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Abstract 

 

With the advent of GPS-tracking technologies, car insurance companies have started to adopted usage-  
and behaviour-based insurance policies, where the insurance fee is calculated based on the safety of the 
customers' driving behaviour. These policies should provide a financial incentive for safer driving 
behaviour. Although many risk models for assessing an individual drivers’ accident risk based on 
driving behaviour and exposure exist, these models so far do not take the underlying geographical 
context of the driven trajectories and driving events into account. This study explores this research gap, 
by taking into account weather, land-use and points of interest (POI) as geographical context variables. 
GPS and driving events data from two study areas in the United Kingdom and Italy were available. Five 
different machine learning models, logistic regression, random forest, XGBoost, feed-forward neural 
network (FFNN), and a recurrent neural network with long short-term memory (LSTM) architecture 
were implemented and compared to perform a binary classification, which separates accident- from 
accident-free drivers. Several features derived from the trajectories, driving events, and geographical 
data were computed. The results show that the inclusion of geographical information can increase the 
relative predictive performance in terms of AUC by up to 10%, with XGBoost generally yielding the 
best performance and making the most use out of the spatial information in Italy. Random forest, logistic 
regression, and FFNN yield the best performance in the UK depending on the feature set and 
performance metric. Land-use contributes most to the performance improvement in Italy, while weather 
contributes most to the performance improvement in the UK, with higher levels of improvement in Italy. 
This study also confirms the results of previous studies that logistic regression is only very slightly 
outperformed by more expensive models if geographical information is not included. Therefore logistic 
regression can still be the preferred model for car accident risk prediction due to its simplicity and 
interpretability if the maximum performance is not the main aim. In terms of real-world application, the 
results outline the potential of including geographical information in the context of usage-based car 
insurance risk modelling, improving its accuracy, which should lead to fairer usage-based insurance 
policies.  

Keywords: Pay-how-you-drive, Usage-based insurance, Machine-learning, Geographical information, 
Land Use, Points of interest (POI), Weather, Driving behaviour, Telematics 
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Chapter 1: Introduction 
 
1.1 Motivation and Background 
 

Every year around 1.35 million people die as the result of a road accident, with it being the leading cause 
of death among children and young adults between 5 and 29 years of age (WHO, 2020). A vast majority 
of these accidents are caused by human error. In both the United States and Switzerland, the percentage 
of car accidents that involve some form of human error lies around 94% (National Highway Traffic 
Safety Administration, 2018.; Swiss Federal Office of Statistics, 2018). Therefore, out of the three main 
factors which are mainly thought to influence road safety: driver, road, and vehicle (Eboli et al., 2017; 
Wang et al., 2015), the most important but also hardest to change is the driver. In order to turn unsafe 
drivers into safer drivers, they first need to be identified. However, according to Nees (2019), 80.3% of 
drivers self-describe their driving ability as above average. Therefore self-estimation does not seem to 
be an optimal method for assessing a driver’s risk level, and further options should be explored.  

The car insurance industry has been trying to classify drivers into different risk categories for years. 
However, traditionally car insurance companies only consider factors such as gender, age, or vehicle 
model for their rate-making (Lemaire et al., 2015), out of which only the vehicle model can be changed 
or influenced by the driver. In recent years with GPS tracking devices becoming more easily and cheaply 
available, insurers have started to adopt usage-based insurance policies (UBI), including Pay As You 
Drive (PAYD) and Pay How You Drive (PHYD): The former taking into account the mileage or 
exposure of a driver; The latter specific driving behaviour such as braking, acceleration or speeding 
(Tselentis et al., 2016). Such usage-based policies can provide a financial incentive for drivers to adopt 
a safer driving style. A similar approach has already partly been tested in the healthcare industry, where 
healthy behaviour is promoted by lower premiums and tracked through biometrics such as smartphone 
step counters (Ryder et al., 2019). The challenge in applying this methodology to the car insurance 
industry lies within converting the raw GPS-Data into meaningful and explainable variables that reflect 
a driver’s risk profile and can assist the driver in adopting a safer driving style. Due to the increased 
amount of information available, these models should also provide a more accurate reflection of a 
driver’s risk level, which in turn increases the fairness of the overall insurance process, since it stops 
cautious drivers from subsidizing the driving of more risky or dangerous drivers, which Tselentis et al. 
(2016) call the cross-subsidies phenomenon. 

Additionally, risky driving behaviour such as frequent and hard acceleration or braking can be associated 
with higher fuel consumption and noise emissions, therefore providing feedback and incentives to the 
driver through PHYD policies with a resulting reduction in risky driving behaviour might also have 
other environmental and societal benefits (Bordoff & Noel, 2008). Furthermore, PHYD policies can 
render variables that are often seen as unfair or discriminatory such as gender redundant by replacing 
them with driving behaviour and exposure variables (Ayuso et al., 2014, 2016; Verbelen et al., 2017). 
For example, the higher accident rate of male drivers compared to female drivers can be largely 
explained by more frequent driving in general, more frequent speeding, and more frequent night driving 
(Ayuso et al., 2016). Through PAYD or PHYD policies, male drivers who exhibit a safe driving style, 
therefore, will not have to face unfair higher premiums anymore. The same is true for young drivers, 
who also often face higher premiums. 

 Although many insurance companies have already started to offer PAYD and PHYD policies, the 
underlying risk models usually don’t take the geographical and environmental context of the driven 
trajectories such as weather conditions or land use into account, although these factors, especially 
weather, have shown to have a significant impact on accident risk (Kantor and Stárek 2014; Winlaw et 
al. 2019). Husnjak et al. (2015) describe the inclusion of environmental factors as the most critical step 
in the further development of UBI.  



2 
 

1.2 Problem Statement and Research Questions 
 

Currently, the development of PAYD and PHYD risk models is still at an early stage. Furthermore, the 
geographical and environmental context of the driven trajectories is usually not being considered. Said 
context is also important for driving behaviour variables. For example, hard braking might be more 
dangerous on the highway than in the city and more dangerous in the rain than on sunny days (Husnjak 
et al., 2015). Including these geographical and environmental variables into a risk model might lead to 
a better assessment of individual driver risk, which, if communicated properly to the driver, can 
ultimately lead to drivers driving more carefully according to their circumstances and therefore higher 
road safety as well as lower and fairer insurance costs. This study aims to build on the existing research 
regarding PHYD risk modelling and improve it through the inclusion of geographical and environmental 
data, more specifically weather, land-use, and points of interest (POI) data. It is to be noted that this 
study does not aim to propose any specific rate-making methods for the car insurance industry, but rather 
focus on building an accurate and explainable classification model. 

In order to achieve this task, several features will be derived from the driving behaviour and geographical 
data available to perform a binary classification to separate accident from accident-free drivers. 

More specifically the following machine-learning techniques will be employed: Logistic regression, 
random forest, XGBoost and two types of neural networks: A simple feed-forward neural network 
(FFNN) and recurrent neural network (RNN). Furthermore, this study will also focus on the 
interpretability of these models, and compare the tradeoff between predictive performance and 
interpretability. 

To achieve these goals, GPS positional data and driving events data for the year 2017 was available 
from two study areas: The greater London area in the United Kingdom, as well as the Tuscany and Rome 
area in Italy. In detail, the following research questions will be explored:  

RQ1: Which driving behaviour variables are most suitable for predicting the accident risk of an 
individual driver, and to what extent can environmental and spatial information such as weather, 
points of interest, and land use improve this prediction? 

Hypothesis 1: According to the literature, car accident risk is influenced by geographical factors, 
including this information should improve the predictive performance of risk models. 

RQ2: Which machine learning techniques perform best for predicting car accident risk, and what 
is the trade-off between interpretability and predictive performance? 

Hypothesis 2: More complicated models (e.g., random forest, XGBoost, neural networks) will perform 
better than the baseline model (logistic regression) but yield worse interpretability in turn.  

RQ3: Are there geographical and cultural differences between London and Italy regarding the 
effects of driving behaviour on accident risk? 

Hypothesis 3: Since the study areas are geographically and culturally different, it is to be expected that 
there will be some differences in model performance and variable importances. 

The rest of this study will be structured as follows: Chapter 2 describes the state of the current research 
regarding PAYD and PHYD modelling, as well as the impact of several geographical factors on car 
accident risk. Chapter 3 provides an overview of the data, which was available and used in this study. 
Chapter 4 discusses the methodology of the data preprocessing, feature extraction and the model 
building. The results are presented in Chapter 5 and subsequently discussed in Chapter 6 where the 
limitations of this study are also shown. Finally, Chapter 7 serves as a conclusion and points out possible 
options for further research in this area.  
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Chapter 2: State of Current Research 
 

2.1 Car Accident Risk Models 
 

In general, car accident risk can either be predicted from a driver-centred or a location-centred 
perspective.  In the first case, we want to know who will have an accident. In the second case, we want 
to know where accidents are most likely to happen. This thesis will mainly focus on the driver's 
perspective. Predicting accident risk from a driver's perspective is a key concept in the car insurance 
industry. Therefore, most existing researches lie in this context. Furthermore, there are several 
approaches to calculating a driver's accident risk (Huang & Meng, 2019). One is to model the expected 
number of claims (e.g., 0, 1, 2, 3), where generalized linear and additive models (GLMs and GAMs) 
such as Poisson regression are often used (Denuit et al. 2007). Another is a binary or, in some cases, 
multi-level classification approach, where the goal is to separate the drivers into different risk categories, 
e.g., those with and without an accident in the observed time period. In this case, GLMs such as Logistic 
regression, tree-based algorithms such as random forest or XGBoost, and several variations of neural 
networks are often applied. This thesis focuses on the latter approach, as in separating accident drivers 
from accident-free drivers. 

 
2.1.1 Exposure Based (Pay As You Drive) 
 

Pay as you drive (PAYD) policies are exposure-based insurance policies. Since each kilometre travelled 
by a driver significantly increases the risk of an accident (Litman 2005; Lemaire,  et al., 2015; Boucher 
et al., 2013), logically, the premium should be higher for drivers who travel longer distances (Denuit et 
al. 2007). Early ideas of implementing mileage into insurance pricing include pay-at-the-pump 
(Sugarman, 1994), where a surcharge is applied for each litre of petrol, and self-reported mileage 
estimates, with occasional verification by the insurance company (Litman, 2011). However, with the 
advent of modern GPS technologies, much more detailed information about the mileage or exposure can 
be obtained. Further, this exposure can be divided temporally such as driving during peak hours or night 
driving, and geographically into urban driving versus rural driving, as demonstrated by Paefgen et al. 
(2013, 2014), Baecke & Bocca (2017), Guillen et al. (2019) and Ayuso et al. (2014, 2019). To 
summarize, exposure can be described as where, when, and how much someone drives (Baecke & 
Bocca, 2017). 

One thing to note is that several researchers have stated that the relationship between mileage and 
accident risk is not always linear, as there seems to be a learning effect for high-mileage drivers. In other 
words, higher mileage results in a lower per-mile crash rate (Janke, 1991; Langford et al., 2008; 
Litmann, 2011; Paefgen et al., 2014; Guillen et al., 2019). Besides high-mileage drivers being more 
skilled, there are other explanations for this observation (Litman, 2005; Bordoff & Noel, 2008): First, 
high-mileage drivers tend to have a higher percentage of motorway driving, which is generally 
considered safer than city driving. Second, new vehicles that are technically safer tend to get driven 
more in comparison to older vehicles. Third, drivers who might be especially at risk, such as very old 
or very young drivers, on average drive smaller distances. This non-linear relationship should be 
considered when building a risk model based on exposure data.   

Some examples of PAYD studies include Ayuso et al. (2019), who used Poisson regression to model 
the number of claims using a sample of young drivers in Spain. They used several traditional explanatory 
variables such as age, gender, and driving experience, as well as some vehicle-specific variables such 
as power and age. Furthermore, they included several exposure-based variables derived from telematics 
data. Besides the total distance travelled, these include the fraction of night driving, driving above the 
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speed limit, and driving in urban areas. The effect of all these telematics variables proved to be 
significant, with improved performance over the traditional variables.  

Baecke & Bocca (2017) used a classification approach, including logistic regression, random forest, and 
neural network. Driver, vehicle, and exposure specific variables were used. Compared to Ayuso et al. 
(2019), a larger number of explanatory variables was considered, specifically, more detailed information 
about the location (road type), time of day, as well as information about past claims. They also 
investigated the amount of driving data necessary to obtain an accurate model and found that three 
months is already sufficient.  

Similarly to Baecke & Bocca (2017), Paefgen et al. (2014) used logistic regression to model the risk of 
accident involvement, although involving a smaller sample size and time window than Baecke & Bocca 
(2017). They found mileage to be the strongest predictor, with a non-linear relationship between mileage 
and accident risk. In an earlier study, Paefgen et al. (2013) also used the same dataset and similar 
explanatory variables, applying logistic regression, neural networks, and decision trees, with neural 
networks yielding the best predictive performance. However, due to the minor performance loss of 
logistic regression compared to neural networks and the vast improvement in interpretability, they 
recommended the usage of logistic regression, which lead to a follow-up study by Paefgen et al. (2014). 
One limitation of the studies by Paefgen et al. (2013, 2014), which they acknowledge, is that they did 
not have access to demographic data about the drivers, therefore making a comparison to traditional 
models impossible. This limitation also applies to this study. They further recommend the inclusion of 
speed limit violations, as well as route familiarity in future studies. Additionally, they point out the 
option of replacing mileage with time-driven as an exposure factor.    

A different approach was proposed by Ayuso et al. (2014, 2016), who used survival analysis to model 
the distance and time to the first accident for different driver groups such as novice and more experienced 
drivers and men and women. Several exposure factors, such as night and urban driving, as well as 
speeding, were used, which correlated with lower distance and time driven to the first accident. 
Furthermore, they found that the difference in accident risk between men and women can largely be 
explained by factors such as more frequent urban driving, higher mileage, and more frequent speeding. 

Verbelen et al. (2018) used generalized additive models (GAM), which help in modelling non-linear 
relationships between the explanatory variables and the target variable. Similarly to Ayuso et al. (2016), 
they found that the inclusion of exposure variables renders the gender variable redundant. In a similar 
fashion, Boucher & Turcotte (2020) used several exposure-based variables, such as mileage, time-driven 
and the number of trips to model claim frequency using GAM and generalized additive models for 
location, scale, and shape (GAMLSS).  

