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Abstract

Physical Activities (PA) are crucial for human beings to stay healthy both physically
and mentally. The physical activities of older adults show different characteristics
than that of other age groups, such as lighter intensities and lower speeds. The
MOASIS data is large-scale real-life mobility data collected from older adults in
Switzerland. In this paper, IMU and GPS dimensions of MOASIS data are used to
study the physical activity classification of the older population in real-life conditions.
This paper focuses on feature engineering for machine learning methods, including
feature calculation, feature extraction, and feature selection. First of all, this paper
does a literature review of some of the papers under this theme, and summarizes the
research gaps within this topic. The research gaps include: the application and
comparison of dimension reduction and machine learning methods on such a real-life
dataset focused on this specific age group, the application of GPS data for feature
calculation in PA recognition, distinctive features extraction for PA types of older
adults, the influence of validation methods on results of machine learning methods.
Targeting the above research gaps, this paper puts forward three research questions:
the comparison of different machine learning and dimension reduction methods, the
comparison of the results of their application on this dataset, the impact of different
dimensions of sensor data on the classification results. The results show that first, the
most commonly used PCA feature extraction method can indeed improve the results
of the KNN classifier in this data to a large extent, but it cannot help in improving the
results of the unsupervised classifier Kmeans, which generally performs poorly in PA
recognition. Second, Extra-tree performs best when considering the balance between
time and accuracy among the classifiers compared. And the Recursive Feature
Elimination method (RFECV) has the highest accuracy among the filter, wrapper and
embedded feature selection methods based on the Extra-tree classifier. However, the
differences in accuracy among the three methods are tiny. In addition, this paper
concludes that the two validation methods compared (stratified k-fold validation and
holdout validation) may affect the selection of hyper-parameters in model training.
Finally, the feature importance ranking by different feature selection methods and the
distinctive features for different PA types based on this dataset are also presented. For
future studies, this paper suggests that more attention should be paid to the application
of different sensor dimensions in PA recognition. Moreover, more fine hyper-
parameter adjustment of different models should be investigated.
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1 Introduction

1.1 Motivation
Physical activity (PA) is widely known as a key factor for human health in all age
groups. For older adults, a more active than sedentary lifestyle has remarkable
positive consequences which can reduce their risks of having certain chronic diseases
(Chodzko-Zajko 2014).
Physical activity levels have since many years been used as the common measurement
of the necessary daily and weekly physical activity for the population. Besides
duration and frequency, physical activity levels are described by types and intensities
- not all physical activities have an equivalent impact on health. This makes physical
activity recognition a crucial area in the research of life quality enhancement. Other
than health support, PA recognition is also the core assistive technology in contexts
such as Smart homes (Francisco et al., 2015), skill assessment (Kranz et al., 2013), etc.

PA recognition is primarily a classification problem. There are two common ways to
record PAs for detection, namely by wearable sensors or cameras. The recorded
signals or videos are feed into the classification process as the input data, and the PA
patterns are produced as the output data from the process. The accelerometer that
measures body acceleration in different directions is the most common sensor for
physical activity measurement. IMU sensors are lightweight and portable devices that
contain other sensors measuring other aspects of motion besides accelerometer,
including gyroscope for rotation and magnetometer for direction.
Physical activity recognition using wearable sensors has received growing attention
along with the pervasiveness and miniaturization of wearable devices, such as
Smartphones, Smart bands, etc. In this field, as the state-of-the-art technologies,
machine learning and deep learning methods are becoming the mainstream approach
than other methods, such as the cut-point method, which segments signals by certain
determined thresholds. Machine learning methods can automatically detect PA
patterns with high recognition performance.

1.2 Aims of this thesis
Given the benefits of PA for older adults described in section 1.1, this study aims to
contribute to the healthy aging of older adults by investigating the PA classification
on the dataset MOSIS that widely records real-life mobility of older individuals in
Switzerland with available IMU and GPS data. More specifically, In this work,
different classification models in conjunction with feature selection and feature
extraction (feature transformation) algorithms are to be explored and and evaluated to
select a high accuracy and low cost process with a compact and robust discriminative
feature space for a large real-life dataset PA collected from older adults, with a focus
on walking activities detection. The contributions of the thesis are the following:
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 This thesis provides a literature review of some of the feature selection methods
with classifiers in PA analysis that are applied on different types of datasets.

 This thesis applies and compares the most common classifiers and feature
selection methods on a large real-life dataset to give an idea of what’s the
advantages and disadvantages of those methods on a large and real-life condition
dataset other than the laboratory settings.

 This thesis researches the combination of different sensors in PA recognition,
more specifically, the GPS sensor, in PA types detection with a focus on walking
types. Based on the location information provided by the GPS sensor, this thesis
incorporates contextual information for PA classification. Besides, this research
inspects distinctive features selected by different feature selection methods in the
recognition of PA types. Moreover, the performance differences of the models
tested by different validation manners are inspected.

1.3 Research Questions
As illustrated by the above section about the contributions of this paper, on the basis
of the research gaps that are expanded in the next Chapter, the research questions of
this thesis are formed as follows:

1) What are the most common dimension reduction methods and classifiers in PA
recognition? How do they influence the classification results? What criteria
should be taken into consideration when comparing different algorithms and
classifiers?

Supervised machine learning classifiers are the most common automatic classifiers to
detect physical activity types. In general, supervised classifiers exhibit relatively high
performance. In supervised learning, random forest, Extra-tree, and SVM (support
vector machine) are considered the most accurate models by many studies (Zhang et
al., 2011; Peterek et al., 2014; Zheng et al., 2015; Allahbakhshi et al., 2019;
Allahbakhshi et al., 2020). Dimension reduction methods consist of feature
transformation and feature selection methods. Common feature transformation
methods are PCA, LDA, etc. Common feature selection methods can be categorized
as the filter, wrapper, and embedded types (Chandrashekar et al., 2013). In general,
filter methods are faster and simpler, while giving lower performance. Wrapper
methods have higher computational costs, but give better results. Embedded methods
can reduce time cost compared to wrapper methods, and can also maintain good
performance. Accuracy is the most common metric applied literature in the
comparison of classifiers and dimension reduction methods. Time cost is also
sometimes presented in some papers. Other performance metrics, such as recall,
precision, f1-score are sometimes given as well.

2) What are the differences in the results when applying the most common PA
classifiers and feature selection methods on the MOASIS dataset?

From the research by Ordóñez et al. (2016), the classification performances of
different classifiers and feature selection methods have different results on different
datasets. In other words, the feature selection method and classifier that generate high
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performance on one dataset might not perform that well on another dataset.
Nevertheless, the extra tree and random forest are the most accurate classifiers in a
large proportion of studies. However, the computational cost is considered rather high
by random forest. In this respect, deep learning classifiers without manually feature
design process have also relatively low computational costs when running
(Chandrashekar et al., 2014). In terms of feature selection methods, filter methods are
in general faster than wrapper methods, while wrapper methods provide better
accuracy improvement results. This thesis aims to find out the best model and method
for a real-life dataset for older adults. This suggests that the model are supposed to be
suitable for a large dataset in the computational sense, as well as good at detecting
activities performed most by older adults, especially the recognition of different
walking activities.

3) What are the differences in the results when applying extra sensors besides the
common accelerometer sensor on the MOASIS dataset? What are the distinctive
features from different dimensions of sensors for different PA activity types for
older adults? What are the differences among distinctive features selected by
different classifiers and feature selection methods (feature extraction methods
reshape the original features and thus are not taken into consideration)?

In general, extra sensors help in improving the accuracy of the classification. For
example, an additional gyroscope increased the classification accuracy in PA
classification by 15%, an extra magnetometer improves the PA recognition
performance to 5% (Ordóñez et al., 2016). From Allahbakhshi et al.’s (2020) study,
the GPS sensor helps to increase the model performance as well. This study
incorporates more features from the GPS sensor besides the speed attributes from the
research of Allahbakhshi et al.(2020). The location attribute creates more features for
the GPS sensor (e.g distance), and has been proved to be efficient in deriving trip
purpose prediction (Gonzalez et al. 2008, Gong et al. 2014). Therefore, the additional
GPS sensor that provides the contextual information for PA classification is expected
to improve the classification results to a certain degree.
Distinctive features are more helpful than other features in distinguishing all classes
or a part of classes to be detected. For example, in PA types recognition, variances of
total acceleration and the three axes signals are vital in separating running, jumping
and walking activities ((Bao et al., 2004). And total acceleration mean and total
acceleration entropy are the key features in detecting different walking types (walking
left, walking right, walking forward/backward, walking stairs) (Zheng et al., 2015).
Different classifiers and feature selection methods give different importance score
among features (Dehzangi et al.. 2018). Under this theme, a close inspection of
distinctive feature differences in PA types study among various classifiers and feature
selection algorithms are not common. Nevertheless, this thesis expects to detect more
distinctive features in PA types recognition, especially in walking activities. And
different feature selection methods are expected to be helpful in selecting more
distinctive features from different sensors.

1.4 Structure of the thesis
After the introduction into this theme, this thesis is structured as follows. Chapter 2
provides the related background about the works done on this topic. In this Chapter,
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the research gaps based on the previous work are given. Chapter 3 describes the data
employed in this thesis, where the manual labelling process and the characteristics of
the labelled data are presented. Chapter 4 illustrates the methods applied in this
analysis, where the data processing procedure, different classifiers and feature
selection methods are introduced. Chapter 5 presents the results obtained from
applying the designed methods to the data. In this part, classification results by
different feature selection methods combined with some classifiers are presented.
Also, feature importance of the two sensors is discussed with respect to the features’
contribution in classification. Chapter 6 puts the results under the research questions,
and gives a critical evaluation and discussion of the performed analysis. Chapter 7
concludes the findings in this thesis and gives an outlook for future work in this topic.
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2 Background

2.1 Introduction
PA recognition studies have the focus on either activity intensity or activity type
recognition. Activity intensity recognition is mostly related to the concept of energy
expenditure, represented by categories such as inactivities, moderate/vigorous
activities (Kuppevelt et al., 2019). Activity types are more specific, and can be further
grouped into posture and motion, such as sitting, standing, running and cycling
(Huynh et al., 2005). PA recognition in this thesis refers to activity types recognition
considering PA types recognition is a more fine category. Also, activity types
applications are more generalizable in other scenarios. According to Lara et. al (2013),
research in physical activity recognition can be categorized into seven different
categories: (1) selection of attributes and sensors; (2) obtrusiveness; (3) data
collection protocol; (4) recognition performance; (5) energy consumption; (6)
processing; and (7) flexibility. This thesis contributes to the (1), (4) categories. The
following background part will be introduced in this vein.

2.2 Sensors
Inertial Measurement Unit (IMU) is a device that measures the uniaxial, biaxial, or
triaxial angular velocity and acceleration of an object. IMU can be used to detect and
measure acceleration, tilt, impact, vibration, rotation, and multi-degree-of-freedom
motion. The "6-axis IMU" refers to a gyroscope and accelerometer are mounted on
three orthogonal axes, with a total of six degrees of freedom, to measure the angular
velocity and acceleration of an object in three-dimensional space. With an extra
magnetometer, the device can measure the heading angle and increase measurement
accuracy. This is known as the "9-axis IMU".
Among the sensors, the gyroscope is used to measure the rotation movement of the
device itself, but it cannot determine the orientation of the device. The accelerometer
is used to measure the force on the device and is good at detecting the movement of
the device relative to an external reference, such as the ground. But its measurement
of the position of the equipment relative to the ground is not very accurate.
Magnetometer is mainly used to measure the direction of the current equipment with
its angle to the four directions. In simple words, the gyroscope tells "one turned
around," the accelerometer tells "one went a few more meters," and the magnetometer
tells "one went west."

Accelerometer sensor is widely employed in physical activity studies. There are
plenty of well-established efforts in PA types classification based on accelerometer
data (Huynh et al., 2005; Troped et al., 2008; Mannini & Sabatini., 2010; Reiss and
Stricker., 2011; Sprint, 2016; Ignatov & Strijov, 2016; Kuppevelt et al., 2019;
Allahbakhshi et al., 2019;Allahbakhshi et al., 2020).
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Studies have designed and tested various settings with different accelerometer
numbers, types (uni-axial (2D), dual axial (2D), and tree-axial (3D)), and positions
placed on the body(Reiss and Stricker 2011, Allahbakhshi et al. 2020). In general, a
larger number of accelerometers and multiple axial accelerometers can provide better
performance as more information can be extracted. The placement of accelerometers
also has a significant impact on the recognition of different PA patterns. The most
studied positions are the chest, wrists, hips, knees, and feet. However, it is hard to
conclude the best position for accelerometer placement given various study designs
and objectives. For instance, a sensor placed on the wrist is preferable when trying to
detect activities with similar lower-body, but significantly different upper-body
movement. Nevertheless, the results from various studies have shown that the
recognition of these activities is possible even with just one 3D-acceleration sensor,
such as the accelerometer from a smartphone (Ignatov & Strijov., 2016).

A number of them also have included gyroscope data and magnetometer data on the
basis of the accelerometer data (Jiang et al., 2015; Ordóñez et al., 2016). In general,
more sensors provide higher accuracy in classification (Ordóñez et al., 2016). The
results from Zhang et al.’s (2011) research found out that the application of gyroscope
and magnetometers data both improves the performance compared to accelerometer
data alone. There are studies that have incorporated other sensor types in the
recognition of PAs. Study shows that the employment of GPS data also helps in
improving the classification results. There are also other auxiliary sensors in PA
recognition, such as heart rate sensors, etc.

2.3 Datasets
Table 2.1 shows some of the most popular open-source PA classification datasets with
sensor settings and activity types that are applied in studies. The characteristics of the
data in the MOASIS study will be discussed in the next Chapter.

Table 2.1 Common open-source PA classification datasets
datasets Number of activities Type and number

of sensors
Activ
ity
types

Numb
er of
Partici
pants

literature

PAMAP
2

lying, sitting, standing,
ironing, vacuuming, ascending
stairs, descending stairs,
normal walk, nordic walk,
cycling, running, rope
jumping

3 IMUs, each
with an 3D
accelerometer,
gyroscope, and
magnetometer

12 9 Saez et al.
(2015),
Baldominos
et al. (2017)

The
MobiFal
l dataset

Standing, sitting, lying, stairs
up, stairs down, walking

a tri-axial
accelerometer and
a gyroscope

6 - Sukor et al.
(2018)

USC-
HAD

walking (forward, left, and
right), walking (upstairs,
downstairs), jumping,
running, standing, sitting, and
sleeping

a 3-axis
accelerometer

10 14 Zhang et al.
(2015)

UCI:M.
Lichman
(2013)

Walking up, walking down,
walk, sit, stand, lay

IMU 6 40 Dehzangi et
al. (2018)

UCI: Walking, walking upstairs, a 3-axis 6 30 Peterek et
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Anguita
(2012)

walking downstairs, sitting,
standing, lying

accelerometer,
3 axial angular
velocity sensor

al. (2014)

OPPOR
TUNIT
Y

Walk, Stand, Sit,Lie,Null 7 IMU plus 12
Acceleromters

5 - Ordóñez et
al. (2016)

2.4 Machine learning and deep learning methods
Machine learning as the state-of-art method, has been explored widely in PA
recognition (Huynh et al., 2005; Troped et al., 2008; Mannini & Sabatini., 2010; Reiss
and Stricker., 2011; Zhang et al., 2011; Peterek et al., 2014; Zheng et al., 2015; Sprint,
2016; Ignatov & Strijov, 2016; Kuppevelt et al., 2019; Allahbakhshi et al., 2019;
Allahbakhshi et al., 2020).

2.4.1 Supervised learning

Supervised machine learning classifiers that use the labelled data to train the classifier
and automatically detect physical activity types of the test data are the most
researched methods. It is the most common automatic classifier to detect physical
activity types from accelerometer data. Supervised learning in general exhibit
relatively high performance. In supervised learning, random forest, Extra-tree, and
SVM (support vector machine) are considered the most accurate models by many
studies (Zhang et al., 2011; Peterek et al., 2014; Zheng et al., 2015; Allahbakhshi et
al., 2019; Allahbakhshi et al., 2020).

Zhang et al., (2011) designed a human activity recognition framework based on
Support Vector Machine (SVM) classifier with a focus on feature selection techniques
and achieved an accuracy of 93.1%. The authors designed a new type of features,
namely physical features other than the traditional statistical features, based on a
sensor fusion manner for PA classification (see Chapter 4.3.3 Feature selection).
Three feature selection methods are employed to investigate the best feature sets, and
physical features (90% accuracy) are proved to be more effective than statistical
features (82% accuracy). In their work, the performance was further improved by
3.8% by extending the single-layer framework of one classifier to a multi-layer
framework with multiple classifiers in a hierarchical manner. From the multiple
structure framework, how different physical features contribute to the classification
accuracy was clearly presented. In their results, SFS (sequential forward selection)
(wrapper) method achieved the best performance compared to Relief-F (filter) and
single feature classification (SFC) (wrapper) methods. The study indicates that the
employment of physical features and multiple-layer classifiers could improve
classification accuracy. However, the structure of the hierarchical is designed
manually based on expert knowledge, the calculation of most physical features also
based on the prior knowledge about the sensor orientation (x-axis points to the
ground). Therefore, a more automatic and generalizable framework could be
structured in a data-driven approach.
Peterek et al. (2014) compared three supervised classification algorithms: the Linear
Discriminant Analysis, the Random Forest, and the K-Nearest Neighbours. Besides,
two feature extraction methods were also tested for better classification performance:
the Correlation Feature Selection Method and the Principal Component Analysis.
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From their analysis, the easiest state for recognition was lying, with both LDA and the
RF achieved 100 % of accuracy. The LDA classifier outperformed the RF and KNN
classifiers. However, the authors applied the simple holdout validation method, which
might result in performance bias. Different validation methods that can reduce
performance bias can be implemented to further analyse the models, such as k-fold
validation.

Zheng et al. (2015) proposed a hierarchical recognition scheme to classify 10
activities based on Least Squares Support Vector Machine (LS-SVM) and Naive
Bayes (NB) algorithm. From a preliminary investigation, a four-layer structure with 5
classifiers was selected out of 4 options considering the small number of classifiers
and high average accuracy rate (above 90%). As shown in Figure 2.1, the second
layer of the framework distinguished running, jumping, walking and static activities.
The third layer recognised subclass activities in the static activities category. Besides,
it differentiated 2D and 3D walking activities. The fourth layer recognised the
walking activities in subclasses. In this study, only six features were computed and
applied in the model, with one pair of features for each classifier. The LS-SVM is an
advanced version of the standard SVM that extends traditional SVM for binary non-
linear classification problems to multi-classification method. The result showed a
promising recognition accuracy. However, the classification accuracies for walking
activities are relatively lower, due to the similarity characteristic among different
walking patterns.

Figure 2.1 Four-class SVM classifer (Zheng et al., 2015)

2.4.2 Unsupervised learning

In PA recognition, unsupervised learning is less common. Unsupervised learning can
automatically separate the datasets into clusters that exhibit similar characteristics by
their underlying structure. In this way, compared to supervised learning, unsupervised
learning has the advantage of without the need for the training dataset with labels as
reference. And in real life, labelling the data is a time-consuming and costly process
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in supervised learning. However, without the labels, the unsupervised classifiers in
general exhibit lower performance than the supervised classifier.

Unsupervised learning is in general not considered as an effective method in PA
classification. However, there are also efforts in developing clustering methods in PA
recognition. The MCODE method by Lu et al. (2017) is an example. MCODE is first
applied to protein networks, and it is an efficient clustering algorithm based on
density. It takes input as an undirected graph constructed by the euclidean distance of
the features, and outputs the clusters after a vertex weighting process. Lu et al. (2017)
reached an accuracy of 74% in classifying physical activities using the MCODE
unsupervised learning. Kuppevelt et al. (2018) applied a hidden Semi-Markov Model
(HSMM) to identify 10 states of behaviours, and achieved similar results as the ones
by the cut-points approach.

2.4.3 Deep learning

Deep learning is also applied by many studies in PA detection. In comparison with
machine learning, deep learning skips the feature engineering process of machine
learning that describes the characteristic of the training data. Deep learning uses a
multi-layer perceptron structure that originates from neural network to learn the
inherent law and representation level of the training data. In simple terms, deep
learning learns good features by itself compared to machine learning. In this vein,
deep learning classifiers present more model parameters and have higher level of
difficulties in the model training process.

Ordóñez et al. (2016) applied a deep architecture based on the combination of
convolutional and LSTM (Long-short-term memory recurrent) recurrent layers in
activity recognition datasets from wearable sensors for the first time. The intention to
incorporate the recurrent layers was to deal with the limitation of convolutional
kernels that were only able to learn temporal dynamics within the duration of the
kernel. This structure was proved to provide a very good trade-off between
performance and training/recognition time in comparison to a standard CNN. And this
model was able to learn from multiple signals and fusing them without any specific
preprocessing compared to machine learning models. The result showed that the
gyroscope data improved a 15% performance while both gyroscope and
magnetometers improved the performance by 20% compared to accelerometer data
alone. This approach was however only tested on small-size datasets, how will it
perform on large-scale data and how to tune the model parameters will still need to be
investigated.

