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ABSTRACT 

Nowadays, most of us rely on an online mapping service to find 
the most efficient route to a specific destination when visiting an 
unfamiliar city. Based on our current location, a navigational 

assistant can provide all the necessary information for successful 
wayfinding within fractions of a second. Then, all we have to do is 
to follow the predetermined route as indicated. What sounds like 

a relatively simple task can cause difficulties if a navigator fails to 
interact with the navigation aid on a regular basis. 

In this thesis, I investigated the influence of different stress 

induction approaches on navigation performance by analyzing 
pedestrian tracking data collected in virtual urban environments. 
Results show that different types of stressors had different 

impacts on navigation performance. Applying time pressure on 
study participants did not result in navigators reaching the 
destination faster. On the other hand, participants performing a 

concurrent spatial tapping task had significantly longer to get from 
a starting point to a predefined destination. 

I also found mixed evidence of a learning effect with 

increasing task experience. Furthermore, I reproduced and 
examined recorded route deviations before categorizing them into 
a deliberate and an unintended off-track group. The immediate 

surroundings of intersections were identified as being prone to 
unintentional route deviations. In addition, the type of intersection 
played a crucial role in deviation frequencies. Lastly, a connection 

between map retrieval and unintended route deviations was 
determined. 

In summary, this work has identified a number of behavioral 

patterns in pedestrian route-following performance that could be 
adapted to real-world navigation systems to minimize route 
deviations and create an enhanced user experience. 
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CHAPTER 1 
1 INTRODUCTION 

INTRODUCTION 

Imagine being on your way to a business meeting in an unfamiliar 
city, using public transportation. You eventually arrive at the 

designated train station, covering the last section of your journey 
on foot. Since you are not familiar with your surroundings, you 
rely on a track-up navigation aid on your mobile device which 

displays the route to your final destination. With the broad 
availability of online route planning services offering detailed route 
descriptions based on real-time traffic conditions, this seems to be 

an easily manageable task.  
However, without wishing to offend anyone reading this 

thesis, I would suggest that all of us have gotten lost in an 

unknown city environment despite using the most modern 
navigation aid technology. For various reasons, such as 
inattention, distraction, or disorientation, you failed to follow the 

path indicated by the navigation aid, resulting in a deviation from 
the predetermined route. Usually, you do not immediately realize 
that you have gone astray until you consult your navigation aid 

again. Then you make a 180-degree turn and return to the 
predetermined route from where you continue your journey. 

Your navigation performance might get negatively affected 

in situations with additionally induced stress, such as time 
pressure or increased workload. In our example, time pressure 
could result from your train arriving late, while increased workload 

could be caused by thinking through the last couple of details of 
the upcoming meeting while talking to a friend and trying to 
navigate through the environment. After all, you want to reach 

your destination as quickly and as efficiently as possible without 
taking any unnecessary detours. 
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1.1 Aims & Motivation 

This thesis analyzes the influence of stress induction approaches 
(time pressure/increased workload) on navigation performance by 
evaluating two datasets collected separately in virtual reality 

experiments. In these two studies, participants had to walk 
through an urban environment by following a predetermined route 
and reach a given destination. Study participants were asked to 

complete the navigation task as quickly as possible while 
memorizing relative locations of highlighted landmarks within the 
environment. Neither of the two tasks was supposed to be given 

preferential attention (Credé, Thrash, Hölscher, & Fabrikant, 
2019, 2020). 

This work investigates the circumstances that led to study 

participants going astray from the predetermined route, resulting 
in so-called off-track events. To do this, every event was split into 
either an unintended or deliberate deviation group after 

reproducing the trajectories recorded between the event's 
initiation and its revocation after returning to the predetermined 
route. 

 A precise categorization and quantification of these off-
track events could contribute to more enhanced interaction 
between the navigation aid, its user, and the environment. A 

smart navigation aid system could benefit from being able to 
differentiate between a deliberate and an unintended off-track 
event in many ways. If, for example, a navigation system can 

interpret the behavior of the user and detects a route deviation 
that a certain number of individuals has already taken, this could 
imply the existence of a real-world shortcut, such as a small path 

over an open green area or park. Consequently, this shortcut 
could be added to the database and integrated into future route 
suggestions. This also applies to detours deliberately taken by 

navigators due to large construction sites blocking sidewalks. 
On the other hand, a navigation system could identify crucial 

locations with an accumulation of unintended off-track events. 

Depending on the reason that causes pedestrians to deviate from 
the predetermined route, various measures can be adopted to 
prevent them from happening. For example, suppose the major 

cause is identified as a distraction due to a nearby historic site. In 
that case, the navigation system could issue an acoustic or haptic 
warning to get the user's attention. However, if navigators go 

astray at confusing intersections or busy train stations, the 
navigation aid could enhance the route display by providing more 
detailed instructions with a higher resolution.  
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Moreover, the environment could benefit from smart 
navigation systems by adapting real-world signposts at crucially 

classified intersections for pedestrians both with and without a 
navigation aid. Early detection of dangerous sites may even 
prevent accidents triggered by knee-jerk reactions as a 

consequence of unintended off-track events. 
By estimating the impact of different stress induction 

approaches on navigation performance, a smart navigation 

system could also adapt to the user's spatial cognition abilities. 
Depending on the individual's navigational skills, working load 
capacity, or state of distress, the system could intervene more 

frequently for poorer performance users. Additional information 
such as familiarity with the urban environment, the purpose of the 
journey, time of the day, weather conditions, or local 

recommendations could also be included. 
With this thesis, I want to contribute a small part to the 

development of future smart navigation systems that can provide 

more efficient route suggestions tailored to suit each user's needs. 
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1.2 Research Questions 

Three research questions were addressed in the present study. 
The first research question covers the influence of induced stress 
factors on navigation performance. Secondly, study participants' 

performance across the whole experiment is analyzed to examine 
possible learning effects. Lastly, causes and effects of unintended 
route-following errors are evaluated carefully. 

 
 

 

Research Question 1: 

How do stress induction approaches affect pedestrian 
navigation performance in virtual reality? 

 

 
Research Question 2: 

How does participants' navigation performance change with 
increasing task experience? 
 

 
Research Question 3: 

What are the reasons that navigators unintentionally deviate 

from a predetermined route? 
 

 

 
Before stating corresponding hypotheses on these research 
questions, I first want to provide an overview of related studies 

addressing navigation under stress induction approaches and 
explain the experimental variables in the collected datasets. The 
hypotheses can be found in section 3.3. 
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1.3 Thesis Overview 

In Chapter 1, I have identified three main research questions 
revolving around navigation performance and provided a number 

of typical applications for smart navigation systems. 
Chapter 2 gives an overview of scientific research in human 

navigation and aided wayfinding. A navigational tool taxonomy is 

presented to identify the type of navigation aid users had access 
to in the experimental setup. Furthermore, I will explain route 
following and elucidate the difference between decision points and 

decision scenes. Following a short introduction into route 
deviations, I will focus on different stress induction approaches 
and give an overview of previous research investigating the impact 

of different stressors on human wayfinding tasks. Finally, this 
chapter concludes with the localization of research gaps. 

Chapter 3 explains the experimental procedures of two 

separate user studies conducted by Dr. Sascha Credé, who kindly 
offered two datasets collected in a virtual urban environment to 
be used in this work. Furthermore, I will define navigation 

performance within the scope of this thesis and establish 
hypotheses for the previously stated research questions. 

