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Abstract

Global change affects biodiversity worldwide, which alters ecosystem productivity and stabil-
ity. The increasing need for continuous global information on biodiversity of Earth’s vegetation
calls for new approaches to exploit existing satellite time-series. In this Master thesis, we adapt
and test novel methods to map functional diversity by transferring these from airborne imaging
spectroscopy platforms, APEX, to spaceborne multispectral satellites, Sentinel-2. We could iden-
tify changes in functional traits and functional biodiversity metrics between two dates of the year,
namely July and September. We identified applicable spectral indices for physiological forest traits
indicating forest health, stress, and potential productivity and compared their suitability for both
sensors on varying spatial scales. We selected four functional traits forming the base data for func-
tional diversity metrics, namely chlorophyll, anthocyanin, carotenoid and water content. Based
on the highest scoring index for each trait, we successfully reproduced observations from previ-
ous studies at the spectral resolution of Sentinel-2. For all four traits, we selected corresponding
indices that could be applied to Sentinel-2 and APEX data, namely CIred− edge, RGR, PSRI, and
NDII. Based on spatial scaling analysis from 20 m to 800 m, we observed significant change in
two functional diversity metrics, namely functional richness and divergence. Both diversity met-
rics do not allow for quantitative comparisons across scales involving different numbers of pixels
per unit. Qualitatively, the observed patterns of functional richness and divergence were compa-
rable among the sensors for most parts, but not throughout the entire ecosystem. At coarser spatial
resolution, mixed pixel effects could be noticed at the forest border and clearing areas, causing an
increase in richness and decrease in divergence. Different approaches for masking vegetation, or
specifically the forested areas, will improve presented results. Furthermore, including morpho-
logical information from laser scanning will provide the opportunity to characterize structural
diversity and help to improve forest masking. Despite the challenges, there is a high potential in
the presented approach. Mapping functional diversity from space will provide many opportuni-
ties to quantify biodiversity, ecosystem functioning and global environmental changes. Next steps
include analysis of the approach at larger research areas, different ecosystems and throughout the
phenological year.

III





Contents

Abstract III

List of Figures VII

List of Tables XI

1 Introduction 1

2 Material and Methods 5
2.1 Study area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Remote Sensing data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Imaging spectroscopy data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Spaceborne Remote Sensing data . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.3 Dataset selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.4 Other data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Data preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.1 Data pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.2 Spectral resampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.3 Forest mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Functional traits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.1 Vegetation indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.2 Testing indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Functional diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5.1 Multi-dimensional scale analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5.2 Functional diversity metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Results 25
3.1 Choice of vegetation indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.1 One-dimensional scale analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.2 Comparing indices of rescaled APEX and Sentinel-2 datasets . . . . . . . . . 27
3.1.3 Correlation of calculated indices . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Functional traits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 Multi-dimensional scale analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4 Functional diversity maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4.1 Diversity calculated from 2 m APEX dataset . . . . . . . . . . . . . . . . . . . 34
3.4.2 Differences in diversity maps due to rescaling . . . . . . . . . . . . . . . . . . 35

V



3.4.3 Differences in diversity maps due to sensor characteristics . . . . . . . . . . . 40

4 Discussion 43
4.1 Functional traits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1.1 Identification of suitable functional traits and corresponding vegetation in-
dices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1.2 Mapping functional traits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.1.3 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Functional diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2.1 Four-dimensional scale analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2.2 Mapping functional diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2.3 The mixed-pixels problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2.4 Adding Anthocyanin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2.5 Seasonal development of mapped physiological diversity . . . . . . . . . . . 50
4.2.6 Behavior of diversity metrics with neighborhood area . . . . . . . . . . . . . . 51
4.2.7 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5 Conclusion 55

Bibliography 57

A Appendix - Additional Figures and Tables 69

B Appendix - List of Abbreviations 83
B.1 Terms and Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
B.2 Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
B.3 Vegetation indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
B.4 Organizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
B.5 Missions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
B.6 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Acknowledgements 87

Personal Declaration 89

VI



List of Figures

2.1 Research site at the Laegern forest and location in Switzerland. . . . . . . . . . . . . . 5
2.2 Histogram showing NDVI values at the research site in both summer and fall. . . . 10
2.3 Final forest mask calculated at 2 m and 20 m resolution. . . . . . . . . . . . . . . . . . 11
2.4 Example of one-dimensional scale analysis calculating within- and between-unit

variance, for increasing unit side length. . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5 Example of the calculation involved in a one-dimensional scale analysis. . . . . . . . 19
2.6 Units considered for the scale analysis at a unitsize of 400 · 400 m. . . . . . . . . . . . 20
2.7 Functional richness and divergence based on an example unit. . . . . . . . . . . . . . 22

3.1 Scatterplots of the tested indices, calculated based on datasets for each sensor in
both summer and fall. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Mapped functional traits (chlorophyll, anthocyanin, carotenoid, and water content)
on the research site. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Mapped functional traits on research site in both summer and fall, at different sec-
tions of the research area. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Comparison of sensors in a four-dimensional scale analysis calculating richness
from the functional traits chlorophyll, anthocyanin, carotenoid, and water content. . 32

3.5 Comparison of sensors in a four-dimensional scale analysis calculating divergence
from the functional traits chlorophyll, anthocyanin, carotenoid, and water content. . 33

3.6 Functional richness based on 2 m APEX dataset in summer and fall. . . . . . . . . . . 34
3.7 Functional divergence based on 2 m APEX dataset in summer and fall. . . . . . . . . 34
3.8 Functional richness maps based on the A2, A20 and S20 dataset in summer and fall

calculated in units with 60 m diameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.9 Functional richness maps based on the A2, A20 and S20 dataset in summer and fall

calculated in a 120 m diameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.10 Functional divergence maps based on the A2, A20 and S20 dataset in summer and

fall calculated in units with 60 m diameter. . . . . . . . . . . . . . . . . . . . . . . . . 38
3.11 Functional divergence maps based on the A2, A20 and S20 dataset in summer and

fall calculated in a 120 m diameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.12 Development of mean functional richness and divergence in summer and fall when

calculated based on increasing neighborhood diameter for the whole ecosystem as
well within the three subareas A, B and C. . . . . . . . . . . . . . . . . . . . . . . . . . 39

VII



3.13 Development of mean functional richness and divergence in summer and fall when
calculated based on increasing neighborhood diameter. The panels show both the
development of mean values when calculated based on the A20 dataset and the S20
dataset in large units. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.14 Development of the correlation for richness and divergence with increasing neigh-
borhood size in which they were calculated over the ecosystem. . . . . . . . . . . . . 41

3.15 Development of the correlation for the two functional diversity metrics with in-
creasing unit size in which they were calculated, for each of the three subareas A,
B and C. The resampled A20 dataset is compared with the A2 (left), the S20 dataset
is compared with the A2 dataset (middle), as well as the A20 dataset and the 20 m
S20 dataset (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1 Effect of niche partitioning on functional divergence. . . . . . . . . . . . . . . . . . . 48
4.2 Effect of mixed pixels on randomly generated data-points with clear differentia-

tion/niche partitioning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

A.1 Comparison of APEX and Sentinel-2 pixels. . . . . . . . . . . . . . . . . . . . . . . . . 69
A.2 NDVI Mask, vegetation height mask based on the CHM and shadow mask. . . . . . 70
A.3 Graphic representation of the three types of dataset, the spectrally resampled APEX

dataset (A2), the spectrally and spatially resampled APEX dataset (A20) and the
Sentinel-2 dataset (S20). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

A.4 Graphic representation of the basic work-flow from remotely-sensed data to physi-
ological diversity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

A.5 Example of circular pixel neighborhood and its weighing. . . . . . . . . . . . . . . . . 72
A.6 Performance of CRI1 in the one-dimensional scale analysis. . . . . . . . . . . . . . . 74
A.7 Carotenoid describing CRI1 calculated on the A2 dataset. CRI1 seemed to not work

properly on APEX data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
A.8 Difference of all functional traits calculated based on the A2 datasets. . . . . . . . . . 76
A.9 Histograms showing the mapped functional traits chlorophyll, anthocyanin, carotenoid

and water content on the research site. . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
A.10 One-dimensional scale analysis for each of the functional traits. . . . . . . . . . . . . 77
A.11 Scale analysis of A20 and S20 datasets, calculating functional richness. . . . . . . . . 78
A.12 Scale analysis of A20 and S20 datasets, calculating functional richness. Chlorophyll

content is here described by CIgreen instead of CIred− edge. . . . . . . . . . . . . . . 78
A.13 Scale analysis of randomly generated, normally distributed trait data calculated

functional divergence five times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
A.14 Correlation of seasons for both functional richness and divergence maps, calculated

from A2 data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
A.15 Seasonal difference of functional richness. . . . . . . . . . . . . . . . . . . . . . . . . . 79
A.16 Seasonal difference of functional divergence. . . . . . . . . . . . . . . . . . . . . . . . 80
A.17 Functional richness calculated based on the different datasets A2, A20, S20 in sum-

mer and fall based on 200 m unit size. . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

VIII



A.18 Functional divergence calculated based on the different datasets A2, A20, S20 in
summer and fall based on 200 m unit size. . . . . . . . . . . . . . . . . . . . . . . . . . 81

A.19 Development of within- and between-unit functional richness with increasing unit
size in summer and fall in the four-dimensional scale analysis based on the A2
datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

A.20 Development of mean functional richness calculated based on the A20 dataset, with
increasing unit area in summer and fall. . . . . . . . . . . . . . . . . . . . . . . . . . . 82

A.21 Effect of mixed pixels on randomly generated, normally distributed data-points
without clear differentiation/niche partitioning. . . . . . . . . . . . . . . . . . . . . . 82

IX





List of Tables

2.1 Remotely-sensed data from the Laegern forest derived using APEX and Sentinel-2
in 2016. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Spectral bands and their spatial resolution of Sentinel-2 MSI sensors. . . . . . . . . . 7
2.3 Phenological data from stations near the Laegern forest, indicating general leaf dis-

coloration and general leaf fall. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Tested indices and type of traits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5 Number of valuable pixels per unit (ppu) and number of units considered for every

unitsize within the scale analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.6 Unit size (diameter and area) of circular units, in meter and pixels, comparing data

with 2 m pixels and 20 m pixels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1 Tested indices and their corresponding trait in the one-dimensional scale analysis. . 26
3.2 Correlation of the calculated indices on the A20 and S20 datasets. . . . . . . . . . . . 26
3.3 Correlation of calculated indices with each other based on 20 m datasets, averaged

over sensors and seasons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4 Correlation of functional traits in both summer and fall. . . . . . . . . . . . . . . . . . 30

A.1 Correlation of tested indices with each other, calculated based on A20 datasets av-
eraged over seasons summer and fall. . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

A.2 Correlation of tested indices with each other, calculated based on S20 datasets av-
eraged over seasons summer and fall. . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

A.3 Calculated variables of tested indices, calculated based on A20 and S20 datasets for
each sensor at both summer and fall. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

XI





1 Introduction

Global environmental change is a continuing process. Anthropogenic changes, such as defor-
estation and forest degradation, shifts in climate (global warming) as well as atmospheric chem-
istry, eutrophication, fire suppression and drought can be noticed globally, lead to alterations in
ecosystems and impact biodiversity (Brooks et al., 2002; Sodhi et al., 2004; Fearnside, 2005; Pandit
et al., 2007; IPCC, 2013; Hautier et al., 2015). Changes in biodiversity related to environmental
change affect productivity and stability of ecosystems (Hector and Bagchi, 2007; Cardinale et al.,
2013; Bartomeus et al., 2013; Morin et al., 2014; Cusson et al., 2015; Jucker et al., 2014). The ef-
fects of changes in biodiversity on ecosystem services are visible, for example through food and
wood provisioning, which is related to plant biomass and therefore productivity (Balvanera et al.,
2006). An increase in diversity promotes ecosystem functioning and productivity, due to a more
efficient usage of the given resources through niche partitioning (Loreau et al., 2001; Morin et al.,
2011). Ecosystems characterized by higher diversity are more robust against disturbances, such as
herbivory, pests and impacts of global environmental change (Jactel and Brockerhoff, 2007; Silva
Pedro, Rammer, and Seidl, 2015). Diversity therefore provides insurance for ecosystem function-
ing due to a high number of different ecological strategies providing stability and resilience espe-
cially when facing disturbances and ecosystem changes (Loreau et al., 2003; Matias et al., 2013).
Other positive effects of increased plant diversity on ecosystem services include erosion control,
increases in decomposition, and ecosystem resistance to invasive species (Balvanera et al., 2006;
Laureto, Cianciaruso, and Samia, 2015). Diversity loss, on the other hand, has an effect compa-
rable to the effects of disturbances linked to environmental change, while also leading to greater
exposition to disturbances caused by global anthropogenic changes (Tilman, Isbell, and Cowles,
2014).

Anthropogenic changes can alter interspecific interactions and produce unexpected changes in
species distribution, community structure, and species diversity and have resulted in worldwide
biodiversity loss (Harley, 2011). The preservation, conservation, and restoration of biodiversity
should be a high global priority (Tilman, Isbell, and Cowles, 2014). Halting the rate of biodiver-
sity loss and reducing its impact are international goals, which are manifested in the Aichi Targets
for 2020 by the United Nations (UN) Convention on Biological Diversity, as well as the UN Sus-
tainable Development Goals to be achieved by 2030 (Pereira et al., 2013; Tittensor et al., 2014;
Brooks et al., 2015; FAO, 2018). Therefore, it is necessary to study the impacts, interactions and
feedbacks of global environmental change on ecosystems and biodiversity.

Currently, there is a high demand in consistent time-series on a global scale to study the biodi-
versity of Earth’s vegetation (Tittensor et al., 2014; Jetz et al., 2016). Observing functional diversity
using satellite data will provide continuous, global coverage in space and time. Therefore, satel-
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lite remote sensing is crucial to get long-term global coverage (Skidmore and Pettorelli, 2015).
Advancing our scientific understanding on biodiversity states and changes on a global scale will
help to assess the impact of environmental change on ecosystems and facilitates the prediction
of future ecosystem functioning (Jetz et al., 2016). Furthermore, long-term observations provide
a more detailed representation of the biosphere in Earth system models (Jetz et al., 2016). For a
long time, access to satellite images was restricted for security or commercial reasons. Nowadays,
data available from publicly funded space agencies build the basis for monitoring biodiversity
and biodiversity change from space (Skidmore and Pettorelli, 2015). Making existing approaches
to measure and map diversity suitable for satellite based data leads to new possibilities of large-
scale analysis, possibilities of analysis throughout the phenological year (due to the fast revisiting
time) or time-series of multiple years, also in remote areas and on large spatial scales.

Biodiversity is defined and detected in a variety of ways. Evenness of plant abundances and
functional biodiversity from functional traits are linked to ecosystem functioning and stability as
much as species richness, but only the latter is commonly used to define biodiversity (Polley et al.,
2013). However, functional biodiversity allows measuring ecosystem functioning and stability,
derived from remotely sensed data (Homolová, 2014; Jetz et al., 2016; Schneider et al., 2017).

The units within functional classification schemes are plant functional types (Cornelissen et
al., 2003). They can be defined as groups of plant species with similarities in functioning at the
organism level, roles within communities, responses to environmental factors or effects on ecosys-
tems. These similarities are based on the fact that they tend to share a set of key functional traits
(Homolová, 2014). A trait is any feature measurable at the individual level, from the cell to the
whole-organism, without reference to the environment or any other level of organization (Violle
et al., 2007). These functional traits can be morphological, including e.g. growth form and plant
height, physiological, such as leaf nitrogen, phosphor or water content, or phenological, regarding
e.g. leaf phenology to name a few. Several of the aforementioned traits are known and commonly
used as plant functional traits (Pérez-Harguindeguy et al., 2013), and have been identified as es-
sential biodiversity variables (EBV) (Pereira et al., 2013; Pettorelli et al., 2016). Not all of these can
be derived using remotely sensed data, however, some of them can be measured well (Homolová,
2014; Schneider et al., 2017). Furthermore, functional traits respond to environmental conditions
and are directly linked to growth, reproduction and survival (Violle et al., 2007; Liu et al., 2016).
When focusing on the community scale (α-diversity) and ecosystems (β/γ-diversity), functional
diversity offers more than functional traits (Cadotte, Carscadden, and Mirotchnick, 2011), with
γ-diversity of a landscape, or geographic area, being the product of the α-diversity of its commu-
nities and the degree of β-differentiation among them (Whittaker, 1972; Bello et al., 2009). Func-
tional diversity was found to explain ecosystem functioning, similarly to species richness (Tilman
et al., 1997; Polley et al., 2013). There is growing recognition of the fact that classifying terrestrial
plant species on the basis of their function (into functional types) rather than their higher taxo-
nomic identity, is a promising way forward for working on important ecological questions at the
scale of ecosystems, landscapes or biomes (Cornelissen et al., 2003). Identifying the components
of biodiversity that are closely related to ecosystem functioning is enormously important. These
questions include those on vegetation responses to, as well as effects of the biosphere on, global
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environmental changes. In this sense, functional diversity has proven to play an important role,
since it is claimed to be an effective diversity measure for detecting a positive effect of biodiversity
on ecosystem functioning and services (Laureto, Cianciaruso, and Samia, 2015; Balvanera et al.,
2006). However, it remains unclear, whether remotely sensed functional diversity links similarly
well to ecosystem functioning. Direct remotely-sensed measurements of plant traits by imaging
spectroscopy are currently limited to only those traits with a clear spectral signature expressed in
the dominant canopy layer. This leaves out a lot of traits, mainly regarding root and stem traits
(Jetz et al., 2016). For a full understanding of the links between remote sensing and functional
types a more complete integration of physical remote sensing concepts with a deep understand-
ing of ecological theory is needed, requiring a high level of interdisciplinarity (Ustin and Gamon,
2010).