Pesantez-Narvaez et al. (2019) compared logistic regression with XGBoost using several driver, vehicle, 
and exposure-based variables, as well as driving over the speed limit. Although XGBoost performed 
very well on the training set, it suffered from overfitting and an unbalanced dataset, which made the 
increased computational and explanatory efforts compared to logistic regression unviable. However, 
they state that XGBoost might perform better with a higher number of explanatory variables and further 
hyperparameter-tuning. 

 
2.1.2 Behaviour Based (Pay How You Drive) 
 

Pay how you drive (PHYD) is an extension of PAYD, where in addition to the exposure or how much 
someone drives, driving behaviour such as speeding, braking and acceleration is also considered 
(Tselentis et al., 2016). It should be noted that there is no clear definition separating PAYD and PHYD, 
with some authors such as Husnjak et al. (2015) classifying models that use certain exposure variables 
such as location or time of day as PHYD, while others classify them as PAYD (e.g., Tselentis et al., 
2016; Verbelen et al., 2018).  
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 Af Wåhlberg (2000, 2004, 2007, 2008a) has completed a lot of research on traffic safety in general and 
specifically regarding the impact of acceleration and braking behaviour on the accident involvement of 
bus drivers. He discovered a significant correlation between the frequency of acceleration events and 
involvement in accidents. Furthermore, he states that frequent speed changes might be indicators of 
other dangerous driving behaviour such as tailgating or harsh steering actions. Similarly, Stipancic et al. 
(2018) investigated the relationship between braking and acceleration events and crash frequency on a 
location level. They discovered a positive relationship between these driving events and locations with 
high crash frequency. While such driving events can also be used by skilled drivers as evasive 
manoeuvres in response to unexpected circumstances, those situations could still be avoided by having 
a safer and more cautious driving style in the first place (Musicant et al., 2010). From a statistical point 
of view, a high frequency of such events compared to other drivers can therefore be an indicator of 
dangerous driving behaviour (Musicant, et al., 2010).  

Ma et al. (2018) found hard braking, acceleration, and speeding to have a high correlation with accident 
risk. Furthermore, they integrated observations with the traffic flow, as in comparing the drivers' speed 
with other vehicles on the same road segment. As opposed to other studies, Ma et al. (2018) implemented 
their models on a trip level instead of on a driver level, which lead to a largely imbalanced dataset.  

In addition, Huang & Meng (2019) found several prediction models (logistic regression, Poisson 
regression, random forest, XGBoost, support vector machines (SVM), artificial neural network) which 
included braking, speeding, lane change and sudden turning as explanatory variables to have 
significantly better performance compared to the same models using only demographic data such as age 
and gender. As previously suggested by Paefgen et al. (2014), they also implemented variables about 
travel irregularity, calculated through dynamic time warping between each trajectory. Furthermore, they 
pointed out a lack of interpretability in previous studies and implemented a variable binning process 
based on regression trees in order to increase interpretability.   

Bian et al. (2018) further proposed a bagging-based ensemble-learning approach for a multi-level risk-
classification on a driver level, separating drivers into five distinct risk levels, which outperformed 
several benchmark models such as logistic regression and Naive Bayes.  

In addition, Yan et al. (2020) recently used convolutional neural networks (CNN) in combination with 
SVM to perform a multilevel risk classification.  

Table 1 presents a summary of the aforementioned PAYD and PHYD studies and embeds the study at 
hand within their context.  
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Table 1: Summary of previous PAYD and PHYD studies in reverse chronological order 

Study Data Predictor 
Variables 

Models Research Scope 

Boucher & Turcotte (2020) 26998 Vehicles E Generalized additive 
models 

Claim Number 
Prediction 

Yan et al. (2020) 2000 Vehicles E, EV Convolutional Neural 
Network, Support 
Vector Machine 

Multilevel Risk 
Classification 

Ayuso et al. (2019) 25014 Vehicles D, V, E, S Poisson Regression Claim Number 
Prediction 

Guillen et al. (2019) 25014 Vehicles D, E, S Zero Inflated Poisson 
Regression 

Claim Number 
Prediction 

Huang & Meng (2019) 2151 Vehicles D, E, EV, S, V Logistic Regression, 
Poisson Regression, 
Support Vector 
Machine, Random 
Forest, Neural 
Network, XGboost 

Claim Number 
Prediction, Accident vs 
Accident-Free 
Classification 

Pesantez-Narvaez et al. 
(2019) 

2767 Vehicles D, V, E, S Logistic Regression, 
XGBoost 

Accident vs Accident-
Free Classification 

Bian et al. (2018) 198 Vehicles E, EV, S Logistic Regression, 
Bagging, SMO, Naïve 
Bayes, Locally 
Weighted Learning 

Multilevel Risk 
Classification 

Ma et al. (2018) 503 Vehicles D, E, EV, S Logistic Regression, 
Poisson Regression 

Accident Number 
Prediction, Accident vs 
Accident-Free 
Classification 

Verbelen et al. (2018) 33259 Vehicles D, V, E Generalized additive 
model 

Claim Number 
Prediction 

Baecke & Bocca (2017) 

 

6984 Vehicles D, V, E Logistic Regression, 
Random Forest, Neural 
Network 

Accident vs Accident-
Free Classification 

Ayuso et al.  (2016) 8198 Vehicles D, V, E, S Survival Analysis 
(Weibull Regression) 

Distance Travelled to 
First accident 

Ayuso et al. (2014) 15940 Vehicles D, E, S Survival Analysis 
(Weibull Regression) 

Distance and Time 
Travelled to First 
Accident 

Paefgen et al. (2014) 1567 Vehicles E Logistic Regression Accident vs Accident-
Free Classification 

Guo & Fang (2013) 102 Vehicles D, EV Logistic Regression Risk Classification 

Paefgen et al. (2013) 1567 Vehicles E Logistic Regression, 
Neural Network, 
Decision Tree 

Accident vs Accident-
Free Classification 

Af Wåhlberg (2000, 2004, 
2007, 2008) 

Various Bus Drivers EV Correlation Analysis Effect of Acceleration 
and Braking on Bus 
Driver Accident 
Involvement 

This Study 14584 Vehicles E, EV, G Logistic Regression, 
Random Forest, 
XGBoost, Neural 
Networks 

Accident vs Accident-
Free Classification; 
Influence of 
Geographic Features 

 

 

D: Demographic; V: Vehicle Specific; E: Exposure; EV: Driving Events; S: Speeding, G: Geographic 
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2.2 Impact of geographical variables on car accident risk 
 

2.2.1 Weather 
 

There is a vast amount of literature regarding the effect of various weather conditions on car accident 
risk. Bad weather conditions have been shown to increase the frequency of car accidents (Peng et al., 
2018), as well as their severity (Fountas et al., 2020).  The effect of rainfall and its consequences such 
as slippery roads, bad visibility, and hydroplaning has been investigated extensively and linked to higher 
crash frequency numerous times (e.g., Andrey & Yagar, 1993; Caliendo et al., 2007; Chang & Cheng, 
2005; Bergel-Hayat et al., 2013), with a stronger effect after long dry periods, indicating that people 
need some time to adapt their driving behaviour to the new weather conditions (Brijs et al., 2008; 
Eisenberg, 2004). However, in some cases, rainfall has also been linked to lower crash frequencies, 
perhaps due to adapted driving behaviour or different exposure levels (Yannis & Karlaftis, 2010; Bergel-
Hayat et al., 2013). Winter precipitation, which includes snowfall, freezing rain, and ice pellets or sleet, 
has been associated with significantly higher crash risk compared to dry conditions, especially in the 
evenings and bad visibility conditions (Eisenberg & Warner, 2005; Black et al., 2014). Similarly, high 
temperatures have shown a negative effect on driving ability and result in increased crash risk (Wyon et 
al., 1996; Wahlberg, 2006; Maliyshkina et al., 2009; Yannis & Karlaftis; Hayat et al., 2013). Fog has 
also been linked to higher accident frequency as well as severity (Eisenberg & Warner, 2005; Black & 
Mote, 2015). Furthermore, the joint effect of bad weather and bad lighting conditions, e.g., night driving 
in the rain, can further amplify the probability of driving errors, hazardous driving, and the resulting 
accidents (Fountas et al., 2020). Table 2 presents an overview of weather conditions that have been 
linked to increased car accident risk. 

 

Table 2: Summary of studies regarding the impact of certain weather conditions on car accident risk 

Weather Condition Studies Findings 

Rain Caliendo et al. (2007) 
Chang & Chen (2005) 
Yannis & Karlaftis (2011) 
Brijs et al. (2008) 
Bergel-Hayat et al. (2013) 
Andrey & Yagar (1993) 
Eisenberg (2004) 
Fountas et al. (2020) 
Andrey et al. (2003) 

Mostly increased risk, 
especially after long dry 
periods; in some cases 
reduced risk, possibly due to 
adaption of driving 
behaviour 

High Temperatures 

    

Wyon et al. (1996) 
Af Wåhlberg (2008b) 
Malyshkina et al. (2009) 
Yannis & Karlaftis (2011) 

Negative effect on driving 
ability  

Very Low Temperatures Maliyshkina et al. (2008) Increased risk 

Winter Precipitation Black & Mote (2015) 
Eisenberg & Warner (2005) 

Increased risk, especially in 
the evenings 

Fog Abdel-Aty et al. (2011) 
Wu et al. (2018) 

Increased risk and injury 
severity 
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2.2.2 Temporal Information 
 

Car accident risk does not only vary spatially but also temporally.  Several previous PAID and PHYD 
studies have observed higher crash frequencies on peak hours and weekdays probably attributed to 
higher traffic volumes. Furthermore, frequent night driving, especially on weekends and Fridays 
evenings, has been attributed to higher accident probability, due to bad visibility and other factors, such 
as intoxicated driving (Paefgen et al., 2014). 

 
2.2.3 Points of Interest (POI) 
 

Research linking points of interest to car accident risk is sparse, perhaps due to the connection not being 
very intuitive at first glance. However, POI data is easily accessible and has a high capability of 
reflecting human behaviour patterns (N. Wang et al. 2019; Siła-Nowicka et al. 2016). Jia et al. (2018) 
found areas with a high density of banks, hospitals, and residential areas to have a higher crash 
frequency. Kufera et al. (2020) found a newly built casino in Maryland contributes to an increased crash 
frequency in nearby areas, especially on the weekends, which could also be applied to other gambling 
venues. Furthermore, Ng et al. (2002) discovered a significant positive relationship between cinemas, 
hospitals, markets, railway stations, and the number of accidents in Hong Kong. Yao et al. (2018) found 
retail stores and restaurants are linked with a higher frequency of vehicle-pedestrian collisions in 
Shanghai. Similarly, Lee et al. (2015) investigated pedestrian-vehicle collisions in Florida and found 
touristic POIs such as hotels, motels, guest houses, rail and bus stations, ferry terminals, and schools to 
be linked with a higher amount of vehicle-pedestrian collisions.  

 
2.2.4 Land-Use and Land-Cover 
 

Similarly to POIs, research linking land-use with car accident risk is sparse. However, the data is also 
easily available, and different types of land-use can reflect different human behaviour, e.g., different 
land-use types might attract different trip purposes and therefore different driving styles with varying 
levels of risk (Kim & Yamashita 2002). Several studies observed a higher crash frequency in commercial 
and residential land-use areas (Kim & Yamashita, 2002; Loukaitou-Sideris et al., 2007; Lym & Chen, 
2020; Yang & Loo, 2016). More specifically, Yang and Loo (2016) found commercial land-use mixed 
with residential land-use to be linked with the highest crash frequency, whereas Kim & Yamashita 
(2002) observed higher crash frequency in commercial than in residential areas. The mixture of 
commercial and residential land-use has also been shown to increase the frequency of vehicle-pedestrian 
collisions (Y. Wang & Kockelman 2013; Wier et al. 2009). Additionally, rural and agricultural areas 
have shown to have lower crash frequencies than urban areas. (Kim & Yamashita 2002; Alkahtani et 
al., 2019) 

One common problem with classifying the land-use of a point-type location such as a crash location or 
a GPS waypoint lies in its heterogeneity, as its surroundings can have multiple types of land-use. Yang 
& Loo (2016) solved this by applying a buffer radius of 100m around each point and calculating the 
percentage of each land-use type within this buffer. This approach allows for a classification of mixed 
areas, which is a more accurate representation of reality.  

Land-cover and land-use are often confused and used interchangeably. However, while they overlap 
each other spatially, land-use is a socio-economic interpretation of the way humans use the earth's 
surface, whereas land-cover is a direct observation of its physical properties, usually derived from 
satellite imagery (Fischer et al., 2005; Comber 2008).  Less literature on the impact of land-cover and 
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accident risk is available compared to land-use. Some previous studies explore the relationship between 
land-cover and traffic-wildlife collisions, e.g. (Neumann et al., 2012).  

 

2.2.5 Other 
 

Several other environmental and anthropogenic factors that can have an impact on car accidents are 
described in the literature. This includes large events (Gutierrez-Osorio & Pedraza, 2020), air pollution 
(Wan et al., 2020), and even the stock market (Giulietti et al., 2020).  

 
2.3 Prediction Models 
 

The following section presents a brief overview of the most frequently used machine-learning models 
for car accident prediction on a driver level, which will later also be implemented in this study.  The 
focus will be on (binary) classification models, which allow for the separation of accident- and accident-
free drivers. 