In Chapter 4, I will depict the methods used to process, 

analyze, and evaluate the available data before depicting different 
intersection types that were found in the virtual city environments. 
This chapter concludes with an overview of applied statistical 

analyses. 
Chapter 5 reports all statistical tests conducted in this thesis 

and delivers corresponding results to the three research 

questions. 
In Chapter 6, results from statistical analyses are discussed, 

summarized, and compared to previous studies. This chapter also 

checks if the initial hypotheses are valid. 
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CHAPTER 2 
2 LITERATURE REVIEW 

LITERATURE REVIEW 

2.1 Human Navigation 

Moving through space from a current location to a distinct 
destination is one of the most common spatial tasks for a human 
being. Whether an individual is taking just a few steps within an 

apartment to use the bathroom or traveling around the world on 
sabbatical leave, the spectrum of the involved spatio-temporal 
scale can vary immensely (Montello & Sas, 2006). Thus, the scope 

of participating research fields is manifold and includes scientists 
with a geographical, psychological, or neuroscience background 
(Denis, 2017). This leads to various definitions for the term 

"navigation" (Allen, 1999; Downs & Stea, 1977; Kuipers, 2000; 
Montello, 2005); I will focus on the latter. 

The process of coordinated and goal-directed movement 

across an environment is known as navigation and includes two 
components labeled locomotion and wayfinding (Montello, 2005). 
The term "locomotion" is described as the actual movement task 

with respect to the surroundings. It involves both sensory and 
motor systems to identify and avoid obstacles along the current 
path. In other words, coordinated body movement is the basis for 

locomotion and is done mostly automatically (e.g., standing 
upright, movement of legs for walking, or avoiding objects). 

The term "wayfinding" is the planning part of navigation that 

includes a destination, typically located outside the immediate 
perceptual field, and a plan for how to reach it efficiently. This task 
is more effortful and requires information about the environment, 

stored either internally or externally (Montello & Sas, 2006). 
Internal representations are composed of acquired knowledge of 
the traveler's surroundings or other people, while external 

representations comprise any kind of navigation aids or map 
artifacts. Wiener, Büchner, & Hölscher (2009) identified the spatial 
knowledge of a navigator as a critical factor of navigation. 

In theory, both locomotion and wayfinding can occur 
separately (Montello & Sas, 2006). Planning a hike without ever 
taking it would be an example of just wayfinding. On the other 

hand, strolling around without the intention to reach a particular 
destination can be described as locomotion only. Both components 
are required to complete a successful navigation task. However, 
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since wayfinding is the cognitive component of navigation, I will 
focus on this term.  

Wiener et al. (2009) further distinguish between aided and 
unaided wayfinding due to these two approaches' fundamentally 
different cognitive demands. Unaided wayfinding requires the 

absence of externalized wayfinding aid and therefore only relies 
on an individual's mental spatial knowledge of an environment. 
Unaided wayfinding is further subdivided depending on the 

presence of destination knowledge, route knowledge, and survey 
knowledge. 

 

2.2 Aided Wayfinding 

During aided wayfinding, on the other hand, navigators have 

access to wayfinding assistance in some form of static or dynamic 
externalized representations such as signs, maps, or navigational 
assistants (Wiener et al., 2009). Each of these representations 

requires different cognitive abilities starting with the depiction of 
information and information delivery. 

Sign-following or trail-following is a navigation task 

requiring low cognitive effort (e.g., exiting an airplane and 
navigating to the baggage claim). If signage is present visibly and 
legibly at every decision point, there is almost no chance of 

unintentionally getting lost (Raubal, 2001). 
In contrast, maps usually contain a more significant amount 

of information. However, their effectiveness for wayfinding is 

highly dependent on how well an individual can read, process, and 
use them to complete a navigation task successfully. This includes 
symbol identification, self-localization, orientation, and path 

integration (Lobben, 2004). Graf & Schmid (2010) pointed out 
that maps exist in various shapes, sizes, and dimensions (e.g., 
paper maps, static maps, or mobile maps). 

Finally, navigational assistants that provide spatial 
information for portable devices anywhere and anytime have 
become ubiquitous with smartphones' advancement (Gartner, 

Huang, Millonig, Schmidt, & Ortag (2011). They can depict track-
up navigation instructions on demand, fitted to a user's needs 
(Corona & Winter, 2001). 

Routes can also be communicated verbally as route 
directions (Lovelace, Hegarty, & Montello, 1999), procedural 
discourse (Tom & Denis, 2003), destination description (Tomko & 

Winter, 2009), or a combination of these approaches. The quality 
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and comprehension of these instructions are decisive for 
successful navigation, as Allen (1997) discussed. 

The overall amount of cognitive effort needed from a 
navigator to successfully complete an aided wayfinding task is 
highly dependent on the type of representation (Wiener et al., 

2009) but generally lower compared to an unaided wayfinding 
task, as stated by Schrom-Feiertag, Stubenschrott, Regal, 
Schrammel, & Settgast (2016). Besides, aided wayfinding may 

highly depend on the environment in which a navigation task is 
performed (Frank, 2009). Frank (2009) also suggests to further 
distinguish between different aided wayfinding tasks depending on 

destination knowledge. Dalton, Hölscher, & Montello (2019) point 
out that an individual's navigation task in complex environments 
is further influenced by social activity such as interacting with or 

co-presence of other individuals. 
 

2.3 Navigational Assistants 

Nowadays, suppose individuals find themselves in an unfamiliar 
environment and want to get from point A (their current location) 

to point B (a destination not within the immediate surroundings). 
In that case, they usually rely on a navigation aid in the form of a 
digital navigational assistant on their mobile phones. The assistant 

will then calculate and generate the most efficient route based on 
the environment's path network (Richter, 2008). 

Chen & Stanney (1999) proposed a navigational tool 

taxonomy that organizes navigational tools into five functional 
categories (see Figure 1). These tools can: 

1. map the current position of the navigator, 

2. display the current orientation of the navigator, 
3. log the movements of the navigator, 
4. demonstrate surrounding environmental information, 

5. present active guidance for the navigator. 
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Today, commonly used navigation aids are classified as category 
5 tools since they fulfill all requirements listed above. Users of a 

tool in this category simply need to follow the assistant's directions 
without making their navigational plans. The mental effort 
required to reach a given destination is minimal compared to tools 

of lower categories (Chen & Stanney, 1999). 

 

But however good these fully equipped navigation aids seem to 
be, there is always another side to the coin. By totally relying on 
navigation technology, a navigator will find himself completely lost 

in case of a navigation system malfunction, power failure, or 
missing mobile network coverage. In moments like these, 
previously acquired spatial knowledge of the surroundings is a 

genuine asset. Different researchers have examined the effect of 
wayfinding tools on spatial knowledge acquisition (Thorndyke & 
Hayes-Roth, 1982; Gillner & Mallot, 1998; Richardson, Montello, 

& Hegarty, 1999). 
Furthermore, suppose an individual has some preexisting 

knowledge about an environment. In that case, a depicted route's 

mental processing will demand reduced working memory, 
therefore decreasing divided attention and increasing spatial 
awareness (Gardony, Brunyé, Mahoney, & Taylor, 2013). 

Nevertheless, when used with certain diligence, navigational 
assistants can ease everyday life, especially for people with 
different physical disabilities (Goodwin, Sanders, Poland, & Stott, 

1997; Bohonos, Lee, Malik, Thai, & Manduchi, 2007).  

Figure 1: The influence of navigational tools on wayfinding  
(Chen & Stanney, 1999).  
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2.4 Route Following 

The task of performing actions based on information provided by 
a navigation aid is known as "route following" and thus is a specific 

kind of (aided) wayfinding (Richter, 2008). Performing a route-
following task requires locomotion since individuals constantly 
monitor their local surroundings (Gartner et al., 2011). It is 

essential to mention that route following can also be used for 
unaided wayfinding tasks, as shown by Brügger, Richter, & 
Fabrikant (2018). However, in this thesis, I will use this term only 

in connection with aided wayfinding. 
In a navigation context, the term "route" is used for 

behavioral patterns consisting of route segments, decision points, 

and two endpoints. These endpoints indicate the origin and the 
destination of the route. "Paths", on the other hand, are 
unbounded, linear, and physical entities. They comprise branching 

points and path segments chosen from a path network (Klippel, 
2003). Route segments and path-segments, as well as decision 
points and branching points, correspond to each other but on a 

different level: While the former are conceptualized on a functional 
level, the latter are combined on a structural level (Richter, 2008). 
Another feature that distinguishes routes from paths is direction, 

as pointed out by Richter (2008): While routes are always directed 
in one way or another, paths do not comprise any direction. 
Therefore, the most efficient route from point A to point B might 

not turn out to be the most efficient route when reversed.  
 