In 2017, Schneider et al. presented an approach on mapping functional diversity from remotely
sensed data by combining morphological and physiological forest traits using airborne laser scan-
ning and imaging spectroscopy data. This approach provides a baseline for measuring functional
diversity using remotely-sensed data. Building on this approach, we explore possibilities of trans-
ferring it from airborne to spaceborne platforms to cover larger areas. This transformation gen-
erally comes at the expense of lower spatial and spectral resolution. The main objective of this
Master thesis is to apply the given methodology suitable for satellite data and explore its potential
as well as its limitations. Namely, we transfer mapping approaches of functional diversity from
APEX to Sentinel-2. Due to a lack of suitable spaceborne laser scanning data, we focus on physio-
logical traits only. Firstly, we analyze suitable physiological traits based on their robustness across
different spatial scales and sensors. Spatial behavior and reaction to scaling of different trait de-
scribing vegetation indices are analyzed and compared in a scale analysis. Different vegetation
indices and traits are calculated on both the APEX and the Sentinel-2 datasets, in order to find
traits suitable for multiple types of data, with different spectral and spatial resolution. In a mul-
tidimensional scale-analysis, we compare the performance and scaling effects of the functional
traits with functional diversity metrics, namely function richness and divergence. We compare
the performance of functional metrics in a scale analysis to the one-dimensional functional traits.
Secondly, we convolve the APEX imaging spectroscopy data to match the spectral and in a second
step the spatial characteristics of Sentinel-2 data. Furthermore, the functional diversity metrics are
calculated, mapped and compared using three datasets, (i) APEX in 2 m, (ii) APEX spatially re-
sampled to 20 m and (iii) Sentinel-2 in 20 m. Rescaling APEX data reveals not only the potential of
mapping functional diversity using current multispectral satellite data, but also future spaceborne
imaging spectrometers with similar characteristics. However, when rescaling the underlying data
from 2 m to 20 m pixel size, we expect some information loss. Furthermore, by using data col-
lected at two mission dates in July and September, we identify changes in functional traits and
functional biodiversity metrics between two dates of the year.
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Our research questions are formulated accordingly:

1. How are different physiological traits and corresponding vegetation indices as well as func-
tional diversity metrics affected by scaling effects? Which of them can be applied to multiple
sensors?

2. To which extent are seasonal changes of the ecosystem between July and September visible
through functional traits and biodiversity metrics?

3. To which extent do results from APEX data differ from resampled APEX data and from
spaceborne data? How much of the initial diversity can be observed from spaceborne data,
where are major differences?

Based on a previous study by Karadimou et al. (2016), we expect variations in diversity measure-
ments due to scaling effects. Functional richness is expected to decrease with increasing pixel size.
In comparison, we expect the effect of rescaling on functional divergence to be smaller, as no re-
lationship with neighborhood area was observed (Karadimou et al., 2016). Furthermore, different
datasets should yield in varying reflectance values due to changing observation geometries and
atmospheric conditions. However, by spatially rescaling the APEX dataset, one can differentiate
the impact of scaling and sensor changes on the diversity metrics.
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2 Material and Methods

2.1 Study area

The study area covers the Laegern forest in Switzerland encompassing 12.8 km2 ranging from
450 to 860 m a. s. l. (Figure 2.1). The semi-natural temperate mixed forest is predominantly char-
acterized by shadow tolerant species such as European beech (Fagus sylvatica), Norway spruce
(Picea abies) and Silver fir (Abies alba), while the more sunlit southwestern part comprises further-
more Ash (Fraxinus excelsior) and Sycamore (Acer pseudoplatanus) (Eugster et al., 2007). Compared
to other temperate forests, the Laegern forest provides a high degree of biodiversity, considering
species richness, as well as the distribution of individual age and stem diameter, due to the local
management strategies (Eugster et al., 2007; Srinivasan et al., 2015; Schneider et al., 2017).

2.2 Remote Sensing data

In this study we analyzed two concurrent APEX and Sentinel-2 scenes from July and September,
respectively. Furthermore, a canopy height model (CHM) was used in order to create a forest mask
(see section 2.3.3).

FIGURE 2.1: Research site at the Laegern forest and location in Switzerland. Image and underlying data by
swisstopo, Switzerland (2018).
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TABLE 2.1: Remotely-sensed data from the Laegern forest derived using APEX and Sentinel-2 in 2016.

2016
APEX Sentinel-2 δ

[dd/mm] [DOY] [dd/mm] [DOY] [dd]
“Summer”
June/July

07/07 189 24/06 176 13

“Fall”
September

07/09 251 09/09 253 02

2.2.1 Imaging spectroscopy data

The Airborne Prism Experiment (APEX) is a push-broom imaging spectrometer covering the
reflected wavelength range from 372 nm to 2540 nm (Schaepman et al., 2015). The imaging spec-
troscopy dataset includes 284 spectral bands in a 2 m spatial resolution. Both datasets were col-
lected on cloudless days in 2016, namely July 7th and September 7th. In the following we will refer
to the July acquisition as “summer” and the September acquisitions as “fall” (see Table 2.1).

2.2.2 Spaceborne Remote Sensing data

The European Space Agency (ESA) Sentinel-2 mission is a two satellite mission with a predicted
lifespan of 15 years (Drusch et al., 2012). The Sentinel-2A satellite was launched in June 2015 and
2B in March 2017. The Sentinel-2 satellites Multi-Spectral Instrument (MSI) sensor has 13 spectral
channels with a spatial resolution of 10 – 60 m (ESA, 2017; Korhonen et al., 2017). Sentinel-2
data enables improved monitoring possibilities offered by a higher temporal resolution, with a
revisiting period of < 5 days (Drusch et al., 2012). In addition, a lot of Sentinel-2’s potential
regarding vegetation remote sensing lies in the red edge spectral bands (bands 5 – 7, see Table
2.2), which improve the accuracy of various biophysical variables (Korhonen et al., 2017). To
compare Sentinel-2 and APEX data, we focus on the spectral bands provided in 20 m resolution
(see Figure A.1).

2.2.3 Dataset selection

Two images were studied per sensor, at two different states of the phenological year. The
dates between APEX and Sentinel-2 acquisitions are closer in September (2 days), as compared
to June/July (13 days, see Table 2.1). To assure that the acquisitions in September still took place
during the photosynthetically active state of the forest, we analyzed the general leaf discoloration
and leaf fall in 2016. General leaf discoloration is defined as the date, when 50% of the tree’s or
stand’s summer leaf area turned yellow or brown (Verein GLOBE Schweiz, 2017b). General leaf
fall, on the other hand, has been defined as the date, when 50% of the tree’s leaf area has fallen
on the ground. Observations of the Swiss Phenology Network indicate general leaf discoloration
around mid October and leaf fall by the end of October (MeteoSwiss, 2016). In more detail, spe-
cific dates on general leaf discoloration and general leaf fall have been observed for different tree
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TABLE 2.2: Spectral bands and their spatial resolution of Sentinel-2 MSI sensors (Korhonen et al., 2017).

Band
Wavelength
range [nm]

Resolution
[m]

1 “Coastal aerosol” (CA) 433-453 60
2 “Blue” (B) 458-523 10
3 “Green” (G) 543-578 10
4 “Red” (R) 650-680 10
5 “Red edge 1” (RE1) 698-713 20
6 “Red edge 2” (RE2) 733-748 20
7 “Red edge 3” (RE3) 773-793 20
8 “Near infrared” (NIR) 785-900 10
8a “Near infrared narrow” (NIRn) 855-875 20
9 “Water vapor” (WV) 935-955 60
10 “Shortwave infrared”/“Cirrus” (C) 1360-1390 60
11 “Shortwave infrared 1” (SWIR1) 1565-1655 20
12 “Shortwave infrared 2” (SWIR2) 2100-2280 20

species at three stations close to the Laegern forest. Table 2.3 indicates the observed dates for
European beech (Fagus sylvatica), a common species in the research site.

While yellowing can be referred to as the most obvious sign of leaf senescence, the process
onset takes place long before the date of general leaf discoloration. By the time general leaf discol-
oration takes place, 50% of the leaf area already shows yellowing, which indicates yellowing onset
taking place much closer to the mission days. Furthermore, chlorophyll degradation can even be
detected before yellowing of the leaves becomes visible (Hanfrey, Fife, and Buchanan-Wollaston,
1996). By the time the leaf appears yellow to the human eye the chlorophyll content has fallen to
around 50% of the amount in a mature green leaf (Hanfrey, Fife, and Buchanan-Wollaston, 1996;
Buchanan-Wollaston, 1997) and therefore, signs of leaf senescence, such as chlorophyll decrease
and anthocyanin increase can be detected before the time the leaf is senescing visibly. Therefore,
the two points in time were compared especially considering differences in chlorophyll and an-
thocyanin content. The datasets collected in June and July are further referred to as “summer”
images, while the ones collected in September are called “fall” images (see Table 2.1).

TABLE 2.3: Phenological data from stations near the Laegern forest, indicating general leaf discoloration
and general leaf fall. Data from Swiss Phenology Network (Verein GLOBE Schweiz, 2017a).

Fagus sylvatica
2016

Oberehrendingen Villnachern Döttingen
456 m a.s.l., 1.11 km distance 365 m a.s.l., 14.5 km distance 319 m a.s.l., 11.61 km distance
[dd/mm] [DOY] [dd/mm] [DOY] [dd/mm] [DOY]

General leaf
discoloration

18/10 292 14/10 288 19/10 293

General leaf fall 30/10 304 30/10 304 01/11 306
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2.2.4 Other data

2.2.4.1 Canopy Height Model

The Canopy Height Model (CHM), which was used to generate a forest mask (see Section 2.3.3),
was created from airborne laser scanning data, which was acquired in August 2010, and registered
to the Swiss national grid CH1903+ (Schneider et al., 2017).
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2.3 Data preparation

2.3.1 Data pre-processing

The APEX data was pre-processed with the APEX Processing and Archiving Facility system
(Hueni et al., 2009). Next, the data was atmospherically corrected in ATCOR4 and geo-rectified
subsequently (Schläpfer and Richter, 2002; Schaepman et al., 2015; Hueni et al., 2017). The re-
sulting surface reflectance data is characterized by a high spectral and spatial resolution with 284
spectral bands in the range of 400 nm – 2500 nm and a pixel size of 2 m. Sentinel-2 radiance data
was corrected to surface reflectance in ATCOR3 according to Richter and Schläpfer (2017). Next,
the datasets were converted to CH1903+/LV95, maintaining 20 m resolution using “gdalwarp” in
QGIS.

2.3.2 Spectral resampling

To analyze indices, which can be calculated on datasets of both sensors, APEX and Sentinel-2,
the APEX data was spectrally resampled to the resolution of the Sentinel-2 images based on the
Sentinel-2 spectral response function (SRF) (“spectral resampling” in ENVI). The result was a new
dataset with the same spectral resolution as the Sentinel-2 datasets and the spatial resolution of
the APEX scenes (pixel size of 2 m). Those scenes will further be referred to as A2 scenes.

2.3.3 Forest mask

To only take fully illuminated forest pixels into consideration for further analysis, a combined
forest and shadow mask was calculated. We developed a simple score based on three threshold
requirements that result in the final forest mask, to define sunlit forest pixels (see Figure 2.3). A
pixel which was assigned the value 1 in all three requirements (see 2.3.3.1 – 2.3.3.3), was included
in the final forest mask and selected for further analysis. In order to compare results for both
seasons, the forest mask was calculated separately and combined afterwards. The approach is
outlined in detail in the following subsections, and illustrated using data of the A2 scenes.

2.3.3.1 Vegetation mask using NDVI

The NDVI (see 2.2 in section 2.4.1) is known to show a strong relationship to the Leaf Area
Index (LAI) and therefore canopy density and biomass (Song, 2013). Although NDVI tends to
saturate under moderate to high above-ground biomass, it can be useful for vegetation masking
since it compensates for changing illumination conditions, surface slope, aspect, and other ex-
traneous factors (Gitelson, 2004; Lillesand, Kiefer, and Chipman, 2015). A vegetation map was
calculated using an NDVI (Eq. 2.2) threshold of 0.7, based on the histogram in Figure 2.2. Pixels
with values ≥ 0.7 were assigned 1, and pixels < 0.7 were assigned 0 in both images, which were
combined in the following step (see Figure 2.2 and A.2).
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FIGURE 2.2: Histogram showing NDVI values at the research site in both summer and fall. The chosen
threshold for the forest mask was set at 0.7.

2.3.3.2 Vegetation height mask

The mask based on vegetation height was calculated from the CHM. The critical canopy height,
the threshold to exclude the forest edge and gaps, was chosen to be 4 m (Koukoulas and Blackburn,
2004). Pixels with values ≥ 4 m were assigned 1, and pixels < 4 m were assigned 0 (see Figure
A.2).

2.3.3.3 Shadow mask

Pixels that are not fully illuminated can cause a variety of problems in spectral analysis. First of
all, in datasets with high resolution, pixels of the same object, which is partly in shade, can cause
higher heterogeneity within an object of the same spectral traits (Nagendra and Rocchini, 2008).
Furthermore, information on surface properties could be lost due to the lower signal to noise ra-
tio in shadows (Liu and Yamazaki, 2012). The presence of shadows can also lead to misleading
results when comparing different images with changing sun-sensor geometry and thus BRDF ef-
fects, depending on season and time of the day (Liu and Yamazaki, 2012). In the topographically
heterogeneous site of the Laegern forest, pixels which lie in the shade are certainly present. Using
fully illuminated pixels is possible when excluding shadow. The effect of shadow is more dom-
inant in infrared than in other parts of the spectrum. This is because the radiance ratio between
shadow and sunlit areas decreases with increasing wavelength, as shadow regions are illuminated
by diffuse light (Liu and Yamazaki, 2012; Rufenacht, Fredembach, and Susstrunk, 2014). In order
not to unintentionally exclude dark pixels, which are dark green parts of conifers, bands in the
infrared part of the spectrum were considered. The calculation therefore was based on channels 7
– 10 (780 – 1400 nm) in the red-edge and infrared part of the spectrum (see Table 2.2). To exclude
potential shadow from the image, the total reflectance at selected channels was calculated, and
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FIGURE 2.3: Final forest mask calculated at 2 m resolution (top) and final forest mask with 20 m resolution
not rescaled but recalculated using the same parameters (bottom).

the darkest 2.5% of pixels were excluded. Pixels with values equal to the threshold or higher were
assigned 1, and pixels lower than the threshold were assigned 0 (see Figure A.2).

2.3.3.4 20 m scene

To calculate the forest mask for the 20 m dataset, the CHM, as well as both APEX scenes were
resampled to 20 m spatial resolution (“imresize” in MATLAB). The resulting scenes are APEX
scenes with the same spectral and spatial resolution as the datasets acquired by Sentinel-2. The
spectrally and spatially resampled APEX scenes will be further referred to as A20 scenes. The
spaceborne data, aquired by Sentinel-2, will further be called S20 data. A graphic representation
of the three types of datasets (A2, A20 and S20) can be found in Figure A.3. The 20 m shadow mask
was calculated from the combination of the vegetation masks and shadow masks for either A20
and S20 data, in both seasons. The vegetation mask for the 20 m scenes was calculated according
to the 2 m-resolution mask, using thresholds NDVI ≥ 0.7, CHM ≥ 4 m, and ≤ 5th percentile of
the summed channels 7 – 10 for the shadow mask (see Figure 2.3).
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2.4 Functional traits

2.4.1 Vegetation indices

It is generally supported that correct estimates of functional diversity highly depend on the
choice of meaningful traits (Tsianou and Kallimanis, 2016). Due to the used passive-optical spec-
troscopy data, only physiological traits were used. To describe functional traits, several vegetation
indices (see Table 2.4) were collected and tested for usability, as further described.