 
2.3.1 Logistic Regression 
 

Logistic regression is a generalized linear model, which can be used for classification purposes. Unlike 
linear regression, the optimal parameters are found through maximum likelihood estimation rather than 
through ordinary least squares (OLS) estimation (DiGangi & Hefner, 2013). This, coupled with the 
binary response in logistic regression is the main difference compared to linear regression. The general 
equation can be written as follows: 

𝑃 =  
ଵ

ଵାୣష(ഁబశ∑ ഁ೔೉೔)   
    

Where in the context of this study P represents the probability of a driver having an accident, 𝛽଴ is the 
intercept and 𝛽௜𝑋௜  represent the coefficients and the corresponding features belonging to the driver. 
Using a predefined threshold, usually 0.5, this probability can then be transformed into a classification. 
The advantage of logistic regression lies in its interpretability, where the effect-size and direction of 
each feature can be interpreted separately. In a real-world insurance application, this interpretability is 
in many places required by law (Baecke & Bocca, 2017). Many studies have used Logistic Regression 
to predict accident probability on a driver level, and it can be used as a benchmark for more sophisticated 
and black-box models, such as Huang & Meng (2019), Baecke & Bocca (2017) and Paefgen et al. (2013, 
2014).  In many of the aforementioned studies, logistic regression is only very slightly outperformed by 
more expensive and complicated algorithms such as XGBoost, random forest, and neural networks. 
Combined with its superior interpretability, logistic regression is the selected model in many 
classification scenarios.  

 
2.3.2 Random Forest 
 

Random forest (Breimann, 2001), is a machine-learning algorithm that can be used for classification and 
regression tasks. It consists of an ensemble of decision trees, where for each tree a random subset of the 
predictor variables and a bootstrapped sample of the data is chosen. In the end, the final classification 
consists of the majority classification of all trees. The main idea is to build a strong classifier consisting 
of many weak classifiers. Random forests can improve the tendency of decision trees to overfit (Baecke 
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& Van Den Poel, 2011). Another advantage is their ability to model nonlinear and highly-complex 
relationships, as well as the possibility to account for imbalanced datasets (Strobl et al., 2007). On top 
of that, they are relatively fast to train. In order to improve interpretability, an importance ranking of the 
explanatory variables can be computed in several ways. The most common way to calculate feature 
importance in a random forest is the so-called Gini impurity. In this way, the average decrease in Gini 
impurity is averaged for each feature over all trees. It should be noted that this way of measuring feature 
importance tends to favour continuous features and categorical features with many different values 
(Strobl et al., 2007).  Random forests have been deployed in the context of car accident prediction in 
several PAYD and PHYD models (Huang & Meng, 2019; Baecke & Bocca, 2017).  Furthermore, they 
have been employed in many other research fields, such as bioinformatics (Strobl et al., 2007), air 
pollution modelling (Kamińska, 2018), remote sensing (Liu et al., 2018), etc. 

 
2.3.3 XGBoost 
 

XGBoost is another tree-based method, which builds on gradient tree boosting (T. Chen and Guestrin, 
2016). It is a state-of-the-art algorithm for both classification and regression problems. It has been used 
frequently in various machine-learning competitions and across many research fields and industries. 

For a classification problem, XGBoost builds a series of classification trees, where each tree uses the 
residuals of the previous trees to correct their errors. In order to avoid overfitting, a regularization term 
is applied. For optimal performance, various hyperparameters need to be tuned, which will be described 
in more detail in the methodology section in Chapter 4. From an interpretation standpoint, similarly to 
a random forest, several feature importance measurements can be computed. One of them is so-called 
gain. Gain describes the accuracy improvement a feature yields to the branches it is on. (XGBoost, 
2020). XGboost has been employed in many fields, such as price forecasting (Gumus & Kiran, 2017), 
engineering (Zhang et al. 2018), road accident prediction (Schlögl, 2020; Parsa et al., 2020) and more. 
In the context of car accident risk classification, XGBoost has been employed by Pesantez-Narvaez et 
al. (2019) and Huang & Meng (2019). 

From an implementation point of view, XGBoost features high computational performance. It is 
available in several programming languages, such as Python, R, Julia, Java, C etc. (XGBoost, 2020). 

 
2.3.4 Neural Networks 
 

Neural networks are inspired by biology and try to simulate neurons in the human brain. Several 
different neural network architectures exist, which have been used for a plethora of tasks and across 
many research fields. They are able to produce very high-performance numbers. However, they 
generally require a lot of computing power but feature low interpretability and have a tendency of 
overfitting. Figure 1 provides an example of a simple neural network with one fully connected hidden 
layer.  
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Figure 1: Example of a simple neural network consisting of one fully connected hidden layer. 

 

For this study, besides a simple feed-forward neural network (FFNN), a variation of a long short-term 
memory (LSTM) architecture will be used, which belongs to the family of recurrent neural networks 
(RNN). Recurrent neural networks are a type of neural networks, which are able to process sequence-
based data. LSTM models (Hochreiter and Schmidhuber, 1997) have been used in several applications 
recently, such as flood prediction (Fang et al., 2020), traffic forecasting (Cui et al. 2020; Y. Y. Chen et 
al., 2016), sentiment analysis (Behera et al., 2021; Zhao et al., 2020), marketing analytics (Sarkar & De 
Bruyn, 2021), power grid loss prediction (Tulensalo et al., 2020) and many more. LSTM models are 
able to capture long term dependencies in sequential data. Furthermore, in comparison to traditional 
models, instead of feature engineering and domain knowledge, they rely more on raw data (Sarkar & 
De Bruyn, 2021). In comparison to traditional RNN, LSTMs do not suffer from the vanishing gradient 
problem and are able to memorize information over many timesteps. (Oehmcke et al., 2018). This is 
done through the inclusion of different gating mechanisms (Figure 2), which allows the cell to decide, 
which information to keep and which information to forget.  

 

 

Figure 2: LSTM Cell with input, output and forget gate. Source: Yu et al. (2019). 
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2.4 Research Gaps 
 

Many studies exist regarding various PHYD and PAYD models, using a large variety of exposure and 
behaviour-based driving variables as well as several different machine learning techniques. However, 
there seems to be no consensus as to which combinations of variables and techniques are optimal. 
Simultaneously, the impact of environmental conditions such as weather, POI, and land-use on car 
accident frequency is well documented, especially the relationship between weather and car accidents 
has been studied extensively. However, it has mainly been done from a location-centred or temporal-
centred perspective while not from a driver’s perspective. Therefore, based on the previously reviewed 
literature, the following research gaps can be identified:  

 The first research gap exists in combining exposure and behaviour-based risk modelling on a 
driver level with information about the geographical and environmental context, possibly 
increasing prediction accuracy. This research gap was also identified by Husnjak et al. (2015), 
who pointed out that the inclusion of environmental factors is the most important step forward 
in the development of future PHYD models. A large amount of such environmental data, e.g., 
POI or land-use data, is easily and freely available, pointing out that a vast amount of potentially 
valuable information, which could be obtained with little effort, remains as of today unused by 
traffic accident researchers and the car insurance industry. 

 Secondly, none of the previous studies uses multiple study areas in order to compare cultural 
and geographical differences in the impact of different driving behaviour features on individual 
car accident risk. 

 Lastly, another research gap can be identified in the data aggregation format. The previous 
studies mainly rely on data aggregated over several months. There exists a potential for trip-
based models with finer temporal granularity, where the sequence and order of the driven 
kilometres are taken into account as well. Recurrent neural networks have often been employed 
in sequence-based classification tasks and could potentially also be employed for the car 
accident risk classification problem at hand. 
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Chapter 3: Data 
 
3.1 Telematics Data 
 

The telematics data used in this study is provided by a telematics company in the context of the Track 
& Know research project1. The data was collected by boxes mounted to the vehicles, which collected 
GPS and accelerometer data. The data was stored in a MongoDB and contained the positional data, 
driving events and crashes of around 400000 drivers. All the data was collected during the year 2017 
and in two main geographic areas, greater London and Italy, which will serve as the study areas for this 
thesis, shown in Figure 3. For both study areas, most of the drivers that had a crash (after filtering 
crashes, see section 3.1.3) were sampled as well as a random sample of the crash-free drivers. In total, 
data for 2322 drivers were retrieved from the UK sample, out of which 397 had at least one crash, and 
12262 drivers from the Italy sample, out of which 3925 had at least one crash. Overall the UK study 
area is more homogeneous and mainly urban, focused on the city of London, while the Italy area includes 
both urban areas such as Rome and more rural areas such as Tuscany.  

 

Figure 3: Bounding boxes of the study areas in the United Kingdom and Italy. 

 

3.1.1 Positional Data 
 

Positional data of the year 2017 for each driver was available in the following resolutions: One waypoint 
every 60 seconds for the London dataset and every 2000 meters for the Italy dataset. Table 3 provides 
an overview of the variables included in the positional data. Besides the coordinates, variables such as 
speed and heading are included. Overall the resolution of the London dataset is higher, while the Italy 
dataset contains a larger sample size. The impact of the different resolutions as well as different sample 
sizes will be discussed in the results section (Chapter 5).  Furthermore, the location type variable had no 
value for most observations. There was no information on how it was derived. Therefore the location 
type was not used for the analysis. 

 

 
1 https://trackandknowproject.eu/ 
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Table 3: Overview of positional data 

Variable Description Example 

Id Unique waypoint ID 5c3ccf30ba39528a21458f51 

T&K_VOUCHER_ID Unique ID of the driver 3299 

TIMESTAMP_LOCAL Local time 2017-08-01 05:35:10 

LATITUDE Latitude  in WGS 84 x 106 43942247 

LONGITUDE Longitude in WGS 84 x 106 10952413 

SPEED Instantaneous speed in km/h 44 

HEADING Heading from 0° to 360° 114 

GPS_QUALITY 1 = No navigation 
2 = partial navigation 2d 
3 = full navigation 3d 

3 

STATUS  0 = Starting 
1= Moving 
2 = Stopping 

1 

DELTAPOS  Distance in meters to the previous 
position 

2026 

DELTATIME  Seconds since the previous position 353 

PV  Province ID (Italy only) 69 

LOCATION_TYPE 1 = City/Town 
2 = Hamlet 
3 = Urban 
4 = extra urban 
5 = Highway 
6 = Others 

2 

 

3.1.2 Driving Events 
 

In addition to the positional data, driving events, namely cornering, braking, acceleration, and quick 
lateral movement events were recorded if they exceeded a certain acceleration threshold. The exact 
threshold is not given by the data source. All drivers share the same threshold and labelling framework. 
Table 4 provides an overview of the variables included in the driving events data. Besides the 
coordinates and the variables included in the positional data, several other variables are present such as 
the maximum and average acceleration, as well as the duration of the event. 
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Table 4: Overview of driving events data 

Variable Description Example 

Id Unique event ID 5c5004c9ba39528a213179e0 

T&K_VOUCHER_ID ID of the driver 396781 

TIMESTAMP_LOCAL Local time 2017-12-22 21:03:11 

LATITUDE Latitude  in WGS 84 x 106 51439241 

LONGITUDE Longitude in WGS 84 x 106 275750 

SPEED Instantaneous speed in km/h 34 

HEADING Heading from 0° to 360° 234 

GPS_QUALITY 1 = No navigation 
2 = partial navigation 2d 
3 = full navigation 3d 

3 

STATUS  0 = Starting 
1= Moving 
2 = Stopping 

1 

PV  Province ID (Italy only) 0 

LOCATION_TYPE 1 = City/Town 
2 = Hamlet 
3 = Urban 
4 = extra urban 
5 = Highway 
6 = Others 

2 

EVENT_TYPE A = Acceleration 
B = Braking 
C = Cornering 
Q = Quick lateral movement 

B 

AVG_ACCELERATION Average acceleration of the event in 
9.81 x 10-6 m/s2 

615 

MAX_ACCELERATION Maximum acceleration of the event in 
9.81 x 10-6 m/s2 

1488 

EVENT_ANGLE Angle of the event from 0° to 360° -4 

DURATION Duration of the event in milliseconds 850 

 

Figure 5 shows the frequencies of the driving events. Figure 4 provides an overview of the hourly 
distribution of the driving events.  
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Figure 4: Hourly Count of Driving Events in the UK and Italy. In both study-areas, a clear peak is visible during 17:00 – 
19:00. The peak is stronger in the UK area. Furthermore, there seems to be a second peak during 12:00 – 14:00 for the Italy 
data, which is not apparent in the UK data. 

 

Figure 5 Events per Category in the UK and Italy. Cornering events are by far the most common driving events registered, 
followed by braking events. This distribution seems to be the same for both study-areas 
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3.1.3 Crashes 
 

Similarly to driving events, crashes were recorded using the vehicle black box. Exceeding a certain 
acceleration threshold will trigger a crash alarm, which will then be validated by an automatic system 
or a crash assistance centre. In total, there were 145233 crash alarms, out of which 10118 were manually 
or automatically validated as real crashes. This number was further filtered down since it still included 
unrealistic sequences of many crashes in a row, crashes which had comments saying they are false 
alarms, and several duplicates. The final number of crashes included in this study is 4742, out of which 
423 happened in the UK and 4319 happened in Italy. It is to be noted that there is still the possibility of 
false alarms being included in the final sample. However, due to the preprocessing, the vast majority 
should be real crashes or very close near-miss events.  So even if some of the remaining crashes are still 
false alarms, they are most likely near-miss events due to the high acceleration. Figures 6 and 7 provide 
a general overview of the spatial distribution of the crashes in both study areas. Most crashes in the UK 
area are clustered in and around the city of London. In Italy, the crashes are mostly clustered in and 
around Rome as well as several bigger cities in the Tuscany area such as Florence, Pisa and Lucca. 

 

 

Figure 6: UK crash locations, background map: Google. 
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Figure 7: Italy crash locations, background map: Google. 

3.2 Geographical Data 
 

3.2.1 Weather 
 

To enrich the trajectory data with information about the weather conditions, historical weather data was 
downloaded through the API of worldweatheronline2. It should be noted that this data is historical hourly 
forecast data and not actual measurements. Actual measurements from local weather stations were 
available from meteostat3. Unfortunately, meteostat does not provide precipitation data prior to 2018. 
Therefore, worldweatheronline was chosen as the source for the weather data. On worldweatheronline, 
historical weather data for any given location can be queried, and the spatially nearest record will be 
returned. For this thesis, a grid consisting of 10 * 10 km squares was built for both study areas and the 
weather data API queried using the centroid of each square. For both study areas, the hourly weather 
data for each month was then retrieved from the API and stored in a JSON file. A list of important 
variables contained in the weather data can be found in table 5. As the number of API calls per day is 
limited, a finer grid than 10 *10 km was not used. In total, weather data was retrieved for 274 locations 
in the UK area and 651 locations in the Italy area, as shown in Figures 8 and 9, which provide good 
spatial coverage of both study areas.