2.5 Decision Points and Decision Scenes 

Decision points also often referred in the literature to as nodes, or 
intersections as perceived in a real-world environment have been 

identified by Janzen & Hawlik (2005) as crucial during route 
following. These are locations where navigators must decide which 
path they want to continue. Intersections along a route are 

considered decision points independently of a navigator's 
behavior. Whether an individual is walking straight or making a 
turn, there is always a decision to be made (Janzen & Hawlik, 

2005). 
Moreover, the number of branches and their average 

deviation from prototypical angles play an essential role in 

calculating decision point complexity. Oblique turns far from 
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standard angles of 45 or 90 degrees demand more spatial 
processing (Richter, 2009). 

The more complex a decision point is, the greater the chance 
of a negative impact on the navigation performance (O'Neill, 
1991). In other terms, decision points are predestined for route-

following errors, reflecting in route deviations (Richter, 2009). In 
order to diminish the possibility of route-following errors, 
researchers have compared the fastest, shortest, simplest, or 

most regionalized route between different origin and destination 
pairs (Mark, 1986; Duckham & Kulik, 2003; Richter & Duckham, 
2008; Richter, 2009). 

Gaisbauer & Frank (2008) suggested using the term 
"decision scenes" instead of "decision points" in conjunction with 
pedestrian navigation. They argue that pedestrians move with a 

higher degree of freedom than is considered in many navigation 
system designs. By expanding the walkable space around decision 
points, they take into account unconstrained movement behavior 

in open spaces, which raises the accuracy of navigation aids. Thus, 
decision scenes are characterized as the local vista space around 
a particular decision point (Gaisbauer & Frank, 2008). 

 

2.6 Route Deviations 

For various reasons, a navigator performing a route-following task 
from an origin to a destination may go astray and end up on a 
path segment that was not intended to be part of the route. As 

described in the previous section, most of these route deviations 
occur at intersections. However, deviations can also happen on a 
single route segment, predominantly in less structured 

environments (Heuten, Henze, Boll, & Pielot, 2008). Schirmer, 
Hartmann, Bertel, & Echtler (2015) identified two possible error 
events potentially occurring at intersections: taking a wrong turn 

(not following the indicated direction) or walking past an 
intersection (instead of taking a turn). These assumptions only 
apply when the navigation aid is functioning faultlessly. Otherwise, 

unsuccessful route-following can be the result of many other 
reasons as depicted by Golledge (1992) or Brunyé, Gagnon, 
Gardony, Gopal, Homes, Tylor, and Tenbrink (2015). 
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2.7 Stress Induction Approaches 

We learned that, by definition, humans deal with wayfinding and 
navigation tasks multiple times per day. Depending on how well 
we know our surroundings and which navigation aids are 

available, these tasks can range from extremely simple when 
going for a walk in the local neighborhood to very demanding in 
completely unfamiliar environments. 

Stress is a feeling that we also encounter every day and can 
be described as a physical, emotional, or psychological response 
to some sort of strain. Stress is perceived diversely for different 

individuals under different conditions and is seen by a majority of 
the population as negatively impacting work productivity (Fink, 
2009). 

However, Yerkes & Dodson (1908) proved that a moderate 
amount of stress could enhance performance for both monotonic 
and complex tasks (see Figure 2). While the positive inter-

correlation of arousal and performance continues for simple tasks, 
this relationship reverses at some point for difficult tasks, as 
illustrated by Diamond, Campbell, Park, Halonen, & Zoladz 

(2007). 

Several virtual environment studies have investigated the 
relationship between stress and navigation performance. Duncko, 
Cornwell, Cui, Merikangas, & Grillon (2007) found positive effects 

of stress on navigation task performance after exposing 
participants' hands to ice water, known as the Cold Pressor Test 
(CPT). They used a Virtual-Navigation Morris Water Task 

Figure 2: Yerkes-Dodson law, according to Diamond et al. (2007), 

showing the relationship between arousal and performance.  
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(VNMWT), where navigators were instructed to locate a hidden 
platform in a circular pool and reach it as quickly as possible. A 

trial was evaluated as a failure if participants could not reach the 
platform within a 60 second time window. The stress group turned 
out to have significantly fewer failures and showed significantly 

lower heading errors. 
Klopp, Garcia, Schulman, Ward, & Tartar (2012) conducted 

a very similar experiment (VNMWT) as Duncko et al. (2007) but 

with a different stressor. Instead of a CPT, participants performed 
a Trier Social Stress Test (TSST) to exercise social stress. Despite 
similar experiment setups as Duncko et al. (2007), Klopp et al. 

(2012) did not find significant differences between the stress and 
the control groups. It was argued that physiological stressors 
(CPT) and social stressors (TSST) have mixed effects on human 

navigation. 
Boone (2019) compared various stressors (physiological, 

social, and cognitive) to evaluate their impacts on navigation 

efficiency and strategy. Study participants first performed a 
spatial learning task in a virtual maze by following a 
predetermined route. Along the route, they passed previously 

placed objects. Participants were then placed somewhere within 
that maze and were asked to navigate to the desired object. No 
experiment showed a significant difference between the stress 

group and the control group leading to the conclusion that 
navigation strategy and efficiency are robust to tested stressors' 
effects. 

Brunyé, Wood, Houck, & Taylor (2017) were the first to 
examine the impact of time pressure as a stressor on a navigation 
task. In contrast to the previously mentioned studies, Brunyé et 

al. (2017) induced the stressor during retrieval trials and not 
before the actual navigation task. Participants visited the 
laboratory on two consecutive days. During the first session, they 

were exploring and learning landmarks in a virtual environment. 
Then, on the next day, participants had to find their way from one 
fixed landmark to another under different time pressure 

conditions. It was found that with increasing time pressure, 
navigators relied more on familiar, previously walked path 
segments instead of traveling in the global direction of the goal 

location using shortcuts. 
Finally, Credé et al. (2019; 2020) conducted two separate 

virtual-reality experiments where participants had to follow a 

predetermined route using a navigation aid and reach a given 
destination as quickly as possible. During the navigation task, local 
and global landmarks were encountered in the urban 

environment. After each navigation session, spatial knowledge 
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was assessed by testing the accuracy of these landmarks' relative 
locations. Different stress induction approaches were chosen for 

the two studies. Credé et al. (2019) employed time pressure on 
half of the participants, while Credé et al. (2020) applied increased 
workload to manipulate stress by adding a spatial tapping task. 

Results showed no impairments for survey knowledge acquisition 
under time pressure. However, the second study revealed a 
negative impact of concurrent task demands for survey knowledge 

acquisition. These findings indicate that the type of stressor is 
crucial to compromised working memory. 

 

2.8 Research Gap 

Looking at the literature, it becomes evident that the influence of 

stress on human navigation is highly dependent on the type of the 
induced stressor and the navigation task. Different stress 
induction approaches may lead to entirely different results for the 

same navigation task. On the other hand, changing the navigation 
task under consistent stress might also alter the outcome of 
navigation performance. Other variables such as previously 

acquired knowledge about the environment where the navigation 
task takes place, or whether stress is induced before or during 
navigation, also impact navigation performance. Furthermore, 

individuals' reactions to stress can vary immensely and involve 
complex physiological and psychological processes (Noack, Nolte, 
Nieratschker, Habel, & Derntl, 2019). 

