>%

115 summarise ( overallCases = sum( NumbCasesAdjust2 )) %>%

116 mutate (Inz = overallCases / Wohnb * 100000) %>% ungroup ()

117

118 second _wave_sf <- left_join(geometry , second _wave , by="GEM_ID")

119 st_ write ( second _wave_sf , paste0 ( outputFolder ,’/ Incidences _2nd_wave.

shp ’), driver = ’ESRI Shapefile ’)

Bivariate choropleth maps

Parts of this script were copied from Timo Grossenbacher’s blog (Link).

1 # this codes draws a nice bivariate choropleth map that can later

be exported as a picture or pdf (for further editing ).

2 # This is only an example showing how to create a bivariate

choropleth map using the variables influenza incidence and

3 # Tb mortality for the first wave. Other maps can be created using

other variables

4

5 # set up part ----

6 # define standard repo for rpackages

7 local ({r <- getOption (" repos ")

8 r["CRAN"] <- "http://cran.r- project .org"

9 options ( repos =r)

10 })

11

12 # function : checks if a package is installed or not

13 # if installed --> loads package

14 # else --> installs package

15

16 pkgTest <- function (x)

17 {

18 if (! require (x, character .only = TRUE))

19 {

20 install . packages (x,dep=TRUE)

21 if(! require (x, character .only = TRUE)) stop(" Package not found ")
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22 }

23 }

24

25 # load packages

26 pkgTest (" tidyverse ")

27 pkgTest ("sf")

28 pkgTest (’cowplot ’)

29 pkgTest (’ggspatial ’)

30

31 # set data folder and R folder

32 dataFolder <- here :: here("data")

33 RFolder <- here :: here ()

34 outputFolder <- here :: here(" output /")

35

36 # read datasets

37 dat <- read.csv(file = paste0 ( dataFolder , ’/ First _Wave_ Final .csv ’))

38 geometry <- st_read(dsn = paste0 ( dataFolder , ’/Bern_ Punkt _id.shp ’))

39 geometry $area <- st_area( geometry )

40 lakes <- st_read(dsn = paste0 ( dataFolder , ’/SEEN_ 1990. shp ’), ) %>%

filter (ID_See == 9040| ID_See == 9060 | ID_See == 9070) %>%

41 st_set_crs (21781)

42

43 dat <- right _join(geometry , dat , "GEM_ID") %>% mutate (pop_dens =

Wohnb .x* 1000000 /area)

44

45 # calculate terziles for the flu

46 quantiles _flu <- dat %>%

47 pull(Inz_ first ) %>%

48 quantile ( probs = seq (0, 1, length .out = 4))

49

50 quantiles _tb <- dat %>%

51 pull( TBratio ) %>%

52 quantile ( probs = seq (0, 1, length .out = 4) , na.rm = T)

53

54 bivariate _ color _ scale <- tibble (

55 "3 - 3" = "#7 B8EAF ", # high influ , high other

56 "2 - 3" = "#7 FC6B1 ",

57 "1 - 3" = "#8 AE1AE ", # low influ , high other

58 "3 - 2" = "# BB9FCE ",

59 "2 - 2" = "#9 EC5D3 ", # medium influ , medium other

60 "1 - 2" = "# C2F0CE ",

61 "3 - 1" = "# E6A3D0 ", # high influ , low other

62 "2 - 1" = "# EAC5DD ",

63 "1 - 1" = "# F3F3F3 " # low influ , low other

64 ) %>%

65 gather (" group ", "fill")

66

67 # assign class according to quintile
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68 flu_tb <- dat %>%

69 mutate (

70 quantiles _flu = cut(

71 Inz_first ,

72 breaks = quantiles _flu ,

73 include . lowest = TRUE

74 ),

75 quantiles _tb = cut(

76 TBratio ,

77 breaks = quantiles _tb ,

78 include . lowest = TRUE

79 ),

80 # by pasting the factors together as numbers we match the

groups defined

81 # in the tibble bivariate _ color _ scale

82 group = paste (

83 as. numeric ( quantiles _flu), "-",

84 as. numeric ( quantiles _tb)

85 )) %>%

86 # we now join the actual hex values per " group "

87 # so each municipality knows its hex value based on the his gini

and avg

88 # income value

89 left_join( bivariate _ color _scale , by = " group ")

90

91 # define map theme

92 theme _map <- function (...) {

93 theme _ minimal () +

94 theme (

95 text = element _text( family = " Ubuntu Regular ", color = "

#22211 d"),

96 # remove all axes

97 axis.line = element _ blank () ,

98 axis.text.x = element _ blank () ,

99 axis.text.y = element _ blank () ,

100 axis. ticks = element _ blank () ,

101 axis. title .x = element _ blank () ,

102 axis. title .y = element _ blank () ,

103 # remove grid

104 panel .grid. major = element _ blank () ,

105 panel .grid. minor = element _ blank () ,

106 plot. margin = unit(c(.5 , .5, .2, .5) , "cm"),

107 panel . border = element _ blank () ,

108 panel . spacing = unit(c(-.1, 0.2 , .2, 0.2) , "cm"),

109 legend . background = element _ blank () ,

110 plot. title = element _text(size = 12, color = " black "),

111 plot. subtitle = element _text(size = 8, color = " black ",

112 margin = margin (b = -0.1,
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113 t = -0.1,

114 l = 0,

115 unit = "cm"),

116 debug = F),

117 plot. caption = element _text(size = 7,

118 hjust = 0,

119 margin = margin (t = 0.2 ,

120 b = 0,

121 unit = "cm"),

122 color = " black "),

123 ...

