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Summary

The Sumatran orangutan (pongo abelii) is a flagship species for its valuable tropical rainforest

habitat, but they are critically endangered. Habitat loss and wildlife trade can bring this

close relative of ours to the brink of extinction. As humans continue to remove land from its

natural habitat, the spatial behavior and needs of orangutans are of particular interest. The

spatial behaviour and ecology of orangutans and their ecological needs are still poorly under-

stood. By looking at di↵erent habitats and populations, the influence of external and internal

factors on orangutans can be analysed. A data set from Suaq (Sumatra Utara, Indonesia)

was compared to the available literature of a second research site in Tuanan (Borneo, In-

donesia). The habitats and their topography are very similar, but fruit productivity, density,

and sociability are much higher in Suaq which allows us to compare the underlying ecological

di↵erences.

Three spatio-temporal levels of analysis were defined: Level 1 - distance patterns, Level

2 - daily movement patterns and Level 3 - momentary movement behaviour. In the context

of this work, mainly level 1 and level 2 were analysed. For the first level, the focus was

on ten adult females, while for the second level results for all age and sex classes were

included. For all further analyses, external and internal predictors were used to see how they

influenced the movement patterns found. External factors were Fruit Availability Index,

average temperature, daytime and nighttime rainfall, and a derived density of fruit tree

value. Internal factors for all individuals were age-sex classes. Whereas for adult females

– which were the focus of this thesis – dominance rank, age, age of current o↵spring and

relatedness were considered.

On level one, the ranging pattern over the full study period and some user-defined periods

were analysed with four home range algorithms (Minimum Convex Polygon, Kernel Distance

Estimation, Biased Random Bridge, Autocorrelated Kernel Density Estimation. KDE and

BRB gave similar estimates and proved to be the most useful. They did not over-smooth or

under-smooth the distribution and were of high quality with respect to the defined quality

descriptors (e.g. number of polygons, compactness, number of holes and Area Under the

Curve). The AKDE was useful to access the absolute home range sizes for smaller sample sizes
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and the MCP was mainly used to compare the results with other studies. The unbalanced data

set in terms of time and size proved to be the main problem in analysing spatial behaviour with

the present data set. A conservative approximation of about 100 animals was determined,

leading to reliable range estimates. Home ranges were found to be ranging between 1.6

(algorithm: BRB, focal: Ellie) and 2.4 km2 (algorithm: BRB, focal: Cissy) which is smaller

than in recent studies. Likewise were core ranges smaller than expected but seemed more

stable and less dependent on sample size. Existing hypotheses that home ranges in Suaq are

much bigger based on the patchiness of feeding resources than, e.g. in Tuanan could not be

confirmed. Dominance, age and the number of normalised forage trees were found to have

no e↵ect on the size of the home ranges. Fruit trees can account for some larger core ranges,

but in general, the normalised fruit tree value did not di↵er between overlaps, core ranges

nor complete home ranges. The overlaps of the resulted home ranges were also compared

with di↵erent algorithms. The Utilization Distribution Overlap Index (UDOI) was especially

useful in estimating overlaps based on the uncertainty analysis conducted at the beginning of

this thesis. Overlap percentages of home ranges were bigger than for core ranges which may

indicate partial range exclusion. The total amount of relatively shared range was found to be

on average 84% and for core ranges 96%. However, using the UDOI values ranged between

0.32 (focal: Yulia) and 0.7 (focal: Tiara) where 1 equals 100% overlap. Relatedness explained

around 10% higher overlaps and similar dominance levels showed to explain lower values of

overlaps. The higher overlap of related females may be the result of female philopatry rather

than a sign of active range exclusion. The higher overlap of di↵ering dominance rank groups

may result from the enlarged home ranges of young females.

On level two, 1314 follows were mainly analysed by deriving the Day-journey-length or

daily total-traveled-distance (DJL) and two tortuosity indices namely, the Straightness Index

(SI) and the sinuosity index. A preliminary analysis revealed that an underestimation of

DJL is present, based on the chosen sampling interval. DJL was around 35% lower when

GPS fixes were taken every 30 min instead of every 5 min. The discussion of how much DJL

actually reflect real daily movement, which revealed that many uncertainties exist and that

further research is needed (e.g. denser sampling interval, inclusion of height changes).

Nonetheless, the average DJL of 885 m was found to be higher in Suaq than in Tuanan.

The overall higher travel distance is mainly addressed to a more pronounced ”search and
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find“ strategy compared to a ”sit and wait“ strategy in Tuanan during seasons of low fruit

availability. Especially flanged males tended to travel much further in Suaq (+200 m) than

in Tuanan, even slightly more than adult females. Flanged males in Suaq may adjust their

mating and movement strategies based on habitat productivity and social conditions. The

more stable dominance hierarchy between males may be maintained by longer DJL of flanged

males. This results in the greater risk of unflanged males becoming flanged males and the

greater developmental arrest in Suaq compared to Tuanan can be explained.

External factors like day rain and night rain, average temperatures and fruit availability

did not show any impact on day journey length. This indicates a ceiling e↵ect where fruit

availability is always high enough to support high movement activities, even when variation

in FAI occurs. For females, dominance did not impact the movement parameters but the age

of the current o↵spring did. The DJL increased from around 800 m to 1000 m on average

over the duration of motherhood (for every year +34 m). A very similar pattern was also

found in Tuanan and probably relates to the clinging of young o↵spring at lower ages but also

to an adjustment to the o↵spring’s energy, household and movement competence. The age of

the current o↵spring also influenced both tortuosity indices negatively (negative in the sense

of tortuosity) and showed that I actually can detect movement changes with these indices.

The only other factor which explained tortuosity was the number of visited fruit trees. This

could indicate that feeding tree distribution is actually slightly clumped.

Furthermore, this thesis gives various backgrounds and further insights into the available

data set and possible future research. E.g. about the movement activity over daytime (level

3). The immense e↵ort of preparing the analysis and the data set is additionally described

and the used methods implemented in R are openly available.
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Glossary

age-sex classes The age-sex classes are as followed: infants

(dependants), male and female independent

immatures (juveniles, sometimes adolescents,

nulliparous females), flanged males, unflanged

males (both sexually active) and adult fe-

males (mostly mothers).

day journey length The term daily travelled distance is often used

in ecological studies. In orangutan studies

the term day journey length was introduced

by describing the daily travelled distance be-

tween morning nest and night nest.

focal In terms of orangutan standardized field

methods the observed orangutan which will

be followed is designated as focal.

philopatry Natal philopatry describes a phenomenon in

many animal species where o↵spring often set-

tle or bread spatially close to their parents.
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Glossary

scramble competition In terms of ecology it describes a competition

around resources which are accessible to all

competitors.

total displacement distance The term refers to the euclidean distance be-

tween the morning nest of an orangutan and

the night nest of an orangutan.

Stefan Graf XXI



Chapter 1

Introduction

1.1 Background

The digital revolution also did not halt of the field of animal ecology. Nowadays, an ever-

increasing number of tools are available to track, analyse and observe our natural surround-

ings. In new global cities, digital twins of a city are intended to serve as a basis for analysing

the state and functioning of the urban system. In spatial ecology, digital tools are increasingly

used to model complicated ecological cycles and inferences. Remotely sensed ecological data,

machine learning, deep learning, data mining and three-dimensional models of ecosystems

are examples of advancing methods in spatial ecology (D’Urban Jackson et al., 2020).

The availability of movement data of animals is increasing intensely. Especially the 2007

initiated Movebank project of the Max Planck Institute of Animal Behaviour boosted the

research in this area (Mrozewski, 2018). A long-term study of movement is also conducted

at the Department of Anthropology of the University of Zurich. They observe orangutans in

the peat swamp forests in the Leuser Ecosystem on the Indonesian Island of Sumatra. The

name of the research station is Suaq Balimbing. This study uses handheld GPS data from

Suaq sampled from orangutan locations in the peat swamp forest of Sumatra, Indonesia.

This thesis aims to add insights to the already existing work about socio-spatial movement

patterns of orangutans. I give a good understanding of the available GPS data set and its

future use by o↵ering various results about orangutans’ spatial behaviour. Moreover, the

limits of available data resolution and its expressiveness are discussed.

1



1.2. MOTIVATION – CONSERVATION

1.2 Motivation – Conservation

Orangutans are the largest arboreal mammal and one of humans’ closest relatives (Parsons

1999). Hence, it does not surprise that “orangutan” means “forest-human”. Furthermore,

orangutans are a key flagship species in biodiversity conservation terms. The close relation-

ship between humans and orangutans, and the simultaneous portrayal of this close relation-

ship in zoos, films and media through the humanisation of this animal, leads to the emotional

reaction of the public in wilderness conservation campaigns (Jepson and Barua, 2015) and

even recently seen in political campaigns in Switzerland as symbolic representations for and

against the Comprehensive Economic Partnership Agreement between the EFTA States and

Indonesia. Nevertheless, all three described orangutan species are on the Red List of Critically

Endangered Animals (Singleton et al., 2018). Especially habitat loss and wildlife trade could

bring this species to the brink of extinction. In Marshall et al. (2009) a Population Viability

Analysis (PVA) was conducted for the last remaining orangutan populations in Sumatra and

Borneo. They found that the minimum viable population size is >250 individuals to maintain

a genetically healthy population. The risk of extinction is mainly determined by the number

of individuals living in an isolated population habitat. A smaller population has a higher risk

of extinction than a larger one. In addition, large-breed animals’ (> 3 kg), slow reproductive

rate, limited geographical extent and frugivory have been described as extinction-promoting

factors. Orangutans have the slowest reproductive rate of all terrestrial mammal, making

them particularly vulnerable to extinction (Marshall et al., 2009). In their PVA for Sumatra,

Marshall et al. (2009) further predicted a 50 % population decline over the next 50 years based

on realistically assessed deforestation rates and life history parameters. Of the 15 populations

considered, only 5 will have enough individuals (< 250) to maintain a constant population

and su�cient space for suitable habitat. According to this model, the extinction of Sumatran

orangutans occurs within 300 years if no measures are taken to halt habitat destruction and

promote habitat conservation. These modelled results give us an idea of how stable the cur-

rent orangutan populations most likely are and how the populations’ extinction might look.

One of the key observations from Marshall et al.’s paper is that fragmentation and isolation

significantly negatively a↵ect population size. Nevertheless, this e↵ect is temporally delayed

and only visible when it is too late. Therefore, population estimates, e.g. by remote nest
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1.3. COMPARING STUDIES AND RESEARCH GAPS

counting, may not be su�cient to predict the future population decline (Marshall et al., 2009).

First, even though great e↵orts are made to protect orangutans, many aspects of their

behaviour and ecology remain poorly understood. And yet, those factors are important to

understand the species’ ecological needs. To understand these needs, the analysis of socio-

temporal behaviour, e.g. under di↵erent environmental conditions, can help understand how

orangutans cope with a changing environment (climate, diet availability) or the destruction

of their habitat. A detailed analysis of how habitat functions and space are used can shed

light on new approaches for estimating orangutan populations in an unknown habitat or

complement the understanding of existing population estimates. This is crucial to develop

appropriate conservation measures to protect this close relative of ours as a flagship species

for the entire Southeast Asian forest ecosystem located in the biodiversity hotspot of the

Sundaic region (Brockman and Van Schaik, 2005; de Bruyn et al., 2014; Jepson and Barua,

2015).

Therefore, this project helps to lay the foundation for more evidence-based orangutan con-

servation based on the knowledge about influencing environmental and inter-social factors.

Second, there is a need for adding insights to the already existing movement models for arbo-

real primates. Because many e↵ects of moving in an arboreal habitat remain unclear (McLean

et al., 2016). This is not only important to understand the behavioural and social aspects

of orangutans but to understand important seed dispersing functions which are of big inter-

est for rainforest ecology. And third, orangutans are a highly social animal. Understanding

the origin of spatial planning, di↵erences between sex classes in their movement behaviour

and the social-spatial movement behaviour, new insights could be gained from analysing the

GPS-data sets of this close relative of ours.

1.3 Comparing studies and research gaps

Investigating how much space orangutans use, how much their ranges overlap with other

individuals, what factors a↵ect orangutan ranging behaviour on di↵erent levels (Section 1.5)

is, as already said, crucial for developing e↵ective and long-term conservation strategies. Few
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studies focused on the spatial analysis of orangutan survey data sets. Even fewer studies used

newer home range algorithms to approximate space use and female avoidance or tolerance,

respectively (Table 1.1). Mostly they focused on answering more qualitative research ques-

tions about orangutan behaviour (Wich et al., 2009). The first mainly spatial analysis about

orangutans is by Singleton and Van Schaik (2001) where the main goal was to approximate

home range sizes for three females, three adult males and three subadult males. Method-

ologically, the locations of orangutans were taken by marking them on a paper map with

the research area transect network as a guide for orientation. Wartmann (2008) showed that

around 80 % of the location points drawn on maps lay within 25 m of the location measured

by GPS devices, and inaccuracies of map drawn points mostly result from mistakes by the

follower. Nonetheless, studies using maps instead of GPS are very meaningful, and including

old data sets that only used maps could be an asset, especially when long-term observation

increases expressiveness. This is especially the case when analysing home ranges (Chapter 4).

Singleton and Van Schaik (2001) used four approaches to extract total home range sizes, a

rough and a fine-scale grid count method, summing up all GPS-Points under a grid, a Min-

imum Convex Polygon method for 100 % of points and a circle method which uses a circle

around the centre of all points. They found that most individuals have a large and stable

home range, except subadult males who tend to travel far and do not stay in a fixed range.

This corresponds to the expectation that range use in males is basically a response to female

distribution (Setia et al., 2009a). Age-sex class is therefore playing a big role in explaining

home range sizes. Accordingly Knott et al. (2008) have done a similar study with the same

methods in Gunung Palung, Borneo while focusing on female-female competition. They sim-

ilarly found stable and highly overlapping home ranges of up to 90 % per individual. They

argued that there must be a form of avoidance and competition over resources and discussed

that core home ranges may be actively defended while in other areas there is a passive exclu-

sion competition (Section 1.6). Singleton and Van Schaik (2001) further showed that females

mostly used a core range very frequently, although they travelled within much larger areas.

The four methods used to calculate the total home range sizes di↵ered significantly. Their

results also showed an unexpectedly large average home range for the population in Suaq

and a very high density of home range overlaps, which corresponds to the high density of

orangutans found in Suaq (Singleton and Van Schaik, 2001). The factors underlying these
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large home ranges and the high density of orangutans living in Suaq were mainly related to

habitat properties. Sumatran orangutans occur in higher densities, probably due to higher

plant productivity, where peat-swamp forests additionally showed higher support of individ-

uals. Other discussed influences on density and home range size are altitude, disturbances by

humans (e.g. hunting or logging, interdependent as well) and mosaic-like sites with multiple

spatially distinct habitat types (Husson et al., 2009; Marshall et al., 2009).

Flurina Wartmann and Alison Ashbury carried out further analyses of orangutan spatial

behaviour. Both worked with data from Tuanan, a research site in Borneo which has a very

similar habitat to Suaq (disturbed secondary peat swamp forest). However, there are key

di↵erences, one being the researched species and their corresponding di↵erence in behaviour,

e.g., less sociability in pongo pygmaeus and lower degree of arboreality. The lower sociability

has a variety of e↵ects on many other behavioural aspects and di↵erences between sites. For

example, opportunities of social learning are a much more important aspect in an orangutan’s

development. In Suaq we find an overall higher diet complexity which probably also promotes

the use of tools, a unique skill only found in Suaq (Schuppli et al., 2016). Furthermore, the

peat swamp forest of Tuanan has half the orangutan density (3.84 individuals per km2) com-

pared to the peat swamp forest of Suaq (7.2 individuals per km2) (Husson et al., 2009; Wich

et al., 2009). A main aim of this thesis is therefore to analyse if we can find similar e↵ects of

explanatory variables on movement patterns as they were found in Tuanan.

Wartmann (2008), who comes originally from the field of GIScience, focused on multiple

spatial parameters derived from GPS and digitised locations. She used di↵erent home range

algorithms as well as DJL to investigate the influence of seasons on the orangutans’ spatial

behaviour. She used Kernel Distance Estimation (KDE) for approximating home ranges,

which was not used for orangutans before and found it to be more appropriate than MCP

because the sample size was less important and sizes of home ranges were more reliable (for

more information about home range algorithms, Chapter 4). The main findings of her study

were that home ranges of females remained stable over years and that bigger home ranges did

not mean that orangutans travelled further per day. Using advanced modelling techniques

Alavi (2018) on the contrary found evidence of higher DJL when home range size was bigger,

although this did not mean that home range crossing times were faster. He argued that home
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range crossing times are influenced by the tortuosity of movement. He measured tortuosity

as the autocorrelation of velocity and found no di↵erence between sex classes.

Wartmann (2008) found total displacement distance (TDD) and the day journey length (DJL)

was highly dependant on the individual. Fruit availability (seasonal mast fruiting events) in

Tuanan was found to positively impact the DJL and even maybe the home range size, as did

sexual activity (Wartmann, 2008). The relationship of FAI and DJL in Tuanan was further

analysed by Vogel et al. (2017). They found di↵erences between the daily travelled distance

for the age-sex classes (Table 1.1). Active period which could explain longer DJL did not

di↵er enough to explain such a variation. FAI had a big e↵ect on DJL for all age-sex classes.

The DJL increased approximately by 60 m per increase of 1 (equals to 1 percent of trees fruit-

ing) in FAI. Again, the active period did not change with higher DJL, except for immature

females. Generally, immature females showed the highest values for DJL, which reflects the

findings by van Noordwijk et al. (2012) and Ashbury (2013) who already described the higher

activeness of immature females during a phase of exploration and establishing a home range

(Vogel et al., 2017). Alison Ashbury analysed female philopatry of orangutans in Tuanan

by exploring their home ranges in di↵erent stages of their life. She found that home ranges

tended to be stable in size and across locations, but maturing females showed a phase of

exploration where home range size and DJL increased.

This thesis tries to fill a gap in describing and formalizing the movement behaviour of

orangutans for Suaq which was likewise done in Tuanan. Therefore, we compare the re-

sults found by Ashbury et al. (2020) and Wartmann et al. (2010) with the findings of this

thesis. This thesis is therefore partially a reproduction of previous studies done in Tuanan,

however, with a di↵erent species and in a di↵erent location with vastly unequal character-

istics, and also with the introduction of some new methodologies in orangutan research.

Additionally, we try to gain new insights about specific influencing variables such as feeding

trees, weather and relatedness. There are mainly six di↵erent age-sex classes: adult females,

two adult male morphs; flanged males, unflanged males, immature females, immature males

and infants (Thorpe and Crompton, 2006) (for further information about age-sex classes Sec-

tion 1.6). The main focus of this thesis is on female orangutans, for the latter part, because

generally, male ranging sizes are expected to be too big to get reasonable results due to the

research area size limits (Singleton and Van Schaik, 2001). For the first part about movement
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parameters (Chapter 4), we will include results for males as well, but for females we include

further explanatory variables such as the age of the o↵spring, the age and the dominance

category.
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1.4. STRUCTURE OF THIS THESIS

1.4 Structure of this thesis

The remainder of this first Chapter is devoted to providing definitions of movement pat-

terns in orangutans (Section 1.5). This is then followed by Section explaining some of the

behavioural aspects of orangutans, especially in relation to our research questions 1.6. The

idea is to present all the relevant background information from orangutan ecology, life his-

tory, and sociability to comprehend and interpret the movement behaviour for the following

chapters and for the research questions. In the last section of this first Chapter I will outline

my research questions and state my hypotheses (Section 1.7). The second Chapter of this

Master thesis aims to give a general introduction to all relevant information about the data

processing, the data set and the study area as well as the methodologies used (Section 2.2.1).

Moreover, this second Chapter already shows some simple data results to understand and

visualise the additionally used data sets such as weather, fruit availability, and so on (Section

2.2). Furthermore, a quick analysis of the researcher bias will be presented and immediately

discussed (Section 2.2.3).

The second part of this Masterthesis consists of the Introduction, Analysis, Results and Dis-

cussion of my research questions. This second part is subdivided into two main focuses of

analysis and two main Chapters. First, I will analyse orangutans’ daily movement (Chapter

3). Therefore, the widely used concept of DJL, sinuosity index and SI are used to anal-

yse influential factors on these movement parameters. These parameters are legitimate de-

scriptors of movement behaviour and were already used in various studies of primates and

orangutans (Benhamou, 2004; Schuppli et al., 2016; Seidel et al., 2018). Second, a research of

the orangutans spatial distribution will be done (Chapter 4). Hence, we use the concept by

Burt (1943) and define it for our purpose. Further we use di↵erent home range algorithms to

discuss di↵erent results of these spatial algorithms but also to allow us to oppose our results

to previous results from Tuanan and Suaq. Although these two foci are somewhat interwoven,

it makes sense to separate them in this thesis and combine them only in some specific parts,

for example in future research about specific research questions of pongo abelii ’s movement

behaviour.

The third part of this thesis tries to conclude this research by comparing it to studies done

using the data set collected at the Tuanan field site (Pongo pygmaeus wurmbii).
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1.5. DEFINITION OF MOVEMENT AND LEVELS OF ANALYSIS

1.5 Definition of movement and levels of analysis

So far, spatial analysis of orangutans mostly focused on home ranges, even if individual

trajectories were available (Campbell-Smith et al., 2011; Singleton and Van Schaik, 2001;

Wartmann et al., 2010; Wich et al., 2009). Therefore, analysing and modelling orangutan

trajectories has only been done in a handful of studies, although the movement patterns

are interesting and also important for an adequate home range analysis (Wartmann, 2008).

There is a lack of clear definitions when analysing trajectorial, spatial movement data of

orangutans. The movement space, as well as the movement trace, has to be well defined

(Laube, 2014). This means that it is very important to define the possibilites and properties

of movements. The definition presented below fits in with the literature, without dividing

into di↵erent fields but, well defines common aspects of animal movement (RQ A.1).

Nathan et al. (2008) criticised the di↵erentiation of various movement studies by di↵erent

taxa, geographical areas and research fields. A specific example, in the field of orangutan

ecology is the concept of tortuosity, which was used or mentioned in a limited number of

studies about orangutan movement before (Ashbury, 2020; Schuppli et al., 2016; Wartmann,

2008). However, several studies did not o↵er a clear definition of the term or did not use

consistent terminology. Such sinuosity indices are well studied in computational movement

analysis Benhamou (2004); Seidel et al. (2018) and therefore it could be helpful to use these

concepts, for example to find more appropriate tortuosity measures for the forest habitat.

Generally, uncertainties of sampling interval, properties of movement space, as well as exact

properties of movement behaviour are frequently mentioned but not defined and analysed.

The following definition is based on the book of computational movement analysis by Laube

(2014), the defined levels of movement parameters in the paper of Seidel et al. (2018) and

the concept of universal movement aspects of Nathan et al. (2008).

Definition of movement model

Due to trees, the movement space in forests has a three-dimensional property. Movement

along branches is the main movement of the arboreal orangutan; the movement space can

therefore be seen as limited or partially constrained and the derived movement data within
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1.5. DEFINITION OF MOVEMENT AND LEVELS OF ANALYSIS

this space are perceived best by the Lagrangian model (movements are tracked, not fixed

passings such as camera traps or sightings) Laube (2014). Although the canopy structure

is quite permeable and orangutans are able to move on the ground, the space is not as

uniformly accessible as it seems and many challenges while moving through the canopy have

to be overcome (Cant, 1992). Manduell et al. (2012) state that the canopy architecture of a

habitat has an e↵ect on orangutans’ locomotion, which does not necessarily mean that the

movement is influenced as well. But they also hold that pathways through larger trees were

observed more often in Suaq than expected and usage of similar pathways was observed. This

is also supported by Davies et al. (2017b), who showed that movement of orangutans can

best be expected towards canopy closures and tall trees, simultaneously avoiding canopy gaps

and moving toward emergent crowns. Manduell et al. (2012) states no age-sex di↵erences

were found in using similar or more di↵erent pathways (Manduell et al., 2012). However,

Chappell et al. (2015) studied gap crossing and found that the required techniques were

correlated with physical and cognitive development. This means that gaps with their weak

canopy support indeed influence the movement of age-sex classes di↵erently. They found that

the size of gaps increases with body size, albeit the ratio of body size to gap sizes decreases

with body size Chappell et al. (2015). Looking at the movement paradigm by Nathan et al.

(2008) the tree environment and the individuals’ capacities can therefore have a significant

impact on the movement path of an animal (Figure 1.1a). Many external influences, such as

seasonality and distribution of food sources, forest structure, and population density showed

to influence the movement pattern of orangutans (Ashbury et al., 2020; Wartmann et al.,

2010). Furthermore, many individual internal factors play a role, such as age-sex classes, life

phases, and relatedness, as it was seen in various studies where the individual was always an

important variable with high significance in explaining spatial patterns (Alavi, 2018; Ashbury

et al., 2020; Knott et al., 2008; Singleton and Van Schaik, 2001; van Noordwijk et al., 2012;

Wartmann et al., 2010).

Nathan et al. (2008) proposes three levels of analysis that represent three di↵erent scales

of movement with movement steps as the highest resolution, followed by movement phase,

and lifetime tracks. Seidel et al. (2018) reviewed multiple movement parameters which were

ordered by di↵erent scales of analysis. They especially classify movement parameters as

trajectory related or space use related. Based on this work, to analyse the movement of
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1.5. DEFINITION OF MOVEMENT AND LEVELS OF ANALYSIS

(a) movement paradigm (b) levels of analysis

Figure 1.1 – (a) The general movement paradigm of Nathan et al. (2008). (b) The following
three levels of analysis were derived from the above described theories. These levels are used to
navigate through the analysis executed in this thesis. Every level comes with its assumptions,
uncertainties about data quality and scales, and the corresponding e↵ects (Laube, 2014). But
the general movement paradigm stays the same (Nathan et al., 2008).

orangutans, I propose the following levels of analysis: 1) The highest spatio-temporal resolu-

tion relates to movement of minutes to hours. Possible behaviours to research on this level

are, e.g., the pattern of active avoidance or a directed movement between food sources. 2) On

the level of intermediate resolution, we have a spatio-temporal resolution of one day, which

is very distinct for orangutans with their diurnal behaviour and is therefore widely used as a

standardised level of analysis for analysing e.g. DJL or energy intake per day (Seidel et al.,

2018; Vogel et al., 2017). 3) On the lowest resolution level, we find the space use patterns

which are analysed by using home range models and core range models and various algo-

rithms used to derive them (Seidel et al., 2018).In previous studies, the timescale of analysis

varied a lot. Often the timescale was adjusted to the dataset or the research question. If

enough data was available and e.g. the age-sex di↵erences were analysed, home ranges were

e.g. calculated every year (Ashbury et al., 2020). If less data was available home ranges were

calculated over the whole research period (Singleton and Van Schaik, 2001). Up to now, not

much is known as to how such di↵erences in time scales alter the results obtained in the

analyses conducted.
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1.6. ORANGUTAN BEHAVIOUR AND SPATIAL CHARACTERISTICS

1.6 Orangutan behaviour and spatial characteristics

Figure 1.2 – Photography of female orangutan Lisa and her o↵spring Lois (Pongo abelii) by
Maxime Aliaga.

There are three di↵erent orangutan species. One of them lives in the Malayan and Indonesian

part of Borneo (Pongo pygmaeus) and two on Sumatra, Indonesia (Pongo abelii and pongo

tapanuliensis).The Pongo tapanuliensis species was just recently described as a new species,

Nater et al. (2017). There are multiple orangutan study sites, (see Wich et al., 2009, xxii)

and the web page of the University of Zurich Orangutan-Network (2021) for an overview.

As a cognitively advanced animal, orangutans show a wide range of behaviours and rely

on locally bound knowledge. Males disperse from their natal area to a breeding site, which

is what we expect, promotes knowledge transfer between areas (Setia et al., 2009b; Singleton

et al., 2009). Orangutans are large bodied, semi-solitary, mostly arboreal and frugivore

mammals. Their social community is best described as a loose neighbourhood where the

nearer the better the individuals know each other and no spatial nor social exclusivity is

claimed (Galdikas, 1982; MacKinnon, 1974; Setia et al., 2009b; Singleton and van Schaik,
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1.6. ORANGUTAN BEHAVIOUR AND SPATIAL CHARACTERISTICS

2002).

Orangutans show sexual dimorphism and there are five main age-sex classes, which di↵er

in various behaviours. Upon reaching sexual maturity at the age of 15, orangutan males

leave the area where they were born. Adult, sexually active males then undergo another

phase called unflanged stadium where they resemble females and travel far between areas.

The clear mechanism when and why males enter the flanged male stadium is not yet fully

understood. It is hypothesised that developing into a flanged male may be worse than arrest

in the unflanged male stadium when their is the risk of not being the main dominant flanged

male for an area based on other more dominant flanged males. The more mobile unflanged

males have the advantage of actively searching for females and initiate mating. Females tend

to resist mating attempts or matings occur during phases of low chance of fertilisation. They

prefer the dominant flanged male of a region which is mostly found by its distinctive long

calls where the dominant flanged male often has long consortships in which they almost fully

control the mating access to the estrous females (Atmoko et al., 2009; Dunkel et al., 2013).

Females are philopatric (see above) and therefore clusters of related females occur (Ash-

bury et al., 2020; Knott et al., 2008; Morrogh-Bernard, 2009; Nater et al., 2017; van Noordwijk

et al., 2012). During their developmental process they start travelling more when becoming

sexually active with the age of around 15. During this exploration phase they tend to have

bigger home ranges before settling near the mother’s home range Ashbury (2013). Adult

females are normally accompanied by one dependent o↵spring (i.e., infants) and sometimes

also by a semi-independent o↵spring (juvenile or independent immatures see Glossary for age-

sex classes). O↵spring are weaned at the age of eight years in Suaq (van Noordwijk et al.,

2018). While infants are in constant association with their mothers, independent immatures

may already explore the environment by themselves and move independently. The main so-

cial units in orangutan populations are therefore single adult males (flanged or unflanged),

mothers with one or two dependant o↵spring, and independent immatures (old categories:

sub-adult or adolescent females and males) (Galdikas, 1982; Van Schaik, 1999). Gatherings

of orangutans, which are called parties, are observed frequently where party sizes are bigger

on Sumatra than on Borneo. Parties are assumed to be strongly influenced by food availabil-

ity. But for Suaq, no systematic temporal change in party sizes has been observed, which is

possibly due to high and stable food availability (Morrogh-Bernard et al., 2009). Thus ac-
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1.6. ORANGUTAN BEHAVIOUR AND SPATIAL CHARACTERISTICS

tive avoidance due to male-male competition but also due to scramble competition between

females occur. Unflanged males (which have larger ranges) tend to avoid regions of flanged

dominant males (which have smaller ranges) (Singleton and van Schaik, 2002). For maintain-

ing distance between other individuals flanged males often use so-called long calls (Atmoko

et al., 2009). But active avoidance is also described between females, although females do

not use long calls. The female scramble competition has been described as much more subtle,

with few encounters. Passive range exclusion was argued to be one of the mechanisms how

passive range exclusion happens but this theory assumes a higher food availability between

core range overlaps than within core regions (Stewart et al., 1997). Therefore individuals

establish home ranges where the are less forced to travel deeo into other individuals home

ranges. However, if female agnostic interactions (fights) occur, females within their core

ranges win predominantly (Knott et al., 2008). Relatedness additionally showed to explain

less avoidance between individuals for Tuanan (van Noordwijk et al., 2012). Orangutan pop-

ulation densities, which are highest in Suaq, have been shown to be influenced by the quality

and availability of food (Husson et al., 2009). Orangutans generally spend a lot of e↵ort

and time to reach su�cient energy intake. They spend around 50% of their activity time

feeding, where fruits are the main food source (62.7–69.6%); others are bark (0.8–1.4%), in-

vertebrates (14.6–12.2%), leaves (18.3–12.7%), flowers and rarely even slow loris (Nycticebus

coucang) and other small mammals (Hardus et al., 2012; Morrogh-Bernard et al., 2009). On

Sumatra, fruit is eaten more often and is more readily available, whereas on Borneo, bark

and leaves are eaten more when fruit is scarce. In peat swamp forests, bark is eaten more

often and forest type matters explaining the consumption behaviour (Morrogh-Bernard et al.,

2009). Among the three orangutan species, Pongo abelii have the largest brains, the slowest

life history, and are the most gregarious.

Generally, two strategies of orangutan feeding behaviour are described. A ”sit and wait“

strategy in forests where food availability is irregular (e.g. in Gunung Palung) and a ”search

and fin“ strategy where food availability is regular (e.g., in peat swamp forests in Suaq and

Sabangau) (Morrogh-Bernard et al., 2009). In Tuanan, Wartmann (2008) found a slight trend

of di↵erences in movement speeds, TDD and DJL between higher and lower FAI, but the vari-

ation between individuals tended to be bigger than between di↵erent fruit availability periods.
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1.6. ORANGUTAN BEHAVIOUR AND SPATIAL CHARACTERISTICS

Until now, there was only one distinct main di↵erence found between the positional be-

haviour of orangutans on Sumatra and the ones on Borneo (Luskin et al., 2017). Bornean

orangutans tend to stay much longer periods on the ground than their Sumatran counter-

parts, which are almost exclusively arboreal (Ashbury, 2020). According to Cant (1987)

this may result from the lack of big predators on Borneo, in contrast to Sumatra with its

sympatric living Sumatran tigers (Panthera tigris sumatrae), although Sumatran tigers are

on the brink of extinction nowadays (Luskin et al., 2017). Generally, all orangutan species

are arboreal and their low extrinsic mortality may relate to this, for instance because of a

lower exposure to predators, humans, and human borne and other diseases (Ashbury, 2020;

Woodford et al., 2002).

Although some studies looked at orangutan range use and movement behaviour, only

very little is known about the whole picture of the spatial representation, including, for

example, to what extent external factors influence space use or how much various individual

factors influence space use because the underlying factors have to be further analysed and

the scales and methods of analysis have to be compared (Figure 1.1a). In summary: the

species, populations, age-sex classes and the surrounding habitat play a key role in explaining

the spatial behaviour of orangutans. An important approach for orangutan studies is to

compare the di↵erent study sites within and between the species and habitats. Doing more

confirmatory studies of already existing results, for example, by comparing new data sets

collected with GPS devices with older studies of hand-drawn orangutan locations, additionally

adds significance. This Master thesis aims to do this by comparing the results obtained in

Suaq to results obtained from the Tuanan study site in Borneo, which has a good data

coverage and a history of several studies about movement indicators that were conducted

there.