To my knowledge, no previous studies have examined 
pedestrians' navigation performance in a previously unknown 
urban environment using a category 5 navigational tool (see 

Section 2.3) under different stress induction approaches. This 
thesis aims to close this gap for time pressure and increased 
workload by analyzing human movement patterns collected in 

virtual-reality experiments by Credé et al. (2019; 2020). 
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CHAPTER 3 
3 METHODOLOGY 

METHODOLOGY 

This section will give an overview of the experimental procedure  
carried out by Dr. Sascha Credé. Within the scope of his doctoral 

thesis, Credé (2019) conducted two virtual-reality experiments to 
assess navigators' capabilities to acquire spatial knowledge from 
local and global landmark configurations in situations with and 

without stress. In both experiments, stress was employed on half 
of the study participants in the form of time pressure (Study I) 
and increased workload (Study II). The overview of the 

experimental procedure is limited to the relevant approach (i.e., 
the navigation task) in the context of this thesis. For a detailed 
technical implementation of the experimental setup, please refer 

to Credé (2019). 
Furthermore, I will define navigation performance based on 

the available data and explain the distinction of off-track events 

after reproducing participants' trajectories. After elucidating the 
experimental conditions, I will address the hypotheses to the 
corresponding research questions. 

 

3.1 Experimental Procedure 

Both experiments took place in the CAVE (i.e., Cave Automatic 
Virtual Environment) at the Department of Geography at the 
University of Zurich. For the egocentric navigation task, study 

participants were placed on a chair in a room surrounded by 
projection screens on three sides, wearing 3D shutter glasses. 
Subjects were instructed to perform two concurrent tasks in an 

unfamiliar virtual environment comprising a navigation task and a 
spatial learning task. In addition, they were explicitly briefed not 
to prioritize one task over the other, as they were of equal 

importance. 
 

3.1.1 Navigation Task 

After being familiarized with the experimental procedure by means 

of a training phase, participants found themselves on a virtual 
train entering a train station. As soon as the train came to a full 
stop, subjects' first-person perspective viewpoint was 
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automatically shifted out of the train to the starting location from 
where the navigation task began. 

The navigation task consisted of following a predetermined 
route using a navigational assistant to reach a predefined 
destination. Participants could display the track-up navigation aid 

in the form of a planimetric 2D map (see Figure 3) by pressing a 
button. Toggling between the navigation task and the navigation 
aid was not restricted regarding frequency or duration. However, 

movement across the virtual environment was disabled during 
navigation aid display and until a few seconds after map usage 
(see Section 3.1.7). Furthermore, participants were advised to 

always stay on track and finish the navigation task as quickly as 
possible. 

 

3.1.2 Spatial Learning Task 

While performing the route-following task, participants were 
instructed to remember highlighted buildings' relative locations, 
referred to as the spatial learning task. These buildings were 

distinguishable from their surroundings because of their bright 
colors. Depending on their height, buildings were either classified 
as local (low-rise) or global (high-rise) landmarks. From a 

navigator's perspective, multiple global landmarks could be seen 
from locations along the route, whereas local landmarks' visibility 
was restricted to their immediate surroundings. A set of landmarks 

consisted of four highlighted buildings, although this number was 

Figure 3: A section of the track-up navigation aid route display 

from Study I. The map is centered at the navigator's current 
position (red triangle). The dotted blue line with white arrows 

indicates the route to the destination, marked as a blue circle  
(Credé et al., 2019).  
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not communicated to the study participants before the 
experiment.  

The local landmark configuration in both studies consisted 
of four highlighted low-rise buildings that were placed along the 
route. For the global landmark configuration, highlighted 

skyscrapers were placed in the distance for Study I. In Study II, 
however, participants also walked directly by global landmarks as 
they were placed next to the predetermined route. Study I 

contained an additional mixed landmark configuration where both 
previously mentioned sets of landmarks were visible, but only the 
local landmarks were highlighted (see Figure 4). 

Figure 4: Bird's-eye perspective of different landmark configurations 
of one city model each from Study I and II. Highlighted landmarks 

are depicted in bright colors. Participants arrived at the train 

station (orange arrow) from where they started the route-following 
task (orange line). I(loc) & II(loc) In the local landmark conditions, 

landmarks were placed along the route. I(glo) Global landmarks 
were located in the distance. II(glo) In contrast, global landmarks 

were also placed along the route. I(mix) The mixed landmark 

condition contained highlighted landmarks as in I(loc) and 
unmarked global landmarks in the distance.  
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3.1.3 Stress Manipulation 

Half of the study participants were randomly assigned to either 
the stress group or no stress group before the experiment started. 
In Study I, time pressure was manipulated by introducing two 

scores, only one of which was related to the navigation task. This 
score began at 100 points. One point was deducted for every 10 
seconds while participants were navigating. Every time after losing 

10 points, the current score was highlighted, and a beeping noise 
was sounded. Participants were also told that their scores would 
influence their monetary compensation for participating in the 

experiment. Study II was designed similarly regarding stress 
manipulation. Furthermore, an additional spatial tapping task was 
introduced, for which subjects assigned to the stress group had to 

repeatedly and continuously type a given series of six numbers on 
a 3x3 matrix numeric pad. The overall score was negatively 
affected if the tapping rate fell below one keystroke per second or 

if the numbers were entered in the wrong order. 
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3.1.4 Design 

Three different city models were designed for Study I. All routes 
to be navigated started at the train station and consisted of three 
left and three right turns. Participants performed three rounds in 

three different city models that each contained one out of three 
landmark conditions in a counterbalanced order (see Figure 5). 
They did not have to comply with traffic rules and could move 

freely between streets or sidewalks. 

Two new city models were created for Study II. Subjects in this 

experiment conducted two rounds in two different city models 
containing either a local or global set of landmarks (see Figure 6). 
The order was counterbalanced across participants. In contrast to 

Study I, the number of left and right turns in this study did not 
correspond between city models. 

In both studies, movement speed was capped at 3.8m/s, 

and participants were usually going full speed unless they were 
consulting the navigation aid. This value was obtained after an 
evaluation of what speed of movement was perceived as pleasant 

Figure 5: Representation of the 3x3x2 matrix of the experimental 
setup of Study I. Displayed on top are the three different landmark 

configurations, i.e., local (highlighted low-rise buildings), global 
(highlighted high-rise buildings), and mixed (highlighted low-rise 

buildings with visible high-rise buildings). The three city models on 

the left depict the train rides (orange lines), the navigation routes 
(blue dotted lines), their origins (S), and destinations (D). The 

darker triangles with red frames represent time pressure induction, 

while the lighter triangles with green frames stand for no 
impairments of stress induction approaches.  
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in these virtual environments. Since a large scale was 
implemented for buildings heights and street widths, this rate of 

speed cannot be adopted in a real-world navigation task under the 
present circumstances. 

 

3.1.5  Technical Modifications between 

Experiments 

The two experiments were conducted separately (i.e., 01/2017 
through 06/2017 for Study I and 11/2017 through 01/2018 for 

Study II). After the evaluation of results from Study I, further 
modifications were made for Study II apart from those involving 
the spatial learning task or stress induction approaches. The 

following technical modifications are of importance for this thesis: 

• The navigation control interface changed from a one-handed 
joystick device used in Study I to a foot-operated motion 

controller introduced in Study II. Thus, participants in the 
stress group were able to utilize their dominant hand for the 
tapping task. In view of the fact that all participants 

practiced using the navigation control interface in a training 

Figure 6: Graphic illustration of the experimental setup of Study II, 
showing a 2x2x2 matrix. Landmark configurations are visualized on 

top. Note that all buildings are present in both configurations. On 
the left are the street networks of the two city models. The orange 

arrows indicate the trains' arriving direction. The walkable route is 

depicted as a blue dotted line from its origin (S) to its dest ination 
(D). Darker, red-framed triangles represent the influence of an 

additional tapping task, whereas lighter, green-framed triangles 

indicate no additional stress induction.  
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phase prior to the main experiment, this modification is not 
expected to have influenced navigation behavior. Moreover, 

all subjects were seated during the navigation task, with the 
result that physical movement was absent, and participants 
had to rely on visual cues only. 