124 )

125 }

126

127 map <- ggplot (

128 # use the same dataset as before

129 data = flu_tb

130 ) +

131 # color municipalities according to their flu / tb combination

132 geom_sf(data = geometry ,

133 aes(fill = "# c0c0c0 "

134 ),

135 # use thin white stroke for municipalities

136 color = " black ",

137 size = 0.1

138 )+

139 # color municipalities according to their flu / tb combination

140 geom_sf(

141 aes(

142 fill = fill

143 ),

144 # use thin white stroke for municipalities

145 color = " black ",

146 size = 0.1

147 ) +

148 geom_sf(data = lakes ,

149 aes(fill = "#8 CD1F2 "

150 ),

151 # use thin white stroke for municipalities

152 color = " black ",

153 size = 0.1

154 ) +

155 # add titles

156 labs(x = NULL ,

157 y = NULL ,

158 title = " Correlation between access to the railway network

and inflenza inccidence ",

159 subtitle = " Canton of Berne , July/ August 1918",
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160 caption = ’Sources : Swisstopo ( geometry ), state archive of

the Canton of Berne ( influenza data), Schiedt ( railway ) Author :

Corina Leuch ’) +

161

162 # as the sf object municipality _prod_geo has a column with name "

fill" that

163 # contains the literal color as hex code for each municipality ,

we can use

164 # scale _fill_ identity here

165 scale _fill_ identity () +

166 # add the theme

167 theme _map () +

168 annotation _ scale (line_ width = 0.1 , height =unit (0.1 , "cm"), text_

cex = 0.7 ,

169 pad_x=unit (1, "cm"))

170

171

172 bivariate _ color _ scale <- bivariate _ color _ scale %>%

173 separate (group , into = c(" quantiles _flu", "TB_ Terzile "), sep = "

- ") %>%

174 mutate ( quantiles _flu = as. integer ( quantiles _flu),

175 TB_ Terzile = as. integer (TB_ Terzile ))

176

177

178 legend <- ggplot () +

179 geom_tile(

180 data = bivariate _ color _scale ,

181 mapping = aes(

182 x = quantiles _flu ,

183 y = TB_Terzile ,

184 fill = fill)

185 ) +

186 scale _fill_ identity () +

187 labs(x = " Higher flu inccidence ???",

188 y = " Better railway access ???",

189 title = ’Bivariate choropleth map ’) +

190 # make font small enough

191 theme (

192 axis. title = element _text(size = 7, hjust = 0) ,

193 axis.text = element _ blank () ,

194 axis. ticks = element _ blank () ,

195 panel . background = element _ blank () ,

196 plot. title = element _text(size = 10, color = " black ", hjust =

0) ,

197

198 ) +

199 # quadratic tiles

200 coord _ fixed ()
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201

202 # make two separate maps to get legends for placement in final map

203 # build a manual map to get the legend

204 map2 <- ggplot () +

205 geom_sf(data = geometry ,

206 aes(fill = ’# F3F3F3 ’

207 ),

208 # use thin white stroke for municipalities

209 color = " black ",

210 size = 0.1

211 ) +

212 scale _fill_ identity (name= element _ blank () ,labels = c(’no data ’),

213 guide = guide _ legend ( title = " Other symbols ",

214 title . theme = element _

text(size = 10, color = " black "),

215 keyheight = unit (3, units = "mm"),

216 keywidth = unit (6, units = "mm"),

217 label . position = " right ", label . theme =

element _text(size = 7)

218 )) + theme (

219 legend . background = element _rect(fill = NA)

220 )

221

222

223 map3 <- ggplot () + geom_sf(data = lakes ,

224 aes(fill = "#8 CD1F2 "),

225 # use thin white stroke for

municipalities

226 color = " black ",

227 size = 0.1) +

228 scale _fill_ identity (name= element _ blank () ,labels = c(’water ’),

229 guide = guide _ legend ( title = " Other symbols ",

230 title . theme = element _text(size = 10, color =

NA),

231 keyheight = unit (3, units = "mm"),

232 keywidth = unit (6, units = "mm"),

233 label . position = " right ", label . theme =

element _text(size = 7)

234 )) + theme (

235 legend . background = element _rect(fill = NA)

236 )

237

238 legend2 <- get_ legend (map2)

239 legend3 <- get_ legend (map3)

240

241 ggdraw () +

242 draw_plot(map , 0, 0, 1, 1, hjust =0) +

243 draw_plot(legend , 0.7 , 0.6 , 0.2 , 0.2 , hjust = 0, vjust = 0)+
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244 draw_plot(legend2 , 0.68 , 0.45 , 0.2 , 0.2 , hjust = 0, vjust = 0)+

245 draw_plot(legend3 , 0.68 , 0.425 ,0.2 ,.2 , hjust =0, vjust = 0)

Preparation of variables and modelling

Prepare variables

Precipitation

1 # this script rearranges the weather data and joins the actual data

to the staions . Using the output of this script ,

2 # a surface with the precipitation for each wave and the overall

data can be interpolated using ArcGIS .