Jiang et al. (2015) assembled accelerometer and gyroscope signal sequences into a
novel activity image, and designed a Deep Convolutional Neural Network (DCNN) to
automatically learn features, rather than defining the features manually. The
architecture contained two convolutional layers (5 kernels of 5*5 size in the first layer
and 10 kernels of 5*5 size of the second layer) and resulted in a 120-dimensional
feature vector. In addition, this paper also designed a DCNN+ architecture which
added a binary-class SVM classifier to classify uncertain classes after the DCNN
classifier if the activity classes distribution of resulted DCNN was not sharp enough.
From the result, the two methods achieved superior performance in terms of both
recognition accuracy and computational cost compared to SVM classifier, and a
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feature selection method with random forest. It is noteworthy that the SVM method
provided second highest accuracy but relatively much longer computational time
compared to the other three (an average of 10 milliseconds of three datasets compared
to an average of fewer than 2 milliseconds for the other three). Therefore, it requires
further investigation of a better method for large datasets with regard to the balance of
accuracy and computational time.

2.4.4 Dimension Reduction

Sukor et al. (2018) compared human activity recognition performance with and
without the PCA dimension reduction method. In their study, time and frequency
domain features were also compared using different classifiers (DT, SVM, MLP-NN).
The result showed that total average accuracy of the three tested classifiers was
increased by 4.21% when dimensionality reduction using PCA was applied to the
original features. And frequency-domain features showed higher total average
accuracy compared to time-domain features, with a difference of 8.90%. This work
proved the efficiency of the PCA method. On the basis of this, more dimension
reduction methods can be explored and compared. In addition, this thesis only used
the simplest validation method - train/test split with 70% of the data as training
dataset and 30% as testing dataset. In this sense, more validation methods can be
tested for the comparison. Moreover, the study also gave the performance result of
different metrics, including the F-score, recall, precision, recall. A more
comprehensive comparison of how and why the dimension reduction method function
differently influence the different metrics can be analysed.

Chandrashekar et al. (2014) implemented two filter methods (Correlation, MI) and
two wrapper methods (SFFS algorithm, CHCGA algorithm) with the performance
with the classifiers (Support Vector Machine (SVM), Radial Basis Function Network
(RBF)) as the objective functions. The comparison was done on seven different
datasets. From the result, feature selection in general helped reducing the complexity
of information and increases accuracy. However, it is noteworthy that the paper
concluded that different feature selection algorithms perform differently on different
data. The author suggested selecting a final feature selection algorithm by predefined
baseline classification performance values among different algorithms. The paper
used the number of reduced features and classification accuracy to compare the
feature selection techniques. However, there are other selection considerations that
can be taken accounts, such as simplicity, stability, computational requirements, and
storage.

Dehzangi et al. (2018) evaluated dimension reduction algorithms (both feature
selection and transformation) combined with different classifiers with the purpose to
improve robustness without decreasing the prediction accuracy. The test dataset
contained six physical activities from 30 participants from 19 to 48 with an IMU
strapped on their waist. The results showed that Ensemble bagged classifier provided
the highest accuracy among five classifiers (Decision tree, KNN, SVM, Neural
network). Also, within dimension reduction algorithms, Neighborhood component
analysis algorithms (96.3% accuracy with 9 features) with Ensemble classifier, and
Random forest with Ensemble classifier yield (96.9% accuracy with 15 features) the
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most effective performances compared to the state-of-art accuracy of 97% of the same
dataset achieved on a 561-D feature space.

Peterek et al. (2014) compared two feature extraction methods (the Correlation
Feature Selection Method and the Principal Component Analysis) with the
combination of three supervised classification algorithms: the Linear Discriminant
Analysis, the Random Forest, and the K-Nearest Neighbours. Besides what Iis
mentioned above in Chapter 2.2 from the perspective of supervised classifiers, the
study also gave insights into feature selection methods. From their results, the
correlation feature selection method (CFS) at large outperformed the PCA method.
Reduction of the dataset by the CFS increased the precision of walking and walking
upstairs but decreased the precision of the rest states. PCA method was claimed to be
completely failed. However, in their study, the parameters for the two feature
selection methods were set as fixed numbers. Therefore, it is worth investigating the
hyperparameter setting for the PCA method as well as trying other different classifier
combinations for the PCA method.

Baldominos et al. (2017) explored and compared different feature selection
techniques using genetic algorithms (GA) to improve the accuracy and reduce the
number of sensor dimensions. In the study, there were 40 dimensions (x, y, z
dimensions of each sensor) of the features, obtained by 3 IMUs, each with an 3D
accelerometer, gyroscope, and magnetometer. Four feature selection alternatives were
proposed and tested, namely, attribute selection (represents a total set of 280 features);
dimension selection after feature sensibility (some-or none) (select sensor dimensions
first, then select part of features contained in the sensors), dimension selection after
feature sensibility (take-it-all or leave-it) (select sensor dimensions first, then take all
features contained in the sensors), dimension selection without feature sensibility
(select features without considering the sensor dimensions). Afterwards, a classifier
was trained using extremely randomized trees. By a LOSO evaluation approach, very
high accuracy of 97.45% was reached. This level of accuracy was achieved by the
first attribute selection alternative, representing applying GA on the whole data set of
280 features. Nevertheless, other methods also reached high accuracy above 96.63%.
This study gave insights in dimension reduction in different sensors. For example, the
dimension reduction could be applied after the selection sensor dimensions.

On the basis of the described works, Table 2.2 shows the most accurate classifiers and
the combined feature selection methods in these studies.

Table 2.2 Most Accurate Classifiers and Feature Selection Methods
Literature Most accurate

classifier
Classifier types Accuracy Number

of features
Feature
selection
method

Zhang &
Sawchuk ( 2011 )

SVM Supervised
learning

93.1% 50 SFS

Zheng et al.
(2015)

LS - SVM Supervised
learning

95.6% 6 PCA

Ordóñez et al.
(2016)

DeepConvLSTM Deep learning 95.8% - -

Jiang et al.
(2015)

DCNN + SVM Deep learning 98.45%
(average of
three datasets)

120 -

Dehzangi et al. Ensemble bagging Fusion method 96.9% 15 Neighborhoo
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(2018) (SVM, KNN) d component
analysis

Sukor et al.
(2018)

MLP-NN Deep learning 97.54% 3 PCA

Peterek et al.
(2014)

LDA Supervised
learning

above 90% 211 CFS

2.5 Model Validation and Comparison

2.5.1 Validation methods

Proper validation techniques are helpful to understand the models and estimate
unbiased generalization performances. The basis of all validation methods is splitting
the data when training the models. On the basis of that, the most basic validation
method is the holdout method. In this method, data is simply split into a subset for
training and a subset for testing. The common split is 70% for training and 30% for
testing, and only evolves on single run of classifier. A variant of this method is to
introduce an additional holdout set (often 10% of the data) besides test and training
splits (Grootendorst, 2019). The benefit of this method is that one can see directly
how the model reacts to previously unseen data. However, this approach is very likely
to suffer from sampling bias. Sampling bias represents a systematic error due to non-
random sample of a population, causing some members of the population to be less
likely to be included than others, resulting in a biased sample (Sampling Bias, 2021).

Cross-validation can minimize sampling bias and help to generalize the model to
independent data. Two types of cross-validation categories can be distinguished,
namely exhaustive and non-exhaustive validation methods. Exhaustive cross-
validation methods are cross-validation methods that learn and test on all possible
ways to divide the sample, while non-exhaustive validation methods do not try all
possibilities to divide the original sample into a training and a validation set.

K-fold validation is one of the most common non-exhaustive validation methods
applied in literature to validate the classifiers. It splits the data into k folds, then trains
the data on k-1 folds and tests on the one fold that was left out. It does this for all
combinations and averages the result on each instance. 10-fold cross-validation is
commonly used, as it finds a nice balance between computational complexity and
validation accuracy, but in general k remains an unfixed parameter (McLachlan,
2004).

The other common variants of k-fold validations are stratified k-fold cross-validation,
and repeated cross-validation. In stratified k-fold cross-validation, the partitions are
selected so that the mean response value is approximately equal in all the partitions.
In other words, in the case of N-classes classification, each partition contains roughly
the same proportions of the N types of class labels. In repeated cross-validation, the
data is randomly split into k partitions several times. The performance of the model
can thereby be averaged over several runs. For example, given the number of repeats
as p, the total number of runs for k-fold partitions is p*k times. However, this is rarely
desirable in practice (Vanwinckelen, 2019).

In terms of exhaustive cross-validation methods, a basic one is the Leave-p-out cross-
validation (LpO CV). LpO CV involves using p observations as the validation set and
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the remaining observations as the training set. This is repeated on all possibilities to
divide the original sample on a validation set of p observations and a training set. A
special case for LpO CV is Leave-one-out cross-validation (LOOCV), when p equals
1. Also, for k-fold cross-validation, When k = n (the number of observations), k-fold
cross-validation is equivalent to leave-one-out cross-validation (Grootendorst, 2019).

Except for the above-mentioned common methods, there are other methods such as
repeated random sub-sampling validation method, nested cross-validation methods,
etc. Repeated random sub-sampling validation method creates multiple random splits
of the dataset into training and validation data. Nested cross-validation is used
simultaneously for the selection of the best set of hyperparameters and for error
estimation. For example, Figure 2.2 shows a structure of nested cross-validation with
the inner loop for hyperparameter tuning and the outer loop for estimating accuracy.

Figure 2.2 Nested cross Validation (Outer loop: 5-fold CV, Inner loop: 2-fold CV)
(Grootendorst, 2019)

In PA studies, the k-fold (10-fold / 5-fold) cross-validation method is the most
common implemented validation method. Table 2.3 shows the other types of
validation method used in some studies.

Table 2.3 validation methods used in studies
Literature Validation method
Peterek et al. (2014) Hold-out validation (70%/30%)
Sukor et al. (2018) Hold-out validation (70%/30%)
Zhang et al. (2011) Leave-one-subject-out validation
Baldominos et al.(2015) Leave-one-subject-out validation

2.5.2 Model evaluation metrics

The evaluation metrics applied in this analysis are as follow (Scikit learning, 2021):

Precision: Precision is defined as the ratio of True Positive (TP) to the sum of True
Positive (TP) and False Positive (FP). It measures the model’s accuracy.

Precision = �� (��+��) (1)

Recall: Recall is defined as the ratio of TP to the sum of TP and False Negative (FN).
It measures the model’s completeness.
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Recall = �� (��+�� ) (2)

Accuracy: Accuracy is defined as the ratio of how correctly predict the observation to
the total observation. Where TN refers to true negative.

Accuracy = ( TP+TN) (TP+FP+FN+TN)
(3)

F1 score: F1 score is defined as the average weight of Precision and Recall. F1 score
gives best value when its value reaches 1 and at 0 value it gives the worst score.

F1 = 2 ∗ ( Precision ∗ recall) (Precision + recall)
(4)

Area Under the Curve (AUC): AUC represents the area under the ROC-curve from
prediction scores.

Cohen’s kappa: Cohen’s kappa is a score that expresses the level of agreement
between two annotators on a classification problem. PO is the empirical probability of
agreement on the label assigned to any sample (the observed agreement ratio). Pe is
the expected agreement when both annotators assign labels randomly.

� = ( ��+��) (1−��)
(5)

Matthews correlation coefficient (MCC): MCC takes into account true and false
positives and negatives and is generally regarded as a balanced measure which can be
used even if the classes are of very different sizes. The MCC is in essence a
correlation coefficient value (also referred to as phi coefficient) between -1 and +1. A
coefficient of +1 represents a perfect prediction, 0 an average random prediction and -
1 an inverse prediction.

Besides the model scores tested by different metrics, there are also other important
parameters to evaluate the models, such as the model costs and model complexity. In
the process of developing a machine learning model, the number of features is one
main factor that has a great impact on the model costs and complexity. The high
number of features increases the building time of the recognition models. Also, when
trained, they suffer from the curse of dimensionality and poor generalization and
affect the accuracy in turn (Dehzangi et al. 2018).

2.6 Research gaps

The research gaps that will be explored and discussed in this thesis are as follows:

First, as presented above, most of the studies apply data that are collected in
laboratory settings in the PA detection topic. This thesis intends to investigate PA
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classification on a relatively large real-life data set characterised by older adults as
participants.

Second, the data itself is featured by a lot of less intensive daily activities performed
by older adults. This makes the data contain plenty of walking segments. At the same
time, the detection of PA in studies is mostly focused on distinctive types of activities,
(i.e. standing, sitting, walking, jogging, etc), which makes the detection of walking
types a topic worth exploring.

Third, accelerometer is still the main sensor in PA detection studies. Though a few
papers explored the inclusion of other sensors, there is still a lot effort can be spare in
inspecting the usage of other sensors. In this case, the location features of GPS are
still an unexplored point in walking types detection.

Fourth, though there exist some efforts in implementing feature selection methods in
PA recognition. Given the characteristics of the real-life data, on which a comparison
of the feature selection methods combined with different classifiers can still
contribute to the understanding of the effectiveness of the methods that are compared
in this topic.

Fifth, distinctive features for PA types detection are explored by some papers (see
Chapter 4.3.1). However, the comparisons in those studies are mostly based on small
number of feature sets. This thesis plans to select distinctive features more suitable for
the older population based on a more comprehensive set of signal features with the
help of different feature selection methods mentioned above.

Sixth, most studies only applied one validation method to test the model. This thesis
intends to compare a pair of validation methods to see their differences.
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3 Data

3.1 introduction
This thesis uses the dataset collected by the Mobility, Activity and Social Interaction
Study (MOASIS) study. In this study, the data is collected by a custom-built mobile
device UTrail. UTrail measures the participants’ spatial activities by a GPS sensor,
physical activity by an IMU sensor, and social interaction by a microphone sensor.
For the purpose of this thesis, only the data collected by the GPS (1HZ) and IMU
(50HZ) sensor highlighted with the blue frame is employed.

Figure 3.1 uTrail tracker sensors in MOASIS study

The IMU data in MOASIS study does not contain gyroscope data. It contains data
from two sensors, namely accelerometer, and magnetometer. The magnetometer is
used for the measurement of absolute direction (see Chapter 2.1 for more details). In
this sense, it is not necessary to have this feature for the classification of physical
activity types. More specifically, the recognition of the activity types of Descending,
Ascending, Slow walk, Fast walk, Stationary, Jogging, and Biking in this thesis is not
dependent on the directions compared to the recognition of activity types of Walking
right and Walking left. Therefore, in this thesis, only accelerometer data is taken into
account from the IMU data for analysis.

3.2 MOASIS
MOASIS study collects the real-life mobility data of a total of 164 participants aged
between 65 and 80 from the German-speaking region of Switzerland for a period of
two times two weeks in summer 2018. Participants are asked to carry the device
laterally on the hips, preferably in a pocket or on the belt. As one of the aims of this
thesis is to examine the classification results with and without the additional GPS
sensor beside the accelerometer sensor, only the data with the coverage of both
sensors are considered as valid data for the analysis.
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In the MOASIS dataset, the level of completeness of GPS data is lower than IMU data
due to the loss of signal for GPS sensors in some environments. Therefore, this thesis
takes the GPS data length as the criterion to select participants to be analysed. Thus,
participants with the longest valid GPS data are supposed to be selected from the
MOASIS dataset. The distribution of the valid hours of the participants (excluding 17
participants who have no recorded valid hours) processed by preliminary research
from Corti (2017, 32) can be seen in Figure 3.2. The red lines mark the data of the top
13 participants with the highest valid hours selected in the first step (only one period
of two weeks is used considering the repetitiveness of participants’ activity patterns in
both periods). With an extra selected Participant 1, a selection of 224 days and a total
of approximately 2202 valid hours is completed (Corti 2017, 32).

Figure 3.2 Valid hours distribution of participants in MOASIS study

From Corti’s inspection, the quality of the data is not as ideal as expected. Due to the
large scale of resolution loss, some parts of the recorded data frequency end up as
around 0.2 to 2 HZ (Corti 2017, 33). By Corti’s research in transportation mode
detection, a total of 9,824 valid minutes (stationary status excluded) are screened out
of the aforementioned 2020 hours based on the minimum requirement of 0.5 HZ for
the analysis. In summary, taking the resolution into consideration, the valid time
segment from the top 13 participants plus Participant 1 is 9,824 minutes.

Further, since the aim of this thesis is to study Physical Activity, a part of the data that
records the passive-active status (with transportation) of the participants is not useful.
Therefore, a second examination of the valid hours for physical activity detection
among the selected 14 participants is conducted. For this purpose, a threshold is
applied here to exclude participants who have long records of transportation but short
records of physical activities (different levels of walking, and jogging). More
specifically, a rank of participants is conducted by counting the GPS observations
within a speed of 9m/s, which is a knowledge-based high-level walking and jogging
speed for older people from literature. It is noteworthy here that biking is not taken
into consideration, since its speed range overlaps with the speed ranges of
transportations, and is thus not distinguishable by the threshold-based method. From
the results shown in Figure 3.3, 10 participants marked by the red frame are finally
selected for the further labelling procedure.
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Figure 3.3 Valid approximate walking hours distribution of the 14 top participants

3.3 Labelling of MOASIS data

In the MOASIS project, participants are not required to record their physical activities.
Therefore, the physical activity types are labelled manually through a labelling
Application Shiny App. The interface of the App is shown below (Figure 3.4).

Figure 3.4 the Interface for the Labelling Application Shiny App

On the right side of the interface, the up part bar shows an overview of the whole
trajectory of the participant in different colours representing different physical activity
modes. In the middle, a map displays the participant’s trajectory every 10 minutes. On
the bottom, two axes display the speed from the GPS sensor, and total acceleration
from the Accelerometer sensor according to the trajectory in the map. By the click of
the signal wave on either of the axes, the respective signal recorded location is shown
on the map as a red circle. At the same time, the App console gives information on the
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altitude of the location. This function is a modification of the App for more
convenient labelling of the ascending and descending segments. With the above
information, trajectories are labelled using the options from the left side of the
interface.

It is noteworthy that given one of the aims of the thesis is to exam real-life data, the
selection of physical activity types to be recognised in this thesis is driven by the data
itself. Also, the activity types are also constrained by the limitation of the manual
labelling strategy. This results in less refined classes of activities. However, it also
reveals the real-life situation of the physical activities of older adults.

Before the labelling process, a preprocessing is conducted to improve the data quality.
As stated above, this thesis supposes to use data from the GPS sensor. Due to the
consideration of the low quality of altitudes obtained by the GPS sensor, a mapping of
the observations to the high-resolution DEM (digital elevation model) of Switzerland
to obtain more accurate altitudes is conducted by QGIS. Figure 3.5 shows the
Participant 1037’s trajectories as blue dots distributes on the DEM raster of
Switzerland.

Figure 3.5 Mapping participants locations to high resolution DEM

Since the DEM provides only the outdoor ground elevations than altitudes of the
activities’ observations in indoor buildings, the classification process should only
include outdoor activities. Therefore, the first step in labelling is to exclude the indoor
walking segments. Indoor walking segments are observable by this App shown as
trajectories inside the buildings. One can see the indoor and outdoor walking
segments of the same participant (Participant 1044) from Figure 3.6.
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Figure 3.6 Comparison of indoor and outdoor walking

Second, among outdoor activities, different physical activities have different speed
values. In the paper from (Park et al., 2011), for older adults, the non-level statistical
walking speed is between 1m/s to 4.5m/s, the levelled walking speed is between
3.5m/s to 6m/s, the jogging speed is between 6m/s to 9m/s, and the cycling speed is
between 12m/s to 25m/s. Therefore, the label of Slow walk, Fast walk, Jogging, and
Biking can be conducted given the knowledge-based threshold.

Table 3.1 threshold based on GPS speed values for the 4 activities
Activities GPS speeds
non-level walking speed
(Slow walk)

1m/s - 4.5m/s

levelled walking speed
(Fast walk)

3.5m/s - 6m/s

Jogging 6m/s - 9m/s
Biking 12m/s - 25m/s

In the labelling procedure in this thesis, considering the data itself, the threshold for
Slow walk and Fast walk is set as 3m/s. And the Jogging activities are recognized as
speeds higher than 6 m/s and below 10m/s. The biking segments are defined as most
observations have speed values above 10m/s. Except for the speed from GPS sensor,
the acceleration values also exert different characteristics for the manual
differentiation of activities. The fluctuation amplitudes of total acceleration differ
among activities. Jogging fluctuates most, followed by fast walk, slow walk, and then
biking.