The spectral relation between the reflection of light at different regions of the spectrum were
found to be sensitive indicators for the presence and condition of vegetation, which shows typ-
ical reflection behavior in different spectral ranges. Mathematical combinations of channels are
referred to as vegetation indices (VI) (Lillesand, Kiefer, and Chipman, 2015). Green vegetation
mostly absorbs red light (R), whereas it reflects light at the near infrared (NIR) part of the spec-
trum due to heat protection. This spectral contrast is measured within pixels (Huete et al., 2002)
and forms the basis for the calculation of many VIs (Henebry and De Beurs, 2013). Examples of
VIs making use of the contrast of the reflection in red light and NIR are the Simple Ratio (SR) (Eq.
2.1) as a basic (Tucker and Sellers, 1986) and Normalized Difference Vegetation Index (NDVI)
(Eq. 2.2) as a very common one (Huete et al., 2002). These indices are calculated using the surface
reflectance ρ at the spectral bands R and NIR (band 4 and band 8 in the case of Sentinel-2, see
Table 2.2) and can both be related to primary production and photosynthetic activity (Tucker and
Sellers, 1986). While being functionally equivalent to the simple ratio, NDVI is representative
of many variants sensitive to chlorophyll and photosynthetic vegetation (Huete et al., 2002). An-
other index used for estimating chlorophyll content and photosynthetic activity is the enhanced
vegetation index (EVI) (Eq. 2.3), while showing less saturation in dense vegetation than NDVI
(Huete, Liu, and Leeuwen, 1997). However, EVI is known as being more sensitive to topographic
conditions than NDVI, because of the soil adjustment factor (Matsushita et al., 2007).

SR =
ρ785−900

ρ650−680
(2.1)

NDVI =
ρ785−900 − ρ650−680

ρ785−900 + ρ650−680
(2.2)

EVI = 2.5 · ρ785−900 − ρ650−680

ρ785−900 + 6 · ρ650−680 − 7.5 · ρ458−523 + 1
(2.3)

Like the NDVI, there are other indices used for monitoring, analyzing, and mapping tempo-
ral as well as spatial distributions of physiological characteristics of vegetation (Gitelson, 2004).
Pigment contents can be estimated, such as chlorophyll, carotenoids and anthocyanin, as well as
water content. To find VIs that describe functional traits, suitable for further calculations, various
indices have been collected. The first requirement to the VIs was that they are supported by the
spectral resolution of the Sentinel-2 MSI sensor. This limited the selection of indices and corre-
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sponding functional traits. Furthermore, they should show reasonable and similar results in both
Sentinel-2 and APEX scenes as well as at different spatial scales, to be universally applicable.

2.4.1.1 Chlorophyll content

Chlorophyll is a green pigment, responsible for capturing light during photosynthesis (Grimm,
2001; Jetz et al., 2016). The following indices known for the estimation of chlorophyll content were
observed. Clevers and Gitelson (2013) presented the red-edge chlorophyll index (CIred − edge)
(Eq. 2.4) and the green chlorophyll index (CIgreen) (Eq. 2.5) along with testing the results for
canopy chlorophyll and nitrogen content. Major advantages are their linearity with chlorophyll
content and the absence of a saturation effect.

CIred− edge =
ρ773−793

ρ698−713
− 1 (2.4)

CIgreen =
ρ773−793

ρ543−578
− 1 (2.5)

In 2007, Dash and Curran presented a vegetation index, designed for the Medium Resolu-
tion Imaging Spectrometer (MERIS), on the Envisat satellite. MERIS terrestrial chlorophyll index
(MTCI) (Eq. 2.6) is strongly related to chlorophyll content at different spatial scales. As heritage of
MERIS, this MTCI is the basis of one of the products of Ocean and Land Color Instrument (OLCI)
Sentinel-3, called the OLCI Terrestrial Chlorophyll Index (OTCI) (Knaeps et al., 2012; Vuolo et al.,
2012; Clevers and Gitelson, 2013).

MTCI =
ρ733−748 − ρ698−713

ρ698−713 + ρ650−680
(2.6)

Clevers and Gitelson (2013) observed best results in estimating canopy chlorophyll and nitro-
gen content using CIred− edge, CIgreen and MTCI. NDVI-type of indices, namely normalized
difference red-edge (NDRE1, Eq. 2.7 and NDRE2, Eq. 2.8) were tested as well.

NDRE1 =
ρ733−748 − ρ698−713

ρ733−748 + ρ698−713
(2.7)

NDRE2 =
ρ773−793 − ρ698−713

ρ773−793 + ρ698−713
(2.8)

The red-edge position (REP) (Eq. 2.9) has often been used as an estimate for chlorophyll con-
tent. With the limited number of Sentinel-2 red-edge bands, the REP can be derived easily (Clevers
and Gitelson, 2013).
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REP = 705 + 35 ·
ρ650−680+ρ773−793

2 − ρ698−713

ρ733−748 − ρ698−713
(2.9)

Depth of the chlorophyll absorption 670nm relative to 550nm and 700nm is expressed in the
modified chlorophyll absorption ratio index (MCARI) (Eq. 2.10) (Daughtry et al., 2000). MCARI
is known to be sensitive to background reflectance properties and is difficult to interpret at low
LAI. It is further sensitive to LAI, chlorophyll, LAI-chlorophyll interaction and background re-
flectance.

MCARI = [(ρ698−713 − ρ650−680)− 0.2 · (ρ698−713 − ρ543−578)] ·
ρ698−713

ρ650−680
(2.10)

To compensate for the variations of reflectance characteristics of background materials (soil
and non-photosynthetic components), which is mostly the case at low chlorophyll concentrations,
and therefore to increase this sensitivity at low chlorophyll values, the transformed chlorophyll
absorption ratio index (TCARI) (Eq. 2.11) was presented (Haboudane et al., 2002; Wu et al., 2008).

TCARI = 3 · ((ρ698−713 − ρ650−680)− 0.2 · (ρ698−713 − ρ543−578) ·
ρ698−713

ρ650−680
) (2.11)

In order to solve the problem of sensitivity to underlying soil in canopy reflectance properties,
Daughtry et al. (2000) combined MCARI with a soil line vegetation index like the optimized
soil-adjusted vegetation index (OSAVI) (Eq.2.12, Eq.2.13). This can also be done with the TCARI
(Eq. 2.14) (Haboudane et al., 2002; Wu et al., 2008), and proved to achieve accurate estimations
of chlorophyll content (Kooistra and Clevers, 2016; Jay et al., 2017). In order to achieve a positive
correlation with chlorophyll content, the TCARI/OSAVI ratio was inverted.

OSAVI = (1 + 0.16) · ρ785−900 − ρ650−680

ρ785−900 + ρ650−680 + 0.16
(2.12)

MCARI
OSAVI

=
[(ρ698−713 − ρ650−680)− 0.2 · (ρ698−713 − ρ543−578)] · ρ698−713

ρ650−680

(1 + 0.16) · ρ785−900−ρ650−680
ρ785−900+ρ650−680+0.16

(2.13)

TCARI
OSAVI

=
3 · ((ρ698−713 − ρ650−680)− 0.2 · (ρ698−713 − ρ543−578) · ρ698−713

ρ650−680
)

(1 + 0.16) · ρ785−900−ρ650−680
ρ785−900+ρ650−680+0.16

· (−1) (2.14)

2.4.1.2 Anthocyanin content

Leaf senescence results in several observable effects. Chlorophyll decrease and anthocyanin
increase take place long before visible yellowing (Dhindsa, Plumb-Dhindsa, and Thorpe, 1981).
Anthocyanin content can be derived using Anthocyanin Reflectance Index 1 and 2 (ARI1 and

14



ARI2) (Eq. 2.15 and 2.16), while Gitelson, Chivkunova and Merzlyak (2009) also referred to ARI2
as modified Anthocyanin Reflectance Index (mARI).

ARI1 =
1

ρ543−578
− 1

ρ698−713
(2.15)

ARI2 =
ρ785−900

ρ458−523
− ρ785−900

ρ543−578
= mARI (2.16)

The Red Green Ratio (RGR) (Eq. 2.17) (Sims and Gamon, 2002) is a broad band index also
sensitive to red pigments but readily calculable from all multispectral sensors. Hence, it may be
regarded as a (less sensitive) substitute where wavelengths for ARI are not available (Hill, 2013).

RGR =
ρ650−680

ρ543−578
(2.17)

2.4.1.3 Carotenoid content

Another pigment to be detected in the canopy is carotenoid. Carotenoids are orange and yellow
pigments involved as antiocidants in the xanthophyll cycle for avoiding damage under stress
conditions (Havaux, 2014; Jetz et al., 2016). The Carotenoid Reflectance Index 1 (CRI1) (Eq. 2.18)
is sensitive to yellow pigments (Hill, 2013).

CRI1 =
1

ρ458−523
− 1

ρ543−578
(2.18)

The structure-insensitive pigment index (SIPI) on the other hand, is linked to the carotenoid-
chlorophyll ratio (Penuelas, Baret, and Filella, 1995; Sims and Gamon, 2002; Merzlyak, Solovchenko,
and Gitelson, 2003). SIPI includes channel 1, which means, it can only be calculated from Sentinel-
2 data in 60 m spatial resolution. The Plant Senescence Reflectance Index (PSRI) (Eq. 2.19) utilizes
narrow bands within the visible (VIS) and NIR spectral region (Hill, 2013). It can be related to the
SIPI, while maintaining 20 m resolution.

PSRI =
ρ650−680 − ρ543−578

ρ733−748
· (−1) (2.19)

2.4.1.4 Water content

This trait describes the total amount of water in a leaf or canopy relative to its dry mass (Jetz
et al., 2016). Changes in water content can be related to drought stress. The Normalized Difference
Infrared Index (NDII) (Eq. 2.20) utilizes the 1610 nm SWIR1 band (band 11, see Table 2.2) available
from Sentinel-2 and is comparable to the Normalized Difference Water Index (NDWI), which
is not available using Sentinel-2 bands, while it is a little more robust in dryland environments
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than the NDWI (Hill, 2013). Moisture Stress Index (MSI) (Eq. 2.21) can be used to detect water
stress at the canopy level, involving the NIR and SWIR region of the spectrum (Dotzler et al.,
2015). However, when inverted, index values increase with larger moisture contents, as shown by
Dotzler et al. (2015).

NDII =
ρ785−900 − ρ1565−1655

ρ785−900 + ρ1565−1655
(2.20)

MSI =
ρ1360−1390

ρ785−900
· (−1) (2.21)

TABLE 2.4: Tested vegetation indices and their corresponding type of trait, namely chlorophyll (green),
anthocyanin (red), carotenoid (orange) and water content (blue).

Trait Indices
CIred− edge (2.4) CIgreen (2.5) MTCI (2.6)

NDRE1 (2.7) NDRE2 (2.8) REP (2.9)Chlorophyll
MCARI/OSAVI (2.13) TCARI/OSAVI (2.14)

Anthocyanin ARI1 (2.15) ARI2 (2.16) RGR (2.17)
Carotenoid CRI1 (2.18) PSRI (2.19)

Water content NDII (2.20) MSI (2.21)
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FIGURE 2.4: Example of one-dimensional scale analysis calculating within- and between-unit variance,
for increasing unit side length. Calculated variables were the intersection of within- and between-unit
variance (i), between-unit variance at unit size 20 m (BUvar(20)) and the unit side length at which 80% of
the variance is explained within the units (t).

2.4.2 Testing indices

We tested fifteen VIs (see Table 2.4) to find those suitable for both APEX and Sentinel-2 scenes,
whereas eight describe chlorophyll content and three are related to anthocyanin content. Further-
more, carotenoid and water content are described by two indices each. The aim of this analysis
is to select indices that reveal similar characteristics in scale analysis for both scenes and sensors.
The highest scoring index per trait was used for further calculation of functional diversity metrics.

2.4.2.1 One-dimensional scale analysis

The indices that can be used for the calculation of functional diversity metrics were compared
in a scale analysis. This was analyzed in one dimension, calculating within- and between-unit
variance (Violle et al., 2012). With increasing unit size, within-unit (WU) variance increases, and
between-unit (BU) variance decreases (see Figure 2.4). For each calculated index, the intersection
of within- and between-unit variance (i) was detected. At this unit size, the same extent of trait
dissimilarity emerges from intra-unit trait variability than between-unit differences (Bello et al.,
2011). The higher this value, the more information can still be derived at lower spatial resolution.
Furthermore, the pixel size where 20% of the initial between-unit variance (maxvar, variance at
2 m resolution) is still measurable (t), was detected. Lastly, the between-unit variance at a unit
size of 20 m (BUvar(20)) was measured. The vegetation indices should deliver comparably high
values of i, BUvar(20), and t, as well reasonable values when comparing the two seasons and
when comparing with other indices describing the same functional trait (see Section 3.1.1).
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2.4.2.2 Comparing sensors

The same calculated index for the resampled APEX dataset and the Sentinel-2 dataset should
perform similarly. To test this hypothesis, different statistics were calculated from index values
and compared between the sensors for both summer and fall scenes.

These statistics comprise (i) the difference of the mean values, (ii) coefficient of variation (cv),
and (iii) the mean proportion of outliers. First, the difference of the mean values between two
seasonal scenes indicates their similarity on an absolute scale. Second, the cv is defined as the
ratio of standard deviation and mean. It permits comparison free from scale effects (Brown, 1998).
The difference in cv throughout the sensors shows the difference in variability of the calculated
index through sensors.

The higher this difference value, the larger the difference between the sensors in their variance
behavior. Furthermore, average cv indicates the total variability of the results. Lastly, the mean
proportion of outliers was calculated. Outliers were defined as values more than three scaled
median absolute deviations away from the median (Leys et al., 2013). The number of outliers
was divided by the number of pixels. The smaller the proportion of outliers per scene, the more
meaningful is the calculated index.

2.4.2.3 Correlation of calculated indices

To test the correlation between the calculated indices, the correlation was calculated between
all the datasets. The mean correlation of the two seasons and sensors was analyzed afterwards.
High correlation was expected within traits, while low correlation was expected between traits.
VIs that show relatively high correlation with other indices describing the same functional trait
seem to show a more meaningful and consistent result.

2.5 Functional diversity

2.5.1 Multi-dimensional scale analysis

A scale analysis was computed to derive intra- and inter-unit properties. According to de Bello
et al. (2011) intra-unit variability can be defined as within-unit diversity or the extent of trait
dissimilarity because of intra-unit trait variability. Correspondingly, inter-unit variability can be
defined as between-unit functional diversity or the extent of trait dissimilarity in a community
because of the discrepancy between-units. The scale analysis was performed using a function
y = f (x). In this case, it was performed one-dimensionally (calculating intra and inter-unit vari-
ance), as well as four-dimensionally (calculating intra and inter-unit richness and divergence). In
the multi-dimensional case, the function was adapted to y = f (x1, x2, . . . , xdim), with dim being
the number of dimensions. Accordingly, four instead of one trait maps were used for the calcu-
lation. Each pixel therefore was assigned four values. The trait map was aggregated to spatial
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FIGURE 2.5: Example of the calculation involved in a one-dimensional scale analysis.
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FIGURE 2.6: Units considered for the scale analysis at a unitsize of 400 · 400 m at the research site. At this
unit size, the condition to be taken into consideration is that 20% of the pixels within the unit are classified
as forest (ppu).

units within the study area of 2 · 6.4 km. Unit size was increased stepwise while maintaining the
quadratic shape of units (see Figure 2.6). The smallest unit size was 4 · 4 m, leading to 449’539
units within the extent n = number of units and the largest unit size was 800 · 800 m, leading to
66 units within the extent. For every step, calculated traits were aggregated by taking the average
of the pixels within the units. Between-unit and within-unit variance, richness, and divergence
were calculated at each unit size (Wiens, 1989; Scholtz et al., 2018). To determine the extent of
trait dissimilarity because of the difference between-units of a specific size (BU), pixel values Uppu

within each unit were combined to a new value (U) using the mean calculation (Eq. 2.22), with
ppu being the number of pixels per unit. The resulting n values were calculated using the given
function (Eq. 2.23).

U =
1

ppu

puu

∑
i=1

Ui (2.22)

BU = f (U1, . . . , Un) (2.23)

To determine the extent of trait dissimilarity because of within-unit trait variability at a specific
unit size (WU), the trait variability was firstly calculated within every unit of interest (Eq. 2.24).
The resulting n values were then averaged. (Eq. 2.25).

U = f (U1, . . . , Uppu) (2.24)

WU =
1
n

n

∑
i=1

Ui (2.25)

An example of the calculation in the one-dimensional case using variance (Eq. 2.26) is illustrated
in Figure 2.5.

var(x) = ∑n
i=1(xi − x)2

n− 1
(2.26)
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TABLE 2.5: Number of valuable pixels per unit (ppu) and number of units considered for every unitsize
within the scale analysis. For divergence, where euclidean distance is calculated which required too much
computation effort. Therefore, point clouds larger than 45’000 pixels were limited to not exceed this num-
ber.