3

4 local ({r <- getOption (" repos ")

5 r["CRAN"] <- "http://cran.r- project .org"

6 options ( repos =r)

7 })

8

9 # function : checks if a package is installed or not

10 # if installed --> loads package

11 # else --> installs package

12

13 pkgTest <- function (x)

14 {

15 if (! require (x, character .only = TRUE))

16 {

17 install . packages (x,dep=TRUE)

18 if(! require (x, character .only = TRUE)) stop(" Package not found ")

19 }

20 }

21

22 # import packages using function

23 pkgTest (" tidyverse ")

24 pkgTest ("here")

25 pkgTest ("sf")

26 pkgTest ("tmap")

27

28

29 # set data folder and R folder

30 dataFolder <- here :: here("data")

31 RFolder <- here :: here ()

32 outputFolder <- here :: here(" output ")

33

34 # projection strings

35 WGS84 <- "+init=epsg :4326 "
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36 LV03 <- "+init=epsg :21781 "

37

38 # read datasets

39 stationen <- read.csv(file = paste0 ( dataFolder , ’/ stationen .csv ’),

sep= ’;’, encoding = "UTF -8")

40 stationen <- na.omit( stationen )

41

42 wetter <- read.csv(file = paste0 ( dataFolder , ’/ wetter _neu.csv ’),

sep= ’;’, encoding = "UTF -8") %>% as_ tibble ()

43 wetter $ month <- sprintf ("%02d", as. numeric ( wetter $ month )) # convert

1 to 01 in month --> easier sorting

44

45 # entire dataset ----

46 # summarise the amount of rain for every station --> later used for

interpolation , filter out the timespan where we don ’t have

47 # any influenza data

48 wetter _grpd <- wetter %>% unite (month , c(year , month ), sep = "_")

%>% group _by(month ,stn) %>%

49 mutate (rain=sum(as. numeric ( rre150d0 ))) %>% select (stn , month ,

rain) %>% filter ( month != "1918_01") %>%

50 filter ( month != "1918_02") %>% filter ( month != "1918_03")%>%

filter ( month != "1918_04")%>% filter ( month != "1918_05")%>%

51 filter ( month != "1918_06") %>% group _by(stn) %>% mutate (rain =

sum(as. numeric (rain))) %>% select (stn , rain) %>% unique ()

52

53 first _wave <- wetter %>% unite (month , c(year , month ), sep = "_")

%>% group _by(stn) %>%

54 filter ( month == "1918_08"| month == "1918_07") %>%

55 mutate (rain_ first = sum( rre150d0 )) %>% select (stn , rain_ first )

%>% unique () %>% ungroup ()

56

57 second _wave <- wetter %>% unite (month , c(year , month ), sep = "_")

%>% group _by(stn) %>%

58 filter ( month == "1918_10"| month == "1918_11"| month == "1918_12"|

month =="1919_01") %>%

59 mutate (rain_ second = sum( rre150d0 )) %>% select (stn , rain_ second )

%>% unique () %>% ungroup ()

60

61 # now the dataset is in the form that we want it , we can join it to

the stations

62 station _ weather <- left_join(stationen , wetter _grpd , by="stn")

63 station _ weather <- left_join( station _weather , first _wave , by="stn")

64 station _ weather <- left_join( station _weather , second _wave , by="stn"

)

65

66 # convert to sf

67 stations _sf <- st_as_sf( station _weather , coords = c("E", "N"), crs=

LV03)
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68

69 st_ write ( stations _sf , paste0 ( outputFolder ,"/ stations .shp"), driver =

"ESRI Shapefile ")

70 write _csv( station _weather , paste0 ( outputFolder , "/ stations _ weather .

csv"))

71 write _csv( first _wave , paste0 ( outputFolder , "/ stations _ weather _ first

_wave.csv"))

72 write _csv( second _wave , paste0 ( outputFolder , "/ stations _ weather _

second _wave.csv"))

Railway access

1 # this code creates a navigable railway network using the prepared

railway stations .

2 # in order for this code to work , the dataset has to be in the

following form:

3 # nodes : point data with one point at each station

4 # edges : line data , that is cut at every node. Each line data has

to start at a point and end at a point .

5

6 # for the scope of this thesis the data was prepared by hand and

using basic python .

7

8

9 local ({r <- getOption (" repos ")

10 r["CRAN"] <- "http://cran.r- project .org"

11 options ( repos =r)

12 })

13

14 # function : checks if a package is installed or not

15 # if installed --> loads package

16 # else --> installs package

17

18 pkgTest <- function (x)

19 {

20 if (! require (x, character .only = TRUE))

21 {

22 install . packages (x,dep=TRUE)

23 if(! require (x, character .only = TRUE)) stop(" Package not found ")

24 }

25 }

26

27 # import packages using function

28 pkgTest (" tidyverse ")

29 pkgTest ("here")

30 pkgTest ("sf")

31 pkgTest ("tmap")

32 pkgTest (" tidygraph ")

33 pkgTest (" igraph ")
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34 pkgTest (" leaflet ")

35

36

37 # set data folder and R folder

38 dataFolder <- here :: here("data")

39 RFolder <- here :: here ()

40 outputFolder <- here :: here(" output ")

41

42 # projection strings

43 WGS84 <- "+init=epsg :4326 "

44 LV03 <- "+init=epsg :21781 "

45

46

47 # import the edes and nodes

48 nodes <- st_read(dsn= paste0 ( dataFolder , "/ nodes _new.shp")) %>%

select ( -1)