Third, as mentioned above, ascending and descending activities are mostly labelled by
the altitudes of the participants’ locations. Depending on the property of the data itself,
the two types of activities are mostly taken from the hiking segments from
participants. Figure 3.7 shows one ascending segment labelled from the hiking trip
from one of the participants.

Figure 3.7 Ascending segment (a) and the increasing altitudes displayed in the
console (b)

In addition, there exist short periods of stationary points among long walking
trajectories. It makes more sense to leave them for classification as it represents a
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real-life circumstance. However, long stationary periods are removed from the valid
data for PA recognition. Besides, there are other types of activities that are found out
during the labelling processing, such as possible golf-playing, rowing activities, etc.
However, these activities have a relatively short time frame compared to others, and
have uncertainty determined by the environment in visual inspection. Therefore, these
activities are categorized as the others activities, which are not included in the
classification process. Figure 3.8 shows the removed activity segments in the river
that reckoned as a possible rowing segment.

Figure 3.8 Other activities

In the end, there are in total 7 most common physical activity types found out from
participants in this dataset, namely Slow walk (outdoor), Fast Walk (outdoor),
Descending, Ascending, Jogging, Biking, and Short Stationary (later referred as
Stationary). Figure 3.9 shows different activities labelled in different colours in the
window size of 10 minutes. Given the window length for trajectories in each display
as 10 minutes and the participants’ activity pattern, the minimum segment resolutions
are around 1.5 to 3 minutes.
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Figure 3.9 Different activities labelled in different colours

Figure 3.10 shows the amount and distribution of the 7 types of activities per minute
used from the MOASIS dataset used in this study. The Slow walk has the highest
number of records (more than 2500 minutes), followed by Fast walk and Ascending.
The other modes of physical activities have lower fewer observations, especially
stationary has very little data (around 300 minutes). Overall speaking, the time length
distribution of the activity types are not balanced. This implies the importance to
select proper cross-validation methods to split the data and train the models in the
next steps.

Figure 3.10 the amount of the 7 types of physical activities
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4 Methods

This thesis aims to classify the manually labelled real-life physical activity data of
older adults to find out the best classifiers for older adults’ PA recognition. The whole
PA recognition process follows the normal procedure for PA recognition described by
(Bulling et al. 2014). The procedure consists of four steps, namely pre-processing,
segmentation, feature extraction, classification. Figure 4.1 illustrates the procedure in
an intuitive way. This study uses python version 3.7.4 to perform the whole
classification procedure. An overview of the scripts for analysis and the key functions
can be seen in Table (Appendix 8.2).

Figure 4.1 PA classification steps

4.1 Pre-processing
In the manual labelling process (Chapter 3.3), an initial pre-processing to remove the
long stationary periods and transportation periods, as well as the invalid and
incomplete sensor coverage is already realized by visual inspection of sensor signals.
After the data cleaning, a further step to process the GPS and Accelerometer data is
performed.

First, the acceleration signal is highly fluctuating and is composed of 2 components -
the fast-varying component due to physical activities (AC) and the slow-varying one
due to the gravitational force acting on the body (DC) (Dehzangi et al., 2018). A low
pass filter can separate the slow-varying body component of acceleration. A high pass
filter can separate the fast-varying body component of acceleration. Figure 4.2 shows
an example of the low pass filter and high pass filter (Bayat et al., 2014) In this thesis,
a digital low pass filter from the paper by Bayat et al. (2014) is applied to the signal
and leave the fast-varying component to be further analysed. From the paper, the low
pass filter is calculated as follows: ADC[n] = a1A[n]+b1ADC[n−1], where ADC is the
filtered output data and A is the raw input data. The filter coefficients a1 and b1 are
constants that are computed using sampling rate and cut-off frequency. It is reported
that optimal cut-off frequency in order to exclude the gravity component alone would
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range from 0.1 to 0.5 HZ (Fujiki et al., 2010). This thesis takes the cut-off frequency
as 0.25HZ, and the sampling rate is determined by the IMU sampling rate as 50 HZ.
The scripts for the low pass filter can be found in Table 8.5 (Appendix 8.2).

Figure 4.2 low pass filter (Left) result in gravitational acceleration, high pass filter
(Right) result in body acceleration (Bayat et al., 2014)

Second, for the GPS data, each entry’s speed value is recalculated by averaging the
values of the adjacent entries to reduce the abnormal values. The code for the GPS
speed recalculation can be found in Table 8.5 (Appendix 8.2) as well.

4.2 Segmentation

Compared to the accelerometer sensor sampling rate (50Hz in this thesis), human
activities are performed over a longer time. Thus, a single sample at a specific time
instant does not provide sufficient information to define an activity (Dehzangi et al.,
2018). To classify the activities, signal segmentation needs to be performed to extract
quantitative measures to compare the signals’ characteristics. Signal segmentation can
be in general performed by two strategies, namely energy-based strategies and sliding
window strategies. Energy-based segmentation is based on the fact that different
activities are performed with different intensities which are represented as different
energy levels. By defining the threshold E (energy of a signal), data segments
identified are likely to belong to the same activity (Bulling et al., 2014).

Sliding window strategies divide the continuous signal streams into a certain length of
windows. It is assumed that all information of each activity class can be extracted
from each single window by choosing a proper window length. A sliding-window
strategy can be determined by two factors, the window size and the step size. The
window size represents the time length of each segmentation, and the step size is the
adjacent windows’ distance to each other. When the step size equals to the window
size, the segments to be classified has no overlap. Otherwise, the segments extracted
are overlapped. In sliding window segmentation, the window size has an direct impact
on the delay of the recognition system. The larger the window size, the longer it takes
for the next segments to be available for processing. Also, the window size can
influence the recognition performance. Therefore, the step size is subject to a trade-off
between segmentation precision and computational load. The larger the step size, the
less the computational load, but also the less accurately the segmentation borders can
be defined (Bulling et al. 2014).
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A proper window size depends on the classes themselves to be recognized. For
instance, the time to perform different physical activities is in general relatively much
shorter than the time for transportation modes. Therefore, the proper window lengths
are different for physical activities and transportation modes though the recognition of
them usually employs the same types of data (IMU, GPS) and features. The proper
window length to classify physical activities has been studied in many papers. The
following table 4.1 lists the data quality and window of length applied in the relevant
studies. It can be seen that the most common window lengths are in a high resolution
of several seconds. However, in this study, rather longer window lengths of 180s, 90s,
60s are tested to investigate the most suitable classification window lengths for the
data in this thesis. The selection of the window lengths takes two aspects into account.
First, the minimum manual segmentation resolution for different activities is around
90 seconds. Therefore, too short segmentation lengths for classification are not very
meaningful. Second, as mentioned in the last section, due to the loss of resolution in
the labelling process, the labelled data for classification only has a frequency of 1
record per second. Compared to the general 50 - 100 HZ settings with 2s - 5s window
lengths, the number of records for classification in the 1HZ setting should be similar
as around 100 - 500 records, which end up with the window length selection of 60 -
180 seconds. This thesis also intends to compare if the overlap in window
segmentation would have an influence in the results. To this purpose, windows with
and without the overlaps (50%) are also applied and compared in the classification.
After the segmentation, the information is then transformed into a feature vector by
computing a variety of features within each window.

Table 4.1 Sampling frequencies and window types in literature
Literature Sensor Frequency for

Accelerometers
Window
length

Overlap/St
ep size

Zhang et al.
( 2011 )

a 3-axis
accelerometer, a 3-
axis gyroscope

100HZ 2s 50%

Baldominos et
al. ( 2015 )

a 3-axis
accelerometer,
a heart rate
monitor

100HZ, 9HZ 5.12s -

Saez et al.
(2015)

2 accelerometers,
a gyroscope,
a magnetometer

100HZ 5.12s -

Ordonez et al.
(2016)

5 accelerometers,
5 gyroscopes,
5 magnetometers

30HZ 5s 50%

Peterek et al.
(2014)

a 3-axis
accelerometer,
3 axial angular
velocity sensor

50HZ 2.56s 50%
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4.3 Feature calculation

4.3.1 Accelerometer features

4.3.1.1 Time and frequency features
After pre-processing, acceleration signal features as the time and frequency
representations are derived from the selected participants’ motion signals. These
features are then used for activity recognition. This is based on the knowledge that
various types of activities exert different characteristics in the time and frequency
domain. For example, it can be seen from Figure 4.3 that the central tendency from
accelerometer/gyroscope signal amplitudes can be used as a distinctive feature to
distinguish laying from rest (Dehzangi et al., 2018) irrespective of the time domain
position. However, from the figure, among walking activities, the total acceleration
and gyroscope values are not enough in distinguishing the activity types. Therefore, a
close examination of different features is the key to perform the most efficient and
accurate classification.

Figure 4.3 Activity-wise Boxplot for accelerometer and gyroscope signals (Dehzangi
et al., 2018)

For the accelerometer sensor in PA detection, there are a considerable number of the
time and frequency features that can be extracted for the quantitative representation of
signals in literature. Table 4.2 summarizes the most common features in the time and
frequency domains. The definition of these features can be found in Table 4.3.

Table 4.2 Most common features in the time and frequency domains for
accelerometer sensor

Time domain features mean, median, range, mean, max, average, variance, standard
deviation, interquartile range of three axes and total acceleration;
kurtosis, skewness of three axes;
number of observations falling within each of 10 bins of the three
axes;
number of peaks (step counting), peak amplitude, peak time
interval, peak-to-peak distance of three axes;
absolute deviation, zero crossings;
lag-one autocorrelation, autocorrelation sequence;
(Allahbakhshi et al., 2019, Allahbakhshi et al., 2020)

Frequency domain features power spectral density, energy of the signal;
Mean, amplitude, power of the top (three) dominant frequencies
of three axes and total acceleration;
spectral entropy, cross-spectral densities, power of dominant
frequency;
(Allahbakhshi et al., 2019, Allahbakhshi et al., 2020, )
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4.3.1.2 Statistical and physical features
Besides the categorization by time and frequency representations, Zhang et al. (2011)
categorized features as physical representations and statistical representations. From
their definition, statistical features (see Table 4.3) are features computed from each
axis of the accelerometer or gyroscope sensors individually. While physical features
are usually extracted from multiple sensor channels. During the process, sensor fusion
is performed at the feature level. This is based on the definition of physical features as
our physical interpretations of human motions. Table 4.4 listed the physical features
designed by Zhang et al. (2011) that only need one non-directional accelerometer, and
can be applied in this study.

Table 4.3 Statistical features with brief descriptions (Zhang et al. 2011)
Statistical feature Description
Mean The average value (DC component) of the signal over the window
Median The median signal value over the window
Standard Deviation Measure of the spreadness of the signal over the window
Variance The square of standard deviation
Root Mean Square The quadratic mean value of the signal over the window
Averaged derivatives The mean value of the first order derivatives of the signal over the

window
Skewness The degree of asymmetry of the sensor signal distribution
Kurtosis The degree of peakedness of the sensor signal distribution
Interquartile Range Measure of the statistical dispersion, being equal to the difference

between the 75th and the 25th percentiles of the signal over the
window

Zero Crossing Rate The total number of times the signal changes from positive to
negative or back or vice versa normalized by the window length

Mean Crossing Rate The total number of times the signal changes from below average to
above average or vice versa normalized by the window length

Pairwise Correlation Correlation between two axes (channels) of each sensor and
different sensors

Spectral Entropy Measure of the uniformity (irregularity) distribution of signal
frequency components

Power spectral density Measure of power of the signal as a function of per unit frequency

Table 4.4 Physical features with brief descriptions (Zhang et al. 2011)
Physical feature Description
Movement Intensity (MI) The Euclidean norm of the total acceleration

vector after removing the static gravitational
acceleration.

MI(t) = ��(�)2 + ��(�)2+��(�)2

This feature is independent of the orientation of
the sensing device, and measures the
instantaneous intensity of human movements at
index t. MI is not used directly. Instead, the mean
(AI) and variance (VI) of MI over the window are
computed.
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Normalized Signal Magnitude Area (SMA) The acceleration magnitude summed over three
axes within each window normalized by the
window length. This feature has been used in
previous studies and is regarded as an indirect
estimation of energy expenditure.

Eigenvalues of Dominant Directions (EDD) The top two eigenvalues of the covariance matrix
of the acceleration data along x, y, and z axis in
each window. This feature measures the
corresponding relative motion magnitude along
the directions. The first two eigenvalues
correspond to the relative motion magnitude along
the vertical direction and the heading direction
respectively.

Dominant Frequency (DF) The frequency corresponding to the maximum of
the squared discrete FFT component magnitudes
of the signal from each sensor axis.

Energy (ENERGY) The sum of the squared discrete FFT component
magnitudes of the signal from each sensor axis
divided by the window length.

Averaged Acceleration Energy (AAE) The mean value of the energy over three
acceleration axes.

Correlation between Acceleration along Gravity
and Heading Directions (CAGH)

The correlation coefficient between the
acceleration in gravity direction and the derived
acceleration along heading direction.

Averaged Velocity along Heading Direction
(AVH)

The Euclidean norm of the averaged velocities
along the heading axes over the window.

Averaged Velocity along Gravity Direction
(AVG)

The averaged the instantaneous velocity
along the gravity direction at each time t over
the window.

4.3.1.3 Distinctive features
With the introduction of a wide range of features, it can be seen that a large number of
features are calculated to train the classifiers in studies. Table 4.5 lists the number of
features calculated at the beginning and selected in the end to train the models (if
there is a feature selection process) in literature.

Table 4.5 The number of features calculated and used in the end for classification
Literature Number of features

calculated
Number of features
used to train the
classifier

Feature selection
methods

Zhang et al. (2011) 110 50 SFS
Allahbakhshi et al.
(2020)

85(1 sensor)/425
(5sensors)

85/425 -

Dehzangi et al. (2018) 561 9 Neighborhood
Component Analysis

Peterek et al. (2014) 561 211 CFS

From the table, most papers used more than 100 features to train the classification
models. However, a large set of features would cause redundancy, and result in poor
generalization of the models. Therefore, it is important to select distinctive features
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among a large number of features. In Table 4.6, distinctive features that can recognize
different types of activities are summarized from several studies.

Table 4.6 Distinctive features to separate different types of physical activities (Bao et
al., 2004; Zhang et al., 2011; Zheng et al., 2015)

Types of activities Distinctive Features
Stationary vs. Moving Movement Intensity (MI)
Standing vs. Sitting Averaged Acceleration Energy (AAE), Total Acceleration Entropy, Total

Acceleration Mean
Running & Jumping vs.
Walking

Variance, Eigenvalues of Dominant Directions (EVA), Averaged
Acceleration Energy (AAE)

Running vs. Jumping Eigenvalues of Dominant Directions (EDD), Correlation between
Acceleration along Gravity and Heading Directions (CAGH)

Walking left & walking
right vs. Walking
forward vs. Walking
stairs

Averaged Velocity along Gravity Direction (AVG), Averaged Rotation
Angles related to Gravity Direction (ARATG), Correlation between
Acceleration along Gravity and Heading Directions (CAGH), Total
Acceleration Entropy (TAE), Total Acceleration Mean

Walking left vs.
Walking right

Correlation between Acceleration along Gravity and Heading Directions
(CAGH)

Walking upstairs vs.
Walking downstairs vs.
Non-level walking

Correlation between Acceleration along Gravity and Heading Directions
(CAGH), Averaged Velocity along Gravity Direction (AVG); Eigenvalues of
Dominant Directions (EDD), Auto-correlation of total acceleration, Power
Spectral Density, Total Acceleration Angle Entropy, Total Acceleration
Mean

Based on the above review of accelerometer features for PA classification, this thesis
selects two parts of the features (see Table 4.7) from the accelerometer sensor, namely
the distinctive features as the first part of features, and other non-distinctive features
(other common time and frequency domain features) as the second part of features.
The scripts for feature calculation can be found in Appendix 8.2. The selected features
in this step are further feed into the next feature selection process. Later, features will
be tested on the classifiers to find out their importance in the performance of the
classifiers. The top important features ranked by the classifiers will be analysed to see
if there are other important features that do belong to the predefined distinctive
features reviewed from literature. This step intends to find out other distinctive
features for the activity category in this thesis beside what summarized in Table 4.6
above.

Table 4.7 Accelerometer features calculated for analysis
Feature
category

Features Number
of
features

Distinctive
features

Total acceleration entropy (TAE)
Eigenvalues of dominant directions (EDD)
Movement Intensity (AI, VI)
Averaged acceleration energy (AAE)
Total acceleration mean
Variance of three axes and total acceleration
Auto-correlation of total acceleration
Power spectral density

16

Non-
distinctive
features

mean, median, range, minimum, maximum, average, standard deviation,
interquartile range of three axes and total acceleration
kurtosis, skewness of three axes
number of peaks (step counting), peak amplitude (total and mean

95
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amplitudes in each window), peak time interval, peak width, peak-to-peak
distance of three axes
zero crossings, average crossings
Autocorrelation of signals in three axes
Energy of the signals in three axes
Mean, amplitude, power of the top (three) dominant frequencies of three
axes and total acceleration

4.3.2 GPS features

For the GPS sensor, its usage in PA recognition is rare. In Allahbakhshi et al.’s (2019)
study, features extracted from the GPS sensor are two statistical representations (mean,
variance) of the speed. In Wu et al.’s (2011) research in time-activity pattern
recognition, only GPS data was implemented to classify the activity patterns by a
rule-based model and random forest model. In this study, the features derived were
acceleration rate, speed, distance difference, and distance ratio. Acceleration rate was
defined as the change in speed between a given point and the previous sequential
point. The distance difference was calculated for any three sequential points. The
distance ratio was calculated for a series of sequential points as the ratio between (a)
distance between the first sequential point and the last sequential point in the series
and (b) the sum of the distance for all line segments formed by sequential points in the
series. A series was defined as various averaging time intervals ranging from 2 to 60
minutes and centered at each GPS point. The study successfully classifies the indoor,
outdoor and in-vehicle status with 88% accuracy. However, the outdoor walking types
and outdoor stationary detection by the GPS data in this study were not ideal.

Nevertheless, more GPS features can be inferred to inspect its contribution to the PA
recognition topic. For example, the GPS sensor is an indispensable sensor in trip
purpose inference (Gonzalez et al., 2008, Deng et al., 2010, Gong et al., 2014). The
attributes of GPS data may vary depending on the types of GPS devices. They
generally include: valid code marking, date, time, latitude, longitude, altitude, NSAT
(the number of satellites that a GPS device used to calculate its position), HDOP
(horizontal dilution of precision, measuring how the satellites are arranged in the sky
at the time of the record), speed, and heading (Gong et al. 2014). In trip purpose
identification, GPS information is generally combined with other types of information,
such as GIS information (land use data) to infer the trip purpose of participants (Deng
et al., 2010). The features can be extracted in this topic are the duration of the trips,
the distance of the trips, heading direction, GPS signal quality, HDOP, etc (Gong et al.
2014). The GPS sensor is also widely used in the Indoor/outdoor detection theme. For
example, Bui et al. (2020) used the number of satellites to detect indoor and outdoor
environments and reached an overall accuracy of 97%. This thesis decides to calculate
the GPS features shown in Table 4. for classification. Three distance features measure
three types of (spatial, horizontal, and vertical) distances between the start- and end-
points of segments. Three statistical features measure three aspects of the speed
values of one activity segment. The other dimensions of GPS data such as HDOP,
Number of satellites are not used in the analysis, since these features are only useful
in detecting indoor activities from outdoor ones.

Table 4.8 GPS features applied
GPS features Distance of locations between the start and end points of the segment (spatial
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distance, horizontal distance, vertical distance); mean, variance, max speed

In summary, with the combination of 112 features from the Accelerometer sensor and
6 features from the GPS sensor, a total of 118 features are used for the feature
selection process. The features from GPS sensor, accelerometer sensor, and both
sensors will be tested to check the importance of sensor dimensions on the
classification results.

4.4 Dimension reduction
In the past years, the number of features that can be used in machine learning
applications has risen drastically from tens to hundreds for a more comprehensive
description of the process to be recognized. However, too large domain of feature can
result in irrelevant and redundant variables which would even confuse the classifier
and decrease the prediction performance. “Curse of dimensionality” describes the
phenomenon that the performance might degrade sharply when more features are
added, while the training data is not enough to learn all the parameters of the activity
models reliably (Zhang et al., 2011). There are two main techniques in reducing
dimensionality, namely feature transformation (feature extraction) and feature
selection (Masaeli et al., 2010). Feature transformation creates new features by
transformations or combinations of the original feature set. Feature selection (variable
selection) selects the most distinguishable subset from the original feature set. Feature
selection is different from feature transformation in that no new features will be
generated, but only a subset of original features is selected and the feature space is
reduced (Liu et al., 1998). As to feature transformation, feature construction often
expands the feature space, whereas feature extraction usually reduces the feature
space (Liu et al., 1998). On machine learning, dimension reduction helps in reducing
computation time and improving classification performance.