• The navigation aid's map scale changed from 1:106 (section 
of 0.071 km2) in Study I to 1:156 (section of 0.026 km2) in 
Study II. Therefore, when participants in the latter study 

were consulting the navigation aid, not only was the 
corresponding section of the city environment smaller, but 
the route was also shorter. For two identical navigation 

tasks, displaying a smaller section of a route could 
automatically lead to more frequent map consultations 
assuming that navigators could memorize the route to the 

edge of the display before the map was retrieved again. 
• In both studies, movement through the virtual environment 

was disabled after map usage. However, this restriction was 

reduced from five seconds in Study I to three seconds in 
Study II. Therefore, participants in the latter study were 
able to move two seconds earlier and did not lose as much 

time between map usage and the navigation task's 
resumption. This modification in favor of participants in the 
second study could offset the disadvantage described in the 

previous point.  
• A disparity was also found in both studies' recordings of 

timestamp intervals. On average, participants' movements 

were logged every 28 milliseconds. However, these values 
differ considerably between runs. For example, average 
intervals ranged between 16 and 33 milliseconds when 

comparing individual runs. This means that in extreme 
cases, some recordings have more than double the 
resolution compared to others. Despite this discrepancy, 

both studies' movement data are of excellent precision that 
can only be achieved under virtual-reality conditions. Both 
datasets surpass the requirements for this thesis. 

 

3.1.6 Data Logging 

During every run, participants' raw tracking data was written and 
saved on a single logfile. The recordings started after the train ride 

when navigators took over the controls of their virtual avatar and 
ended as soon as the destination was reached. Each line began 
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with either a tracker or marker note. All values were separated by 
semicolons (see Figure 7). 

Recorded tracker values were divided into transport nodes and 
head nodes and separated by paragraphs. Therefore, lines 
alternated between these two measurements. Every line 

contained a timestamp with date and time specified in 
milliseconds. In addition, lines containing transport nodes included 
the navigators' current position determined in the virtual 

environments' internal x-y-z based coordinate system. Because of 
the fact that city models were completely flat, one of these values 
remained constant and was negligible. Against my expectations, 

the value to be neglected turned out to be the y-axis. The last 
value depicted from lines containing transport nodes was the 
navigator's orientation in a range of -180° to 180°. As the name 

suggests, head nodes comprised participants' head position and 
orientation, rendered in an x-y-z based coordinate system. These 
movements were registered by optical sensors mounted in the 

CAVE that tracked targets attached to the participants' 3D shutter 
glasses. Values for the head position relative to the rest of the 
body were negligibly small, bearing in mind that participants were 

seated during the whole experiment. However, the head's 
orientation in terms of roll, pitch, and yaw movements was much 
greater, especially for the latter two values. 

On the other hand, lines with marker values contained 
important information regarding navigation behavior. They listed 
events in the virtual environment, such as map consultations and 

Figure 7: Summary of a log file's components. The first and last 
lines contain technical information of the experimental setup and 

are accentuated in green color. On- and off-track events are 
depicted in red color. Show- and hide-map events appear in purple. 

The vast majority of lines contain positioning and orientation 

information (yellow color). This participant took 218.764s to 
conduct the navigation task. In this time frame, 18,967 lines of 

high-resolution tracking data were written to the log file.  
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track deviations, provided with the corresponding timestamp. As 
soon as navigators went astray from the predetermined route, a 

line was inserted in the log file comprising the timestamp and an 
off-track notice. When participants returned to the route, another 
line was created, again consisting of the timestamp and the on-

track note. The same approach was implemented for show- and 
hide-map events. 

 

3.1.7 Recordings of Off-Track Events 

When navigating in an unknown environment, it is crucial to follow 

the predetermined route indicated by the navigation aid. If 
navigators fail to follow these instructions, they will eventually find 
themselves going astray and, in the worst-case scenario, getting 

completely lost. In a real-world environment, modern category 5 
navigational assistants have various options to prevent and 
counteract such events. Usually, they will issue an acoustic 

warning advising the user to return to the predetermined route. 
However, if navigators continue their journeys on a directed path 
that was not supposed to be part of the initial route, the 

navigational assistant will try to find a new route encompassing 
this path. To do so, it continuously updates its user's location and 

compares it to the path network in the database. 
In the present virtual-reality experiment, the predetermined 

route was fixed and was implemented without any margins for 

adjustments. To prevent navigators from getting lost, a warning 
message appeared on the front screen of the CAVE five seconds 
after deviating from the predetermined route. The warning 

consisted of a red flashing message advising the user to return on 
track. 

 

3.2 Definition of Navigation Performance 

Reaching a specific destination is the primary goal of a navigation 
task in everyday life. With the help of a category 5 navigational 

tool, it is usually not a question of whether navigators find their 
intended destination but rather a question of when and how they 
reach it. Successful and efficient navigation in an unknown 

environment requires a certain amount of interaction between the 
navigation aid and its user. 

In a real-world urban environment, measuring navigation 
performance is always bound to limitations such as traffic lights, 
pedestrian traffic volume, weather, road conditions, or individuals' 
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walking speed. While these limitations can be excluded in a virtual 
environment, other limitations arise, such as the absence of multi-

sensory cues or simulator sickness. Therefore, when comparing 
navigation behavior or navigation performance, these parameters 
must be considered. 

According to the navigation task requirements in the 
experimental setup, navigation performance is defined within the 
scope of this work in such a way that the route-following task is 

completed as quickly as possible. To achieve this, participants 
could not unintentionally deviate from the predetermined route, 
as this would have resulted in a detour. However, to stay on the 

predetermined route, participants periodically had to retrieve the 
navigation aid, which cost them valuable time. Accordingly, in 
order to optimize navigation performance, participants had to find 

a good mixture of when and for how long they displayed the 
navigation aid. 

 

3.3 Research Questions & Hypotheses 

Based on the literature review and the available data, I would like 

to address the questions of this thesis again and formulate 
corresponding hypotheses. 
 

 
Research Question 1: 

How do stress induction approaches affect pedestrian 

navigation performance in virtual reality? 
 

Hypothesis 1: 

Participants who were under the influence of stressful 
navigation conditions reached their destination faster. 
 

Performing a route-following task using a category 5 navigational 
assistant has been identified as a rather simple task in the 
spectrum of navigation in an unknown environment. We have also 

learned that arousal can improve performance to a certain extent 
before remaining at a static high level for simple tasks. Therefore, 
I assume that stressful navigation conditions led to less- and 

shorter use of the navigation aid, which has a positive impact on 
run duration. Since the navigation routes were equal for all 
participants, irrespective of stressful contexts, it is expected that 

the distance traveled does not differ.  
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Research Question 2: 

How does participants' navigation performance change with 
increasing task experience? 

 
Hypothesis 2: 

A learning effect is determined with increasing numbers of 

trials. 
 

Prior to the experiment, study participants conducted a training 

trial to familiarize them with the apparatus and the experimental 
tasks. However, certain information was deliberately withheld, 
such as the number of highlighted buildings in a set of landmarks. 

Other factors, such as the frequency of map retrieval, adaption to 
stress induction, or control interface experience, may have 
generated a learning effect with increasing task experience. This 

research question addresses this issue by testing the influence of 
task experience on navigation performance. 

 

 
Research Question 3: 

What are the reasons that navigators unintentionally deviate 

from a predetermined route? 
 

Hypothesis 3: 

Route-following errors depend on intersection complexity 
and the amount of interaction between a navigator and the 
navigational assistant. 