49 edges <- st_read(dsn= paste0 ( dataFolder , "/ edges _new.shp")) %>% st_

set_ geometry (NULL) %>% select (9, 10, 11) # drop geometry - will

be added again later

50

51 node_ coords <- do.call(rbind , st_ geometry ( nodes )) %>%

52 as_ tibble () %>% setNames (c("y","x"))

53

54 nodes <- bind_cols(nodes , node_ coords ) %>% st_set_ geometry (NULL) #

drop geometry , so it doesn ’t get mixed up later (will be added

again )

55

56 # We add the short names and coordinates for "from station " and "to

station "

57 edges <- edges %>%

58 # Match "from stations "

59 inner _join( select (nodes , c(from_y = "y",

60 from_x = "x",

61 from_id = "stop_id")),

62 by = c("From_Node" = "from_id")) %>%

63 # Match "to stations ""

64 inner _join( select (nodes , c(to_y = "y",

65 to_x = "x",

66 to_id = "stop_id")),

67 by = c("To_Node" = ’to_id ’))

68

69 nodes <- nodes %>%

70 st_as_sf( coords = c("y", "x"), crs =21781)

71

72 # transform to wgs84 (for leaflet )

73 nodes <- st_ transform (nodes , WGS84 )

74

75 edges _sf <- edges %>%
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76 mutate (from = paste (from_y, from_x, sep = " ")) %>%

77 mutate (to = paste (to_y, to_x, sep = " ")) %>%

78 mutate ( coords = paste0 (" LINESTRING (",from , ", ", to ,")")) %>%

79 select (-one_of(c("from", "to",

80 "to_y", "to_x",

81 "from_y", "from_x"))) %>%

82 st_as_sf(wkt=" coords ", crs =21781) %>% st_ transform ( WGS84 )

83

84 network <- igraph :: graph _from_data_ frame (as_ tibble ( edges _sf),

vertices = nodes ) %>% as_tbl_ graph ()

85

86

87

88 # One more thing and we are done: remove loops ( edges that start and

end at the same vertex )

89 network <- as_tbl_ graph ( igraph :: simplify (network ,

90 remove . multiple =F,

remove . loops =T))

91

92 # calculate node betweeness centrality

93 network <- network %>% activate ( nodes ) %>%

94 mutate (btw = centrality _ betweenness ( weights = edges _sf$ Shape _Leng ,

directed = FALSE ))

95

96

97 # Plot the leaflet map

98 pal <- colorNumeric (

99 palette = " YlGnBu ",

100 domain = network %>%

101 activate ( nodes ) %>%

102 as_ tibble () %>%

103 select ("btw") %>%

104 pull ())

105

106

107 leaflet () %>%

108 addProviderTiles ("Esri. WorldTopoMap ", group = " Terrain ") %>%

109

110 # Add edges

111 addPolylines (data = network %>%

112 activate ( edges ) %>%

113 as_ tibble () %>%

114 st_as_sf ()) %>%

115 # Add point marker

116 addCircleMarkers (data= network %>%

117 activate ( vertices ) %>%

118 as_ tibble () %>%

119 st_as_sf () ,
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120 color =~pal(btw),

121 stroke = FALSE ,

122 radius = 1.5 ,

123 fillOpacity = 0.8)

124

125 # now we can write the nodes back into a shapefile which we can

then use in the gis

126 nodes _btw <- network %>% activate ( nodes ) %>% as_ tibble () %>% st_as_

sf(crs= WGS84 ) %>% st_ transform (LV03)

127

128 btw_ tibble <- network %>% activate ( nodes ) %>% as_ tibble ()

129

130 st_ write ( nodes _btw , paste0 (RFolder , ’/ nodes _btw.shp ’))

131

132 geometry <- st_read( paste0 ( dataFolder , "/Bern_ Punkt _id.shp"),

encoding ="UTF -8")

133 railways <- st_read( paste0 ( dataFolder , "/ railway _ stations _bern.shp"

))

134

135 gemeinden <- st_join(geometry , railways ) %>% select (Gemeinde , GEM_

ID , btw) %>% st_ transform ( WGS84 )

136 st_ write (gemeinden , paste0 (RFolder , "/ Gemeinden _ Erreichbarkeit .shp")

)

Gather variables for modelling

1 # this script gathers all the variables in one dataset and creates

the correlation plots

2

3 # set up part ----

4 # define standard repo for rpackages

5 local ({r <- getOption (" repos ")

6 r["CRAN"] <- "http://cran.r- project .org"

7 options ( repos =r)

8 })

9

10 # function : checks if a package is installed or not

11 # if installed --> loads package

12 # else --> installs package

13

14 pkgTest <- function (x)

15 {

16 if (! require (x, character .only = TRUE))

17 {

18 install . packages (x,dep=TRUE)

19 if(! require (x, character .only = TRUE)) stop(" Package not found ")

20 }

21 }

22
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23

24 # load packages

25 pkgTest ("MASS")

26 pkgTest (" tidyverse ")

27 pkgTest (" classInt ") # needed for Jenks

28 pkgTest (" graphics ")

29 pkgTest ("sf")

30 pkgTest (" lattice ")

31 pkgTest (" RColorBrewer ")

32

33 # set data folder and R folder

34 dataFolder <- here :: here("data")

35 RFolder <- here :: here ()

36 outputFolder <- here :: here(" output ")