Table 4.9 Dimension reduction category
Dimension
reduction

Description Advantages and
disadvantages

Feature
transformation

Feature transformation creates new
features by transformations or
combinations of the original feature set.
By this method, feature relevance is
optimized and feature space are usually
expanded.

Good generalization
ability in new data
but difficult to
interpret

Feature
selection

Feature selection selects the most
distinguishable subset from the original
feature set. By this method, feature space
are usually reduced.

Might result in poor
generalization ability
in new data, but is
helpful in
understanding the
data itself

4.4.1 Feature transformation

Feature transformation is a process that discovers missing information about the
relationships between features and augments the space of features by inferring or
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creating additional features (Liu et al., 1998). Transformation-based methods can be
either linear or non-linear. Linear transformation-based methods, such as principal
components analysis (PCA), linear discriminant analysis (LDA), find a transformation
matrix to transform the original high-dimensional data into a lower-dimensional form.
For non-linear methods (such as kernel PCA, kernel LDA), the goal is to find a non-
linear mapping to a lower-dimensional space that optimizes some criterion.

4.4.1.1 Principal components analysis
PCA is one of the most popular feature transformation approaches that can reduce the
dimensionality of data by transforming original features into new mutually
uncorrelated features (Sukor et al. 2018). The new features are called principal
components which are arranged according to their variances. And the other
components that contribute to the lowest variances are usually omitted. The PCA
process can be represented as steps below(Sukor et al. 2018) shown in Table 4.5.

Table 4.10 PCA process
Steps of PCA
1. Normalize the data
2. Calculate the covariance matrix
3. Calculate the eigenvectors and eigenvalues of the
covariance matrix
4. Choose the components with the highest variances and
form a feature vector
5. Derive a new dataset

In Ding’s et al (2004) study, the authors explored the connection between the
two widely used methods Kmeans and PCA. It is proved that principal components
were actually the continuous solution of the cluster membership indicators in the K-
means clustering method, i.e., the PCA dimension reduction automatically performed
data clustering according to the Kmeans objective function (Ding et al. 2004). This
provided an important justification for PCA-based data reduction for Kmeans
classification. The authors applied Kmeans clustering on the PCA subspace from the
original 1000 dimensions to 40, 20, 10, 6, 5 dimensions respectively. The result
showed that as dimensions are reduced, the performance of the Kmeans classifier
systematically and significantly improved. For example, for one of the test datasets,
the cluster accuracy improved from 75% at 1000-dimensions to 91% at 5-dimensions.

PCA method is also used to maintain a good balance between the computational time
criterion and performance accuracy criterion. El Moudden (2016) combined PCA
with KNN classifier and at largely reduced the computational time of the high 561-
dimensional data from 148080 seconds to 171 seconds with 26 dimensions with a
minimized the accuracy score loss from 99.19% to 94.83%

4.4.2 Feature selection

In machine learning, Feature selection eliminates irrelevant variables that provide no
extra information about the classes. To remove irrelevant features, a feature selection
criterion that measures the relevance of each feature with the output class/labels is
applied. From this point of view, compared to feature extraction, the generalization
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ability of feature selection results might be lower. This is because that in feature
extraction the good features selected can be independent of the rest of the data/ label
itself, while feature selection might lead to poor generalization in a new dataset (Liu
et al., 1998). However, feature selection can result in a better understanding of the
data itself due to the process of feature transformation that projects high dimensional
features to a low dimensional feature space lost the representational meanings of the
features themselves.

Feature selection methods can be broadly categorized into 3 types: filter methods,
wrapper methods, and embedded methods. A description with the advantages and
disadvantages of the feature selection methods can be found in Table 4.6.

Table 4.11 Feature selection methods
Feature selection
methods

Description Advantages Disadvantages

Filter methods rank the features for a
goodness measure and selects
the best k features.

faster and simpler lower results,
poor
generalization

Wrapper
methods

comprise an induction
algorithm and a
Classifier which provides the
fitness value for the induction
algorithm

Better
classification
results

Higher
computational
costs,
overfitting and
poor
generalization

Embedded
methods

include the feature selection
as part of the predictor
without splitting the training
and testing data

Reduced
computational
time, good
generalization

4.4.2.1 Filter method and ReliefF
Filter methods rank the features by scoring individual variables before applying them
to the predictor. Filters are generally considered as most faster and simpler algorithms.
Some filter measures applied in the literatures (see Table 4.7) are Pearson correlation
coefficient (Chandrashekar et al., 2013), Mutual Information (Chandrashekar et al.,
2013), R-square (Tulumet et al., 2013), false discovery rate (Tulumet et al., 2013),
and etc. This thesis select ReliefF as the filter method for further analysis.

Table 4.12 Filter methods
Filter methods Definition

Pearson correlation coefficient Linear dependencies between
variable and target

Mutual Information Dependencies measured by
uncertainty (information content) of
one variable under the condition of
the other

R-squared Dependencies measured by the
proportion of the variance for a
variable in a regression model

false discovery rate Dependencies measured by the rate
of type I errors in null hypothesis
testing
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ReliefF algorithm is an extension of the Relief algorithm which is applicable to dual-
class problems. The core idea behind the Relief algorithms is to estimate the quality
of attributes based on how well their values distinguish between instances that are
near to each other (Robnik-Šikonja et al. 2003). For that purpose, given a random
instance Ri, Relief first searches its two nearest neighbors, one from the same class,
called nearest hit H, the other from the different class, called nearest miss M. Second,
the quality estimations W[A] for attributes A is updated by the values for R, M, and H.
Second, the quality estimation W[A] increases when the attribute A values for Ri and
M are different, which indicates that attribute A is desirable in separating the two
instances Ri and M. On the contrary, the quality estimation W[A] decreases when the
attribute A values for Ri and M are different, which indicates that attribute A is not
desirable in separating the two instances Ri and M. In the third step, the whole process
is repeated for m times, where m is a user-defined tuning parameter.

ReliefF as the extension of Relief, is not limited to two-class problems. Similarly,
ReliefF searches for k of one instance’s nearest neighbors (hits Hj and miss Mj)
instead of one from the same and the other classes in the first step. In the second step,
the quality estimation W[A] is updated by the average of the contribution of all the
hits and all the misses. The contributions of each class are different, and will be made
by weighting misses of each class with the prior probability of that class P(C). The
probability sum of classes of misses is set to 1. Due to the hits’ class is missing, in the
sum each probability weight is divided by factor 1 − P (class(Ri)) (the sum of
probabilities for the misses’ classes). The process is repeated for m times. User-
defined tuning parameter k controls the locality of the estimates. Most of the time, it
can be safely set to 10 (Robnik-Šikonja et al. 2003).

Figure 4.4 Pseudo code of ReliefF algorithm (Robnik-Šikonja et al. 2003)

Compared to Relief, ReliefF ensures greater robustness and can deal with incomplete
and noisy data. To deal with incomplete data, missing values of attributes can be
treated probabilistically. Nevertheless, the data used in this thesis has been removed
records with missing values in the previous preprocessing step.

4.4.2.2 Wrapper methods and Genetic Algorithm
Wrapper methods select features based on the performance of the predictor by a
number of search algorithms. Wrapper methods consist of an induction algorithm
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such as genetic algorithm or a similar optimization method, and a classifier which
provides the fitness value for the induction algorithm (Chandrashekar et al., 2013).
Wrapper methods in general give better results but have higher computational costs
compared to filter methods. Wrapper methods can be broadly classified into
Sequential Selection Algorithms and Heuristic Search Algorithms (Chandrashekar et
al. 2013).

Sequential Feature Selection (SFS) Algorithms starts with an empty set and adds one
feature per step which can give the best value for the objective function. This process
is repeated until the required number of features are added. In this process, each
individual feature is permanently included if it is selected. As an extension of the SFS,
Sequential Floating Forward Selection (SFFS) algorithm introduces an additional
backtracking step and is more flexible. It adds anther step which excludes one feature
at a time from the subset obtained in the first step and evaluates the new subsets by
the value of the objective function. If the value is decreased it will go back to the first
step with the new reduced subset. This process is repeated until required performance
is reached.

Genetic Algorithms (GA) are a type of common heuristic search algorithms. GAs are
a family of computational models inspired by Darwinian Evolution (Cilla et al. 2009).
These algorithms apply a simple chromosome-like data structure on a population of
individuals, where each one represents a different solution to a problem, and uses
selection and recombination operators to generate new sample point in a search space
(Whitley 1994). In feature selection, chromosome bits represent if the feature is
included or not, and the global maximum for objective function, which is the
predictor performance can be found which gives the best suboptimal subset. This
search method does not guarantee to find the optimal solution (Cilla et al. 2009). As
one the wrapper methods, one of the drawbacks of the GA method is that the
computational cost is high. Besides, using the classifier performance as the objective
function tends to cause overfitting and result in poor generalization. The pseudocode
of a simple genetic algorithm can be seen below Table 4.13 (Cilla et al. 2009).

Table 4.13 pseudocode for Genetic Algorithm
Algorithm2 Genetic Algorithm
Population ← init
while stop condition is not satisfied do
Evaluate(Population)
NextPopulation ← selection(Population)
NextPopulation ← reproduction(Population)
Population ← replacement(Population, NextPopulation)

end while
Solution ← best(Population)

The main drawback of Wrapper methods is that the number of computations required
to obtain feature sets. For each feature subset, the predictor creates a new model. If
the number of samples is large, the algorithm spends a large amount of time in
training the predictor. Another drawback of using the classifier performance as the
objective function is that the classifiers are prone to overfitting. Using classification
accuracy in subset selection can result in a bad feature subset with high accuracy but
poor generalization power.
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4.4.2.3 Embedded methods
Embedded methods include feature selection as part of the predictor without splitting
the training and testing data. This means that the feature selection is incorporated as
part of the training process, thus the computation time is reduced largely. Embedded
methods differ from other feature selection methods in the way feature selection and
learning interact. Filter methods do not incorporate learning in feature selection.
Wrapper methods use a learning machine to measure the quality of subsets of features
without incorporating knowledge about the specific structure of the classification or
regression function (Lal et al., 2006). Therefore wrapper methods can be combined
with any learning machine. In contrast to filter and wrapper approaches, embedded
methods do not separate the learning from the feature selection part— the structure of
the class of functions under consideration plays a key role (Lal et al., 2006). Therefore,
unlike the wrapper methods, the combination of the feature selection method and the
classifier is not always commutable.

SVM-RFE method is one of the most popular embedded feature selection methods in
literature (Chapelle et al., 2008). SVM-RFE method applies an SVM classifier to
perform Recursive Feature Elimination (RFE) that uses the weights of features as the
ranking and the change of objective function as the search criteria. Recursive Feature
Elimination (RFE) attempts to find the best subset of size k by a kind of greedy
backward selection, given that one wishes to employ only k < n input dimensions in
the final decision rule (Guyon et al. , 2002). It operates by trying to choose the k
features which lead to the largest margin of class separation, using an SVM classifier
(see Chapter 4.5.2). This is solved by removing the input dimension that decreases
the margin in a greedy manner at each iteration of training the least until only k input
dimensions remain. The pseudocode of a simple Recursive Feature Elimination (RFE)
algorithm can be seen below Table 4.14. The algorithm can be accelerated by
removing more than one feature in step 2.

Table 4.14 pseudocode for Recursive Feature Elimination
Algorithm3 Recursive Feature Elimination (RFE) in the
linear case
1. Repeat
2. Find w and b (for SVM classifier) by training a linear
SVM
3. Remove the feature with the smallest value|wi|.
4. Until k features remain

Similar to optimizing the SVM equation and assigning weight to features, the same
can be done with Neural Networks. A feed-forward neural network, or multi-layer
perceptron (MLP), is a computational model that processes information through a
series of interconnected computational nodes. These computational nodes are grouped
into layers and are associated with one another by weighted connections. The nodes of
the layers are called units (or neurons) and transform the data by means of non-linear
operations to create a decision boundary for the input by projecting it into space
where it becomes linearly separable (Ordonez et al., 2016).In the multilayer
perceptron networks, Network Pruning is commonly used to obtain the optimum
network architecture. For example, a penalty can be applied for features with a small
magnitude at the node and the nodes connecting to these features are excluded.
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4.5 Classifiers

4.5.1 Kmeans

The K-means algorithm is a popular data-clustering algorithm. K-means cluster
unsupervised learning method classifies the data by categorizing a dataset into a
definite number k of clusters. The method uses k prototypes, the centroids of clusters
mk, to characterize the data. They are determined by minimizing the sum of squared
errors of each node Xi’s distance to the centriod mk of the cluster Ck (Pham et al.,
2005). The K-means algorithm implementation in many software packages requires
the number of clusters to be specified by the user. To find a satisfactory clustering
result, usually, a number of iterations are needed where the user executes the
algorithm with different values of K. When K-means clustering is used as the
unsupervised classifier, the number of clusters k is equated to the number of classes in
the data sets. The standard iterative solution to K-means suffers from a well-known
problem: as iteration proceeds, the solutions are trapped in the local minima due to
the greedy nature of the update algorithm. K-means Classifier is not considered as an
effective method in PA type recognition, but it is sometimes applied in PA intensity
detection. Zhao et al. (2018) detected four categories of human activities: light-
intensity activity, moderate-intensity activity, vigorous-intensity activity, and fall by a
user-adaptive algorithm based on K-Means clustering with inertial sensor signals.

4.5.2 SVM

Support Vector Machines (SVMs) are state-of-the-art large margin classifiers that
have gained popularity in PA classification. Support Vector Machines were
introduced by Cortes et al. (1995). The basic idea is to find a hyperplane that
separates the D-dimensional data perfectly into its two classes. Since no prior
knowledge about the data distribution is given, the optimal hyperplane w• x + b = 0 is
the one which maximizes the margin (see Figure 4.5). The optimal values for w and b
can be found by solving a constrained minimization problem.

Figure 4.5 Hyperplane that maximizes the margin in SVM (Cortes et al., 1995)
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For data that is often not linearly separable, the notion of a “kernel-induced feature
space” is introduced which casts the data into a higher dimensional space where the
data is separable (see Figure 4.6). Some useful kernels have been discovered and
applied in literature such as polynomial kernel, Gaussian RBF Kernel, etc. For
polynomial kernels, the functions to map the input data to a new feature space can be
represented by the function:

K(xa , xb) = (xa·xb+ 1)p (1)

Figure 4.6 Hyperplane that maximizes the margin in Kernel SVM (Cortes et al., 1995)

where p is a tunable parameter, which in practice varies from 1 to 10 (Boswell et al.,
2002). By using a larger value of p the dimension of the feature space is implicitly
larger, where the data will likely be easier to separate. However, in a larger
dimensional space, there might be more support vectors, which might lead to worse
generalization (Boswell et al., 2002). For Gaussian RBF Kernel, the kernel result is a
Radial Basis Function where σ is a tunable parameter with the support vectors as the
centers. So here, an SVM is implicitly used to find the number (and location) of
centers needed to form the RBF network with the highest expected generalization
performance. The past work from Sunkad et al. (2016) has shown SVM with
regularization parameter C as 100 and RBF Kernel can perform well in PA
recognition.

4.5.3 Linear Discriminant Analysis

The Linear discriminant analysis (LDA) is a parametric classification technique. The
main aim of this method is to find linear combinations of features, which provide the
best separation between classes. These combinations are called discriminant functions.
The basic principle of LDA is the measurement of metric or cosine distances between
new instances and centroid of classes. The algorithm was developed by Fischer in
1931 but in his original form the algorithm was able to classify only into two classes.
In 1988, the algorithm was improved for multi-class classification problems (Peterek
et al. 2014). Figure 4.7 shows the feature transition before and after LDA in PA
recognition (Khan et al., 2010). The LDA has a lot in common with the Principal
Component Analysis (PCA) but with the difference that PCA is more used for feature
separation and LDA does more feature classification (Peterek et al. 2014).
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Figure 4.7 feature transition before and after LDA in PA recognition (Khan et al.,
2010)

In the study from Peterek et al. (2014), the LDA classifier gave a good performance
and was considered as a promising classifier in physical activity recognition.
Moreover, Khan et al. (2010) concluded that this method was helpful in reducing high
within-class variance, and allowed subjects to carry the sensor freely in any pocket
without its firm attachment for PA recognition.

4.5.4 Decision tree

The decision tree classifier is characterized by the rule that an unknown sample is
classified into a class using one or several decision functions in a successive manner
(Swain et al., 1977). This classification strategy can be described by a tree diagram.
In general, a decision tree consists of a root node, a number of interior nodes, and a
number of terminal nodes. The root node and interior nodes, together referred to as
non-terminal nodes, are linked into decision stages. The set of nodes at a given level
in the tree is called a layer. The terminal nodes are associated with the entire set of
classes into which a sample may be classified. In the tree, each node consists of a set
of classes to be discriminated, the set of features to be used, and the decision rule to
perform the classification. Decision Tree is similar to the human decision-making
process and so that it is easy to understand. An example of decision tree on what to do
when different situations occur in weather can be seen in Figure 4.8.

Figure 4.8 Decision Tree example of what to do when when different situation
happens in weather (Patel et al., 2018)



Methods

University of Zurich, Department of GeographyPage 49

The decision tree can be designed in two ways: by the manual design procedure and
the heuristic search procedure(Swain et al., 1977). The manual design of trees relies
on expert knowledge and only provides optimal results in extremely simple cases
(relatively few classes, easily discriminated with a small number of features).
Heuristic search described as ‘guided search with forward pruning’ is more suitable
for complex problems. This method applies an evaluation function to direct a search
through the decision tree. At each stage, the function selects the node with the highest
evaluation measure, which is usually a weighted measure of classifier efficiency and
accuracy. The generated decision trees can be further pruned to meet the trade-off
between error rate and tree size. Figure 4.9 shows a decision tree generated from
physical activity data to classify 7 classes shown on the leaves nodes based on the
mean and standard deviation of the vertical and horizontal components from the
accelerometer sensor.

Figure 4.9 Decision tree generated from PA data (Yang, 2009)

There are different types of decision tree algorithms used to split the attributes to test
at any node to determine whether splitting is the best in individual classes. The
common algorithms are ID3, C4.5, CART, etc. The characteristics of DT algorithms
are given in Table 4.15 (Harsh et al., 2018).

Table 4.15 Decision Tree Algorithms
Decision tree
algorithm

data types Numerical data
splitting method

CHAID Categorical N/A
ID3 Categorical No restriction
C4.5 Categorical, Numerical No restriction
CART Categorical, Numerical Binary splits

4.5.5 Extra tree

Extra Tree Classifier is also known as extremely randomized trees. It is an ensemble
method based on the decision tree classifier. Extra Tree Classifier is the modification
of bagging where samples of the training dataset are used to construct the random
trees. The graphical representation of the working of this method is given in Figure
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4.10. In one Extra Tree Classifier, several different decision trees are clustered into a
forest from a single learning set. This method in general provides high performance
but sometimes suffers from over-fitting problems due to high inter-dependency
among hyperparameters during model building. The hyperparameters can influence
the performance of the classifier at large, such as the number of randomly selected
attributes at each node, the minimum sample size for splitting a node, the number of
decision trees for the ensemble (Padmaja et al., 2020). Extra Tree Classifier is not as
popular as the aforementioned supervised learning methods in PA recognition.
Padmaja et al. (2020) proposed a novel random-split-point procedure for Extra Tree
Classifier in the classification of PA, and achieved an accuracy of 94.16% and
92.63% for two datasets respectively.

Figure 4.10 Illustration of Extra Tree Classifier working (Bhati et al., 2020)

4.5.6 Random forest

The Random Forest (RF) is a very popular classification and regression algorithm.
The RF algorithm belongs to ensemble learning methods. Likewise a regular forest
consists of a number of trees, the RF algorithm consists of a number of classification
or regression trees (CART). The algorithm does not use all features for the CART
construction but only a few of them. The RF was designed by LeoBreiman in 2001. In
this paper, the author compared the RF with other ensemble techniques and
mentioned that this method had higher accuracy than e.g. Adaboost method (Breiman,
2001). Since that time the RF is used in bioinformatics, medical informatics and so on.
The algorithm is resistant to outliers, missing values, or noise. The RF stands out
especially in simplicity of parameter tuning but the main problem is its interpretability.
For optimal settings of the algorithm only two parameters have to be set: the number
of trees in the forest and the number of variables in trees.
(Peterek et al. 2014)

There are many similarities between extra tree and random forest classifiers. Both
ensembles are composed of a large number of decision trees, and the final decisions
are obtained on the basis of the prediction of every tree. Further, both algorithms have
the same growing tree procedure. Moreover, when selecting the partition of each node,
both of them randomly choose a subset of features. The main difference between
these two methods is that random forest uses boostrap methods, which means that it
subsamples the input data with replacement, while extra trees use the whole original
sample. Another difference is that when splitting a node, the random forest classifier



Methods

University of Zurich, Department of GeographyPage 51

chooses the optimum split while extra tree chooses a random split. In this sense, extra
tree reduces bias and variance compared to random forest. Besides, extra tree is also
faster in terms of computational cost. This is because it selects the split randomly than
looking for the optimum split.