 
2 www.worldweatheronline.com 
3 www.meteostat.com 
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Figure 8: UK weather locations, background map: Google. 

 

Figure 9: Italy weather locations, background map: Google. 
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Table 5: Overview of Weather Information Variables. 

Variable Unit 

Temperature  °C 

Humidity % 

Pressure hpa 

Precipitation mm 

Visibility km 

Weather Condition Weather condition (e.g. Sunny, 
Rain) 

Windspeed km/h 

Cloudcover % 

 

Although real weather data would have been preferred, this historical forecast data provides relatively 
high accuracy. The underlying model data used by worldweatheronline is provided by the World 
Meteorological Organization and the NCEP global forecast system (Worldweatheronline, 2020) and is 
also used by several big international companies, such as Qatar Airways, KLM, Coca-Cola and more. 
Furthermore, this forecast data follows the same terminology and classification methods for every 
region, which makes their output comparable, whereas local weather stations might have different 
standards of reporting their measurements and/or missing values. Lastly, since data is aggregated over 
a whole year, minor deviations from the real weather conditions do not matter that much and should 
even out over the course of the whole year. 

 
3.2.2 POI 
 

OpenStreetMap (OSM) POI data for both study areas were downloaded from geofabrik4. The following 
POI categories shown in Table 6 were considered, mostly according to section 2.2.5. This resulted in 
458134 total POI for the Italy area and 924838 total POI for the UK area. Although the Italy area is 
bigger, the London area is more densely populated, which might be an explanation for the higher number 
of POI in the UK area, despite the overall study area being smaller. As OSM is volunteered geographic 
information (VGI), it is possible that the UK OSM community is more active than the Italian counterpart. 

Table 6: Overview of POI data. 

Category Included POI 

Commercial Convenience Stores, Supermarkets, 
Pharmacies, Clothing Stores 

Touristic Attraction, Hostel, Hotel, Motel, Tourist 
Info 

Nightlife Restaurant, Pub, Cinema, Nightclub, 
Café, Bar, Fast Food 

Public Police station, School, Library, 
University, Kindergarten, Parks 

Transportation Bus stops, Railway stations, Taxi Stops 

 
4 www.Geofabrik.de 
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3.2.3 Land-Use 
 

In a similar fashion, OSM land-use data was downloaded from geofabrik. The following land-use 
categories were considered:  

 Industrial 
 Commercial 
 Farm 
 Grassland 
 Park 
 Residential 
 Forest 
 Retail 

 

For simplicity reasons and in order to avoid too many categories, commercial and retail were combined 
into commercial; Farm, Grassland and Park were combined into rural.  
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Chapter 4: Methodology  
 

 

 

Figure 10: Simplified workflow, yellow signifies data, blue signifies computations, green signifies results 
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Figure 10 shows the (simplified) general workflow of this thesis. In the first step, data were cleaned and 
sampled. Then the raw events and positional data were enriched with geographical context data, e.g., 
weather, POI, and land-use data. In the following step, these data were aggregated and meaningful 
predictor variables (features) were computed. This was done on two levels: First on a yearly, aggregated 
level, and second on a per-trip basis. All models were evaluated through 5-fold cross-validation. If 
applicable hyperparameters were tuned using another 5-fold cross-validation on the training folds in 
each iteration, in order to prevent information leak. For logistic regression, a stepwise feature selection 
was performed. Several features and their combinations were tested, as well as different hyperparameter 
settings for the models.  

The following sections will describe the tools used to perform the analysis, the methods for data 
enrichment, choice of feature sets, model building, performance assessment, and give an overview of 
the experimental design, which will be conducted. Furthermore, some summary statistics about the data 
at hand are included in this chapter.  

 
4.1 Tools and Computation Setup 
 

Python 3 has been used for most of the preprocessing and enrichment of the data as well as the 
implementation of the machine learning algorithms. Several libraries were used, as seen in Table 7. 
QGIS was used for parts of exploratory analysis, spatial visualizations, and preprocessing. All the 
calculations were computed on a machine with 4 cores at 3.6G Hz and 16 GB of RAM. The LSTM was 
sped up by the usage of a dedicated GPU.  

Table 7: Most important python libraries. 

Library Usage 

Pymongo Connect to and extract data from 
MongoDB 

Pandas Data handling 

Geopandas Spatial data operations 

Matplotlib Plotting 

Seaborn Plotting 

Numpy Mathematical and matrix 
operations 

Json Handling of JSON files 

Sklearn Machine learning pipeline 

Keras Neural Network 

Tensorflow Neural Network 

 

4.2 Data Preparation 
 

Drivers with very low driving mileage were filtered out. Before the filtering, there was a large amount 
of mostly accident-free drivers that only drove a very small distance during the whole year. There is no 
information available if this is due to their recorder not working properly or if they just rarely use their 
car in general. If these low mileage drivers are included in the sample, the predictive performances of 
the final models increase significantly, since these drivers are very easy to classify as accident-free due 
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to their low mileage. In order to get a better estimate about a drivers’ driving behaviour and more reliable 
models, only drivers with more than 1500km driven for the Italy data set and more than 1000km for the 
UK data set during the given year were considered for the main results. The different cutoff values are 
due to the UK drivers driving shorter distances on average and the already small sample size. 
Furthermore, since the policy of some drivers started in the middle or ended before the end of 2017, 
only drivers with an observation period greater than one month were considered. The total exposure was 
normalized to 365 days in order to get an estimate of the yearly mileage. However, most of the drivers 
had data available over the whole year, as the median observation period was 364 days for Italy and 221 
days for the UK. Furthermore, to account for outliers and the non-linear relationship between mileage 
and accident risk, the natural logarithm was taken of these weighted mileage measurements. However, 
a robustness test was also conducted that the models were run without this filtering strategy to see if the 
relationship between model and feature set performance changes. After filtering the low mileage drivers 
and transforming the mileage to the natural logarithm, the total weighted mileage roughly follows a log-
normal distribution as depicted in Figure 11, which means that the natural logarithm of the data is 
normally distributed. This is consistent with previous findings (Paefgen et al., 2014). After filtering, 
there is still a surplus of accident-free drivers at the lower tail of the distribution, which is to be expected. 

 

Figure 11:  Distributions of yearly distance driven after outlier removal for both study areas (Ln-transformed). 

 

4.3 Definition of the Classification Problem  
 

There was a choice between two prediction strategies in regards to the classification problem: The first 
strategy was to classify the driver into accident and accident-free categories according to their whole 
year of driving behaviour. The other strategy was to take an early part of a year, e.g., January to June, 
for training to predict the possibility of having an accident in the future, e.g., July to December. Both 
approaches have been used by previous studies: Huang & Meng (2019) took the former strategy while 
Baecke & Bocca (2017) took the later strategy.  

The first strategy has the disadvantage of taking data after an accident into account: After an accident, 
a driver’s driving behaviour may change drastically, or a driver can be stopped from driving entirely by 
a severe crash (Mayou et al., 1993). The second strategy, however, does not take seasonal variability 
into account, which is not optimal if we want to use weather-related variables. Furthermore, the sample 
of drivers who had an accident would be further narrowed to only those that had an accident in the 
second half of the year. Concerning the UK sample is already quite small and this study focuses on the 
impact of environmental factors such as weather, the former prediction strategy was chosen. Ideally, 
more than one year of data would be available, so a prediction for the second year could be made based 
on the observations of the first year. To summarize, the classification problem can be described as 
follows: 
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Given a set of features derived from the driving behaviour data over the whole year, a binary 
classification is performed to separate accident from accident-free drivers. And in mathematical terms:  

h : X → y ∈ {0, 1} 

 Where:  

  h: Classification function. 
  X: Input vector consisting of n driving behaviour features {x1…xn}. 
                          y: Binary label: 0 = accident-free, 1 =  accident. 

 

4.4 Data Enrichment 
 

This section describes the technicalities of the enrichment of the trajectory and driving events data with 
geographical context data. Furthermore, the procedure to extract individual trips from the raw data will 
be outlined.  

 

4.4.1 Weather Enrichment 
 

In order to enrich the trajectory data with weather data, the closest virtual weather station (locations 
from where weather data was available, see Figures 5 and 6)  was computed for each waypoint using a 
KDTree (Bentley, 1975). The python library cKDtree5 was used for this task, which facilitates a very 
efficient nearest neighbour search, as this library is implemented in C. Once the nearest station for each 
waypoint was determined, the trajectory data was grouped by the closest weather station and then 
merged with the temporally closest hourly weather data using the timestamp. The same approach was 
used in order to enrich the driving events with the weather data.  

 
4.4.2. POI Enrichment 
 

First, it needs to be noted that due to the low spatial resolution of the trajectory data, only the driving 
events were enriched with POI and land-use data. This is due to the fact that it would be difficult to 
make meaningful aggregates about the whole trajectory when only one waypoint every 2000 meters is 
available and the exact route taken between those two points is unknown. The driving events however 
are not limited by this resolution, since they are recorded whenever they happen. In this way, it is still 
possible to include the POI and land-use information and provide a more detailed context about the 
driving events and get insight into the conditions under which driving events contribute to accident risk. 
Further, it can be argued that if no braking, cornering or acceleration events happen, the driving is stable 
and provides a low accident risk.  

To enrich the whole trajectory, map matching would be necessary, which was not feasible in the scope 
of this study due to the aforementioned low temporal resolution of especially the Italy dataset. Map 
matching with a higher resolution dataset would however certainly be an option for follow-up studies.  

For the enrichment of the driving events data with POI, two types of POI data had to be considered; 
point and polygon data. Due to their different structural natures, they require different approaches. For 
the point data, a KDTree was used again, and the number of POI of each category in a buffer of 200 
meters around each driving event was counted. This buffer of 200 meters was selected according to 

 
5 https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.cKDTree.html 
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previous literature including POI data in transportation research who used values between 100 and 300 
meters, such as Krause and Zhang (2019). However, this buffer can be changed according to the problem 
at hand. 100 meters and 300 meters buffers were tried as well but led to worse predictive performance 
in the final models.  

Similarly, the polygon POI were buffered by 200 meters and a point in polygon join was performed and 
the number of POI of each category around each driving event counted using a Rtree. Rtree is a spatial 
indexing method that allows for very fast spatial searches, such as the aforementioned point-in-polygon 
operations (Guttman, 1984). Rtree is built-in in the spatial join method of the python library geopandas. 
A few POI with the same ID were present in both the point and the polygon POI data. In that case, the 
point data was used. 

 
4.4.3 Land-Use Enrichment 
 

In order to enrich the events with their corresponding land-use, in the first step, the land-use polygons 
were slightly buffered, using a buffer of 50 meters, which was done in order to deal with GPS uncertainty 
and edge cases. Then a point in polygon intersection was performed using a Rtree, in the same fashion 
as the polygon POI join. Due to the buffer points could sometimes intersect with different types of land-
use polygons. This is intended and allows for a classification of mixed land-use areas.   

 

4.4.4 Trip Extraction 
 

In its raw form, the data does not contain information about individual trips. However, having access to 
certain measurements about trips such as distance and time allows for the extraction of more driving 
behaviour features, such as mean trip length, duration etc. Furthermore, for the LSTM, a sequence of 
trips is needed to train the model.  

In order to assign a trip ID to each waypoint, the data first had to be grouped by each driver and sorted 
by the timestamp. Then for each waypoint, the time difference to the previous waypoint was calculated. 
If this time difference exceeds 15 minutes, the waypoint is assigned to a new trip. Previous studies 
mainly use ignition on/off events to determine trips, which were also available in the data at hand, 
however, this method tends to underestimate trip distance and duration, since drivers can turn off the 
ignition, e.g., at a traffic light or for a short toilet break. Therefore setting a waiting time of 15 minutes 
was deemed a more realistic approach.  After a unique trip id was assigned to each waypoint, in a further 
step the data was grouped by the trip ID and for each trip, the following measures were derived: 

 Trip Length (km) 
 Trip Duration (minutes) 
 Trip Start Time 
 Trip End Time 
 Average Speed 
 Number of driving events per category 
 Number of driving events per POI category 
 Number of driving events per land-use category 
 Binary dummy variables for each predominant weather condition (Sunny, rain, snow, overcast). 

Predominant weather condition refers to the weather condition in which the majority of 
kilometres in the trip were driven.  

 Average Precipitation 
 Average Temperature 
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 Binary variable for night driving (if either start or end time at night (23:00 – 7:00)) 
 Binary variable for rush hour driving (if either start or end time in rush hour (7:00 – 9:00 and 

16:00 – 19:00) and weekday not Saturday or Sunday) 
 Binary variable for weekend driving (if weekday is Saturday or Sunday) 

In order to count the driving events per trip, both the events data and the trip data was grouped by the 
driver id. In the next step, each event was joined with the corresponding trip, which had a start time 
earlier than the event timestamp and an end time later than the event timestamp.  

 
4.5 Computation of Features 
 

Two types of feature sets had to be computed: One aggregates all the data in an N * M matrix, where N 
is the number of drivers and M the number of features. This type was used for the logistic regression, 
random forest, XGBoost and the FFNN. For the LSTM, the measures had to be aggregated on a trip 
level that is different from the first type. Since random forest, XGBoost and logistic regression can 
strongly benefit from feature engineering, several feature combinations were explored. The following 
section describes how the features, which were included in the results were derived. It is to be noted that 
a lot of feature engineering was done and several aggregations and feature combinations were tried and 
not all of them made it into the final results. In general, if a more complicated approach did not yield 
better predictive performance, for interpretability reasons the more simplistic one was chosen. 

 

4.5.1 Exposure Features 
 

As a general exposure variable, the log of the total mileage normalized by the observation period in 365 
days was chosen. Furthermore, the total distance was divided into different timeslots and speed intervals, 
described in the following sections. 