 
It is expected that chances for unintended route deviations 
increase when navigators have not been consulting the navigation 

aid for a certain amount of time. In addition, route deviations are 
expected to occur more often with increasing intersection 
complexity. 
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CHAPTER 4 
4 METHODS 

METHODS 

4.1 Data Processing and Exploration 

I was granted access to tracking data of 52 participants of Study 
I (26x time pressure) and 53 participants of Study II (27x 
increased workload). This led to a total of 262 individual log files 

given the fact that subjects in the first and second study 
conducted three and two rounds, respectively. To express it in 
other numbers, I had 20 hours of tracking data. One participant 

from Study I (no time pressure group) aborted the experiment in 
the last round due to slight nausea prior to completing all 
navigation tasks leaving both datasets unbalanced between the 

two stress groups.  
Python 2.7.5 (van Rossum & Drake, 1995) was used to 

process and extract the necessary data from these log files for this 

thesis. After acquiring some basic programming knowledge 
through the textbook by Sande & Sande (2013), several Python 
scripts were written with a focus on navigational behavior. For 

instance, calculated values included run duration, distance 
covered, average speed, event duration, event sequence, and 
event intervals. To gain an overview of these factors, an extensive 

Microsoft Excel spreadsheet, version 16.46, was created to make 
initial calculations such as minima, maxima, and means.  

Other Python scripts were adapted to be rendered with 

Vizard 6.0 (Santa Barbara, CA: WorldViz LLC.) to reproduce and 
visualize participants' runs from a first-person, third-person, and 
bird's-eye view perspective. An active user interface was created 

to display selected landmarks, map events, and route deviations 
at the push of a button. 

It was found that one of the two routes in Study II was prone 

to erroneous off-track notifications shortly before participants 
reached their destination. After carefully reproducing the rounds 
concerned, these notices were deleted. This step was necessary 

to prevent misleading interpretations of the sharp rise in detected 
off-track events in this particular city model. 

Other bugs needing fixing included one registered off-track 

event without a corresponding on-track note (logging anomaly) 
and one missing off-track note (visualization detection). The 
logging anomaly most likely happened because one participant 

stepped slightly off the predetermined route with one foot, leading 
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to an off-track notification. However, visualization showed that 
this event must have been so short that it was revoked within the 

same timestamp without issuing a corresponding notice. 
Therefore, this event was removed from the log file. 

The missing off-track note was detected after visualizing 

participants' individual runs. One subject walked in completely the 
wrong direction right after exiting the train. For some reason, this 
deviation did not automatically lead to an off-track notification, 

causing a time-consuming route-following error. Because this 
individual was most likely not made aware of the deviation, I 
decided not to classify this as an off-track event. 

 

4.2 Distinction of Off-Track Events 

As we learned in section 3.1.6, route deviations automatically led 
to an off-track note in the corresponding log file, independently of 
the duration of the off-track event. A total of 373 off-track events 

were recorded across the 259 runs of both studies. 99% of them 
occurred within the immediate surroundings of intersections and 
only four off-track events were recorded on straight path 

segments. Considering the five-second rule between the initiation 
of an off-track event and the issuing of the deviation warning, I 
expected that navigators needed another five seconds to get back 

on track, making most of these off-track events last for at least 
ten seconds. However, it was soon found that many recorded off-
track events lasted for only fractions of a second (see Figure 8). 

In order to clarify this discrepancy between expectation and 
reality, all runs were reproduced at once from a bird's-eye view 
perspective, which required massive computing power due to the 

very high resolution of the tracking data. To overcome this issue 

Figure 8: Density plot depicting the duration of all recorded off -

track events. Both curves show a distinct bimodal distribution. 
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when displaying all routes in a city model, only one in twenty data 
points was visualized, implying approximately one data point per 

half a second run duration (see Figure 9). 
In a second step, recorded off-track nodes were separated 

from all on-track nodes and highlighted in a distinguishable color. 

They were depicted in maximized resolution in order to accentuate 
the partially very short deviations clearly. Besides the obvious 
deviations that were already visible without color differences, this 

method also manifested all short-duration deviations. They were 
mostly found on the inside of curves or intersections, caused by 
navigators cutting corners across sidewalks' edges (see Figure 

10). 

Figure 10: Color highlighting of all 101 recorded off-track events in 

the second city model of Study II. 

Figure 9: Visualization of all 53 participants' tracking data in the 
second city model of Study II. Each navigator's location is depicted 

every half a second through a green data point.  
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These findings resulted in a necessary distinction between 
recorded off-track events, leading to the introduction of an 

unintended and a deliberate route deviation category. For this 
purpose, all runs were reproduced separately, and it was decided 
for every off-track event which category they belonged to. In a 

second step, I manually added the type of off-track event to the 
log file for a distinct visualization (see Figure 11). 

Route deviations were classified as unintended if their 

pattern showed a distinct movement in the wrong direction for a 
certain amount of time before making a 180-degree turn to get 
back to the predetermined route. After an unintended off-track 

event, participants usually re-entered the route near the mark 
where they had left it, resulting in a distinct U- or V-shaped 
pattern. In addition, it was found that at the peak of an unintended 

off-track event, many participants used to consult the navigation 
aid (in 61% of all occurrences). Together with the comparable 
lengths of unintended route deviations, this indicates that 

navigators did not realize that they had gone astray until the 
warning message popped up on the front screen of the CAVE five 
seconds after stepping off route. After all, unintended off-track 

events have a negative effect on navigation performance. 
Therefore, off-track events along straight path segments were 
also classified as unintended. 

On the other hand, deliberate route deviations can be 
defined as shortcuts that enhance navigation performance 
because navigators save time and distance by committing this off-

Figure 11: Off-track events were divided into an unintended (red) or 

deliberate (orange) category. In this city model, 21 out of 101 off-
track events were classified as unintended deviations. Deliberate 
deviations can be found on the insides of curves or intersections.  
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track event. When taking a shortcut across an open green area, it 
can be assumed that navigators are fully aware of their 

surroundings and know the immediate route. However, many 
deliberate off-track events were so short that participants most 
likely did not realize that they had stepped off track (see Figure 

12). The fact that 109 out of 270 classified deliberate off-track 
events lasted for less than one second leads to the assumption 
that many participants opted to cut corners as efficiently as 

possible, merely stepping off track by inches. On the other hand, 
only 26 out of 270 classified deliberate off-track events lasted 
longer than five seconds and had the off-track notification pop up 

on the front screen of the CAVE. These participants were 
determined to reach the destination as quickly as possible and 
were not deterred from the flashing warning message. 

 

4.3 Intersection Types 

Five different types of intersections with respect to route direction 

were identified within the scope of this thesis (see Figure 13). At 
least three path segments (i.e., legs) must intersect in one spot 
to make up an intersection. All intersections in the five city models 

that were built for Credé's studies consisted of either three (i.e., 
T-intersection) or four legs (i.e., X-crossing). An intersection was 
always approached on one of these legs, giving navigators two 

and three possible path segments to continue the journey. 
At four-leg intersections, navigators always had two options 

independently of which direction they came from and which 

direction they intended to go. They could either walk straight or 

Figure 12: Density plot of recorded off-track events in both studies 
after classifying them as unintended or deliberate. Absolute off -

track numbers are depicted in the textbox. 
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take a 90-degree turn. At three-leg intersections, on the other 
hand, directions were of importance. Again, navigators could 
either go straight or deliberately take a turn. However, if they 

came from the path segment without an opposite leg, they had to 
take a turn (i.e., either left or right). 
 

4.4 Implementation 

Statistical analyses were conducted in R version 4.0.3 (R Core 

Team, 2020). Boxplots and density plots were created with 
ggplot2 (version 3.3.3; Wickham, 2011), and ggpubr (version 
0.4.0; Kassambara, 2020a) packages, respectively. Levene's tests 

and tests to detect outliers and extreme values were conducted 
using rstatix (version 0.6.0; Kassambara, 2020b) package. 