4.5.7 K-Nearest Neighbours

The K-nearest neighbours (KNN)is a non-parametric algorithm for classification.The
KNN is one of the easiest method for data classification. Given the training set T and
the testing sample xi, the KNN classifier tries to find sample xr from the training set T,
with a minimal Euclidian distance to the testing sample. Better results are achieved if
more than one sample from the training set are found. This algorithm achieves
satisfactory results but is not suitable for solving difficult tasks (Peterek et al. 2014).
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5 Results

5.1 preprocessing
Figure 5.1 shows the first 3000 observations of the total acceleration signal before and
after the removal of the gravity part. The scripts for the low pass filter can be found in
Table (Appendix 8.2). It can be seen that before applying the low pass filter, the total
acceleration fluctuates around a value above zero, after the application of the low pass
filter, the acceleration fluctuates around the zero axis. Figure 5.2 shows the GPS
speed of the first 300 observations before and after the recalculation. It can seen that
the recalculated signal is more smooth than the original one, and the speed changing
patterns are more clear and observable.

Figure 5.1 Acceleration signal before and after applying the low-pass filter

Figure 5.2 GPS speed before (left) and after (right) the recalculation

5.2 Feature calculation
This section shows the features calculation results which will be used to train the
classifiers. Figure 5.3 shows the comparison of total acceleration for different activity
types in the window size of 180 observations. Figure 5.4 shows the box-plot for the
total acceleration comparison for different activity types. The box shows the quartiles
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of the dataset while the whiskers extend to show the rest of the distribution. One can
clearly see from the figures that jogging has the largest amplitude and variation of the
total acceleration signal, followed by ascend and descend. The third largest amplitude
types are slow walk and fast walk. The stationary type has close-to-zero value total
acceleration. However, one can observe one outlier from the box plot. This suggests
the necessity of a more comprehensive feature set for the description of the signals. In
this case, the maximum value of the signal will not be a significant feature to
recognize stationary activity from others. Also, it is noteworthy that from the box plot,
slow walk has a slight higher acceleration amplitude and variation than fast walk. This
seems to not correspond to the common sense. But in a large dataset, this slight
difference might not be significant in the recognition of the two activities. Also, the
other dimensions of the sensors, such as speed from GPS sensors might have more
influence in the recognition in this case. Overall speaking, the total acceleration
amplitude can be used to distinguish jogging from other activities from the figure 5.4.
Among other activities, this feature is not enough for the recognition.

Figure 5.3 Total acceleration signal comparison for different activity types

Figure 5.4 Total acceleration box-plot comparison for different activity types

Figure 5.5 shows the speed comparison for different activities in a window size of 180
observations. Figure 5.6 shows the speed comparison in box plot. One can see that
biking has the highest speed among other activities. The activity with the second
highest speed is jogging, and stationary has the lowest speed. Among the rest for
activities, fast walk has a larger speed range. The box plot clearly illustrates that with
the speed range feature, one can distinguish biking, jogging, stationary from the other
four activities.



Results

University of Zurich, Department of GeographyPage 54

Figure 5.5 Speed comparison for different activity types

Figure 5.6 Speed box-plot comparison for different activity types

Figure 5.7 shows the number of peaks and the peak heights for each activities in the
window size of 180 observations. A peak, or a local maximum of a signal is defined
as any sample whose two adjacent neighbours have a small amplitude. The function
used to find the peaks takes the signal array and finds all local maxima by simple
comparison of neighbouring values (see Appendix 8.2). Two conditions are defined
for the peak’s property in this thesis. The threshold condition defines the minimal
vertical distance to the samples’ neighbouring samples. The distance condition
defines minimal horizontal distance in samples between neighbouring peaks. The
threshold and distance conditions are set as 20 and 2 respectively in this thesis by
visual calibration of the first widowed-segment for each activity types. This will lead
to a more successful detection of the majority of peaks. The peak height or
prominence measures how much a peak stands out from the surrounding baseline of
the signal and is defined as the vertical distance between the peak and a higher one of
the two minimal signal value in range for the peaks. It can be seen that Stationary
status has the smallest number of peaks and lowest peak heights. Jogging has the
highest peak height, followed by the ascend and descend activities.
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Figure 5.7 Activity-wise peaks and peak heights

Figure 5.8 shows the activity-wise peak width in green and peak interval in red in the
widow size of 180 observations. The width of a peak is calculated at half of the height
of the peak. The interval measures the distance of the adjacent peaks. It can be seen
that jogging has the most narrowed peak width and intervals, while biking and
stationary have relatively longer widths and intervals.

Figure 5.8 Activity-wise peak width and time intervals

Figure 5.9 shows the activity-wise cross correlation results of the total acceleration. It
can be seen that slow walk, stationary and bike can be more easily detect by this
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feature. The cross-correlation results of other dimensions of the signal (x-axis, y-axis,
z-axis) can be found in Appendix 8.2.

Figure 5.9 the activity-wise cross-correlation results of the total acceleration

5.3 Segmentation

As aforementioned, this thesis applies the sliding-widow segmentation in the window
sizes of 90s and 180s. The windows are tested both with and without a 50% overlap
size. As a result, four widow segmentation strategies are tested for this data, and the
one with the best performance is selected in the end in the comparison process of the
feature selection methods. Figure 5.10 and Figure 5.11 display the preliminary
classification results for a set of common classifiers. The classification takes the
stratified k fold strategy with k equals to 10. The parameters for each classifier in this
step are set as the default parameter in python, and can be found in Appendix. The
classifiers are ranked by MCC score, the best result in each evaluation metrics is
highlighted. One can see that the smaller window size (90 samples), and the overlap
(50%) result in higher classification performance in general. Therefore, this thesis
takes the sliding widow of 90 samples with 50% overlap for classification.

Figure 5.10 classification results without feature selection in the window size of 180
(without overlap (left), with overlap(right))



Results

University of Zurich, Department of GeographyPage 57

Figure 5.11 classification results without feature selection in the window size of 90
(without overlap (left), with overlap (right))

The preliminary results also give an idea about the best classifiers for this data.
Among the classifiers, random forest performs the best in terms of a variety of
evaluation metrics, closely followed by the Extra Tree Classifier and the decision tree
classifier. However, decision tree takes way less time than the other two, and extra
tree is also faster in general than random forest.

An overview of the confusion matrix performance results of PA detection with other
classifiers besides extra tree can be found in Appendix 8.1.

5.4 Dimension Reduction

In this thesis, a total of one feature transformation and four feature selection methods
are implemented for PA recognition. Three classifiers are selected to combine the
dimension reduction methods. Kmeans is selected first among the unsupervised
classifier and combined with PCA considering the inner connection of these two
commonly used methods (Ding 2004). However, as the result is not ideal, another
supervised learning method KNN (El Moudden 2016) is applied with PCA to further
check PCA’s influence on the classification performance. For feature selection
methods, one filter method ReliefF, one sequential wrapper method REFCV, one
heuristic wrapper method Genetic algorithm, a one embedded method random forest
are implemented. It is noteworthy that the embedded method random forest is itself a
classifier. And the other feature selection methods are combined with extra tree, the
second best classifier regarding the performance beside random forest.

The validation method for the comparison is stratified 10-fold validation. The reason
is that 10-fold validation is commonly used in literature. And stratified k-fold that
splits the data according to class proportions can deal with unbalanced data well.
Besides, 10-fold validation, the hold-out validation method with 10% data as the test
data is also applied on the KNN classifier to compare the differences of the results
from different validation methods. The performance is examined and ranked by
accuracy score, as it is the most basic metric in literature. Other metrics are also given
for a more comprehensive understanding of the models’ performances. The
performance metrics shown are the averaged metric scores of the 10 folds. All
classification, dimension reduction, and validation functions are performed at the
random state id of 42.
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5.4.1 Feature transformation

In this thesis, the PCA method is selected for the feature transformation process. The
Kmeans classifier is applied as the unsupervised classifier and KNN is applied as the
supervised classifier.

5.4.1.1 K-means with PCA
For the unsupervised K-means classifier, a grid search with the value of 3, 10, 20 is
applied for the parameter for the number of times the k-means algorithm will be run
with different centroid seeds. For the PCA method, the hyper-parameter for the
number of components is also implemented by the grid search with the value of 7, 16,
60, 100. Therefore, a total combination of 12 models are run. Table 5.1 shows the
results of the K-means with PCA by the stratified 10-fold classification validation
method. In the table, the number of dimensions column represents the parameter for
the PCA method and the number of time column represents the parameter for the
KMeans classifier. In the accuracy column, the left numbers represent the
classification performance with the PCA feature transformation, the right numbers in
the brackets represent the classification performance without the PCA feature
transformation. Overall speaking, one can see that the K-means classifier provides
rather poor classification results as expected, though PCA indeed helps in increasing
the accuracy score to roughly one time more. Besides, by tuning of the two hyper-
parameters, there are no significant changes shown in the results.

Table 5.1 Classification Results for PCA combined with K-means
Number of
Dimensions

Number of time
K-means run

Accuracy

7 3 0.218 (0.1155)
7 10 0.224 (0.1151)
7 20 0.222 (0.1153)
16 3 0.218 (0.1155)
16 10 0.223 (0.1151)
16 20 0.223 (0.1153)
60 3 0.218 (0.1155)
60 10 0.220 (0.1151)
60 20 0.221 (0.1153)
100 3 0.221 (0.1155)
100 10 0.223 (0.1151)
100 20 0.220 (0.1153)

5.4.1.2 KNN with PCA
In the second step, PCA is also combined with KNN, as the combination is proved to
show acceptable results in some researches (El Moudden et al. 2016, Peterek et al.
2014). In the process, two hyper-parameters are tuned, namely number of dimensions
transformed for the PCA algorithm and the number of neighbours for the KNN
classifier. Table 5.2 shows the classification results by unsupervised KNN classifier
after feature transformation by the PCA method validated by stratified 10-fold
classification and holdout validation (90%/10% split). In the accuracy column for
stratified 10-fold classification, the left numbers represent the classification
performance with the PCA feature transformation, the right numbers in the brackets
represent the classification performance without the PCA feature transformation. The
entries with the highest observations from different metrics are highlighted.
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Table 5.2 Classification results for PCA and KNN
Number of
Dimensions

Number of
neighbors

Accuracy (stratified
10-fold validation)

Accuracy (holdout
validation 10% test)

7 3 0.683 (0.327) 0.670
7 10 0.696 (0.352) 0.694
7 20 0.690 (0.354) 0.683
16 3 0.721 (0.327) 0.710
16 10 0.720 (0.352) 0.723
16 20 0.705 (0.354) 0.702
60 3 0.745 (0.327) 0.75
60 10 0.742 (0.352) 0.751
60 20 0.722 (0.354) 0.730
100 3 0.744 (0.327) 0.753
100 10 0.741 (0.352) 0.752
100 20 0.723 (0.354) 0.728

One can see that PCA method improves the classification performance of the KNN
classifier significantly more than one times. And the difference exists between the two
validation methods. For the 10-fold validation, the best result is from the combination
of 60 dimensions for PCA and 3 neighbors for KNN, while for the holdout validation,
the best result is from the combination of 100 dimensions and 3 neighbors. And the
holdout validation method exerts a slightly higher accuracy. Also, the 10-fold
validation shows that the figure of 3 and 10 for number of neighbors give similar
results, while holdout validation method shows that 3 neighbors provides better result
than 10 neighbors. In terms of the number of dimensions, both validation methods
indicate that the higher the number of dimensions, the better the performance.
However, for the 10-fold validation, 60 dimensions and 100 dimensions exert similar
performance. While based on holdout validation, 100 dimensions perform better than
60 dimensions. Also, the accuracy scores from KNN without PCA transformation
suggest that the higher the number of neighbors, the better the performance, which is
contrary from the results from KNN with PCA transformation. This suggests the
necessity of parameter tuning when training classification models.

Table 5.3 and Table 5.4 show more detailed results of the two validation methods.
From Tables 5.3, for stratified k-fold validation, it can be seen that within the range of
7, 16, 60, and 100 of dimensions, and 3, 10, and 20 of neighbours, the combination of
3 neighbours for the KNN classifier and the number of 60 final transformed
dimensions provides the best accuracy result. The best result yields a accuracy score
of 0.745 compared to 0.327 without the PCA feature selection process. This
combination also yields best or close to best results for other metrics, including Recall,
F1-score, MCC, Precision, while it yields relatively lower AUC score.

Overall speaking, other combinations also yield significant better results than the
classification before feature transformation. The time costs for some of the
combinations are significantly higher than others. For example, the parameter
combination with the highest accuracy also has the highest time cost. This indicates
the importance to balance classification performance and computational cost when
using feature transformation methods. In addition, the result shows that for the
analysis in this thesis, in general the higher dimensions and the lower number of
neighbours provides a higher performance.
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Table 5.3 Classification results for PCA and KNN (stratified 10-fold)
Dimensio
n

Number
of
Neighbors

Accuracy AUC Recall Precisi
on

F1 KAPP
A

MCC Time
spent(s)

7 3 0.683 0.875 0.683 0.683 0.680 0.606 0.607 11.05
7 10 0.696 0.911 0.696 0.700 0.695 0.620 0.620 7.63
7 20 0.690 0.912 0.690 0.696 0.689 0.610 0.611 10.50
16 3 0.721 0.899 0.720 0.724 0.719 0.654 0.655 14.12
16 10 0.720 0.926 0.705 0.731 0.720 0.650 0.651 15.99
16 20 0.705 0.924 0.745 0.713 0.704 0.630 0.631 16.80
60 3 0.745 0.914 0.745 0.745 0.743 0.684 0.685 100.79
60 10 0.742 0.934 0.742 0.746 0.742 0.691 0.679 79.87
60 20 0.722 0.931 0.722 0.728 0.721 0.678 0.652 100.23
100 3 0.744 0.914 0.744 0.744 0.742 0.651 0.683 70.81
100 10 0.741 0.935 0.741 0.745 0.740 0.676 0.677 86.73
100 20 0.723 0.933 0.723 0.729 0.722 0.653 0.654 77.82

From Table 5.4 for holdout validation result, it can be seen that within the range of 7,
16, 60, and 100 of dimensions, and 3, 10, and 20 of neighbours, the combination of 3
neighbours for the KNN classifier and 100 final transformed dimensions provides the
best result considering all metrics. Overall speaking, the scores by these two
validation methods are at a similar level for different metrics and combinations.
Different from the stratified 10-fold validation, the time costs for all the combinations
are also relatively low. This indicates that this validation method can help in
balancing the classification performance improvement and computational cost in
feature transformation process.

Table 5.4 Classification results for PCA and KNN (holdout validation)
Dimensio
n

Number
of
Neighbors

Accuracy AUC Recall Precisi
on

F1 KAPP
A

MCC Time
spent(s)

7 3 0.670 0.867 0.670 0.670 0.669 0.593 0.594 0.295
7 10 0.694 0.908 0.694 0.707 0.696 0.620 0.621 0.319
7 20 0.683 0.912 0.683 0.699 0.682 0.604 0.606 0.279
16 3 0.710 0.903 0.710 0.711 0.708 0.642 0.643 0.345
16 10 0.723 0.926 0.723 0.731 0.723 0.656 0.656 0.385
16 20 0.702 0.921 0.702 0.718 0.702 0.630 0.631 0.401
60 3 0.75 0.923 0.75 0.750 0.748 0.691 0.692 1.046
60 10 0.751 0.937 0.750 0.760 0.751 0.691 0.692 1.162
60 20 0.730 0.936 0.730 0.737 0.729 0.664 0.665 1.244
100 3 0.753 0.923 0.753 0.754 0.752 0.696 0.697 1.553
100 10 0.752 0.939 0.752 0.762 0.752 0.693 0.694 1.875
100 20 0.728 0.935 0.728 0.736 0.727 0.662 0.663 1.843

Further, two confusion matrices comparisons between the classification results with
and without feature transformation, and the classification results by two types of
validation methods are conducted. Figure 5.12 shows the confusion matrix without
feature transformation by the KNN classifier with the number of neighbors parameter
set as 3.
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Figure 5.12 Confusion matrix for KNN without PCA (Stratified-10-fold)

In Figure 5.12, the left side shows the confusion matrix without normalization, in
which the numbers in the cells represent the number of segments for each activities.
The x-axis represents the predicted label while the y-axis represents the true label.
The darker the colours of the cells, the larger the numbers in the cells. One can see
that the majority of the misclassification incidences locate at classes with larger
number of segments. Due to the unbalanced data distribution among the class and the
large numbers, a normalized confusion matrix is given on the right side. In the
normalized confusion matrix, the numbers in the cells represent the proportions of
data accurately classified and misclassified for each class. The darker the colours, the
higher the proportions of classes.

One can see that for KNN classifier without PCA transformation, Jogging is the
activity that has the highest classification score with a value of 0.71, and the
Stationary has the lowest accuracy score with a value of 0.15. The activity with
second highest accuracy is Ascending. Jogging is most often misclassified as
Ascending (0.09), and while Ascending is most often misclassified as Fast walk
(0.18).
Simultaneously, Fast walk is also most often detected as Ascending (0.28). Overall
looking, all activities, including Descending, Biking, Stationary and Slow walk are
more often classified as Ascending by the KNN method. The second class that are
misclassified most as is Slow walk. This suggests the drawback of the KNN method
on this dataset as the classes are likely to be classified in several main classes with
larger number of observations, such as Slow walk, Fast walk and Ascending.
However, KNN is good at recognising the Jogging activity, though Jogging is not one
of the classes with most observations. It can also be observed from the colours of the
cells in both confusion matrix. And this could be the main reason for very unbalanced
accuracy scores in different classes.

Figure 5.13 shows the confusion matrix from the KNN classifier with PCA
transformation. From the figure, one can see that in this case, the most accurately
classified classes are Jogging, Ascending and Biking. Descending and Slow walk also
have an good accuracy level with scores above 0.7. Stationary and Fast walk have
relatively lower accuracy. In this figure, one can still notice the Ascending and Slow
walk are still the two most classes the other classes being misclassified as. However,
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the result is large improved. A closer look at the comparison of KNN classifier with
and without PCA can be seen in Figure 5.14.

Figure 5.13 Confusion matrix for KNN with PCA

Figure 5.14 Comparison of confusion matrix for KNN with (Right) and without (Left)
PCA

Figure 5.14 shows the normalized confusion matrices comparison for KNN with and
without the PCA transformation. One can clearly see that PCA improves the
classification results of the KNN classifier in all classes. Especially, it helps in
increasing the recognition in Jogging to an accuracy score of 0.87 by reducing the
errors being classified as Ascending. The result proves that PCA is useful in
increasing the performance of the KNN classifier.

Another comparison of the confusion matrix is the comparison of k-fold stratified
validation and holdout validation as described in the tables above. Figure 5.15 shows
the confusion matrix of the best result (parameter setting as 100 dimensions and 3
neighbors) from the holdout validation. And Figure 5.16 shows the normalized
confusion matrices comparison of the best results by stratified k-fold validation
(parameter setting as 60 dimensions and 3 neighbors) and k-fold validation (parameter
setting as 100 dimensions and 3 neighbors).
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Figure 5.15 Confusion matrix of KNN with PCA by holdout validation

Figure 5.16 Confusion matrix of KNN with PCA by Stratified 10-fold (Right) and
holdout (Left) validation

From the Figure, it can be seen that the misclassification from holdout validation is
rather balanced within different classes. By this methods, all classes in general are
still likely to be classified as Ascending and Slow walk. In this comparison, the
accuracy for Stationary increases by the holdout method while for Biking decreases to
a certain degree compared to the stratified 10-fold validation. However, in general,
the differences of the accuracy scores between the two validation methods are not
huge. Though it might result in different hyper-parameter selections when training the
models. Besides, from the matrix, one can see that the largest misclassification
proportions are Stationary, Fast walk, and Biking to Slow walk. From real life
experience, it is understandable that stationary and fast walk being classified as slow
walk, as these two activities exert similar characteristics as slow walk. With regard to
biking, the reason could be that original real-life biking segments do not always exert
typical characteristics for biking, such as a relatively high speed, which is observed in
the manual labelling process.
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5.4.2 Feature Selection

In this section, three feature selection algorithms from different feature selection
categories are compared in terms of their influences on the ExtraTree classifier.
The ExtraTree classifier in this comparison is realized by the ExtraTreesClassifier
function from sklearn.ensemble module. The parameter setting for the
ExtraTreesClassifier function applied in this thesis can be found in Appendix 8.2. In
this analysis, the random state id is set as 42.