37

38

39 # load oliver ’s helper function

40 source (" helper .r")

41

42 # read data and calculate overall incidence ----

43 grippe <- read_csv( paste0 ( dataFolder , ’/ Monthly _ Cases .csv ’)) %>%

group _by(GEM_ID) %>%

44 mutate ( cases =sum( montlyCases )) %>% dplyr :: select (GEM_ID , Wohnb ,

cases ) %>%

45 unique () %>% mutate (Inz = cases / Wohnb * 100000) %>% na.omit( grippe

)

46

47 gemeinden <- read_ delim ( paste0 ( dataFolder , "/ gemeinden .csv"), delim

=";") %>%

48 select (GEM_ID , Gemeinde _Name , LWS , TB , Haush , Hoehe , Wohnb , E, N)

%>% mutate ( HauGr = Wohnb / Haush ) %>%

49 mutate ( AntLWS = LWS/ Wohnb *100) %>% mutate ( TBratio = TB/TB/ Wohnb *

100) %>% select (-Wohnb , -TB , -Haush , -LWS) %>%

50 na.omit ()

51

52 # calculate first wave incidence ----

53 first <- read_csv( paste0 ( dataFolder , ’/ First _Wave.csv ’)) %>% group _

by(GEM_ID) %>%

54 mutate ( cases =sum( overallCases )) %>% dplyr :: select (GEM_ID , Wohnb ,

cases ) %>%

55 unique () %>% mutate (Inz_ first = cases / Wohnb * 100000) %>% na.omit ()

56

57 second <- read_csv( paste0 ( dataFolder , ’/ Second _Wave.csv ’)) %>%

group _by(GEM_ID) %>%

58 mutate ( cases =sum( overallCases )) %>% dplyr :: select (GEM_ID , Wohnb ,

cases ) %>%

59 unique () %>% mutate (Inz_ second = cases / Wohnb * 100000) %>% na.omit

()
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60

61

62 # join all the datasets together

63 first <- inner _join(first , gemeinden , "GEM_ID")

64 second <- inner _join(second , gemeinden , "GEM_ID")

65 grippe <- inner _join(grippe , gemeinden , ’GEM_ID ’)

66

67 # now I need to calculate quintiles for every variable I want. This

is TB and inccidence for now

68

69 inz_ total _ quint <- grippe %>%

70 pull(Inz) %>%

71 quantile ( probs = seq (0, 1, length .out = 6))

72

73 TB_ total _ quint <- grippe %>%

74 pull( TBratio ) %>%

75 quantile ( probs =seq (0,1, length .out = 6))

76

77 grippe <- grippe %>%

78 mutate (

79 Inz_ Quintiles = cut(

80 Inz ,

81 breaks = inz_ total _quint ,

82 include . lowest = TRUE

83 ),

84 TB_ Quintiles = cut(

85 TBratio ,

86 breaks = TB_ total _quint ,

87 include . lowest = TRUE

88 )) %>%

89 select (GEM_ID , Gemeinde _Name , Inz , Inz_Quintiles , TBratio , TB_

Quintiles , AntLWS , HauGr , Wohnb )

90

91 # now I have to do the same thing for the first and second wave

respectively

92 inz_ first _ quint <- first %>%

93 pull(Inz_ first ) %>%

94 quantile ( probs = seq (0, 1, length .out = 6))

95

96 TB_ first _ quint <- first %>%

97 pull( TBratio ) %>%

98 quantile ( probs =seq (0,1, length .out = 6))

99

100 first <- first %>%

101 mutate (

102 Inz_ Quintiles = cut(

103 Inz_first ,

104 breaks = inz_ first _quint ,
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105 include . lowest = TRUE

106 ),

107 TB_ Quintiles = cut(

108 TBratio ,

109 breaks = TB_ first _quint ,

110 include . lowest = TRUE

111 )) %>%

112 select (GEM_ID , Gemeinde _Name , Inz_first , Inz_Quintiles , TBratio ,

TB_Quintiles , AntLWS , HauGr , Wohnb )

113

114 # second wave

115 inz_ second _ quint <- second %>%

116 pull(Inz_ second ) %>%

117 quantile ( probs = seq (0, 1, length .out = 6))

118

119 TB_ second _ quint <- second %>%

120 pull( TBratio ) %>%

121 quantile ( probs =seq (0,1, length .out = 6))

122

123 second <- second %>%

124 mutate (

125 Inz_ Quintiles = cut(

126 Inz_second ,

127 breaks = inz_ second _quint ,

128 include . lowest = TRUE

129 ),

130 TB_ Quintiles = cut(

131 TBratio ,

132 breaks = TB_ second _quint ,

133 include . lowest = TRUE

134 )) %>%

135 select (GEM_ID , Gemeinde _Name , Inz_second , Inz_Quintiles , TBratio ,

TB_Quintiles , AntLWS , HauGr , Wohnb )

136

137 # some variables are still missing : urbanity , weather and railways

138 # urbaniity : everything that ’s smaller than 15 ’000 in one class

139

140 grippe <- grippe %>% mutate (

141 urbanity = ifelse ( Wohnb < 10000 , 0 ,1)

142 )

143

144 first <- first %>% mutate (

145 urbanity = ifelse ( Wohnb < 10000 , 0 ,1)

146 )

147

148 second <- second %>% mutate (

149 urbanity = ifelse ( Wohnb < 10000 , 0 ,1)