 

4.5.2 Speed Features 
 

Several features were derived from the speed.  Note that the average speed between two waypoints was 
used by dividing the distance travelled by the time delta, and not the instantaneous speed. The total 
distance driven was divided into 5 distinct speed intervals: 

 0-30km/h 
 30-60km/h 
 60-90km/h 
 90-130km/h 
 > 130km/h 

This was done similarly to Paefgen et al. (2013, 2014) and Huang & Meng (2019). The first two 
categories should capture city driving, 60-90km/h should capture extra-urban and rural driving and the 
last two categories should capture driving at motorway speeds. For each driver, the fraction of kilometres 
accumulated per category was calculated. The following boxplots show the distributions of driving in 
different speed intervals for both accident and accident-free drivers. According to Figure 12, accident 
drivers seem to drive a larger fraction of their total distance at a slower speed, whereas accident-free 
drivers drive more at highway speeds. This is in line with the expectations according to chapter two, 
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where frequent city driving at lower speeds is associated with higher accident risk. The same is true for 
the UK dataset, as shown in the summary statistics later in section 4.5.8 and Figure 29 in the Appendix. 

 

Figure 12: Boxplots of driving in different speed intervals in Italy. 

 

4.5.3 Time-related Features 
 

According to previous studies, the distance driven was divided into different time slots, which are based 
on the time of day and the day of the week. Especially of interest were driving at night, on the weekends 
and during peak hours, according to Chapter 2. Therefore the following timeslots  were considered: 

 Weekend driving (Saturday, Sunday) 
 Night driving (23:00-7:00) 
 Rush-hour driving during working day peak hours (Monday-Friday, 7:00 – 9:00 and 16:00 – 

19:00) 

For each of these timeslots, the fraction of the total distance accumulated in each slot was computed. 
From the boxplots in Figure 13, accident-free drivers seem to have a slightly higher fraction of weekend 
driving, whereas accident drivers have a higher fraction of night and rush-hour driving.  
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Figure 13: Boxplots of driving in different timeslots in Italy. 

 

4.5.4 Weather-related Features 
 

Weather-related features were computed based on the trajectory data. Originally, some weather-related 
features were also computed based on driving events, however, they did not add any performance 
improvement and were discarded in favour of simplicity.  

In the first step, the total distance driven was aggregated by the weather condition given in the weather 
data. Since the weather conditions included over 25 different categories, many of which very rare, they 
were further condensed into five different categories: Good weather, overcast weather, rain, snow and 
fog. Furthermore, since according to Chapter 2 temperature can influence accident risk, the total distance 
driven was aggregated into different temperature levels: High (>25°C), moderate (0-25°C) and freezing 
(< 0°C).  The following list summarizes the 9 features derived from the weather data:  

 Fraction of km driven in good weather 
 Fraction of km driven in overcast weather 
 Fraction of km driven in rain 
 Fraction of km driven in snow 
 Fraction of km driven in fog 
 Fraction of km driven above 25°C 
 Fraction of km driven at night in the rain 
 Fraction of km driven between 0 and 25°C 
 Fraction of km driven below 0°C 

According to Figure 14, the difference in driving behaviour according to the weather condition between 
accident and accident-free drivers is very small in the Italy dataset.  The difference in the UK dataset is 
also small, which can be derived from the summary statistics in Section 4.5 and Figure 28 in the 
appendix. 
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Figure 14: Boxplots of driving in different weather conditions in Italy. 

 

4.5.6 Land-Use related Features: 
 
 
The driving events were classified according to their type and their corresponding land-use category. 
This results in a large number of possible combinations, and for interpretability reasons, only the most 
common combinations were considered. Furthermore, events with more than 2 different types of land-
use were classified as mixed. Note that the number and type of the combinations differ between the two 
data sets, due to different ratios of each land-use class in the two study areas, e.g., Italy had very few 
commercial land-use parcels. Part of it might be due to different taxonomy. In the end, the following 
example features were derived: 

 Events in forest per 1000km 
 Events in industrial land-use areas per 1000km  
 Events in commercial land-use areas per 1000km 
 Events in residential land-use areas per 1000km 
 Events in rural land-use areas per 1000km 
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 Mixtures of above, e.g., events in rural-residential land-use areas per 1000km 

This was done for braking, acceleration and cornering events. In total, 9 land-use related features were 
derived from the Italy set and 11 from the Uk set, as seen in Tables 8 and 9. 

 

4.5.7 POI related Features 

 

Different ways of aggregating the POI data were tried. Finally, the following 5 features were derived: 

 Fraction of driving events near commercial POI 
 Fraction of driving events near public POI 
 Fraction of driving events near touristic POI 
 Fraction of driving events near nightlife POI  
 Fraction of driving events near transportation POI  

More complicated aggregates such as several combinations of POI and event types were tried as well, 
as well as the average number of POI around each event. However, these aggregation methods did not 
yield better results. Therefore the more simplistic approach listed above was chosen.  

 

4.5.8 Summary of Features 
 

To provide a short overview of the features, Tables 8 and 9 show the sample medians of accident vs. 
accident-free drivers for both study areas for the yearly aggregated data. Note that for interpretation 
purposes the total weighted yearly distance is shown in the tables, while the natural log was used for the 
modelling.  
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Table 8: Summary Statistics Italy (after filtering low mileage drivers). 

Feature Sample Median 

Accident (n = 3892) Accident-Free (n = 4178) 

Total yearly distance (km) 12318 9384 

Fraction of night Driving 0.104 0.0865 

Median of trip distance (km) 8.605 9.044 

Standard deviation of trip distance (km) 13.971          15.479 

Median of trip duration (minutes) 25.075 25.117 

Mean of mean trip speed (km/h) 26.248 28.348 

Fraction of rush hour driving 0.325 0.320 

Fraction of weekend driving 0.280 0.288 

Fraction of driving between 0 and 30 km/h 0.299 0.268 

Fraction of driving between 30 and 60 km/h 0.354 0.324 

Fraction of driving between 60 and 90 km/h 0.168 0.152 

Fraction of driving between 90 and 130 km/h 0.084 0.118 

Fraction of driving above 130km/h 0.001 0.003 

Fraction of driving in rain 0.065 0.066 

Fraction of driving in good weather 0.689 0.687 

Fraction of driving in overcast weather 0.227 0.226 

Fraction of driving in snow 0.0 0.0 

Fraction of driving in fog 0.008 0.007 

Fraction of driving above 25°C 0.122 0.123 

Fraction of driving between 0 and 25°C 0.870 0.868 

Fraction of driving below 0°C 0.003 0.002 

Fraction of driving at night during rain 0.0006 0 

Acceleration events per 1000km 6.702 3.945 

Braking events per 1000km 72.547 50.661 

Cornering events per 1000km 294.350 219.586 

Quick lateral movement events per 1000km 3.081 1.833 

Fraction of driving events near commercial POI 0.081 0.070 

Fraction of driving events near nightlife POI 0.106 0.095 

Fraction of driving events near public POI 0.195 0.171 

Fraction of driving events near touristic POI 0.016 0.015 

Fraction of driving events near transportation POI 0.111 0.103 

Braking events in forest land-use per 1000km 0.473 0.650 

Cornering events in forest land-use per 1000km 6.335 4.403 

Cornering events in mixed forest-residential land-use areas 
per 1000km 

0.721 0.430 

Accelerations in residential land-use areas per 1000km 1.667 0.815 

Braking events in residential land-use areas per 1000km 19.758 12.224 

Cornering events in residential land-use areas per 1000km 56.881 35.088 

Cornering events in mixed rural-residential land-use areas 
per 1000km 

25.923 15.770 

Cornering events in rural land-use areas per 1000km 26.865 19.163 

Braking events in rural land-use areas per 1000km 1.451 1.156 
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Table 9: Summary statistics UK (after filtering low-mileage drivers). 

Feature Sample Median 

Accident (n = 355) Accident-Free (n = 1157) 

Yearly Distance (km) 11738 9812 

Fraction of night Driving 0.120 0.112 

Median of trip distance (km) 10.123 10.894 

Standard deviation of trip distance (km) 15.790         17.456 

Median of trip duration (minutes) 32.483 30.642 

Mean of mean trip speed (km/h) 23.263 25.787 

Fraction of rush hour driving 0.311 0.297 

Fraction of weekend driving 0.283 0.298 

Fraction of driving between 0 and 30 km/h 0.225 0.200 

Fraction of driving between 30 and 60 km/h 0.392 0.348 

Fraction of driving between 60 and 90 km/h 0.162 0.172 

Fraction of driving between 90 and 130 km/h 0.113 0.173 

Fraction of driving above 130km/h 0 0 

Fraction of driving in rain 0.074 0.070 

Fraction of driving in good weather 0.265 0.256 

Fraction of driving in overcast weather 0.610 0.622 

Fraction of driving in snow 0.003 0.002 

Fraction of driving in fog 0.034 0.036 

Fraction of driving above 25°C 0.004 0.0007 

Fraction of driving between 0 and 25°C 0.991 0.993 

Fraction of driving below 0°C 0.001 0.0009 

Acceleration events per 1000km 18.705 10.680 

Braking events per 1000km 86.646 47.895 

Cornering events per 1000km 417.295 259.649 

Quick lateral movement events per 1000km 4.508 2.089 

Fraction of driving events near commercial POI 0.085 0.090 

Fraction of driving events near nightlife POI 0.096 0.094 

Fraction of driving events near public POI 0.158 0.146 

Fraction of driving events near touristic POI 0.0183 0.0186 

Fraction of driving events near transportation POI 0.252 0.234 

Cornering events in residential land-use areas per 1000km  115.592 62.170 

Cornering events in mixed rural-residential land-use areas per 1000km 42.664 21.800 

Braking events in residential land-use areas per 1000km 30.219 14.663 

Cornering events in mixed commercial-residential land-use areas per 1000km 25.550 13.790 

Cornering events in commercial land-use areas per 1000km 12.256 7.700 

Cornering events in rural-forest land-use areas per 1000km 8.082 5.207 

Cornering events in forest land-use areas per 1000km 7.824 5.398 

Acceleration events in residential land-use areas per 1000km 4.712 2.436 

Braking events in mixed rural-residential land-use areas per 1000km 7.846 3.952 

Cornering events in industrial land-use areas per 1000km 2.493 2.0177 

Driving events in mixed land-use per 1000km 116.724 79.266 
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4.6 Model Building 
 
The data was rescaled before training the models. Since the data at hand contains quite a few outliers 
due to large differences in individual driving behaviour and due to the possibility of irregularities in the 
data recording due to malfunctioning recorders, a robust scaling approach was chosen, where the data 
was scaled between the 1st and 3rd quartile. This was implemented using the RobustScaler method from 
the Python library Scikit-Learn.6 For the LSTM the MinMaxScaler method from the same library has 
been used to scale the data between 0 and 1. Since all the yearly aggregated variables were continuous, 
no other preprocessing steps had to be performed. Logistic regression, random forest and XGBoost were 
implemented using their respective implementations in Scikit-Learn. The neural networks were 
implemented using the Keras7 library, which serves as a higher-level library for TensorFlow8.  

 

4.6.1 Logistic Regression 
 

Since logistic regression is unable to handle co-correlated features, in the first step, the optimal number 
of features had to be computed. This was done using a step-wise cross-validation approach, where 
features were step-wise omitted and a 10-fold cross-validation performed to determine the accuracy after 
each step. The optimal number of features was chosen based on the combination, which resulted in the 
highest accuracy value. Note that there are some drawbacks to using this method, as depending on the 
order of the feature omission, the optimal combination might not be found. However, step-wise feature 
selection was used in other studies related to the topic at hand, such as (Paefgen et al., 2014; Baecke & 
Bocca, 2017; Huang & Meng, 2019) and was therefore deemed a suitable approach. This feature 
selection approach was independently performed on each of the 6 feature sets.  

 

4.6.2 Random Forest 
 

For all the different feature sets, a random forest was computed. In order to find the optimal 
hyperparameters, the Scikit-Learn method gridsearchCV was used, which also allows for a parallel 
computation of the grid search procedure. In this way, different combinations of hyperparameters were 
tested in a 5-fold cross-validation. Accuracy was chosen as the scoring parameter. The following Table 
10 gives an overview of the hyperparameter grid that was searched. All other hyperparameters were set 
to their default value in the Scikit-Learn implementation of random forest. Since all features are 
continuous, Gini coefficient was chosen as a feature importance measurement.  

 

Table 10: Random Forest Hyperparameters used during grid search. 

Hyperparameter Searched values 

Number of estimators 100, 300, 400 

Min samples leaf 1, 4, 5 

Min sample split 2, 6, 10 

Max depth 10, 30, 100, None 

 
6 https://scikit-learn.org/ 
7 https://keras.io/ 
8 https://www.tensorflow.org/ 
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4.6.3 XGBoost 
 

In a similar fashion, gridsearchCV was used to determine the optimal parameters for the XGboost 
algorithm. The following parameters in Table 11 were searched. All other parameters were set to their 
default value in the XGBoost implementation for Python. Information gain was chosen as a feature 
importance measurement.  

 

Table 11: XGBoost Hyperparameters used during grid-search. 

Hyperparameter Searched values 

Number of estimators 100, 300, 400  

Learning rate 0.001,  0.01, 0.02 

Colsample bytree 0.7, 0.8 

Max depth 15, 35, None 

Subsample 0.7, 0.9 

 

 

4.6.4 Neural Networks 
 

Two separate neural networks were employed: First, a simple FFNN, which uses the same aggregated 
data as the previous models was built. This FFNN consisted of 2 dense layers with rectified linear unit 
activation functions (RELU) and 256 neurons each. Furthermore, a dropout layer of size 0.4 was added 
after each hidden layer to prevent overfitting. The activation layer included a softmax activation function 
to return a probability between 0 and 1. The batch size was set to 32. Binary cross-entropy was chosen 
as the loss function. The model was trained for 50 epochs in Italy and 25 Epochs in the UK. Figure 15 
provides a scheme of the FFNN which was used. 

 

 

Figure 15: FFNN Architecture 
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Furthermore, in order to try a different aggregation approach, a recurrent neural network (RNN) was 
employed, which consisted of two LSTM layers, which had 64 LSTM cells each. In order to build the 
LSTM network, the trip data had to be converted into a nested array of the shape number of drivers * 
number of trips * features per trip. The features per trip are shown in section 4.4.4. For the LSTM, only 
trips longer than 3 km have been considered. Since the LSTM cell only accepts sequences of the same 
lengths, all the trip sequences of each driver had to be padded to the maximum amount of trips per driver 
in each dataset. This was done by filling the array with zeros, adding empty trips. Subsequently, a 
masking layer was added as the first layer of the neural network, which tells the LSTM cell to ignore 
these empty trips. Furthermore, since LSTM models tend to overfit three dropout layers of size 0.4 were 
added to combat this problem. An activation layer with a softmax function was used again, to return a 
probability between 0 and 1. Binary cross-entropy was chosen as the loss function. The model was 
trained for 50 epochs and the batch size set to 100 in Italy. For the UK, the batch size was set to 45 and 
the number of epochs to 50. 