Area
Unit side

length
Percentage

of valid
pixels

2 m pixel 20 m pixel
Unit side

length
Units

considered
Pixel number

per Unit
Unit side

length
Units

considered
Pixel number

per Unit
16ha 400 m 20% 200p 66 8’000 20p 65 80
4ha 200 m 25% 100p 242 2’500 10p 237 25
1ha 100 m 33% 50p 879 825 5p 862 9
64a 80 m 33% 40p 1’371 528 4p 1’326 6
25a 50 m 50% 25p 3’258 313
16a 40 m 50% 20p 5’043 200 2p 5’072 2
4a 20 m 75% 10p 17’852 75 1p 19’118 1
256 m2 16 m 75% 8p 27’942 48
100 m2 10 m 75% 5p 71’786 19
64 m2 8 m 75% 4p 113’502 12
16 m2 4 m 75% 2p 466’986 3
4 m2 2 m 100% 1p 1’902’937 1

Due to masking, units contain different numbers of valid pixels. Therefore, only units with
a valuable amount (depending on unit size) of valid pixels were used in the calculation, while
making sure that the same number of pixels per unit (ppu) was considered. The threshold of valid
pixels per unit was set low (20%) at a large unit size, because of the need for a reasonable number
of units and a large number of pixels per unit. At a smaller unit size the minimum percentage of
valid pixels per unit increased, due to an increased number of units and a decreasing number of
pixels per unit (see Figure 2.6, Table 2.5).
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FIGURE 2.7: Functional richness (left) and divergence (right) based on an example unit with 100 pixels and
an example data range of 0-5.

2.5.2 Functional diversity metrics

As functional diversity metrics, functional richness and divergence were calculated to compare
the scaling effects on functional diversity metrics, according to Schneider et al. (2017). A graphic
representation of the work-flow from VI data to physiological diversity metrics is shown in Fig-
ure A.4. Functional evenness was not considered here, as both functional divergence and evenness
sufficiently describe how sample points are distributed within the community niche. Both, func-
tional divergence and evenness, behave similarly according to Schneider et al. (2017), which is
why the more complex functional evenness was not taken into consideration due to long compu-
tation times of the minimum spanning tree (Villéger, Mason, and Mouillot, 2008; Schneider et al.,
2017). This leaves two functional diversity metrics, of which one is a measure of niche extent and
the other one of distribution. Both vary independently from each other (Mason et al., 2005).

Functional richness describes the extent of the functional space occupied by a species, individ-
uals or pixels (see Figure 2.7). It was calculated by mapping pixels of a certain neighborhood in a
functional space, whose axes are defined by the functional traits (Villéger, Mason, and Mouillot,
2008; Schneider et al., 2017). Richness is the volume of the convex hull of the mapped pixels in
a multi-dimensional trait space (“convhull” in MATLAB). Functional divergence is a measure of
the distribution of values in space. It shows high values if all values are equally far away from
the common center (Villéger, Mason, and Mouillot, 2008; Schneider et al., 2017). It was calculated
using the number of pixels mapped in the functional space (S), the euclidean distance between
every pixel i and the center of gravity (dGi) and the mean distance of all pixels to the center of
gravity (dG) (Eq. 2.27 – 2.28).

∆|d| =
S

∑
i=1

1
S
· |dGi − dG| (2.27)
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TABLE 2.6: Unit size (diameter and area) of circular units, in meter and pixels, comparing data with 2 m
pixels and 20 m pixels. The unit area includes one hundred times more pixels compared to 20 m if the
pixels are 2 m in size. Furthermore, equivalent square side length, the side length of a square unit with the
identical area, is given for each of the circular units.

unit diameter [m] 20 40 60 120 200
unit area [m2] 314.2 1256.6 2827.4 11310 31416

unit area in 2 m pixel [ppu] 78.54 314.2 706.9 2827.4 7854.0
unit area in 20 m pixel [ppu] 0.785 3.142 7.068 28.27 78.54

equivalent square side length [m] 17.72 35.45 53.17 106.4 177.3

FDiv =
dG

∆|d|+ dG
(2.28)

Functional richness and functional divergence were used in the scale analysis and their behav-
ior through scale was analyzed. Furthermore, diversity maps were calculated using different sizes
(20 m, 40 m, 60 m, ...) of neighborhoods to compare the results of different underlying datasets,
namely the spectrally resampled 2 m APEX dataset, the spectrally and spatially resampled 20 m
APEX datasets and the 20 m Sentinel-2 dataset. A neighborhood of 10 m on a 2 m dataset creates
a circular shape with a radius of 5 m, which are 2.5 pixels. This neighborhood therefore has a size
of 5 · 5 pixels. By maintaining the same area as the units from the scale analysis, diameters were
transformed to the side length l of a square with the same area as the circle with diameter d (see
Table 2.6). Their relationship is expressed as l =

√
π·d
2 . At 20 m the neighborhood has a radius

of 5 pixels and has the same area as a unit with a unit side length of 17.7 m (see Figure A.5) and
60 m, which has the same area as a unit with a side length of 53.2 m, leads to 15 pixel radius for
the neighborhood. At the 20 m dataset, the calculation takes place based on unitsizes larger than
60 m.
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3 Results

3.1 Choice of vegetation indices

We tested fifteen indices to find those suitable for both sensors (see Table 2.4). These indices cor-
respond to four functional traits, namely chlorophyll, anthocyanin, carotenoid, and water content.
For each trait, the highest scoring index was chosen to derive functional diversity metrics.

3.1.1 One-dimensional scale analysis

The indices and their corresponding trait were tested in a one-dimensional scale analysis, which
was performed on the spectrally resampled 2 m APEX (A2) dataset. Resulting values are shown
in Table 3.1 and explained in Figure 2.4. The first analyzed value is the intersection (i), at which
unit size variance is equally explained within-unit and between-units. The highest values of i
were found for chlorophyll content (12 m – 18 m), followed by carotenoid content, anthocyanin
and water content (7 m – 13 m). This finding leads to the conclusion that water content shows
variation at a smaller scale than chlorophyll content. In comparison, a random model was set-up,
where underlying normally distributed fictive trait data was generated randomly. The resulting
intersection i was calculated to be 3.5 m. All of the traits showed stronger results and reaction to
auto-correlation, except CRI1 (see A.6). Furthermore, the between-unit variance remaining at a
unit size of 20 m, the size of Sentinel-2 pixels, (BUvar(20)) was calculated relative to 2 m unit size
and in absolute values. Those values vary between 12% – 30% and 0.01 – 0.05 respectively (see
Table 3.1). Lastly, the unit size where 80% of the variance is explained within-unit and no more
between-unit (t) ranges between 15 m – 75 m. On the random model, 80% of the variance was
explained at 6.1 m.

Within the chlorophyll describing indices, highest values of i were achieved by CIred − edge,
CIgreen, NDRE2 and TCARI/OSAVI, while CIgreen shows the lowest difference between sea-
sons. MTCI showed lowest results, especially in fall, which was the only result of a chlorophyll
describing index smaller than 10 m. At 20 m unit size, most relative variance was explained by
TCARI/OSAVI in fall. Lowest values were achieved by MTCI and NDRE1, which on the other
hand achieved highest absolute values. Absolute variance at 20 m was found to be higher in fall,
except for MCARI/OSAVI. Highest values for t were achieved by TCARI/OSAVI, CIred− edge
and NDRE2, of which the latter two happen to consist of similar bands, followed by CIgreen. All
of them achieved t > 60 m, while the rest achieved results of t < 50 m. Weakest results for t were
achieved by MTCI and MCARI/OSAVI. Regarding anthocyanin, best results of i were achieved
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TABLE 3.1: Tested indices and their corresponding trait in the one-dimensional scale analysis. The corre-
sponding traits are chlorophyll (green), anthocyanin (red), carotenoid (orange) and water content (blue).
The first analyzed values are the intersection (i), at which unit size variance is equally explained within-
unit and between-units. Secondly, the between-unit variance remaining at a unit size of 20 m (BUvar(20))
is calculated relative to 2 m unit size and absolute values. Lastly, the unit size where 80% of the variance is
explained within-unit and no more between-unit (t) was calculated for each index.

i [m] BUvar(20) [%] BUvar(20) [-] t [m]
Index

July September July September July September July September
CIred− edge 18.4 16.7 20.65 23.44 0.0315 0.0377 71.5 65.9
CIgreen 17.5 18.3 19.53 26.44 0.0334 0.0388 60.1 65.7
MTCI 15.5 9.6 29.05 13.42 0.0226 0.0359 43.7 33.9
NDRE1 14.2 11.9 16.45 14.60 0.0320 0.0420 48.3 37.8
NDRE2 17.8 16.2 20.30 23.50 0.0295 0.0377 72.3 64.8
REP 15.7 14.1 32.65 24.70 0.0275 0.0317 46.6 42.8
MCARI/OSAVI 13.7 11.9 20.08 16.24 0.0423 0.0327 36.3 33.6
TCARI/OSAVI 15.1 21.5 21.84 35.42 0.0250 0.0260 63.7 90.9
ARI1 10.4 15.1 24.36 35.18 0.0141 0.0321 25.6 37.1
ARI2 13.4 17.2 27.09 38.89 0.0240 0.0324 39.0 40.6
RGR 13.6 12.0 17.20 16.67 0.0331 0.0348 42.9 34.6
CRI1 NaN NaN 81.39 88.08 0.0104 0.0227 234.0 243.7
PSRI1 16.1 17.5 24.85 31.47 0.0276 0.0326 69.7 76.2
NDII 13.0 12.3 20.92 21.82 0.0182 0.0382 43.5 34.9
MSI 7.6 7.4 13.07 12.04 0.0144 0.0334 20.9 17.3

TABLE 3.2: Correlation of the calculated indices on the A20 and S20 datasets (different sensors). The corre-
sponding traits are chlorophyll (green), anthocyanin (red), carotenoid (orange) and water content (blue).

Index CIred− edge CIgreen MTCI NDRE1 NDRE2 REP MCARI/
OSAVI

TCARI/
OSAVI

Summer 0.36 0.26 0.22 0.27 0.35 0.27 0.22 0.14
Fall 0.39 0.18 0.23 0.28 0.41 0.29 0.21 0.19

Index ARI1 ARI2 RGR CRI1 PSRI NDII MSI
Summer 0.003 0.01 0.15 0.047 0.14 0.21 0.053

Fall 0.034 0.036 0.16 0.07 0.11 0.32 0.14

by ARI2, followed by RGR and ARI1. Most between variance at 20 m was explained by RGR
in absolute values, even if this index achieved weakest results for relative values. Considering
t, highest results were achieved by ARI2, while RGR shows a high value in summer, but a low
value in fall.

CRI1 performed weakly (for more information see Figure A.6), from which it can be concluded
that this index does not work for the APEX properties (for more information see Figure A.7).
This is also visible in the correlation of A20 and S20 datasets (see section 3.1.2). PSRI achieved
acceptable results, when comparing to the other functional traits. There was a slightly higher
variance, i, and t in fall for this carotenoid describing index. Water content seems to show variation
at a smaller scale, compared to other described traits. Both indices seemed to achieve stable results
in the scale analysis. They show higher absolute variance at 20 m in fall and higher i and t in
summer. However, NDII shows higher values for i, relative BUvar(20) and t than MSI.
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3.1.2 Comparing indices of rescaled APEX and Sentinel-2 datasets

Tested indices and their corresponding trait on 20 m datasets (rescaled APEX A20 and Sentinel-
2 S20) were compared graphically in boxplots (see Figure 3.1) and using calculated values (see
Table A.3). CIred− edge, NDRE1 and NDRE2 show a larger difference regarding seasons in the
S20 datasets, where the S20 fall scene showed lower values, than the other three. The inverted case
can be found for CRI1 and ARI2, where the fall scene for Sentinel-2 show much higher values than
the others. MTCI and CRI1 show large differences of mean values, as well as averaged cv. MTCI
overall shows much lower values in Sentinel-2 than the resampled APEX scenes. Furthermore,
chlorophyll content shows lower values at fall scenes for every chlorophyll describing index, ex-
cept TCARI/OSAVI, which is the only one that has produced higher values in fall. CIgreen
shows slightly higher values for Sentinel-2, however seems to show a balanced result. Results
for REP show one scene (S20 summer) being much higher than the others. MCARI/OSAVI pro-
duced comparably low values, however showing a quite balanced result. Difference in cv turned
out to be high for CIred− edge, MTCI, REP and CRI1. The proportion of outliers is rather high
for TCARI/OSAVI, NDRE1, NDRE2, CRI1, ARI1 and NDII. Regarding correlation of A20 and
S20 datasets, as shown in Table 3.2, MCARI/OSAVI and TCARI/OSAVI achieved weakest re-
sults, followed by MTCI and CIgreen. Relatively good results were achieved by REP, NDRE1
and NDRE2. The index describing chlorophyll with the most correlation between APEX and
Sentinel-2 was CIred− edge.

Considering anthocyanin indices, ARI2 seems to show weak results, as the values in fall seem
lower for A20, but higher for S20 scenes. On the other hand, ARI1 and RGR seem to show reason-
able results, with anthocyanin values being higher in fall. The correlation values for the datasets
were highest for RGR and lowest for ARI1 and ARI2. Regarding ARI1 and ARI2, correlation
showed large difference between seasons. PSRI values seem reasonable and higher in summer
than in fall on both sensors. Correlation of dataset for PSRI is rather low, as shown in Table 3.2.
Indices describing water content show similar results with higher values in summer, compared to
fall. NDII shows slightly higher values on the S20 scenes. Differences between seasons are much
higher on A20 scenes, compared to S20 for MSI. In addition to the better performance of NDII
in one-dimensional scale analysis, correlation between datasets was higher for NDII than MSI.
Regarding water content, correlation of sensors is higher in fall. This could be explained by the
smaller difference in time between the mission dates.
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FIGURE 3.1: Scatterplots of the tested indices, calculated based on A20 and S20 datasets for each sensor in
both summer (S) and fall (F). In each plot, all four datasets are shown for the corresponding index, in order
A20 summer, A20 fall and S20 summer and S20 fall (from top to bottom).
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3.1.3 Correlation of calculated indices

Table 3.3 shows correlation averaged over both seasons and sensors. The data averaged over
the seasons summer and fall per sensor can be found in the Appendix (see Table A.1 and A.2).
Considering the chlorophyll describing indices, REP, MCARI/OSAVI and TCARI/OSAVI cor-
relate rather weak compared to the others. While REP shows similar results for both sensors,
MCARI/OSAVI and especially TCARI/OSAVI correlate much stronger with other indices de-
scribing chlorophyll in the S20 scenes. This leads to the conclusion that MCARI/OSAVI and
TCARI/OSAVI ratios show weak results on the selected data. Especially TCARI/OSAVI does
not seem to work properly for the characteristics of the APEX datasets. Indices describing antho-
cyanin show high variation, which can be explained with the relatively low anthocyanin values in
the ecosystem. The same can be observed at correlation values of CRI1 and PSRI, which can be
explained by CRI1 not showing reasonable values. The indices describing water content, on the
other hand, show high positive correlation, and seem to both show reasonable results.

TABLE 3.3: Correlation of calculated indices with each other based on 20 m datasets, averaged over sensors
(A20, S20) and seasons (summer, fall). The corresponding traits are chlorophyll (green), anthocyanin (red),
carotenoid (orange) and water content (blue). r2 = 0 means no correlation, while r2 = 1 means perfect
correlation.

Index CIred− edge CIgreen MTCI NDRE1 NDRE2 REP MCARI/
OSAVI

TCARI/
OSAVI

ARI1 ARI2 RGR CRI1 PSRI NDII MSI

CIred− edge 1 0.83 0.84 0.93 0.99 0.67 0.19 0.70 0.33 0.52 -0.51 0.28 -0.20 0.59 0.53
CIgreen 0.83 1 0.62 0.79 0.83 0.46 0.41 0.75 0.55 0.51 -0.32 0.29 -0.53 0.29 0.24
MTCI 0.84 0.62 1 0.86 0.83 0.46 0.11 0.48 0.02 0.28 -0.37 -0.04 -0.18 0.52 0.55

NDRE1 0.93 0.79 0.86 1 0.94 0.38 0.33 0.64 0.22 0.53 -0.63 0.21 -0.10 0.54 0.53
NDRE2 0.99 0.83 0.83 0.94 1 0.66 0.19 0.71 0.34 0.52 -0.53 0.29 -0.19 0.59 0.54

REP 0.67 0.46 0.46 0.38 0.66 1 -0.31 0.50 0.35 0.19 0.02 0.23 -0.28 0.42 0.30
MCARI/OSAVI 0.19 0.41 0.11 0.33 0.19 -0.31 1 -0.04 -0.18 0.40 -0.57 -0.11 0.10 0.01 0.10
TCARI/OSAVI 0.70 0.75 0.48 0.64 0.71 0.50 -0.04 1 0.78 0.36 -0.24 0.54 -0.39 0.36 0.28

ARI1 0.33 0.55 0.02 0.22 0.34 0.35 -0.18 0.78 1 0.17 0.10 0.63 -0.51 0.07 -0.08
ARI2 0.52 0.51 0.28 0.53 0.52 0.19 0.40 0.36 0.17 1 -0.56 0.68 0.06 0.36 0.32
RGR2 -0.51 -0.32 -0.37 -0.63 -0.53 0.02 -0.57 -0.24 0.10 -0.56 1 -0.23 -0.59 -0.50 -0.52
CRI1 0.28 0.29 -0.04 0.21 0.29 0.23 -0.11 0.54 0.63 0.68 -0.23 1 -0.02 0.18 0.05
PSRI -0.20 -0.53 -0.18 -0.10 -0.19 -0.28 0.10 -0.39 -0.51 0.06 -0.59 -0.02 1 0.24 0.29
NDII 0.59 0.29 0.52 0.54 0.59 0.42 0.01 0.36 0.07 0.36 -0.50 0.18 0.24 1 0.94
MSI 0.53 0.24 0.55 0.53 0.54 0.30 0.10 0.28 -0.08 0.32 -0.52 0.048 0.29 0.94 1
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FIGURE 3.2: Mapped functional traits in both summer (left) and fall (right). The mapped functional traits
are chlorophyll, anthocyanin, carotenoid, and water content (from top to bottom). Values are normalized
from 0 to 1.