5.4.2.1 ReliefF
ReliefF is selected as the filter feature selection method. The ReliefF function is
realized by the ReliefF module from python (See Appendix 8.2). In this function, two
parameters can be tuned, namely the number of neighbors for the quality estimation of
features and the maximum number of features. For this purpose, two grid searches are
implemented, namely the value of 3, 10, 20 for the number of neighbors, and the
value of 16, 30, 60, 100 for the number of maximum features.
As aforementioned, the user-defined tuning parameter Number of neighbors controls
the locality of the estimates. Though it is claimed that for most of the time, this
parameter can be safely set to 10 (Robnik-Šikonja et al. 2003). In this study, the
higher values, such as 60, 100 are still implemented for a more comprehensive
inspection of sub-feature sets. In summary, a total of 12 combination models are run.
Table 5.5 shows the result of the ExtraTree Classifier with ReliefF by the stratified
10-fold classification validation method. In the table, both the number of dimensions
(maximum number of features) column and the number of neighbors are parameters
for the ReliefF feature selection method. In the table, the numbers in the first row in
the brackets represent the classification performance without the ReliefF feature
selection, the rest rows represent the classification performance with the ReliefF
feature selection method. The entries with the highest observations from different
metrics are highlighted.

Table 5.5 Classification results for ExtraTree and ReliefF (stratified 10-fold)
Dimensio
n

Number
of
Neighbors

Accurac
y

AUC Recall Precisi
on

F1 KAPP
A

MCC Time
spent(s)

(Without ReliefF
method)

(0.806) (0.962) (0.805) (0.813) (0.80
6)

(0.756
)

(0.757
)

(28.75)

16 5 0.772 0.948 0.772 0.779 0.770 0.713 0.715 43.57
16 10 0.765 0.947 0.771 0.778 0.769 0.712 0.713 40.47
16 20 0.772 0.949 0.772 0.778 0.771 0.714 0.715 39.36
30 5 0.785 0.957 0.774 0.803 0.793 0.741 0.738 32.74
30 10 0.790 0.955 0.790 0.798 0.789 0.736 0.746 37.12
30 20 0.785 0.956 0.790 0.799 0.789 0.737 0.733 31.78
60 5 0.814 0.965 0.814 0.822 0.813 0.736 0.768 38.71
60 10 0.817 0.964 0.812 0.820 0.811 0.767 0.765 31.78
60 20 0.825 0.965 0.812 0.820 0.812 0.764 0.766 35.14
100 5 0.797 0.962 0.801 0.809 0.800 0.750 0.751 38.53
100 10 0.806 0.961 0.804 0.812 0.804 0.754 0.756 35.57
100 20 0.815 0.962 0.802 0.810 0.802 0.751 0.754 43.27

It can be seen from the table that the reliefF method is able to improve the Extra Tree
Classifier performance. However, it depends on the parameter settings for the feature
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selection method, as with some settings the performances are even lower than the
classification without the feature selection. The combination that has the highest
accuracy is 60 features and 20 neighbors for the reliefF method with the value of
0.806. Besides, it is observable that the best number of dimension is 60, while the
number of neighbors does not show a significant difference in performances.

Table 5.6 shows the results by the holdout validation method with the 90%/10%
train/test split. The same as Table 5.5, the first row shows the performance result
without the reliefF method. One can see that from this method, the performance score
is higher in general. The best combination is 100 dimensions with 20 neighbors,
which exerts an accuracy performance of 0.850 compared to 0.818 without the reliefF
feature selection. And the best number of dimension is 100 compared to the stratified
K-fold validation method. In terms of the number of neighbors, this method also does
not show any obvious differences as well. This corresponds to the comparison results
from the last subchapter of PCA and KNN. Therefore, a good estimate of the number
of neighbors for distance-related methods could be related to the data quality itself.
And the estimation for a proper number of features could be related to both the data
itself and the validation method chosen. Regarding the time cost, as expected, the
holdout method spends less time than the Stratified method.

Table 5.6 Classification results for ExtraTree and ReliefF (holdout validation)

Further, two confusion matrices comparisons between the classification results with
and without feature transformation, and the classification results by two types of
validation methods are conducted. Figure 5.17 shows the confusion matrix without
feature transformation for the Extra Tree Classifier by the stratified 10-fold validation.

Dimensio
n

Number
of
Neighbors

Accurac
y

AUC Recal
l

Precisi
on

F1 KAPP
A

MCC Time
spent(s)

(Without ReliefF
method)

(0.818) (0.962) (0.81
8)

(0.824) (0.81
9)

(0.772
)

(0.773
)

(3.08)

16 5 0.784 0.949 0.779 0.785 0.778 0.723 0.724 12.55
16 10 0.773 0.949 0.773 0.781 0.773 0.716 0.717 12.58
16 20 0.777 0.949 0.777 0.783 0.777 0.721 0.722 12.87
30 5 0.798 0.956 0.798 0.813 0.799 0.746 0.749 12.69
30 10 0.796 0.959 0.796 0.809 0.796 0.743 0.746 13.42
30 20 0.785 0.955 0.785 0.796 0.785 0.730 0.733 13.15
60 5 0.822 0.970 0.822 0.831 0.822 0.777 0.779 13.02
60 10 0.831 0.971 0.831 0.837 0.828 0.788 0.790 12.93
60 20 0.828 0.969 0.828 0.834 0.729 0.785 0.786 13.36
100 5 0.841 0.975 0.841 0.850 0.841 0.801 0.803 13.58
100 10 0.847 0.976 0.847 0.855 0.847 0.808 0.810 13.96
100 20 0.850 0.976 0.850 0.857 0.849 0.812 0.814 14.79
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Figure 5.17 Confusion matrix for Extra Tree with out ReliefF (Stratified 10-fold)

In the Figure, the numbers without brackets in the cells represent the number of
segments for each activities, the numbers within brackets represent proportions of
data accurately classified and misclassified for each class. One can see that the Extra
Tree Classifier provides better accuracy in general compared to the KNN Classifier.
Among all activities, Stationary activity has the lowest classification score with a
value of 0.57, and Slow walk has the highest accuracy score as 0.88. Stationary is
most often misclassified as Slow walk (0.23), and while Slow walk is most often
misclassified as Fast walk (0.06). The reason for the high rate of misclassification of
Stationary to Slow walk could be related to the data quality itself that resulted by
manual labelling, by which Stationary segments selected sometimes contain tiny
speed and acceleration values. By the Extra Tree Classifier, other types of activities
are most often to be classified as Slow walk, and Ascending is the activity that other
activities misclassified second most as. This is slightly different from the KNN
Classifier, by which Ascending is the activity that other types of activities are most
often classified as. The classes the Extra Tree Classifier is good at recognizing besides
Slow walk are Jogging, Ascending, and Biking.

Figure 5.18 shows the confusion matrices comparison for the Extra Tree Classifier
with and without (accuracy value of 0.806) the ReliefF feature selection method by
stratified 10 fold validation. The right side confusion matrix is from the combination
of 60 features and 20 neighbors by ReliefF that exerts the best accuracy with the value
of 8.25 stated from the Table 5.3 analysed above. From the figure, one can see that
ReliefF slightly improves the classification results of the Extra Tree Classifier in some
classes and keeps the same accuracy for others. More specifically, by this method, the
accuracy results for the most accurately classified two classes namely Jogging and
Slow walk remain the same. And the performances for Ascending, Descending,
Biking, Stationary, and Fast walk all improve on a small scale from the value of 0.02
to 0.04. The result shows that ReliefF is useful in reducing the dimensionality of the
features and increasing the performance of the Extra Tree Classifier.
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Figure 5.18 Comparison of confusion matrix for Extra Tree with (Left) and without
(Right) ReliefF by stratified 10 fold

Figure 5.19 shows the confusion matrices comparison for the Extra Tree Classifier
with and without (accuracy value 0.818) the ReliefF feature selection method by
holdout validation. The right side confusion matrix is from the combination of 100
features and 20 neighbors by ReliefF that exerts the best accuracy with the value of
8.50 stated from the Table 5.4 analysed above. Similarly as the result from stratified
10-fold validation, one can see that by this validation, ReliefF slightly improves the
classification results of the Extra Tree Classifier in Ascending, Descending, Biking,
and Fast walk on a small scale from the value of 0.02 to 0.07 and keeps the same
accuracy for others including Stationary, Slow walk and Jogging. In terms of the
comparison for both validation methods, the differences of the accuracy scores for
different classes are not huge, though it might result in different hyper-parameter
selections when training the models as concluded from the last sub-chapter.

Figure 5.19 Comparison of confusion matrix for Extra Tree with (Left) and without
(Right) ReliefF by holdout validation

Last, the feature importance by Extra Tree Classifier before and after the ReliefF
method is also given. Figure 5.20 shows the feature importance of the top 20 most
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important features for Extra Tree Classifier before and after ReliefF feature selection
measured by Shapley values. Shapley values (Kalai et al. 1987) are a widely used
approach from cooperative game theory that come with desirable properties.

Figure 5.20 Feature importance comparison of Extra Tree Classifier before (Left) and
after (Right) ReliefF feature selection

By the Extra Tree Classifier with the original 118 feature sets, the most important 20
features are: mean speed from the GPS sensor, maximum speed from the GPS sensor,
mean amplitude of the z axis peaks, standard deviation of z axis signal, variance of
the total acceleration, signal energy of the total acceleration, interquartile range of the
total acceleration, sum of amplitudes of the total acceleration peaks, standard
deviation of the total acceleration, variance of Movement Intensity, mean amplitude
of the total acceleration peaks, sum of amplitudes of the z axis peaks, mean amplitude
of top three dominant frequencies of x axis, minimum of total acceleration, standard
deviation of the x axis, mean amplitude of top three dominant frequencies of z axis,
interquartile range of z axis, total acceleration’s autocorrelation, signal energy of the x
axis, variance of the altitudes from the GPS sensor.

Among the top 20 features trained by the original feature set, 3 of them are GPS
features out of the 7 calculated, and 2 of them are the top 2 most important features,
namely the mean and maximum speeds. The rest 17 features contain 4 distinctive
features out of the 16 summarized from the literature, 6 time domain features, and 7
frequency domain features (see Table 5.9). The time domain features are statistical
descriptions for the x, z and total accelerations. In frequency domain features, 3 of
them are peak features in x and total acceleration signals, 1 of them is signal energy
features in x axis, 2 of them are dominant frequencies in x and z axis. Overall
speaking, for the Extra Tree Classifier, the important features in PA recognition are
speed features, statistical features in time domain, dominant frequencies, signal
energy, and peaks features in frequency domain.

Figure 5.20 also shows feature importance with regard to different classes. The class
number 0 to 6 represents Jogging, Stationary, Ascending, Biking, Descending, Fast
walk, and Slow walk respectively. The colours in the figure are arranged in the order
of the number of segments of activities, namely slow walk, ascending, fast walk,
descending, jogging, biking, and stationary. Looking at features individually, the
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mean speed has a relatively large importance values than the rest features, and it has a
great impact on the distinguishing slow walk, fast walk and biking.

For slow walk detection, other important features are maximum speed, standard
deviation of the z axis, mean value of the movement intensity. For the detection of
ascending, total acceleration variation, standard deviation of total acceleration, auto-
correlation of total acceleration all have relatively higher impact. With regard to the
detection of fast walk, maximum speed and amplitudes of the z axis peaks play an
vital role. Mean value of the movement intensity, vertical variance are crucial features
in the recognition of the descending class. Mean and maximum speeds are important
for biking while total acceleration variation, total signal energy, minimum of total
acceleration are key features of jogging detection. For stationary, the main features
are also mean and maximum speeds. However, the importance values for features for
the stationary activity are rather low. This could be the sign that the classifier is not
good at detecting the stationary class, which is reflected by the previous confusion
matrix.

Table 5.7 Important features for different classes by Extra Tree Classifier without
feature selection

Activity types Features
Slow walk maximum speed, standard deviation of the z axis,

mean value of the movement intensity
Ascending total acceleration variation, standard deviation of

total acceleration, auto-correlation of total
acceleration

Fast walk maximum speed and amplitudes of the z axis
peaks

Descending Mean value of the movement intensity, vertical
variance

Jogging total acceleration variation, total signal energy,
minimum of total acceleration

Biking Mean and maximum speeds
Stationary mean and maximum speeds

After the ReliefF feature selection method, one can see from Figure 5.20 that the top
most important features are: mean speed from the GPS sensor, maximum speed from
the GPS sensor, standard deviation of the total acceleration, interquartile range of total
acceleration, variance of the total acceleration, standard deviation of the z axis,
standard deviation of the x axis, mean of Movement Intensity, mean amplitude of top
three dominant frequencies of z axis, variance of the x axis signal, mean amplitude of
top three dominant frequencies of total acceleration, variance of the altitudes from the
GPS sensor, range of the total acceleration, mean amplitude of top three dominant
frequencies of x axis, variance of y axis, total amplitude of top three dominant
frequencies of y axis, mean amplitude of top three dominant frequencies of y axis,
minimum of total acceleration, standard deviation of y axis, total amplitude of top
three dominant frequencies of total acceleration.

Among the top 20 features trained by the ReliefF selected feature set, 3 of them are
GPS features out of the 7 calculated, and 2 of them are the top 2 most important
features, namely the mean and maximum speeds. The rest 17 features contain 4
distinctive features out of the 16 summarized from the literature, 7 time domain
features, and 6 frequency domain features (see Table 5.8). The time domain features
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are statistical descriptions for the x, z, y and total accelerations. In frequency domain
features, 4 of them are peak features in x and total acceleration signals, 2 of them are
dominant frequencies in total and y axis. Overall speaking, after applying the ReliefF
feature selection method, the important features in PA recognition are speed features,
statistical features in time domain, dominant frequencies, and peaks features in
frequency domain. Looking at features individually, the mean speed still has a
relatively large importance values than the rest features, and it has a great impact on
the distinguishing slow walk, fast walk and biking as well.

In terms of the key features for different classes, for slow walk detection, important
features are mean speed, maximum speed, and standard deviation of the z axis. For
the detection of ascending, total acceleration variation, standard deviation of total
acceleration, the range of total acceleration, and vertical altitude variance all have
relatively higher impact. With regard to the detection of fast walk, maximum speed
and standard deviation of the z axis play an vital role. Standard deviation of total
acceleration, standard deviation of the x axis, and mean of movement intensity are
crucial features in the recognition of the descending class. Mean and maximum
speeds are important for biking while total acceleration variation, standard deviation
of total acceleration, minimum value of total acceleration, and interquartile range of
the total acceleration are key features of jogging detection. For stationary, the main
features are also mean and maximum speeds, mean amplitudes of the z axis, standard
deviation of the z axis. However, the importance values for features for the stationary
activity are still rather low.

Table 5.8 important features for different classes by Extra Tree Classifier with ReliefF
feature selection

Activity types Features
Slow walk Mean speed, maximum speed, standard deviation

of the z axis
Ascending total acceleration variation, standard deviation of

total acceleration, the range of total acceleration,
and vertical altitude variance

Fast walk Mean and maximum speeds, and standard
deviation of the z axis

Descending total acceleration, standard deviation of the x axis,
and mean of movement intensity

Jogging total acceleration variation, standard deviation of
total acceleration, minimum value of total
acceleration, and interquartile range of the total
acceleration

Biking Mean and maximum speeds
Stationary mean and maximum speeds, mean amplitudes of

the z axis, standard deviation of the z axis

Compared to the features selected from the original data, the top 20 features selected
by ReliefF still has the similar numbers of features in different feature categories.
Also, in both selected feature sets, the top two features are mean speed and maximum
speed from the GPS sensor. Though a part of features has changed, the feature sets are
still from the same types of features, such as the amplitudes of dominant frequencies
in different sensor signal dimensions (refers to as different axes of signals), the peaks
amplitudes, the standard deviation and ranges in different sensor signal dimensions.
Another main difference of the feature sets beside the modification of features is the
change of feature importance ranking. For instance, in terms of the features from GPS
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sensor, ReliefF increases the importance of variance of altitude by 8 positions.
Moreover, the ReliefF increases the importance of the y axis features, which are not
included in before the feature selection.

As aforementioned from the confusion matrices comparison, ReliefF improved the
performance in ascending, descending, biking and jogging. By a comparison of the
important features for different classes in table 5.7 and 5.8, it can be seen that the
adding of vertical variance weight in ascending, total acceleration features’ weights in
jogging and descending by the ReliefF method is helpful in improving the model
accuracy. Moreover, from Figure 5.20, the weight scores of all the top 20 features are
also higher and more balanced after feature selection.

Table 5.9 Top 20 feature categories comparison before and after ReliefF
Feature types Extra Tree Classifier without

feature selection
Extra Tree Classifier with ReliefF
feature selection

GPS features mean speed,
maximum speed,
variance of the altitudes

mean speed,
maximum speed,
variance of the altitudes

Acceler
ation
features

Non-
distinctiv
e features

Time
domain

standard deviation of the x axis,
y axis, total acceleration and the
z axis, interquartile range of the
total acceleration, minimum of
total acceleration,
interquartile range of z axis

standard deviation of the x axis, y
axis, total acceleration and the z
axis, interquartile range of total
acceleration, range of the total
acceleration,
minimum of total acceleration

Freque
ncy
domain

mean amplitude of the z axis and
total acceleration peaks, sum of
amplitudes of the total
acceleration peaks and z axis
peaks, mean amplitude of top
three dominant frequencies of x
axis and z axis, signal energy of
the x axis

mean amplitude of top three
dominant frequencies of z axis, x
axis, y axis and total acceleration,
total amplitude of top three
dominant frequencies of y axis and
total acceleration.

Disinctiv
e features

Variance of Movement Intensity
(VI), Averaged acceleration
energy (AAE), variance of the
total acceleration, Auto-
correlation of total acceleration

variance of the total acceleration,
variance of the x axis signal,
variance of y axis, mean of
Movement Intensity (AI)

5.4.2.2 Genetic Algorithm
This thesis uses the Genetic Feature Selection Module of python (See Appendix 8.2)
(Calzolari 2021) to perform the GA selection of features. In the GeneticSelectionCV
function, a number of hyper-parameters are available to be tuned for the optimization
of the function. The crossover operation represents a reproduction process, for
example, the recombination of populations of a generation in different ways, and is
usually applied with a high probability. Mutation is defined as a small random tweak
in chromosome to get a new solution, and is usually applied with a low probability.
The crossover probability and mutation probability in this thesis are set as 35%, and
1.5% respectively. The parameters are taken from the studies from Baldominos et
al.(2015). And from their study, the preliminary experimentation had shown no
significant difference in the results with alternative set-ups.
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For other parameters, the tournament size is set as 3, and the number of generations is
set as 10. The tournament size represents the number of participants of individuals in
each “tournament” that selects the winner of participants for the crossover and
mutation operation. When the tournament size is larger, weaker individuals have a
smaller chance to be selected (Miller 1995). For the maximum number of features
selected by this algorithm, a grid search for the number of 16, 30, 60, 118 is
implemented, and the results can be seen in Table 5.5. It is noteworthy that compared
to ReliefF algorithm, the parameter number of features for the Genetic algorithm
represents the maximum number of features instead of the fixed number of features.
This means that for a given number, all numbers smaller than it are executed as well.
For example, given the maximum number of features as 16, all combinations with 2 to
16 features are be all run. This results in higher computational time compared to the
ReliefF method. Stratified 10 fold validation is selected as the validation method, and
the holdout validation method is no longer inspected as the GeneticSelectionCV
function does not support the non-cross-validation method.

Table 5.10 shows the Genetic selection method results with respect to different
hyperparameter maximum number of features, and their accuracy scores accordingly.
The accuracy score in the bracket is the accuracy without GA feature selection. For a
more detailed illustration of individual features selected, see Table 8.1 in Appendix
8.1. One can see that the hyperparameter maximum number of features that gives the
best result is the 60. This setting selects 58 features, and gives a performance score of
0.824. It is noteworthy that though the maximum number of features parameter is set
as the maximum number of features calculated as 118, the accuracy score is still less
than the setting of figure 60. This suggests the importance to inspect different figures
for this parameter for a better performance result.

Table 5.10 GeneticSelection with Extra Tree Classifier
maximum
number of
features

Number of
Features

Accuracy Scores Computational
Time

16 16 0.807 (0.806) 1426.8s
30 30 0.816 (0.806) 1607.8s
60 58 0.824 (0.806) 2151.5s
118 70 0.817 (0.806) 2220.9s

Figure 5.21 illustrates the comparison of the confusion matrices by Extra Tree
Classifier with the feature set of all features and the best set selected by the Genetic
Algorithm. The GA selection method improves the classification accuracy in
Stationary, Ascending, Biking, Descending, and Fast walk, while keeps the
performance in Slow walk and Jogging. The class with the highest accuracy score
predicted by GA is still Slow walk.
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Figure 5.21 Confusion matrix by Extra Tree Classifier with the feature set selected by
GA (a) and the whole feature set (b)

Figure 5.22 shows the feature importance comparison of the Extra Tree Classifier
trained by the whole feature set and GA selected feature set. The top 20 most
important features from the GA feature set are: mean speed from the GPS sensor,
interquartile range of the total acceleration, total acceleration’s autocorrelation,
variance of total acceleration, maximum speed from the GPS sensor, mean amplitude
of top three dominant frequencies of x axis, mean amplitude of the z axis peaks,
autocorrelation of the z axis, mean of Movement Intensity, standard deviation of the z
axis, total amplitude of the z axis peaks, variance of the x axis, mean amplitude of the
x axis peaks, vertical variance of altitude from the GPS sensor, standard deviation of
the speed from GPS sensor, standard deviation of the x axis, mean amplitude of top
three dominant frequencies of total acceleration, the second dominant frequency’s
amplitude of the z axis, Eigenvalues of the horizontal directions, the dominant
frequency’s amplitude of the x axis.