150 )
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151

152 # weather data ----

153 wetter <- read_ delim ( paste0 ( dataFolder , "/rain_ gemeinden .csv"),

delim =";") %>%

154 mutate ( first _wave = prec_1, second _wav = perc_2, Total _rain = prec_

all) %>%

155 select ( first _wave , second _wav , Total _rain , GEM_ID)

156

157 geometry <- st_read(dsn = paste0 ( dataFolder , ’/Bern_ Punkt _id.shp ’))

158

159 grippe <- left_join(grippe , wetter , "GEM_ID") %>% select (- first _

wave , -second _wav)

160 first <- left_join(first , wetter , "GEM_ID") %>% select ( -Total _rain

, -second _wav)

161 second <- left_join(second , wetter , "GEM_ID") %>% select (- Total _

rain , -first _wave)

162

163

164 wetter _ total _ quint <- grippe %>%

165 pull( Total _rain) %>%

166 quantile ( probs = seq (0, 1, length .out = 6))

167

168 grippe <- grippe %>%

169 mutate (

170 Rain_ Quintile = cut(

171 Total _rain ,

172 breaks = wetter _ total _quint ,

173 include . lowest = TRUE

174 ))

175

176 wetter _ first _ quint <- first %>%

177 pull( first _wave) %>%

178 quantile ( probs = seq (0, 1, length .out = 6))

179

180 first <- first %>%

181 mutate (

182 Rain_ Quintile = cut(

183 first _wave ,

184 breaks = wetter _ first _quint ,

185 include . lowest = TRUE

186 ))

187

188 wetter _ second _ quint <- second %>%

189 pull( second _wav) %>%

190 quantile ( probs = seq (0, 1, length .out = 6))

191

192 second <- second %>%

193 mutate (
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194 Rain_ Quintile = cut(

195 second _wav ,

196 breaks = wetter _ second _quint ,

197 include . lowest = TRUE

198 ))

199

200 # finally : the railway stations

201 railway _sf <- st_read( paste0 ( dataFolder , "/ Gemeinden _ Erreichbarkeit

_ final .shp"))

202 railway <- st_set_ geometry ( railway _sf , NULL) %>% mutate (btw =

replace _na(btw , 0))

203

204 freq_ table <- railway _sf %>%

205 dplyr :: count (GEM_ID) %>%

206 group _by(GEM_ID) %>% # now required with changes to

dplyr :: count ()

207 mutate (prop = prop. table (n))

208

209 # some municipalities have two train stations and this needs to be

adressed by looking at the geometry (i.e selecting the relevant

one)

210 # furthermore the ones where GEM_ID is zero are adressed

211 # read new dataset (don ’t have GEM_ID yet) -> this is done by hand

212 railway _new_sf <- st_read( paste0 ( dataFolder , "/ Gemeinden _

Erreichbarkeit _ final .shp")) %>%

213 select (" Gemeinde ", "btw", "GEM_ID")

214

215 freq_ table <- railway _new_sf %>%

216 dplyr :: count (GEM_ID) %>%

217 group _by(GEM_ID) %>% # now required with changes to

dplyr :: count ()

218 mutate (prop = prop. table (n))

219

220 # select only the GEM ID and btw , delete Geometry (not required )

221 railway _ gemeinden <- railway _new_sf %>% st_set_ geometry (NULL) %>%

222 select (btw , GEM_ID)

223

224 grippe _ final <- left_join(grippe , railway _gemeinden , by="GEM_ID")

225 first _ final <- left_join(first , railway _gemeinden , by=’GEM_ID ’)

226 second _ final <- left_join(second , railway _gemeinden , by=’GEM_ID ’)

227

228 # classify btw

229 btw_not_zero <- filter ( grippe _final , btw >0)

230 first _not_zero <- filter ( first _final , btw >0)

231 second _not_zero <- filter ( second _final , btw >0)

232

233

234 classIntervals (btw_not_zero$btw , n=4, style = " jenks ")
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235 classIntervals ( first _not_zero$btw , n=4, style = " jenks ")

236 classIntervals ( second _not_zero$btw , n=4, style = " jenks ")

237

238 grippe _ final <- grippe _ final %>% mutate (btw_ classes =

239 ifelse (btw == 0, 1,

240 ifelse (btw <= 13896 , 2,

241 ifelse (btw <= 30624 , 3,

242 ifelse (btw <= 87852 ,4 ,5))))

)

243

244 first _ final <- first _ final %>% mutate (btw_ classes =

245 ifelse (btw == 0, 1,

246 ifelse (btw <= 15167 ,

2,

247 ifelse (btw <=

42005 , 3,

248 ifelse

(btw <= 87852 ,4 ,5)))))

249 second _ final <- second _ final %>% mutate (btw_ classes =

250 ifelse (btw == 0, 1,

251 ifelse (btw <=

13896 , 2,

252 ifelse (btw

<= 30624 , 3,

253

ifelse (btw <= 69866 ,4 ,5)))))

254

255

256 # pairs plot first wave , absolute

257 # rename the names to make pairs plot more clear

258 first _ pairs <- first _ final %>%

259 rename (

260 TB = TBratio ,

261 rain = first _wave ,

262 agriculture = AntLWS ,

263 railway = btw

264

265 )

266

267 variables <- c("TB", "rain", " agriculture ", ’railway ’, " urbanity ")

268 pairs ( first _ pairs [ variables ], lower . panel = panel .smooth , upper . panel