Since a systematic grid search cross-validation procedure would be too expensive to be used on a deep 
learning model considering the computational resources available, a few different values for neuron 
numbers, batch size, number of epochs and size of dropout layer were tried out manually for both neural 
networks.   

 

4.7 Feature Combinations 
 

Table 12: Overview of the different feature sets 

Feature 
Combination 

Exposure Events Weather POI Land Use 

A X     

B (Baseline) X X    

C X X X   

D X X  X  

E X X   X 

F X X X X X 

 
In order to assess the impact of different variable groups, six different feature combinations were 
considered for the yearly aggregated data, as seen in Table 12. Feature set B serves as a baseline, 
including all the information except the geographical information. C, D and E combine the baseline with 
weather, POI and land-use respectively, finally, feature combination F includes all the information 
available. This was only done for the yearly aggregated features and not for the trip-based features which 
were used in the LSTM model. The LSTM was assessed under two scenarios: With geographical 
information and without, which corresponds to Feature Set B and F in the yearly aggregated scenario.  
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4.8 Performance metrics and model evaluation 
 

 

 Positive 
(Accident) 

Negative 
(Accident-
Free) 

Positive TP FP 

Negative FN TN 

 

Figure 16: Example of a confusion matrix, green entries represent correct classifications. 

 

Given the confusion matrix in Figure 16, the following measures can be derived in order to assess and 
compare model performances: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
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Figure 17: Example ROC curve, the red dotted line represents a random classifier with AUC 0.5, the blue line a Random 
Forest classifier with AUC 0.703. 

In addition, the area under the receiver operating characteristic (ROC) curve (AUC) as depicted in Figure 
17 was used. The ROC  curve shows the ratio of true positive rate versus false-positive rate under varying 
thresholds.  It is a common robust metric used for classification problems. It can be interpreted as the 
probability that a random driver who had a crash during the observation period will have a higher crash 
probability compared to a random driver who did not have a crash during the observation period (Cheng 
et al., 2018). AUC is insensitive to class imbalance, which makes it suitable for imbalanced classification 
problems. 

From the measures presented in this section, AUC, accuracy and F1-Score will be used to assess the 
results of this study. Since F1-Score includes the mean of precision and recall, precision and recall were 
not used for simplicity reasons. Because the final data is slightly imbalanced a stronger focus will be on 
AUC for the interpretation of the results.  

All the models were assessed using 5-fold cross-validation. In order to prevent information leak from 
the validation set, hyperparameter-tuning and performance assessment for XGBoost and the random 
forest was implemented using a nested-cross validation approach. Information leak can cause biased and 
over-optimistic performance measurements if the hyperparameters of a given model are optimized using 
a dataset, which includes the validation data (Cawley & Talbot, 2010). In other words, some information 
about the validation data gets leaked indirectly through the process of hyperparameter-tuning. The 
following nested cross-validation approach was employed: 

1. The data is split into 5 folds. This is the outer cross-validation 
2. Each of the 5 folds is held out as a validation set once.  
3. For each combination, a grid search using 5-fold cross-validation is performed on the 4 training 

folds. This is the inner cross-validation. The models then fit on the training folds using these 
optimal hyperparameters and validated on the validation fold.  

4. Accuracy, AUC and F1-Score of all 5 folds are stored, as well as feature importance 
measurements 

For logistic regression and neural networks, a simple 5-fold cross-validation was implemented as no 
hyperparameter tuning was necessary. Furthermore, since the UK sample was rather small, which 
resulted in large between-folds differences, in order to get more reliable results, the whole procedure 
was repeated 2 times. 

It is acknowledged that the feature selection of logistic regression might also induce some information 
leak and cause the logistic regression results to be slightly over-optimistic, however since we are 
interested in the coefficients for interpretation reasons, performing a separate feature selection in each 
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fold would make it impossible to take the average coefficients, since the selected features would be 
different each time.  

As previously mentioned, all the yearly aggregated models were implemented across all feature sets, 
whereas the LSTM was computed for two scenarios: With geographical information and without. 
Furthermore, the UK dataset was largely imbalanced even after filtering out low mileage drivers, 
therefore in addition to the 355 drivers who had an accident, 380 accident-free drivers were randomly 
sampled. The Italy dataset was relatively balanced after filtering low-mileage drivers (3892 vs. 4178), 
and further balancing was not deemed necessary. 
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Chapter 5: Results 
 
This Chapter presents the results to answer the research questions given at the end of chapter one. Mainly 
the impact of geographical features will be explored and the performance of the different machine-
learning algorithms compared. Furthermore, the impact of the chosen minimum driving distance will be 
briefly illustrated. Note that a stronger focus will be on the Italy dataset results since the much bigger 
dataset returned more consistent and reliable results. Some differences between the UK and Italy 
datasets will be explored throughout the course of this chapter. 

 

5.1 Comparison of Model Performance 
 

Tables 13 and 14 provide a general overview of the model performances across all feature sets in Italy 
and the UK, respectively. As previously mentioned, since the LSTM uses a different aggregation method 
and due to computational reasons, it was only computed for two feature sets, B and F.  

Table 13: Model and Feature Set comparison Italy, the best overall performance is indicated in bold, the best performance 
per feature set is underlined 

Model A B (baseline) C D E F 

AUC 

Logistic 
Regression 0.642 0.647 0.654 0.652 0.665 0.666 

FFNN 0.636 0.649 0.645 0.638 0.697 0.684 

Random 
Forest 0.635 0.650 0.657 0.654 0.699 0.697 

XGBoost 0.634 0.652 0.654 0.653 0.710 0.714 

LSTM - 0.591 - - - 0.618 

Accuracy 

Logistic 
Regression 0.591 0.597 0.601 0.600 0.610 0.612 

FFNN 0.588 0.602 0.601 0.595 0.636 0.628 

Random 
Forest 0.589 0.600 0.605 0.604 0.643 0.632 

XGBoost 0.586 0.600 0.606 0.606 0.648 0.648 

LSTM - 0.553 - - - 0.563 

F1-Score 

Logistic 
Regression 0.603 0.605 0.604 0.607 0.612 0.614 

FFNN 0.590 0.603 0.596 0.600 0.611 0.610 

Random 
Forest 0.602 0.601 0.604 0.607 0.639 0.627 

XGBoost 0.618 0.615 0.611 0.616 0.643 0.643 

LSTM - 0.584 - - - 0.641 
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Table 14: Model and Feature Set comparison UK, the best overall performance is indicated in bold, the best performance 
per feature set is underlined 

Model A B (baseline) C D E F 

AUC 

Logistic 
Regression 0.665 0.689 0.694 0.692 0.680 0.690 

FFNN 0.663 0.699 0.693 0.696 0.664 0.689 

Random 
Forest 0.634 0.670 0.681 0.675 0.676 0.685 

XGBoost 0.640 0.664 0.673 0.667 0.660 0.675 

LSTM - 0.637 - - - 0.663 

Accuracy 

Logistic 
Regression 0.618 0.643 0.638 0.627 0.628 0.632 

FFNN 0.599 0.642 0.626 0.631 0.609 0.638 

Random 
Forest 0.602 0.608 0.627 0.608 0.628 0.634 

XGBoost 0.596 0.604 0.614 0.617 0.606 0.614 

LSTM - 0.569 - - - 0.582 

F1-Score 

Logistic 
Regression 0.619 0.624 0.626 0.608 0.601 0.613 

FFNN 0.612 0.659 0.636 0.646 0.623 0.639 

Random 
Forest 0.606 0.607 0.620 0.606 0.629 0.639 

XGBoost 0.592 0.603 0.612 0.618 0.604 0.610 

LSTM - 0.561 - - - 0.545 

       

Since the scores are rather close, in order to get an overview of the variability, Figure 18 provides a 
boxplot of the AUC values over all folds for the logistic regression, random forest, XGBoost and FFNN. 
For the Italy data, Feature Set F outperforms the baseline across all performance metrics and models. 
Land-use seems to return higher performance improvements than weather and POI, which only provide 
minor or no improvement. In Italy, XGBoost returns the best performance across all metrics for feature 
set F, followed by random forest and the FFNN. In the baseline feature set B, XGBoost also performs 
best in terms of AUC and F1-Score, while the FFNN performs best in terms of accuracy, though the 
scores are very close. This small performance gap between models is consistent with other studies that 
also report between-model performance differences within 1-2 %, such as (Baecke & Bocca 2017; 
Huang & Meng 2019; Paefgen et al., 2013). The inclusion of driving events (Feature set B vs. A) returns 
higher performance across almost all metrics and models, with a more substantial effect in the UK 
dataset. Note that the AUC value is generally higher than the other metrics, attributed to the slight class-
imbalance present in the dataset.  

Interestingly, in the UK case, logistic regression slightly outperforms other algorithms in some feature 
sets, yielding the overall highest accuracy value for Feature Set B. A possible explanation for this 
observation is that random forest, XGBoost and FFNN are overfitting due to the small sample size. From 



42 
 

the boxplots, it is apparent that the Italy results are more stable with fewer fluctuations and outliers over 
all folds. Especially the FFNN is prone to large between-fold differences. In general, as seen in Table 
13 and 14, the LSTM performs worse than the yearly aggregated models across all performance metrics 
except for F1-Score in the case of Feature Set F and the Italy data, which might indicate that it is not the 
most optimal data aggregation or modelling approach for the data at hand.  

 

 

Figure 18: Boxplots of AUC values over all folds and feature sets, for Italy (top) and UK (bottom). 
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5.2 Model Interpretation 
 

This section will provide an overview and interpretation of the logistic regression coefficients and the 
feature importances of random forest and XGBoost. Furthermore, findings will be compared to the 
literature to assess if the proposed models are robust and realistic.  

5.2.1 Logistic Regression Coefficients 
 

Table 15: Logistic Regression coefficients (Feature Set B, Italy) 

Variable Exponentiated Coefficient 

Distance log 1.674 

Fraction of driving between 0 and 30km/h 1.271 

Cornering events per 1000km 1.184 

Fraction of driving at night 1.163 

Median trip duration 1.146 

Fraction of driving between 60 and 90 km/h 1.144 

Median trip distance 0.848 

Fraction of driving between 90 and 130km/h 0.786 

 

  



44 
 

Table 16: Logistic Regression coefficients (Feature Set F, Italy) Gray shaded variables represent baseline-variables. 

Variable Exponentiated Coefficient 

Distance log 1.660 

Braking events per 1000km 1.264 

Median trip duration 1.201 

Cornering events per 1000km 1.143 

Fraction of driving at night 1.121 

Fraction of driving between 60 and 90km/h 1.079 

Fraction of driving between 0 and 30km/h 1.070 

Fraction of driving events near commercial POI 1.054 

Quick lateral movement events per 1000km 1.048 

Acceleration events per 1000km 1.033 

Percentage of driving events near transportation poi 0.962 

Fraction of driving above 25°C 0.955 

Braking events in forest land-use areas per 1000km 0.952 

Fraction of driving in fog 0.939 

Cornering events in rural land-use areas per 1000km 0.930 

Fraction of driving in rain 0.926 

Mean trip speed 0.920 

Standard deviation of trip distance 0.901 

Braking events in residential land-use areas per 
1000km 

0.888 

Median trip distance 0.868 

Fraction of driving between 90 and 130km/h 0.835 
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Table 17 Logistic Regression coefficients of Feature Set B, UK 

Variable Exponentiated Coefficient 

Median trip duration 1.735 

Fraction of driving between 30 and 60km/h 1.36 

Fraction of driving between 60 and 90km/h 1.284 

Fraction of driving during rush-hour 1.176 

Quick lateral movement events per 1000km 1.164 

Braking events per 1000km 1.130 

Acceleration events per 1000km 1.105 

Distance log 1.07 

Fraction of driving above 130km/h 1.06 

Fraction of driving between 90 and 130km/h 0.929 

Fraction of driving on the weekend 0.858 

Standard deviation of trip distance 

Mean of trip speed 

Median trip distance 

Fraction of driving between 0 and 30km/h 

0.763 

0.747 

0.707 

0.700 
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Table 18:  Logistic Regression coefficients Feature Set F, UK, Gray shaded variables represent baseline-variables. 

Variable Exponentiated 
Coefficient 

Median trip duration 1.726 

Fraction of driving between 30 and 60km/h 1.320 

Fraction of driving in rain 1.301 

Acceleration events per 1000km 1.274 

Percentage events near public POI 1.255 

Fraction of driving between 30 and 60km/h 1.254 

Braking events per 1000km 1.216 

Cornering events in forest land-use areas per 1000km 1.173 

Fraction of driving during rush hour 1.163 

Quick lateral movement events per 1000km 1.162 

Braking events in residential land-use areas per 1000km 1.155 

Percentage of driving events near nightlife poi 1.138 

Cornering events in mixed residential-commercial land-use areas per 1000km 1.122 

Fraction of driving above 25°C 1.115 

Fraction of driving at night 1.104 

Cornering events in rural land-use areas per 1000km 1.080 

Distance log 1.076 

Fraction of driving above 130 km/h 1.068 

Fraction of driving in snow 1.050 

Cornering in commercial areas per 1000km 1.043 

Percentage of driving events near transportation POI 0.956 

Acceleration events in residential land-use areas per 1000km 0.927 

Braking events in mixed rural-residential land-use areas per 1000km 0.890 

Fraction of driving on the weekend 0.873 

Fraction of driving in fog 0.864 

Fraction of driving between 90 and 130km/h 0.856 

Fraction of driving in overcast weather 0.849 

Fraction of driving between 0 and 30km/h 0.798 

Standard deviation of trip distance 0.793 

Cornering events per 1000km 0.787 

Median of trip distance 0.721 

Mean of trip speed 0.689 

Percentage of driving events near commercial POI 0.592 
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Tables 16, 17, 18 and 19 show the average coefficients of Feature Set B and F over all folds and for both 
study areas, derived from the logistic regression. For better interpretation, the coefficients were 
exponentiated. Since a feature selection was performed previously, not all original features of the 
corresponding feature sets were used. From an interpretation perspective, a coefficient greater than 1 
indicates an increased risk with an increase in the feature, while a coefficient lower than 1 indicates that 
a decrease of the corresponding feature also decreases the accident risk. In detail, the coefficients 
describe the multiplicative change in odds of being an accident driver over being an accident-free driver 
for each unit increase in the corresponding feature, assuming that all other features are being kept 
constant. 