Figure 5.22 Feature importance comparison of the Extra Tree Classifier trained by the
whole feature set (a) and GA selected feature set (b)

Table 5.11 shows the top 20 GA selected features in different in categories and the
comparison of them between the top 20 features trained by the original data.
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Among the top 20 features trained by the GA selected feature set, 4 of them are GPS
features out of the 7 calculated. The rest 16 features contain 5 distinctive features out
of the 16 summarized from the literature, 5 time domain features, and 6 frequency
domain features. The time domain features are statistical descriptions for the x, z and
total accelerations. In frequency domain features, 2 of them are peak features in x and
z axes signals, 4 of them are dominant frequencies in x, total, z, and y axes signals.
Overall speaking, after applying the GA feature selection method, the important
features in PA recognition are still speed features, statistical features in time domain,
dominant frequencies, and peaks features in frequency domain.

Table 5.11 Top 20 feature categories comparison before and after genetic algorithm
Extra Tree Classifier without
feature selection

Extra Tree Classifier with
GA feature selection

GPS features mean speed,
maximum speed,
variance of the altitudes

mean speed,
maximum speed,
variance of the altitudes,
standard deviation of the
speed

Acceler
ation
features

Non-
distinctiv
e features

Time
domain

standard deviation of the x axis,
y axis, total acceleration and the
z axis, interquartile range of the
total acceleration, minimum of
total acceleration,
interquartile range of z axis

standard deviation of the x
axis, interquartile range of
total acceleration, range of
the total acceleration,
minimum of total
acceleration,
autocorrelation of the z axis

Freque
ncy
domain

mean amplitude of the z axis
peaks, sum of amplitudes of the
total acceleration peaks, mean
amplitude of the total
acceleration peaks, sum of
amplitudes of the z axis peaks,
mean amplitude of top three
dominant frequencies of x
axis,mean amplitude of top three
dominant frequencies of z axis,
signal energy of the x axis,

mean amplitude of the z
axis and x axis peaks,
mean amplitude of top
three dominant frequencies
of x axis, total acceleration,
the second dominant
frequency’s amplitude of
the z axis,
the dominant frequency’s
amplitude of the x axis

Distinctiv
e features

Variance of Movement Intensity
(VI), Averaged acceleration
energy (AAE), variance of the
total acceleration, Auto-
correlation of total acceleration

Auto-correlation of total
acceleration,
variance of the total
acceleration and x axis,
mean of Movement
Intensity,
Eigenvalues of the
horizontal directions

In terms of the key features for different classes, for slow walk detection, important
features are still the mean speed, maximum speed, and standard deviation of the z axis.
For the detection of ascending, autocorrelation of total acceleration, variance of total
acceleration, the interquartile range of total acceleration all have relatively higher
impact. With regard to the detection of fast walk, mean and maximum speeds play an
vital role. Autocorrelation of total acceleration, variance of total acceleration, the
interquartile range of total acceleration and mean of movement intensity are crucial
features in the recognition of the descending class. Mean, standard deviation and
maximum speeds are important for biking while autocorrelation of total acceleration,
variance of total acceleration, the interquartile range of total acceleration are key
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features of jogging detection. For stationary, the main features are also mean, mean
amplitudes of the z axis. However, the importance values for features for the
stationary activity are still rather low.

Table 5.12 important features for different classes by Extra Tree Classifier with GA
feature selection

Activity types Features
Slow walk mean speed, maximum speed, standard deviation

of the z axis
Ascending autocorrelation of total acceleration, variance of

total acceleration, the interquartile range of total
acceleration

Fast walk mean and maximum speeds, and standard
deviation of the z axis

Descending autocorrelation of total acceleration, variance of
total acceleration, the interquartile range of total
acceleration and mean of movement intensity

Jogging autocorrelation of total acceleration, variance of
total acceleration, the interquartile range of total
acceleration

Biking mean and maximum speeds
Stationary mean, mean amplitudes of the z axis

Compared to the features selected from the original data, the top 20 features selected
by GA method still has the similar numbers of features in different feature categories.
Also, in both selected feature sets, the top feature is the mean speed from the GPS
sensor. Though a part of features has changed, the feature sets are still from the same
types of features, such as the amplitudes of dominant frequencies in different sensor
signal dimensions, the peaks amplitudes, the standard deviation and ranges in
different sensor signal dimensions. Similar to the ReliefF method’s result, one of the
main differences of the feature sets is the change of feature importance ranking. For
instance, in terms of the features from GPS sensor, GA increases the importance of
variance of altitude by 6 positions and decrease the importance of the maximum speed
by 4 positions. Moreover, the GA increases the importance of the distinctive feature
Eigenvalue of the horizontal direction, which is also a feature constructed by sensor
fusion, and is not included in the top 20 before the feature selection.

As aforementioned from the confusion matrices comparison, GA improved the
performance in Stationary, Ascending, Biking, Descending, and Fast walk. By a
comparison of the important features for different classes in table 5.7 and 5.12, it can
be seen that the adding of total acceleration and the z axis features’ weights by the GA
method is helpful in improving the model accuracy. Moreover, from Figure 5.22, the
weight scores all the top 20 features are also higher and more concentrated after
feature selection.

5.4.2.3 Recursive feature elimination
This thesis uses the Feature_Selection Module of python (See Appendix 8.2)
(Calzolari 2021) to perform the recursive feature elimination selection of features. In
the RFECV function, two major hyper-parameters are available to be tuned for the
optimization of the function. The step parameter corresponds to the number of
features to remove at each iteration. The minimum number of features represents the
minimum number of features to be selected. When this parameter is set as 1, all
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combinations of feature sets from 1 feature to the whole feature sets (in this case 118
features) will be executed. In this analysis, the step parameter is set as 1 and 3 to
inspect if the step size would have an impact on the feature selection method output.
The minimum number of features is first set as 1 to obtain an overview of the
performance across all combinations and thus to get an understanding of this
algorithm better. Then a grid search of values for 16 and 60 are conducted for
minimum number of features with the step set as 1 to investigate if this feature would
influence the performance. Stratified 10 fold validation is selected as the validation
method, and the holdout validation method is no longer inspected as the RFECV
function does not support the non-cross-validation method.

Table 5.13 shows the RFECV method results with respect to different hyperparameter
step and the minimum number of features, and their accuracy scores accordingly. The
accuracy scores in the brackets are the accuracy without RFECV feature selection.
For a more detailed illustration of individual features selected, see Table 8.2 in
Appendix 8.1. One can see that the hyperparameter step that gives the best result is
the 1. And the combination of features that gave the highest score is 1 as step size
with 60 as minimum features. This setting selects 71 features, and gives a
performance score of 0.827. It can be seen from the table that the smaller the step size,
the higher the minimum number of features, the longer the computational time cost.

Table 5.13 RFECV with Extra Tree Classifier
Step Minimum

number of
features

Number of
Features
selected

Accuracy
Scores

Computatio
nal Time

1 1 56 0.826 (0.806) 2322.0s
3 1 64 0.824 (0.806) 778.9s
1 16 69 0.826 (0.806) 2314.4s
1 60 71 0.827 (0.806) 1473.7s

Figure 5.23 shows the cross validation scores for the settings with minimum number
of features equal to 1, and step size as 1. One can see that as number of feature grows,
the scores increase as well. Until a certain number of features (around 10 in this case),
the scores maintain at a good level. This reflects that for a minimum number of 10
features from the whole feature set can provide a good level of accuracy score by the
Extra Tree Classifier. However, the improvement of the performance might not be
huge in this case. This could be related to the data itself and the classifier chosen.
Other Figures for different minimum feature size are also given in Appendix 8.1
Figure 8.5. The figures give a closer examination of the optimum number of features
to select, as the curve is in the bell shape with a smaller range of numbers of features
for feature sets.
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Figure 5.23 Cross validation scores with minimum number of features by RFECV
with Extra Tree Classifier

Figure 5.24 illustrates the comparison of the confusion matrices by Extra Tree
Classifier with the feature set of all features and the best set selected by the RFE
method. The RFE selection method improves the classification accuracy in Stationary,
Ascending, Biking, Descending, and Fast walk, and Slow walk while keeps the
performance in Jogging. The class with the highest accuracy score predicted by RFE
is still Slow walk.

(a) (b)
Figure 5.24 Confusion matrix by Extra Tree Classifier with the feature set selected by

RFE (a) and the whole feature set (b).

Figure 5.25 shows the feature importance comparison of the Extra Tree Classifier
trained by the whole feature set and RFE selected feature set. The top 20 most
important features from the RFE feature set are: mean speed from the GPS sensor,
maximum speed from the GPS sensor, total signal energy, total acceleration’s
autocorrelation, mean amplitude of the z axis peaks, vertical variance of altitude from
the GPS sensor, total acceleration variance, z axis signal variance, mean amplitude of
top three dominant frequencies of x axis, standard deviation of the total acceleration,
interquartile range of the total acceleration, standard deviation of the speed, mean of
Movement Intensity, variance of total acceleration, mean amplitude of the x axis
peaks, standard deviation of the z axis signal, total amplitude of the total acceleration
peaks, autocorrelation of the z axis, total amplitude of the z axis peaks,variance of the
x axis, mean amplitude of the total acceleration peaks, the third dominant frequency’s
amplitude of the x axis.
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(a) (b)

Figure 5.25 Feature importance comparison of the Extra Tree Classifier trained by the
whole feature set (a) and RFE selected feature set (b)

Table 5.14 shows the top 20 RFE selected features in different in categories and the
comparison of them between the top 20 features trained by the original data.
Among the top 20 features trained by the RFE selected feature set, 4 of them are GPS
features out of the 7 calculated. The rest 16 features contain 6 distinctive features out
of the 16 summarized from the literature, 5 time domain features, and 5 frequency
domain features. The time domain features are statistical descriptions for the z and
total accelerations. In frequency domain features, 4 of them are peak features in x and
z axes, and total acceleration signals, 1 of them is dominant frequencies in x axis
signal. Overall speaking, after applying the RFE feature selection method, the
important features in PA recognition are still speed features, statistical features in time
domain, dominant frequencies, and peaks features in frequency domain.

Table 5.14 Top 20 feature categories comparison before and after RFE algorithm
Extra Tree Classifier without
feature selection

Extra Tree Classifier with
RFE feature selection

GPS features mean speed,
maximum speed,
variance of the altitudes

mean speed,
maximum speed,
variance of the altitudes,
standard deviation of the
speed

Acceler
ation
features

Non-
distinctiv
e features

Time
domain

standard deviation of the x axis,
y axis, total acceleration and the
z axis, interquartile range of the
total acceleration, minimum of
total acceleration,
interquartile range of z axis

standard deviation of the
total acceleration and the z
axis signal, interquartile
range of total acceleration,
range of the total
acceleration,
autocorrelation of the z axis

Freque
ncy
domain

mean amplitude of the z axis
peaks, sum of amplitudes of the
total acceleration peaks, mean
amplitude of the total
acceleration peaks, sum of
amplitudes of the z axis peaks,
mean amplitude of top three
dominant frequencies of x
axis,mean amplitude of top three
dominant frequencies of z axis,

mean amplitudes of the z
axis, total acceleration and
x axis peaks,
total amplitude z axis
peaks,
mean amplitude of top
three dominant frequencies
of x axis
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signal energy of the x axis

Distinctiv
e features

Variance of Movement Intensity
(VI), Averaged acceleration
energy (AAE), variance of the
total acceleration, Auto-
correlation of total acceleration

Auto-correlation of total
acceleration,
variance of the total
acceleration, x axis and z
axis,
mean of Movement
Intensity
Averaged acceleration
energy (AAE)

In terms of the key features for different classes, for slow walk detection, important
features are still the mean speed, maximum speed, and vertical distance variation. For
the detection of ascending, total signal energy, total signal variance both have
relatively higher impact. With regard to the detection of fast walk, mean and
maximum speeds, mean amplitude of the z signal’s peaks play an vital role. Vertical
distance variation and mean of movement intensity are crucial features in the
recognition of the descending class. Mean, standard deviation and maximum speeds
are important for biking while autocorrelation of total acceleration, variance of total
acceleration, total signal energy are key features of jogging detection. For stationary,
the main features are still mean and maximum speed. Also the importance values for
features for the stationary activity are still rather low.

Table 5.15 important features for different classes by Extra Tree Classifier with RFE
feature selection

Activity types Features
Slow walk mean speed, maximum speed, and vertical

distance variation
Ascending total signal energy, total signal variance
Fast walk mean and maximum speeds, mean amplitude of

the z signal’s peaks
Descending Vertical distance variation and mean of movement

intensity
Jogging autocorrelation of total acceleration, variance of

total acceleration, total signal energy
Biking mean and maximum speeds
Stationary mean, mean amplitudes of the z axis

Compared to the features selected from the original data (see Table 5.7), the top 20
features selected by the RFE method still have the similar numbers of features in
different feature categories. Also, in both selected feature sets, the top two features are
still the mean and maximum speed from the GPS sensor. Though a part of features
has changed, the feature sets are still from the same types of features. Similar to the
results from ReliefF and GA, one of the main differences of the feature sets is the
change of feature importance ranking. For instance, in terms of the features from GPS
sensor, RFE increases the importance of variance of altitude by 6 positions and
decrease the importance of the maximum speed by 14 positions. Also, the GA
increases the importance of the features from the distinctive feature category.

As aforementioned from the confusion matrices comparison, The RFE selection
method improves the classification accuracy in Stationary, Ascending, Biking,
Descending, and Fast walk, and Slow walk while keeps the performance in Jogging.
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By a comparison of the important features for different classes in table 5.7 and 5.15, it
can be seen that the adding of speed features and distinctive features by the RFE
method is helpful in improving the model accuracy.

5.4.2.4 Feature selection results comparison
The above sub-chapters describe the implementation of three feature selection
methods with the Extra Tree Classifier and the results. This sub-chapter gives a
concise summary of performance of the methods, and the corresponding selected
feature sets (see Table 5.16). It can be seen that all three feature selection methods are
helpful in increasing accuracy score with smaller number of feature sets. Embeded
method gives the best performance while ReliefF has the lowest time cost. This
corresponds to the conclusions from literatures. However, the GA method’s
performance is lower than expected. Overall speaking, the improvement are not huge,
this could due to the Extra Classifier already gives a good performance result and that
the data quality itself influenced by the manual labelling process. Nevertheless, the
improvement of performances are still significant considering multiple runs of the
algorithm also with other random state settings when inspecting. For the future, the
feature selection methods combined with other classifiers can be explored.

Table 5.16 Feature selection methods and results
comparison (Stratified-10 fold validation)

Feature selection
methods

Number of
features selected

Performance Time costs

ReliefF (filter) 60 0.825 35.14s
GA (wrapper) 58 0.824 (0.806) 2151.5s
RFE (embedded) 71 0.827 (0.806) 1473.7s

5.5 Comparison of GPS and Accelerometer sensors
As analysed above, both GPS and Accelerometer dimensions of data play an vital role
in distinguishing features. More specially, the three speed related features from the
GPS sensor are always the top features in importance ranking, especially the mean
and maximum speeds. Also, the vertical variance of altitudes feature from GPS is
always ranked among the top 20 important features by all feature selection methods.
The Accelerometer sensors consist larger number of features, and provides intensity
characteristics that GPS does not provide. In this analysis, the Extra Tree Classifier
training with individual GPS and Accelerometer data are given for a further
inspection under the feature importance theme. Figure 5.26 shows the classification
results from individual sensors data by different classifiers. Overall speaking, the
performances trained by individual sensors data are lower than the data combination
of both the sensors. However, individual data can still give good performance.
Especially for GPS sensor, with only 7 features, it still gives an accuracy score of
around 0.7.
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Figure 5.26 classification results from GPS sensor (right) and Accelerometer (left)
data by different classifiers.
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6 Discussion

This Chapter discusses the analysis results under the framework of the proposed
research questions. The first research question about the literature review of some
popular papers in this theme is answered in Chapter 2. Therefore, this chapter mainly
summarizes the conclusions to the last two research questions in each three
subchapters.

6.1 RQ2 - Differences in performances by classifiers and
dimension reduction methods
This research question is first answered by presenting individual performances of
classifiers and dimension reduction methods. Later, a summary is given on the
comparison of the proposed combinations.

6.1.1 Dimension reduction methods with K-means and KNN

6.1.1.1 K-mean with PCA
For the unsupervised K-means classifier, the performance is very low with an
averaged accuracy around 0.115 of different parameter settings. This corresponds to
the research conclusion from Peterek et al. (2014). The parameter for the number of
times the k-means algorithm that is run with different centroid seeds is set as 3, 10, 20.
The result does not show a significant performance difference by changing this
parameter. Nevertheless, PCA helps in improving the classification accuracy, but the
result is still poor. Therefore, K-means unsupervised learning is not considered as a
proper classifier for PA classification in this thesis.

6.1.1.2 KNN with PCA
KNN method is not suitable for the original feature space with a really low accuracy
score below 0.36. However, the application of PCA significantly improves the
classification accuracy of KNN to an acceptable level (the highest score of 0.745
within the tested settings by the stratified 10-fold validation method). It is noteworthy
that for the KNN classifier, observations are likely to be labelled as classes with larger
amount of observations. In this case, most observations are detected as the slow walk,
fast walk, and ascending. With the help of PCA, this situation is largely improved but
still exists. Particularly there exist large proportions of misclassification of stationary,
fast walk, biking to slow walk. This could be interpreted as the impact of the data
quality itself.

In terms of the best parameters for the classifier and PCA method, the validation
results from stratified 10-fold show that the best value for the dimension parameter for
PCA in this combination might locates between 60 and 100 dimensions, as the both
parameters result in similar performance score. For the same reason, the best value for
the parameter number of neighbors for KNN might locate between 3 and 10. The 10-
fold validation suggests that 100 is the best value for the dimension parameter, and the
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best value for the parameter number of neighbors for KNN locate between 3 and 10 as
well. This conclusion is different from the results from some researches, where
smaller numbers of dimensions perform better accuracy score (Dehzangi et al., 2018).
On the other hand, the different validation methods exert similar performance results
but leads to different parameter selections. Additionally, the higher the number of
dimensions, the higher the time cost, while the number of neighbors does not have a
significant impact on the time costs in this analysis.

6.1.2 Feature selection methods with Extra Tree Classifier

Extra Tree Classifier is the best classifier considering both classification accuracy and
time costs (see results from Chapter 5.3). It can provide an average accuracy around
0.8 with the default parameter settings for the classifier function. By this classifier,
Slow walk has a highest accuracy score of 0.88 (stratified 10-fold), and Stationary
activity has a lowest accuracy score of 0.57. And Stationary is most often
misclassified as Slow walk (0.23). Extra Tree Classifier is also good at recognizing
Jogging, Ascending, and Biking.

Three feature selection methods, namely ReliefF as the filter method, Genetic
Algorithm as the wrapper method, and Recursive feature Elimination as the embedded
method are implemented and compared in terms of their contributions in Extra Tree
Classifier’s performance improvement.

6.1.2.1 ReliefF
ReliefF is a common filter feature selection method which is applied and found useful
in some PA studies (Dehzangi et al., 2018). In this study, the ReliefF method helps to
slightly improve the performance of the Extra Tree Classifier to an accuracy score of
0.825 (stratified 10-fold). Regarding activity classes, ReliefF method slightly
improves the classification results of the Extra Tree Classifier in Ascending,
Descending, Biking, Stationary, and Fast walk and keeps the same accuracy for
Jogging and Slow walk. Additionally, the time costs are low for this method (around
30 seconds).

In terms of the best parameters for the ReliefF method, the validation results show
that the best value for the dimension parameter is 60 by stratified 10-fold validation
and 100 by holdout validation. And the number of neighbors does not show a
significant difference in performances. In terms of the comparison of validation
methods, the differences in both accuracy score (highest for stratified 10-fold
validation as 0.825 and for holdout validation for 0.85) and parameter selection exist
as concluded in the last subchapter.