= panel .cor , diag. panel = panel .hist , cex. labels =2,

269 main = " Correlation between Explanatory Factors ( First Wave)"

)

270

271

272 # pairs Plot second wave , absolute

273 second _ pairs <- second _ final %>%
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274 rename (

275 TB = TBratio ,

276 rain = second _wav ,

277 agriculture = AntLWS ,

278 railway = btw

279 )

280

281 pairs ( second _ pairs [ variables ], lower . panel = panel .smooth , upper .

panel = panel .cor , diag. panel = panel .hist , cex. labels =2,

282 main = " Correlation between Explanatory Factors ( Second Wave)

", sub=’test ’)

283 # write csv

284 write _csv( grippe _levels , path = paste0 ( outputFolder , "/ Grippe _ Final

.csv"))

285 write _csv( first _final , path = paste0 ( outputFolder , "/ First _Wave_

Final .csv"))

286 write _csv( second _final , path = paste0 ( outputFolder , "/ Second _Wave_

Final .csv"))

Modelling

1 # set up part ----

2 # define standard repo for rpackages

3 local ({r <- getOption (" repos ")

4 r["CRAN"] <- "http://cran.r- project .org"

5 options ( repos =r)

6 })

7

8 # function : checks if a package is installed or not

9 # if installed --> loads package

10 # else --> installs package

11

12 pkgTest <- function (x)

13 {

14 if (! require (x, character .only = TRUE))

15 {

16 install . packages (x,dep=TRUE)

17 if(! require (x, character .only = TRUE)) stop(" Package not found ")

18 }

19 }

20

21 # load packages

22 pkgTest (" tidyverse ")

23 pkgTest (" glmulti ")

24 pkgTest (" stargazer ")

25 pkgTest (" xtable ")

26 pkgTest ("arm")

27
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28

29 # set data folder and R folder

30 dataFolder <- here :: here("data")

31 RFolder <- here :: here ()

32 outputFolder <- here :: here(" output /")

33

34 # first wave ----

35 # first have to read data set and add factors

36

37 dat_ first <- read_csv( paste0 ( outputFolder , "/ First _Wave_ Final .csv"

))

38

39 dat_ first <- within (dat_first , {

40 urbanity <- factor (urbanity , levels = 0:1 , labels =c("Dorf", "City

"))

41 GEM_ID <- factor (GEM_ID)

42 Rain_ Quintile <- factor (Rain_Quintile , levels = c(" [90.8 ,104] ", "

(104 ,110]" , " (110 ,125]" , "(125 ,157]", "(157 ,250]" ), labels =

c(1 ,2 ,3 ,4 ,5))

43 Inz_ Quintiles <- factor (Inz_Quintiles , levels = c("[71 ,934]", "

(934 ,2.02e+03]", " (2.02 e+03 ,3.23e+03]", " (3.23 e+03 ,5.62e+03]",

" (5.62 e+03 ,2.95e+04]") , labels = c(1 ,2 ,3 ,4 ,5))

44 TB_ Quintiles <- factor (TB_Quintiles , levels = c("

[0.000956 ,0.0501] ", " (0.0501 ,0.0969] ", " (0.0969 ,0.159] ", "

(0.159 ,0.286] ", " (0.286 ,1.75] ") , labels = c(1 ,2 ,3 ,4 ,5))

45 btw_ classes <- factor (btw_ classes )

46 })

47

48 dat_ first <- dat_ first %>%

49 mutate (Top_Inz = ifelse (Inz_ Quintiles == 5, 1, 0)) %>%

50 mutate (Top_TB = ifelse (TB_ Quintiles == 5, 1, 0)) %>%

51 mutate ( Bottom _TB = ifelse (TB_ Quintiles == 1, 1, 0))

52

53 # need to calculate terzile for TB

54 tb_ terziles <- dat_ first %>%

55 pull( TBratio ) %>%

56 quantile ( probs = seq (0, 1, length .out = 4))

57

58 dat_ first <- dat_ first %>%

59 mutate (

60 TB_ Terziles = cut(

61 TBratio ,

62 breaks = tb_terziles ,

63 include . lowest = TRUE

64 )) %>%

65 mutate (

66 TB_ Terziles = factor (TB_Terziles , labels = c(1 ,2 ,3))

67 )
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68

69 dat_ first <- dat_ first %>%

70 mutate (Top_Inz = factor (Top_Inz , levels =0:1) ) %>%

71 mutate ( Bottom _TB = factor ( Bottom _TB , levels = 0:1)) %>%

72 mutate (Top_TB = factor (Top_TB , levels = 0:1))

73

74 # model selection

75 g1 <- glmulti (Top_Inz~ urbanity + AntLWS +Top_TB+btw_ classes +Rain_

Quintile , data = dat_first ,

76 level = 1,

77 crit = "aic",

78 plotty =TRUE , report = TRUE ,

79 family = " binomial ",

80 method = "h",

81 confsetsize = 250)

82

83 top <- weightable (g1)

84 top <- top[top$aic <= min(top$aic) + 2,]

85 xtable (top)

86

87 # model

88 summary (m1 <- glm(Top_Inz ~ 1 + urbanity + Top_TB + btw_ classes +

Rain_Quintile , data = dat_first , family = ’binomial ’))

89

90

91 # breusch - pagan test

92 lmtest :: bptest (m1)