The coefficients for the Italy dataset are mostly in line with the expectations. The natural log of the total 
mileage (distance log) seems to be the strongest coefficient in the baseline (Feature Set B). A few 
coefficients are close to 1, pointing out that they only have very little impact on average. Several 
coefficients related to city driving, such as the fraction of driving between 0-30 and 60-90 km/h seem to 
increase accident risk, as well as most of the driving events, which is also in line with the expectations. 
Furthermore, driving at higher speeds between 90 and 130km/h lowers the accident risk in both study 
areas. Interestingly, the fraction of driving in rain and fog seems to lower the accident risk in the Italian 
area. One possible explanation is that drivers who frequently drive in suboptimal conditions get used to 
driving in these conditions and adapt their driving style, which is also described in Chapter 2. Some 
studies found lower accident risk after prolonged periods of rain due to the aforementioned adapted 
driving behaviour.  

For the UK data, however, driving in the rain seems to increase accident risk as expected. There are 
some more difficult to explain coefficients for the UK, such as driving between 0 and 30km/h seems to 
lower accident risk.  

In both study areas, a higher median of trip duration results in increased accident risk, whereas a higher 
median of trip distance results in decreased accident risk. This points to the fact that driving long 
distances at higher speeds (highway trips) is safer than slower trips, e.g., city trips that take a longer 
time. Driver fatigue might also be a reason why trips with longer duration resulted in increased accident 
risk, as well as the increased risk resulting from driving at night. Also, the larger standard deviation of 
trip distance seems to lower accident risk, which is counterintuitive to the assumption that higher trip 
irregularity should result in higher risk. However, if a driver generally has longer distance trips that 
indicate safe highway driving, the standard deviation of the trip distance should also be higher. Therefore 
the standard deviation of trip distance might not be an optimal feature to measure travel irregularity. 

For the temporal features, only night driving is included in the selected features of the Italy dataset, 
while night, weekend, and rush-hour driving are included for Feature Set F in the UK case. They all 
behave according to expectations, with driving during rush-hour resulting in increased risk, as well as 
driving at night, as previously stated. Weekend driving results in decreased risk in the UK case, possibly 
due to lower traffic volume.  

In terms of temperature, driving in high temperatures above 25°C seems to lower accident risk in Italy, 
whereas it increases accident risk for the UK. The first interpretation of this observation might be that 
drivers in the UK are not used to high temperatures, which has a stronger effect on their ability to focus 
on driving. 

Overall, no significant irregularities can be found in the logistic regression coefficients. Their directions 
are mostly in line with previous traffic accident research, which supports the quality of the data and the 
feature calculation process. Some coefficients that are not in line with previous research include driving 
between 0-30km/h, cornering events per 1000km and driving in fog for the UK, which all seem to 
decrease accident risk, despite the literature suggesting otherwise. 
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5.2.2 Feature Importances of Random Forest and XGBoost 
 

In addition to the logistic regression coefficients, Figures 19 and 20 show the feature importances of the 
20 most important features of feature set F and B for random forest and XGBoost, respectively, for the 
Italy dataset, coloured according to their category. Note that the categories Land-Use and POI are also 
based on the driving events. The driving events category (teal) only refers to the driving events without 
the inclusion of geographical information. All the importances represent average values over all folds. 
From the geographical features, braking events in forest areas seems to be an important predictor in 
both XGBoost and random forest, ranking 4 and 1, respectively. This might be because accident drivers 
had more driving events across almost all driving event categories, except for braking in the forest (see 
summary statistics in section 4.5.8). Further important features include the fraction of driving between 
0-30km/h, which is the most important feature in the XGBoost model and ranked 3 and 2 in the random 
forest model. In addition, the natural logarithm of the total distance (weighted distance) is always 
among the most important features. Weighted distance and 0-30km/h being the most important features 
of set B is congruent with the results of logistic regression as seen in Table 15. 

The mean trip speed is a further important feature, which probably helps to distinguish between city and 
highway driving. Some weather-related variables are also deemed important: The percentage of driving 
in high temperatures, good weather, and at night in the rain for XGBoost and the percentage of km 
driven in rain for the random forest model. No POI related features are found within the 20 most 
important features, which is also reflected in the fact that the inclusion of POI-related variables only 
yields minor performance improvements (see section 5.3).  

In the UK case, driving events are more important than the total distance driven (Figure 21 and Figure 
22), which can be attributed to a smaller difference in total mileage between accident and accident-free 
drivers in the UK dataset. Several land-use related features are among the most important features in the 
UK case, such as braking events in residential and mixed rural-residential areas. In addition, some 
weather-related features such as driving in the rain, driving at night in the rain, and driving in 
temperatures above 25°C. A single POI related feature can be found for both XGBoost and random 
forest in the fraction of driving events near commercial POI.  

In general, logistic regression coefficients and feature importances of XGBoost and random forests tell 
a similar story. Furthermore, most of the selected features for logistic regression can be found in the 
most important features of random forest or XGBoost, further underlining their predictive power and 
overall importance. 
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Figure 19: Italy Random Forest Feature Importance Feature Set B (left) and Feature Set F (right) (averaged over all folds). 

 

Figure 20: Italy  XGBoost Feature Importance for Feature Set B (left) and Feature Set F (right) (averaged over all folds). 
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Figure 21: UK Random Forest Feature Importance for Feature Set B (left) and Feature set F (right) (averaged over all folds). 

 

Figure 22: UK XGBoost Feature Importance for Feature Set B (left) and Feature Set F (right) (averaged over all folds). 
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5.3 Impact of Geographical Data 
 

This section aims to quantify the performance improvement benefitting from geographical information. 
Specifically, the improvement from each type of geographical information will be compared for the two 
study areas. 

 

 

Figure 23: Relative improvement of feature set F over feature set B in terms of AUC for Italy (top) and UK (bottom). Note the 
different Y-axis scales. 
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As depicted in Figure 23, XGBoost yields the greatest relative performance improvement of Feature Set 
F (with all geographical information used) over Feature Set B (the baseline) in terms of AUC at 10% 
for the Italy case, followed by random forest. LSTM benefits the most for the UK data, but its overall 
performance is lower than the other algorithms, as previously shown in Section 5.1. In total, across the 
two study areas and five models, Feature Set F performs better than Feature Set B in 9 out of 10 times 
in terms of AUC.  

In the UK, as seen in Figure 23, besides the LSTM that has a lower baseline accuracy, random forest 
and XGBoost again profit the most from geographical information, although on a smaller scale. While 
XGBoost yields higher performance improvements than the random forest in the Italy case, the 
relationship is inversed in the UK case. The performance of the FFNN even deteriorates. This can 
possibly be attributed to overfitting due to the small sample size and a larger number of features. 
However, since the UK results fluctuate a lot, as seen in Section 5.1, these results need to be considered 
with care. 

The LSTM performance improves as well after the inclusion of geographical information for both study 
areas, although as previously stated, on a lower performance level in general. In general, logistic 
regression only slightly benefits from incorporating geographical information compared to the more 
complicated models. A possible interpretation for this observation might be that with the added amount 
of variables, the relationships within the dataset become too complicated for a relatively simple model 
like logistic regression to take advantage of. Furthermore, since a stepwise feature selection was 
performed for the logistic regression, there is a possibility that some feature combinations, which would 
yield a higher performance improvement were not included. 

The effect of each type of geographical information is depicted in Figure 24. In Italy, land-use yields 
the highest performance improvement, whereas POI and weather only improve predictive performance 
by very small or even negative amounts in the case of the FFNN. In the UK, weather returns the highest 
performance improvement, slightly higher than POI, whereas land-use only improves the random forest 
model. The FFNN deteriorates with all geographical information in the UK case. Random forest is the 
only model that improves with each type of geographical information across both study areas, probably 
attributed to its robustness against overfitting. 
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Figure 24: Relative improvement in terms of AUC  from the inclusion of POI, weather and land-use for Italy (top) and UK 
(bottom). Note the different Y-axis scales. 
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5.4 Impact of Minimum Driving Distance 
 

This section briefly illustrates the impact of the minimum chosen driving distance on the example of the 
yearly aggregated models and the Italy dataset. Table 19 shows the results in terms of AUC, accuracy, 
and F1-score of the Italy dataset if the minimum driving distance of 1500km is omitted. To avoid severe 
class imbalance and make the results comparable with the filtered scenario, 4000 drivers were randomly 
sampled from the accident-free drivers without filtering low mileage drivers in addition to the 3925 
accident-drivers. The models were run in the same fashion as the filtered models, including 
hyperparameter-tuning for XGBoost and random forest and feature selection for logistic regression. The 
results show that the performance metrics compared to the unfiltered scenario are improved across all 
models and metrics (Figure 25 and Table 19). The relative model performance stays roughly the same 
as the filtered scenario, with XGBoost having the best performance, although the performance 
improvement due to geographical features is diminishing. Furthermore, the increase is mainly visible in 
terms of AUC. Accuracy only increases slightly after including geographic features, and the F1-Score 
is stagnating. The most likely explanation for this observation is that other features are less impactful 
and less room for improvement remains due to the increasing importance of the total distance.  

 

Table 19: Performance metrics Italy without the minimum distance cutoff, the best overall performance is indicated in bold, 
the best performance per feature set is underlined 

Model A B (baseline) C D E F 

AUC 

Logistic 
Regression 0.787 0.790 0.792 0.790 0.800 0.799 

FFNN 0.787 0.791 0.795 0.789 0.819 0.816 

Random 
Forest 0.787 0.799 0.801 0.801 0.820 0.818 

XGBoost 0.787 0.800 0.800 0.800 0.822 0.827 

Accuracy 

Logistic 
Regression 0.747 0.747 0.745 0.747 0.749 0.748 

FFNN 0.744 0.745 0.746 0.744 0.743 0.746 

Random 
Forest 0.744 0.746 0.747 0.746 0.748 0.749 

XGBoost 0.744 0.747 0.748 0.747 0.749 0.753 

F1-Score 

Logistic 
Regression 0.784 0.784 0.782 0.783 0.784 0.784 

FFNN 0.785 0.785 0.780 0.780 0.775 0.771 

Random 
Forest 0.784 0.785 0.785 0.786 0.786 0.787 

XGBoost 0.786 0.789 0.790 0.789 0.784 0.783 
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Figure 25: Boxplot of model performance (AUC) without applying the minimum distance cutoff  over all folds, Italy 

 

Figure 26: Italy model performance (AUC) of Feature Set F with and without applying the minimum distance cutoff. 

The logistic regression coefficients in Table 20 are used to confirm the increased importance of the total 
distance. The coefficient value of distance log is almost doubled, with 3.270 against 1.660 of the 
unfiltered scenario (see Table 16). The rest of the coefficients are similar to the unfiltered scenario, with 
mileage, driving events, night driving, and driving at low speeds yielding the highest increase in accident 
risk, whereas driving at higher speeds and a higher median of the trip distance decreases accident risk. 
One irregularity can be found: all the weather conditions with the exception of driving below 0°C seem 
to lower the accident risk. This might be due to the feature selection procedure not being optimal and/or 
some co-correlated features still being present. Results for the UK dataset without the minimum distance 
cutoff can be found in the appendix (Figure 27 and Table 21). In general, they also yielded higher 
performance scores. 
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Table 20: Logistic Regression coefficients Italy, feature set F,  without applying the minimum distance cutoff 

Variable Average Exponentiated 
Coefficient 

Distance log 3.270 

Braking events per 1000km 1.257 

Fraction of driving between 0 and 30km/h 1.242 

Cornering events per 1000km 1.225 

Fraction of driving at night 1.202 

Mean trip duration 1.145 

Fraction of driving between 60 and 90km/h 1.138 

Quick lateral movement events per 1000km 1.074 

Fraction of driving during rush hour 1.070 

Fraction of driving events near commercial POI 1.053 

Fraction of driving in moderate temperature 1.038 

Braking events in mixed rural-residential land-use areas per 1000km 1.024 

Cornering events in residential land-use areas per 1000km 1.024 

Fraction of driving below 0°C 1.018 

Acceleration events per 1000km 1.012 

Acceleration events in residential land-use areas per 1000km 1.011 

Braking events in rural land-use areas per 1000km 1.008 

Fraction of driving above 130km/h 0.986 

Fraction of driving above 25°C 0.971 

Percentage of driving events near transportation POI 0.969 

Standard devation of trip distance 0.963 

Fraction of driving on weekends 0.963 

Braking events in forest land-use areas per 1000km 0.963 

Cornering events in rural land-use areas per 1000km 0.942 

Cornering events in mixed rural-residential land-use areas per 1000km 0.942 

Percentage of driving in Fog 0.885 

Median of trip distance 0.866 

Braking events in residential land-use areas per 1000km 0.856 

Fraction of driving between 90 and 130km/h 0.768 

Percentage of driving in rain 0.753 

Mean trip speed 0.703 

Percentage of driving in overcast weather  0.578 

Percentage of driving in good weather 0.460 

  



57 
 

5.5 Summary of Results 
 

The main findings can be summarized with the following points: 

 XGBoost generally performs best in Italy, while FFNN, random forest and logistic regression 
perform best in the UK depending on the feature sets and performance metrics. 
 

 Without the inclusion of geographical information, logistic regression performs almost as well 
as more complicated models. 
 

 The LSTM, which uses data aggregated at a per-trip level, performs worse than the other 
models. 
 

 The relative performance improvement resulting from the inclusion of geographical data is on 
a scale of up to 10% in terms of AUC in the case of Italy and the XGBoost model. The 
improvement mainly results from the usage of land-use-related features in Italy and weather-
related features in the UK. In general, XGBoost and random forest benefit the most from the 
inclusion of geographical information, while logistic regression benefits the least amount. 
 