There is a general guideline for orangutan field research, which allows to compare the data

between sites. Unfortunately, there is to this day no central storage or standardised database

for the collected data sets. Comparative studies between sites and between earlier studies

(before 2000) are therefore impeded. The data collection at various research locations is

normally executed by trained sta↵ conducting focal animal follows. A focal refers to the

orangutan which is being observed. A special hominoid behaviour is useful for normalising
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1.7. RESEARCH QUESTIONS AND HYPOTHESES

these focal animal follows: nest building. Nest building is rare in the primate order but the

great apes, including the orangutans construct nests from tree twigs and leaves. They are

mostly used as sleeping places in the evening but sometimes for other occasions, such as for

resting during the day Prasetyo et al. (2009). For spatial analyses, this is a useful behavioural

trait because the focal animal follows normally start at a morning nest and end at a night

nest, reflecting the diurnal orangutan behaviour. From an analytical point of view, such

nest-to-nest (NN)-follows can be seen as a standardisation of movement over a day. Older

spatial studies of orangutans are normally based either on undigitised or digitised hand-

drawn locations on a map of such NN-follows, whereas newer studies from 2000 onwards use

handheld GPS devices, which are later combined with the behavioural information gathered

simultaneously.

1.7 Research questions and hypotheses

The following questions are focusing on orangutan movement in Suaq:

They aim to disentangle environmental and social e↵ects on movement parameters of

Sumatran orangutans and compare them to the comparison site in Tuanan.

RQ A.1 What characterises orangutan movement (see 1.5)? and on which levels do we have

the chance to analyse it with the available data (see 1.5)? Are basic movement parameters in

accord with the literature and specifically with the previously analysed data set of Suaq from

before the 2000s in Singleton and Van Schaik (2001) (see 3.3) ?

Orangutan movement is expected to be slow with a low amount of quick movement or strong

dynamic changes compared to other primates. The movement is expected to be unimpeded by

the environment. Additionally, I expect that the temporal resolution allows us to see nearly

every nuance of movement, although brief movements, e.g, during competition or flight may

be out of reach. A type of instantaneous avoiding patterns as the highest possible resolution

limit may be observed. I also expect to be in accord with the previous data analysis where

they found average DJL of 830 m for adult females and validate previous findings by Single-

ton and Van Schaik (2001) DJL (Section 1.1).
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1.7. RESEARCH QUESTIONS AND HYPOTHESES

RQ A.2 Can these daily movement parameters give useful insights into spatial behaviour

(see 3.3.2)?

The DJL is expected to be a representative indicator of the travelled distance in reality

because a sampling interval of 30 minutes detects most of the common rather slow movement

behaviour of orangutans. Accordingly, the tortuosity is expected to detect more directional

or indirect movement, although the e↵ects may not be as telling due to multiple e↵ects

and assumptions. For example, Benhamou (2004) states that the SI is useful to describe

the e�ciency of a walk from A to B but not so much to describe a random search path.

Therefore, the sinuosity index as a more advanced tortuosity measurement was calculated as

well.

RQ A.3 How are daily movement parameters influenced by external and internal factors

such as weather, fruit availability, age classes and o↵spring age (see 3.2)? and what are the

di↵erences between Suaq and Tuanan (see 3.3.3)?

It is expected that age classes play a significant role in explaining DJL and SI, where the

former is expected to be higher in independent immatures, nulliparous/adult females and

unflanged males, and the latter to be higher in infants and independent immatures, which

are expected to plan their routes less e�ciently and to test their locomotion techniques

more randomly (Alavi, 2018; Chappell et al., 2015; Schuppli et al., 2016). Fruit availability

is expected to play a much weaker role than in Tuanan because Suaq is one of the most

productive orangutan habitats and therefore even in periods of low fruit availability it is

higher than at most other research sites. In Tuanan and even even Sumatran sites like

Ketambe FAI explains a lot of variation in DJL Morrogh-Bernard et al. (2009); Wartmann

(2008). Although Wartmann (2008) showed that the tortuosity of movement did not change

with altering FAI.

Weather variables are expected to play an important role for the timing of the start and end

of activity but their impact on the whole DJL or SI is unknown. I predict that especially

precipitation a↵ects DJL negatively due to observations of later activity start, and many

behaviours showed during rainy weather such as rain-hat construction, roof building (against

sun or rain), bunk nests (resting under newly constructed or old nest) and shelter seeking

under nests or even on the ground (MacKinnon, 1974; Van Noordwijk et al., 2009). If weather
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1.7. RESEARCH QUESTIONS AND HYPOTHESES

variables do a↵ect the daily travel distances or movement patterns, it is expected that such

external factors do influence all age-sex classes equally. A more pronounced search-and-find

strategy is expected in Suaq and therefore fewer variation and higher values for DJL are

expected compared to Tuanan (Morrogh-Bernard et al., 2009; Wartmann, 2008). Flanged

males and unflanged males DJL are expected to di↵er similarly as in Tuanan but due to more

stable dominance hierarchies in Suaq and therefore less confrontations between males they are

expected to be more di↵erent from each other, with clearly lower values for flanged males than

unflanged males (Hayward, 2018). Flanged males are therefore expected to travel less far than

in Tuanan because their movement is mainly a response to mating strategies. The more stable

dominance hierarchies do not require to travel further. Although overall we expect longer

DJL for Suaq compared to Tuanan because of the higher FAI. Age categories are expected

to influence DJL positively and SI negatively because younger individuals are expected to

struggle more to plan their daily routes (Schuppli et al., 2016). But due to di↵erent age

phases where especially young females travel much more the youngest age categories for

adult females show higher DJL Ashbury et al. (2020). O↵spring age is clearly expected to

positively correlate with DJL but to show no e↵ect in the SI similarly to Tuanan (Wartmann,

2008).

The following questions are focusing on female ranging behaviour only:

They aim to compare home ranges and ranging parameters of resident females of Suma-

tran orangutans to the comparison site in Tuanan, which di↵ers in food availability and

sociability.

RQ B.1 How big are home ranges and core ranges in the high orangutan density habitat of

Suaq (see 4.2.4), and which factors influence the home range itself (see 4.2.5)?

Singleton and Van Schaik (2001) found home range sizes of 8.5 km2 using MCP for female

orangutans in Suaq, which is bigger than what other studies found (Ashbury, 2020; Knott

et al., 2008; Singleton et al., 2009; Wartmann, 2008). These big home ranges were explained

by the patchiness of food sources. The results of my analyses are expected to be in accord

with the findings of Singleton and Van Schaik (2001) especially for MCP results. Potentially

my results are a bit smaller due to the exclusion of outliers (95%). The high number of feed-
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ing trees is expected to reduce home range size. Similarly as described in Tuanan for lower

fruit availability periods (Wartmann, 2008) core ranges are a third the size of the 95% home

range for Tuanan. A more pronounced ”search-and-find“ strategy, and the higher population

density are possible explanations. Because passive range exclusion may be more pronounced

in Suaq due to the higher population density, which leads to higher avoidance even in core

areas and therefore relatively bigger core areas. To test if passive range exclusion even is a

model for Suaq insights are added from the analysis of fruit trees in the core range or full

home range and the overlaps. If there is passive range exclusion, fruit trees are expected to

be more abundant in overlaps than in core regions. Therefore it is not worth fighting over

core regions (Knott et al., 2008; Stewart et al., 1997).

RQ B.2 What di↵erences can be observed between di↵erent home range algorithms (see

4.2.3)?

There are more precise methods than MCPs nowadays for measuring home range sizes as

so stated in Wartmann (2008). Newer algorithms, such as KDE, should be more expressive.

The two algorithms, Biased Random Bridge (BRB),Autocorrelated Kernel Density Estima-

tion (AKDE) which include even a temporal dimension for extracting a home range, are

expected to describe observed patterns, such as the influence of fruit trees even better than

KDE. I expect MCP to find the biggest home range sizes followed by KDE. The BRB algo-

rithm is expected to slightly smaller due to the inclusion of time. Thre results of the AKDE

algorithm are di�cult to predict but I assume similar sizes as for BRB if we have enough

samples.

RQ B.3 How big are home range overlaps in Suaq (see 4.2.6), and does the matriline,

dominance, age category, and amount of fruit trees explain the relative sizes of overlap (see

4.2.7)?

The home range overlap, seen as a proxy for tolerance of sharing the own range, and its

resources are expected to be bigger between near relatives, and therefore the relatedness of

orangutans to have a positive e↵ect on the overlaps. Female philopatry intensifies this by

near home range establishment of o↵spring (Ashbury et al., 2020; van Noordwijk et al., 2012).

Therefore, relatedness should positively influence relative overlap. The dominance di↵erence

between orangutans is expected to be negatively correlated with overlap size because domi-
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nant females are able to exclude less dominant females from their range. The e↵ect of age on

overlaps is unclear, but probably similar age does increase sociability and therefore increase

overlaps. To analyse overlaps also a normalised fruit tree value will be analysed. They are

expected to confirm that fruit trees may be shared more between related females and that

higher dominance ranks lead to less number of normalised fruit trees in overlaps.
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Chapter 2

General methodology and data

preparation

This Chapter presents the general methodology employed for data preparation. In Section 2.1

the methods for data gathering, pre-processing and processing are described. In Section 2.2

first results from these preparatory steps are shown and discussed.

2.1 Data processing

2.1.1 Study area

The study area of Suaq Balimbing (3° 42’ N, 97° 26’ E, approx. 75 m a.s.l.) lies on the

western coast of the Indonesian island of Sumatra in the politically and naturally troubled

area of Aceh (Figure 2.1). Studies on the orangutans in Suaq started as early as 1992. After

political unrest in Aceh, the research station was closed in 1999. In the aftermath of the

disastrous Tsunami of 2004, peace e↵orts between the central government of Indonesia and

the province of Aceh were successful and allowed the resumption of research in 2007 (Crisis

Management Initiative, 2005; Wich et al., 2009).

The research station with its small and simple houses is located directly at a small river.

The river was not a barrier for orangutans before some degree of forest clearance happened

on the western side (Singleton and Van Schaik, 2001). The station represents the entrance

to the mostly flat riverine peat swamp forest on the other side of the river where the study
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area is located (Figure 2.5). The forest is largely undisturbed and the density of large trees

is higher compared to the disturbed peat swamp forest in Tuanan (Wartmann, 2008). Large

trees showed to be used more often for moving through the canopy than expected (Manduell

et al., 2012). The trail system representing a research grid is composed of narrow trails that

are maintained and on one trail there is a narrow boardwalk, made of of wooden boards.

The terrain altitude in the study area is nearly sea level. The soil is muddy and many back

swamps are regularly underwater; therefore, the forest structure is irregular. The water level

is regularly measured at the river near the station. The flat peat swamp forest extends further

out of the study area to the north up to where the hills and mountains of the Leuser Range

start to ascend. The east is bordering to smaller hills and in the south to further peat swamp

forest all the way to the seashore, which is located approximately 10km to the southwest.

Surrounding hills consist of mixed dipterocarp forest.

Figure 2.1 – Most research sites for orangutan studies available on the web page of the orangutan-
network (Orangutan-Network, 2021).

2.1.2 Data gathering, pre-processing and processing

An overview of the whole data workflow can be seen in figure 2.2. The following procedure

is derived from the standardised field methods for orangutan research (Orangutan-Network,

2021). In earlier times of the research in Suaq mainly one follow was executed per day. More

recently additional assistants and more e�cient processes allowed multiple follows per day.

For finding an orangutan an opportunistic approach is used. On most search days, the first
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orangutan which is encountered during searches starting at the research station will be fol-

lowed. Infants or independent immatures who accompanied their mother were noted if the

mother was followed as well as the other way around. To access the study area, the trail

system is used. The position of the night nest is used to find an orangutan to follow the

next day. Thus, focal selection may be influenced by the location of the research station and

by the follows of the previous days. To minimise the researchers’ disturbances, orangutans

are maximally followed ten days in a row and accordingly the temporal correlation of follow

selection is minimised (Schuppli, personal communication 2021).

Follows ideally start at a morning nest and end at night nest. Sometimes the focal individuals

are found already outside of the nest or are lost during the follow which is marked as di↵erent

GPS point types. The activity of an orangutan is written down every 2 minutes, whereas

a GPS location is taken every 30 minutes (e.g., at 7:30 am). To measure the orangutan’s

location the orthogonal point below the orangutan is taken while keeping the positional Di-

lution of Precision (DOP) displayed below 12 m. Mostly positional error values lie below

6 m (Schuppli, personal communication). The location is mostly measured after the focal

orangutan left the location to minimise impact on the animal (e.g., at 7:43 for the position

noted at 7:30). The GPS used devices are Garmin models GPSMAP 62s, GPSMAP 64s, and

GPSMAP 78 (Schuppli 2016). Additional GPS points are taken, at every nest (morning-,

day-, night nest) or at the start and the end of a focal follow. Other occasions where GPS

points are taken are, for example, when another orangutan comes closer than 50 m, which

is called a party, when a long call is given or heard, when an orangutan is found but not

followed, when an orangutan is in a feeding tree for more than 5 minutes, when tool use

occurs, or when DNA samples are taken.

Weather parameters are measured twice each day at the research station. In the morn-

ing and the evening, the temperature maxima and minima, the precipitation in mm, and

the river’s water level are measured. Furthermore, every month an assessment of the fruit

availability in Suaq is done by calculating the number of fruiting trees in relation to a total

of feeding trees. The assessment is based on two phenology plots containing over 1000 trees

that go from north to south and from east to west.

For further data analysis, only the spatial data was used since the focus of this work was
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Figure 2.2 – Overview of the workflow from data gathering, pre-processing, processing to the final
data analysis. Point types: Every GPS point is assigned a label for its type, with possibilities:
range or so-called 30-minutes point, morning nest, day nest, night nest, party, long call given,
long call heard, found, lost, tree, tool, DNA sample taken, experiments, unknown (additionally
introduced point types just for data processing purposes are: potentially campsite, abnormal o↵
point, party2). Follow types: Nest-to-nest (NN), found-to-lost (FL), found-to-night nest (FN),
morning nest-to-lost (NL). Follow numbering: Regular follow numbers are from 1 to 2949 (last
follow included 29.02.2020); if no follow number was registered in the follow sheet (e.g., possible
single observation), numbers are from 1000001 to 1000019 (new follow numbers given, starting
with 1000000); if error follow number 9999 was given by Steven Hayward for multiple follows
with no follow registered, follow numbers are from 1100001 to 1101351 (new follow numbers
given stating with 1100000); if GPS points of type party were added as new follows, numbers are
from 1110001 to 1110095 (new follow numbers given starting with 1110000).

Stefan Graf 26



2.1. DATA PROCESSING

on the analysis of individuals’ space use rather than their activities. After collecting activity

and spatial data in field, the follow number and specifics are derived when back in the camp,

which generates another data set of follow specifications.

As a starting point for this thesis, seven data sets were available. Three data sets of the

GPS data for Suaq. Three, because di↵erent studies already cleaned parts of the data for

di↵erent purposes, for example, for specific years by Hayward (2018) or for specific sex classes

by Short et al. (2020). The other four data sets were the fruit availability and weather mea-

surements, the follow specifications, and finally a list with informations about the orangutans,

such as their name, estimated birth date, matriline, and sex, along with others. All GPS

datasets were reprojected from the WGS84 (EPSG: 4326) coordinate system to the local

national spheroid DGN95 / UTM zone 47N (EPSG: 23867) with Cartesian coordinates. Fur-

thermore, the dates and times were cleaned and the timezone was defined as Asia/Pontianak

(UTC+7), albeit sometimes some packages override the time zones to UTC for simplicity.

After combining all GPS data sets the follow specifications were added if possible. Inconsis-

tencies were corrected either in the follow data set or in the spatial data set. Afterwards,

further variables, such as the orangutan information, weather, and FAI information were

joined. The age was derived from the estimated birth date to the date of follow, whereas the

o↵spring age was calculated by the o↵spring birth date to the date of the follow. Infants were

defined as maximally seven years old, which is the lower threshold of the weaning age in Suaq

(Van Noordwijk et al., 2009). For o↵spring age, only the youngest infant was considered for

the analysis; multiple infants only occurred in 8 follows, when using a weaning age of seven

years.

After having obtained a full spatial data set, the follows were again cleaned based on spatial

properties, including outliers, whereby data was deleted very conservatively and only on clear

criteria. Deletions were either visually accessed and then deleted or points were just marked

as outliers. E.g. were many points near the research station marked as outliers. For the

analysis of movement patterns, subsequent point types were excluded: long calls given and

heard, DNA sample taken, experiments, unknown, potentially campsite, abnormal o↵ point.

For the analysis of home ranges, the same points were excluded, but additional locations were

generated by using party points as a location for the dependant orangutan.
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2.1.3 Hardware and Software

For all preprocessing, processing to analysis and visualisation, the R (4.0.5) programming

language was used using the RStudio (1.4.1106) integrated development environment (IDE)

(R Core Team, 2021). A Macintosh machine (OS X 10.16.0) with an eight-core M1 processor

and 16 GB of memory was used. Table 2.1 lists the scripts and packages used in preprocess-

ing (PP), analysis of daily movement (MA) and analysis of home ranges (HA), except some

additional scripts used for exploratory analysis. The full R code scripts are available in my

own GitHub repository (https://github.com/greentrea/SUAQr Graf 2021). Results such

as home ranges or day journey lengths are not available but can be provided on request in

agreement with the data manager (Dr. Caroline Schuppli).

Table 2.1 – Overview of important R packages used.

R package version usage purpose year citation

lubridate 1.7.10 PP, MA, HA handling times and dates 2021
dplyr 1.0.5 PP, MA, HA data wrangling 2021
tidyr 1.1.3 PP, MA, HA data wrangling 2021
tidyverse 1.3.0 PP, MA, HA data wrangling 2019
stringr 1.4.0 PP, MA, HA extracting strings, regex 2019
sf 0.9-8 PP, MA, HA import, geometric operation 2021
rgdal 1.5-23 PP, MA, HA handling spatial reference systems 2021
RColorBrewer 1.1-2 PP, MA, HA handling color visualisation 2014
trajr 1.4.0 MA trajectories, interpolating, straightness 2020
adehabitatHR 0.4.19 PP, HA HR calculation, Schoeners I 2006b
ks 1.12.0 HA KDE bandwidth calculation 2021
move 4.0.6 PP, MA, HA move objects for ctmm analysis 2020
caTools 1.18.2 HA quality of home ranges 2021
ggplot2 3.3.3 PP, MA, HA plots 2016
gridExtra 2.3 PP, MA, HA plots ordering 2017
GGally 2.1.1 MA, HA overview scatterplots 2021
ggfortify 0.4.11 MA, MA, HA diagnostics 2016
lme4 1.1-26 PP, MA, HA generalized linear mixed e↵ects 2015
lmerTest 3.1-3 MA, HA p-values of linear mixed models 2017b

PP: preprocessing and processing, MA: movement analysis, HA: home range analysis
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2.1.4 Statistical analysis

As a first step, an overview was gained by using the GGally package and its ggpairs function,

which uses scatterplots and the Pearson’s correlation coe�cient to give an overview of the

data.

To investigate the e↵ect of the explanatory variables explaining DJL, SI, home range size and

home range overlap, linear mixed e↵ect models (LMM) with a Gaussian error structure and

identity link function (implemented in the lme4 package 1.1-26) were used. Linear Mixed

Models have been used increasingly in the field of of ecology and evolution biology (Bolker

et al., 2009; Harrison et al., 2018). They extend traditional linear regression models by

including a fixed and a random part of the explanatory variables. The usage of random e↵ects

in movement ecology is very useful. In many cases the data included lot of noise and response

variables were a↵ected by factors that are outside the scope of this thesis. The possibility of

correcting for these e↵ects is one of the main advantages. Ecological data sets are mostly very

complex data sets. Often they are biased, clustered and non-independent (Harrison et al.,

2018). The introduction of a random e↵ect can correct for such non-independence. LMMs

also do not require normally distributed data.

All the spatial parameters in the Analysis I and in Analysis II of this work were used as

response variables, while external factors (weather, FAI) and internal factors (age, age of

o↵spring, age-sex class, matriline) were used as predictor variables. Possible random e↵ects

were date, the focal or the age-sex classes (Section 3.1.3), whereas for home ranges they were

the focal individual, the algorithm used, or the research period. The models were fitted via

REML or maximum likelihood, implemented in the lmer() function of the lme4 package. To

examine potential collinearity between explanatory variables the Variance Inflation Factor

(VIF) of the fitted models using the vif.mer() function of the lme4 package was calculated.

If the VIF is below 3.0, collinearity is considered as not a problem (Zuur et al., 2009). If

high collinearity was detected among explanatory variables (i.e., VIF � 3.0), the ones which

explained the most avriation of the colinear factors were kept until the VIF was below 3.0

(this was especially the case for weather variables). The assumptions of homogeneous and

normally distributed residuals were checked by plotting the residuals against the fitted values.

In order to establish if our models with predictor variables are able to explain the dependant

movement variables better than a random model, the fitted models were compared to the
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respective null model with only the random e↵ects. Using a likelihood ratio test implemented

in the anova() function we could either accept or reject that we found a model which explains

the movement patterns better than the null model, respectively. To compare di↵erent models

with di↵erent numbers of predictors the anova() function was again used which gives us

again the log likelyhood but also further information criteria such as the Akaike information

criterion (AIC), Bayesian information criterion (BIC), which were also used to access the

quality of a model (Neath and Cavanaugh, 2012; Sakamoto et al., 1986). To obtain p-values for

the di↵erent explanatory variables the lmerTest package was used, which calculates p-values

using Scatterthwaite’s degree of freedom method (Kuznetsova et al., 2017a). The models were

defined beforehand and not optimised during the process to prevent coincidentally fitting a

model to the data. The aim was to find potential relationships where we then could further

investigate how good an optimised model could explain the response variables. Diagnostic

plots were checked by using the ggfortify package or the available functions of lme4. Finally,

the models were fitted and analysed. The Linear Mixed Model (LMM) models were only

adjusted if there was a problem with the variables, for instance, if some weather variables

had to be removed due to high collinearity between the di↵erent weather variables.

2.2 First overview

In the following, an overview of some of the characteristics of the processed data sets will be

presented and discussed.

2.2.1 Orangutan spatial data

Who was when sampled?

The number of follows and the amount of data vary substantially over time (Section 2.2.1).

The spatial data for Suaq is heavily unbalanced in terms of sampling e↵ort per individual and

age-sex class. For the females we can see that the three main females tracked are responsible

for nearly 60 % of the data of females (male: n = 543; female: n = 771) (Figure 2.3). This has

to do with the main study goal of the research station, which is more focusing on qualitative

and behavioural analysis. The location of the research area and the site fidelity of orangutans

further explains the focus on a limited number of individuals.
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The study duration reflected in the data used in this thesis was 9 years and 163 days, where

the first follows were conducted in 2010 and the last sampled follows are from 2020, but the

main study is still ongoing. Roughly four research periods can be identified, where the first

period is from before 2012, the second one is from 2012 until 2016, the third one from 2016

until August 2018, and the last one starting from 2019 onward. Ashbury et al. (2020) showed

that home range size and location change in young females who are establishing their home

ranges. It can be assumed that slight to medium shifts in home ranges can occur over the

study period of 10 years. Therefore, these research periods are used as an instrument to

notice such patterns of home range shift or expansion phases.

The mean follow duration was 12:01:47 hours (Q1 = 11:32:00, Q3 = 12:40:00, n = 640), for

nest-to-nest follows. For NL follows the average was 7:55:09 hours (n = 115), for FN follows

6:45:20 hours (n = 349), and for FL follows 6:08:13 hours (n = 62). A one way ANOVA of

NN-follow duration indicates no di↵erence between di↵erent age-sex classes and their overall

mean (F(4,626) = 0.251, p = .909) and we can see all of them having almost the same activity

or observation duration distribution from nest-to-nest (Figures A.1 and A.2).

First looking at the number of di↵erent follows per class, we see that approximately half of

the follows are of type NN and another third is of type FN. This reflects the opportunistic

follow scheme, where if another orangutan is found on the way it will be followed as well if

the team of observers is big enough. Furthermore, around 115 follows end by losing the focal

orangutan. Comparing these with the number of successful NN-follows, we can estimate a

success rate of around 85% of not losing the animal on the way, assuming all NL follows were

aimed to be NN follows and not an additional orangutan which had lower priority like many

of the FL follows.
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Figure 2.3 – Visualisation of the data set of female orangutans after data processing. Sown are
all conducted follows over time for each female orangutan. On the right, the percentage relative
to the whole data set for every female orangutan is given. Female orangutans accounted for 59 %
of the data. The bottom panel depicts the histogram of the number of GPS Points collected
over time, where one bar equals a duration of three months. The ordering of individuals in the
list corresponds to the total number of GPS points collected. Lisa has the most number of GPS
points recorded but is second only in the number of follows.

Sampling harmonisation necessary?

Irregular sampling intervals can influence the analysis of movement on Level 2 by biasing the

inherent underestimation of DJL and other movement parameter (Calenge, 2006a; Katajisto

and Moilanen, 2006; Kranstauber et al., 2012). One way of dealing with this is to remove

points to obtain equal temporal distances between GPS fixes (Zehnder et al., 2018). Of course,

this process induces a loss of information. In our case this is especially di�cult because sam-

pling was executed manually. Sometimes the fixes are not adjusted to the defined sampling

interval of 30 minutes and slight temporal deviations occur. Therefore, it is not possible to

simply delete points until all follows and steps are meeting our harmonised sampling regime.

Another way of obtaining harmonised sampling intervals consists in interpolating GPS fixes

and either just interpolate missing points (called gap filling) or set a totally new sampling

regime by interpolating (i.e., resampling) the whole trajectory. One problem with this is that

Stefan Graf 32



2.2. FIRST OVERVIEW

new data points are generated, which impacts all the derived movement parameters. As an

illustrative example, when points are inferred between two GPS fixes using linear interpo-

lation, the newly interpolated points would form a straight walk, resulting in equal turning

angles and SI for this segment of the trajectory. This could be similarly misleading as the

original bias by missing sampled points or having unequally sampled points. A third option

of harmonizing the data is known under the term burstifying or burst detection. If data is

missing within a trajectory, it is split whenever this occurs. This will result in multiple splits

of the original trajectories, with the advantage of equal sampling intervals per split (or burst)

and no artificially added information. In our case, where we normalise movement parame-

ters over the behaviourally defined day follows, such bursted movements are not wanted and

di�cult to stitch together again.

All these three methods – temporally reducing GPS fixes, interpolating GPS fixes based

on trajectories, and bursting trajectories – are not useful for the presented data set. A

harmonisation for analysing home ranges may be an option because also autocorrelation

would be reduced (4.1.3). The advantage of such a harmonisation was weighed against the

loss of information, the introduction of new biases, and the complexity of suitable resampling

for our purposes. Although in our data set irregular sampling intervals do occur, the amount

of irregularities is low. When including all shorter sampling intervals, which are mostly the

last and first steps between morning or evening nests and the first or last 30-minutes ranging

point (+35 % of all points), and including all steps with a time lag below 1 hour (+2 %) (so

if one point was accidentally skipped), we already get to about 95 % of the data (Figure A.3).

A last visual verification that shorter time lags do not occur more frequently during specific

daytimes (e.g., because of nests and feeding trees) was done and shorter sampling intervals

were found to be more or less equally distributed over the day (Figure A.5). Overall, we will

compare home ranges and movement parameter results, therefore slightly unsteady sampling

intervals do not seriously a↵ect results because it is expected that all follows are similarly

a↵ected and we mainly compare results.

2.2.2 GPS accuracy

In 1998, Phillips et al. (1998) state that we have to be cautious about using GPS devices in

neotropical forest and that they are probably not of practical use. The GPS devices used
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(GPSMAP 62s, GPSMAP 64s, and GPSMAP 78) did not provide any DOP, which is a value

for measuring the vertical, horizontal, positional and temporal accuracy of a device (Langley,

1999). The manual of the GPSMAP 62s states a horizontal positional error of < 10 m in

95 % of cases and a root mean squared error (RMSE) of ± 3–5 m (Forin-Wiart et al., 2015).

The device does display an accuracy value on screen which however is not written down by

the research assistant. But the data collection protocol of the site instructs researchers and

research assistants to wait until the accuracy value displayed on the screen reaches a value

below 12 m. Satellite availability was not mentioned as a problem in Suaq and the displayed

accuracy values often dropped quickly below 6 m. The exact definition of the displayed value

is expected to be a Horizontal Dilution of Precision (2D) (HDOP), which reflects the overall

accuracy in 2D space (Langley, 1999). Wartmann (2008) performed a GPS accuracy analysis

and found a mean positioning error of 9.8 m in Tuanan and 95 % of points were within 18 m

of a predefined reference coordinate. In her analysis cloud cover, canopy cover, and time of

day showed to influence the accuracy, whereas rain did not. For Suaq no error estimation

has been executed until now. The analysis of handheld GPS devices and its application in

movement ecology was analysed by Forin-Wiart et al. (2015). They state a similar positional

error of below 10 m for handheld GPS devices. Nonetheless canopy cover, sky availability,

number of satellites, and HDOP as well as the GPS fix rate (for automatic fixes logged by

the research assistants’ GPS device) showed to influence the actual positional error. Whereas

rain and small shrub coverage do not influence the positional error of the handheld GPS

device Forin-Wiart et al. (2015); Recio et al. (2011); Wartmann (2008). Based on the above

literature, the analyses conducted in this thesis use a conservative GPS error estimate of 12 m

where needed.

2.2.3 Researcher bias

Theory and definition

Wartmann (2008), Knott et al. (2008) and Singleton and Van Schaik (2001) already pointed

to biases induced by the research and following the protocol of orangutan studies relating to

movement. Unfortunately, no study exists which actually quantifies these biases in detail.

Singleton and Van Schaik (2001) expanded the study area temporally and stated that most
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originally followed females did not leave the area to the new expansion (Singleton and Van

Schaik, 2001). Biases in measured GPS positions relating to the researchers and research

assistants are a result of the sampling technique employed in field, for example how they

are handling the GPS devices and if they are waiting to reach low DOP values. But more

importantly, the spatial movement of the researcher which probably can be best explained by

the study area and its established research trails (transects). Researchers and research assis-

tants use them whenever orangutans can be observed from them but leave them if orangutans

go further away. Furthermore, the research guidelines and training, the research assistants’

motivation and human-orangutan interaction can influence the results of GPS positions. The

literature on home range studies assumes that such influence is abundant. However, the con-

clusion is that there is no good solution to correct for such bias and that the influence on home

range sizes — which those studies all focused on — is fairly small. Most individuals still have

very distinct home ranges and especially core ranges are in usually di↵erent locations, which

reflects the small influence of such positional biases. Following the individuals over a day and

even consecutive days should minimise the bias originating from the research method (Knott

et al., 2008; Singleton and Van Schaik, 2001; Wartmann, 2008). Nevertheless, an elevated

rate of losing orangutans on the edge of the study areas is mentioned (Knott et al., 2008).

First, we have to state that such location and sampling biases always start with the finding

of an orangutan. Then the starting and entry points, namely, the research station as well as

the trails influence how the researchers and research assistants look for an orangutan, while

they are also influenced by the previous follows of the days before and by their intuition.

Even though researchers and research assistants search in the entire study area, some areas

are more promising to search for and easier to reach. These areas are thus frequented more

often during searches. The starting point has most likely the highest influence on the start

of follows. The starts or morning nests are expected to be nearer to the research station

and to the main trail system, especially to the boardwalks. Conversely, we also have to

consider that the trail system may influence the locations of orangutans, when there is any

change in forest structure due to the trail system, orangutans may prefer the more open forest

structure, similarly to the preference of bigger trees (Manduell et al., 2012). Also, human-

orangutan interaction could play a role where individual orangutans have a bias to avoid

or prefer, respectively, to stay near human research assistants. However, researchers and
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research assistants try to minimise the interaction whenever possible by keeping a distance

and remaining passive (Schuppli, personal communication).

Method, results and discussion of researcher bias

To get an impression of how such an observational bias is happening, the GPS points were

analysed within R and visualised with QGIS Software (version 3.10.5-A). A visual interpre-

tation of starting points was made for the total research area. Focusing on starting times,

we see that there is no clear pattern that there are more points nearer to the research camp

and that they are temporally earlier than further away from the research camp (Figure 2.4b).

This is already a strong indication that starting points are not significantly biased, where it

would be expected that many more starting points with earlier times are near the research

station and to the entrance, than further away. On the other hand a slight stronger over-

sampling can be observed for the area of the main boardwalk which is located just east the

same latitude as the research station. To research the bias relating the trail system a rect-

angular area within the highly sampled core area was analysed. This was done to compare

the areas as well and see how the results di↵er to a uniform distribution of GPS-fixes. The

trail system was bu↵ered with a 12 m distance on both sides. First the area of the rectangle

(1.06 km2) and the area of the bu↵ered trail system (0.26 km2, 24% of the area) within the

rectangle was calculated and compared. Second the total number of sampled GPS points

within the rectangle (n-GPS = 16780) and within the bu↵er was counted (n-GPS = 4886,

29.1%) and compared. The same was done for starting points and ending points. First start-

ing points (n-GPS core area = 404; n-GPS near boardwalk = 146, 36.1%) looked to be more

common within the boardwalks compared to ending points (n-GPS core area = 538; n-GPS

near boardwalk = 182, 33.8%). Looking at the percentages all GPS points, ending points

and starting points occured more often within 12 m of the boardwalk than expected from a

uniform distribution (24%). But these di↵erences were smaller than expected. Wartmann

(2008) stated 58% of starting points were within the boardwalks at the Tuanan site. In our

case for the whole research area (border is not exactly defined) an only approximately 35 %

of points are lying within the research transects (Table 2.2).
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(a) sample rectangle area (b) starting points and time

Figure 2.4 – (a) Analysis of researcher bias based on a chosen core area where the number
of GPS points are compared to the number of points in the bu↵ered research transects. (b)
Additionally, start and end points are compared as well (Figure A.6). Visual inspection of start
times show no strong spatial bias towards research station or transects. Quantitative results can
be seen in Table 2.2. Elevated wooden boardwalk in orange.

The last analysis was done by comparing the density of starting points to ending points

over the whole study area (Figure 2.5). The idea was to use the ending points as a proxy for

unbiased density of points because the resulting points are expected to be less influenced by

the research assistants’ decisions and the trail system but more by the orangutans’ movement.