93

94 # calculate odds ratio and CI

95 odds1 <- exp( cbind (OR = coef(m1), confint (m1)))

96

97 # prepare results for reporting in table

98 m1.OR <- m1 # small workarounds , exponantiate coefficients of model

to generate a second fake model which has the OR

99 m1.OR$ coefficients <- exp(m1$ coefficients )

100 stargazer (m1 , m1.OR , ci=c(F,T), column . labels = c(’coefficients ’, ’

odds ratio ’),

101 single .row = TRUE , star. cutoffs = c (0.05 ,0.01 ,0.001) ,

102 digits = 2, column .sep. width = "0.5 pt", no. space = TRUE ,

103 covariate . labels = c(" urbanityCity ", "Top TB Quintile ", "

railway2 ", " railway3 ", " railway4 ", ’railway5 ’, ’rain2 ’, ’rain3 ’

, ’rain4 ’, ’rain4 ’))

104

105 dat_ first $ residuals <- residuals (m1)

106 dat_ first $ predicted <- predict (m1) # Save the predicted values

107

108 # write model data (used for Moran ’s I in GeoDA )
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109 write .csv(dat_first , file = paste0 ( outputFolder , ’/ FirstWaveModel .

csv ’))

110

111 # do this exact thing for the second wave ----

112 dat_ second <- read_csv( paste0 ( outputFolder , "/ Second _Wave_ Final .

csv"))

113

114 # prepare the data ( assign factors )

115 dat_ second <- within (dat_second , {

116 urbanity <- factor (urbanity , levels = 0:1 , labels =c("Dorf", "City

"))

117 GEM_ID <- factor (GEM_ID)

118 Rain_ Quintile <- factor (Rain_Quintile , levels = c("[228 ,304]","

(304 ,334]","(334 ,374]", "(374 ,410]", " (410 ,661]"), labels = c

(1 ,2 ,3 ,4 ,5))

119 Inz_ Quintiles <- factor (Inz_Quintiles , levels = c( "[284 ,3.63e

+03]", " (3.63 e+03 ,8.09e+03]", " (8.09 e+03 ,1.28e+04]", " (1.28 e

+04 ,1.9e+04]", "(1.9e+04 ,6.47e+04]") , labels = c(1 ,2 ,3 ,4 ,5))

120 TB_ Quintiles <- factor (TB_Quintiles , levels = c("

[0.000956 ,0.0624] ", " (0.0624 ,0.117] ", " (0.117 ,0.189] ", "

(0.189 ,0.337] ", " (0.337 ,2.27] ") , labels = c(1 ,2 ,3 ,4 ,5))

121 btw_ classes <- factor (btw_ classes )

122 })

123

124 dat_ second <- dat_ second %>%

125 mutate (Top_Inz = ifelse (Inz_ Quintiles == 5, 1, 0)) %>%

126 mutate (Top_TB = ifelse (TB_ Quintiles == 5, 1, 0)) %>%

127 mutate ( Bottom _TB = ifelse (TB_ Quintiles == 1, 1, 0))

128

129

130 dat_ second <- dat_ second %>%

131 mutate (Top_Inz = factor (Top_Inz , levels =0:1) ) %>%

132 mutate ( Bottom _TB = factor ( Bottom _TB , levels = 0:1)) %>%

133 mutate (Top_TB = factor (Top_TB , levels = 0:1))

134

135 # second model selection

136 g2 <- glmulti (Top_Inz~ urbanity + AntLWS +Top_TB+btw_ classes +Rain_

Quintile , data = dat_second ,

137 level = 1,

138 crit = "aic",

139 plotty =TRUE , report = TRUE ,

140 family = " binomial ",

141 method = "h",

142 confsetsize = 250)

143

144 # create table with candidate models (R)

145 top2 <- weightable (g2)

146 top2 <- top2[top2$aic <= min(top2$aic) + 2,]
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147

148 # create table of candidate models for latex

149 xtable (top2)

150

151 # actual model

152 summary (m2 <- glm(Top_Inz ~ 1 + urbanity + Top_TB + btw_ classes +

Rain_Quintile , data = dat_second , family = ’binomial ’))

153

154 # breusch pagan test

155 lmtest :: bptest (m2)

156

157 # latex table

158 m2.OR <- m2 # small workarounds , exponantiate coefficients of model

to generate a second fake model which has the OR

159 m2.OR$ coefficients <- exp(m2$ coefficients )

160 stargazer (m2 , m2.OR , ci=c(F,T), column . labels = c(’coefficients ’, ’

odds ratio ’),

161 single .row = TRUE , star. cutoffs = c (0.05 ,0.01 ,0.001) ,

162 digits = 2, column .sep. width = "0.5 pt", no. space = TRUE ,

163 covariate . labels = c(" urbanityCity ", "Top TB inccidence ",

" railway2 ", " railway3 ", " railway4 ", ’railway5 ’, ’rain2 ’, "

rain3 ", " rain4 ", " rain5 "))

164

165 # calculate KI and odds ratio

166 # calculate odds ratio and 95% KI

167 odds2 <- exp( cbind (OR = coef(m2), confint (m2)))

168

169 # save residuals and predicted

170 dat_ second $ residuals <- residuals (m2)

171 dat_ second $ predicted <- predict (m2)

172

173 write .csv(dat_second , file = paste0 ( outputFolder , ’/ SecondWaveModel

.csv ’))
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