 The chosen minimum driving distance matters: Without filtering low mileage drivers, model 
performance and importance of total distance increase significantly, although the relative 
performance stays roughly the same. 
 

 The logistic regression coefficients and feature importances of random forest and XGBoost 
are mostly in line with what the literature suggests. Total distance and city-driving related 
features such as driving at lower speeds are the biggest contributors to higher accident risk. On 
the other hand, driving in rural areas and at higher speed is linked with lower accident risk.  
Temporal features behave as expected, with driving at night and during peak hours resulting in 
increased accident risk 
 

 The impact of weather conditions differs between the study areas. For example, driving in rain 
increases accident risk in the UK while it lowers accident risk in Italy.  
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Chapter 6: Discussion 
 

6.1 Model Comparison and Impact of Geographical Information 
 

The current baseline method logistic regression employed in car PAYD and PHYD studies performs 
decently well and only gets slightly outperformed by more complicated algorithms. XGBoost generally 
yields the best predictive performance along with decent interpretability. However, due to the small 
performance difference from logistic regression, it makes sense to use a logistic regression rather than 
more complicated models, especially for the interpretation of size and direction of the effects of the 
individual features. Especially if the maximum possible performance is not the primary aim, logistic 
regression should be the preferred model. This confirms the findings of previous studies, namely 
Paefgen et al. (2013, 2014), Huang & Meng (2019), and Backe & Bocca (2017) that all report small 
benefits from the usage of more complicated models over logistic regression and Paefgen et al. (2014) 
specifically recommend the usage of the latter.  

The LSTM model yields worse performance than the yearly aggregated models. This might be due to 
the data aggregation procedure, trip definition, model architecture, or the difference in number and types 
of features used. It can be argued that car accident risk prediction might rely heavily on feature 
engineering and domain knowledge. Therefore the LSTM model with its main strength in utilizing raw 
data might not be the optimal choice. However, the LSTM still has potential if the above-mentioned 
factors such as trip definition, feature selection, or parameter selection are changed. The usage of more 
complicated deep learning models in individual car accident risk prediction is worth further 
investigation. The LSTM showed significant improvement by including more features. Therefore adding 
more geographic or other information might increase its performance further.  

The performance improvement by adding geographical data is moderate, especially for the UK area, yet 
still significant in both study areas. Land-use seems to be the most impactful geographical feature in 
Italy, with weather and POI only showing minor or no improvements over the baseline. It can be argued 
that since no map matching was performed, part of the performance improvement which results from 
the inclusion of geographical information could also be derived from, e.g., road types and network 
measures such as centrality. For the UK area, the inclusion of weather data yielded the most 
improvement. This could be explained by the different climate and higher variability of the weather 
conditions in the UK, whereas Italy usually has good weather all around. The higher impact of land-use 
in Italy compared to the UK area can possibly be explained due to the higher heterogeneity of the study 
area. The UK study area is mainly urban, focusing on London, while the Italian area includes cities of 
all sizes and rural areas.  

Apart from geographical features, several features that were deemed important in previous studies were 
confirmed. The total mileage remains an important factor amongst almost all models. Simultaneously 
driving at low speed and a high frequency of driving events resulted in higher accident risk as expected. 
Furthermore, frequent trips that take a long time and night driving are linked to higher accident risk, 
possibly due to driver fatigue. 

To sum up the answer to RQ 1: Which driving behaviour features are most suitable for predicting 
individual car accident risk and to what extent can geographical improve this prediction, it can be said 
that mileage, driving events, and driving in different speed- and time-intervals are all suitable features 
to predict individual car accident risk. It has been shown that the inclusion of geographical context 
features can further strengthen the prediction. However, more complicated models are required to make 
full use of these additional features, which results in lower interpretability. Furthermore, the importance 
of geographical features depends on the minimum distance chosen; if very low mileage drivers are 
included, total distance becomes more important compared to other features and diminishes their 
importance.  
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In regards to RQ2: Which machine learning models are most suitable for predicting individual car 
accident risk and what is the trade-off between performance and interpretability, it can be summed up 
that tree-based models such as XGBoost and random forest perform best for the prediction task at hand, 
possibly attributed to their robustness against overfitting and ability to model non-linear relationships. 
This is mainly true for the Italian dataset, as it is not entirely clear which model performs best in the UK 
due to the small sample sizes and large between-fold differences. From the results at hand, the trade-off 
between interpretability and predictive performance is relatively large when geographical information 
is not included since only small or even negative performance benefits result from the usage of models 
such as XGBoost and random forest over logistic regression. In contrast, their interpretability is 
significantly worse than that of logistic regression. However, the trade-off becomes smaller if 
geographical features are included, especially for the Italian dataset, as the performance advantage of 
the more complicated models gets larger. 

It should be noted that car accidents are random events to a large degree, which are impossible to predict 
with very high accuracy. The margins for improvement are generally narrow. On the other hand, even a 
small improvement in accuracy can potentially translate into a large amount of money in an insurance 
context. Not to mention the value of human health, which could potentially be improved through the 
incentive of safer and more ecological driving, which PHYD car insurance provides. The results show 
that the inclusion of geographical information can improve model accuracy and therefore has the 
potential to improve PHYD car insurance and its benefits. Hence to improve model accuracy, further 
research about the inclusion of geographical information into car accident risk modelling is 
recommended. Ultimately though, the driver remains the biggest risk factor and not the environment.  

 

6.2 Differences between UK and Italy 
 

In general, the results for the Italian dataset are more reliable in the sense that they exhibited much 
smaller between-fold differences. This can mostly be attributed to the around 10 times larger sample. 
Overall, though the UK dataset helped in confirming the potential of geographical information and 
pointed out that depending on the area, different types of geographical information and machine-learning 
models might be optimal.  Furthermore, more complicated models such as neural networks, random 
forest and XGBoost can suffer from overfitting if the sample size is too small, illustrated by the relatively 
high performance of logistic regression in the UK dataset. Especially in the context of car accident 
prediction where there can be large differences in each driver’s driving behaviour, a sufficient sample 
size is needed to avoid this problem and produce reliable predictions. 

In regards to RQ3: Are there geographical and cultural differences between London and Italy regarding 
the effects of driving behaviour on accident risk, it can be stated that there are indeed several differences 
which can be observed: Driving events are more important in the UK and mileage is less important than 
in the Italian dataset, although this could also be attributed to the data collection/sampling strategy. 
Furthermore, it can be stated that in a more homogenous area like the UK, spatial features such as land-
use are less important, whereas weather becomes more important. Some weather conditions have 
reversed effects in the two study areas, e.g., rain lowers the accident risk in Italy while it increases the 
accident risk in the UK. However, the impact of speed- and time-related features such as driving at a 
lower speed or on the weekend remains roughly the same across both study areas.  

 

6.3 Limitations 
 

There are a few limitations to this study that need to be pointed out, mainly regarding data availability. 
One of the biggest limitations stems from the fact that there was no information available on whether 
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the driver was actually at fault for an accident. This is different from previous studies, which usually 
had the information from the insurance company about whether an at-fault claim was made. Therefore 
some safe drivers, which do not exhibit any typical dangerous behaviour are labelled as accident drivers 
through circumstances outside of their control. Logically these drivers are very hard to classify as 
accident drivers since they do not exhibit any dangerous driving patterns. This goes hand in hand with 
the next limitation, which is that it is impossible to verify with 100% certainty that all the accidents 
included in the sample are real accidents and not a false alarm. Although a preprocessing of the crash 
alarms was performed to the best of the author's ability, most crashes do not contain any notes from the 
crash assistance centre. It would further be beneficial to have demographic data about the drivers, such 
as age, gender and driving experience to allow a comparison or combination with traditional car 
insurance risk models, as done in previous studies.  

Another data-related limitation of this study lies in the relatively low spatial resolution of the Italy 
dataset, which only recorded one waypoint every 2000 meters. This makes potential map matching very 
difficult and inaccurate, especially for urban areas. Incorporating more information about the road 
network, such as various centrality measures or average traffic volumes are further variables that could 
be included if higher resolution data was available.  

Furthermore, all the geographical data was simplified, it could be possible to achieve higher performance 
with more detailed variables. In regards to the weather data, real data might also yield better results than 
the historical forecast data which was used in this thesis. Also, the driving events could have been 
explored in more detail according to their acceleration values, in order to distinguish between events 
with different levels of severity. In addition, the total time driven could have been used instead of 
distance as the main exposure factor. 

From a modelling perspective, it is possible that different neural network architectures or parameters 
might yield better results, as well as a more extensive grid search for random forest and XGBoost. A 
different feature selection process could have been used for the logistic regression, as stepwise-selection 
has its limitations.  In addition, the model performance under different ratios of accident versus accident-
free drivers and different classification thresholds could have been explored, since in a real-world 
application case this ratio can be highly imbalanced, although this has already been done by previous 
studies, e.g., Paefgen et al. (2013).  

It also needs to be stated that the model performance numbers of this study are not really comparable to 
other studies. This is due to different recording types, different frameworks for registering a claim or 
accident, different class balances etc.  

Lastly, it needs to be pointed out that as with all GPS-tracking applications, privacy concerns exist 
within the context of behaviour-based car insurance. However, the discussion of those lies outside the 
scope of this study.  
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Chapter 7: Conclusion and Future Work 
 

7.1 Summary and Implications 
 

Several machine learning models, logistic regression, random forest, XGBoost, FFNN, and LSTM were 
compared across two study areas in the UK and Italy and different feature subsets. These features were 
calculated based on a year of GPS and driving events data in order to predict car accident risk on a driver 
level and perform a binary classification to separate accident from accident-free drivers. Specifically, 
the research gap on the impact of the inclusion of geographical context data and the comparison of 
different machine learning algorithms and the two study areas was of interest. In order to fill these 
research gaps, the trajectory and driving behaviour data was enriched with weather, POI, and land-use 
data and several novel features derived.  

It was found that the inclusion of geographical context can improve relative performance in terms of 
AUC by up to 10% using the XGBoost algorithm. This is a relatively high number, considering the 
inherent randomness in car accidents and a promising first result. From those geographical features, 
land-use has the biggest impact on predictive performance for the Italian dataset and weather for the UK 
dataset. In general, the Italian dataset yielded more reliable results due to the bigger sample size. The 
performance improvement resulting from the inclusion of geographical information was generally 
strongest if more complicated models were used, which in turn reduced interpretability.  

Apart from the geographical information, findings of previous studies regarding model performance and 
the impact of several features such as mileage, speed, time of day and driving events on car accident 
risk were mostly confirmed, supporting the quality of the data and the feature calculation process. It was 
also pointed out that the chosen minimum mileage of drivers included in the modelling matters and can 
have a large effect on overall model performance.  

A different data aggregation approach with finer temporal granularity on trip-level and the usage of an 
LSTM neural network returned worse predictive performance than the yearly aggregated approach. This 
might be due to the model parameters, aggregation levels, definition of a trip due to the different features 
which were used. However, it shows potential if more features are used and the usage of deep learning 
models for car accident risk is worth further attention. 

In terms of real-world applicability, the results show that the car insurance industry and road traffic 
researchers could possibly benefit from including geographical context information into their risk 
models making them more accurate. Since most of this information is freely and easily accessible, the 
data enrichment could possibly be integrated directly into their risk modelling pipeline. Although further 
research about which features to include is recommended, as described in the next section regarding 
future work. Furthermore, as pointed out by Baecke & Bocca (2017) in many places models with high 
interpretability such as logistic regression are required by law, which might result in lower benefits from 
including aforementioned geographical information.  

 

7.2 Future Work 
 

In regards to future work, it is suggested to include real weather information instead of historical forecast 
data as well as map matching in order to possibly get more accurate results. Furthermore, other types of 
POI and land-use data and their combinations can be explored. Several other geographical features such 
as population density or elevation models could further be included as well to possibly derive more 
meaningful features with strong predictive performance. Furthermore, after map matching, information 
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about the usual traffic condition on certain road segments could be included, as well as network 
measures such as road centrality.  

In addition, to confirm the differences between the two study areas and the impact of geographical 
features, the proposed modelling and feature engineering strategy should be tested using a bigger dataset.  

From a modelling perspective, a combination of previously suggested approaches through ensemble 
models could be tried. Furthermore, the usage of different data aggregation approaches and deep 
learning models is worth further investigation. In addition, for real-world applicability, the proposed 
strategy integrating geographical features should also be tested on claim-count data, using a regression 
instead of a classification strategy. 

To simplify weather data collection, future GPS recorders could record factors such as temperature and 
precipitation directly from the cars built-in temperature and rain sensors, although there might be issues 
comparing different sensors from different car models.  

Lastly, since the driver remains the most important risk factor, it is certainly beneficial to further the 
research about the traditional non-geographical driving behaviour features derived from telematics data 
and refine, e.g., the definition of driving events. 
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Appendix A: Figures 

 

Figure 27: AUC values UK over all folds without the minimum mileage filter 

 

Figure 28: Boxplots of driving in different weather conditions, UK 
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Figure 29: Boxplots of driving in different speed intervals, UK 

 

 

Figure 30: Boxplot of driving in different Timeslots, UK 
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Appendix B: Tables 
 

Table 21: Performance metrics UK without the minimum distance cutoff 

Model A B (baseline) C D E F 

AUC 

Logistic 
Regression 0.757 0.770 0.776 0.777 0.786 0.785 

FFNN 0.740 0.768 0.781 0.762 0.747 0.762 

Random 
Forest 0.737 0.750 0.762 0.752 0.764 0.764 

XGBoost 0.731 0.735 0.752 0.745 0.751 0.760 

Accuracy 

Logistic 
Regression 0.670 0.686 0.695 0.696 0.704 0.719 

FFNN 0.664 0.686 0.694 0.684 0.678 0.703 

Random 
Forest 0.660 0.670 0.678 0.672 0.676 0.684 

XGBoost 0.642 0.640 0.672 0.670 0.670 0.688 

F1-Score 

Logistic 
Regression 0.702 0.713 0.715 0.715 0.719 0.736 

FFNN 0.706 0.726 0.731 0.724 0.713 0.739 

Random 
Forest 0.682 0.688 0.698 0.693 0.695 0.705 

XGBoost 0.666 0.658 0.685 0.691 0.684 0.702 
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