3.2 Functional traits

Based on the results in the tests (see section 3.1), an index was chosen to represent each func-
tional trait. To describe the chlorophyll content, CIred− edge was selected. It achieved best results
in the test, followed by CIgreen and NDRE2, which also seemed to be suitable for further analysis.
For the anthocyanin content, RGR was chosen, as ARI1 and ARI2 achieved weaker results in our
tests. The carotenoid content is described by PSRI, and the water content is described by NDII,
due to better results in the scale analysis and higher correlation of A20 and S20 based results.

Figure 3.2 and 3.3 show the mapped functional traits for both summer and fall. In summer,
chlorophyll content correlates most with anthocyanin, followed by water content and least with

TABLE 3.4: Correlation of functional traits in both summer (left) and fall (right).

Index Chlorophyll Anthocyanin Carotenoid Water
Chlorophyll 1 0.2038 0.2273 0.1082 0.0629 0.1946 0.2287
Anthocyanin 0.2038 0.2273 1 0.3322 0.3795 0.2273 0.0801
Carotenoid 0.1082 0.0629 0.3322 0.3795 1 0.0455 0.0037

Water 0.1946 0.2287 0.2273 0.0801 0.0455 0.0037 1
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FIGURE 3.3: Mapped functional traits on research site in both summer (left) and fall (right) in different sub-
areas (A to C, left to right) of the research area. The mapped functional traits are chlorophyll, anthocyanin,
carotenoid, and water content (from top to bottom).

carotenoid content. Anthocyanin and carotenoid content show the highest correlation values, fol-
lowed by water content. In fall, the chlorophyll and the anthocyanin content, as well as water
content correlated more than in summer. Chlorophyll and carotenoid contents correlate less than
in summer. The anthocyanin and carotenoid contents show even higher correlation, while antho-
cyanin and water content become more independent. The same applies for the carotenoid and
water contents, which still show the lowest correlation (see Table 3.4).

Furthermore, the spatial detail of increase and decrease of the traits is shown in Figure A.8. As
shown in the histogram of traits (see Figure A.9), the chlorophyll, carotenoid and water content
each decrease towards fall, while anthocyanin increases. Variance increased towards fall regarding
all the four traits with varying degrees of severity. The values of the chlorophyll content decrease
towards fall, particularly in patches with high values. The values near the ridge also decrease
towards September. Variance of the chlorophyll content increases towards fall from 0.0315 to
0.0377. Anthocyanin levels are relatively low, so the differences are exaggerated by rescaling. In
fall, anthocyanin levels rise. The differences at the ridge decrease. Along the north and south
slopes the values rise. The variance increases hardly, compared to the other traits from 0.0331
to 0.0348. Overall, variance of carotenoid content values increases from 0.0276 to 0.0326. Water
content seems to be more evenly distributed in summer than in fall. The variance of water content
increases the most strongly towards fall from 0.0182 to 0.0382, which is also visible in the images.
These differences are also visible in the one-dimensional scale analysis of traits (see Figure A.10).
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FIGURE 3.4: Comparison of sensors in a four-dimensional scale analysis calculated from the functional
traits chlorophyll, anthocyanin, carotenoid, and water content. For the analysis, functional richness was
calculated based on the A2 datasets (solid line) and the S20 datasets (dashed line) for both summer
(blue/green) and fall(red/brown). Additionally, a 2 m dataset, with randomly generated, normally dis-
tributed trait data was tested as well (black/grey).

3.3 Multi-dimensional scale analysis

In order to test the performance of functional richness and divergence, we analyzed their scaling
behavior and compared it to the results of the scale analysis of functional traits.

Just as the variance in the one-dimensional scale analysis, functional richness calculated in
four-dimensions increases with area and saturates at a certain value. The intersection of within
and between functional richness is higher than within- and between-unit variance in the one-
dimensional scale analysis. The A2 dataset showed intersections at 40.81 m in summer and
39.04 m in fall (see Figure 3.4). This leads to the conclusion that functional richness is more sta-
ble when scaled than the individual traits. Regarding the 20 m datasets, rescaled A20 summer
dataset achieved 242.74 m and the fall dataset achieved 249.72 m. The S20 dataset showed an
intersection of 203.35 m in summer, and 192.34 m in fall. However, richness is 10 times lower at
the intersection i, compared to the values calculated from the A2 dataset. Like variance in scale
analysis, richness seems to saturate, however, at a larger unit side length (> 400 m). At 400 m,
the value of within-unit richness explains 30% (28.23% in summer, 31.6% in fall) of the maximum
between-unit functional richness. Values calculated based on the S2 dataset are 10 times lower.
Similar values of within-unit richness are achieved at unit sizes, where a similar number of pixels
is given per unit (e.g. 40 m for 2 m pixels, 400 m for 20 m pixels). Values of between-unit func-
tional richness approach each other as the unit size increases. With regard to the fall scenes, the
values for between-unit richness are equally small for A2 and S20 with a unit side length of 400 m.
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FIGURE 3.5: Comparison of sensors in a four-dimensional scale analysis calculated from the functional
traits chlorophyll, anthocyanin, carotenoid, and water content. For the analysis, functional divergence
was calculated based on the A2 datasets (solid line) and the S20 datasets (dashed line) for both summer
(blue/green) and fall (red/brown). Additionally, a 2 m dataset, with randomly generated, normally dis-
tributed trait data was tested as well (black/grey).

Functional richness is higher in fall regarding within- and between-unit richness. This, on the
other hand, is not the case for between-unit richness calculated for the Sentinel-2 datasets, while
it is the case for the resampled 20 m APEX dataset (for more information see Figure A.11). This
could be explained by the chlorophyll and carotenoid contents showing lower values in fall for the
Sentinel-2 dataset (see Figure 3.1). However, this difference is also present when calculated with
CIgreen, which does not show this seasonal difference (for more information see Figure A.12).
Functional divergence is scale invariant here, however highly dependent on the number of pixels
(see Figure 3.5) and was shown to have no correlation with area. Regarding the A2 dataset-based
scale analysis, within-unit divergence saturates at around 20 m unit side length, and the 20 m
datasets divergence saturates at 200 m unit side length. This corresponds to 100 pixels per unit,
no matter how large these pixels are. Regarding between-unit divergence, saturation took place at
20 m in summer and 100 m in fall on the 2 m dataset. However, between-unit divergence shows
a high amount of variability (see random model in the Appendix, Figure A.13). When there are
< 5000 units considered (side length of ≥ 40 m, see Table 2.5), calculated mean divergence shows
a comparably high variability. A larger research area could therefore improve the results here.
Based on the 20 m datasets, no such effect was visible with increasing area. Compared to the
randomly generated dataset with a divergence of 0.77, the 2 m summer scene showed divergence
values around 0.72. The fall dataset showed values of 0.73 for within-unit and 0.69 for between-
unit divergence. While within-unit divergence saturates at a lower level for the 20 m datasets than
the A2 datasets, between-unit divergence is lower in the summer scene, and higher in fall.
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FIGURE 3.6: Functional richness based on the A2 dataset in summer (left) and fall (right). Top images are
calculated in 20 m diameter and bottom images are calculated in 40 m diameter. Richness maps calculated
in 60 m diameter are shown below (Figure 3.8).

FIGURE 3.7: Functional divergence based on the A2 dataset in summer (left) and fall (right). Top images
are calculated in 20 m diameter and bottom images are calculated in 40 m diameter. Divergence maps
calculated in 60 m diameter are shown below (Figure 3.10).

3.4 Functional diversity maps

Functional diversity maps were calculated using different sizes of circular neighborhood to
compare the results of different underlying datasets, namely the spectrally resampled 2 m APEX
(A2) dataset, the spectrally and spatially resampled 20 m APEX (A20) datasets and the 20 m
Sentinel-2 (S2) dataset. Diversity maps based on the A2 datasets were calculated for different
unit sizes with diameters ranging from 20 m to 120 m, while the ones based on A20 and S20 were
calculated for units with diameters ranging from 40 m to 700 m. Maps of functional diversity
metrics are shown in Figures 3.6 – A.18.

3.4.1 Diversity calculated from 2 m APEX dataset

Regarding the diversity maps from the A2 datasets, functional richness is higher in fall com-
pared to summer at all different unit sizes. The same applies to the variance of the calculated
richness values. The relationship to the slope, which was observed by Schneider et al. in 2017, is
visible on the summer as well as on the fall map. The highest values of richness were found on the
northern and the southern slope, while the lowest values were observed around the ridge. The
correlation of richness maps between summer and fall is r2 = 0.4745 for 20 m unit size, increases
strongly towards r2 = 0.6197 for 60 m, and increases more slowly towards r2 = 0.6801 for 120 m
and r2 = 0.7127 for 200 m. Correlation furthermore seems to saturate at around r2 = 0.7 and
does not further increase (see Figure A.14). The spatial differences of the richness values (see Fig-
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ure A.15) show the highest increase in functional richness in the southern-most part of the forest
(south of subarea B), similar to the increasing values of chlorophyll and water content in this area.
The same applies to the north-facing slope, where a slight decrease in chlorophyll, carotenoid
and water contents was observed towards fall, while anthocyanin increases. Around the ridge,
functional richness shows a slight decrease towards fall.

In subarea A, where comparably high values of chlorophyll content were observed, low values
of functional richness were found. The increase of richness around the patch does not affect the
patch of juvenile forest. While the patch of high, multi-layered and dense canopy in subarea B is
still visible on the map based on 20 m and 40 m units (see Figure 3.6), it vanishes at larger units
(see Figure 3.9 – A.17). The east-west course of the ridge and the transition of communities is
visible at 120 m. The functional richness in subarea C is high at the edges of the section.

Functional divergence values are higher in fall than in summer at all unit sizes. At unit sizes >
40 m, the variance of functional divergence is higher in summer, than in fall. The highest values of
divergence appear in the southern areas and at the northern slope, which is visible especially on
the fall maps. This area is characterized by deeper, acidic Cambisol and Podsol soils (Schneider
et al., 2017; Grotzinger et al., 2008). The lowest values can be found around the ridge, character-
ized by a steep slope and a shallow Regosol on loose ground (Lukito, Kouno, and Ando, 1998;
Grotzinger et al., 2008; Schneider et al., 2017). The correlation of divergence maps between the
seasons is increasing with unit size, as it is r2 = 0.2125 for a 20 m diameter, increases strongly
towards r2 = 0.4973 for 60 m and less strongly to r2 = 0.6430 for 120 m and r2 = 0.7265 for 200
m. For 200 m, the correlation between seasons is most similar for richness and divergence. The
correlation is higher for divergence than richness for 120 m unit size, which is not the case with
smaller units. The spatial differences of divergence values (see Figure A.16) show an increase at
the north-facing slope, while decreasing on the south facing slope.

The patch of juvenile forest in subarea A, that shows low values in functional richness, also
shows low values of functional divergence (see Figure 3.7). Those patterns are still visible at larger
units with 60 m and 120 m (see Figure 3.11). In subarea B, the east-west course of the mountain
ridge is visible in the divergence maps, more clearly in fall, compared to summer. The juvenile
forest at the ridge, is visible due to low values of divergence, even at units with diameters of 200
m. This area is also characterized by a steep slope. Subarea C is characterized by high values of
functional divergence.

3.4.2 Differences in diversity maps due to rescaling

The results for the calculated functional richness are shown in Figures 3.13, 3.8, 3.9 and A.17.
The first thing that stands out is that the functional richness is much higher for the A2 datasets, as
well as higher for the A20, compared to the S20 dataset. This can be seen from the color scales in
Figures 3.8, 3.9 and A.17 and in the left panels of Figure 3.12. Richness depends on the unit size,
which also means the number of pixels. This number of pixels is a hundred times larger for A2
datasets than for A20 datasets. As visible in Figure 3.12, if the area is 10 times larger (same number
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FIGURE 3.8: Functional richness maps based on the A2 (top), A20 (middle) and S20 (bottom) dataset in
summer (left) and fall (right) calculated in units with 60 m diameter in the three subareas (A – C).

FIGURE 3.9: Functional richness maps based on the A2 (top), A20 (middle) and S20 (bottom) dataset in
summer (left) and fall (right). The calculation is based on 120 m diameter which corresponds to a square
unit with a side length of 106.35 m.
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of pixels), the values will be of similar size. At 40 m diameter for the A2 dataset and 400 m for the
A20 dataset, which both are units with a diameter of 20 pixels, values of mean functional richness
are of similar size, however, a little lower still on the A20-based map. This is due to mixed pixels,
which consist of averaged values. This lowers the functional richness even more for the rescaled
dataset. At the same unit size, the values share a relationship of approximately a factor of 50.
However, patterns throughout the whole ecosystem are visible in both datasets, so that richness
is highest in subarea A and lowest in subarea B in maps based on both datasets.

The results for the calculated functional divergence are shown in Figures 3.10, 3.11, A.18 and
3.13. Divergence is higher in fall than in summer, which is visible in both the A2 and the A20-based
map. Functional divergence values are also higher for the A2-based dataset, however showing
a smaller increase than functional richness. This is because of divergence not reacting to any
change of unit area (Karadimou et al., 2016). For all areas, except C (which increases), functional
divergence decreases and saturates at a certain unit size. This value is characteristic for different
spatial resolutions, being much higher for the A20 and the S20 datasets. Divergence is highest in
subarea C and lowest in subarea B. In summer, the mean functional divergence in subarea B of
the A2-based map decreases towards 60 m unit diameter and increases again. This pattern is also
visible in the A20-based maps, where the increase takes place at much larger unit diameters. The
increasing behavior of mean divergence in subarea C, which is observed in A2-based maps, is not
visible in the A20-based maps. However, it is visibly higher in all maps, than the mean functional
divergence in other subareas.

The similarities of the A2 and A20 dataset in behavior and relationship of subareas show that
these patterns remain after resampling the dataset spatially. Based on this observation, the con-
clusion can be made that other differences between the A20 and the S20 dataset are not due to
consequences of lower spatial or spectral resolutions. Differences, especially of functional diver-
gence, are lower in fall, which once again could be due to higher values of anthocyanin and the
lower difference in time between the mission dates.

The correlation of the calculated richness is low when calculated at diameters of 40 m (r2 = 0.07
in summer and r2 = 0.08 in fall), however, higher as for divergence (r2 = 0.058 in summer and
r2 = 0.052 in fall). The correlation of functional richness between A2 and resampled A20 dataset
calculated at 60 m diameter is r2 = 0.1 in summer and r2 = 0.11 in fall, while r2 = 0.12 in summer
and r2 = 0.21 in fall for a diameter of 200 m. The increase of correlation is similar from 40 m to
60 m for both seasons, however much stronger in fall at larger units, while the correlation only
slightly increases in summer. Furthermore, the correlation of functional richness shows saturation
at larger units. The correlation of functional divergence between A2 and A20 datasets calculated
at 60 m diameter is r2 = 0.1 in summer and r2 = 0.09 in fall. The correlation is increasing strongly
towards 120 m (r2 = 0.2), while similar for seasons with the correlation in summer being a little
higher. The correlation increases strongly and similar for both seasons. While the correlation
between the datasets is higher for richness at 60 m unit size, on for divergence increases strongly
with unit size and is clearly higher for 200 m (see Figure 3.14). Furthermore, correlation is more
similar between seasons for divergence, compared to richness, especially at unit sizes ≤ 120 m.
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FIGURE 3.10: Functional divergence maps based on the A2 (top), A20 (middle) and S20 (bottom) dataset in
summer (left) and fall (right) calculated in units with 60 m diameter in the three subareas (A – C).

FIGURE 3.11: Functional divergence maps based on the A2 (top), A20 (middle) and S20 (bottom) dataset in
summer (left) and fall (right). The calculation is based on 120 m diameter which corresponds to a square
unit with a side length of 106.35 m.
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FIGURE 3.12: Development of mean functional richness (left panels) and divergence (right panels) in sum-
mer (upper panels) and fall (lower panels) when calculated based on increasing unit diameter for the whole
ecosystem (black) as well within the three subareas A (red), B (green) and C (blue). The panels show the
development of mean values when calculated based on the A2 dataset in calculated smaller units (20 m –
200 m diameter).