The limitation is that it is assumed that no, or only little, positional bias originates from

the orangutan and that the start of the follow does not influence the end of a follow. A

kernel density estimation (KDE) was executed for end points and for start points with a

bandwidth of 200 m derived from the HREF method of the adehabitatHR package in R (for

further information about KDE and bandwidth selection, see Section 4.1.6) and by visually

inspecting di↵erent results of slightly varied bandwidth values. The resulting Utilization

Distribution (UD) rasters were subtracted from each other to see areas where on average

more starting points occur than expected by the assumed unbiased ending points. We found

that the core area of the research site has a surplus of starting points (negative density)

compared to the edges (positive density). Conversely, the areas along the edges of the study

area have only a minimal surplus of ending points and a lot of more peripheral areas are

nearly balanced. Therefore, there is a slight bias towards the centre and the boardwalk for

starting points but no clear bias in direction of the research station. Surprisingly, there is

an area in the eastern part where many more ending points occur. But such local patterns

are assumed to be of behavioural origin. Comparing the areas enclosed by the 95 % contour
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of the utilisation distribution for end points and start points,respectively, a 20 % bigger end

point area was found. But by visually inspecting the results the size di↵erence was small and

a strong outwards drift of points could not be confirmed. Finally, the points were marked

where orangutans were lost during the follow. We see that in the southern region more

orangutans were lost and in the eastern part many orangutans were lost at the ascent of the

hills. Where there is also a hotspot of losing points at the farthermost eastern region (Figure

2.5).

We can conclude that start points are biased the most by the research transects, but ending

points and the total number of GPS fixes are biased well. Presumably, some degree of bias

originates from the practical problem of taking GPS fixes. It is probably easier to take a

GPS point near the research transects if there is a wooden boardwalk or at least a beaten

track; generally, this deviation should be acceptable. Overall, the bias is found to be much

smaller than described in the work of Wartmann (2008). To get more information about

the bias of the research area and data collection methods we could use nest counts from

drone flights or try to follow an animal for a long period without losing it. Additionally, the

vector combination for di↵erent directions of all start-to-end point vectors could give insights

as to how much the outward drift in di↵erent directions of the follows would be. A quick

delineation of the heat maps 95% distribution showed a slightly bigger size of the probability

distribution of end points than starting points.
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Figure 2.5 – Map of research site Suaq with contour lines and satellite imagery (ESRI world
imagery): Analysis of influence of boardwalk and research transects. The research area of Suaq
with its peat swamp forest in the vicinity of the Gunung Leuser National Park and close to the
west Sumatran coastline. An overview of the research area with its transects and boardwalk. The
elevated wooden boardwalk is on the transect line east at the same latitude as the research camp
(Figure 2.4).

Table 2.2 – Analysis of influence of boardwalk and research transects. The specific core area
and elevated wooden boardwalk used as a sample can be seen in Figure 2.4a.

area area - boardwalk boardwalk % of full area

area [km2] 1.07 0.81 0.26 24.18%
n-GPS 16780.00 11894.00 4886.00 29.12%
n-start-GPS 404.00 258.00 146.00 36.14%
n-end-GPS 538.00 356.00 182.00 33.83%

tot GPS pro km2 15718.66 14694.74 18929.47
n-start-GPS pro km2 378.45 318.75 565.64
n-end-GPS pro km2 503.97 439.83 705.11
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2.2.4 Weather and fruit availability

Suaq lying in a tropical rainforest region 3° north of the equator has a humid climate with

greater temperature variation during the day than between seasons. Wich et al. (2009) states

the amount of precipitation per year in Suaq to be 3400 mm. The data set used in this thesis

resulted in very similar values but with high variations over the years (3382.4 mm ± 1113.2,

n = 10) (Figure 2.6a). The minimum monthly precipitation was 56 mm and the maximum

was 1208 mm. Mean monthly precipitation for all years was more pronounced for Novem-

ber and slightly di↵erent for April, October and December (Figure 2.6a). Clear visual and

statistical di↵erences between years were only seen for 2018. The derived mean maximum

and minimum temperature as well as the total average temperature is also included in Figure

2.6. A linear regression of mean total averages of temperature with months as explanatory

variables showed the months of October, November and December to be clearly di↵erent from

the mean total averages of temperature. Therefore we can conclude that there is a higher

rate of precipitation in the months at the end of the year which is accompanied by a very

small reduction in average air temperature.

Additional information on the current state of the El Niño–Southern Oscillation (ENSO) was

added by retrieving the monthly Oceanic Niño Index (SST) from the National Oceanic and

Atmospheric Administration’s website, which uses the data described in Rayner et al. (2003).

Basically, the SST measures the di↵erence of sea surface temperature between the eastern

and the western pacific (Zones 3 and 4). A high SST value denotes a stronger El Niño and

a low negative value a stronger la Niña situation (Rayner et al. (2003) for further details).

This was done because many authors show an influence of the ENSO on the weather and

indirectly on forest ecology and especially mast fruiting events in Borneo, discussing it as a

reason for di↵erent feeding behaviours for orangutans (Russon et al., 2009; Taylor, 2009). In

our case no detailed analysis was conducted. But the years were categorised by their average

SST values (2.6). Additionally a quick linear regression (not included) with the SST as ex-

planatory variable for FAI was fitted. The variance could not su�ciently be explained by the

SST, but a positive influence of the SST and therefore with El Niño events was found. The

same statistical analyses were also executed with another index of the state of the ENSO.

The SOI, which basically compares air pressure di↵erences on sea level between Darwin and

Tahiti, was used (Ropelewski and Jones, 1987). The SOI showed a more pronounced trend
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in the same direction where stronger El Niño events coincided with higher FAI, but overall

the total variation of FAI was only weakly explained by the ENSO indices (linear regression

for SOI, 101 degrees of freedom,� = -1, p <0.01, R-squared=0.077; linear regression for SST,

101 degrees of freedom, � = 0.6, p >0.1, R-squared=0.022). The results are in agreement

with previous findings by Wich and Schaik (2000b), who found that the ENSO can induce

higher frequencies of fruiting events although the e↵ect was found to be weaker on Sumatra

than on Borneo.

The mean FAI for all months was 9.7, with a minimum of 3.4 and a maximum of 18.27. No

month was significantly di↵erent from the general mean (Kruskal-Wallis, df = 11, �̃2 = 10.66,

p = 0.47) (Figure A.8). A quick LMM with a Gaussian family distribution with multiple

weather variables (night rain, day rain, cumulative rain last 4 days, average maximum tem-

perature last 4 days, maximum temperature, minimum temperature, average temperature)

explaining fruit availability was not better than a null model with only the random e↵ects

month and year. Due to collinearity between weather variables, the number of weather vari-

ables was reduced. But none of the tested LMMs was found to be better than the null model.

However, a di↵erence between years for FAI was visually observed, in that the year 2011

showed lower fruit availability values (Figure 2.6b).

Rain and temperature as weather phenomena are expected to influence movement on

di↵erent spatio-temporal levels (Figure 1.1b). First, on Levels 1 to 2 on a weekly to even

monthly scale by changing the fruit or food availability briefly. It should be di↵erentiated

from climatic di↵erences such as di↵erent precipitation rates in the rainy season or influences

of climatic oscillations over multiple yeas. However, both seasons and an influence of the

ENSO was not observable in this data set. Although no seasons were observed, there was a

surprisingly distinct period of higher amount of precipitation, resulting in lower temperatures

(see above). The influence of the ENSO was previously described to be very weak for Suaq

(Wich and Schaik, 2000a). Second, on Level 2 to 3 on an hourly or daily basis by influencing

the movement of orangutans due to e.g. thermoregulatory reasons as well as by changing

the movement e.g. due to a wet canopy (Parsons, 1999; Van Noordwijk et al., 2009). Heavy

and prolonged rainfall was also described to temporarily inhibit the movement of individuals

(Parsons, 1999).
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Figure 2.6 – (a) Mean precipitation [mm] and temperature [°C] over ten years for every month
at the research station of Suaq. The derived mean maximum (evening and morning) (red dashed)
and mean minimum temperature (evening and morning) (blue dashed) as well as the total average
temperature (black dashed) is added as a secondary variable. Di↵erences in total rainfall from
the mean: linear regression with square root transformed total rainfall, 90 degrees of freedom,
*** = p <0.0001, * = p <0.1, adj. R2 = 0.1047. Di↵erences in the monthly average temperature
from the total mean: linear regression, 97 degrees of freedom, ** = p <0.01 , adj. R2 = 0.3245.
(b) Fruit availability and monthly mean temperature measurements [°C]. Categories for ENSO:
neutral (-0.5 to 0.5), weak (with a ±0.5 to ±0.9 SST anomaly), moderate (±1.0 to ±1.4), strong
(±1.5 to ±2) and very strong (>±2.0) either positive for El Niño- or negative for la Niña-events.
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Chapter 3

Analysis I: Daily movement

(Level 2)

3.1 Methodology

3.1.1 Movement parameters

Day journey length

Many indicators can be derived from animal movement data sets. Many of them are used to

analyse e.g. energetic costs, demographic patterns, distribution patterns, navigational skills,

foraging behaviou,r and so on. An excellent overview for many of such metrics is given in

Seidel et al. (2018)’s review. Similarly, the authors have grouped the parameters in path and

space use metrics (Section 1.5). For path or movement metrics there are various parameters

for an animal’s moving trace. Mainly, they can be categorised into instantaneous indicators

such as speed, turning angle and acceleration measured at the highest possible temporal

scale (GPS steps) and relative indicators, computed over a whole day (GPS trajectory) such

as mean speed, tortuosity and relating to orangutan studies e.g. DJL (Laube, 2014). The

distance travelled by animals is one of the main metrics derived from GPS data and is

often used to gain important ecological information (Rowcli↵e et al., 2012). In orangutans,

di↵erent day journey lengths are often considered as a sign of changing foraging strategies

(Section 1.6) (Campbell-Smith et al., 2011; Wich et al., 2009). In general, the total travelled

distance is a well established proxy for energy expenditure in orangutans (Knott et al., 2009).
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Furthermore, it is used to distinguish di↵erent behavioural strategies relating to social factors

such as mating strategies of males or philopatric range establishment of females Ashbury

(2020); Atmoko et al. (2009). This total travelled distance is normally derived from each step

between GPS positions. The step-length between consecutive spatial fixes is derived by the

Euclidean distance. Subsequently, the sum of all these step-lengths is calculated for a defined

period, in our case for the total follow length, which is a NN follow. The term DJL proved

itself as very useful due to the ecological definition of the diurnal behaviour of a day journey

between a morning nest and a night nest. Other names for the same concept are the total

daily travel distance, travel length, distance moved per day. Alternatively, the term ‘total

daily travel distance’ often used in other primatology studies can be used. It is important to

mention that the actual distance traveled is mostly unknown and can only be approximated

by summing the step-lengths of GPS fixes (Figure 2.2, first part of “in field”). Therefore,

there is a discrepancy between the approximated DJL and the actual movement travelled by

the animal (also to be seen in Figure B.2 in the Appendix). Hence, the e↵ects of the mean

sampling interval and the individual on DJL were analysed in an LMM and also by a separate

analysis (Section 3.1.3).

Total displacement and tortuosity of movement

The diurnal behaviour of orangutans allows us to measure the distance between morning

and night nests. This distance is measured as the Euclidean distance between these two

GPS fixes (see also Figure B.2). The total displacement, sometimes also referred as nest

distance, describes the functional movement of the full daily movement. In other ecological

studies the concept is often used to distinguish migratory and territorial behaviour, where

mostly the total displacement between each GPS fix and the starting point was used, the so-

called ‘net squared displacement’, to categorise di↵erent migration phases (Bunnefeld et al.,

2011; Calenge et al., 2009; Seidel et al., 2018). The displacement distance between nests of

orangutans was already used as a proxy for total movement activity during di↵erent sexual

phases of females in Tuanan. But compared to the total DJL, the TDD was not explaining

di↵ering movement patterns during di↵erent reproductive phases reliably (Ashbury, 2013).

In this study, the TDD is of secondary importance but is used for measuring tortuosity.

Tortuosity is a concept in movement ecology describing the number of turns and directional
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changes taken by an animal. It is a key parameter, which is used to measure searching be-

haviours and e�ciency of movement e.g. between resources (Benhamou, 2004). In orangutan

studies it was already used as a concept for di↵erences in movement between age classes,

where younger individuals were expected to move more ine�ciently than adults (Schuppli

et al., 2016). Nonetheless this study could not confirm this prediction. There are various

methods of measuring tortuosity, where the e↵ectiveness of many such measures is debated

and they are not all of the same type. Examples include the intensity of habitat use, calcu-

lated by comparing the path length to the area underlying this path; the Straightness Index,

calculated by the total displacement between start and end of follow divided by the actual

measured distance travelled between the start and end (0 = highly tortuous, 1 = straight)

(Equation 3.1); the sinuosity index which measures sinuosity, a concept which includes turn-

ing angles as well as step-lengths and compares it to a random search model for the evaluation

of tortuosity (0 = straight, 1 = highly tortuous) (Equation 3.2); and the maximum expected

displacement, which is similar to the sinuosity index and denotes a maximum expected dis-

placement of a random search and relates it to the number of steps measured between the

GPS fixes (0 = highly tortuous, 1 = straight) (Batschelet, 1981; Benhamou, 2004; Cheung

et al., 2007; McLean and Skowron Volponi, 2018).

Tortuosity and sinuosity are often used interchangeably, but as we have seen there is a dif-

ference in the underlying concepts. Tortuosity is an umbrella term for sinuosity and straight-

ness, where high sinuosity values denote heavily curved trajectories, while high straightness

values indicate almost straight trajectories. Overall, measuring one aspect of tortuosity, for

instance, the change in orientation does not have to correlate with, for instance, the straight-

ness of a route; so, not all tortuosity measurements are measuring the same aspect. Any type

of tortuosity parameter comes with its own limitations (Almeida et al., 2010; Benhamou,

2004; Cheung et al., 2007). The measure of sinuosity, for example, includes a scale depen-

dency; therefore, the sinuosity index has, in contrast to the SI, a dimension. This means that

e.g. the same movement trajectory pattern at di↵erent scales does not result in the same

sinuosity index value. The length and size of a movement therefore influences the sinuosity

index (Figure 3.3). This can be a welcome additional information but it can also be undesired

when comparing di↵erent movements (Almeida et al., 2010). In our case we assume that the

implicit normalisation of using standardised daily NN follows leads to meaningful and com-
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parable values for the sinuosity of movement. To analyse eventual e↵ects in the LMM, DJL

was also tested as a fixed e↵ect in the models.

Straightness =
TDD

DJL
(3.1)

Simple Straightness Index (SI), developed by Batschelet (1981). Already used in orangutan

studies, where it was referred to as ‘ramble ratio’.

Sinuosity = 2


p( 1�c2�s2

(1�c)2+s2) + b2)

��0.5

(3.2)

Sinuosity Index (Benhamou, 2004), with p = average step-length, c = mean cosine of turning

angles, s = mean sine of turning angles, b = coe↵. of variation of step-length.

For this thesis the initial plan was to limit our analysis by focusing only on the Straight-

ness Index (SI) calculated from the Total Displacement Distance (TDD) and the Day-journey-

length or daily total-traveled-distance (DJL) (Equation 3.1). However, owing to the criticisms

of Benhamou (2004) regarding the usage of the SI to capture goal-oriented searching paths of

an animal, other tortuosity indices implemented in the trajr package in R were tested as well

and compared to the SI. The sinuosity index, which is widely in use in many disciplines and is

expected to give robust measures of tortuosity, was then further used for the analysis because

I expected it to give better insights than the more simplistic SI. Factors influencing the tor-

tuosity parameter performance such as positional errors or sampling frequency were assumed

similar across all data points. For analysing e↵ects of external and internal predictors a LMM

was fitted (Section 2.1.4) and analysed. As response variables the movement parameters were

used, namely our primary movement parameters, the DJL and SI. The explanatory variables

were derived from the main data set and the additional data sets (Figure 2.2). They can

be divided into external and internal factors. The weather variables, including total rainfall,

temperature (average, minimum morning, minimum evening, maximum morning, maximum

evening), the water level as a proxy for rainfall over a longer time period; the fruit avail-

ability; and the number of fruit trees visited are external factors. Internal factors analysed

were age (derived from the approximation of birth date), class of the focal (adult female,

infant, flanged male, unflanged male), and the age of the currently youngest o↵spring. The
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variables were all included in a full LMM and compared to a null model with only random

e↵ects (Section 2.1.4).

3.1.2 Workflow

The full data set was filtered to retain only found/lost-points, nests, ranging points and trees

(Section 2.3), which gave us a total of 1314 follows and 27058 GPS fixes. For the analysis

of feeding trees and the comparison to tortuosity the full workflow was also checked when

dropping the tree GPS points. The results did not deviate if only 30 min ranging points

were taken, therefore I kept them in the final analysis. Just the mean time lag was slightly

influenced when using some intermediate tree GPS points. But the following general results

did not change. Previously defined outliers, long calls, experiments and other points were ex-

cluded. As a normalisation step, only NN follows were considered which reduced the amount

of data by nearly half (640 follows, 17961 GPS fixes). For the resulting data set, for every

GPS point the distance to its next (same follow number, temporally closest) GPS fix was

calculated. The DJL was calculated using the sf-package in R. Additionally, the step-wise

time lag, speed, and turning angle for every point was calculated. This resulted in a data set

of 640 follows for all tracked focals in Suaq Balimbing. Moreover, the TDD was calculated.

Calculating the ratio of the DJL and the TDD produced the SI for each follow. Then the

sinuosity index was calculated for each follow with the trajr (1.4.0) package (McLean, 2020).

The predictor variables (Random: date, individual; External: temperature, precipitation,

water level, FAI; Internal: Age-sex class, age, dominance category, age of current o↵spring)

were added. The dominance category is derived from contest interactions between females for

example when feeding in a large productive fig tree (Knott et al., 2008) (1 equals to highest

dominance and 4 to lowest). Dominance correlated highly with the age of the individuals.

Therefore it was used interchangeably. Last but not least the number of fruit trees visited

for every follow was calculated and added as a variable. All the movement parameters were

then analysed with LMMs and model fits were visually inspected.
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3.1.3 Uncertainties of travel distance and straightness

There is a discrepancy between the measured movement and the real movement of an animal

(2.2). Rowcli↵e et al. (2012) rightly criticised the often overlooked underestimation of daily

travel distances due to too low sampling rates, which leads to misleading results. Few studies

attribute the uncertainty of measured travel distances. Rowcli↵e et al. (2012) analysed the

movement of 10 Panamanian forest mammal species and tried to approximate the underesti-

mation of daily travelled distances. They found an underestimation of 63 to 93% compared to

the approximate real high frequent measured travel route. Other authors found less deviation

of the true daily traveled distance (Dewhirst et al., 2016; Musiani et al., 1998). Sennhenn-

Reulen et al. (2017) looked at terrestrial baboons and found that the DJL were on average

7-35% shorter than the true movement for sampling rates of below 120 min. Furthermore

they found that sampling rates over 120 min had a less pronounced e↵ect on the underesti-

mation of daily travelled distances which is in agreement of the findings of Rowcli↵e et al.

(2012). Rowcli↵e et al. (2012) notes that the daily travel distances can only be estimated

exactly with several GPS fixes per minute. This is an impossible value for conducting foacal

animal follows. However, he also notes that the distortion is generally less for larger species,

as in our case (Rowcli↵e et al., 2012). The derived SI used in this thesis is calculated from the

DJL and is therefore a↵ected similarly as the travel distance itself. Movement tortuosity can

be positively a↵ected when the sampling rate is very short because of the possible accuracy of

GPS measurements. On the other hand, tortuosity is negatively a↵ected by longer sampling

regimes (which means higher straightness, lower sinuosity) when we are not able to catch

local tortuous movement anymore. In our case this is more likely the case.

There is certainly an inherent systematic underestimation of travel distances based on the

sampling rate in our study. The sampling rate of 30 min is relatively high compared to other

animal movement studies (Sennhenn-Reulen et al., 2017; Zehnder et al., 2018). To analyse

the e↵ect of such an error there was an opportunity to look at few follows (n = 18) from De-

cember 2010 until May 2011 where the sampling rate was 5 min instead of 30 min. To know

how much the movement parameter SI and DJL are a↵ected, a sub sampling of the follows

was executed. Because the data set is not harmonised and the sampling rate is mostly 30 min

(Figure 3.2.2) but not always the resulting relationship was analysed by a visual assessment.

Furthermore the mean time lag of a follow was used as an explanatory variable for the LMM’s
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trying to explain the values of the movement parameters. If we find a strong influence of

the mean sampling interval time this would result in incomparable day journeys. But we ex-

pect that the standardised and well applied sampling regime lead to comparable day journeys

with little variation in time lags and therefore follow specific variation for this sampling error.

3.1.4 Movement between feeding trees and movement patterns during the

day (Level 3)

To further analyse how the movement behaviour of orangutans is influenced by external or

internal factors we dive into Level 3 of analysis, which has so far never really been done in

any movement ecology study about orangutans. To get insights on the movement patterns

related to fruit availability, the same overall analysis was carried out by just selecting the

nest points and tree points and deriving the number of feeding trees, the SI and the DJL

per follow. The idea was especially that potential changes of external or internal factors

may change the straightness and distance of movement between feeding trees. Feeding trees

therefore were hypothesised to be main factors of influencing movement patterns, which

was previously used as an explanation of bigger ranging patterns in Suaq (Singleton et al.,

2009). But a preliminary assessment of the methodology of analysing the day journey by

only considering feeding trees was found to be not so meaningful. By only looking at such

tree-to-tree trajectories over a full day at least an observable change in the tree-to-tree length,

for example due to change in FAI, could be observed. That could, for example, mean that

an orangutan planned to visit feeding trees which are nearer to each other when fruit is more

abundant. But calculating the straightness index for a full follow of only connecting feeding

trees is arguably less meaningful when the goal is to measure the e�ciency of movement

between feeding sources. For being able to still analyse potential changes in movement

between feeding trees when internal or external factors change it was hypothesised that there

is a potential di↵erence in movement between feeding trees and other movements not directly

linked to feeding. Although orangutans spend about 50 % of their time feeding it could be

argued that other factors than feeding might play a role when they are travelling from place

to place (Morrogh-Bernard et al., 2009). Orangutans’ daily movement path can potentially

be seen as a random or planned search pattern where feeding trees are checked o↵.
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Therefore, the first hypothesis was that the straightness between two feeding trees must

be higher compared to any random selection of movement on Level 3 (Point A to Point B).

All feeding-tree-A to feeding-tree-B movements were retrieved and their TDD, their SI, the

time that passed for relocating, and the number of GPS fixes taken between relocations was

calculated. The number of GPS fixes (= window size, GPS fixes between tree A to tree

B) was included because we need to correct for the number of steps when comparing the

directness and distance between points. Additionally, a random subsample with the same

window size was taken from the full data set to compare the found travel distances, SI, and

travel times to a random selection during follows. The random selection was repeated and

changes in results were checked.

The second hypothesis was that the movement between feeding trees may be influenced

by internal and external factors, for instance, that higher values of the FAI lead to higher

tortuosity and therefore less movement e�ciency between feeding trees. The two samples were

therefore not only statistically compared with each other, but the influence of explanatory

variables on SI was analysed similarly as for the main analysis of full follows, whereas here

the window size was additionally included as a random e↵ect.

The movement patterns by time of day were analysed by calculating the mean distance

moved for a specific time window. The follows had to be harmonised and only distances

were considered when the full time window was available. For example, a follow might have

a morning nest point at 7:23, a range point at 7:30, 7:59, and 8:30. For a time window of

15 minutes, this follow would have been subsampled, where the first point would be placed

at 7:30. The second point would then be linearly interpolated from the trajectory at 7:45,

the third point likewise at 8:00, and so on. The first 7 minutes of the follow would not be

considered because only movement for a full time window was included to be able to compare

temporally standardised movements and not having short time snippets with short distances.

An alternative would be to always start with the first point of a follow and then compare the

follows independently of time of day to find any daily routines. The time window was either

chosen to be 30 minutes or 15 minutes, depending on how much the data was smoothed for

visual assessment. For this analysis all follows rather than only NN follows were included.

Stefan Graf 50



3.2. RESULTS

3.2 Results

An overview of all scatterplots and Pearson’s correlation coe�cients of the dependant move-

ment parameter indicators and the used independent explanatory variables can be found in

the Appendix (Figure B.4).

3.2.1 Results of subsampling densely sampled follows

As expected the subsampling of follows that were initially sampled at a 5-minute interval

showed that DJL and the SI is heavily a↵ected by the sampling regime. Average decrease

when every second point was skipped was -20 % (± 5 %), which equals to a doubling of

the sampling interval from 10 to 20 minutes. Average decrease when again every second

point was taken, which equals to every fourth point, was an additional -15 % (± 3 %),

which equals to again doubling the sampling interval from 20 to 40 minutes. Therefore, the

DJL is decreasing strongly with coarser sampling intervals. Probably missing the underlying

rambling behaviour with coarser sampling intervals is the reason for such a decrease. Such

local rambling behaviour is expected to be real and not mainly an e↵ect of GPS positional

uncertainty or noise (Figure 3.1a). The bias was stronger in longer DJL follows and weaker

in shorter follows. This was expected, because if rambling stays undetected with coarser

sampling intervals the total distance of rambling is expected to increase exponentially for

longer follows (due to movement being two-dimensional). In general fine-grained rambling

behaviours are detected by a 5-minute sampling regime. General movement directions are well

captured by the used 30-minute sampling interval. With sampling intervals above 45 minutes

it appears that fundamental positional changes are lost. This can be seen in Figure 3.1b.

Unstable decrease of DJL which is seen by volatile swings at around 45 minutes indicates

that, for example, the subsample of every 8th point misses a movement, whereas an even

coarser subsample, for instance the one with every 10th GPS fix luckily captures the same

quick movement. But this shows that GPS points are lost on this coarsse sampling level,

which has a bigger impact on the overall DJL.

For the SI we see similar results with increasing straightness until total straightness,

which happens when the follow was so coarsely subsampled that only the start to end points

remained. The strongly varying values above 45 minutes can be detected as well, which
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is no surprise as the straightness is derived from the travel distance. Overall, the follows

did not change strongly when compared to each other when reaching the level of our usual

sampling regime of 30 minutes. It was checked how much the DJL measured at a sampling

rate corresponding to about 30 minutes (i.e., every 4th point, practically it was 40 minutes)

does explain the highest resolution of the real walk (i.e., every point). A linear regression

model with the DJL of the densely sampled data set (median 5 minutes) as dependant and

the DJL of the coarsely sampled data set (median 30 minutes) as predictor variable was

fitted. All assumptions, such as a more or less linear relationship, homoscedasticity of errors,

independence of observations, and normality of errors were met. The full model could explain

86% of variation and for every 1 metre measured with a longer sampling interval (30 min) the

DJL of the higher temporal resolution corresponded to a change of 1.3 m (linear regression,

16 degrees of freedom, p = 0.00001, R-squared=0.8687). Similarly, a bootstrapping analysis

for the overlap of the original trajectories and the subsampled trajectories showed a decrease

of 25±3 % when the mean sampling interval was around 30 minutes. The subsampling of

movement paths did not result in big changes of the representation of the follows (Figure

3.1a). While smaller rambling behaviours for this specific track are lost first during the

subsampling process — see e.g. the south-western part of the follow — the overall movement

remains visible. Even when taking a point only every hour, the movement pattern remains

almost clear. After subsampling at an even coarser rate, more pronounced shortenings are

happening.

3.2.2 Daily travel distances

Overview and age-sex classes

A total of 640 NN follows were analysed. The total number of follows consisted of 407 follows

of adult females, 17 follows of infants, 73 follows of independent immatures, 102 follows of

flanged males, and 41 follows of unflanged males. An overview of the data per each age-

sex class is given in Table 3.1. The full table and a visual overview for every individual is

available in the Appendix (Table B.1). For adult females, the estimated age ranged from 16

to 77 years. The average age of their o↵spring was 3.3 years, which is approximately half

of the weaning age threshold. For males, there were no approximations of the date of birth
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(a) Subsampled follows (coordinate grid resolution = 10 m)

3 × 10+2

1 × 10+3

3 × 10+3

1 × 10+4

3 × 10+4

0 500 1000 1500 2000
DJL [m]

su
bs

am
pl

in
g 

ra
te

For subsamples of [every x point]: 2,4,6,8,10,12,14,20,TDD
Subsampling of 18 high frequency follows

(b) DJL

3 × 10+2

1 × 10+3

3 × 10+3

1 × 10+4

3 × 10+4

0.25 0.50 0.75 1.00
SI

su
bs

am
pl

in
g 

ra
te

For subsamples of [every x point]: 2,4,6,8,10,12,14,20,TDD
Subsampling of 18 high frequency follows

(c) SI

Figure 3.1 – Overview of subsampling of 18 high frequency follows. The follows were subsampled
by taking every 2nd, 4th, 6th, 8th, 10th, 12th, 14th,20th, and finally only start and end points. (a)
Follow 687 of Friska, a mother. In blue we see the original movement path with an approximated
average sampling rate of 10 min (median and intended sampling rate is 5 minutes), in green we
see the same follow after selecting only every fourth point, which should reflect a sampling rate of
around 40 minutes (although all sampling rates are generally higher). (b) We can see that there is
a short levelling at about 50 minutes, where the DJL rapidly decreases and stronger variations due
to subsampling occur. Probably by reducing the sampling interval, first the rambling behaviour
is smoothed and the decrease in distance is not as strong and more or less constant. Then after
about 15 minutes we see a strong drop in DJL. This indicates that then the movement trajectories
are getting smoothed not only locally but more than locally. (c) The same is seen for the SI of the
orangutan follows: a constant increase in linearity where at about 50 minutes most disturbances
occur due to subsampling.
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available and independent immatures were at the expected average age at the start of sexual

activeness. Interestingly, the estimated age of the infant class was very high. This probably

reflects some misclassification of follows. It is often the case that accidentally the mother

and infants are confused in the data. Therefore, any results for infants have to be evaluated

carefully.

The average time lag between fixes was slightly under 30 minutes, with a mean step-length

of 34.7 m. In less than 2.5 % of follows the step-length was over 130 m. Shorter step-lengths

occurred more often than longer ones (Figure B.7). It was tested if there is a di↵erence

between age-sex classes for the mean time lag between fixes, which could originate from

di↵erent factors while sampling when following an individual (losing and refinding a focal,

spurious deviations from the regular sampling interval for a follow, etc.). It was expected that

there should not be any di↵erence because there was no such feedback from the field, which

was confirmed (Kruskal-Wallis, df = 4, �̃2 = 4.5, p = 0.33). On average the follows consisted

of 28 GPS fixes. This average is higher than expected because few follows had a very high

sampling rate. The derived movement parameter were all tested if they di↵ered between

age-sex classes. The total sum of turning angles, which is another very simple tortuosity

index, showed no di↵erence between age-sex classes (Kruskal-Wallis, df = 4, �̃2 = 1.16, p

= 0.883). The TDDs from morning nests to night nests were not statistically significant

di↵erent (Kruskal-Wallis, df = 4, �̃2 = 7.14, p = 0.13), but males had slightly longer TDDs

on average, with unflanged males showing the biggest locational change. Interestingly, infants

staying with their mother showed similarly high values as well, but sample size is weak for

infants (n-follows=17).

The DJL, our main movement parameter, was on average 884.12 ±338 m. It was clearly

di↵erent between age-sex classes (Kruskal-Wallis, df = 4, �̃2 = 13.523, p = 0.009). Indepen-

dent immatures and unflanged males had also high variations of DJL, with especially more

frequent longer follows. We have to consider that these data are unbalanced but still sub-

stantial compared to earlier orangutan studies about travel distances (Digiorgio and Knott,

2012; Vogel et al., 2017; Wartmann, 2008). Nonetheless, on average DJL of unflanged males

was found to be around 150 m longer than for adult females.

The SI, derived from the TDD and DJL, was also di↵erent between age-sex classes

(Kruskal-Wallis, df = 4, �̃2 = 11.19, p = 0.025), and likewise was average speed (Kruskal-
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Wallis, df = 4, �̃2 = 15.72, p = 0.0034). Comparing the values of the SI across age-sex classes,

infants had the highest values, whereas all other classes tended to be similar and independent

immatures had the lowest values for straightness.

The average speed values again followed the di↵erences in DJL. The highest value was

reached by the unflanged males and independent immatures becoming.

The sinuosity index as an alternative to the SI showed to be di↵erent for the di↵erent

age-sex classes (Kruskal-Wallis, df = 4, �̃2 = 10.67, p = 0.03). A pairwise t-test and visual

inspection showed that sinuosity was highest for infants and similar for adult females and

flanged males. The lowest values were found for independent immatures and unflanged males.

Further details are presented in the following sections.

Table 3.1 – Overview of day journey length.

class n1 age age o↵. * DJL [m] TDD [m] * SI * sinuosity * speed2 length °3 trees points sampl.rate

unflanged male 41 1002±397 465±265 0.46±0.19 0.22±0.06 0.09±0.19 11:05:10 4465 2 27.1 00:25:52
independent immatures 73 10.6 980±336 398±195 0.42±0.17 0.23±0.06 0.088±0.17 11:07:54 4631 4 28.4 00:25:40
infant 17 8.1 829±175 465±160 0.56±0.16 0.25±0.05 0.076±0.16 10:56:00 4489 4 28.1 00:24:47
flanged male 102 880±371 439±288 0.48±0.19 0.24±0.06 0.08±0.19 10:59:51 4459 3 26.7 00:26:06
adult female 407 41.1 3.5 858±323 394±213 0.46±0.18 0.25±0.06 0.078±0.18 11:03:55 4695 3 28.4 00:26:05

1: number of follows, 2: [km/h], 3: sum of turning angles [°], *: di↵erence between age-sex classes are on significance level

Mixed linear model explaining DJL

First, the DJL was not found to be influenced by the mean sampling rate of each follow

(Spearman’s rho, rs = -0.051, p = 0.2). Nonetheless, the sampling rate was included as

an explanatory variable in the linear mixed e↵ect model (See model Table 3.2). Where it

confirmed our initial analysis and DJL was mostly negatively impacted by larger mean time

lags, but the variable still was not a statistically significant explanatory variable for DJL (p

Value over 0.1). All predictors and random e↵ects were chosen a priori. Random e↵ects were

included for controlling for pseudo replication. The DJL showed some variation through the

year. An LMM where month was used as a explanatory variable and year as a random e↵ect

showed that the months May, June and August yielded more negative values than expected

(May -107 m, p = 0.09; June -133 m, p = 0.049; August -232 m, p = 0.025) and in De-

cember DJL was longer than expected (December +179 m, p = 0.025, marginal r2 = 0.09)

(Figure B.11). Di↵erences between years, on the other hand, were smaller and explained less

of the variation.
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Age and dominance was excluded in the selected model and the full model because there

were many missing values and the sample size would have been much smaller for the selected

model if age or dominance was included (If included they both showed a not significant nega-

tive e↵ect on DJL e.g. -26 m per dominance class). The full model was fitted and collinearity

among the variables (VIF) was not a problem (Table 3.2 a)).