Since both experimental setups are based on a mixed 

factorial design with between-group and repeated-measures 
variables, a mixed factorial ANOVA was employed to determine 
the impact of stress on navigation performance (RQ 1). Thus, the 

ezANOVA function from the ez-package (version 4.4-0; Lawrence, 
2016) was used according to Field, Miles, & Field (2012). In both 
studies, the two stress groups were identified as the between-

subjects factor and the city models made up the within-subject 

Figure 13: Intersection types with respect to the route (green 
arrows). All types can be rotated or mirrored freely. At four-leg 

intersections, navigators could either go straight (4S) or take a turn 

(4T). For T-intersections, however, directions played a crucial role. 
Again, navigators could either go straight (3S), deliberately take a 

turn (3T), or they must take a turn (3M). 
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factor. For Study I, this resulted in a 2 (with time pressure/without 
time pressure) x 3 (City 1/City 2/City 3) mixed factorial design. 

Similarly, Study II consisted of a 2 (additional tapping task/no 
tapping task) x 2 (City 1/City 2) mixed factorial design. 

The lmer function from the lme4-package (version 1.1.26; 

Bates, Mächler, Bolker, & Walker, 2015) was used to determine 
possible learning effects with increasing task experience. This 
approach was chosen because linear mixed-effects models can 

deal with unbalanced datasets that do not completely cross over. 
Incorporating the trial number into the analysis added another 
within-subject factor to both studies, resulting in a 2 (with time 

pressure/without time pressure) x 3 (City 1/City 2/City 3) x 3 (Run 
1/Run 2/Run 3) mixed factorial design for Study I and a 2 
(additional tapping task/no tapping task) x 2 (City 1/City 2) x 2 

(Run 1/Run 2) mixed factorial design for Study II. For a 
visualization, refer to Figure 5 (Study I) and Figure 6 (Study II) 
and replace landmark configuration by trial number. Results from 

the linear mixed-effects models were visualized using the sjPlot-
package (version 2.8.7; Lüdecke, 2021). 

It is essential to point out that the data have not been 

collected to analyze navigation performance in the first place but 
to assess survey knowledge for different landmark configurations. 
For this reason, city models were not implemented evenly 

regarding route lengths or intersection types which complicated 
the analyses for this thesis. 
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CHAPTER 5 
5 RESULTS 

RESULTS 

5.1 The Impact of Stress on Navigation 

Performance 

Study I (time pressure): 

 
A total of 51 participants completed all navigation tasks, 26 of 
them with additionally induced time pressure and 27 without time 

pressure. On average, they needed 266.2 seconds from the 
starting point of the navigation task to the destination, covering 
768.2 meters. As pointed out in section 3.1.4, the resulting speed 

is not applicable in a real-world environment. 
However, because city models were created primarily for 

spatial learning acquisition, the lengths of the routes differ 

significantly from each other, as depicted in Figure 14. The longer 
a route, the more time it takes even under optimal conditions to 
reach a destination successfully. Therefore, these average values 

must be interpreted with care. 
A Levene's test was applied to test for homogeneity of 

variance for run duration across city models. It revealed that 

variances were similar, F(2, 150) = 1.2, p = .303, confirming the 
homogeneity assumption. 

Figure 14 also shows the presence of upward outliers in both 

run duration and run distance across all city models. Downward 
outliers are non-existent due to the speed limit being capped at 

Figure 14: Boxplots depicting the differences in run duration (left) 
and distance (right) across the di fferent city environments of 

Study I.  
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3.8m/s. Because ANOVAs are sensitive to outliers, especially for 

small sample sizes, as in our case, they were further evaluated. 
Therefore, outliers and extreme values were identified separately 
for every city model, resulting in 5 out of 51 participants being 

responsible for one outlier or extreme value (see Figure 15). An 
additional participant performed poorly across all three runs, 
causing one outlier and two extreme values. Since all extreme 

values were recorded in the no time pressure group, an exclusion 
of these participants would be crucial for comparing stress groups. 
In order not to lose any valuable data but to test the influence of 

extreme values on the outcome of the analysis, two ANOVAs were 
conducted: One ANOVA contained run durations of all three runs 
for all 51 participants, while the other ANOVA had runs of three 

participants removed being responsible for extreme values. It was 
found that extreme values did not have a significant impact on the 
main effects of the ANOVA. The following are results from the 

mixed factorial ANOVA including all 153 runs. Effects are reported 
as significant at p < .05. 

Mauchly’s test indicated that the assumption of sphericity 

had been violated for the effect of city models on run duration, W 
= 0.828, p = 0.01, ε = .85. Because of both corrected values being 
significant, degrees of freedom were corrected using the more 

conservative Greenhouse-Geisser estimates of sphericity. There 
was a significant main effect of city environments on run duration 
F(1.70, 83.58) = 63.97, p < .001. 

Mauchly’s test also indicated that the assumption of 
sphericity had been violated for the interaction of stress states and 
city models on run duration, W = 0.828, p = 0.01, ε = .88. 

Therefore, degrees of freedom were corrected using Huynh-Feldt 
estimates of sphericity. There was no significant interaction effect 
of stress states and city models on navigation time F(1.76, 86.29) 

Figure 15: Outliers and extreme points for run duration were 
identified separately for every city model. It is remarkable that one 

participant (EREJ28) performed poorly in all three trials. Besides, 
all except one outlier occurred in the group without time pressure.  
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= 2.71, p = .079, which means that stress did not affect 
navigation performance differently across different cities. 

There was no significant difference in run duration between 
the time pressure group (M = 256.84, SD = 38.93) and the no 
time pressure group (M = 275.93, SD = 55.36), F(1, 49) = 3.84, 

p = .056. 

Figure 17 depicts the interaction in run duration between the two 
stress groups and the three city models. Interestingly, time 

pressure had an impact on navigation performance for the 
shortest route (i.e., City 3). However, this advantage seemed to 
decrease and finally vanish with increasing run duration. This 

observation was confirmed by a linear mixed-effects model that 
assessed the influence of time pressure separately for every city 
model. 

 

 

Figure 16: Table depicting number of observations (n), means (M), 
and standard deviations (SD) for run duration [s] across the 

different city environments for the stress group (TP), no stress 
group (No TP), and marginal means (MM).  

Figure 17: Graph of the interaction in run duration [s] between 

time pressure groups (stress) and city environments. Dots 
represent means and error bars depict 95% confidence intervals.  
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Study II (increased workload): 
 

All 53 participants completed the navigation tasks, 27 of them 
concurrently performing an additional tapping task, leaving 26 
participants with no induced stress factor. On average, they 

needed 295.8 seconds from the starting point of the navigation 
task to the destination, covering 847.1 meters. Again, the 
resulting average speed of 2.86m/s is not applicable for a walking 

task in a real-world environment. 
Despite Credé's (2019) intentions to make both routes 

approximately the same length, they differed significantly (see 

Figure 18). These differences can be attributed not to navigators' 
performances but to the city models' implementation. 

A Levene's test testing for homogeneity of variance for run 
duration across the two city models revealed similar variances, 
F(1, 105) = 1.06, p = .306, confirming the homogeneity 

assumption. 
Recorded outliers from Figure 18 were identified and are 

shown in Figure 19. Compared to Study I, the number of outliers 
in Study II remained constant in relation to the absolute number 
of trials. However, the number of extreme values dropped, 

decreasing the variance. It is interesting to note that all outliers 
in the run duration in Study II occurred in the group with 
additionally induced stress, therefore contradicting the findings of 

Study I under a different stressor. Again, one participant 
performed poorly in both trials, yet the impact on the ANOVA was 
minimal. 

Figure 18: Boxplots depicting the differences in run duration in 

seconds (left) and distance in meters (right) across the two city 

environments of Study II.  
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There was a significant difference between the city environments 

on run duration F(1, 51) = 191.30, p < .001. A significant main 
effect was also found for run durations between the tapping group 
(M = 309.71, SD = 57.42) and the no tapping group (M = 281.30, 

SD = 38.63), F(1, 51) = 15.39, p < .001. 
No significant difference was found for the interaction of 

stress states and city models on run duration F(1, 51) = 2.72, p 

= .105. This means that although run duration was affected by 
both stress induction and city environments, the way in which run 
duration was affected by the city model was not different between 

the tapping group and the no tapping group. 
 