FIGURE 3.13: Development of mean functional richness (left panels) and divergence (right panels) in sum-
mer (upper panels) and fall (lower panels) when calculated based on increasing unit diameter for the whole
ecosystem (black) as well within the three subareas A (red), B (green) and C (blue). The panels show both
the development of mean values when calculated based on the A20 dataset (dashed) and the S20 dataset
(dotted) in large units (40 m – 800 m).
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For 200 m, correlation of functional divergence for the fall datasets (r2 = 0.31) is higher than in
summer (r2 = 0.25).

The correlation of the A2 and S20 datasets is much lower than the correlation of A2 and A20
datasets. Correlation of functional richness between A2 and A20 scenes is higher in fall and even
higher between A2 and S20, which can be explained by the smaller difference in time between the
two images, compared to the summer images (see Table 2.1). The correlation for richness is low
in summer (r2 < 0.04) and increases hardly with unit size (r2 = 0.06 for 200 m). The correlation
for richness in fall is similarly low at 40 m, however increasing with unit size (r2 = 0.21 for
200 m). Regarding the correlation of functional divergence maps, the correlation is low for units
with diameters < 60 m (r2 < 0.015). In fall, the correlation shows a high increase (r2 = 0.13
for 200 m), compared to summer (r2 = 0.09 for 200 m). The correlation of divergence seems
more independent of seasons compared to richness, when comparing A2 with both A20 and S20
datasets. In fall, the correlation is higher and also increasing more strongly with unit size. This
could be explained by higher values of anthocyanin, the higher variance of traits, and the smaller
difference in time between the images.

3.4.3 Differences in diversity maps due to sensor characteristics

Regarding the maps calculated from the S20 and A20 dataset, the correlation is low for 60 m
and 40 m diameter (r2 = 0.01 for divergence and r2 = 0.07 for richness). The correlation for both
diversity metrics starts increasing rapidly at larger units. In summer, the correlation is highest at
a diameter of 320 m (r2 = 0.17 for richness and r2 = 0.27 divergence). For this unit size, values for
the fall datasets are r2 = 0.3557 for richness and r2 = 0.1992 for divergence. In fall, correlation does
not show a maximum (tested < 700 m), however correlation tends to be less strongly increasing
at unit sizes > 320 m. The highest correlation values for the fall datasets are at a diameter of 700
m, which are r2 = 0.5002 for richness and r2 = 0.4446 for divergence. In fall, the correlation
of richness is higher than the one of divergence. On the other hand, the opposite behavior was
observed in summer for units > 100 m. A correlation decrease of divergence at 320 m and higher
could emerge from information loss, due to the limited size of the research area.

In the functional richness maps based on 60 m units, the patch in subarea A is visible, due to
low values of richness within and high values on the edges of the patch. This was detected in
the maps based on all three types of data (see Figure 3.6). At higher unit sizes (120 m and 200 m
diameter), where the patch is no longer visible, high values of richness in the north-western part
of subarea A are visible in all richness maps (see Figure 3.9 and A.17). Higher values of functional
richness in the 2 m maps, compared to 20 m maps, are due to the much higher number of pixels
per unit (100 times more). In subarea B, low values around the ridge are visible. A major problem
at the A20 and S20 based maps are mixed pixels, which lead to high values around clearings and
at the forest edges, especially on the north facing slope. At subarea B, sparse canopy around the
ridge does not have the same effect, as clearings and forest edge. In the S20 based maps, especially
high values of richness are observed on the north facing slope. This can be explained by either the
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FIGURE 3.14: Development of the correlation for richness (black/grey) and divergence (red/light red) with
increasing neighborhood size in which they were calculated over the ecosystem. The resampled A20 dataset
is compared with the A2 dataset (left), the S20 dataset is compared with the A2 dataset (middle), as well as
the A20 and the S20 dataset (right).

presence of mixed pixels, or the much steeper angle of view of Sentinel-2, compared to APEX. The
values on the north slope lead to an override of the values on the south slope.

Correlation in the subareas between the three diversity map types (A2, A20 and S20) is shown in
Figure 3.15. In subarea A, the correlation of A2- and A20-based maps is much higher for richness,
compared to divergence. As visible in Figure 3.8 and 3.9, the patch in subarea A is visible in maps
calculated from all datasets. This is also true for the correlation between A2 and S20 based maps.
This leads to the conclusion that in subarea A less information is lost when calculating functional
richness at lower spatial resolution. When comparing the correlation for both sensors, at 20 m
spatial resolution, the correlation is much higher for functional divergence. In subarea B, the east-
west course of the ridge is visible at 120 m and 200 m unit sizes, in all divergence maps. However,
the ridge is especially visible in the fall scenes. This is also visible in the correlation of A2 and
S20 datasets and A2 and A20 correlation of divergence, which is higher in fall scenes. When
comparing datasets, the highest correlation is visible within divergence maps. Regarding subarea
C, correlation is higher for functional richness at all unit sizes, with a maximum at 120 m diameter,
when comparing A2 and A20 datasets. At larger unit sizes, correlation of divergence maps rises,
and becomes more important, compared to smaller units. When comparing A2 and S20 datasets,
the scenes are more similar, when comparing divergence maps, with a peak at 120 m. Regarding
functional richness, no correlation could be found between A2 and S20-based maps. However,
when comparing A20 and S20 maps, functional divergence shows similar patterns of correlation
compared to subarea A and B, as well as the whole ecosystem, being relatively high (r2 = 0.2−
0.4). On the other hand, functional richness shows high correlation between the two sensors, and
an even higher correlation in fall. The correlation between rescaled images and sensors, both
diversity metrics show values depending on the subarea.

41



FIGURE 3.15: Development of the correlation for richness (black/grey) and divergence (red/light red) with
increasing unit size in which they were calculated, for each of the three subareas A, B and C (from top to
bottom). The resampled A20 dataset is compared with the A2 dataset (left), the S20 dataset is compared
with the A2 dataset (middle), as well as the A20 and the S20 dataset (right).
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4 Discussion

Discrepancies between different research fields hamper the transfer of findings from ecosys-
tem services to ecosystem functioning and vice versa. Ecosystem service studies are often con-
ducted at larger spatial scales and usually do not investigate the underlying ecosystem functions
related to specific services. In contrast, ecosystem functioning is biased to small scale ecosystems
and/or based on experimental designs (Laureto, Cianciaruso, and Samia, 2015). The first step
towards bridging these gaps between ecosystem functioning and ecosystem services, is measur-
ing functional diversity at large scales. Furthermore, identifying various links between traits and
ecosystem services will provide a better understanding of how biodiversity affects ecosystems,
representing an important tool for conserving ecosystem services and functions (Bello et al., 2011;
Laureto, Cianciaruso, and Samia, 2015). Quantifying functional diversity on large scales creates
the link between ecosystem functioning and ecosystem services. This link paves the way for fu-
ture studies, directly predicting impacts of global environmental changes, which affect ecosystem
functioning and ecosystem services on a global scale.

In 2017, Schneider et al. presented an innovative method of mapping functional diversity con-
tinuously through space. The next step of transferring this method to satellite systems is presented
in this study. The performance of functional traits and diversity metrics was tested at different spa-
tial scales over different seasons using two different optical sensors. We analyzed functional traits
and functional diversity metrics based on three datasets, namely a spectrally resampled APEX
dataset (A2), the spatially and spectrally resampled APEX dataset (A20) and a Sentinel-2 satellite
dataset (S20). The latter two datasets have the same spatial resolution of 20 m.

4.1 Functional traits

4.1.1 Identification of suitable functional traits and corresponding vegetation indices

Different indices were tested on their scalability and suitability for multiple sensors based on
the A2 data. All of the indices, except CRI1, showed stronger results and reactions to auto-
correlation in the scale analysis, compared to the random model. 80% of the initial variance is no
more between-units but within-units (t) at 40 m for water and anthocyanin content, which tend to
show variation at smaller scales, compared to carotenoid and chlorophyll content for which 80%
of the original variance at 2 m spatial resolution was found within-units at a side length of 60 m.
The same is visible for the variance remaining at 20 m, the resolution of Sentinel-2, being 16% for
carotenoid and chlorophyll content, and 13% anthocyanin and water content.
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To enable the most accurate comparison of sensors, it is crucial to check the suitability of the
sensors for each index before calculating diversity metrics. This was done using a qualitative com-
parison of boxplots of two sensors and quantitatively using correlation between datasets. Thus we
could answer our research question on how different physiological traits and diversity metrics are
affected by scaling effects, and which of the traits can be applied to multiple sensors. Many of the
chlorophyll indices worked good on both datasets. CIred− edge has been proven to correlate well
with chlorophyll content in various studies and has also proven to be suitable and stable in the
tests carried out here (Peng and Gitelson, 2011; Clevers and Gitelson, 2013; Clevers et al., 2017).
Based on our results, we expect best results from CIred− edge, CIgreen and NDRE2 in this order.
All of which performed good in our tests and are known to deliver reasonable results. Based on
findings in the literature and our experience with its performance, we recommend CIred− edge
and CIgreen as an alternative, if there is no red-edge band available (Peng and Gitelson, 2011;
Clevers and Gitelson, 2013; Clevers et al., 2017). Water content also achieved reasonable results.
We recommend NDII, but MSI worked as well. Both NDII and if necessary MSI can be rec-
ommended. Hardest to determine were the anthocyanin and carotenoid content, due to spectral
properties. These indices showed potential for failure on one of the sensors, such as CRI1 and
ARI1. Most potential for improvement can be found here. Nevertheless, RGR and PSRI achieved
the strongest and most stable results.

4.1.2 Mapping functional traits

Mapped functional traits are shown in Figure 3.2 and 3.3 for both summer and fall. All four
mapped functional traits delivered reasonable results and differences between the seasons. The
spatial patterns of increase and decrease of traits when comparing July and September are shown
in Figure A.8. As shown in the histogram of traits (see Figure A.9), chlorophyll, carotenoid and
water content decrease towards fall, while anthocyanin increases.

Low values of chlorophyll are observed in areas where conifers make up most of the forest
mixture, and are also measured directly on the north side of the ridge. The highest chlorophyll
values are measured on the southern slope, in patches especially where less than 50% beech (Fagus
sylvatica) is observed. Especially young forests show high chlorophyll values. Young forests and
trees usually show high productivity and therefore high values of chlorophyll, as they invest a lot
of energy in biomass accumulation and growth (Finegan, 1984; Day, Greenwood, and White, 2001;
Acker et al., 2002). A patch described by Schneider et al. (2017), where small juvenile forest, likely
affected by disturbance caused by a winter storm was also visible here (subarea A), characterized
by high values of chlorophyll content (see Figure 3.3, subarea A). These values decrease towards
fall, particularly in patches with high chlorophyll content and near the ridge. A slight decrease
in chlorophyll content between DOY 189 and 251 seems plausible (Demarez et al., 1999; Zhang,
Chen, and Thomas, 2007). The highest decrease was observed in higher areas near the ridge on
the south facing part, where the juvenile forest seems to react early to seasonal changes and the
corresponding stress. A slight increase in chlorophyll content was observed in lower areas on the
south-facing slope, where areas are characterized by evergreen needle forest.
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Anthocyanin levels are known to be comparably low during summer, so the differences are ex-
aggerated by rescaling (Ustin et al., 2009; Schneider et al., 2017). Rescaled values are relatively low
as well, with one exception near the ridge, where the values are especially low on the south side
and particularly high on the north side. Anthocyanin rise can be caused by stress, which seems
plausible on the shallow soils and the lower light income on the steep north-facing slope below
the ridge (Schneider et al., 2017). Young forests tend to be less robust to stress, as most of the
energy is allocated to growth rather than defense, health and reproduction (Loehle, 1988; Herms
and Mattson, 1992; Obeso, 2002). In the western third, high values of anthocyanin are observed
in a patch on the south side of the ridge (see Figure 3.3, subarea B). This area has been described
with morphological characteristics by Schneider et al. (2017). The area characterized by low val-
ues of anthocyanin on the south side of the ridge in subarea B is described as multi-layered, low
and sparse canopy, while the bright patch is described as high, multi-layered and dense canopy.
The same patch is visible when calculating carotenoids, where it is described by lower values than
its surroundings. Values of anthocyanin content increase towards fall (Dhindsa, Plumb-Dhindsa,
and Thorpe, 1981). A higher increase in anthocyanin content was observed in higher areas on
the south-facing areas near the ridge, similarly to the patterns of chlorophyll decrease. This is
reasonable, considering the seasonal cycle of plants in temperate and boreal biomes is primar-
ily controlled by temperature and day length (Menzel, 2002). Consequently, plant phenology is
mainly regulated by temperature: low temperature initiates winter dormancy. Laegern forest has
a gradient in altitude of 450-860 m a.s.l (Eugster et al., 2007), the higher altitudes at the ridge lead
to lower temperatures and therefore ease earlier changes that can be attributed to leaf senescence.

Carotenoid values are higher on the southern than on the northern slope, which can be ex-
plained by the protective function of carotenoids from high radiation income in summer by re-
lease of excess energy through fluorescence (Ustin et al., 2009; Schneider et al., 2017). In fall, the
values of carotenoid content decrease in patterns similar to the increase in chlorophyll, especially
in the lowest areas of the southern slope, where more than 50% conifers are present in the mix-
ture, such as subarea C (Schneider et al., 2017; GIS-ZH, 2018). These observations of carotenoid
decrease could be explained by the less steep solar angle in September and the resulting lower
radiation, enabling higher productivity. Areas remaining highly exposed to radiation income at
higher altitudes show less decrease in carotenoids. Carotenoids function as antioxidants and ap-
pear as protectors during stress (Lewandowska and Jarvis, 1977; Gamon et al., 2016). In deciduous
trees, carotenoid content decreases during senescence (Goodwin, 1958), while in coniferous trees,
values of carotenoid content were observed to decrease towards fall and increase again in win-
ter (Lewandowska and Jarvis, 1977; Ensminger et al., 2004; Gamon et al., 2016). High values of
carotenoid protect the needles during the cold of winter. Based on this, it is expected that the val-
ues of measured carotenoid content rise again during fall senescence in communities with a high
proportion of coniferous trees in the mixture, while staying low in deciduous trees, until the onset
of leaf fall in mid October (Verein GLOBE Schweiz, 2017b).

Water content tends to be more evenly distributed in summer than in fall. The lowest values
were observed on the northern slope just below the ridge. All in all, the highest values of wa-
ter content are located similarly to where Schneider et al. (2017) observed them, namely on the
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southern slope in the east and in the west in flatter areas with deeper, acidic soils. These areas are
dominated by evergreen coniferous needle trees. These values increase even more towards fall,
i.e. in the dense coniferous forests, while they drop sharply around the ridge, were the communi-
ties are characterized by a young forest. The juvenile forest near the mountain ridge further shows
the strongest decrease in water content, while the lower areas on the south facing areas only show
a slight increase in water content. This is similar to patterns in chlorophyll decrease and could be
explained by soil depth being higher in lower areas of the south facing slope. In these areas of
deeper, less rocky, further developed soils, the roots are deeper and the water capacity of the soil
is higher, which leads to a more balanced water regime.

4.1.3 Outlook

In summary, all of the four traits worked to describe the ecosystem under the coarser spectral
resolution. Regarding seasonal changes of functional traits, a lot of information on the devel-
opment of traits could be gained by comparing multiple seasons, throughout the phenological
year or through multiple years. Furthermore, observing the development of physiological traits
throughout the daily cycle, could deliver a lot of new information about communities.

Using future spaceborne imaging spectrometers, more functional traits and dimensions could
be added to the analysis, depending on the spectral properties of the sensor in regard. This could
for example be cellulose content, (Nagler et al., 2003), leaf area or leaf mass per unit area (Wijk
and Williams, 2005; Jiang et al., 2008), other minerals, such as phosphorus content (Mutanga and
Kumar, 2007), nitrogen content (Martin et al., 2008), nonstructural carbohydrates (NSC) (Asner
and Martin, 2015), phenolics (Asner, Martin, and Suhaili, 2012; Kokaly and Skidmore, 2015), sugar
or starch. Global trait databases support this task (Kattge et al., 2011). By adding morphological
information from laser scanning data to derive functional traits, results could further be improved
(Schneider et al., 2017; Dalponte et al., 2018).

4.2 Functional diversity

Furthermore, we answered the question to which extent the results from data acquired at high
spectral and spatial resolution (A2) differ from spatially resampled A20 data, as well as multi-
spectral spaceborne S20 data and how much of the initial diversity, derived from A2 data can be
observed from data collected from space.