Due to high colinearity among most weather variables (Figure B.10) several of the weather

variables were deselected. The temperature variables correlated highly and the average total

temperature explained most of the other temperature variables well (max. morning, max.

evening, avg. max, avg. minimum). Only the minimum temperature in the morning and

evening was not strongly correlated with the average temperature. To reduce the number of

variables, all except the average temperature were excluded from the analysis. The resulting

variance of inflation factor for all explanatory variables ranged between 1 and 1.2, which is

acceptable. The selected model showed only a trend for age-sex classes, as already described

before. Where unflanged males were predicted to travel 182 m more and independent imma-

tures were predicted to travel 131 m further than adult females. Rain during the day had a

positive e↵ect on DJL, whereas rain at night had a negative e↵ect but both were statistically

not significant (p >0.1). Temperature had a positive e↵ect on DJL but was also not statisti-

cally significant. All weather variables were not statistically significant. When including two

variables considering the current weather of the last four days, total precipitation (last four

days) and mean maximum temperature (last four days), still no statistical relation to DJL

could be found.

Fruit availability had a slight negative e↵ect on DJL but did also not improve the model

(Table 3.2 a)). Of the tested explanatory variables only the age class remained a clear ex-

planatory variable, nonetheless the model was not significantly better than the null model (p

= 0.11) when correcting for month-year and individual di↵erences. Overall, no e↵ect of fruit

availability and weather variables on DJL were detected. A random e↵ect ANOVA, which

deletes random e↵ects and compares the models, showed that the month-year was a strong

random e↵ect, whereas the focal had little explanatory power in the selected model (ranova

from the lmerTest package; � AICfocal dropped = 8707.47, p = 0.22; � AICmonth-year dropped

= 8740.04, p <0.001) (Figure B.13). Intraclass Correlation (ICC), which is the expected
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correlation of two follows within the groups of our random e↵ects, was 9 % for focals and

11 % for month-year groups (Lüdecke, 2021). Therefore, di↵erences between individuals did

not explain much more of DJL when having the age-sex class of the individuals in the model.

Overall the selected model only explained around 20 % of variation in DJL (conditional R2 =

0.198), where the fixed e↵ects only explained around 3 % of variation (marginal R2 = 0.034).

The random e↵ects, namely individual di↵erences and monthly variation, explained the most

(see ICC above).

When focusing on females only the inclusion of the age of the o↵spring as an explanatory

variable clearly improved the model (Table 3.2 b)). The age of the o↵spring correlated

positively with DJL and an increase of the o↵spring age by a year explained an increase

of around 34 m in DJL (Figure 3.3d). The selected model for only the data set of females

explained around 16 % of variation (conditional R2 = 0.157), whereby the fixed e↵ects and

mainly the age of the current o↵spring explained around 8 % of this variation (marginal R2

= 0.086). The selected model was better than the null model with only random e↵ects.

(a) (b)

Figure 3.2 – (a) DJL of age-sex classes. (b) SI of age-sex classes.
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Table 3.2 – Regression models trying to explain travel distances per day for all age-sex classes
and for females with o↵spring only, respectively. The marginal R2 (M-R2) equals to the marginal
coe�cient of determination which represents the variance explained by the fixed e↵ects whereas
the conditional R2 (C-R2) represents the variance explained by the full model. The p-values for
random e↵ects equals to a likelihood ratio test of random e↵ect deletion.

Nr. Response variable / Model description Factor Factor type Estimate Confidence Interval P VIF

a) DJL of all age-sex classes Intercept intercept 645.54 -231.86 – 1522.94 0.149 -
n = 610 Day rain Predictor 0.12 -1.87 – 2.10 0.909 1.0
P = 0.10998 Night rain Predictor -0.67 -1.56 – 0.22 0.14 1.0
M-R2 = 0.034 Average day temp. Predictor 11.17 -21.65 – 43.99 0.505 1.0
C-R2 = 0.199 FAI Predictor -1.26 -17.56 – 15.04 0.88 1.0
Family = Gaussian ASC: Flanged male Predictor 37.45 -63.91 – 138.80 0.469 1.2

ASC: Infant Predictor 32.84 -154.85 – 220.54 0.732 1.1
ASC: Independant immature Predictor 130.42 24.45 – 236.39 0.016 1.2
ASC: Unflanged male Predictor 182.27 57.09 – 307.45 0.004 1.2
Mean time lag Predictor -0.06 -0.21 – 0.09 0.439 1.0
Focal Random - - 0.22445 -
Month Year Random - - <0.001 -

b) DJL of only females Intercept intercept 476.68 -657.38 – 1610.74 0.41 -
n = 340 Day rain Predictor -0.24 -2.46 – 1.98 0.831 1.0
P = 0.004658 ** Night rain Predictor -0.66 -1.99 – 0.67 0.33 1.0
M-R2 = 0.07 Average day temp. Predictor 10.76 -31.51 – 53.03 0.618 1.0
C-R2 = 0.14 FAI Predictor -10.88 -27.73 – 5.97 0.206 1.0
Family = Gaussian Age of current o↵spring Predictor 33.52 17.07 – 49.97 <0.001 1.0

Dominance category Predictor 26.17 -10.96 – 63.29 0.167 1.0
Focal Random - - 1 -
Month Year Random - - 0.00052 -

⇤⇤⇤p < 0.001; ⇤⇤p < 0.01; ⇤p < 0.05; bold = significance level reached

3.2.3 Tortuosity

Straightness index

The same independent predictors were used for this model as for the DJL model, trying to

explain the straightness of movement (Table 3.3 a)). The straightness index was not heavily

influenced by the sampling interval (Spearman’s rho, rs = 0.053, p = 0.18). Therefore I did

not include it in the model this time. The combination of month-year and focals was also used

as random e↵ects. Variation between months was small only in April the SI was a bit higher

and statistically di↵erent from the other months (LMM with year as random e↵ect, April

+0.08, p = 0.04) and years did not di↵er and explain SI at all. In contrast to the selected

model for DJL the focal had a stronger e↵ect explaining SI (ranova; � AICmonth-year dropped

= -261.9, p = 0.5; � AICfocal dropped = -249.5, p <0.001) (Figure B.13). The ICC for the

random e↵ect of focals was again around 9 %, whereas for month-year combinations it was

only 2 %. Therefore, only the focal had an e↵ect on the SI.

The fitted model with all explanatory variables was not better than the null model with

only random e↵ects. Again, only dominance was used because dominance categories and

age are highly colinear. A slight positive e↵ect of age and lower dominance on the SI was

found (Table 3.3). The selected model showed a subtle but not significant positive e↵ect of
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Table 3.3 – Statistical models trying to explain straightness of movement per day for all age-sex
classes and for females with o↵spring only, respectively.

Nr. Response variable / Model description Factor Factor type Estimate Confidence Interval P VIF

a) Straightness Index of all age-sex classes Intercept intercept 0.2507 -0.22 – 0.72 0.300 -
n = 610 Day rain Predictor -0.0003 -0.00 – 0.00 0.652 1.0
P = 0.75 Night rain Predictor 0.0003 -0.00 – 0.00 0.187 1.0
M-R2 = 0.009 Average day temp. Predictor 0.0070 -0.01 – 0.02 0.443 1.0
C-R2 = 0.12 FAI Predictor 0.0021 -0.00 – 0.01 0.507 1.0
Family = Gaussian ASC: Flanged male Predictor 0.0151 -0.05 – 0.08 0.654 1.3

ASC: Infant Predictor 0.0645 -0.05 – 0.18 0.254 1.2
ASC: Independant immature Predictor -0.0142 -0.08 – 0.05 0.678 1.3
ASC: Unflanged male Predictor -0.0007 -0.08 – 0.08 0.985 1.2
Focal Random - - 0.002 -
Month Year Random - - 0.370 -

b) Straightness Index of only females Intercept intercept 0.4491 -0.26 – 1.15 0.211 -
n = 340 Day rain Predictor -0.0007 -0.00 – 0.00 0.291 1.0
P = 0.83 Night rain Predictor -0.0001 -0.00 – 0.00 0.869 1.0
M-R2 = 0.008 Average day temp. Predictor 0.0008 -0.03 – 0.03 0.952 1.0
C-R2 = 0.087 FAI Predictor 0.0023 -0.01 – 0.01 0.636 1.0
Family = Gaussian Age of current o↵spring Predictor -0.0006 -0.01 – 0.01 0.914 1.0

Dominance category Predictor -0.0120 -0.05 – 0.03 0.533 1.0
Focal Random - - 0.210 -
Month Year Random - - 0.050 -

⇤⇤⇤p < 0.001; ⇤⇤p < 0.01; ⇤p < 0.05; bold = significance level reached

night rain, higher temperatures and FAI, and a negative e↵ect of day rain on the SI. Age,

when not omitted, did also show a positive slope. The age-sex class of infants showed higher

straightness, although the sample size was small and di↵erences were too small to show a

clear trend. Independent immatures, on the other hand, for whom the sample size was a bit

larger, showed slightly lower straightness.

For the model where only females were considered the inclusion of age (negative slope)

and age of o↵spring (positive slope) did not improve the model and the selected model was

still not better than the null model (Table 3.3 b)). A step-wise backward selection of all

possible explanatory variables did also show that none of the models was statistically better

than the null model with only the random e↵ects. A quick comparison with the TDD, which

is one of the variables used to calculate the SI, shows that both parameters depict similar

patterns. The fitted LMM showed that both were not well predicted by any of the predictors

used. The only di↵erence found was, that TDD was positively influenced by the age of the

current o↵spring and an LMM with the age of the current o↵spring as the predictor was

better than the null model.

Sinuosity index and comparison of movement parameters

To support the findings of the straightness index as the first descriptor of tortuosity, the

sinuosity of movement was calculated as well (Equation 3.2). The values of sinuosity showed
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a negative correlation with the mean time lag (seconds) of the follows (Spearman’s rho, rs =

-0.24, p <0.001). This correlation is mainly influenced by much lower values and some high

values of mean time lag. Nonetheless, this follows the logic of more tortuous movements with

a denser sampling rate. Nevertheless, the mean sampling interval was as before excluded in

the selected models because the number of feeding trees were colinear with the mean time

lag. The reason for that is that the approach was to leave the feeding trees in the data set as

additional waypoints, but as a result small fluctuations of the mean time lag were the result

of this dependency on the number of feeding trees. Age and dominance did not improve the

model and were excluded. If included, dominance and age showed higher values for more

dominant and older females.

The selected model with the DJL was better than the null model with only random e↵ects

(Table 3.4 a)). The variance of inflation factor was checked to see if multicollinearity is a

problem. The value varied around 1 which is good. We can see that the model is better

than the null model and that the sinuosity of movement was bigger when more trees were

visited during the day journey (Figure 3.3h). Comparing the number of fruit trees with the

dimensionless SI a similar pattern was found, namely, that more fruit trees were visited when

the movement was more tortuous (Figure 3.3g).

A model fitted using the selected explanatory variables showed that unflanged males

probably move in a less tortuous fashion by a factor of 2 % (p<0.05) (Table 3.4 a)). In-

dependent immatures similarly moved less tortuously (p <0.1). However, when using the

DJL for adjusting the scale dependency of the sinuosity index the di↵erences between age-sex

classes disappeared. Therefore, the di↵erence in sinuosity between age-sex classes could prob-

ably be traced back to the di↵erences in DJL between classes because the sinuosity index is

scale dependent. Still if we consider that sinuosity partially also measures scale and distance

travelled than unflanged males and independent immatures showed statistically significant

di↵erence. The ICC for the random e↵ect of focals was around 4 %, whereas for month-year

combinations it was only 10 %. Overall, the selected model explained around 53 % of the

variation in sinuosity (conditional R2 = 0.567) where the fixed e↵ects explained most of it

(marginal R2 = 0.561).

When focusing on females only, the age of o↵spring did negatively impact (-0.7%) the

sinuosity of movement (Figure 3.3e). The selected model for females better than the null
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Table 3.4 – Statistical models trying to explain sinuosity of movement per day for all age-sex
classes and for females with o↵spring only, respectively.

Nr. Response variable / Model description Factor Factor type Estimate Confidence Interval P VIF

a) Sinuosity of all age-sex classes Intercept intercept 0.38 0.2680 – 0.4920 <0.001 -
n = 610 Day rain Predictor -0.0002 -0.0004 – 0.0001 0.229 1.008767
p <0.0001 Night rain Predictor -0.0001 -0.0002 – 0.0001 0.3 1.021046
M-R2 = 0.527 Average day temp. Predictor -0.0016 -0.0058 – 0.0027 0.466 1.037807
C-R2 = 0.533 Number of fruit trees Predictor 0.0053 0.0043 – 0.0063 <0.001 1.055333
Family = Gaussian FAI Predictor 0.0005 -0.0010 – 0.0020 0.495 1.047529

ASC: Flanged male Predictor 0 -0.0099 – 0.0098 0.993 1.097366
ASC: Infant Predictor -0.0056 -0.0275 – 0.0163 0.614 1.052394
ASC: Independant immature Predictor -0.0015 -0.0129 – 0.0099 0.798 1.082264
ASC: Unflanged male Predictor -0.0019 -0.0160 – 0.0122 0.79 1.069657
DJL Pr. correct scale. dep. -0.0001 -0.0001 – -0.0001 <0.001 1.042747
Focal Random - - 0.77 -
Month Year Random - - 0.6 -

b) Sinuosity of only females (Intercept) intercept 0.3734 0.2053 – 0.5415 <0.001
n = 340 Day rain Predictor 0 -0.0003 – 0.0004 0.956 1.042266
p <0.0001 Night rain Predictor -0.0001 -0.0003 – 0.0001 0.284 1.039526
M-R2 = 0.469 Average day temp. Predictor -0.0006 -0.0069 – 0.0057 0.844 1.044287
C-R2 = 0.472 FAI Predictor -0.0002 -0.0021 – 0.0018 0.869 1.039923
Family = Gaussian Age of current o↵spring Predictor -0.0027 -0.0052 – -0.0002 0.034 1.171131

Dominance Predictor -0.0034 -0.0105 – 0.0038 0.356 1.029633
Number of fruit trees Predictor 0.0053 0.0038 – 0.0068 <0.001 1.098676
DJL Pr. correct scale. dep. -0.0001 -0.0001 – -0.0001 <0.001 1.115295
Focal Random - - 0.48 -
Month Year Random - - 1 -

⇤⇤⇤p < 0.001; ⇤⇤p < 0.01; ⇤p < 0.05; bold = significance level reached; Statistical variables info’s see first table

model when using the age of the current o↵spring as the only predictor (Table 3.4 b)).

Number of fruit trees also positively a↵ected sinuosity of movement. We have to consider

that a high percentage of explanatory power of fixed e↵ects stems from the higly significant

DJL predictor. Both models without DJL as random e↵ect were not significantly better than

the null model but the trends were the same.

3.2.4 Fruit trees visited

The mean number of fruit trees visited per follow was 3.2 and the maximum was 66 (1st Qu:

0, 3rd Qu: 4.25). When neglecting the follows without any tree visited the mean was 7.8

trees (1st Qu: 3, 3rd Qu: 9). The number of fruit trees visited varied over months. Nearly

all months were substantially di↵erent from each other considering the number of fruit trees

(tested with LMM and t-tests using Satterthwaite’s method; see also Figure B.18). There were

also substantial di↵erences between years. Comparing the null models with all combinations

of focal, month and year showed that the year alone explains most of the variance.

n LMM with the month as an explanatory variable and the year as a random e↵ect showed

that month only captured around 2 % of the variance, whereas the full model with the year

as a random e↵ect captured around 82 % (LMM, marginal R2 = 0.021, conditional R2 =

0.824). When fitting the selected model with the month-year and the focal as random e↵ects,

the focal alone explained around 20 % (LMM fruit tree count ˜focal, conditional R2 = 0.2) of
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(a) DJL and TDD (b) DJL and SI

(c) DJL and sinuosity index (d) SI and sinuosity index.

(e) Age of current o↵spring and sinuosity. (f) DJL and age of current o↵spring.

(g) SI and number of fruit trees. (h) Sinuosity and number of fruit trees.

Figure 3.3 – Comparison of movement parameters and some predictors. For the comparison of
fruit tree counts with tortuosity, the trees were excluded from the movement trajectories and all
variables were recalculated.
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Table 3.5 – Statistical models trying to explain fruit trees visited per follow for all age-sex classes
and for females with o↵spring only, respectively.

Nr. Response variable / Model description Factor Factor type Estimate Confidence Interval P VIF

a) Fruit trees visited (all age-sex classes) (Intercept) intercept 3.6114 -4.4250 – 11.6477 0.378 -
n = 610 Day rain Predictor -0.005 -0.0213 – 0.0112 0.543 1.009111
p = 0.0009 Night rain Predictor -0.001 -0.0085 – 0.0065 0.795 1.020312
M-R2 = 0.051 Average day temp. Predictor -0.0353 -0.3121 – 0.2416 0.803 1.020158
C-R2 = 0.62 FAI Predictor -0.2693 -0.5781 – 0.0396 0.088 1.006977
Family = Gaussian ASC: Flanged male Predictor -0.0582 -0.7075 – 0.5910 0.86 1.084248

ASC: Infant Predictor 0.3942 -1.0489 – 1.8373 0.592 1.008522
ASC: Independant immature Predictor 0.39 -0.3259 – 1.1060 0.286 1.069868
ASC: Unflanged male Predictor 0.2132 -0.6779 – 1.1043 0.639 1.077087
SI Predictor 0.0343 -1.1577 – 1.2263 0.955 1.117046
Sinuosity Predictor 9.3123 5.6114 – 13.0132 <0.001 1.13266
Focal Random - - 0.944 -
Month Year Random - - <0.001 -

b) Fruit trees visited (only females) (Intercept) intercept 0.7262 -10.7477 – 12.2000 0.901 -
n = 340 Day rain Predictor -0.01 -0.0301 – 0.0100 0.327 1.03658
p <0.0001 Night rain Predictor 0.0047 -0.0074 – 0.0167 0.446 1.021266
M-R2 = 0.099 Average day temp. Predictor -0.119 -0.5207 – 0.2827 0.561 1.027394
C-R2 = 0.558 FAI Predictor -0.1682 -0.4697 – 0.1333 0.274 1.00783
Family = Gaussian Dominance Predictor 0.6023 -0.2279 – 1.4325 0.155 1.044267

Age of current o↵spring Predictor 0.3906 0.1637 – 0.6175 0.001 1.056817
SI Predictor 0.644 -0.9861 – 2.2741 0.439 1.107931
Sinuosity Predictor 11.7959 6.7263 – 16.8654 <0.001 1.114038
Focal Random - - 0.006 -
Month Year Random - - <0.001 -

⇤⇤⇤p < 0.001; ⇤⇤p < 0.01; ⇤p < 0.05; bold = significance level reached; Statistical variables info’s see first table

variation and the month-year combination around 64 % of variation (LMM fruit tree count

˜month-year, conditional R2 = 0.64). Additionally, a rANOVA showed that only the month-

year was important in explaining variance and therefore the selected model only kept year

as a random e↵ect (rANOVA; � AICyear dropped = 3224.54, p <0.001; � AICfocal dropped =

2986.16, p = 0.94).

The selected model showed that none of the explanatory variables did explain the variance

of the fruit trees visited. Not even the fruit availability index showed an e↵ect on how

many trees were visited (Table Table 3.5 and B.2.3). Only the sinuosity parameter partially

explained the variance of the fruit trees visited. An increase of sinuosity by 10 % resulted in

an increase of around 0.7 fruit trees visited. The model with only sinuosity as an explanatory

variable was better than the null model. The total variance explained by the adjusted selected

model was 65 %, where only 5 % of it was explained by the sinuosity index (marginal R2 =

0.051, conditional R2 = 0.62).

3.2.5 Path tortuosity between trees and daily movement patterns

Do orangutans show a daily routine?

The movement of orangutans over a day was relatively balanced (Figure 3.4a). As already

described in the results of the analysis of DJL, the age-sex classes clearly di↵er in their
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distances travelled over a day. Although we have to consider the overall movement pattern,

short spikes of higher or lower movements like for infants may be the result of outliers due

to a small sample size. This is, for example, the case for infants where we have only smaller

sample sizes. The spikes could also indicate a generally higher variation of movement due

to playing and learning movement techniques, such as gap crossing (Chappell et al., 2015).

Generally, movement activity tends to be stronger right after the start of the follow or after

leaving the nest around 6:30, while the morning hours around 9:30 showed the lowest values,

which is reflected in all age-sex classes. Overall, unflanged males and independent immatures

travelled more during the full day but did not expand their day in the morning or evening

clearly to get further. What is noticeable is that many follows showed higher movement

during afternoon or early evening hours around 16:00 for unflanged males and independent

immatures as well as higher values just after getting up in the morning. The higher movement

activity before the end of a follow by young females was also intuitively confirmed by the

research sta↵ (Schuppli, personal communication), although the di↵erences still remained

low, with an additional 5-7 m per quarter hour. Maybe some fast movements pushed the

overall average higher, which results in the intuitive observation of age-sex di↵erences at the

end of a follow.

To see if there is a di↵erence between longer or shorter follows in their daily movement

footprint, the follows were classified into four categories (Figure 3.4b). Longer follows resulted

in higher movement along the full day. There is no specific trend indicating that the dynamic

of movement changes at a specific daytime. Although all follows again showed higher activity

in the morning, longer distances mostly have arisen from longer distances travelled in the

afternoon and during the day, not in the morning. There was also no clear elongation of the

day to cover further distances.

Do orangutans show a change in movement when travelling between feeding

trees?

The SI and the sinuosity index between feeding trees were analysed. On average, there were

2.2±2.5 GPS points between two trees (n = 2581). The mean distance travelled between trees

was 91.5±113.4 m, whereas the mean distance of 112.8±130.4 m from the random subsample

was higher. As already described, the same window size was used. The random subsample
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therefore had the same average number of GPS points between start- and endpoints. A visual

comparison of the results did not show a clear di↵erence of movement between trees and any

random points.

When further analysing the straightness of movement, the two groups were statistically

compared. The straightness index of the random sample and the between-tree movement

was compared with a non-parametric Wilcoxon rank sum test. There was no clear di↵erence

found between the two groups (WRS, p = 0.45).

The same was done for the sinuosity, which was calculated in the same way as for the

sinuosity section (Equation 3.2). The indication of a di↵erence between the sinuosity was

stronger, though not significant (WRS, p = 0.076). Sinuosity between two random points

tended to be more tortuous than between feeding trees. The measured di↵erences were

small and may reflect other influences than internal behaviour. Potentially the environment

explains such a di↵erence, for example, the representation of feeding trees. For instance, a

random sample might include slightly more movements across minimally more challenging

three-dimensional structures. Therefore the spatial arrangement may be less challenging

between tree-to-tree movement.

Is the tortuosity of movement between feeding trees explained by external and

internal factors?

The sinuosity between trees was analysed with an LMM. Of the random e↵ects the date and

the sampling window (number of GPS points between) were the strongest random e↵ects.

But none of the weather variables (rain, temperature, water level), FAI and age-sex classes

did explain the variation of sinuosity between feeding trees (see Table B.3). The fitted model

was not better than the null model. An LMM for between-tree-straightness was similarly

fitted and checked, but as expected no clear correlations or influences were found.

3.3 Discussion

Generally we can say that our findings for DJL are in accord with Singleton and Van Schaik

(2001) (RQ A.1). We found average values of 858±323 m for adult females whereas Singleton

et al. (2009) states a very similar average and standard deviation of 830±306 m (Table 1.1).
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Figure 3.4 – Movement over a day analysis (Level 3). (a) Average movement per time window
of 15 minutes. (b) Average movement per 30 minutes for di↵erent classes of follow lengths (low
<700 m <average <1100 m <high <1700 <very high <10000).
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Independent immatures in our analysis, which were mostly females showed an average of

980±336 and in Singleton et al. (2009) 1077±368. Again, the di↵erence is not huge and it

could be explained by including male independent immatures. For tortuosity parameter we

have no previous findings for Suaq.

3.3.1 Uncertainties in travel distance and tortuosity

How good is the quality of the basic derived movement parameters?

With the calculated movement parameters, we can confirm that the general movement be-

haviour of orangutans is defined by a low number of quick movements and dynamic changes.

The proportion of movement which went missing because of the sampling interval was un-

derestimated. We expected that a sampling interval of 30 minutes is enough to detect small

tortuous movement. However, the subsampling of short sampled follows showed that the

general movement pattern stays the same (Figure 3.1a).

In contrast to studies describing typical distinct resting movement behaviour and travel-

ling movement behaviour, the steady and slightly tortuous movement depicts the movement

of orangutans and is also reflected in the uncertainty analysis (Section 3.1.3). Resting move-

ment is therefore hard to distinguish from normal movement without additional description.

Local tortuous movement is probably smoothed out mostly, when a sampling interval of 30

minutes is used. This is also described by Ashbury (2020), who explains that location points

were only recorded every half-hour, and the sinuosity of individuals moving and searching for

food was not measured. Looking at the defined scales or levels of analysis, Level 3, which

corresponds to local, instantaneous movement patterns, cannot really be analysed without

looking further into the bias induced by the sampling interval.

For our general analysis on Level 2, the bias is negligible if the results are interpreted

carefully. General comparisons between groups like age-sex classes may be more expressive –

e.g., if unflanged males move further than flanged males – rather than looking at the direct

impact of an explanatory variable – e.g., how much longer is the average DJL of unflanged

males than for flanged males. A big advantage of animal focal follows by trained assistants is

the qualitative inputs gathered in the field. Any strong tortuous movement which is not be

caught by the 30-minutes sampling interval would get the researchers’ and research assistants’
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attention. Rowcli↵e et al. (2012) also argues that visual tracking of focal animals could

harbour enough information about movement paths to account for such sampling rate bias.

Nevertheless, special care has to be given that this information and additional qualitative

information is provided to the researchers processing the spatial data sets (in case that field

data collection and data processing are carried out by di↵erent persons).

The key question is if there are actually behaviourally important short-term movements

for orangutans that need to be resolved by the sampling procedure and interval. Because the

changes in daily traveled distances are used in many studies this point has to be carefully

assessed. The two uncertainties of vertical movement and the sampling bias on DJL have

to be taken seriously. Nonetheless, the applied sampling regime of 30 minutes was able to

at least reflect parts of the fine-grained movement. This thesis gave a first approximation

of how much such a bias occurs for orangutan movements (Sections 3.1.3 and 3.2.1). These

results are however based on only a few follows which had a denser sampling rate, which

themselves were not 100 % harmonised. Rowcli↵e et al. (2012) state a one-minute sampling

rate would be needed to reliably estimate the true tortuous movement. I found that their

finding tends to also hold for orangutans. The results showed that already the subsampling

of every second point of the few follows with dense sampling rate showed that local tortuous

movement is missed.

What is the true ’cost‘ of a day journey?

The expressiveness of the 2-D total travelling distance as a movement parameter for orangutans

deserves further discussion. Daily traveled distance as a predictor of energy expenditure as a

cost should not disregard vertical movement. Thorpe and Crompton (2009) states that verti-

cal climbing is among the most costly positional behaviour. As an arboreal species moving in

a three-dimensional environment, this should probably be taken into account. Davies et al.

(2017a) describes how important vertical structures are for orangutans and how they can

influence their wayfinding. Based on other data sets reviewed for this thesis, the cumulative

vertical movement based on the approximation of heights (which is saved in the activity data

set as the height in tree) for a follow can be more than 150 m. Thorpe and Crompton (2009)

measured the amount of vertical movement during travelling phases and feeding phases and

found that vertical descent or climbing accounts for around 15-30 % of locomotive modes.
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Suaq, which has a very flat topography, could serve as a prime example for analysing this

additional expenditure because the vertical movement does not have to be corrected by the

topography. In other sites with strong changes in terrain altitude it may be more di�cult to

measure the real vertical movement over a follow, because the height is measured as from the

base of a tree and not as an absolute value. As we have no information about path altitude

yet we can not analyse the impact of it. However, it is important that vertical movement

was not observed to di↵er between age-sex classes or individuals (Isler, 2003; Thorpe and

Crompton, 2009). Even more when comparing sites because vertical positional change is in

in flat regions less abundant than in more hilly regions. Therefore, our analysis is still valid

in terms of comparisons between individuals and follows, with the restriction that the actual

influences of explanatory variables have to be taken very cautiously. Such an underestima-

tion of travel distance and energy cost further contributes to the bias of missing out on local

tortuous movement behaviour.

3.3.2 Comparison of TDD, DJL, and tortuosity estimators

The DJL is moderately to strongly correlated with the TDD (r = 0.594***) (RQ A.2). Gen-

erally the TDD increased by 0.9 m for every 1 m increase in travel distance (Figure 3.3).

DJL and straightness of movement did not correlate with each other, but the sinuosity index

and the DJL did. As previously described this is partially the result of the scale dependency

of the sinuosity index (Almeida et al., 2010; Benhamou, 2004). To what degree this reflects

biological movement behaviour is di�cult to distinguish. A quick simulation of the sinuosity

function showed that changing step sizes while holding all other variables constant, actually

reflected similar exponential behaviour. This is maybe also intended because the index ac-

tually compares the actual movement to a correlated random walk model. Thus, we cannot

say that longer travel distances actually mean less sinuosity.

When comparing the sinuosity and straightness of movement, it became clear that they

both describe di↵erent movement patterns of orangutans. They only correlated weakly

(linear regression; straightness sinuosity, 607 degrees of freedom, � = -0.09, p <0.001, R-

squared=0.07). Mean straightness and mean sinuosity detect movements of orangutans in

di↵erent ways. To see the di↵erences of movement characteristics for di↵erent combinations

of sinuosity and straightness, the reader is referred to the Appendix (Figure B.14).
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Qualitatively, we can say that the orangutan movement is quite steady and tortuous

movement often occurs along the whole trajectory. It looks like the tortuosity of movement is

better captured by the sinuosity index of Benhamou (2004), because local tortuous movement

is captured along the trajectory. The main critique of the SI by Benhamou (2004) also applies

to this data set. The usage of the sinuosity index has the positive e↵ect that it is independent

of the DJL parameter. Nonetheless, the SI better captures how directed the total movement

of an orangutan is, but does not really reflect how tortuous the trajectory is. Arguably, this

is the case because tortuous movement of orangutans is locally bound and much smaller than

overall displacement changes of the movement trajectory.

The displacement is also well captured by the TDD and an LMM (not included here)

showed very similar results as the LMM of straightness. The only di↵erence found was that

TDD correlated slightly with the age of the current o↵spring, whereas SI did not (LMM of SI

Table 3.3). But looking at the scatterplots it was found that this is an e↵ect of interdepen-

dencies between the DJL and the TDD, which results in a non-significant linear relationship

of age of the current o↵spring and the SI (Section 3.3.3 and Figure B.15). Because sinuosity,

TDD and DJL actually were influenced by the age of the current o↵spring.

3.3.3 Factors influencing movement

Amain goal of this thesis was to determine what factors influence DJL and the tortuosity (RQ

A.3), from multiple weather variables to FAI, age-sex classes, or the age of the o↵spring. The

fitted models could not find strong influences of the investigated predictor variables and had

low explanatory power. Similar variables used in an LMM by Wartmann (2008) for Tuanan

found a relatively high explanatory power, which suggests that we have indeed di↵erent

situations at the two research sites. Especially FAI showed to be a strong influencing factor

in Tuanan but also at other sites (Ashbury, 2013; Roth et al., 2020; Wartmann, 2008), while

in Suaq FAI appears to be a less constraining factor due to generally very high FAI.

Age-sex classes, age and male dominance

That DJL and sinuosity are higher for younger, less dominant females which can be explained

by their developmental exploration phase (Ashbury, 2013). Nulliparous females, which are
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younger and mostly less dominant, already have been shown to travel further and ranging

more (Ashbury, 2013). But for Suaq such di↵erences are not very well reflected by the move-

ment parameters and straightness showed to be higher for more dominant females. Schuppli

et al. (2016) give a possible explanation for the lower straightness of younger females. They

used the SI as a possible explanation for movement competence, which is worse in younger

individuals. The question then remains if the sinuosity wrongly shows higher sinuosity for

dominant females because the scale-dependency based on the longer movement distances of

younger, less dominant females disguises the e↵ects.

Flanged males and adult females barely di↵ered in the traveled distance per day in Suaq

(Table 3.1), in contrast to Tuanan, where di↵erences between age-sex classes were generally

much higher and especially flanged males tended to have relatively low DJL of around 670 m

(Vogel et al. (2017) in Table 1.1). For adult females Wartmann (2008) and Vogel et al. (2017)

found DJLs, which were on average 100 m longer than the DJL of the flanged males. In Suaq

flanged males showed even slightly higher values than adult females. Unflanged males had

the highest values for DJL in Suaq and also very high values in Tuanan, which were only

exceeded by dependent immature females. Although values for dependent immature females

in Tuanan di↵ered from Vogel et al. (2017) andAshbury (2020). Overall, DJL was generally

slightly higher in Suaq than in Tuanan and adult females, for which the biggest sample size

is available, tend to travel 10 % further in Suaq than in Tuanan.

Regarding the di↵erences between age-sex classes in general, two influencing factors in-

fluencing can be discussed, namely, the mating strategies and foraging strategies. Hereby,

physiological limitations are playing a considerable role in the discrepancy of distances trav-

elled.

FAI is a very important factor controlling the physiological limits of orangutans in Tuanan.

Seasonality has shown to influence DJL and TDD, where lower values in FAI negatively

impacted the movement in general. In Tuanan flanged males, which are generally bigger and

heavier, may have to be more economical, especially when FAI is low. In Suaq, where FAI

varies over the year and years but is generally considered very high, flanged males are not so

much limited by energy expenditure. Likewise, this explains the relatively higher movement

of females and the other age-sex classes. The weaker discrepancy between travelled distance

of flanged males to unflanged males in Suaq is, compared to our initial hypothesis, and in
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comaprison to Tuanan still surprising. The expectation that stable dominance hierarchies

between males lead to a bigger di↵erence in DJL for Suaq has to be rejected. The opposite is

the case. Flanged males in Suaq tend to travel much longer distances than their counterpart

on Borneo and more stable hierarchies are reflected by less di↵erence in travelling distance

to unflanged males.