6.1.2.2 Genetic Algorithm
Genetic Algorithm is a common wrapper feature selection method (Baldominos et al.
(2017). In this study, the Genetic Algorithm helps to slightly improve the performance
of the Extra Tree Classifier to an accuracy score of 0.824 (stratified 10-fold).
Regarding activity classes, Genetic Algorithm slightly improves the classification
results of the Extra Tree Classifier in Stationary, Ascending, Biking, Descending, and
Fast walk and keeps the same accuracy for Jogging and Slow walk. The class with the
highest accuracy score predicted by GA is still Slow walk. Additionally, the time
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costs are very high (above 2,000 seconds) for this method, this is due to this method
runs all feature subsets under the maximum number of features defined.

In terms of the best parameter for the Genetic Algorithm, the validation results show
that the best value for the maximum number of features parameter is 60, which in the
end selects 58 features. In this feature selection method, only stratified 10 fold is
applied, as the GeneticSelectionCV function does not support the non-cross-validation
method.

6.1.2.3 Recursive feature Elimination
Recursive feature Elimination combined with SVM is a common embedded feature
selection method. However, in the implementation process, this combination takes too
long running to which does not considered as an effective method for this dataset.
Therefore, in this analysis, RFE is combined with Extra Tree to inspect its influence
on this classifier. In this study, the RFE helps to slightly improve the performance of
the Extra Tree Classifier to an accuracy score of 0.827 (stratified 10-fold). Regarding
activity classes, RFE slightly improves the classification results of the Extra Tree
Classifier in Stationary, Ascending, Biking, Descending, and Fast walk, and Slow
walk and keeps the same accuracy for Jogging. The class with the highest accuracy
score predicted by RFE is still Slow walk. Additionally, the time costs are relatively
high (above 1,000 seconds) for this method, this is due to this method runs all feature
subsets above the minimum number of features defined. And for this method, the
smaller the step size, the higher the minimum number of features, the longer the
computational time cost.

In terms of the best parameter for the RFE, the validation results show that the best
value for the minimum number of features parameter is 60, and the best value for the
step parameter is 1, which in the end selects 71 features. One can see that as number
of feature grows, the scores increase as well. Also from the plot of the performance
curve with all feature subsets (See Figure 5.23), it can be seen that until a certain
number of features (around 10 in this analysis), the scores maintain at a good level.
This reflects that for a minimum number of 10 features from the whole feature set can
provide a good level of accuracy score by the RFE - Extra Tree method. In this
feature selection method, only stratified 10 fold is applied, as the RFECV function
function does not support the non-cross-validation method.

6.1.3 Comparison of feature selection methods

Looking at the feature selection methods individually, the filter method has the lowest
computational costs, while the embedded method provides the best results with a
lower computational time than the wrapper method. General speaking, all feature
selection method helps in improving the performance of the Extra Tree Classifier to
some extent. However, the improvement of the performance might not be huge in this
case. This could relate to the data influenced by the manual labelling process and the
classifier chosen. For example, the classification accuracy for the Stationary class is
always much lower (round 0.6) by this Classifier in comparison to other classes
though the feature selection methods are helpful in improving it slightly. In this case,
a manual examination of misclassified segments can be done in the next step to find
out the reason for the low performance in this class. Nevertheless, the improvement of
performances are still significant considering multiple runs of the feature selction
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algorithm with other random state settings when inspecting. In the future, the feature
selection methods combined with other classifiers can be explored.

6.1.4 Comparison of validation methods

This analysis tried an extra holdout validation methods besides the stratified 10-fold
methods on the combination of KNN Classifier with PCA, and ReliefF with Extra
Tree Classifier to answer the research question about the different validation methods’
impact (the last two feature selection methods are not applied the holdout validation
due to the functions in Python do not support non-cross-validation methods).
Theoretically speaking, the differences of the two validation methods are from the
number of folds tested and the stratified method applied. For the holdout validation
method, only one fold is fitted for testing and training, while for stratified k-fold
method, k folds are fitted for testing and training in total to reduce the bias exist. The
application of the stratified k-fold method helps in dealing with the unbalanced
classes problems which is suitable for the case of this thesis as well. Since the
stratified 10-fold is more reliable in theory compared to the holdout validation method,
this analysis aims for testing if the holdout validation method can provide a similar
level of result as stratified 10-fold, and thus be an alternative for model training. As
the stratified k-fold spends k-1 times more time than the holdout validation method,
holdout validation method can largely reduce the time for some cases with large
dataset. Moreover, the comparison of the score values from the holdout method and k-
fold method also indicates model stability. This is because that if the model
performances among different folds are very different, the model is not considered
stable.

The results show that there indeed exist certain levels of performance differences
between the two validation methods but the accuracy score differences of those two
validation methods are not significant. And as expected, the time costs for holdout
method is much lower compared to stratified-k-fold method. This indicates that the
holdout validation method can help in balancing the classification performance
improvement and computational cost in feature transformation process for large
datasets. However, different validation methods might result in the wrong judgement
of the hyper-parameters to tune and thus influence the model training process.

6.2 RQ-3 Features from the two sensors and distinctive
features

6.2.1 Feature comparison from two sensors

In this analysis, a total of 118 features are calculated, containing 7 GPS features and
111 accelerometer features. And the accelerometer features are further categorized as
distinctive features summarized from some existing literature, other statistical time-
domain features, and other statistical frequency domain features. After training the
Extra Tree Classifier with only GPS features, only Accelerometer features, and both
sensor features, one can see that the training with features from both sensors gives the
best performance results, followed by only Accelerometer features. Nevertheless, it is
noteworthy that though GPS features still show a good level of accuracy score (round
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0.7) with a rather small number of features (7 compared to 111 of accelerometer
features).

The distinctive features are ranked by the Extra Tree Classifier measured in Shapley
values. Among the original 118 feature sets, the top 10 important features are: mean
speed from the GPS sensor, maximum speed from the GPS sensor, mean amplitude of
the z axis peaks, standard deviation of z axis signal, variance of the total acceleration,
signal energy of the total acceleration, interquartile range of the total acceleration,
sum of amplitudes of the total acceleration peaks, standard deviation of the total
acceleration, variance of Movement Intensity. It can be seen that the top two
important features are from GPS, and the rest 8 are from Accelerometer. Looking at
features individually, the mean speed has a relatively large importance values than the
rest features.

When looking at the top 20 features, 3 of them are GPS features out of the 7
calculated. The rest 17 features contain 4 distinctive features out of the 16
summarized from the literature, 6 time domain features, and 7 frequency domain
features. After the application of the three feature selection methods, the top 20
features changes in ranking and individual features but still have the similar numbers
of features in different feature categories (see Chapter 5 for more detail). Additionally,
the weight scores of all the top 20 features are also higher and more balanced after
feature selection, which is also due to the smaller number of total features trained.

6.2.2 Features for different activity types

This part examines distinctive features for different activity types. For Extra Tree
Classifier without feature selection methods applied, the top important feature, mean
speed, has a great impact on the distinguishing slow walk, fast walk and biking. For
slow walk detection, other important features are maximum speed, standard deviation
of the z axis, mean value of the movement intensity. For the detection of ascending,
total acceleration variation, standard deviation of total acceleration, auto-correlation
of total acceleration all have relatively higher impact. With regard to the detection of
fast walk, maximum speed and amplitudes of the z axis peaks play an vital role. Mean
value of the movement intensity, vertical variance are crucial features in the
recognition of the descending class. Mean and maximum speeds are important for
biking while total acceleration variation, total signal energy, minimum of total
acceleration are key features of jogging detection. For stationary, the main features
are also mean and maximum speeds. However, the importance values for features for
the stationary activity are rather low. This could be a reflection that the classifier is
not good at detecting the stationary class.

With the implementation of the ReliefF method, the adding of vertical variance
weight in ascending, total acceleration features’ weights in jogging and descending
help in improving the model accuracy. Besides, ReliefF also increases the importance
of variance of altitude by 8 positions as well as the importance of the y axis features,
which are not included in before the feature selection.
With the implementation of the GA method, the adding of total acceleration and the z
axis features’ weights help in improving the model accuracy. Besides, GA also
increases the importance of variance of altitude by 6 positions as well as the
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distinctive feature Eigenvalue of the horizontal direction, which is also a feature
constructed by sensor fusion, and is not included in the top 20 features before the
feature selection.
.
With the implementation of the RFE method, the adding of speed features and
distinctive features help in improving the model accuracy. Besides, GA also increases
the importance of variance of altitude by 6 positions as well as the the importance of
the features from the distinctive feature category.
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7 Outlook

For the first and second research questions, a closer examination of the misclassified
segments can be conducted to find out the reasons for the misclassification. Also, the
data for this thesis is unbalanced, which could also be the reason for the highly
unbalanced classification scores for different classes. The way to treat the unbalanced
data in this analysis is to apply the stratified validation method. In the future, more
efforts can be spare in dealing with unbalanced dataset.
In terms of the classifiers and validation methods, efforts on other classifiers that are
not tested in this study can be further explored. Additionally, the tested methods in
this thesis can still be inspected by adjusting the hyperparameters to find the optimum
models. More specifically, in this thesis, for all dimension reduction methods, more
fine grid searches can be conducted to find a better balance in both the performance
score and the time cost. For the model evaluation, more metrics, such as model
stability can be taken into consideration.

For the validation method comparison, more researches can be done in the future as
well. For example, between the comparison of the k-fold and holdout method, this
thesis only inspects the 10-fold and holdout method with a train/test split as 90%/10%,
given the reason to investigate the influence of the bias range and stratified method.
The next step could be comparing 10-fold and holdout method with a train/test split as
70%/30%, since these two methods are most common ones applied in literature, and
most studies only selected one method to test the model. Besides the two methods,
other validation methods can also be compared. For example, the comparison of
leave-one-subject-out validation and k-fold validation is meaningful for this thesis.
This comparison can validate if the model trained can be generalizable on other
subjects.

In terms of the third research question about distinctive features from different sensor
dimensions, there are still different aspects can be explored in the future. First, more
GPS features can be extracted, such as the distance ratio in Wu et al.’s (2010) study.
Second, as mentioned above in Chapter 3, features from the GPS such as the number
of satellite can be helpful in detecting indoor and outdoor walking. For future research,
these features can be explored for additional walking types. Third, other sensor
dimensions, such as gyroscope and magnetometer, are also meaningful in activity
detection. Especially for gyroscope, it is useful to detect directional walking, such as
walking right and walking left. However, this is not suitable for large unlabelled
dataset given the difficulty in labelling those activity types.

For this dataset, visualizations of different participants’ PA types classified can be
conducted to get an more intuitive overview of the older adults’ daily exercising life.
Different activity types’ relations with geographic locations can be explored.
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8 Appendices

8.1 Appendix 1: Tables and Figures
Tables:

Table 8.1 GeneticSelection with chosen features by Extra Tree Classifier
Maximu
m number
of
features

Number
of
Feature
s

Chosen Features Accurac
y Scores

Chosen Estimator Computationa
l Time

16 16 'sp_max', 'hori_dis',
'verti_vari', 'x_kurto',
'y_max', 'rang_y',
'z_stdev', '
mean_amplitude_y',
'mean_amplitude_z',
'steps_total', 'y_corr',
'x_signal_energy', '
x_maxAmp3', '
z_maxAmp',
'mean_total_amp',
'edd_1'

0.807
(0.806)

ExtraTreesClassifier(
)

1426.8s

30 30 'sp_mean', 'sp_max',
'verti_vari', 'distance',
'x_var', 'x_skew',
'y_mean', 'y_var',
'y_kurto', 'z_max',
'z_mean', 'interaquar_z',
'total_min',
'interaquar_total',
'time_interval_y',
'peak_width_z',
'steps_total',
'mean_amplitude_total',
'time_interval_total',
'x_corr', 'z_corr',
'zero_cros_x', '
zero_cros_y',
'aver_cros_z',
'zero_cros_total',
'power_z_maxAmp2', '
power_z_maxAmp3',
'total_maxAmp',
'power_total_maxAmp',
'edd_2'

0.816
(0.806)

ExtraTreesClassifier(
)

1607.8s

60 58 'sp_stdev', 'sp_mean',
'sp_max', 'verti_vari',
'distance', 'x_stdev',
'x_min', 'x_mean',
'x_median', 'x_var',
'x_skew', 'y_min',

0.824
(0.806)

ExtraTreesClassifier(
)

2151.5s
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'rang_y', 'y_var',
'y_skew', 'y_kurto',
'z_stdev', 'z_mean',
'rang_z', 'interaquar_z',
'total_max',
'total_median',
'total_var',
'interaquar_total',
'steps_x',
'mean_amplitude_x',
'time_interval_x',
'total_amplitude_y',
'peak_width_y',
'mean_amplitude_z',
'total_amplitude_z',
'time_interval_z',
'peak_width_total',
'x_corr', 'y_corr',
'z_corr', ' total_corr',
'zero_cros_x',
'aver_cros_x', '
zero_cros_y',
'zero_cros_z',
'aver_cros_z', '
aver_cros_total', '
x_maxAmp',
'power_x_maxAmp2',
'power_x_maxAmp3',
'mean_x_amp',
'y_maxAmp2',
'power_y_maxAmp',
'power_y_maxAmp2', '
z_maxAmp',
'z_maxAmp2',
'power_z_maxAmp',
'mean_total_amp',
'edd_1', 'edd_2', ' AI',
'VI'

118 70 'sp_stdev', 'sp_mean',
'hori_dis', 'verti_vari',
'distance', 'x_stdev',
'x_min', 'x_max',
'rang_x', 'x_median',
'x_var', 'interaquar_x',
'x_skew', 'x_kurto',
'y_stdev', 'y_min',
'rang_y', 'interaquar_y',
'y_skew', 'z_stdev',
'z_mean', 'rang_z',
'z_var', 'z_skew',
'total__stdev',
'total_min', ' total_mean',
'total_median',
'interaquar_total',
'total_amplitude_x',
'peak_width_x',
'steps_y', '
mean_amplitude_y',
'time_interval_y',
'steps_z',

0.817
(0.806)

ExtraTreesClassifier(
)

2220.9s
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'mean_amplitude_z',
'total_amplitude_z',
'peak_width_z',
'steps_total', 'x_corr',
'y_corr', 'zero_cros_x',
'aver_cros_x',
'aver_cros_y',
'zero_cros_z',
'zero_cros_total',
'x_spectral_density',
'x_maxAmp2', '
x_maxAmp3',
'power_x_maxAmp',
'power_x_maxAmp2',
'mean_x_amp',
'y_spectral_density',
'y_signal_energy',
'y_maxAmp3',
'power_y_maxAmp',
'power_y_maxAmp2',
'z_spectral_density',
'z_signal_energy',
'z_maxAmp2', '
z_maxAmp3',
'power_z_maxAmp2',
'mean_z_amp',
'total_maxAmp2',
'power_total_maxAmp',
'power_total_maxAmp2'
, 'mean_total_amp',
'edd_2', 'entropy_total',
'VI'

Table 8.2 RFECV with chosen features by Extra Tree Classifier
Step

Minimu
m
number
of
features

Numb
er of
Featur
es
selecte
d

Chosen features Accura
cy

Scores

Computational
Time

1 1 56 'sp_stdev','sp_mean','sp_max','hori_dis',
'verti_vari', 'distance','x_stdev', 'x_max',
'x_median','x_var','interaquar_x','x_skew'
,'y_stdev','y_var','interaquar_y','y_skew','
z_stdev','z_min','z_var','interaquar_z',
'total__stdev', 'total_min', 'rang_total',
'total_var', 'interaquar_total', 'steps_x',
'mean_amplitude_x','total_amplitude_x',
mean_amplitude_y','total_amplitude_y'
'peak_width_y','mean_amplitude_z',
'total_amplitude_z',
'peak_width_z','mean_amplitude_total',
'total_amplitude_total','x_corr',
'z_corr','total_corr','zero_cros_y',
'aver_cros_y', 'x_signal_energy',
'x_maxAmp','x_maxAmp2','x_maxAmp3
','mean_x_amp','y_signal_energy',
'mean_y_amp','z_signal_energy',
'z_maxAmp2', ' z_maxAmp3',
'mean_z_amp', 'total_signal_energy',

0.826
(0.806)

2322.0s
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'edd_1', 'edd_2', ' AI'
3 1 64 'sp_stdev','sp_mean','sp_max', 'hori_dis',

'verti_dis', 'verti_vari',
'distance', 'x_stdev', 'x_median', 'x_var',
'interaquar_x','x_skew','y_stdev',
'y_var','interaquar_y','y_skew', 'z_stdev',
'z_min','rang_z', 'z_var', 'interaquar_z',
'total__stdev', 'total_min', 'rang_total',
'total_var', 'interaquar_total', 'steps_x',
'mean_amplitude_x','total_amplitude_x',
'peak_width_x',mean_amplitude_y',
'total_amplitude_y','peak_width_y',
'steps_z','mean_amplitude_z',
'total_amplitude_z', 'peak_width_z',
'mean_amplitude_total',
'total_amplitude_total','x_corr', 'y_corr',
'z_corr', ' total_corr', 'aver_cros_x', '
zero_cros_y',
'aver_cros_y','x_signal_energy','x_maxA
mp', 'x_maxAmp2', 'x_maxAmp3',
'power_x_maxAmp','mean_x_amp',
'y_signal_energy', 'mean_y_amp',
'z_signal_energy','z_maxAmp2','
z_maxAmp3', 'mean_z_amp',

'total_spectral_density',
'total_signal_energy', 'mean_total_amp',
'edd_1', 'edd_2', ' AI'

0.824
(0.806)

778.9s

Figures:

Figure 8.1 RFECV feature selection scores with the the number of features selected
Figure (a) shows the results from the hyperparameter minimum number of features set
as 16, step size set as 1. Figure (b) shows the results from the hyperparameter
minimum number of features set as 60, step size set as 1.

8.2 Appendix 2: Code
Table 8.3 Overview of scripts containing important steps for the PA classification

Function Description
Low pass filter Compute the coefficients based on cutoff freq (Hz), sampling freq (Hz), and the

order of the filter (amount of past values filters uses). This returns the gravity y and
ignores the rest.
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def butter_lowpass (cutoff, fs, order=1):
nyq = 0.5 * fs
normal_cutoff = cutoff / nyq
b, a = butter(order, normal_cutoff, btype='low', analog=False)
return b, a

def butter_lowpass_filter (data, cutoff, fs, order=1):
b, a = butter_lowpass(cutoff, fs, order=order)
y = lfilter(b, a, data)
return y

GPS speed
recalculation

Recalculate the GPS speed by taken the mean values of the adjacent observations.

data['speed'] = data['speed'].rolling(3).mean()

Peak finding Calculate the signal’s peak-related features in the time domain. The threshold
parameter represents the vertical distance to its neighboring samples. The distance
parameter represents the required minimal horizontal distance (>= 1) in samples
between neighbouring peaks.

peaks, _ = scipy.signal.find_peaks (signal, threshold = 20, distance = 2)
prominences = scipy.signal.peak_prominences (signal, peaks, wlen=None)[0]
steps = sensormotion.gait.step_count (peaks)

Zero/Mean
crossing rate

Calculate the times signal goes cross the zero and mean values in one time window

def getZeroCrossingRate(arr):
my_array = np.array(arr)
return float("{0:.2f}".format((((my_array[:-1] * my_array[1:]) <

0).sum())))

def getMeanCrossingRate(arr):
return getZeroCrossingRate(np.array(arr) - np.mean(arr))

Power spectral
density

Calculate power spectral density by integration over spectral bandwidth in
frequency domain

f_welch, S_xx_welch = scipy.signal.welch(signal, fs=fs)

Dominant
frequencies of
signals

Calculate the top 3 dominate frequencies of signals in frequency domain

xdft = np.fft.fft(signal)
xdf = pd.DataFrame((np.abs(xdft)))
maxAmp, maxAmp2, maxAmp3 = xdf[0].nlargest(3)

Eigenvalues of
dominant
directions
(EDD)

Calculate the distinctive feature Eigenvalues of dominant directions that measures
the corresponding relative motion magnitude along the vertical direction and the
heading direction respectively.

def EDD(x, y, z):
edd_mat = np.array([x, y, z])
cov_mat = np.cov(edd_mat.T)
eigen_vals, eigen_vecs = np.linalg.eig(cov_mat)
return eigen_vals[0], eigen_vals[1]

Signal Entropy Calculate the entropy of signals

antropy.entropy.spectral_entropy (ac, fs)

ReliefF ReliefF (n_neighbors = 20, features_to_keep = 16)
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Genetic
selection

selector = GeneticSelectionCV (estimator, cv = cv, verbose = 0,scoring =
"accuracy",
max_features = i, n_population = 50, crossover_proba = 0.35, mutation_proba =
0.015, n_generations = 10, tournament_size = 3)

Recursive
feature
elimination

selector = RFECV (estimator, min_features_to_select= min_features_to_select,
step = step, cv = cv, scoring = 'accuracy' )
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