4.2.1 Four-dimensional scale analysis

It has been shown by the four-dimensional scale analysis that functional diversity varies on a
larger spatial scale than functional traits alone. Similar to variance in the one-dimensional scale
analysis, functional richness calculated in four dimensions increases with neighborhood area and
saturates at a certain value (Karadimou et al., 2016). For a unit size of 40 m, the same amount of

46



physiological richness is found between and within-units in the scale analysis of the A2 data. This
is an increase by a factor of two compared to the traits on their own. The scale analysis showed
similar behavior, when calculated based on A20 and S20 datasets, however, functional richness is
lower at the same unit size due to a lower number of pixels per unit (ppu) and because of small
scale diversity being averaged out at lower spatial resolution. This can be explained with the area-
diversity relationship (Karadimou et al., 2016). The value of functional richness is 20 times lower
in the 20 m datasets compared to the 2 m dataset. Functional divergence shows similar patterns
in the form of strong differences due to the resampling of the data. Divergence is scale invariant,
and showed negative, positive or no correlation with area, depending on plot and community
(Karadimou et al., 2016). However, it seems highly dependent on the number of pixels (see Figure
3.5). The value drops and saturates at a unit size much higher in the A20/S20 data, compared to
the A2 data.

4.2.2 Mapping functional diversity

We found that mapping functional diversity based on 20 m spatial resolution is possible, how-
ever, not without information loss. The properties of functional diversity metrics lead to spatial
effects when resampling to lower spatial resolutions. Figures 3.12 and 3.13 show the development
of functional diversity metrics with unit size at the whole ecosystem, as well as the three subar-
eas A, B and C. Subarea B shows the ridge, which is the dominant feature of the ecosystem. The
shallow and rocky soil, steep slopes and high radiation, especially on its southern slope, act as en-
vironmental filter (Schneider et al., 2017). Tree types that withstand shallow and rocky soil as well
as the high light income, profit from the absence of competitive species, such as beech (Fagus syl-
vatica) and spruce (Picea abies) under these conditions. On the south side of the ridge, the mixture
of trees contains light demanding species, such as oak (Quercus sp.), hornbeam (Carpinus) and lime
tree (Tilia sp.). On the north side of the ridge, the ground is steep, unstable, and characterized by
less light input (data by the state government, GIS-ZH, 2018). The species mixture contains more
beech (Fagus sylvatica), ash (Fraxinus excelsior), and maple species (Acer sp.). On both sides of the
ridge the conditions are harsh and resource availability is low. This requires one-sided adaptation
by the species. The reduced trait variability towards the ridge was visible in all richness maps.
As visible in Figures 3.12 and 3.13, subarea B shows the lowest values of richness at all unit sizes,
and in all sensors. In fall, physiological richness rises especially on the north-facing slope. Senes-
cence onset is driven by temperature and day-length which is locally dependent on topography
(Menzel, 2002). Therefore small scale location differences could drive the onset of senescence and
therefore ease earlier changes that can be attributed to leaf senescence, such as light stress in the
north-facing slope, leading to higher functional richness in fall. Regarding functional divergence,
subarea B also shows the lowest values. In the 20 m based maps, this is also visible. However, it is
much less pronounced, especially in S20 maps (see Figure 3.10, 3.11 and A.18). This could be ex-
plained by the one-sided distribution of traits used in this harsh location. At the ecosystem level,
the mountain is again dominated by the ridge as the most prominent landscape feature. There-
fore, regarding γ-diversity, the behavior of physiological richness and divergence is very similar
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FIGURE 4.1: Effect of niche partitioning on functional divergence shown on randomly generated data-
points.

between subarea B and the whole ecosystem (see Figures 3.12 and 3.13). The main difference was
an overall lower richness and divergence at subarea B. Contrarily, subarea C shows highest values
of divergence, which can be explained by the mixture of coniferous and deciduous trees, leading
to an even distribution of traits (Mason et al., 2005; Schneider et al., 2017). The vigorous, advan-
tageous stands, are dominated by beech (Fagus sylvatica) and spruce (Picea abies). It is rather dark
and dominated by high concurrence, rather than resource shortage. The physiological traits are
evenly distributed throughout the mixture. Functional divergence is highest in subarea C in both
the A2 and the resampled A20 dataset. Divergence shows higher values, in parted niches (see Fig-
ure 4.1, Mason et al., 2005). On the other hand, functional richness is comparably low in subarea
C, which can be explained by the low level of diversity in the mixture. Lastly, subarea A shows
the highest values of richness at smaller scales, and does not increase that much at larger units.
This can be explained by the size of the units out-ranging the size of the patch of juvenile forest
within subarea A. Functional divergence is rather high at smaller scales, compared to other areas,
and decreasing towards larger units as well, which could also be explained by the patch of juve-
nile forest being averaged out, and the pattern disappearing at larger scales. This can be observed
at unit sizes of 120 m and higher. Overall, patterns like the low richness at the ridge or the high
divergence at subarea C are visible in all types of diversity maps. However, at unit sizes of 120 m
and higher, some attributes get lost, namely the patch in area A. It is visible at all sensors that the
divergence is higher in fall, which can be explained by higher levels of anthocyanin. However, at
the ridge, where the highest increase of anthocyanin values was observed, values of divergence
decrease. The correlation of different datasets also varies strongly between patches, depending
on the values of the diversity metrics and community. Using a combination of both divergence
and richness is recommended. Except for subarea A, the same relative patterns of richness and
divergence could be observed. This means that this information is not lost during resampling.
However, direct comparison is not recommended here, as the values of richness and divergence
are directly linked to the number of pixels per unit and for this reason the differences in scales of
values are immensely high. Differences between A20 and S20 therefore can be further explained
by differences in illumination, angle of view, sensor specification, altitude, and time, instead of
the difference in spatial resolution of the underlying data.

When comparing original and rescaled APEX datasets (A2 and A20), fall scenes show stronger
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correlation with each other and a high increase of correlation with unit size, as well as correlations
of divergence maps showing higher increase with unit size, compared to richness. The low corre-
lation at unit sizes < 60 m matches the observation in Figure 3.13, in which values of richness and
divergence neither rise nor fall at units smaller than 60 m. We assume that edge effects, which dis-
turb the visible patterns when fewer than 3x3 pixels per unit are considered, are the reason for the
poor quality of the analysis. We recommend minimum sizes of three times the pixel size as unit
diameter in circular and side length in square units, in order to avoid these effects when working
on large areas, especially for divergence. In small areas, features can be qualitatively visible when
using functional richness (e. g. subarea A). The highest correlation between sensors was visible at
either 120 m and 320 m diameter in circular units, which corresponds to 100 m and 280 m square
unit side length. The higher correlation in fall could be due to higher variance, higher values of
anthocyanin or a smaller difference in time between the missions. Adding anthocyanin content
adds value to the calculation, especially in fall. Furthermore, the variance of results increase in the
fall scene, most likely due to higher values of anthocyanin in fall. Lastly, higher correlation was
observed in fall, which can be explained by higher values on anthocyanin in fall, higher variance
or due to the smaller difference in time between the mission dates. Regarding the subareas, A20
and S20 correlate mostly through functional divergence, while A2 and resampled A20 correlate
mostly through richness. However, this is depending on the subarea, and therefore the forest type
(see Figure 3.15). Over the whole ecosystem, A20 and S20 correlate mostly through both metrics
and especially in fall. This could be due to higher values of variance, or closer mission dates
in fall. When rescaling (A2 to A20), more information is left when calculating richness from the
resampled dataset. When rescaling and comparing, the use of both metrics is recommended.

4.2.3 The mixed-pixels problem

A common problem at coarse spatial resolutions, especially in relation to the objects, are pixels
where a large proportion are mixed as they include both object and background (Hsieh, Lee, and
Chen, 2001; Jones and Sirault, 2014; Chen et al., 2018). This is the case at the edges of objects or
in low resolution images. This problem increases as the spatial resolution of the image becomes
coarser to a point where the pixel size approaches or becomes greater than the object size. At
Laegern forest, the average crown diameter is around 6 m. Therefore, mixed pixels are likely to
cause problems at the given 20 m pixel size (Schneider et al., 2017). The effect of mixed pixels on
the functional richness maps is visible by higher values of richness near forest edges and clear-
ings. This is observed around clearings on the south facing slope, and on the north facing slope.
This could be explained with a different angle of view of the sensors and different illumination.
On functional divergence maps, the effect of mixed pixels can also be observed, however, with a
different phenomenon. Mixed pixels near the forest edge and clearing tend to show higher val-
ues of richness and lower values of divergence. This seems plausible regarding the concept of
richness and divergence. Pixel values lying off the niches would increase the value of richness
and decrease the values of divergence (see Figure 4.2 and A.21). The local effects of mixed pixels
were so high that other patterns and properties are no longer observable. This could explain why
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FIGURE 4.2: Effect of mixed pixels (red) on randomly generated data-points with clear differentiation/niche
partitioning. Functional richness increases (left panels) and divergence decreases (right panels).

the correlations of the diversity maps in the subareas were sometimes much higher, as there were
hardly any mixed pixels due to very rare forest edge and clearings within the subareas, compared
to the whole ecosystem. Potential improvement of the forest mask especially at low resolutions,
could greatly improve the presented results.

4.2.4 Adding Anthocyanin

The advantages of adding a fourth dimension to the functional trait space is not completely
visible, and there is still no consensus on the best method for measuring the quality of functional
spaces (Maire et al., 2015). Our four-dimensional analysis and the three-dimensional analysis
achieved similar results on the A2 dataset. Consequently, three dimensions achieve a sufficient
result, when four dimensions are not available. However, when comparing functional traits,
Maire et al. (2015) found that functional trait spaces having at least four dimensions delivered
the strongest results, compared to two-dimensional functional spaces. The information gain is
therefore absolutely advantageous. The use of anthocyanin is further reasonable, as we were
comparing calculations at two dates of the phenological year.

4.2.5 Seasonal development of mapped physiological diversity

The change of functional diversity through the seasons was compared by using datasets, which
were collected at two points throughout the phenological year. The correlation of the seasons in-
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creased with unit sizes, and more strongly for divergence than richness. Functional richness, as
well as functional divergence increased in September, compared to July. This could be explained
by the higher values of anthocyanin content. This observation, however, lays the foundation for
further observation of changes in functional biodiversity during the course of the phenological
year. Different stages of phenology being analyzed through the year could deliver valuable infor-
mation on the phenology of ecosystems and the changes of functional diversity throughout the
year and changes of the phenology of diversity in time lines. Doing so, using anthocyanin content
seems even more reasonable, as anthocyanins are also common during the earliest stages of leaf
development before the photosystems are fully functional (Gamon and Surfus, 1999; Ustin et al.,
2009). Even though phenological development should be visible from chlorophyll, carotenoid and
water content alone, adding anthocyanin adds valuable information. Furthermore, information
could be gained by analyzing the development of traits and functional diversity throughout the
day. In this context, unmanned aerial vehicles offer a lot of potential. They are affordable and
suitable for repeated measurements, can be operated autonomously and represent an emerging
field in airborne sensing that has the potential to extend and evolve Earth observing disciplines
(Houborg, Fisher, and Skidmore, 2015).

4.2.6 Behavior of diversity metrics with neighborhood area

The relation of functional richness and square unit side length in the scale analysis could best be
described with the power-law function (r2 > 0.99), which agrees with observations by Schneider
at al. (2017) regarding units smaller than 10 ha. The scale analysis of functional richness and the
fitted functions are shown in Figure A.19. In order to observe the development at larger scales
(units > 16 ha), a larger research area would be necessary, permitting larger unit areas to carry out
the scale analysis. Thus, the logarithmic function could be tested for scale analysis in larger units.
On the calculated functional diversity maps, a power-law and a logarithmic function were fitted
to the mean functional richness for the resampled A20 datasets for different units with diameters
up to 800 m, as shown in Figure A.20. At larger units, mean values of richness could be described
better by the power-law function. This contrasts observations by Schneider et al. (2017) stating
that from a unit size of 10 ha, development of the mean functional richness is described best by
a logarithmic function. The observed flattening could be due to redundancy with regard to the
functional traits at large scales. However, this redundancy was not observed at lower spatial res-
olution at the same units areas, but lower number of pixels per area. The missing, logarithmic
behavior could be explained by the lower number of pixels and therefore the absence of redun-
dancy at the same units area. The logarithmic behavior of the functional richness may be visible
at larger areas, when calculated based on data with lower spatial resolution. The logarithmic be-
havior of the functional richness could be caused by redundancy in traits at a certain number of
pixels per area.

The power-law function y = a · xb is prominently used to model species-area relationships re-
sulting in a linear function on the log-log scale. The slope of this function varies between ecosys-
tems (exponent b of the power function) (Arrhenius, 1921; Gerstner et al., 2014; Schneider et al.,
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2017). Results of Schneider et al. (2017) were similar to large-scale species models for temperate
mixed forest, shown by Gerstner et al. (2014). Our results, within-unit functional richness in the
scale analysis, showed higher values, as shown in Figure A.19 (b = 0.4842 in summer, b = 0.4418
in fall). This could probably be explained by only units smaller than 400 m taken into accounts,
showing steeper increase at smaller units. Steep curves at smaller scales seem reasonable (Pereira,
Borda-De-Água, and Martins, 2012). Larger units were not taken into account for 2 m pixels, due
to calculation times. A larger research area could enable larger units and therefore improve the
result, delivering a more accurate fit in the scale analysis. On the A20 mean functional richness
graph in Figure A.20, the slope of the power function showed even higher values (b = 0.8032
in summer, b = 0.7742 in fall). This can be explained by the pixels averaging values and small
scale information loss, as well as the much higher point of saturation for richness at lower spatial
resolution. However, the values at the new scale level should be compared for different ecosys-
tems, as they may show characteristic values for different ecosystems similar to observations by
Gerstner et al. (2014). We expect higher values of b for ecosystems with a high level of diversity,
such as tropical forests, and low values for ecosystems with low diversity such as boreal forests
and deserts.

4.2.7 Outlook

Functional diversity was calculated and compared to randomly generated traits with no mea-
surable auto-correlation. There are probably different reactions to different levels of auto-correlation.
Possibly, one could use a scale analysis to deduce the degree of auto-correlation and the spatial
scale of the trait or the functional diversity metric, and create different spatial categories. By doing
so, one could deduce from the scale analysis the degree of auto-correlation and the scale of vari-
ability. As seen in the random model (see Figure A.13), the number of units is important, especially
when calculating mean functional divergence. A larger extent of the research area would improve
the result, and furthermore give more information on the suitability of the method at larger scales.
This is especially needed since we are dealing with a lower spatial resolution. Furthermore, at a
unit size of 500 m or higher, a larger research area would be reasonable, as the north-south extent
of the research area is hardly larger than 500 m at the smallest distance. Future studies should fur-
ther focus on the suitability and results of this method in other ecosystems. Ecosystems with more
homogeneous forest stands at larger scales could be accessed more easily using satellites. Doing
so, new traits should be defined for different ecosystems, in order to deliver reasonable results.

The values and their comparability are strongly dependent on the number of pixels per unit.
Approaches, such as the one by Lanaras et al. (2018) of super-resolving arbitrary Sentinel-2 images
without the need of retraining could enable the availability of 10 m pixel resolution for Sentinel-2
datasets. Such an improvement in resolution of 10 m pixel size would increase the number of
pixels per unit by a factor of four compared to the 20 m resolution used here. This would increase
the quality of the calculated diversity metrics by far, as well as decrease the information loss when
rescaling to satellite resolution. Functional richness would be much higher and more comparable,
as well as functional divergence saturating at smaller unit areas. Furthermore, the appearance and

52



the influence of mixed-pixels decrease with smaller pixels.

Despite the challenges remaining, this approach is a step towards mapping functional diversity
from space. Doing so, satellite remote-sensing offers possibilities of observing biodiversity on a
global scale (Skidmore and Pettorelli, 2015; Jetz et al., 2016). Biodiversity in all biomes is sensitive
to global changes in environment (Sala et al., 2000). Being able to observe biodiversity continu-
ously in time and space builds the basis for studying impacts, interaction and feedback of global
environmental change on ecosystems and biodiversity globally, and especially in remote areas.
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5 Conclusion

In this Master thesis we analyzed suitable approaches to transfer functional diversity metrics
from airborne to spaceborne platforms. We investigated the influence of different spatial scales,
different sensors and different seasons on mapping functional diversity continuously through
space. We showed possibilities and limitations of investigated methods and sensors, to highlight
suitable pathways and challenges, which have to be tackled in future research.