Dunkel et al. (2013) describe a more dominant control of dominant flanged males over

sexually active females within their territory. Unflanged males generally tend to compensate

their reduced dominance while competing for females by more active searching for females

(Section 1.6). Such a searching behaviour results in the longer DJL observed. The di↵erence

of the mean travel distance of unflanged males in Tuanan and Suaq may originate from

di↵erent male-male competition conditions in both locations. Kunz et al. (2021) described

that males generally initiate and maintain associations with females. The cost of maintaining

such an association is therefore more limited in a less sociable and less productive habitat.

Sumatran orangutans accordingly show higher percentages of time spent on feeding (Morrogh-

Bernard et al., 2009). Arguably they use the productive environment to strengthen their

dominance to monopolise the reproductive access to females Kunz et al. (2021).

Furthermore Dunkel et al. (2013) showed that developmental arrest for males is found

more frequently in Suaq than in Tuanan. This is probably the result of longer consortship

and female monopolisation of dominant males and therefore intensifies the risk of becoming

a flanged male when not being able to gain dominance in an area against other flanged males

(Atmoko et al., 2009; Dunkel et al., 2013). Therefore, we can argue that unflanged males

have to invest even more into searching in Suaq than in Tuanan, which is further contributing

to the overall longer DJL. With respect to these variations in estimation of the di↵erent cited

studies for Tuanan and the above executed uncertainty analysis we can safely conclude that

the travel distance for flanged males is more limited in Tuanan than in Suaq and that the

observed more stable dominance hierarchy in Suaq is probably maintained by longer DJL

Dunkel et al. (2013).

We can further analyse the movement on Level 3. As discussed in Section 3.3.1, results

on this level have to be taken with caution because the sampling regime may miss fine-

grained movement patterns. Generally we cannot observe much di↵erences of movement

during daytime 3.4a. Possible e↵ects where unflanged males prolong their daytime to search

Stefan Graf 72



3.3. DISCUSSION

for females when adult females and flanged males are resting were not observed. But a weak

trend of higher activity levels of independent immatures (mostly juvenile females) coincided

with higher activity levels of unflanged males in the beginning of the follows and towards

the end of follows. This may reflect that successful mating of unflanged males with sexually

active females does occur mostly with nulliparous females, which are more active at the same

time (Atmoko et al., 2009). Future work could look into whether such activity over daytime

is similar or dissimilar in Tuanan. Flanged males in Tuanan, which clearly travel less, may

show less movement at the end of follows or they similarly move less over the whole duration

of follows, as we we found in Suaq. In Tuanan, flanged males clearly have shorter active

periods compared to unflanged males (Vogel et al., 2017). Such a di↵erence could induce

age-sex specific di↵erences in movement during daytime. In Suaq, where follow durations are

not significantly di↵erent, such patterns are nearly absent as described above.

Concluding the discussion of the di↵erences between age-sex classes there is almost always

enough fruit available in Suaq and therefore the average DJL is higher over all follows and for

all age-sex classes compared to Tuanan (sit and wait vs. search and find). Further di↵erences

originate from di↵erent reproductive strategies. Especially, males adjust their mating and

movement strategy based on the habitat productivity and social conditions. Arguably, their

is a reaction of temporal activity during the day based on such reproductive strategies for

unflanged males and nulliparous females.

Tortuosity of movement and feeding trees

The age and dominance of females did not clearly influence the movement behaviour of

adult female orangutans. What we can see is that the trends showed a di↵erence of the

lowest dominance category and therefore the youngest females. Their corresponding DJL

was longer and rather resembled the movement pattern of independent immatures. If there

is an actual di↵erence between older females of higher age and higher dominance remains

unclear. None of the LMMs showed a clear relationship.

We found a statistically significant di↵erence of age-sex classes for the SI and sinuosity,

but when corrected for random e↵ects like months and year, these di↵erences disappeared.

Our hypothesis of a clear di↵erence between age-sex classes can therefore be rejected (RQ

A.3). This is in agreement with Alavi (2018) who also did not find a di↵erence in tortuosity
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between males and females in Tuanan.

Comparing the found SI for adult females with the results of Wartmann (2008) showed

nearly no di↵erence (Tuanan = 0.47, Suaq = 0.46±0.18). This is contradicting results from

Schuppli et al. (2016), who found clear di↵erences when comparing the straightness of move-

ment. At least the trend of slightly higher tortuosity in Suaq remains. However, no influence

of dominance or age on the tortuosity of movement within the Suaq research site is in agree-

ment with Schuppli et al. (2016). A central problem posed by the research question (RQ

B.2) raised by us and also by Schuppli et al. (2016) to use the SI for range competence is

the strong sampling bias that we have revealed in the subsampling analysis (Section 3.1.3).

I argue that general trends are visible and therefore results are not fully contradicting but

a very clear interpretation of the SI or rambling ratio (in Schuppli et al. (2016), which is

reciprocal to the SI), remains di�cult. This is mainly due to the sampling interval of 30

minutes, which misses a significant portion of local tortuous movement. Notwithstanding the

additional validation by researchers in the field may show that such local tortuous movement

is less important in explaining range competence and that we actually can capture ranging

competence by a 30-minute sampling interval. But for Suaq the number of fruit trees visited

for all follows often correlated with less straight movements and higher sinuosity. Further-

more, our results relating to age-sex classes are contradicting as well and do not really help

to explain if SI can be used as a proxy for range competence, because the infants showed very

high straightness. However, this result may be more influenced by the very young infants,

which are often still clinging to their mother. Independent immatures, on the other hand,

showed low straightness, which would fit in with the idea of having less ranging competence.

The sinuosity index as a second indicator is not helping either because infants showed higher

sinuosity, whereas independent immatures showed lower values, probably due to their longer

day journeys and the scale dependency of the sinuosity index. I therefore argue that the

higher amount of feeding possibilities in Suaq may result in the slightly additional tortuosity,

whereas feeding competence plays a minor role.

The previously expected higher clustering of feeding possibilities in Suaq and the higher

amount of ranging in between are also contradicting the results of the generally more tortuous

movement in Suaq. Initially, we assumed more directional movement between tree patches.

Singleton et al. (2009) observes that female orangutans do not travel further in more het-

Stefan Graf 74



3.3. DISCUSSION

erogeneous habitats because they reach all resources within their normal day journey and

therefore we assumed that they optimise their routes. Longer and more direct travelling

between feeding trees with subsequent local tortuous movement when a patch of feeding

trees are reached should have been detected by the analysis in Section 3.1.4. However, no

clear di↵erence between the SI of a random comparable samples and the movement between

trees was found. On the level of the 30-minute sampling interval the movement between

patches of fruit trees led to minimally higher tortuosity, perhaps owing to stronger foraging

and searching behaviour in between tree patches. Therefore, the higher patchiness of feeding

trees in Suaq actually might lead to higher tortuosity, which would be in agreement with the

findings presented in Section 3.2.3 and Schuppli et al. (2016). Fruit trees were also explained

by DJL. Due to the weak strength of the correlation, however, we do not know the direction

of the relation. Maybe the length of the DJL influences the number of fruit trees because

longer travel distance means more feeding opportunities, assuming that the feeding sources

are uniformly distributed. Alternatively, opportunities of feeding at a feeding tree may have

a positive e↵ect on the possibility of travelling further than usual. Nonetheless, DJL and

the derived SI had a strong positive correlation with fruit trees visited. I tend to conclude

that a longer day journey intrinsically predicts a higher number of feeding trees because the

correlation is very high and the e↵ect in the other direction would be minimal. The mapping

of feeding possibilities in Tuanan and Suaq with the same methodology could shed light on

the actual distribution of resources and the alteration of movement, based on these resources.

Fruit availability

In Suaq monthly changes of DJL do occur very often. Interestingly they do not seem to be

directly linked to FAI or weather (Figure B.13), however. There may be some unknown or

unclear variation pattern of fruit availability. The big di↵erence between years may show

such a variation. The unexpected clear di↵erence of rainy season in Suaq at the end of the

year did not end in explaining variations between months compared to many other sites

like Tuanan. Furthermore, the results of including ENSO indices to explain FAI were not

conclusive. No movement parameter was clearly influenced by the FAI. Fruit availability

patterns in Suaq may be more di�cult to observe and to capture because clear seasons of

fruiting are absent. Strong variations of FAI even indicate that FAI is probably influenced
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by the sampling method of GPS points. Because a clear description on how the data is

standardised is missing we cannot elaborate further on the possible sampling biases. However,

we can guess that objectively estimating the amount of ripe fruits for a tree is already di�cult.

Hence, being able to estimate the real fruiting amount based on a random sample of trees may

further obscure clear, reliable results. A full mapping of feeding trees which would facilitate

the easier approximation of FAI has not yet been done (Schuppli, personal communication).

Therefore, the more fluctuating patterns of fruit availability may not show specific trends or

current changes very well.

Nonetheless, the analysis showed that the available FAI even showed a negative correlation

with DJL, although the e↵ect was statistically not significant. A clear sit-and-wait strategy

during lower FAI can definitely be rejected ,and as proposed by Morrogh-Bernard et al. (2009)

a search-and-find strategy is observed. The slightly negative trend of FAI on DJL may suggest

that orangutans in Suaq have the availability to invest in other activities than foraging, such

as reproduction when FAI is high. Also, they do not adjust activity or movement based on the

available fruit but are more driven by internal factors, such as the age of the current o↵spring.

Conversely, Morrogh-Bernard et al. (2009) showed that fruit availability had an e↵ect on the

start time of activity of Sumatran orangutans in Ketambe. This has not been observed for

the data analysed in this thesis. Whether FAI influences daily movement therefore appears

to be not only species-specific but to a higher degree site-specific.

Weather variables

Weather variables of Suaq did not explain the movement parameters and did not explain

FAI. Even high precipitation did not result in changes of movement. The positive tendency

of day rain and temperature on DJL was not expected. The negative impact of night rain

may be explained by the shortening of activity if orangutans react with later activity. Such a

change of daily activity has already been described by Parsons (1999). The question remains

why day rain then does not show the same pattern. Possibly, the orangutans compensate

for short stops during heavy rain events or day rain is more strongly associated with months

where other ecological factors favor longer DJL. The observed pattern in Tuanan that speed,

directness and distance travelled was higher with lower rainfall could not be confirmed by our

methodology. One of the main reasons why altering movement patterns are not correlated
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with rain data sets may be explained by the lack of meaningful information of pooled 24-hour

rain data sets (Isbell 1983 in Parsons (1999)). Such a pooling may obscure the clear impact of

rain on movement. The inclusion of temporally more densely sampled weather data, possibly

based on field observations by research assistants, may help to fill this gap.

Higher temperatures do not seem to hinder orangutans from travelling further to avoid

overheating or being physiologically stressed. For other primates such a pattern was shown.

McLester et al. (2019) analysed red-tailed monkeys at two sites of di↵erent climate (Cer-

copithecus ascanius) and found that hourly travelled distance and daily travelled distance

both were negatively impacted by higher temperatures but not by higher precipitation. The

climatic habitat of orangutans may be very stable and therefore the impact of daily weather

does not alter the movement pattern of orangutans.

Generally, we can conclude that although there are di↵erent weather phases and statisti-

cally significant di↵erent temperature and precipitation periods, this has nearly no influence

on the movement on Levels 1 and 2. Field observations of behavioural changes to rain and

resulting changes in movement are probably bound to the third level, the highest temporal

resolution.
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Chapter 4

Analysis II: Ranging behaviour

(Level 1)

4.1 Methodology

4.1.1 Definition

Home range

The concept of animal home ranges was introduced in 1943 by Wiliam Henry Burt. It essen-

tially describes spatial and temporal observations of animals on a map and aims to show the

distribution of an individual (Burt, 1943). In biology and ecology, the concept of home ranges

is widely debated. It often remains unclear what exactly the home range means. We do not

know the exact ecological relevance of the home range or how exact such a delineation is with

the above-mentioned definition. So it is important to know what the ecological reasons for

such a spatial distribution is. In terms of orangutans we can say that the spatial distribution

of resources especially feeding trees, density of food, sex related distribution strategies (as

already mentioned female philopatry and male dispersal), inter (reproduction) and intrasex

(competition, hierarchies) related interactions best explain the space of action of an orangutan

(Ashbury et al., 2020; Singleton and Van Schaik, 2001; van Noordwijk et al., 2012). To a

lesser degree also some hurdles and spatial limitations are set. Powell and Mitchell (2012b)

proposes that the best concept of a home range is the cognitive map of the environment of

an animal that it chooses to keep. Nonetheless to know what cognitive map orangutans have
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of their environment needs much more studies and therefore are home ranges mostly derived

by the distribution of their sampled spatial positions via GPS-samples, telemetry or camera

traps. This brings up further questions which are widely debated. What is the best method

to delineate a home range by the available positions of an individual?, What percentage of

the delineated space should be included, do occasional excursions count as well? Furthermore

a big problem poses the delineation in time instead of space. A solution that incorporates

parts of the problem of spatial delineation is the usage of spatial occurrence or so called

probability distributions which incorporates areas with higher use and areas with lower use

(Katajisto and Moilanen, 2006). But again if the importance of an area for an animal is also

clearly reflected by higher occurrence probabilities is debated (Powell and Mitchell, 2012b).

Some species tend to satisfy their needs of an area in a very short time. A perfect example

for such quick spatial needs in rain forests would be natural mineral licks which are even

observed to be occasionally used by Bornean orangutans (Ampeng et al., 2016; Powell and

Mitchell, 2012b).

In this thesis, four methods were used to retrieve a home range by GPS-locations which

increase in complexity. First home range boundaries, second probability distributions (and

boundaries derived from them), and third probability distributions that even include a tem-

poral dimension or delineation. Additionally, the research period was also manually separated

into di↵erent research periods.

In the meta-study by Singleton et al. (2009) - one of the fundamental published studies for

developing the concept of this master’s thesis - the distribution ranges of female orangutans

were compared at di↵erent sites. Almost all studies used MCP to estimate the size of the

home range. A species-specific di↵erence in home range size for female orangutans was found.

Pongo abelii had the largest and pongo pygmaus morio the smallest home range sizes (pongo

abelii >pongo wurmbii >pongo pygmaus morio). Habitat properties were described as having

an impact on home range sizes too. E.g. range sizes of 1.5 km2 to 4 km2 in Ketambe (Habitat

type: Dry lowland, alluvial, submontane with homogenous habitat mosaic) were observed and

range sizes >8.5 km2 were found in Suaq (peat swamp forest). Bigger home ranges in Suaq

may be explained by the combination of five di↵erent habitat types, coastal peat swamp,

transitional swamp, back swamp, riverine and hill and therefore more movement between

those areas (Russon et al., 2009; Singleton et al., 2009). Additionally, a higher clumped
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distribution of fruiting trees in the peat swamp forest may lead to more scramble competition

between orangutans (Knott et al., 2008; Singleton and Van Schaik, 2001).

In terms of methodology, the meta-study identifies three main sources of error for estimating

home ranges. First, the algorithm used to compute the home ranges, second, the size of the

study area, third, and most importantly, the temporal resolution of the GPS data and the

duration of the study for individuals. Singleton et al. (2009) state that a longer observation

period leads to larger home ranges.

Core range

Core area is a relatively arbitrary concept to define an area where the animal spends most of its

time. One of the various definitions attempts to define core range as the area that an animal

knows well and where its mental map and spatial representation is very clear. For species with

stationary home ranges, which is expected in female orangutans, core ranges should exclude

infrequent excursions out of the known spatial range (Singleton and Van Schaik, 2001). For

simplicity, many studies use a rather arbitrary threshold of 50% of the original home range

(Ashbury, 2013; Knott et al., 2008; Singleton and Van Schaik, 2001; van Noordwijk et al.,

2012; Wartmann et al., 2010). Either by cutting o↵ 50% of the points or by reaching the

50% threshold of a utilisation distribution. Knott et al. (2008), analysed female competition

within core areas and found that resident females usually dominate a competitions. However,

a precise biological or ecological definition of orangutan core territories was missing (Knott

et al., 2008). For orangutans, I would argue that the threshold of 50% is too low to meet

the definition above because excursions are rare. Nevertheless, such core areas show the

most temporally important areas for an orangutan. Since many other studies have used

this threshold, it was done for this thesis likewise. Overall, a definition of core areas and

information on the importance of spatial requirements for orangutans in general would be

appreciated. Singleton and Van Schaik (2001) found core areas for orangutans in Suaq, where

they averaged 49% of home range size. Rare excursions were successfully excluded by cutting

o↵ 50% of points starting from the centroid.

Stefan Graf 81



4.1. METHODOLOGY

4.1.2 Workflow

An analysis of the ranging behaviour was conducted for the ten most followed females

(overview of selected individuals Table C.1). The four most frequent followed females, Lisa,

Friska, Ellie and Cissy accounted for roughly 40% of the total data (407 follows) and roughly

80% of the data of the selected females (Figure 2.3). For the analysis of ranges, all points

were included not only NN-follows (Figure 2.2). Additionally, some data was generated by

creating new GPS-points or partial follows, when other orangutans met the followed indi-

vidual. This is a so-called party and is remarked in the GPS and the behavioural data in

field. A party point is defined as when a dependant orangutan comes nearer as 50 m of the

followed individual. On the contrary to the paper of Wartmann et al. (2010) morning points

were included in the analysis, although they may be sometimes duplicated due to subsequent

follows over a few days. However, leaving them away may also delete information. Addi-

tionally, morning nests may reflect spatially more relevant areas for orangutans. Therefore,

leaving them in the data slightly gives importance to them. Party points of dependant fo-

cals were additionally added to the data set. No spatial limits or boundaries were set like

the river or other regions o↵-limits. Forest structure or spatial canopy variations could not

be included because it would need considerable research e↵ort to retrieve some useful data

to include. After preparing the full data set, the spatial autocorrelation of occurrences for

individuals was calculated. For delineating the home ranges the data was split into four par-

tial research periods (Section 2.2.1) and the total period was added as the 5th period. This

results in two scopes of temporal resolution. For every partial research period and the full

follow duration the home range was calculated for every of the ten most followed females.

It was calculated with di↵erent home range estimators where every home range estimator

has a di↵erent parametrisation (Details see Section 4.1.4). For all HRE or derived quality

indicators which rely on a reference grid, a grid was defined over the research area with a

resolution of 25 m which compromises calculation duration and resolution. For all individuals

at minimum the core range which considers 50% of GPS-points and the home range of 95%

of the GPS-Points was derived and saved. The percentage either relates to the amount of

GPS-points considered for the calculation of a range. It is derived by the Cartesian distance

of the centroid of all points (for MCP). Or it relates to the threshold of a volume of the UD

(for KDE, BRB, AKDE).
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The HRE and the home range parametrisation was then evaluated by di↵erent home range

descriptors (Section 4.1.9). After the evaluation of the parametrisation and the di↵erent

HRE the number of feeding trees per home range was derived. Additionally, possible other

explanatory variables were added to the data. For the ten females, it was analysed how

the age category (arbitrary categories 1-5), matriline (relatedness, matriline groups) and the

dominance category (1-4) influence the area of their home ranges.

Calculation of overlaps

After analysing the home ranges, the same was done for overlaps. The overlaps were always

calculated between the same corresponding data threshold (core range, home range) and the

same used parameters and algorithms. However, there are again various types of overlap

algorithms. Below are some examples how overlap can be measured. For this thesis, the

following overlap indices were calculated, but only some of them are used in the following

analysis:

• Total area shared with others in percentage of own HR. This is the only overlap indi-

cator which is independent and does not show an interaction between two individuals.

(A \B) + (A \ C) + ...

(A)
(4.1)

• The dyadic relative overlap. Which is the HR shared with another individual in

percent of the own HR. This is the only directed overlap index used, all the others are

undirected. This means that the value is not the same if calculated for either one of

the currently analysed dyadic focals. To overcome redundancy, the dyadic value was

saved as a second overlap index, the relative overlap where the individual A is part of

the individual B’s HR.

relative overlap =
(A \B)

(A)
or relative part of =

(B \A)

(B)
(4.2)

• The Jaccard overlap which compares the overlap to both HR-sizes and therefore stays

Stefan Graf 83



4.1. METHODOLOGY

the same for both individuals (Jaccard, 1902).

(A \B)

(A [B)
(4.3)

The following overlap indices are only calculated for the KDE and BRB algorithms be-

cause the utilisation (probability) distributions of the home ranges were used. This is a big

advantage because the temporal and spatial density of overlaps is taken into account. The

following overlaps were calculated with the adhabitatHR package (0.4.19).

• Utilization Distribution Overlap Index (UDOI) of Fieberg and Kochanny (2005)

which is a measure of space use sharing. According to the author, this algorithm gives

the most reliable results.

• The Bhattacharyya A�nity (BA) was also proposed by Fieberg and Kochanny

(2005) and describes the overall similarity between two UDs (Clapp and Beck, 2015).

Values go from 0 (no overlap) to 1 (identical probability distribution).

• The Volume of Intersection (VI) which is simply the volume of intersection of two

UDs. It often correlates highly with the BA (Clapp and Beck, 2015).

For all derived overlaps, the number of fruit trees was derived as well. Influencing vari-

ables were then analysed using a LMM. The explanatory variables used were relatedness

(matriline), age category and dominance. Additionally, it was analysed if these variables do

explain partially the variance of fruit trees in the overlaps. Finally, a discussion was done by

comparing the results to other sites and discussing the methods used.

Normalisation of fruit trees

Feeding trees were sampled when an orangutan stays longer than 5 minutes in a tree and

is eating the fruits of it. This data set was used to retrieve the number of such tree points

per home range or overlap. However, sampling points of trees can be redundant when a tree

is sampled many times by di↵erent follows. Our main interest belongs to the location of

potential feeding sites. However, without clustering or defining such feeding sites, we had to
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normalise the number of fruit trees in an area. Because initially, the variation of fruit tree

in an area was mainly influenced by the amount of follows conducted in an area and the size

of an area. To reach a normalisation of the number of fruit trees, there was only one simple

method without digging into analysing and researching the research e↵ort in the research

area. The number of fruit trees were compared to the total number of GPS-Points sampled.

Therefore, for every HR or every overlap, the number of fruit trees was divided by the total

number of GPS-Points including the number of fruit trees. The normalised tree value reflects

the number of trees sampled in an area compared to the total number of points taken.

4.1.3 Spatial autocorrelation

A long discussed problem of animal movement data is spatial autocorrelation. Nearly ev-

ery data set of animal tracking data is spatially autocorrelated to some degree (Dray et al.,

2010). This poses a problem for movement ecologists because many movement indicators

assume statistical independence (e.g. home range estimators like kernel distance estimation).

In simulations higher spatial autocorrelation showed a underestimation of home range sizes

(Calabrese et al., 2021; Swihart and Slade, 1985b). The movement ecology of an animal and

the sampling interval mainly influences how big the spatial autocorrelation is Dray et al.

(2010); Swihart and Slade (1985a). Lower sampling intervals increases the possible distance

travelled by an animal and therefore increases correlation between two subsequent fixes. The

spatial correlation decreases with time and a method could be to subsample a data set to

get higher time intervals and lower spatial autocorrelation. But finding the time when GPS-

fixes are independent is not trivial and probably not even helpful. Rooney et al. (1998) for

example, did not even find independence of fixes when subsampling the tracking points with

a sampling interval of a week. While subsampling did not reduce spatial autocorrelation

important information of home range use was lost during the subsampling process and home

ranges were highly underestimated (Fortin and Dale, 2009; Rooney et al., 1998). Even though

the study looked at hares and voles which may di↵er strongly to primates, a lose of biolog-

ically relevant information of space use can be expected for primates and more specific for

orangutans too. Rooney et al. (1998) further states that to overcome spatial autocorrelation

biases in home range estimations it would be best to have a long-term study with a very

coarse sampling interval (Rooney et al., 1998). This means a high continuity and a fine scale
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sampling interval would reveal any biases, although the data itself would be highly spatially

correlated.

Generally spatial autocorrelation bias in home range analysis is considered as a statistical

problem in statistical movement ecology but with less biological meaning. On the contrary,

spatial autocorrelation may be even desired to describe di↵erent use of space, for example to

compare di↵erent habitats for a species (Rooney et al., 1998). Many authors argue that spa-

tial autocorrelation is an inherent feature of animal tracking data and that much information

is lost if we try to reduce it. Nonetheless some statistical home range estimators are more

a↵ected than others because they assume statistical independence between relocations (like

classical KDE algorithms) (De Solla et al., 1999; Fortin and Dale, 2009; Rooney et al., 1998).

Communicating spatial autocorrelation and discussing potential impacts is important and

even adds biological relevant insights. Observed impacts in simulations showed mostly a de-

crease in home range size with highly autocorrelated data. A major advantage in orangutan

studies may be the research method of focal animal follows. Any biases due to sampling

intervals and spatial autocorrelation can be judged by the researchers and researcher assis-

tants who are working in situ. This is not so much the case for GPS collars in many other

animal movement ecology research. Wartmann (2008) executed an analysis of spatial auto-

correlation and looked at the influence of autocorrelation on home range estimates (KDE).

She found bigger home ranges with higher autocorrelated data, but the di↵erences between

home ranges were statistically not significant. Even when using only night nests instead of

all GPS data points, spatial autocorrelation was present. Therefore, this thesis renounces to

reduce spatial autocorrelation by only using night nest points at the risk that there might be

a slight influence on the resulting home range sizes. The main reason is that a reduction of

points always means a loss of biological relevant information.

Nonetheless, temporal autocorrelation was measured by using the Schoener’s ratio (t2/r2)

implemented in the R package adehabitatHR and some customised function (Calenge, 2006b).

Where t2 describes the mean squared distance between two successive GPS fixes and r2

describes the mean squared distance between each GPS-Point and the centre of all GPS-

points. Values of Schoener’s Index above 2 are indicating negative spatial autocorrelation

and values below 2 indicate positive spatial autocorrelation (Swihart and Slade, 1985b). We

see that the Schoener’s I for all individuals are comparable and that all data is strongly
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autocorrelated. However, orangutans (esp. Lisa, Friska), which have few follows at a denser

sampling rate (follows in early 2011 of 5 min sampling interval), do not clearly show higher

spatial autocorrelation. We conclude that di↵erent focals home ranges are comparable and

spatial autoccorelation may be a problem, but to solve it would be at the cost of loosing more

valuable information. Most importantly, the quality of our results are much more dependant

on the sampling frequency and the study duration.

Table 4.1 – Overview of Schoeners ratio.

orangutan t2/r2

Cissy 0.014
Ellie 0.021
Friska 0.017
Lilly 0.02
Lisa 0.017
Ra� 0.013
Sarabi 0.011
Tiara 0.016
Trident 0.034
Yulia 0.048

4.1.4 Selected home range estimators

The quality of Home Range Estimator (HRE) is di�cult to access. Which of the estimators

is best for a given species or data set is hard to distinguish (Horne et al., 2007; Powell and

Mitchell, 2012b; Walter et al., 2015). To evaluate the performance of the estimators, simula-

tions or validation would be needed (Walter et al., 2015). The true home range as a quality

control is not known for any of the followed individuals. This is a standard problem for the

selection of a single best home range estimator. Therefore this thesis uses multiple HRE of

di↵erent generations and compares them with the presented data set. Gregory (2017) state

e.g. that using multiple algorithms and discussing them is the best approach to accomplish

expressiveness because even first generation algorithms in a case of primate studies about

chacma baboons (Papio ursinus) outperform more advanced algorithms. The comparison

allows us to still get behavioural insights because the same method was used for every given

individual. The variation of algorithms on the other hand gives us further information about

how expressive the presented results are and how di↵erent HREs influence the findings. The
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findings then can be further compared to other research findings and their home range de-

lineation methods 1.1. For this thesis three main HREs were used. A first generation home

range estimator is the MCP, a more advanced second generation estimator, which makes use

of the probability of occurrence is the KDE (Fleming et al., 2016; Powell and Mitchell, 2012a;

Worton, 1989). The third estimator was BRB which even incorporates a temporal dimension

and is a third generation estimator (Byrne et al., 2014; Kranstauber et al., 2012; Walter et al.,

2015). A fourth mathematically very complex method from the shiny web interface by the

authors of the ctmm package in R was used for only the full study period (Calabrese et al.,

2016; Fleming et al., 2016). Specifically it uses AKDE for delineating a home range. The

web interface was used because in R some functions did not work.

Initially, the estimation of home ranges by a time local convex hull was done as well. The

algorithm is related to the MCP method and does not give a probability distribution (Wal-

ter et al., 2015). But because every home range calculated had to be evaluated to adjust

parameters, the use of this algorithm was omitted.

4.1.5 Minimum convex polygon

A Minimum Convex Polygon (MCP) or simply a convex hull was one of the first methods

used to define an animal’s home range and was and sometimes still is very common (Downs

and Horner, 2008). Common because it is a first generation and very simple algorithm. Of

the seven cited sources estimating home ranges for orangutans five used MCP for estimating

home ranges (Table 1.1). A main advantage is also that this algorithm is non-parametric

and hence comparable between studies (Huck et al., 2008). MCP’s are generally considered

to be very unreliable because they are sensitive to sample size and outliers, do not provide

information on internal space use, and are less useful if the home range is not inherently

convex (Downs and Horner, 2008; Worton, 1989).

The MCP is derived from the minimum convex polygon which encloses all points sampled.

Per definition, the angle of three points which are connecting the hull around the home range

must be lower than 180 degrees. Examples and results of this method can be seen on the shiny

app created for this thesis. The goal was to find the first results for the concept presentation

of this thesis (Figure 4.1).
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Figure 4.1 – Enclosing of GPS-Points by a convex hull by the MCP-algorithm. Normally only
95% of the points are considered (cutting the 5% furthest away from the centroid of the points)
to avoid outliers which have a huge impact on this algorithm. Example above is a MCP from
the ”orangapp” constructed as a preparation to this thesis where the cut o↵ value for points was
chosen to be 98% because outliers are rare.

4.1.6 Kernel density estimation

Theory

The following algorithm reminds us a bit of the grid cell method, which was historically

probably one of the first methods to measure the spatial distribution of an animal and was

also often used in orangutan studies (Table 1.1. Grid cell method means that the number of

points/sightings per cell of a predefined grid is counted and the area of all cells is summed

up for the total range size or the number of points per grid is visualised which results in a

heat map (Haugen, 1942). In orangutan studies this grid was often around 100-200 m.

The Kernel Distance Estimation (KDE) is a second generation algorithm which calculates

a utilisation distribution (= probability or occurrence distribution) which uses probability

functions (i.e. the probability function adapts to the data), so-called kernel methods for esti-

mating the spatial likelihood of occurrence over time (defined by the data set) for a specific

individual. However, also this method comes with flaws (Worton, 1989). KDE is mathe-

matically still relatively simple and is applied in many fields. Just think about heat maps

Stefan Graf 89

https://greentrea.shinyapps.io/orangapp/


4.1. METHODOLOGY

calculated with KDE for example for analysing the action spaces of individual players on the

field or analysing crime occurrences. The broad application also led to many adjustments,

improvements and variations of the KDE (Fleming et al., 2016).

The KDE is still a non-parametric home range estimator. It is often wrongly assumed that,

this means that KDE does not need parameters. With non parametric and parametric the

underlying statistics of a home range estimator is meant. Non-parametric – like the KDE

algorithm – means, that the algorithm does not presume an underlying distribution or model

structure. However, in this thesis, we will also talk about the parameters or the parametrisa-

tion of an algorithm, which does not mean that an algorithm is non-parametric or parametric.

To calculate the UD we basically sum up multiple density distributions. The bivariate proba-

bility density function is derived from the given locations of the animal (Seaman and Powell,

1996; Worton, 1989). With the resulting UD we can describe the intensity of space usage

at any given location for an animal. For delineating home ranges from a UD the volume of

the wanted outline can be defined. For example if we want the 95% delineation from any

given UD the volume starting from the highest density is measured until 95% of the volume

is reached (From the top to the bottom/ground in the graphic below). At this threshold

the binary delineation is then projected on the two dimensional plane (Seaman and Powell,

1996).

[UDx =
1

nh

nX

i=1

K(
x�X1

h
)) (4.4)

Variables: x = any given position, n = number of GPS-fixes, h = bandwidth, K = kernel

function, Xi are the coordinates at the ith GPS-fix. KDE developed by Worton (1989) with

its result the UD which estimates the probability at any given space in the two dimensional

space (here only one dimensional).
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Figure 4.2 – Schematic KDE calculation by summing up multiple density distributions to one
utilisation distribution. The underlying density function uses parameters which can influence the
results immensely. Image from Commons (2020).

The KDE uses two main parameters which have to be given to the function. The most

important parameter is the bandwidth h (Downs and Horner, 2008). The bandwidth repre-

sents how intensively the fixes are contributing to the density functions (in Figure 4.2 red)

depending on the distance to the current ith point where the density function is calculated.

Small bandwidths mean the results are very grainy because only very near points or at its

maximum no other point nearby is considered for the local kernel (density function). This

means that small scale patterns are visible but with increasing number of breaks between

probability maxima. Big values mean a very smoothed surface which can lead to oversmooth-

ing where areas of no occurrences are showing high values because of fixes which are lying

far away (Downs and Horner, 2008; Seaman and Powell, 1996).

The bandwidth can be estimated with various methods using the given distribution of data

or it can be approximated and then adjusted manually. The default method in the ade-

habitatHR package is the reference bandwidth (REF). Hereby, the bandwidth is derived

from the standard deviation of the distances of the GPS-fixes which are assumed to follow

a normal distribution. In real data, this is mostly not the case and the assumption is not

helpful to estimate reasonable home range sizes. It mostly oversmooths the occurrence dis-

tribution (Seaman and Powell, 1996). The Biased Cross-Validation (BCV) and Smoothed
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Cross-Validation (SCV) are belonging to the category of cross-validation techniques which

were introduced because the traditionally used LCSV tended to undersmooth the data (Hei-

denreich et al., 2013; Rodgers et al., 2007). The fourth estimator used in this thesis is the

Solve-the-Equation Plug-In (PI) approach. The PI approach is very similar to cross valida-

tion techniques. But it tends to oversmooth the UD a bit more. Generally the performance

of the given bandwidth estimators is highly dependant on the presented data. For further

details about each estimator Heidenreich et al. (2013) and the master thesis of (Zehnder,

2015) gives a good overview and backgrounds about other bandwidth estimators and their

influence on the resulting UD.

A second parameter is the choice of the kernel. There are two types of kernels. Fixed ones for

which the bandwidth stays the same for all data points and adaptive ones where the band-

width is adaptive for di↵erent regions of the UD based on the locally measured densities.

Adaptive kernels do smooth lower occurrences more than higher. So if we are interested in

the full home range a fixed kernel is more appropriate and was applied in this thesis (Seaman

and Powell, 1996). Overall the parametrisation does influence the results less then other

factors like the given sample size and the temporal consistency (Powell and Mitchell, 2012b;

Seaman and Powell, 1996). The KDE is a well established HRE with the advantage of a

resulting UD instead of a binary boundary. The performance is highly dependent on the

data, the bandwidth and the kernel selected and consequently high variations in estimation

results occur. Other disadvantages are that KDE actually assumes statistical independence

of the sample points which is not the case in this study and in many other movement ecology

studies where autocorrelation between points is high (Section 4.1.3).

Parametrisation and method

For the estimation of KDE first the data was split in the before mentioned four research

periods with the additional full data sets. Therefore we get 5 data sets. For all of them every

individual was automatically filtered out. Then for every period the bandwidth of every

individual was estimated with the ks package using four di↵erent methods REF,PI,BCV

and SCV (Table 2.1). The broadly used least square cross-validation LSCV method for

estimating the bandwidth could not be used because it fails when points are to close to each

other (Wilson et al., 2020). Then a utilisation distribution for a given period and a given focal
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was calculated with help of the adehabitatHR package (Table 2.1). From the resulting UD

the 50%, 95% and the 99% level was derived and saved. In the end we would have 600 home

ranges for 10 individuals, 5 periods (4 partial periods + 1 full period), 4 di↵erent bandwidth

approximator methods and 3 home range levels delineation (Core range, 95% HR and 99%

HR). However, because not every individual was followed, the total number of derived home

ranges was only 492.

4.1.7 Biased random bridges

Theory

The third main home range algorithm in this thesis is the Biased Random Bridge (BRB)

estimator. The underlying concept is fundamentally di↵erent to the KDE approach. In-

stead of points the underlying trajectories between points, namely the Brownian bridges are

used to estimate occurrence probability between two relocations. A Brownian random walk

between two fixes is the underlying concept of Brownian bridges movement models. It de-

scribes a movement where any direction of the next step is independent of the one before.

The utilisation distribution can be calculated by the formula 4.5. Generally the probability

distribution looks like in 4.3. The density functions are mainly influenced by the time and

distance between subsequent points. Additionally the location error is given as a parameter

and assumed to be normally distributed over the point location. The main influential param-

eter is the Brownian motion parameter �2
i (t). It describes the di↵usion of an animal and is

a proxy for how irregular the movement of an animal or species is (Horne et al., 2007; Zehn-

der, 2015). In the model, it is the highest between two relocations and 0 at the GPS-fixes.

Therefore, we see a higher variance between points than at the fixes in figure 4.3. The biased

random bridge is an adaption of this Brownian bridge movement model. It includes a drift

part, which means that an animal does not move totally random between two relocations

but has a directional bias. This means the resulting bridges or density functions are longer

and lower between subsequent fixes if the drift coe�cient is higher (Figure 4.3). More details

about the BRB algorithm is given in Benhamou (2011).

dfBB(z) =
1

T tot

n�1X

i=0

⇢Z Ti

0
'(z;µi(t),�

2
i (t))dt)

�
(4.5)
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Variables and parts: '(z;µi(t),�2
i (t))dt = the bivariate density at any given time where z

is any location, µi = mean which is proportional to time between fixes, �2
i (t) = di↵usion

coe�cient, variance term which is biggest between two fixes and 0 at fixes. It is estimated

based on the movement trajectories of an individual, T = the duration of a bridge, t = the

time evaluated between ranging between 0 and T. The formula of the Brownian bridge (Horne

et al., 2007)

Figure 4.3 – Brownian bridge probability distribution. The density function estimates the
probability at any given space between two relocations based on a biased random walk. Image
from Horne et al. (2007).

Overall the BRB is a advanced third generation HRE which is mathematically not so easy

to understand. It includes time, spatial positions as well as the trajectories for estimating

home ranges. Which is di↵erent compared to KDE which only includes distances to other

points and does not include the underlying trajectories at all. A main advantage is that BRB

actually does explicitly need autocorrelated data (compared to KDE) because the algorithm

uses the trajectories for estimating the utilisation distribution. It can also handle varying

sampling intervals very well (Benhamou, 2011; Horne et al., 2007). On the other hand if

autocorrelation or the sampling rate is too low the model based on random walk is becoming

less useful although the BRB algorithm with its drift parameter can reduce this problem

(Benhamou, 2011).
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Parametrisation and method

Because of mathematical di�culties, the original algorithm of BRB has never been imple-

mented in R instead the usage of a so called movement-based KDE has proved its worth.

Di↵erences of results to the original algorithm are negligible (Benhamou, 2011). For the

estimation of BRB again the algorithm was applied to all four periods and the full research

period using the adehabitatHR package. For all data, the default locational error of 12 m

was used. The algorithm of BRB needs the parameter hmin (smoothing parameter describing

the species related movement capacities, see above). As proposed by Benhamou and Cornalis

(2010) the hmin can be estimated by summing the GPS-uncertainty with half the distance an

individual is able to travel in a longer time period with its maximum empiric speed. There-

fore a time period of 30 minutes, roughly the length of the sampling interval was chosen.

The maximum velocity was retrieved for every individual-period combination with a cut o↵

value of 99% to avoid outliers. After analysing the results it was decided to choose a global

maximum speed value. The results of the preliminary analysis showed that maximum speed

were in average 8.6±3.87 (ranging from 2.5 to 18) m per minute. A rather conservative value

of 6 m per minute was chosen due to the slow behavioural movement pace and the relatively

small areas they range in (RQ A.1). Additionally overall sinuosity indices show a relatively

constant tortuosity which further speaks for a lower hmin value (Stark et al., 2017). The final

hmin reference was calculated by multiplying the sampling interval of 30 min with the maxi-

mum empiric speed, dividing it by two and finally adding the relative positional uncertainty

of 12 m. The resulting hmin was 102 m. Because the selection of hmin is based on the data

set itself and is maybe sometimes a bit arbitrary an additional hmin-factor was introduced.

For every derived hmin reference eight possible weighting factors were multiplied (0.2,0.4,0.6,

0.8,0.9,1.1,1.2,1.4) to get the finally used hmin.

Another parameter the Tmax makes a temporal threshold. It defines the maximally allowed

time between two GPS-Points to be added to the UD estimation. In our case, a value of 70

minutes to include bridges where one point was missing and an additional minimum threshold

of 10 minutes was chosen if points were not sampled on a full half hour step.

The minimum movement threshold Imin which reflects the minimum amount of distance

travelled to count as a movement, was chosen to be very low. Although Dürr and Ward

(2014) proposed to use twice the distance of the locational uncertainty, a value of exactly
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the locational uncertainty was used. Again, the reason was to not miss very short low scale

movements, which are very typical for orangutans.

The last parameter which had to be defined was tau. It describes the duration of segments

(steps) taken between two GPS-fixes where for every step a density function is fitted. A

quick analysis of Zehnder (2015) showed negligible impact of the decision of choosing tau

when calculating home ranges of far ranging lions (Panthera leo) and cheetahs (Acinonyx

jubatus). A very conservative value, although it needs higher computational time, for tau

with a duration of one minute was chosen. From the resulting UD the 50%, 95% and the 99%

levels were derived and saved. In the end we would have 1200 home ranges for 10 individuals,

5 periods (4 partial periods + 1 full period), 8 di↵erent hmin (8 di↵erent weighting factors)

and 3 home range level delineations (Core range, 95% HR and 99% HR). However, because

not every individual was followed, the total number of derived home ranges was only 984.

4.1.8 Autocorrelated Kernel Density Estimation

Theory, parametrisation and method

A very new but mathematically very complex algorithm, the so called AKDE was also tested.

Comparing to the KDE it overcomes the problem of violating the independence of sampling

points problem. Highly autocorrelated data can therefore be analysed without violating

statistical assumptions (Fleming et al., 2016). In this thesis the web interface proposed

by Calabrese et al. (2021) was used. The web interface of ctmm allows to estimate home

ranges via AKDE in a streamlined way. First the data for the 10 most followed females was

uploaded and potential outliers were deleted. In our case only two points were additionally

identified as outliers by their corresponding speed value. They were not already found in

the preprocessing of the data set. Then a locational GPS-error of 12 m was set. Next the

semi-variograms and peiodograms were visualised and explored. These diagrams reveal the

underlying autocorrelation structure and the drift of a range. They show the average square

distance travelled (y axis) for a given time lag (x axis). The semi variograms are the main

tool for the AKDE to model movements based on the existing data. We can then select if we

want to pool the variograms. This means that it tries to fit a population variogram instead

of a variogram for each individual. This can be useful when movement behaviour between
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individuals is similar and we can reach a more robust semi variogram or the opposite if

individuals like males and females are moving in a very di↵erent way. Then various continuous

time movement models (Brownian Motion, Ornstein-Uhlenbeck motion, Integrated Ornstein-

Uhlenbeck motion, Ornstein Uhlenbeck-F motion) are fitted to the empirical variograms. The

best models are selected and home range UD are calculated by using the AKDE algorithm

(Alavi, 2018; Calabrese et al., 2021; Fleming et al., 2016). The 50% delineation and 95%

delineation of the utilisation distribution are downloaded locally and added to the other

home range results.

4.1.9 Descriptors of home range

It is di�cult to access which home range estimator or which parametrisation method works

best for the orangutans of Suaq because we have no knowledge about the true home range

distribution to validate and compare our results. What remains are descriptors of home

ranges similar to a visual assessment.

Therefore, the resulting home ranges were analysed for their quality by using some descriptors

(area, AUC, number of holes, number of polygons). The Area Under the Curve (AUC) was

calculated which indicates if the relocations fit to the resulting home range isopleths (Walter

et al., 2015). The AUC was calculated with the caTools package (1.18.2) (Tuszynski, 2021).

AUC was already used for comparing HRE in a study of arboreal primate study by Stark et al.

(2017). AUC values are ranging between 0.5 and 1, where 1 means a perfect agreement of

GPS-points and the derived UD (Walter et al., 2015). The AUC reflects kind of a comparison

of the HRE to a fine scaled grid cell method. The total area of the home ranges were calculated

by the respective home range delineation. The number of polygons of which a home range

consisted of was counted and the number of holes these polygons or the home range in total

had was counted. Holes and polygons were only counted if they were bigger than 1000 m2

to avoid small artefacts. This is approximately the area of twice the area of a circle with

the locational error used of 12 m. Last but not least the compactness descriptor used in

Zehnder (2015) was used which describes how compact a home range is. The idea is to reflect

the e�ciency of ecological use of space for their needs. The compactness was calculated as

followed (Zehnder, 2015).
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Compactness =
4 ⇤A
⇡ ⇤D2

(4.6)

Variables: A = area of home range, D = diameter of smallest enclosing circle of all poly-

gons.The formula to calculate compactness from Zehnder (2015).

4.1.10 Sensitivity to the number of locations

It is di�cult to define the minimum number of observations which are needed to get reliable

home range estimates. A simple way of estimating how many observations are needed to get

a reliable home range for animals showing site fidelity is a bootstrapping approach where

the home ranges are derived from an increasing percentage of data. Then the results can

be visually analysed by plotting the home range size against the amount of data and the

amount of data where the size of home ranges are approaching an asymptote can be used as

a measure of the minimum locations needed (Laver and Kelly, 2010). To analyse the stability

of home ranges and to determine the minimum number of points needed to get stable home

ranges, this bootstrapping approach was implemented. An increasing amount of data was

selected while applying the three main HRE (MCP, KDE, BRB). 5% of the data was used as

a start and then an increment of 5% until 100% was added. For BRB the percentage of data

was selected based on the percentage of follows instead of points, because the algorithm only

calculates a UD based on a trajectory with reasonable temporal step-lengths (4.1.7). To be

able to compare the results this approach was also chosen for MCP and KDE. This also makes

sense for recommendations in field where an estimation of how many follows are needed to

get a sense for a females home range makes more sense then the number of points. To analyse

the e↵ect of randomly subsampling the data set the above described bootstrapping process

was also repeated 30 times but only for KDE as a compromise of calculation duration.

Because a shift in home range may occur, for example, due to socio-spatial dynamics between

mother and daughter, the data was also subsampled temporally by calculating the home

range after every month by the previous data gathered (Ashbury, 2013). For example the

home range was calculated in August 2015 for the full data set until August 2015. Due to

computational power this was again only done with the KDE algorithm.
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4.2 Results

4.2.1 Sensitivity to sample size and home range sizes

The sample sizes were very di↵erent for each focal as already described in the overview of

the data set (Section 2.2.1). For the three most tracked females, Ellie, Friska and Lisa, we

can clearly see a stabilisation of the home range sizes for core ranges and the 95% HR. The

core ranges approach an asymptotic behaviour at around 50 follows whereas for 95% HR the

asymptotic behaviour is seen around 75 to 100 follows. For most other females apart from

Tiara we see a start of stabilisation of the core range. However the 95% HR for Trident,

Tiara and Sarabi are not really stabilising especially for MCP. The MCP algorithm generally

reached an asymptote slightly earlier than the KDE and BRB. The MCP therefore stabilise

earlier but a trend for stabilising is less visible when not a lot of data is available. Generally,

all individuals with all algorithms showed an asymptotic behaviour compared to a linear one,

which speaks for the usage of a stable ranging area.
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Figure 4.4 – Comparison of the stabilisation of home ranges.

4.2.2 Sensitivity to sample size

Random bootstrapped subsampling

The sensitivity of the random subsampling by the number of follows was also analysed by iter-

ating over the subsampling process. The result for the KDE algorithm (with SCV bandwidth

estimation) when repeating the subsampling for 20 times is shown in this graphic see Figure

4.5. Its clearly visible that core ranges do stabilise earlier than 95% HR. Already a relatively

small sample size indicates the general home range size. Furthermore the ratio of core range

to home range shows this ratio is relatively stable. The core range used by orangutans was

around 27±6% (average of all periods and HRE) of the full home range (95%). Still there

remains some di↵erence between individuals. But when inspecting the changes over the year

the ratio between core range and home range varies for most individuals between years and a

LMM explaining the core range to home range ratio, with the research periods as a random

Stefan Graf 100



4.2. RESULTS

e↵ect, showed that only the individual Lisa had a statistically significant smaller core range

to home range ratio over all periods (Lisa -0.06, p <0.05) (Figure C.2).

Temporal subsampling: Change of home ranges over time

The change of home ranges showed that many of the individuals had stable home ranges

over the research periods and time. Especially core ranges were staying more stable than full

home ranges. Trends for individuals are staying similar. Overall, many home ranges tend to

change over the research period. Most of them increase and find a stable level but some even

decrease quickly (Friska), which would indicate the clear stabilisation of a range or increase

over the whole study period (Ellie). There are also quick increases and drops which either

remained (Cissy) or disappeared (Ra�).

Figure 4.5 – Bootstrapped home range calculation for the KDE algorithm.
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Figure 4.6 – The change of home ranges over time with di↵erent bandwidth estimator. For
every date the cumulative amount of data was used to calculate the home ranges.
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4.2.3 Evaluation of home range estimators

The following results were chosen to reduce the amount of data. For every HRE the parametri-

sation was analysed and reduced. For KDE the bandwidth estimator was chosen. For BRB

the scaling of the smoothing parameter was chosen. Whenever comparing parametrisation,

or di↵erent algorithms the values for the home range descriptors were scaled between 0 and

1. This makes it easier to visually compare the results. For parametrisation comparison of

HRE the values were divided by the maximum of the observed values per group. For example

the bandwidth approximators (BCV,SCV,PI,REF) for KDE per individual and periods were

compared while dividing by the maximum of the period-individual groups. When looking at

Figure 4.7 its probably clear whats meant by normalisation per group.

Parametrisation of KDE

For the calculation of home ranges via the KDE algorithm the bandwidth was estimated

with four methods. First looking at general patterns its pretty obvious that two groups

of bandwidth estimators are very similar (Figure 4.7 and Table C.2). On the one hand the

BCV and the reference method showed very similar values for estimated home range area and

compactness. Just for Ra� and Sarabi the values between BCV and the reference method

di↵ered slightly around 10 to 20%. On the other hand were PI and SCV almost identical

for all individuals and home range delineations. The di↵erence between these two groups

(BCV/REF, PI/SCV) for the estimated home range sizes were about 10 to 40%. Higher

discrepancies between the bandwidth methods mostly occured with orangutans which were

tracked less frequently like Tiara, Ra� and Sarabi. Di↵erences between the two groups

especially for compactness and number of polygons were more apparent for core ranges and

for ranges with the delineation on the level of 99%. The ranges split more when more extreme

values are included or when highly used regions are delineated. Holes in the home ranges

were relatively rare especially for core ranges where only Ellie showed signs of holes in the

core range when using the two algorithms PI and SCV with less smoothing. In figure 4.6

we see the reaction of the HR size on the bandwidth estimation method when slowly adding

data over time. Again the BCV/REF method behaved di↵erently than the PI/SCV method.

The BCV/REF varied much more when sample size was small. These two methods generally
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estimated a much bigger home range based on very few points. Whereas the other two

methods PI/SCV showed a slow increase of the home range in the beginning. Which is a

more intuitive behaviour because the minimum amount of data to estimate a home range

reliably is similarly derived by the asymptotic behaviour of a bootstrapped subsampling

process (Section 4.2.1). In the case of Cissy and Friska we can argue that the BCV/REF

gives a better HR estimation in the beginning when very few data is sampled. Nonetheless,

most importantly, the amount of data is most crucial when approximating a home range

reliably. For most individuals, the home range and especially the core range stayed relatively

stable over time. The 95% and the 99% home ranges showed more variation, for example,

with an overall increase of the 95% home range size by the intensely followed Lisa around

the year 2017, when the core range on the other side, stayed relatively stable. To know

if this increase is of behavioural nature (e.g., shift of home range or excursions based on

ecological or social pressures) or is based on missing data in the previous years is di�cult.

When looking at the home range changes of Ellie, another intensely sampled individual, the

changes showed an ever increasing size of the outer home range boundaries where again the

core range stayed relatively stable. Overall, the bandwidth estimator PI generated the most

complex not compact home ranges closely followed by the SCV. The reference method on

the other hand smoothed home ranges the most and had the least polygon counts or holes

with a high compactness index. Nonetheless when analysing the results visually all the used

bandwidth estimators resulted in valid home ranges. The values of AUC show a better overall

fit and performance of the group of PI and SCV. The values are the same for core range and

both other home range delineations because the AUC value is derived from the UD. But AUC

was high for all of the used bandwidth estimator. Following these results the home ranges

estimated with the SCV bandwidth estimator was used for further analysis if the amount of

data had to be reduced. This selection may underestimate or under smooth home ranges but

definitely does not show oversmoothing over the research area.
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Figure 4.7 – Home range descriptors with varying bandwidth estimators.
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Figure 4.8 – Home range of Lisa estimated with di↵erent bandwidths and the KDE algorithm
for the total research duration.

Parametrisation of BRB

For accessing the influence of the smoothing parameter hmin, the HRE descriptors number

of holes, area, number of polygons and the compactness values were used. Generally the

variation of hmin showed a relatively linear relationship to slightly exponential relationship.

For polygon counts, compactness and AUC the decrease was steeper than a linear decrease

(Figure 4.9). Because a simple scaling factor was introduced, changes in the descriptors are

following this scaling either up or down. This is di↵erent from the analysed di↵erence in

bandwidth estimators before because the scaling factor is interdependent. But it allows us to

see when strong di↵erences happening or when first holes in the core region or full home ranges

occur. Looking at the home range areas the decrease in size was around 50% when using only

a fifth of the derived hmin. Increase or decrease in area based on the scaling factor was the

same for core ranges as for the full ranges. Compactness di↵ered much more for core ranges
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when varying hmin. The number of holes were mainly rising when using scaling factors below

0.6. The number of holes were much higher for the full home ranges than for core ranges but

even for core ranges they appeared for some individuals. Similarly the number of polygons

were lowest for a high scaling factor and started to drop significantly when having a scaling

factor below 0.8. The AUC increased clearly when using a smaller hmin. Finally for further

usage the hmin factor of 0.9 was chosen. It is chosen very near to the initial approximation of

hmin but slightly lower to reach slightly higher AUC but without getting too many holes and

polygon counts (see example 4.10). The HR were also inspected manually to check if they

had a reasonable shape and were not extremely under- or oversmoothed. Generally again we

used a value which leads to slightly more under smoothing which was also the case for the

chosen bandwidth estimator for the KDE algorithm.

Figure 4.9 – Home range descriptors with varying hmin.
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Figure 4.10 – Home range of Lisa estimated with BRB algorithm for the total research duration.

Home range estimator comparison

For the following comparison, core ranges, 95% home ranges and 99% home ranges were used

if available. The four algorithms used were compared by again looking at the HR descriptors.

For AKDE the HR results were used which did not originate from a pooled variogram fit.

But a quick analysis did not show any di↵erence for the pooled or unpooled approach when

looking at the derived movement parameter. The variograms of the most often tracked

females also revealed an approaching asymptote after a time lag of around 15 to 30 days.

This means an individual normally fully crossed its home range after 15 to maximally 30

days (Calabrese et al., 2016). For KDE only the results estimated with the SCV bandwidth

estimator were used and for BRB the results with a hmin of 0.8 were used. MCP did not need

any parametrisation and therefore we used all the results.

The AKDE approach using the ctmm shiny web application produced the biggest home
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ranges compared to all other HRE and for all individuals. For home ranges with large sample

numbers (Friska, Ellie, Cissy, Lisa) the di↵erences were smaller. Additionally di↵erences of

the core ranges from the other HRE’s to the AKDE home ranges were smaller for core regions

and highly sampled individuals. The di↵erence between AKDE and the other estimators were

on average around 26% in average for core regions, 36% for the 95% delineation and 43%

for the 99% delineation. The di↵erence if the absolute area was tested with a Kruskal-Wallis

test and showed a clear di↵erence between AKDE and the other home range estimators

(Kruskal-Wallis, df = 3, �̃2 = 9.378, p = 0.024). Di↵erences for MCP, KDE and BRB were

lower and statistically not significant for all delineations (Kruskal-Wallis, df = 2, �̃2
50% =

0.71,�̃2
95% = 0.034, �̃2

99% = 0.7, pall >0.1). When only comparing these three HRE we

find the biggest values for the core ranges with the MCP approach (Figure C.1). Di↵erences

between the MCP core ranges and the core ranges of KDE and BRB were ranging from 10

to 30%. Di↵erences were smaller for the 95% and 99% home ranges and the trends for one

of the algorithms were not so clear. For the 99% home ranges every of the three algorithms

even once reached the highest value.

The AUC showed no strong di↵erences between the two algorithms BRB and KDE. However

compactness did show clearly higher values for results calculated with the MCP approach

especially in the core ranges. After MCP the AKDE approach reached second highest values

for compactness especially for the full home ranges whereas BRB and KDE showed similarly

low values over all delineations. Therefore it does not surprise that the BRB and KDE had

the most holes in the ranges and the highest number of polygons. Especially KDE showed

more polygons in the core region and the highest delineation 99% than the other HRE. Holes

did occur more often in core ranges than the other home range delineations.
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Figure 4.11 – Home range descriptors of all HRE used. The values are normalised per highest
value of the category for better comparison.
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Figure 4.12 – Comparison of home ranges calculated with di↵erent algorithms. Here the home
range for the total research period for Cissy. Derived by the MCP, KDE, BRB and AKDE
method.

4.2.4 Home ranges

The resulting home ranges over all research periods and the total research period for the 10

most tracked females were ranging between 0.8 (algorithm: MCP, focal: Sarabi) and 3.59

km2 (algorithm: AKDE, focal: Ra�) with a mean of 1.78±0.7 km2. The core ranges ranged

between 0.21 (algorithm: BRB, focal: Sarabi) and 0.93 km2 (algorithm: AKDE, focal: Cissy)

with a mean of 0.45±0.18 km2. Variation between individuals is therefore just slightly bigger

for the full home ranges than for the core ranges. The home ranges derived from the total

research period were mostly bigger than for only one of the periods (see box plots and dots

in figure 4.13). Generally, the home range sizes were bigger for individuals with a larger

sample size. For Cissy and Lilly, the core range increased by up to 100% when using the total

research period, likewise did the full home range. This indicates that the research periods we
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used arguably did not have enough data as described in Section 4.2.1. Still, a high variation

of home range sizes is visible and individual di↵erences exist. The core ranges were mostly

proportional to the full home ranges.

Figure 4.13 – Home range sizes per individual for core ranges and full home ranges. The box
plots represent home ranges derived for all of the four research periods itself.

4.2.5 Explaining home range sizes

A LMM explaining the ranging area was fitted to analyse the influence of fruit trees in the

home range, the dominance category of the female, the mean DJL over all years and age

categories. Additionally, the number of follows was included as a fixed e↵ect explaining the

home range sizes. Only the home ranges from the total research period were used because

we were mainly interested in the absolute range values when having a stable home range.

Furthermore, the data set is, as discussed before, very unbalanced, especially for some research

periods. Due to high co-linearity between age categories and dominance groups only the

dominance categories were kept (Kruskal-Wallis, df = 3,�̃2 = 7.26, p = 0.064).

Core ranges

The LMM for the null model with only the individual as a random e↵ect explained around

60 %. The null model with only the type of algorithm as a random e↵ect (MCP, KDE, BRB,

AKDE), explained around 12 %. For the model, both the algorithm and the individual were
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Table 4.2 – Statistical models trying to explain the home range size for the full study duration.

Nr. Response variable / Model description Factor Factor type Estimate Confidence Interval P VIF

a) Core range size Intercept intercept -0.1681 -0.9857 – 0.6495 0.687 -
n = 32 Dominance Predictor -0.0789 -0.1850 – 0.0271 0.145 1.697897
P = 0.00745** Normalized fruit trees Predictor 5.1413 0.9796 – 9.3031 0.015 1.207517
M-R2 = 0.414 Num. follows Predictor 0.0008 -0.0001 – 0.0018 0.077 1.226905
C-R2 = 0.902 Avg. DJL Predictor 0.0003 -0.0007 – 0.0013 0.568 1.666834
Family = Gaussian Focal Random - - 0.17 -

Algorithm Random - - 0.21 -

b) Home range size Intercept intercept -1.0386 -4.8657 – 2.7886 0.595 -
n = 36 Dominance Predictor -0.2719 -0.6265 – 0.0827 0.133 1.99135
P = 0.0125* Normalized fruit trees Predictor 26.3397 -0.0314 – 52.7108 0.05 1.115309
M-R2 = 0.311 Num. follows Predictor 0.0033 0.0000 – 0.0066 0.049 1.181032
C-R2 = 0.885 Avg. DJL Predictor 0.0007 -0.0025 – 0.0039 0.69 1.907411
Family = Gaussian Focal Random - - 0.0004 -

Algorithm Random - - 0.0003 -

⇤⇤⇤p < 0.001; ⇤⇤p < 0.01; ⇤p < 0.05; * model better than the null model; Statistical variables info’s see first table

used as random e↵ects. The full model was better (p<0.001) than the null model (� AIC

in Table 4.2). The full model explained around 90 % of variation where the fixed e↵ects

explained around 41 % of the variation.

Home ranges

The null model with only the focal as an explanatory variable again did explain most of the

variation in the home range size (conditional R2 = 0.45). The algorithm as a random e↵ect

explained around 28 % of variation, slightly more than for the core ranges which reflects the

slightly higher variation in home range sizes for di↵erent algorithms (section 4.2.4). The full

model was again better than the null model (� AIC in Table 4.2, p = 0.0104). The full models

fixed e↵ects and random e↵ects together explained around 88 % of variance (conditional R2

= 0.882) in area, whereas the fixed e↵ects alone explained around 31 % of variation in area.

Explanatory variables

The matrilines, which are not included in the LMM because the amount of data would have

been reduced, did di↵er slightly for core ranges and even more for the full home ranges

but this di↵erence probably originates from the di↵erence in sampling e↵ort per matriline

(Figure C.3). When comparing di↵erent years and comparing the home range sizes for the

matrilines researched, it becomes clear that the variation largely results from the amount of

data gathered per matriline.

The number of follows as a measure of sampling rate did explain some of the variation of the

size of core ranges and full home ranges even when corrected for every individual’s sampling
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rate and the algorithm used for the HR calculation. For the full home ranges the number of

follows explained an additional 7 m2 per additional follow and for core ranges the increase

corresponded to only 7 m2 per follow. The DJL as a movement parameter was not explaining

the size of home ranges but was positively related to the size of HR (Table 4.2).

The full model showed a statistically not significant e↵ect of dominance and its colinear

variable age category. Nonetheless, core ranges were in average 77 m2 bigger for every stronger

dominance category. The full home range increased by 270 m2 for every higher dominance

category (similar for age).

The fruit trees did show a positive e↵ect on core range size when correcting for individuals

and the algorithm used, which was statistically more pronounced in the core ranges than the

full home ranges. For a decrease in 1% of normalised fruit trees (normalised fruit trees =

percentage of fruit trees to the full sample e↵ort), the core range area increased by 50 m2.

The full home ranges even increased by 260 m2 per 1% increase in normalised fruit trees.

4.2.6 Home range overlaps

Total area shared per individual

Home range overlaps were derived by various types of indicators. Overlaps were calculated

for all research periods but also for the total research period. For the analysis, only the

overlaps for the total research period were included for the same reasons as for the home

range analysis (Section 4.2.4). The individuals were included as random e↵ects as well as the

period and the algorithm. The full home ranges were shared to a higher percentage than the

core areas (Figure 4.14). Looking at the four females which were sampled the most showed

that the area shared was almost 100% for core ranges. For the full home ranges the values

were slightly higher than for core ranges (Figure 4.15). In average, the relative overlap for

core ranges was 84% and for home ranges it was 96%. The home ranges of the individuals,

which were less frequently followed, showed clearly lower values for core ranges than for the

full home ranges. Looking at the map of all core ranges suggests that overlaps are even for

core ranges very high and that lower overlaps are especially dependant on the centrality to

the research area.
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(a) core range (b) home range

Figure 4.14 – Percentage of shared ranging area by individual for core ranges (a) and 95% HR
(b). The values are derived from the home range areas derived by the MCP (⌅), BRB (�) and
KDE (4).

(a) all core ranges (BRB) (b) selected home range

Figure 4.15 – Home ranges (a) and core ranges (b) of the four most tracked individuals.

Overlaps and overlap indices

The overlap indices, namely the Jaccard Index, the BA, the UDOI and the Volume of In-

tersection highly correlated with each other with a correlation coe�cient around 0.95 and

higher (Pearsons’s correlation coe�cient Table C.5). The overlap areas likewise did show

high correlation with the overlap indices. The overlap sizes relative to the home range sizes

showed a slightly lower correlation with the other overlap indices. For further comparison the
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UDOI which according to Fieberg and Kochanny (2005) gives the most expressive results, the

Jaccard overlap, the overlap area and the relative overlap were used. The visual inspection

showed that core ranges had bigger proportional overlaps and some home ranges did have

much less overlapping areas as others (Figure C.7). The Jaccard overlap and the relative

overlap did show a statistically clear positive impact of relatedness of females for the full

home ranges but not for core ranges.
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(a) absolute core range overlaps

(b) absolute home range95% overlaps

Figure 4.16 – Overview of overlaps between individuals over total research period. Overlaps
were derived from the BRB algorithm with a hmin scaling factor of 0.8. Overlaps shared with
related individuals are indicated with green and overlaps shared with unrelated individuals are
marked in red. The matrilines are marked in orange, blue and grey. The absolute overlap values
show the cumulative sum of overlapping areas [km2] per individual. The UDOI and the relative
HR shared were calculated from the UD and not from the polygons and are shown in the appendix
(Figure 4.16).
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4.2.7 Explaining overlap indices

For the absolute overlap values, the relation of females had a positive e↵ect. For core ranges

the LMM predicted an increase of absolute overlaps by only 21 m2 and for home ranges it

predicted an increase of 160 m2. The di↵erence in dominance showed not to significantly

explain the overlapping area (see also Figure C.6). The estimated slope and therefore the

increase of overlap when individuals had a higher dominance di↵erence were minimal (CR:

11 m2,HR: 30 m2).

Relatedness significantly positively impacted the Jaccard index and relative overlaps of full

home range overlaps but was not significant in explaining core range Jaccard index and

relative overlaps. Dominance di↵erence significantly positively impacted the Jaccard index

and relative overlaps of full home ranges as well as core range relative overlaps, but was not

significant in explaining core range Jaccard index.

The last overlap indices which is arguably the most expressive estimator because it uses the

underlying UD instead of a polygon delineation of overlap was the the UDOI. The di↵erence

in dominance showed a statistically not significant e↵ect of only 42 m2 per di↵erence in

dominance category (4 categories). The UDOI increased clearly when individuals were related

by around 10 %. All overlap indices for the full home range increased within matrilines

compared to non related individuals when comparing the values directly without a LMM.

The core ranges were also overlapping more when individuals were related, but the change

was less strong (Figure C.4).

4.2.8 Fruit trees in home ranges and overlaps

In the core ranges (BRB, hmin factor 0.8) of Cissy, Ellie, Friska, Lilly, Trident and Lisa, the

normalised fruit tree value showed to be slightly higher than in the full home ranges (Figure

C.2). For the other individuals, the opposite was the case. In average, core ranges, home

ranges and overlaps did not di↵er in the value of normalised fruit trees (Figure 4.17). A

LMM with the algorithm and the individual as random e↵ects, which was fitted to explain

the number of fruit trees in the overlaps, did not find any di↵erence between related and

unrelated individuals. Moreover, the dominance di↵erence or the age category di↵erence

did not indicate any influence of these two variables on the normalised fruit tree value of
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Table 4.3 – Statistical models trying to explain the overlap indices. For the absolute overlaps,
the Jaccard Index and the relative overlap all research periods were included and a random e↵ect
was introduced for each research period.