We identified four traits to describe physiological diversity, namely chlorophyll, anthocyanin,
carotenoid, and water content. For all four traits, we selected corresponding indices, that could
be applied to Sentinel-2 and APEX data, namely CIred− edge, RGR, PSRI, and NDII. Functional
diversity metrics were found to vary on larger scales, compared to the traits alone. Resampling
across spatial scales affects those diversity metrics. For example, richness is considerably smaller
at lower spatial resolutions. Likewise, divergence decreases and saturates at much larger unit
sizes. In short, both metrics were found to be dependent on the number of pixels per unit (ppu).
When mapped, some patterns can still be observed and interpreted at lower spatial resolutions,
especially using richness. To a basic extent, we observed phenological development of functional
traits and diversity metrics in July and September and pointed out the possibilities of observing
phenological development of traits and diversity for the interpretation of the ecosystem. Com-
paring the original dataset with a spatially resampled version and a temporally corresponding
satellite observation allowed to us differentiate between scaling and sensor-related influences. Di-
rect comparison of diversity maps derived from datasets with different spatial resolutions is not
recommended, but rather a qualitative comparison. We observed overall similar spatial patterns
between the 2 m and 20 m resampled APEX datasets. However, this comparison varies, depending
on structure, location, stand, mixture and size of the area in question. Mixed pixels play a major
role in altering the diversity metrics, which imposes a major limitation on this method. We ob-
serve that increasing effects with lower resolution cause an increase in richness and a decrease in
divergence. This effect is particularly important regarding the high heterogeneity in our research
area. We therefore recommend that future studies could not only focus on the the improvement
of the presented approach using new approaches of masking vegetation and including different
traits, but on changes of functional traits and functional diversity over time throughout the phe-
nological year or even throughout the day, on scaling effects in multiple different ecosystems and
larger homogeneous areas, or on the impact of environmental change on diversity metrics.

Despite the challenges, studying biodiversity on a global scale bears large opportunities to ad-
vance research on global change. Once applied, this approach of mapping functional biodiversity
enables continuous observations on ecosystem functioning as well as studying impacts of global
environmental change on biodiversity continuously in time and space.
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A Appendix - Additional Figures and Tables

FIGURE A.1: Comparison of APEX (2 m) and Sentinel-2 (10 m and 20 m) pixels. The spatial resolution of
the APEX datasets being 2 m through all bands, while the spatial resolution of Sentinel-2 being 10 m for
bands of the visible (band 2 – 4) and the NIR (band 8) part of the spectrum and 20 m for red-edge bands
(bands 5 – 7), NIR narrow (band 8a), as well as SWIR bands (band 11 and 12).
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FIGURE A.2: Three vegetation masks created for the APEX 2 m scene for summer and fall combined in case
of NDVI and shadow. The masks were combined afterwards. A pixel which was assigned the value 1 on
all of the requirements was selected for the forest mask.
top: NDVI Mask. Pixels values of ≥ 0.7 were assigned 1, pixels with a value < 0.7 were assigned 0.
middle: Vegetation height mask based on the CHM. Pixels values of 4 m and higher were assigned 1, pixels
smaller than 4 m were assigned 0.
bottom: Shadow mask. The lowest 2.5% of the summed channels 7 – 10 were assigned 0.
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FIGURE A.3: Graphic representation of the three types of dataset, the spectrally resampled APEX dataset
(A2), the spectrally and spatially resampled APEX dataset (A20) and the Sentinel-2 dataset (S20). Each type
of dataset was analyzed in both summer and fall.
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FIGURE A.4: Graphic representation of the basic work-flow from remotely-sensed vegetation indices (VI)
data to physiological diversity metrics. Which was implemented on all of the datasets (A2, A20, S20) for
each summer and fall. Based on the original by Schneider et al. 2017.

FIGURE A.5: Example of circular pixel neighborhood and its weighing. A unit with a diameter of 10 pixel
corresponds to the square unitsize of 8.86 · 8.86 pixels and an area of 78.54 pixel.
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TABLE A.1: Correlation of tested indices with each other, calculated based on A20 datasets averaged over
seasons summer and fall. The corresponding traits are chlorophyll (green), anthocyanin (red), carotenoid
(orange) and water content (blue).

Index CIred-edge CIgreen MTCI NDRE1 NDRE2 REP
MCARI/

OSAVI
TCARI/
OSAVI

ARI1 ARI2 RGR CRI1 PSRI NDII MSI

CI red-edge 1 0,92 0,84 0,90 1,00 0,62 0,55 0,81 0,44 0,55 -0,60 0,26 -0,20 0,65 0,69
CI green 0,92 1 0,80 0,87 0,91 0,48 0,60 0,83 0,46 0,50 -0,42 0,18 -0,47 0,47 0,54

MTCI 0,84 0,80 1 0,88 0,84 0,32 0,70 0,54 0,08 0,33 -0,59 -0,14 -0,16 0,53 0,67
NDRE1 0,90 0,87 0,88 1 0,91 0,23 0,76 0,70 0,24 0,54 -0,78 0,13 -0,03 0,55 0,67
NDRE2 1,00 0,91 0,84 0,91 1 0,61 0,54 0,81 0,45 0,55 -0,61 0,27 -0,18 0,66 0,69

REP 0,62 0,48 0,32 0,23 0,61 1 -0,19 0,55 0,58 0,22 0,08 0,35 -0,39 0,49 0,36
MCARI/OSAVI 0,55 0,60 0,70 0,76 0,54 -0,19 1 0,22 -0,33 0,44 -0,72 -0,24 0,10 0,20 0,40
TCARI/OSAVI 0,81 0,83 0,54 0,70 0,81 0,55 0,22 1 0,79 0,41 -0,34 0,45 -0,37 0,57 0,52

CRI1 0,44 0,46 0,08 0,24 0,45 0,58 -0,33 0,79 1 0,20 0,09 0,65 -0,42 0,43 0,27
ARI1 0,55 0,50 0,33 0,54 0,55 0,22 0,44 0,41 0,20 1 -0,53 0,70 0,08 0,35 0,33
ARI2 -0,60 -0,42 -0,59 -0,78 -0,61 0,08 -0,72 -0,34 0,09 -0,53 1 -0,14 -0,58 -0,51 -0,61
RGR 0,26 0,18 -0,14 0,13 0,27 0,35 -0,24 0,45 0,65 0,70 -0,14 1 0,04 0,35 0,17
PSRI -0,20 -0,47 -0,16 -0,03 -0,18 -0,39 0,10 -0,37 -0,42 0,08 -0,58 0,04 1 0,14 0,15
NDII 0,65 0,47 0,53 0,55 0,66 0,49 0,20 0,57 0,43 0,35 -0,51 0,35 0,14 1 0,94
MSI 0,69 0,54 0,67 0,67 0,69 0,36 0,40 0,52 0,27 0,33 -0,61 0,17 0,15 0,94 1

TABLE A.2: Correlation of tested indices with each other, calculated based on S20 datasets averaged over
seasons summer and fall. The corresponding traits are chlorophyll (green), anthocyanin (red), carotenoid
(orange) and water content (blue).

Index CIred-edge CIgreen MTCI NDRE1 NDRE2 REP
MCARI/

OSAVI
TCARI/
OSAVI

ARI1 ARI2 RGR CRI1 PSRI NDII MSI

CIred− edge 1 0,75 0,85 0,96 0,99 0,72 -0,17 0,59 0,22 0,49 -0,42 0,29 -0,21 0,53 0,38
CIgreen 0,75 1 0,43 0,72 0,75 0,45 0,21 0,67 0,64 0,51 -0,22 0,41 -0,59 0,11 -0,06
MTCI 0,85 0,43 1 0,85 0,83 0,60 -0,48 0,43 -0,04 0,23 -0,15 0,06 -0,20 0,52 0,43

NDRE1 0,96 0,72 0,85 1 0,97 0,53 -0,11 0,59 0,21 0,52 -0,49 0,30 -0,18 0,54 0,39
NDRE2 0,99 0,75 0,83 0,97 1 0,71 -0,17 0,62 0,24 0,50 -0,45 0,31 -0,20 0,53 0,38

REP 0,72 0,45 0,60 0,53 0,71 1 -0,44 0,45 0,13 0,15 -0,05 0,12 -0,18 0,36 0,25
MCARI/OSAVI -0,17 0,21 -0,48 -0,11 -0,17 -0,44 1 -0,29 -0,02 0,36 -0,43 0,02 0,11 -0,17 -0,21
TCARI/OSAVI 0,59 0,67 0,43 0,59 0,62 0,45 -0,29 1 0,78 0,31 -0,13 0,64 -0,42 0,15 0,04

CRI1 0,22 0,64 -0,04 0,21 0,24 0,13 -0,02 0,78 1 0,14 0,12 0,62 -0,60 -0,29 -0,42
ARI1 0,49 0,51 0,23 0,52 0,50 0,15 0,36 0,31 0,14 1 -0,59 0,66 0,04 0,37 0,32
ARI2 -0,42 -0,22 -0,15 -0,49 -0,45 -0,05 -0,43 -0,13 0,12 -0,59 1 -0,32 -0,60 -0,50 -0,43
RGR 0,29 0,41 0,06 0,30 0,31 0,12 0,02 0,64 0,62 0,66 -0,32 1 -0,08 0,02 -0,07
PSRI -0,21 -0,59 -0,20 -0,18 -0,20 -0,18 0,11 -0,42 -0,60 0,04 -0,60 -0,08 1 0,35 0,42
NDII 0,53 0,11 0,52 0,54 0,53 0,36 -0,17 0,15 -0,29 0,37 -0,50 0,02 0,35 1 0,95
MSI 0,38 -0,06 0,43 0,39 0,38 0,25 -0,21 0,04 -0,42 0,32 -0,43 -0,07 0,42 0,95 1
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FIGURE A.6: Performance of CRI1 in the one-dimensional scale analysis. Carotenoid describing CRI1
seemed to not work properly on the APEX data.

FIGURE A.7: Carotenoid describing CRI1 calculated on the A2 dataset. CRI1 seemed to not work properly
on the APEX data.

74



TABLE A.3: Calculated variables of tested indices, calculated based on A20 and S20 datasets for each sensor
at both summer and fall. The corresponding traits are chlorophyll (green), anthocyanin (red), carotenoid
(orange) and water content (blue).

Index
Sensor difference

of means [-]
Sensor difference

of cv [-]
Mean of cvs [-] Outliers [%]

CIred− edge 0.0976 7.84 17.06 0.0282
CIgreen 0.0433 2.48 8.35 0.0241
MTCI 0.1512 11.46 26.32 0.0208
NDRE1 0.0720 3.90 10.74 0.0419
NDRE2 0.0253 2.60 3.81 0.0466
REP 0.0432 5.76 7.97 0.0049
MCARI/OSAVI 0.0067 4.84 1.82 0.0195
TCARI/OSAVI 0.0595 1.47 8.94 0.0619
ARI1 0.0243 0.53 6.41 0.0388
ARI2 0.0664 1.61 14.79 0.0147
RGR 0.0079 2.56 1.98 0.0329
CRI1 0.1168 19.67 38.70 0.0581
PSRI1 0.0187 2.26 4.35 0.0273
NDII 0.0870 0.73 15.78 0.0373
MSI 0.0220 1.90 3.54 0.0349
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FIGURE A.8: Difference of all functional traits (fall-summer) calculated based on the A2 datasets. Blue being
the increase and pink being the decrease of the trait value for chlorophyll content, anthocyanin content,
carotenoid content and water content (from top to bottom).
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FIGURE A.9: Histograms showing the mapped functional traits chlorophyll (green), anthocyanin (red),
carotenoid (orange) and water content (blue) on the research site for both summer (dark color) and fall
(light color).

FIGURE A.10: One-dimensional scale analysis for each of the functional traits, based on the A2 datasets.
The functional traits are chlorophyll (top left), anthocyanin (top right), carotenoid (bottom left) and water
content (bottom right).
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FIGURE A.11: Scale analysis of A20 (solid) and S20 (dashed) datasets, calculating functional richness.

FIGURE A.12: Scale analysis of A20 (solid) and S20 (dashed) datasets, calculating functional richness.
Chlorophyll content is here described by CIgreen instead of CIred− edge.

FIGURE A.13: Scale analysis of randomly generated, normally distributed trait data calculated functional
divergence five times. Between-unit divergence (grey) shows strong differences in each calculation which
can probably be explained by the insufficient number of units at larger unit sizes not delivering stable
results.
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FIGURE A.14: Correlation of seasons for both functional richness (black) and divergence (red) maps, calcu-
lated from A2 data.

FIGURE A.15: Spatial detail of seasonal difference of functional richness, calculated at 20 m (top) 60 m
(middle) and 120 m diameter (bottom).
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FIGURE A.16: Spatial detail of seasonal difference of functional divergence, calculated at 20 m (top) 60 m
(middle) and 120 m diameter (bottom).

FIGURE A.17: Functional richness calculated based on the A2 dataset (top), the A20 dataset (middle) and
S20 dataset (bottom) in summer (left) and fall (right) based on 200 m unit size.
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FIGURE A.18: Functional divergence calculated based on the A2 dataset (top), the A20 dataset (middle)
and S20 dataset (bottom) in summer (left) and fall (right) based on 200 m unit size.

FIGURE A.19: Development of within- and between-unit functional richness with increasing unit size in
summer (left) and fall (right) in the four-dimensional scale analysis based on the A2 datasets. Attempts
of fitting power law functions and logarithmic functions (Schneider et al., 2017), are shown in dashed and
dotted lines.
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FIGURE A.20: Development of mean functional richness calculated based on the A20 datasets, with in-
creasing unit area in summer (left) and fall (right). Attempts of fitting power law functions and logarithmic
functions (Schneider et al., 2017), are shown in dashed and dotted lines.

FIGURE A.21: Effect of mixed pixels (red) on randomly generated, normally distributed data-points with-
out clear differentiation/niche partitioning. Functional richness increases (left panels) and divergence de-
creases (right panels).
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B Appendix - List of Abbreviations

B.1 Terms and Abbreviations

α-diversity diversity within a community
β-diversity diversity between communities
γ-diversity sum of α- and β-diversity
ρ surface reflectance [0-1]
A2 spectrally resampled APEX data, with 13 spectral bands and a pixel

size of 2 m
A20 spectrally and spatially resampled APEX data, with 13 spectral bands

and a pixel size of 20 m
S20 Sentinel-2 spaceborne derived dataset, with 13 spectral bands and a

pixel size of 20 m
a. s. l. above sea level
BRDF Bidirectional Reflectance Distribution Function
CHM Canopy Height Model
DOY day of year
EBV essential biodiversity variable
LAI Leaf Area Index [ m2

m2 ]
MERIS Medium Resolution Imaging Spectrometer on the Envisat satellite
MSI Multi-Spectral Instrument on Sentinel-2
NIR Near Infrared part of the spectrum
OLCI Ocean and Land Color Instrument on Sentinel-3
SWIR Short wave infrared part of the spectrum
RE red-edge part of the spectrum
VI Vegetation Index
VIS visible part of the spectrum (R = red, G = green, B = blue)
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B.2 Abbreviations

BU between-unit
WU within-unit
i intersection of within- and between-unit variance
t 80% of the variance within-/between-unit
maxvar between-unit variance at original pixel size
BUvar(20) between-unit variance remaining at 20 m (absolute or relative)
cv coefficient of variation
dim number of dimensions
d circular unit diameter
ppu pixels per unit
BUvar between-unit variance
WUvar within-unit variance
BURic between-unit richness
WURic within-unit richness
BUDiv between-unit divergence
WUDiv within-unit divergence
n number of units
Uppu pixel values
l square unit side length
FRic Functional Richness
FDiv Functional Divergence
Chl Chlorophyll content
Ant Anthocyanin content
Car Carotenoid content
Wat Water content
S Summer (July)
F Fall (September)
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B.3 Vegetation indices

ARI Anthocyanin Reflectance Index
CIgreen Green chlorophyll index
CIred− edge Red-edge chlorophyll index
EVI Enhanced vegetation index
NDVI Normalized Difference Vegetation Index
SR Simple Ratio
MTCI MERIS terrestrial chlorophyll index
NDRE Normalized difference red-edge
OTCI OLCI Terrestrial Chlorophyll Index
REP Red-edge position
MCARI Modified chlorophyll absorption ratio index
TCARI Transformed chlorophyll absorption ratio index
SAVI Optimized soil-adjusted vegetation index
RGR Red Green Ratio
CRI1 Carotenoid Reflectance Index 1
SIPI Structure-insensitive pigment index
PSRI Plant Senescence Reflectance Index
NDII Normalized Difference Infrared Index
NDWI Normalized Difference Water Index
MSI Moisture Stress Index

B.4 Organizations

ESA European Space Agency
https://www.esa.int/ESA

FAO Food and Agriculture Organization of the United Nations
http://www.fao.org/home/en/

MeteoSwiss Swiss federal office of Meteorology and Climatology
https://www.meteoswiss.admin.ch/home.html?tab&overview

swisstopo Swiss federal office of topography
https://www.swisstopo.admin.ch/en/home.html

UN United Nations
http://www.un.org/en/index.html

B.5 Missions

Envisat Mission https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/envisat

Sentinel-2 Mission https://sentinel.esa.int/web/sentinel/missions/sentinel-2
Sentinel-3 Mission https://sentinel.esa.int/web/sentinel/missions/sentinel-3
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B.6 Software

ATCOR3 Atmospheric and Topographic Correction 3
https://www.rese-apps.com/software/atcor-3-satellites/index.html

ATCOR4 Atmospheric and Topographic Correction 4
http://www.rese.ch/products/atcor/atcor4/

ENVI Environment for Visualizing Images
https://www.harrisgeospatial.com/Software-Technology/ENVI

MATLAB https://ch.mathworks.com/products/matlab.html
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