Nr. Response variable / Model description Factor Factor type Estimate Confidence Interval P

a) Absolute overlap (CR) (Intercept) intercept 0.07 0.02 – 0.12 0.005
n = 480 Dominance di↵. Predictor 0.01 -0.00 – 0.02 0.089
P = 0.016* Related Predictor 0.02 0.00 – 0.04 0.03
M-R2 = 0.016 Focal Random - - <0.0001
C-R2 = 0.197 Period Random - - <0.0001
Family = Gaussian Algorithm Random - - <0.001

b) Absolute overlap (HR) (Intercept) intercept 0.42 0.12 – 0.71 0.005
n = 678 Dominance di↵. Predictor 0.03 -0.01 – 0.07 0.121
P <0.0001*** Related Predictor 0.16 0.10 – 0.22 <0.001
M-R2 = 0.027 Focal Random - - <0.0001
C-R2 = 0.448 Period Random - - <0.0001
Family = Gaussian Algorithm Random - - <0.0001

c) Jaccard (CR) (Intercept) intercept 0.13 0.08 – 0.18 <0.001
n = 480 Dominance di↵. Predictor 0.01 -0.00 – 0.03 0.145
P = 0.115 Related Predictor 0.02 -0.01 – 0.05 0.168
M-R2 = 0.009 Focal Random - - <0.0001
C-R2 = 0.068 Period Random - - <0.0001
Family = Gaussian Algorithm Random - - <0.0001

d) Jaccard (HR) (Intercept) intercept 0.18 0.10 – 0.26 <0.001
n = 678 Dominance di↵. Predictor 0.02 0.00 – 0.03 0.016
P <0.0001*** Related Predictor 0.08 0.06 – 0.10 <0.001
M-R2 = 0.056 Focal Random - - 0.002
C-R2 = 0.318 Period Random - - <0.0001
Family = Gaussian Algorithm Random - - <0.0001

e) Relative overlap (CR) (Intercept) intercept 0.23 0.16 – 0.30 <0.001
n = 480 Dominance di↵. Predictor 0.03 0.00 – 0.06 0.025
P = 0.115 Related Predictor 0.02 -0.02 – 0.07 0.276
M-R2 = 0.015 Focal Random - - 0.045
C-R2 = 0.075 Period Random - - 0.999
Family = Gaussian Algorithm Random - - 0.0005

f) Relative overlap (HR) (Intercept) intercept 0.36 0.28 – 0.43 <0.001
n = 678 Dominance di↵. Predictor 0.03 0.00 – 0.05 0.028
P <0.0001*** Related Predictor 0.11 0.07 – 0.15 <0.001
M-R2 = 0.047 Focal Random - - 0.003
C-R2 = 0.12 Period Random - - 0.0002
Family = Gaussian Algorithm Random - - 0.019

g) UDOI (UD) (Intercept) intercept 0.24 0.12 – 0.36 <0.001
n = 678 Dominance di↵. Predictor 0.05 -0.01 – 0.10 0.082
P = 0.021* Related Predictor 0.09 0.00 – 0.18 0.045
M-R2 = 0.047 / C-R2 = 0.2 Focal Random - - 0.17
Family = Gaussian Algorithm Random - - 0.002

⇤⇤⇤p < 0.001; ⇤⇤p < 0.01; ⇤p < 0.05; ·p < 0.1; CR = Core range50%; HR = home range95%; UD = utilization distribution95%; bold = significance level reached; Statistical variables info’s see first table
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overlaps in the full home ranges. For core ranges interestingly the normalised fruit tree value

increased with di↵erence of dominance between individuals similarly to the overlap indices

above (Table C.7).

Figure 4.17 – Comparison of normalised fruit tree values for core ranges and full home ranges
as well as overlaps of each delineation.

4.3 Discussion

The following discussion only relates to adult female orangutans if not mentioned otherwise

and rests on the results of the analysis of the selected ten female orangutans (Chapter 4).

4.3.1 Methodology and implications

Of the ten individuals that were analysed, not all showed a clear stabilisation of their home

range over the study period, but at least 4 individuals clearly showed a stable home range.

The general description of site fidelity and the repeated observation of stable home ranges
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in other studies shows that the concept of home range as defined in Section 4.1.1 applies to

female orangutans (Ashbury, 2013; Singleton and Van Schaik, 2001; Wartmann, 2008).

In my study I found HR overlap durations of around one month when using the semivari-

ograms and the movement models used for the AKDE approach. This may fit the definition

that the home range reflects the area which an individual is ranging in for a year and which

an individual chooses to keep in a mental map. Furthermore, it is possible for an orangutan

to use most of the space over the duration of a year. Nonetheless, this estimate is solely

based on a movement model (from AKDE). We have no actual idea of how long it actually

takes until a female orangutan visits most of its home range.

Looking at the possible temporal shifts and the change of HR size over the 10 years of

observation (Figure 4.6), I see multiple complications when applying the home range concept

to female orangutans. Even if the concept of stable home range is useful in the case of

orangutans, many uncertainties and biases occur, especially when looking at absolute HR

area values.

One problem is the manual sampling approach, as it leads to a bias towards the centre of

the research site and to a selection of individuals that move more often within the core area

of a research site. Consequently, the home ranges calculated by KDE, BRB and MCP are

strongly biased by the area of research (RQ B.2). This means that females that have their

home range located more towards the centre of the research area, tend to have bigger home

ranges. This was also the case here. This e↵ect is nothing new and was already described by

Singleton and Van Schaik (2001) and Wartmann (2008). However, in this study, we tried to

show how much A. the start and selection of a follow is biased by the research trail system

and the study area, and B. if losing an orangutan is spatially biased (Section 2.2.3). Both

showed to be a problem, although a comparison with Tuanan in Wartmann (2008) showed

that the researcher bias relating to the trail system may be slightly smaller.

Arguably the biggest problem is posed by the data availability (Section 2.2.1). Home

range studies of orangutans often are based on qualitative behavioural data, where additional

spatial data is gathered as a side product. The focus often lies on a few individuals, which

are followed far more often. Rooney et al. (1998) already stated this as the main problem

for delineating home ranges from locational animal data. Wartmann et al. (2010) states that

in terms of estimating home range sizes the absolute as well as the temporal sample size is
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crucial for finding adequate home ranges.

The results from the AKDE algorithm showed that the traditional methods, including

BRB and KDE, probably underestimate the true home range size (RQ B.2). The usage

of a spatio-temporal movement model with the AKDE may help to find more reliable HR

sizes when having low sample sizes compared to traditional methods such as KDE. Which

would target the above-mentioned problem of data availability for estimating home range

sizes. This algorithm also overcomes the problem of the high autocorrelation in our data and

the mostly associated underestimation of HR sizes (Section 4.1.3, De Solla et al. 1999 in

Zehnder 2015). Nevertheless, for analysing UDs in the context of range sharing, there is no

getting around large sample size and longer research periods.

The downside of using AKDE is that it smooths home ranges to a high degree, while BRB

as well as KDE are actually more useful when analysing the spatial importance of di↵erent

spaces or locations within the research area. The parameterisation and estimation of HR of

densely sampled individuals showed to result in reliable UDs.

The two algorithms which do not oversmooth the home ranges are the KDE and the BRB.

KDE showed slightly better HRE descriptor values (e.g. holes, AUC, number of polygons)

but the advantage of including temporal aspects in the HR estimation by using BRB is

arguably more important than the very small di↵erence of AUC, especially when having such

an autocorrelated data set and a long research period (Patterson et al., 2017) as in our case.

BRB showed less holes and polygon counts because it is based on bridges. This is a further

advantage when similar pathways are used frequently (Davies et al., 2017b).

Although Wartmann (2008) found that MCP in Tuanan took more sample points to

achieve a stable home range than KDE, in this study home ranges for MCP stabilised with

a lower sample size (Section 4.2.1). MCP was also slightly better in estimating the full

home range area when sample size is very small because luckily home ranges are actually

often intrinsically convex. Nonetheless, this does not mean that these home ranges are very

useful for further analysis. Generally, I strongly advise against the use of MCP. Outliers

have a major e↵ect on HR sizes and the result is a polygon instead of a far more useful UD.

However, for a quick first approximation especially core ranges derived by MCP may help to

find ranging patterns.
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Finally, I see the temporal di↵erence of sampling individuals and the unbalanced data

set as a much bigger problem than the choice of HRE. More concurrent data about all

individuals could help gaining more information about each individual’s home range and

especially about a momentous snapshot of range use, and possible interactions and influences

between individuals. Furthermore, a more balanced data set as well as an even longer research

period may make the home ranges of undersampled individuals more expressive. It would

also help to use core ranges instead of home ranges when comparing range use because they

are less biased by sample size and the research area (Section 4.2.5).

4.3.2 Home range estimations

Home range sizes

The sizes of home ranges were much smaller than previous findings for Suaq by Singleton

and Van Schaik (2001), who looked at the HR of three individuals tracked in 1994-1998 (RQ

B.1). They showed a HR size of 6 to 8.5 km2 (Table 1.1). Values in our study for the 100 %

MCP ranged between 2.3±1.13 km2. For all applied HREs we found values between 1.6 km2

and 3.1 km2 over the whole study duration and for females who definitely showed a stabilising

home range (Cissy, Ellie, Lisa, Friska). The core ranges of 0.5 km2 mentioned by Singleton

and Van Schaik (2001) were more similar to our results, which ranged between 0.25-1 km2

(Cissy, Ellie, Lisa, Friska, full period). The small grid method further applied by Singleton

and Van Schaik (2001) more resembled our results (Table 1.1 and Figure 4.12). One source

of the di↵erence of full home ranges between the two studies are follows which resemble large

excursions by the orangutans to the eastern or north-eastern hills as well as to the south.

Singleton and Van Schaik (2001) enlarged the research area for a few months and when we

take the example of Ani in their paper, we find several long excursions in the north east and

south of the research area. The reason behind that are potential fruiting patterns in the hills

surrounding the research area in the north and east (Singleton and Van Schaik, 2001). This

would have consequences when using the above described concept of home ranges in regard

of time until stable home ranges are reached, but also in regard of knowledge we can gain.

When reviewing the losing points in our study we find similar locations where orangutans are

lost which may indicate such excursions. Generally, long excursions are not seen in our study
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and this results in smaller HRs, especially with the MCP method. Nonetheless, core areas

and frequently used spaces are lying within the research area and such excursions seem to be

very rare (Singleton and Van Schaik, 2001). Singleton and Van Schaik (2001) even mentions

that orangutans on excursions followed topographical features (hill tops, ridges) and they

seemed to not know the area well. In terms of our HR definition, these excursions would

therefore be ignored (Section 4.1.1).

It is worth comparing our results to the study site in Tuanan to further discuss the range

sizes. First, I will compare core ranges because they tend to be more stable and less a↵ected by

uncertainties (see Section 4.3.1). I found average values of 0.6 km2 (KDE50% BCV) whereas

Wartmann (2008) found values of 0.65 km2 (KDE50% BCV) and van Noordwijk et al. (2012)

even found values of 0.84 km2 (KDE50% BCV) (Table 1.1). My hypothesis that home ranges

and core ranges in Suaq are bigger can therefore be rejected (RQ B.1). When comparing

CR to HR ratios, I found values of around 27% whereas Wartmann (2008) states a slightly

higher value of 33%. Smaller relative and absolute CR can be explained by the higher overall

orangutan density and the higher FAI. Female passive or active competition may lead to

smaller range sizes, which however poses less of a challenge to the individuals because the

environment is very productive. Possibly, the higher FAI alone explains smaller HR size.

Such a trend was described in Tuanan by Wartmann (2008), where CR were 0.2 km2 during

the season of high fruit availability.

The average home range size I found with the KDE (here BCV for comparison) algorithm

for only the four females with the highest sample size was 2.2 km2 (KDE95% BCV), whereas

van Noordwijk et al. (2012) found values of 3.3 km2 (KDE95% BCV) and Wartmann (2008)

for only yearly measured HRs found a value of 2.6 km2 (KDE95% BCV). Home ranges are

therefore smaller than expected and previous findings by Singleton and Van Schaik (2001)

have to be interpreted accordingly. They stated that the spatial ”grain“ of the mosaic forest

type and the longer distances in between resulted in bigger HR areas. Given our results, we

rather conclude that it is actually their intuitive explanation that low FAI leads to bigger

ranges in similar habitats, which is true (Singleton et al., 2009). However, we have to consider

that Suaq is a site where excursions by females happen. To what degree this influences the

cognitive map that the animals keep remains unknown. Furthermore, it is still possible that

habitat mosaic plays a role. For instance, Singleton et al. (2009) state that in the Gunung
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Palung and Tanjung Puting sites a similarly high degree of feeding tree species patchiness

is found, which leads to bigger home ranges. Looking at their home range estimates shows

indeed big HRs even with the grid cell method, which was not as much pronounced in earlier

studies for Suaq (Knott et al. and Singleton and Van Schaik; Table 1.1).

Influences on home range sizes

We tested if home range sizes are influenced by some external variables (RQ B.1). Dominance

and age did not show any clear statistically significant impact on the range sizes, although

the hypothesis that more dominant females can claim bigger ranges cannot be confirmed nor

rejected. Scramble competition, which was hypothesised as one of the explanations for bigger

home ranges in Suaq, should have resulted in a clearer e↵ect of dominance on the range sizes,

especially for core ranges, where Knott et al. (2008) described more active confrontations of

females where mostly the resident females gained dominance. Similar to Wartmann (2008)

it was shown that variations between focals especially for full home ranges were bigger than

variations due to other e↵ects (see random e↵ects Section 4.2.5). Ashbury (2013) mainly sees

variation on the individual level originating from reproductive phases and an early exploration

phase of nulliparous females. We can confirm this result based on one younger individual.

Lilly, one of the younger females, which had her first o↵spring in 2016 (Table C.1) did show

a clear increase and decrease of its 99 % and 95 % home range before the year of 2016

(Figure 4.6). The number of follows was especially influencing the full home ranges. As

described in Sections 4.3.1 and 4.2.1, core range estimates were probably more reliable than

HR estimates. This leads to my recommendations of preferring core ranges for comparing

sites (Section 4.3.1). Regarding normalised fruit trees we found especially an e↵ect for core

ranges. The amount of normalised fruit trees explained bigger core ranges. We are again not

sure if the relation probably goes the other way that during the normalisation process bigger

core ranges intrinsically result in a higher normalised fruit tree value. But a quick analysis of

how the normalised fruit trees within home ranges are predicted showed that the area did not

have a positive e↵ect on the normalised fruit tree value, but even more likely a negative e↵ect

(Table C.7). Therefore, more fruit trees in core ranges indeed indicate bigger core ranges.

Furthermore, the matriline of Cissy (Matrilines see C.1) showed one of the highest amounts

of feeding trees within its core and home range.
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With respect to the hypothesis of Singleton and Van Schaik (2001) that competition

and fruit trees are the explanation for home range size I see the fruit trees as a bigger

factor. However, we do not see a clear influence of patchiness of feeding trees, resulting in

the alteration of bigger home ranges as movements between trees are only slightly smaller

than between a random sample and for full home ranges the number of trees did not explain

bigger sizes (Section 3.2.5). One explanation bringing this all together could be that our

methodology of normalised fruit trees as well as the uncertainty, and coverage of the tree data

may not be enough to see dominance di↵erences claiming feeding tree spaces. Therefore, a

higher amount of feeding trees allows the orangutan to again gain dominance over an area

and establish bigger ranges. To overcome this problem it is important to focus more on the

mapping of feeding trees and species.

4.3.3 Overlaps

Overlap estimations

Overlap indices for investigating the tolerance and sociability between individuals are valid

if the calculated home ranges are reliable. The above described implications were especially

important for this analysis. Temporally unequally sampled data and an unbalanced number

of follows may dilute the detection of tolerance and sociability. The bias based on the research

site (Section 2.2.3) plays a minor role because we are especially interested in relative values.

Smaller home ranges of under-sampled individuals therefore pose a smaller problem.

Overlaps were calculated and we found a slightly lower overlap of core areas than full

home ranges. However, this di↵erence is far smaller than findings from other sites. Wartmann

(2008) and van Noordwijk et al. (2012) found relative shared overlaps of home ranges of up

to 40 % for unrelated and up to 60 % for related females. The discrepancy to other sites

would be well explained by the higher patchiness of feeding trees and the reliability on a more

complex dependency of di↵erent feeding tree species (Singleton and Van Schaik, 2001). Which

indicates that indeed the used data set of feeding trees was not robust enough to reveal their

patchiness (Section 4.3.2). Furthermore, we can say that range sharing is very pronounced

in Suaq even for core ranges, and that orangutans in Suaq have found ways to share space

without excluding individuals fully from their range. I conclude that range exclusion in Suaq
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may happen but on a very low level and that agnostic behaviour may describe this behaviour

better than range exclusion.

Influences on home range overlaps

Most overlap indices and the more advanced ones using the UD showed that the relation of

females explains the higher overlap of home ranges (RQ B.3). This statistical significance

was less pronounced for core ranges and not all overlap indices found a clearly large overlap

between related females. van Noordwijk et al. (2018) showed that relative overlaps in Tuanan

were around 20 % bigger for related females (relative overlap), whereas I found a slightly

smaller value of 10 % (UDOI overlap). This di↵erence can be explained by the overall very

high overlaps of home ranges in Suaq. To what degree this really shows active or passive

range exclusion is debatable. First, there is evidence that females are more tolerable to

related females. van Noordwijk et al. (2012) observes that agnostic behaviour is far more

common between unrelated individuals. Ashbury (2013) describes that relationships and

relatedness are playing an important but variable role in defining an individual’s home range.

Furthermore, van Noordwijk et al. (2012) found that overlap sizes do not clearly correlate

with higher interaction rates of females. Bigger overlap ranges between related females could

also just be the byproduct of female philopatry and site fidelity.

The result that bigger overlaps are found between larger dominance category di↵erences

is unexpected (RQ B.3). The reason why age or dominance di↵erences would result in

higher overlaps are unknown. Our result that a bigger dominance di↵erence explained more

fruit trees in overlaps did further contradict the theory that range exclusion simply is about

resources (Section 4.2.7). I argue that relationships of females may be the key to determine

in more detail how space exclusion may be determined. Home ranges in Suaq are probably a

di�cult tool for further studying such behaviour and I propose that positional distances of

concurrent follows may shed more light on such behaviour.
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Chapter 5

Conclusions

This thesis analysed the socio-spatial behaviour of pongo abelii based on various movement

parameters and discussed the results by mainly comparing them to Tuanan (pongo pygmaeus

wurmbii), a comparable site in Borneo. The main tools were ordered on three levels of spatio-

temporal resolution (Section 1.5). On the coarsest Level 1, the DJL, the SI and the sinuosity

index were the main tools for the analysis on level two and the four home range algorithms

(MCP, KDE, BRB, AKDE) were the main tool for analysing movement. In the following, I

give a short overview of key insights in a bullet point structure (Section 5.1), followed by the

remaining problems and potential future research (Section 5.2).

5.1 Main insights and limitations

General insights

• Generally, the data set needs a lot of preprocessing, but considering the amount of

information and the data gathering process, it is very clean and GPS positions seem

very reliable. Home range and movement parameters are not much a↵ected by outliers.

(Section 2.2.1, 2.2.2 and Figure 2.2)

• The main tools were ordered on three levels of spatio-temporal resolution (Section 1.5).

On Level 2 the DJL, the SI and the sinuosity index were the main tools for the analysis,

while the four home range algorithms (MCP, KDE, BRB, AKDE) were the main tools

for analysing movement on Level 1.
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• Overall, the limits of our movement parameters we were interested in (RQ A.2) became

readily apparent. The sampling rate and the unbalanced data set showed to influence

many of our results (Section 3.3 and 4.3.1). Probably even more on Level 1, where HRs

are more reliable on balanced, synchronous samples.

• The individual has one of the biggest influences among all analysis in my thesis. The

internal state of individuals and social interaction have to be understood better. Other

single e↵ects analysed mostly showed only weak explanatory power. Likewise, Wart-

mann (2008) stated that seasonality patterns were always smaller than variations be-

tween individuals.

• The main reason for many of the results was seen in the overall high fruit availability.

FAI did not have any clear impact on movement descriptors, as it did in other study

areas. This is probably the result of ceiling e↵ects in Suaq, where orangutans are less

constrained by fruit availability. I argue that movement patterns are therefore much

more influenced by social factors on a more fine-grained level (Level 3).

Insights on Level 3

• FAI, which already showed to not impact DJL in Suaq compared to Tuanan, did also

not a↵ect a change of tortuosity between trees on the analysis Level 3 (Section 3.2.5).

Actually, none of the factors (rain, temperature, FAI, class of focal) explained tortuosity

changes between feeding trees. Slight patchiness of feeding trees is underlined by the

longer average distances of a random subset (110 m) compared to the actual tree-to-tree

movements (90 m) but this di↵erence was lower than expected.

• Orangutans daily routine did show that activity is gradual over the day. Indications

of higher movements in the afternoon and before building their night nests was found

for the two age classes which move longer distances (Independent immatures, flanged

males)(Section 3.2.5). Unflanged males were discussed to prioritise day times where

flanged males reduce their activity.

Insights on Level 2

• Orangutan movement was found to be very gradual, with few stops and few strong

and fast directional movements. Hence, trajectories of orangutan movement are di�-
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cult to categorise in di↵erent behavioural types based on Speed, sinuosity or turnings

(Section 1.5).

• Sampling rate showed to be partially a problem for analysing movement behaviour on

Level 2 (Section 3.1.3). For further judgement in future work, the analysis will need

more follows sampled at a higher temporal resolution. Generally, the focal animal

follows have the big advantage that we also have observational validation of movement.

General movement patterns were claimed to be well kept by the 30 min sampling regime.

• Found limitations of seeing fine-grained movements (e.g., sinuosity between trees, see

Insights Level 3) and the implications of the sampling rate dependency of our movement

parameters have shown that on the one hand, it is possible to find di↵erences of socio-

spatial nature as in other studies like Wartmann (2008), van Noordwijk et al. (2012) and

Ashbury (2013). For instance, we showed age-sex classes to be di↵erent but less di↵erent

than in Tuanan (Section 3.3.3). On the other hand, I also found that the sampling rate

of 30 minutes limits us in retrieving fine-grained movement and behavioural movement

changes for orangutans (RQ A.2).

• For movement parameters, especially the tortuosity measurements have to be evaluated

carefully. I propose to only use them if it is explicitly shown that they reflect the

researched behaviour, e.g., as a proxy for range competence (RQ A.2 and Section 3.3.3).

• The DJL showed to be a reliable source of information, especially when comparing

age-sex classes. We found the same larger values compared to Tuanan for all age-sex

classes as already Singleton and Van Schaik (2001) did (van Noordwijk et al., 2012;

Wartmann, 2008). Di↵erences are attributed to high FAI and di↵erent reproductive

strategies, especially in males. Because flanged males showed the biggest di↵erence to

Tuanan and maintain much longer DJL, arguably this even leads to changes of activity

during daytime (Section 3.3.3 and see level 3). This may even lead to the observed

more stable dominance hierarchies in Suaq Atmoko et al. (2009). For adult females the

age of the current o↵spring was the sole predictor found to influence DJL positively

(Section 3.2.2).

• Tortuosity seems to be higher when more fruit trees are visited, even when fruit tree
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fixes are deleted from the trajectories (RQ A.3, Section 3.2.3). This may originate

from a slightly more clumped distribution of trees (also see shorter distances between

trees on level 3).

• The only internal factor which showed to correlate with higher sinuosity and straightness

was the age of the current o↵spring of females (RQ A.3, Section 3.2.2). This is in

contrast to Wartmann (2008), who did not find an influence of the age of the current

o↵spring on tortuosity in Tuanan. Other internal and external factors did not have an

influence on tortuosity. However, this shows us that both indices actually can reveal

changes in movement patterns.

• Interestingly, none of the given weather predictors had a clear e↵ect on the movement

parameters, even when di↵erent temporal averages were used (e.g., means of weather

variables over the last five days) (RQ A.3). This was not expected; especially rain

was assumed to at least partially slow down movement on level 2. As discussed, we

probably miss such stops and have to further analyse weather variables and movements

(needs weather data at a higher temporal resolution) on Level 3 because orangutans

compensate for stops over a day during rain events by moving more after the rain.

Insights on Level 1

• The proposed home range concept fits the species well, but the application of home

ranges as an analysis tool is challenging with the available orangutan movement data

sets. Unbalanced sample sizes posed the biggest uncertainty in gaining new informa-

tion of socio-spatial movement behaviour on Level 1. A less impactful uncertainty for

resulting home ranges was found in the bias relating to the research site (Section 2.2.3.

The relative comparison of e.e. UD enables us to still gain new information, although

undersampling on the edge of the research area does occur (Section 4.3.1).

• Sample sizes of around 100 follows resulted in more robust HRs, whereas core ranges

already stabilise with slightly lower sample size (Section 4.2.1).

• All HREs showed their disadvantages and advantages (RQ B.2, Section 4.2.3) and

we found robust and explainable home range sizes for all methods (Section 4.2.5).

Nonetheless, products generated by MCP were less useful whereas, given our unbalanced
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data set, the UDs of the KDE and the BRB showed to be more useful, especially for

comparing space sharing (Section 4.3.3). AKDE, which showed a very conservative,

oversmoothed home range may be helpful in retrieving a reliable home range size with

low sample rates but less helpful when comparing range overlaps.

• Parametrisation of KDE showed that BCV and the REF bandwidth estimator as well

as PI and SCV resulted in similar outputs (Section 4.2.3). Whereas the latter tend

to undersmooth and the former tend to oversmooth home ranges. Results were not

extremely di↵erent, but when comparing to other sites a di↵erence of around 0.3 km2

has to be considered. Likewise, the di↵erent possible behaviour of the two groups when

sample size is really small has to be noted (Figure 4.6).

• Parametrisation of BRB showed to be reliable with the proposed methodology (Sec-

tion 4.1.7). The variation of the main influential hmin parameter showed that the

methodology without adjustment works (e.g., hmin factor of 1). The inclusion of time

dependency and the advantage of not violating statistical assumptions related to spatial

autocorrelation shows us that it is a good alternative to KDE.

• Home range and core range sizes for females were smaller than expected and smaller

than previous findings of Singleton and Van Schaik (2001). For both comparable al-

gorithms (MCP and KDE with BCV bandwidth estimation), we found smaller values

than in Tuanan (RQ B.1, Section 4.3.2).

• FAI, which in Tuanan was a very dominant predictor of HR size, did not predict any

changes in area. None of the other factors such as dominance (equals to age), the

number of follows, or the travel distance explained a variation in home range size (RQ

B.1). Only the newly introduced normalised fruit tree value (Section 4.1.2) showed a

positive impact on core range sizes but not home range sizes (Section 4.2.4).

• Various overlap indices were tested and the usage of overlap indices which use UDs

for their estimation were decided to be the most appropriate (Section 4.1.2). Mainly

because the delineations of home ranges are somewhat arbitrary and the optimal de-

lineation percentage depends on the species and the data characteristics.

• Overlaps showed to be very high. Especially, the high overlap of core ranges was
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not expected (RQ B.3). In comparison to Tuanan, relatedness was less powerful in

explaining overlap indices. Core range overlap indices were less influenced by relatedness

than full home ranges (Section 4.2.6). Based on the behaviour of females showing

philopatry, this result cannot intuitively be seen as higher tolerance and range sharing

(Section 4.3.3). In contradiction to my hypothesis dominance di↵erences seem to result

in slightly bigger overlaps. Active or passive range exclusion is nearly impossible to

reveal with the methodology and data set used in this study, especially for Suaq.

• A typical pattern of higher normalised fruit tree values in some of these derived spaces

(overlaps, core ranges, home ranges) was not observed (Section 4.2.8). If there is a

trend, I would argue that females show slightly higher values in core ranges (like the

four most tracked females in Suaq).

• The value of fruit trees in overlaps and the overlap indices showed to be positively influ-

enced by dominance di↵erence (RQ B.3. This may show that passive range exclusion

or scramble competition is much more complex. A possible explanation could be that

young females which occupy bigger home ranges exhibit this kind of pattern.

5.2 Open problems and future work

This thesis gives a good overview of potential movement analyses of the the data available

on orangutan movement in Suaq. Many of the hypotheses referring to my research questions

had to be rejected and clearly conclusive results were not found. However, the results help to

highlight which directions were dead ends, and which ones are promising avenues for future

work. Furthermore, the data processing was a main part of this thesis and the resulting

cleaned data sets are now ready for further use (Figure 2.2). R scripts are available for free

use on my GitHub repository (https://github.com/greentrea/SUAQr).

Some ideas for future research, which I see as very fruitful, are the inclusion of path

heights (3D) in the movement parameters because longer travel distances may also reveal

that there is a di↵erent pattern of vertical movement, while so far we only focused on hor-

izontal movement (Section 3.3.1). Furthermore, the systematic analysis concurrent follows

and potential avoidance or tolerance patterns as well as leading following patterns of the
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mother and o↵spring could harbour new insights on socio-spatial aspects (e.g. relationship

structures).

But in general, I see two main possibilities for future research, which I would hope to

solve many of the stated problems and hopefully lead to clearer results relating to spatial

movement behaviours. First, the systematic mapping of resources, e.g., feeding trees, would

help in normalising the feeding tree data set. I argue that these are important spaces for

orangutans and that daily movement and ranging does react to the underlying patterns of the

habitat. Furthermore, we would be able to compare if there is indeed a higher patchiness of

important feeding trees, leading to bigger DJL, or if they are mainly the result of the actual

abundance of fruit availability and therefore the easier energy intake.

Second, on Level 1, a balanced data set spanning at least one or two month would help

immensely to overcome the described biases in estimating home ranges and investigating the

drivers of range tolerance or competition, respectively (Section 4.3.1). A desirable follow

of multiple individuals over a longer period would reveal a direct reaction to each other

and passive or active range exclusion as well as tolerance would be better visible. Creative

tracking and following approaches are required because disturbances of individuals still have

to be minimised. Possibly drones or other digital tools might help in the future.
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Appendix A

Appendix: Data preparation and

general methodology

A.1 Mean observation duration

Figure A.1 – Box plot of the di↵erent follow types if available and the corresponding follow
duration. A violin plot was overlaid to show the distribution density.

T
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A.2. ORANGUTAN SPATIAL DATA

A.2 Orangutan spatial data

Figure A.2 – Box plot of the di↵erent follow types (without NA’s) and focal class and the
observed duration for their follows. An an analysis of variance (ANOVA) of the observation
duration of the focal age class groups suggest that there is no di↵erence between age class groups
(F(4,626) = 0.251, p = .909).
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A.2. ORANGUTAN SPATIAL DATA

Mean:
1362.47
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Figure A.3 – The 30 min sampling regime is clearly observable with few shorter sampling
intervals and rare larger sampling intervals. Two third of all GPS-fixes (58%) have a time lag of
1800 seconds (30 min) to the last GPS-fix. When filtering out tree-points this number further
increases to 65%. So the sampling interval is quite reliable. When including all shorter sampling
intervals which are mostly the last and first steps between morning nests and the first 30 min
ranging point (+35%) and including all steps with a time lag below 1 hour (+2%) (so if one point
was accidentally skipped) we already get ca. 95% of the data.

Figure A.4 – The values of easting, northing for start and end po points is pretty normally
distributed over the research area with a slight bias or skewness towards the southwestern area
where the research station is located.
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A.3. RESEARCHER BIAS

Figure A.5 – Measured sampling intervals between GPS-fixes over the course of a day. The
sampling interval equals to the time to the next GPS-location. It can be assumed that such
shorter and longer GPS intervals occur equally over the day with few outliers in the evening/night.
Shorter sampling intervals which are originating from additional points to the 30 min sampling
regime result in the zigzag pattern. Furthermore the 1800 second line as well as the 3600 second
line (where a 30 min point was probably missed) is visible.

A.3 Researcher bias

(a) start points (b) end points

Figure A.6 – Comparing end and start points within the bu↵ered research transects to the total
within the core area.
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A.4. WEATHER AND FRUIT AVAILABILITY.

A.4 Weather and fruit availability.
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Figure A.7 – Precipitation and temperature for Suaq Balimbing. Temperatures and precipitation
are significantly di↵erent for months October, November and December although the temperature
stays very stable over time. If we would zoom in at the mean temperatures we would clearly see
di↵erences between the end of the year and the rest of the months.
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A.4. WEATHER AND FRUIT AVAILABILITY.

40 11
7

68 36

61

48 44

37 53 40 42

27

5.0

7.5

10.0

12.5

15.0

17.5

1 2 3 4 5 6 7 8 9 10 11 12

month

FA
I

Figure A.8 – Di↵erence of FAI during the year. The mean FAI for all months was 9.7 with a
minimum of 3.4 and a maximum of 18.27. No month was significantly di↵erent from the general
mean (Kruskal-Wallis, df = 11,�̃2 = 10.66, p = 0.47).
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B.1. BACKGROUND AND METHODS

B.1 Background and methods
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Figure B.1 – All individuals tracked and their corresponding sampling e↵ort.
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B.1. BACKGROUND AND METHODS

B.1.1 Movement parameters

Figure B.2 – Visualisation of the di↵erent movement parameter of DJL, the TDD and the
derived RR

B.1.2 Movement between feeding trees

Figure B.3 – Explanation of the derived statistics for the tree A to tree B movement.
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B.2. RESULTS AND DISCUSSION

B.2 Results and discussion

Figure B.4 – Scatterplot matrix of movement parameter and explanatory variables.
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B.2. RESULTS AND DISCUSSION

B.2.1 Uncertainties in movement parameter

mean timelag [s]: 589

mean timelag [s]: 1132

mean timelag [s]: 2248

every

every 2nd

every 4th

500 1000 1500 2000
DJL [m]

Subsampling of 18 high frequency follows

(a) subsampled follow (b) overlap

Figure B.5 – (a)Distribution of each subsampling group. The mean time lags for the subsampled
follows is also indicated in seconds. We see that the sampling regime changed from an average
of ca. 10 min to 20 min for every second GPS fix and to ca. 40 min for every fourth GPS fix.
(b) The area under the subsampled movement path (dark blue green) when the path is fully
subsampled (start-end). This was done for every subsample possible (every 2nd,3rd... until only
start and end points remained)
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Figure B.6 – (a) The visualisation of the development of the corresponding DJL. (b) The
visualisation of the development of the corresponding SI. We see that DJL is negatively a↵ected
by reducing the sampling frequency and straightness is positively influenced. The di↵erences
between individual follows more or less stayed the same independently of the sampling scheme.
(c) The results of bootstrapping the whole trajectory where every possible subsampling frequency
was applied (every 2nd,3rd)... until only start and end points remained). The pattern remained
similar to the three initial subsampling frequencies but it becomes more obvious that above 40
minutes the trajectories are getting unstable. (d) The overlap area of the original trajectory
(bu↵ered: 10 m) with the subsampled trajectories (bu↵ered: 10 m) was calculated and given in
percentage to the original trajectory area. Here it becomes even more obvious that for longer
intervals than 40 minutes the overlap is increasingly fluctuating. Mean overlap compared to the
original trajectory for a sampling rate of around 30 minutes is 74±3%.
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B.2.2 Movement parameters

mean:  34.7 m

2.5%: 1.41 m 97.5%: 128.96 m

0

1

2

3

4

1 × 10−1 1 × 10+0 1 × 10+1 1 × 10+2 1 × 10+3

distance [m]

co
un

t

Figure B.7 – Distribution of edge lengths.
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Figure B.8 – Overview of DJL for every indivdual per age-sex class.
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Table B.1 – Overview of day journey length.

focal class # follows age o↵sp. age DJL* TDD* SI sinuosity speed** length turn angle*** trees points sampling interv.

aqra unflanged male 6 independent independent 847±208 366±269 0.4±0.25 0.21±0.05 0.083±0.25 10:14:30 3576 0 22.3 00:28:52
balu unflanged male 2 independent independent 767±25 427±39 0.56±0.07 0.22±0.02 0.068±0.07 11:18:30 4353 0 24.5 00:28:53
beo unflanged male 1 independent independent 1060±NA 319±NA 0.3±NA 0.23±NA 0.085±NA 12:26:00 4791 0 27 00:28:42
bob unflanged male 1 independent independent 1073±NA 725±NA 0.68±NA 0.19±NA 0.103±NA 10:24:00 3593 9 31 00:20:48
caesar unflanged male 6 independent independent 1004±445 451±205 0.45±0.09 0.25±0.07 0.091±0.09 11:07:30 5010 5 29.8 00:23:16
derek unflanged male 1 independent independent 688±NA 59±NA 0.09±NA 0.35±NA 0.053±NA 13:00:00 6039 4 32 00:25:10
filip unflanged male 3 independent independent 1041±331 612±308 0.57±0.1 0.25±0.1 0.097±0.1 10:53:00 5218 8 32 00:21:37
gura unflanged male 9 independent independent 1193±562 483±266 0.42±0.19 0.2±0.04 0.104±0.19 11:21:07 4290 1 26.9 00:26:34
horseface unflanged male 6 independent independent 908±403 554±351 0.57±0.16 0.24±0.08 0.082±0.16 11:02:40 4335 1 26.3 00:26:14
nagini unflanged male 1 independent independent 581±NA 342±NA 0.59±NA 0.33±NA 0.059±NA 09:47:00 4892 8 29 00:20:58
saudade unflanged male 1 independent independent 849±NA 343±NA 0.4±NA 0.22±NA 0.071±NA 12:01:00 5426 2 29 00:25:45
sem unflanged male 1 independent independent 917±NA 628±NA 0.69±NA 0.21±NA 0.088±NA 10:25:00 4802 7 31 00:20:50
shane unflanged male 1 independent independent 1713±NA 959±NA 0.56±NA 0.13±NA 0.136±NA 12:35:00 5198 0 27 00:29:02
unfl.male unflanged male 2 independent independent 1126±183 209±24 0.19±0.05 0.17±0.01 0.102±0.05 11:00:00 3906 0 24 00:28:42
chindy independent immature 4 11.6 independent 1036±214 620±262 0.58±0.18 0.16±0.04 0.098±0.18 10:41:15 4016 0 22.5 00:29:47
cinnamon independent immature 3 7.7 independent 1046±318 387±171 0.37±0.09 0.24±0.04 0.096±0.09 10:57:40 5755 9 32.7 00:20:53
diddy independent immature 6 9.2 independent 753±144 252±72 0.34±0.09 0.27±0.06 0.066±0.09 11:25:00 3757 0 25.2 00:28:22
ellie independent immature 4 13.4 independent 921±121 445±238 0.47±0.21 0.25±0.07 0.082±0.21 11:12:30 5852 12 35.5 00:23:03
fredy independent immature 8 9.1 independent 1070±382 455±264 0.42±0.19 0.22±0.05 0.092±0.19 11:38:00 3942 0 25.2 00:28:50
lilly independent immature 10 12.5 independent 1079±374 471±142 0.46±0.13 0.21±0.05 0.096±0.13 11:04:54 4894 4 30.2 00:25:42
lois independent immature 10 9.2 independent 766±166 436±159 0.56±0.17 0.26±0.06 0.078±0.17 09:45:42 4342 6 27.7 00:22:19
pauline independent immature 1 independent independent 697±NA 273±NA 0.39±NA 0.26±NA 0.061±NA 11:22:00 4041 0 25 00:28:25
sazu independent immature 1 6.6 independent 668±NA 327±NA 0.49±NA 0.24±NA 0.068±NA 09:53:00 3065 0 23 00:26:57
shera independent immature 1 12.8 independent 1164±NA 538±NA 0.46±NA 0.11±NA 0.101±NA 11:29:00 3657 4 18 00:40:32
tina independent immature 1 13.2 independent 1051±NA 525±NA 0.5±NA 0.27±NA 0.087±NA 12:08:00 10125 27 60 00:12:20
trident independent immature 7 12.1 independent 1038±294 493±188 0.48±0.1 0.23±0.06 0.092±0.1 11:16:51 5014 5 30 00:23:35
xavier independent immature 1 14.7 independent 695±NA 274±NA 0.39±NA 0.26±NA 0.055±NA 12:37:00 4553 0 27 00:29:07
yulia independent immature 16 10.3 independent 1093±453 251±128 0.26±0.14 0.22±0.07 0.093±0.14 11:36:22 4649 2 28.2 00:26:01
cinnamon infant 2 5 independent 730±126 420±76 0.59±0.21 0.22±0 0.078±0.21 09:20:00 3132 2 21.5 00:27:42
eden infant 2 3.5 independent 1105±135 534±50 0.49±0.11 0.2±0.05 0.091±0.11 12:07:30 4748 7 34 00:22:03
frankie infant 5 4.7 independent 715±151 323±186 0.43±0.2 0.29±0.06 0.062±0.2 11:29:36 4581 4 28.6 00:25:23
lois infant 7 8 independent 845±138 522±97 0.62±0.06 0.25±0.03 0.079±0.06 10:44:09 4898 5 28.7 00:23:38
ra� infant 1 41.2 independent 929±NA 730±NA 0.79±NA 0.18±NA 0.09±NA 10:20:00 3361 0 22 00:29:31
balu flanged male 23 independent independent 903±231 461±180 0.52±0.17 0.24±0.05 0.082±0.17 11:06:47 4708 3 27.2 00:25:52
butterfly flanged male 1 independent independent 749±NA 70±NA 0.09±NA 0.29±NA 0.065±NA 11:30:00 5018 8 34 00:20:55
dian flanged male 9 independent independent 731±272 238±123 0.33±0.13 0.27±0.08 0.066±0.13 11:01:40 4319 3 27 00:25:40
higer flanged male 5 independent independent 540±121 231±118 0.43±0.19 0.31±0.07 0.057±0.19 09:33:12 3568 4 24.8 00:24:23
islo flanged male 20 independent independent 986±364 549±317 0.53±0.21 0.24±0.06 0.088±0.21 11:12:27 4995 5 29.4 00:24:04
kewin flanged male 8 independent independent 801±242 440±220 0.53±0.14 0.26±0.07 0.068±0.14 11:47:52 4328 0 25.8 00:28:37
kombek flanged male 1 independent independent 528±NA 296±NA 0.56±NA 0.27±NA 0.05±NA 10:32:00 3414 0 23 00:28:44
kumango flanged male 2 independent independent 900±475 453±199 0.52±0.05 0.26±0.12 0.088±0.05 10:10:00 4698 4 26.5 00:23:55
otto flanged male 3 independent independent 803±252 405±315 0.44±0.31 0.23±0.11 0.077±0.31 10:56:40 3538 0 23.7 00:28:53
pluto flanged male 16 independent independent 779±349 387±208 0.48±0.17 0.24±0.06 0.071±0.17 10:54:30 4102 1 24.6 00:28:00
saruman flanged male 2 independent independent 1454±1126 1256±1208 0.77±0.23 0.18±0.11 0.132±0.23 10:59:00 4066 0 23.5 00:29:18
timothy flanged male 2 independent independent 814±300 558±107 0.71±0.13 0.19±0 0.093±0.13 08:41:30 3551 0 20 00:27:39
titan flanged male 4 independent independent 687±30 233±38 0.34±0.06 0.26±0.02 0.066±0.06 10:33:30 5176 4 28.2 00:23:17
xenix flanged male 6 independent independent 1398±601 527±220 0.39±0.17 0.19±0.05 0.121±0.17 11:32:40 4209 0 26.2 00:27:37
alice adult female 7 independent 2 1030±417 511±298 0.48±0.2 0.25±0.08 0.088±0.2 11:36:09 6045 6 35 00:25:11
cissy adult female 50 50.8 3.9 905±296 402±231 0.45±0.2 0.22±0.06 0.083±0.2 10:51:25 4391 1 26 00:27:19
dodi adult female 1 31.3 independent 627±NA 267±NA 0.43±NA 0.28±NA 0.054±NA 11:42:00 3800 0 25 00:29:15
ellie adult female 83 18.6 2.9 841±237 425±241 0.5±0.17 0.25±0.05 0.075±0.17 11:25:53 4619 3 28.8 00:25:09
frankie adult female 1 5.5 independent 1280±NA 704±NA 0.55±NA 0.21±NA 0.12±NA 10:41:00 5655 10 35 00:18:51
friska adult female 100 72.8 3.9 831±291 377±171 0.46±0.17 0.25±0.07 0.075±0.17 11:03:42 4741 4 29 00:26:27
halte adult female 1 independent independent 490±NA 235±NA 0.48±NA 0.25±NA 0.056±NA 08:46:00 3324 0 19 00:29:13
lilly adult female 9 16.4 1.4 912±304 368±221 0.39±0.13 0.24±0.06 0.082±0.13 11:07:20 4514 2 27.2 00:25:57
lisa adult female 107 28.5 4.2 900±417 395±215 0.45±0.19 0.24±0.07 0.083±0.19 10:55:50 5080 5 30.3 00:25:10
mocca adult female 7 independent independent 648±248 354±264 0.47±0.25 0.3±0.1 0.06±0.25 10:45:51 3618 0 23.9 00:28:17
okume adult female 1 independent independent 1047±NA 335±NA 0.32±NA 0.26±NA 0.082±NA 12:47:00 5027 1 31 00:25:34
piniata adult female 3 independent independent 763±489 319±169 0.44±0.05 0.25±0.03 0.074±0.05 09:43:20 3415 1 21.7 00:28:32
ra� adult female 15 43.4 independent 802±304 396±172 0.49±0.12 0.25±0.08 0.077±0.12 10:22:44 4012 0 23.5 00:27:50
sarabi adult female 16 29.1 0.9 749±169 273±104 0.37±0.14 0.25±0.05 0.065±0.14 11:32:19 4057 0 25.8 00:28:06
tiara adult female 5 independent independent 873±382 533±343 0.58±0.29 0.22±0.09 0.078±0.29 11:09:48 4882 1 25.8 00:27:05
tina adult female 1 21.2 independent 810±NA 371±NA 0.46±NA 0.23±NA 0.079±NA 10:16:00 4427 4 24 00:26:47

*: [m], **: [km/h], ***: [°]
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(a) dominance and DJL (b) dominance and SI

(c) dominance and sinuosity (d) age of the focal and DJL

Figure B.9 – Influence of age and dominance on DJL. Age and dominance correlated highly
therefore the results can be seen interchangeably (maximum age is 77 therefore a the change per
category is around 20 times less per year than per dominance category). All e↵ects were not
statistically significant in the model.
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Figure B.10 – The colinearity of weather variables posed a problem and key weather variables
based on their correlation and expected expressiveness.
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Figure B.11 – Day journey lengths over the year per age-sex class.
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B.2. RESULTS AND DISCUSSION

(a) sinuosity index (Benhamou, 2004)
(b) Maximum expected displacement, Emax (Cheung
et al., 2007)

(c) Net squared displacement (Bunnefeld et al., 2011) (d) total displacement

Figure B.12 – Derived tortuosity parameter for age-sex classes.
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Figure B.13 – Overview of DJL (green), SI (black) and sinuosity index (blue) over the whole
study period.
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B.2. RESULTS AND DISCUSSION

Figure B.14 – A selection of follows to compare the results of the sinuosity and the straightness.
The follow 1822 has low sinuosity and high straightness, the follows 745, 2591 have low straightness
and high sinuosity. These follows are as expected describing more or less tortuous movement
which is reflected in both movement parameters. On the other hand shows the follow 1082 and
the follow 2682 high sinuosity and also high straightness and the follow 2284 low sinuosity and low
straightness. For these follows we get contradicting results when are interested in the tortuosity
of movement.
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Table B.2 – Statistical models trying to explain TDD per follow for all age sex classes and for
females with o↵spring only.

Nr. Response variable / Model description Factor Factor type Estimate Confidence Interval P VIF

a) Total displacement of all age sex classes Intercept intercept 114.24 -488.66 – 717.15 0.71 -
n = 610 Day rain Predictor -0.09 -1.52 – 1.35 0.907 1.0
p = 0.84 Night rain Predictor 0.2 -0.43 – 0.83 0.536 1.0
M-R2 = 0.015 Average day temp. Predictor 10.34 -12.40 – 33.08 0.373 1.0
C-R2 = 0.154 FAI Predictor -0.43 -8.77 – 7.91 0.92 1.0
Family = Gaussian ASC: Flanged male Predictor 53.08 -35.57 – 141.74 0.241 1.3

ASC: Infant Predictor 56.13 -87.84 – 200.11 0.445 1.2
ASC: Independant immature Predictor 33.12 -55.06 – 121.30 0.462 1.3
ASC: Unflanged male Predictor 83.83 -19.90 – 187.56 0.113 1.2
Focal Random - - 0.0047 -
Month Year Random - - 0.23 -

b) Total displacement of only females Intercept intercept 96.19 -709.29 – 901.68 0.815 -
n = 340 Day rain Predictor -0.73 -2.35 – 0.89 0.375 1.0
p = 0.14 Night rain Predictor -0.3 -1.27 – 0.67 0.541 1.0
M-R2 = 0.030 Average day temp. Predictor 10.03 -20.10 – 40.17 0.514 1.0
C-R2 = 0.054 FAI Predictor -4.66 -14.48 – 5.16 0.352 1.0
Family = Gaussian Age of current o↵spring Predictor 13.99 2.50 – 25.48 0.017 1.0

Dominance category Predictor 13.38 -21.35 – 48.12 0.45 1.0
Focal Random - - 0.46 -
Month Year Random - - 0.69 -

⇤⇤⇤p < 0.001; ⇤⇤p < 0.01; ⇤p < 0.05; bold = significance level reached; Statistical variables info’s see first table
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B.2. RESULTS AND DISCUSSION

(a) TDD and age of o↵spring (b) DJL and age of o↵spring

(c) SI and age of o↵spring (d) Sinuosity and age of o↵spring

Figure B.15 – DJL and TDD positively correlated with the age of the current o↵spring for
females. But interestingly the TDD increased first around the age of 1 or 2 and DJL increased
later around the age of 4. Therefore the straightness index shows a linear non-relationship because
the relation follows a parable where the movement was straightest around the age of 3 to 4. But
tortuosity measured witb the straightness index showed a decrease of sinuosity with age of the
o↵spring.
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B.2.3 Fruit trees visited
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Figure B.16 – Comparison of fruit trees visited (boxplot) and monthly fruit availability index
(blue line).
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B.2. RESULTS AND DISCUSSION

B.2.4 Di↵erences of movement parameters and year-months

Figure B.17 – Di↵erences of movement parameters between years.
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B.2. RESULTS AND DISCUSSION

Figure B.18 – Di↵erences of movement parameters between months.
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B.2. RESULTS AND DISCUSSION

B.2.5 Level 3: tortuosity and patterns during the day

Figure B.19 – Comparison of tree to tree movement with a random sample with the same
movement windows. In red is the random sample and in blue the tree to tree movement. The travel
distance on the y axis was square root transformed for better visibility. Due to the randomness
of the random sample the data was reproduced ten times but the results remained similar.
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Table B.3 – Statistical models trying to explain sinuosity of movement between feeding trees.

Nr. Response variable / Model description Factor Factor type Estimate Confidence Interval P VIF
a) Sinuosity between trees Intercept intercept -0.0085 -1.6817 – 1.6647 0.992 -

n = 1501 Day rain Predictor -0.0022 -0.0093 – 0.0049 0.544 1.060559
P =0.81 Night rain Predictor 0 -0.0019 – 0.0019 0.989 1.045544
M-R2 = 0.004 Average day temp. Predictor 0.0188 -0.0463 – 0.0839 0.571 1.136826
C-R2 = 0.0843 FAI Predictor -0.0139 -0.0318 – 0.0040 0.128 1.106368
Family = Gaussian ASC: Flanged male Predictor -0.0356 -0.1593 – 0.0881 0.573 1.202329

ASC: Infant Predictor -0.0532 -0.2854 – 0.1789 0.653 1.077536
ASC: Independant immature Predictor -0.072 -0.2171 – 0.0730 0.33 1.112555
ASC: Unflanged male Predictor 0.0091 -0.1381 – 0.1562 0.904 1.128103
Date Random - - 0.0015 -
Focal Random - - 0.8166 -
N-fixes (between trees) Random - - 0.015 -
Time between trees Random - - 0.99 -

b) Sinuosity between trees Intercept -1.8082 -6.1276 – 2.5111 0.412 -
n = 613 Day rain -0.005 -0.0281 – 0.0181 0.672 1.056858
P = 0.34 Night rain -0.0002 -0.0048 – 0.0045 0.944 1.031573
M-R2 = 0.016 Average day temp. 0.0961 -0.0641 – 0.2563 0.24 1.069871
C-R2 = 0.090 FAI -0.029 -0.0692 – 0.0111 0.156 1.036368
Family = Gaussian Dominance -0.0798 -0.2236 – 0.0640 0.277 1.513861

Age of current o↵spring 0.0149 -0.0468 – 0.0766 0.635 1.379508
Matriline 0.0673 -0.1701 – 0.3047 0.579 1.163642
Date Random - - 0.036 -
Focal Random - - 0.999 -
N-fixes (between trees) Random - - 0.265 -
Time between trees Random - - 1 -

⇤⇤⇤p < 0.001; ⇤⇤p < 0.01; ⇤p < 0.05; bold = significance level reached; Statistical variables info’s see first table





Appendix C

Appendix: Home ranges

Table C.1 – Overview of adult and independent immature females used for the home range
analysis.

Individual ClassFocal Birthdate M D Follows 1. o↵spring Birth date 2. o↵spring Birth date 3. o↵spring Birth date Mother

cissy adult female 01.01.65 1 2 74 Lisa 01.07.87 Chindy 01.01.03 Cinmon 01.04.12 -
sarabi adult female 01.01.85 1 3 21 Sazu 01.01.07 Simba 01.03.13 - - -
lisa adult female 01.07.87 1 3 162 Lilly - Lois 01.08.10 Leon 01.11.18 Cissy
lilly adult female 01.03.01 1 4 42 Luther 01.03.16 - - - - Lisa
friska adult female 01.01.43 2 1 166 Ellie 01.03.99 Fredy 01.06.05 Frankie 01.08.12 -
ra� adult female 01.01.73 2 2 31 Ti 01.01.98 Rondaldo 01.01.06 Rendang 15.07.13 Halte
ellie adult female 01.03.99 2 3 148 Eden 01.11.14 - - - - Friska
yulia independent immature 01.01.07 2 4 45 - - - - - - -
tiara adult female - 3 - 11 - - - - - - -
trident independent immature 01.07.06 3 4 32 - - - - - - Tiara

M = Matriline, D = Dominance

Table C.2 – Overview of derived bandwidths for di↵erent bandwidth estimators for the KDE
algorithm

focal hpi hbcv hscv

cissy 76.52 124.53 82.65
ellie 52.45 79.25 54.65
friska 53.74 87.07 55.93
lilly 72.33 116.48 76.77
lisa 56.79 89.73 60.83
ra� 70.31 127.59 74.12
sarabi 57.21 94.46 63.86
tiara 91.60 136.71 95.82
trident 70.28 97.94 77.68
yulia 50.43 83.21 53.23
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Figure C.1 – Home range descriptors of the three HRE algorithms KDE, BRB and MCP. The
values are normalised per highest value of the category for better comparison.
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C.0.1 Results home range

Figure C.2 – Results of ratio between core range and home ranges. Core ranges are on average
27±6% (average of all periods and HRE) of the 95% HR. Normalised fruit tree counts (divided
by total sampling e↵ort) were often more abundant in the core ranges (red dots) than in the full
home ranges (blue dots).
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(a) Core ranges (b) Home ranges

Figure C.3 – Home range size and matriline for core range and home range.

Table C.4 – Statistical models trying to explain normalized fruit trees values in overlaps and
home ranges.

Nr. Response variable / Model description Factor Factor type Estimate Confidence Interval P

a) Fruit trees in CR Intercept Intercept 0.1769 0.1302 – 0.2236 <0.001
n = 121 Area Predictor -0.0559 -0.0755 – -0.0362 <0.001
P <0.0001*** Matriline Predictor -0.0195 -0.0377 – -0.0013 0.036
M-R2 = 0.25 Dominance Predictor -0.0038 -0.0160 – 0.0084 0.54
C-R2 = 0.59 Focal Random - - <0.001
Family = Gaussian Algorithm Random - - <0.001

b) Fruit trees in HR Intercept Intercept 0.1586 0.1329 – 0.1844 <0.001
n = 190 Area Predictor -0.011 -0.0139 – -0.0081 <0.001
P <0.0001*** Related Predictor -0.0137 -0.0235 – -0.0039 0.006
M-R2 = 0.36 Dominance Predictor -0.003 -0.0096 – 0.0035 0.363
C-R2 = 0.72 Focal Random - - <0.001
Family = Gaussian Algorithm Random - - 0.13

c) Fruit trees in overlaps of CR Intercept Intercept 0.0872 0.0710 – 0.1034 <0.001
n = 164 Area Predictor 0.0421 0.0148 – 0.0693 0.002
P = 0.006** Related Predictor -0.0036 -0.0141 – 0.0070 0.507
M-R2 = 0.085 Dominance di↵. Predictor 0.0069 0.0008 – 0.0131 0.027
C-R2 = 0.085 Focal Random - - 1
Family = Gaussian Algorithm Random - - 1

d) Fruit trees in overlaps of HR Intercept Intercept 0.1105 0.1033 – 0.1176 <0.001
n = 212 Area Predictor 0.0003 -0.0032 – 0.0037 0.877
P = 0.872 Related Predictor -0.0001 -0.0026 – 0.0025 0.96
M-R2 = 0.0013 Dominance di↵. Predictor 0.0006 -0.0008 – 0.0021 0.406
C-R2 = 0.162 Focal Random - - <0.001
Family = Gaussian Algorithm Random - - 0.042

⇤⇤⇤p < 0.001; ⇤⇤p < 0.01; ⇤p < 0.05; bold = significance level reached; Statistical variables info’s see first table
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C.0.2 Results overlaps

Table C.5 – Overview of Pearson’s correlation coe�cient between di↵erent overlap indices. The
overlaps were calculated from the BRB home ranges for the whole study duration with a hmin
factor of 0.8.

overlap Jaccard index BA index UDOI VI relative HR shared

1.00 0.92 0.85 0.87 0.84 0.70
0.92 1.00 0.95 0.95 0.95 0.78
0.85 0.95 1.00 0.96 0.99 0.79
0.87 0.95 0.96 1.00 0.98 0.73
0.84 0.95 0.99 0.98 1.00 0.76
0.70 0.78 0.79 0.73 0.76 1.00
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Table C.6 – Full ranging overlaps calculated from the UD (BA, UDOI, VI, relative HR shared)
or the 95% delineation (overlap, Jaccard Index) of the BRB home ranges for the whole study
duration with a hmin factor of 0.8.

focal focal.1 related overlap algorithm Jaccard index BA index UDOI VI relative HR shared

ellie cissy FALSE 1.70 brb 0.54 0.74 0.70 0.58 0.86
friska cissy FALSE 1.85 brb 0.53 0.73 0.70 0.58 0.74
lilly cissy TRUE 2.06 brb 0.64 0.80 0.79 0.61 0.85
lisa cissy TRUE 2.56 brb 0.74 0.87 1.02 0.69 0.80
ra� cissy FALSE 1.31 brb 0.38 0.50 0.30 0.32 0.67
sarabi cissy TRUE 0.63 brb 0.21 0.39 0.17 0.20 0.85
tiara cissy FALSE 0.93 brb 0.32 0.52 0.31 0.34 0.93
trident cissy FALSE 0.96 brb 0.27 0.41 0.19 0.23 0.60
yulia cissy FALSE 0.68 brb 0.19 0.36 0.16 0.24 0.50
cissy ellie FALSE 1.70 brb 0.54 0.74 0.70 0.58 0.60
friska ellie TRUE 1.87 brb 0.72 0.87 1.03 0.71 0.75
lilly ellie FALSE 1.58 brb 0.56 0.70 0.61 0.49 0.65
lisa ellie FALSE 1.67 brb 0.48 0.75 0.77 0.57 0.52
ra� ellie TRUE 0.92 brb 0.30 0.42 0.20 0.26 0.47
sarabi ellie FALSE 0.42 brb 0.18 0.40 0.20 0.24 0.57
tiara ellie FALSE 0.80 brb 0.37 0.55 0.36 0.39 0.80
trident ellie FALSE 0.50 brb 0.16 0.27 0.09 0.17 0.31
yulia ellie TRUE 0.91 brb 0.38 0.49 0.28 0.30 0.68
cissy friska FALSE 1.85 brb 0.53 0.73 0.70 0.58 0.65
ellie friska TRUE 1.87 brb 0.72 0.87 1.03 0.71 0.95
lilly friska FALSE 1.82 brb 0.58 0.71 0.63 0.49 0.75
lisa friska FALSE 1.84 brb 0.48 0.72 0.68 0.50 0.58
ra� friska TRUE 0.98 brb 0.28 0.37 0.15 0.21 0.50
sarabi friska FALSE 0.46 brb 0.16 0.28 0.10 0.13 0.62
tiara friska FALSE 0.81 brb 0.30 0.50 0.30 0.36 0.81
trident friska FALSE 0.55 brb 0.15 0.21 0.05 0.12 0.34
yulia friska TRUE 1.19 brb 0.44 0.65 0.54 0.44 0.88
cissy lilly TRUE 2.06 brb 0.64 0.80 0.79 0.61 0.72
ellie lilly FALSE 1.58 brb 0.56 0.70 0.61 0.49 0.79
friska lilly FALSE 1.82 brb 0.58 0.71 0.63 0.49 0.72
lisa lilly TRUE 2.08 brb 0.59 0.77 0.81 0.56 0.65
ra� lilly FALSE 0.79 brb 0.22 0.23 0.06 0.14 0.40
sarabi lilly TRUE 0.37 brb 0.13 0.19 0.04 0.08 0.49
tiara lilly FALSE 0.63 brb 0.22 0.29 0.09 0.18 0.62
trident lilly FALSE 0.45 brb 0.12 0.19 0.04 0.11 0.27
yulia lilly FALSE 0.74 brb 0.24 0.28 0.09 0.14 0.54
cissy lisa TRUE 2.56 brb 0.74 0.87 1.02 0.69 0.90
ellie lisa FALSE 1.67 brb 0.48 0.75 0.77 0.57 0.84
friska lisa FALSE 1.84 brb 0.48 0.72 0.68 0.50 0.73
lilly lisa TRUE 2.08 brb 0.59 0.77 0.81 0.56 0.86
ra� lisa FALSE 1.61 brb 0.46 0.60 0.53 0.39 0.82
sarabi lisa TRUE 0.70 brb 0.22 0.51 0.33 0.31 0.95
tiara lisa FALSE 0.96 brb 0.30 0.56 0.37 0.36 0.95
trident lisa FALSE 1.28 brb 0.36 0.57 0.48 0.36 0.80
yulia lisa FALSE 0.73 brb 0.19 0.25 0.07 0.13 0.54
cissy ra� FALSE 1.31 brb 0.38 0.50 0.30 0.32 0.46
ellie ra� TRUE 0.92 brb 0.30 0.42 0.20 0.26 0.46
friska ra� TRUE 0.98 brb 0.28 0.37 0.15 0.21 0.39
lilly ra� FALSE 0.79 brb 0.22 0.23 0.06 0.14 0.32
lisa ra� FALSE 1.61 brb 0.46 0.60 0.53 0.39 0.50
sarabi ra� FALSE 0.66 brb 0.32 0.62 0.47 0.43 0.89
tiara ra� FALSE 0.81 brb 0.38 0.59 0.48 0.43 0.81
trident ra� FALSE 1.08 brb 0.43 0.72 0.73 0.57 0.67
yulia ra� TRUE 0.60 brb 0.22 0.24 0.06 0.15 0.44
cissy sarabi TRUE 0.63 brb 0.21 0.39 0.17 0.20 0.22
ellie sarabi FALSE 0.42 brb 0.18 0.40 0.20 0.24 0.21
friska sarabi FALSE 0.46 brb 0.16 0.28 0.10 0.13 0.18
lilly sarabi TRUE 0.37 brb 0.13 0.19 0.04 0.08 0.15
lisa sarabi TRUE 0.70 brb 0.22 0.51 0.33 0.31 0.22
ra� sarabi FALSE 0.66 brb 0.32 0.62 0.47 0.43 0.33
tiara sarabi FALSE 0.37 brb 0.27 0.46 0.28 0.34 0.37
trident sarabi FALSE 0.67 brb 0.40 0.64 0.52 0.46 0.42
yulia sarabi FALSE 0.07 brb 0.03 0.04 0.00 0.02 0.05
cissy tiara FALSE 0.93 brb 0.32 0.52 0.31 0.34 0.33
ellie tiara FALSE 0.80 brb 0.37 0.55 0.36 0.39 0.40
friska tiara FALSE 0.81 brb 0.30 0.50 0.30 0.36 0.32
lilly tiara FALSE 0.63 brb 0.22 0.29 0.09 0.18 0.25
lisa tiara FALSE 0.96 brb 0.30 0.56 0.37 0.36 0.30
ra� tiara FALSE 0.81 brb 0.38 0.59 0.48 0.43 0.41
sarabi tiara FALSE 0.37 brb 0.27 0.46 0.28 0.34 0.51
trident tiara TRUE 0.41 brb 0.18 0.39 0.20 0.30 0.25
yulia tiara FALSE 0.44 brb 0.23 0.32 0.13 0.23 0.32
cissy trident FALSE 0.96 brb 0.27 0.41 0.19 0.23 0.34
ellie trident FALSE 0.50 brb 0.16 0.27 0.09 0.17 0.25
friska trident FALSE 0.55 brb 0.15 0.21 0.05 0.12 0.22
lilly trident FALSE 0.45 brb 0.12 0.19 0.04 0.11 0.18
lisa trident FALSE 1.28 brb 0.36 0.57 0.48 0.36 0.40
ra� trident FALSE 1.08 brb 0.43 0.72 0.73 0.57 0.55
sarabi trident FALSE 0.67 brb 0.40 0.64 0.52 0.46 0.91
tiara trident TRUE 0.41 brb 0.18 0.39 0.20 0.30 0.41
yulia trident FALSE 0.00 brb 0.00 0.00 0.00 0.00 0.00
cissy yulia FALSE 0.68 brb 0.19 0.36 0.16 0.24 0.24
ellie yulia TRUE 0.91 brb 0.38 0.49 0.28 0.30 0.46
friska yulia TRUE 1.19 brb 0.44 0.65 0.54 0.44 0.47
lilly yulia FALSE 0.74 brb 0.24 0.28 0.09 0.14 0.30
lisa yulia FALSE 0.73 brb 0.19 0.25 0.07 0.13 0.23
ra� yulia TRUE 0.60 brb 0.22 0.24 0.06 0.15 0.30
sarabi yulia FALSE 0.07 brb 0.03 0.04 0.00 0.02 0.09
tiara yulia FALSE 0.44 brb 0.23 0.32 0.13 0.23 0.43
trident yulia FALSE 0.00 brb 0.00 0.00 0.00 0.00 0.00
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Figure C.4 – Di↵erence of overlap indices for related and unrelated individuals for the full home
ranges.
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Figure C.5 – Di↵erence of overlap indices for related and unrelated individuals.
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Figure C.6 – Di↵erence of overlap indices for di↵erent dominance di↵erences.
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(a) area shared relative to HR

(b) UDOI

Figure C.7 – Overview of overlaps between individuals over total research period. Overlaps
were derived from the BRB algorithm with a hmin scaling factor of 0.8. Overlaps shared with
related individuals are indicated with green and overlaps shared with unrelated individuals are
marked in red. The matrilines are marked in orange, blue and grey. The UDOI and the relative
HR shared were calculated from the UD and not from the polygons.
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Table C.7 – Statistical models trying to explain normalized fruit trees values in overlaps and
home ranges.

Nr. Response variable / Model description Factor Factor type Estimate Confidence Interval P

a) Fruit trees in CR Intercept Intercept 0.1769 0.1302 – 0.2236 <0.001
n = 121 Area Predictor -0.0559 -0.0755 – -0.0362 <0.001
P <0.0001*** Matriline Predictor -0.0195 -0.0377 – -0.0013 0.036
M-R2 = 0.25 Dominance Predictor -0.0038 -0.0160 – 0.0084 0.54
C-R2 = 0.59 Focal Random - - <0.001
Family = Gaussian Algorithm Random - - <0.001

b) Fruit trees in HR Intercept Intercept 0.1586 0.1329 – 0.1844 <0.001
n = 190 Area Predictor -0.011 -0.0139 – -0.0081 <0.001
P <0.0001*** Related Predictor -0.0137 -0.0235 – -0.0039 0.006
M-R2 = 0.36 Dominance Predictor -0.003 -0.0096 – 0.0035 0.363
C-R2 = 0.72 Focal Random - - <0.001
Family = Gaussian Algorithm Random - - 0.13

c) Fruit trees in overlaps of CR Intercept Intercept 0.0872 0.0710 – 0.1034 <0.001
n = 164 Area Predictor 0.0421 0.0148 – 0.0693 0.002
P = 0.006** Related Predictor -0.0036 -0.0141 – 0.0070 0.507
M-R2 = 0.085 Dominance di↵. Predictor 0.0069 0.0008 – 0.0131 0.027
C-R2 = 0.085 Focal Random - - 1
Family = Gaussian Algorithm Random - - 1

d) Fruit trees in overlaps of HR Intercept Intercept 0.1105 0.1033 – 0.1176 <0.001
n = 212 Area Predictor 0.0003 -0.0032 – 0.0037 0.877
P = 0.872 Related Predictor -0.0001 -0.0026 – 0.0025 0.96
M-R2 = 0.0013 Dominance di↵. Predictor 0.0006 -0.0008 – 0.0021 0.406
C-R2 = 0.162 Focal Random - - <0.001
Family = Gaussian Algorithm Random - - 0.042

⇤⇤⇤p < 0.001; ⇤⇤p < 0.01; ⇤p < 0.05; bold = significance level reached; Statistical variables info’s see first table
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