 
In section 3.2, run duration was defined as being crucial for 

navigation performance. In order to perform well, navigators 
could not unintentionally deviate from the predetermined route 
and optimize the ratio of map retrieval to run distance. Since 

participants in the tapping group required significantly more time 
to reach the destination (+10%/+28.41s) than the group without 
an additionally induced stressor, the question arises as to where 

this difference materialized. In terms of map use, navigators in 
the stress group retrieved the navigational assistant significantly 
more often (M = 9.22, SD = 3.15) than the no stress group (M = 

6.81, SD = 2.36), F(1, 51) = 13.05, p < .001. This average 
difference of 2.41 additional map retrievals (+35%) in the tapping 

Figure 19: Table showing outliers and extreme points for run 
duration in Study II. It is remarkable that all outliers occurred in 

the tapping group. One participant (NILO4) performed poorly in 
both trials. 

Figure 20: Table depicting number of observations (n), means (M), 
and standard deviations (SD) for run duration [s] across the two 

city environments for the stress group (Tap), no stress group (No 

Tap), and marginal means (MM). 
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group, together with the group's average map retrieval duration 
(2.12s) and the three-second threshold after navigation aid 
consultation, resulted in an average delay of 12.37s for the 

tapping group. Furthermore, the occurrence of an unintended off-
track event was almost doubled in the stress group (M = 0.70, SD 
= 0.90) compared to the no stress group (M = 0.37, SD = 0.63), 

F(1, 51) = 4.86, p = .032. Considering the average unintended 
deviation duration in the stress group of 21.31s and taking into 
account all decimals, another 7.21s can be attributed to the 

difference of run duration between the two stress groups. The 
remaining 8.83s cannot be reduced to a single event or behavior. 
Although the average number of deliberate off-track events, 

previously identified as beneficial for navigation performance, is 
also significantly different between the tapping group (M = 0.80, 
SD = 1.22) and the group without tapping (M = 1.77, SD = 1.80), 

F(1, 51) = 6.97, p = .011, their impacts on navigation 
performance are extremely difficult, if not impossible, to 
generalize. 

Figure 22Figure 22 depicts the typical U- or V-shaped 
patterns with entry and exit points lying close together, previously 
seen in another city model (see Section 4.2). In contrast, various 

deliberate off-track lengths and patterns are visible. Building 
density was relatively low in this particular city model, giving 
navigators large open spaces for cutting corners effectively. On 

Figure 21: Graph of the interaction in run duration [s] between 

tapping groups (stress) and city environments. Dots are 

representing means and error bars depict 95% confidence intervals.  
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the other hand, other cities were much more populated, leaving 
almost no opportunities for effective shortcuts (see Figure 11). 

  

Figure 22: Bird's-eye perspective of all 53 runs conducted in the 
second city model of Study II. The green ribbon represents 

navigators' on-route nodes. Orange and red outliers depict 

deliberate and unintended route deviations, respectively. Blue dots 
stand for map retrieval locations. Please note that only global 

landmarks are shown in this graphic.  
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5.2 Learning Effect with Increasing Task 

Experience 

Study I (time pressure): 

 
Raw tracking data was split according to city models and trial 
numbers to gain an overview of mean run durations across 

different conditions (see Figure 23). Despite this graph not 
considering the repeated measures design, it provides an estimate 
to the extent of a potential learning effect with increasing task 

experience. It was found that the influence of trial numbers on run 
duration could not be any more diverse. While the navigation task 
in city model 2 was completed faster by participants with 

increasing task experience, run duration in city model 1 indicated 
the opposite. And as if that were not contradictory enough, the 
third city model showed a distinct increase in run duration for 

participants who navigated this environment in the middle of the 
experiment before returning to a similar level for the third trial as 
in the first trial. 

Due to these findings, I added the stress factor directly to the 

linear mixed-effects model as a fixed effect to determine whether 
time pressure impaired a potential learning effect with increasing 
task experience. 

Figure 23: Graph depicting navigators' mean run duration [s] for 
each city model, structured by trial number. 
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No relationship was found regarding run duration between city 
models and trial number or between stress induction and trial 

number for any intercepts. It became evident, however, that the 
strong fluctuations in trial number were provoked by the group 
without time pressure (see Figure 24). The stress group, on the 

other hand, performed evenly across all trial numbers. 
Nevertheless, no learning effect was found after splitting 
navigators into their corresponding stress group. 

By adding a second within-subject factor to the linear mixed-
effects model, the absolute number of trials conducted in a specific 
configuration (Stress/City Model/Trial Number) was drastically 

reduced. The 153 total runs conducted by the 51 participants were 
divided into 18 different configurations (2x3x3). In addition, the 
dataset did not cross over, resulting in uneven numbers for 

different configurations (see Figure 25). These combined factors 
resulted in a linear mixed-effects model with low statistical power 
prone to outliers and extreme values. Since most outliers were 

located in the group without time pressure (see Figure 15), this 
explains the strong fluctuations in the linear mixed-effects model. 

Figure 24: Linear mixed-effects model's predicted run duration [s] 

considering trial numbers and stress states. 
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Study II (increased workload): 

 
For the second experiment with only two city environments, a 
trend was identified in run duration between the first and second 

trials (see Figure 26). Regardless of the city models' sequence, 
participants seemed to have reached the destination sooner in 
their second trial compared to the first trial, indicating a potential 

learning effect with increasing task experience. 
In fact, the linear mixed-effects model verified this trend. 

Predicted values across both city models and irrespective of stress 

induction showed a reduction of 13.1s for second trials. This trend 
was intensified for participants performing a concurrent tapping 

Figure 25: Absolute number of trials listed by run configurations. 
Some configurations had more than double the number of trials 

than others. 

Figure 26: Graph depicting navigators' mean run duration [s] for 
both city models of Study II, structured by trial number.  
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task, reaching the destination 21.8s sooner in the second trial. 

However, neither of the two effects returned significantly. 
As previously seen in section 5.1, there was a significant 

difference in navigation performance between the two stress 

groups. Figure 27 shows that this groups' difference is decreasing 
with increasing task experience. 

This linear mixed-effects model is more robust than the 

previous. All 53 participants conducted two trials resulting in a 
total of 106 individual runs. Although this absolute number of trials 
is almost 50% lower than in the first study, this is compensated 

by fewer configurations. The 2x2x2 model only had eight different 
configurations, which was less than half compared to Study I. As 
a result, not only was the number of runs higher for each 

configuration, but that number was also more evenly distributed, 
limiting the effect of large differences in navigation performance 
between individuals. 

 

Figure 27: Linear mixed-effects model's predicted run duration [s] 

considering trial numbers and the presence of an additional tapping 

task (i.e., stress). 
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5.3 Unintended Route Deviations 

Intersection complexity: 
 
A total of 113 off-track events were classified into the unintended 

deviation category. Two of these occurred on straight path 
segments, far from intersections, and were therefore excluded 
from this analysis. Five different types of intersections with 

respect to route direction have been identified in section 4.3, to 
which the deviations were assigned. The relatively low number of 
111 total recorded unintended route deviations made it necessary 

to combine all events across both studies. 
The number of deviations per intersection type was 

compared to the total number of encounters to assess intersection 

complexity (see Figure 28). As an example, 13 T-intersections 
were implemented where navigators were guided to keep going 
straight. This type of intersection was encountered by navigators 

673 times and caused 11 unintended route deviations. Given these 
numbers, it is expected that one in 61 participants will go astray 
at this type of intersection. 

It was found that X-crossings had a much higher off-track ratio 
compared to T-intersections, indicating higher complexity with an 

increasing number of legs. At the same time, both intersection 
types (3T/4T) where navigators had the option to continue 
straight but were supposed to turn reported the largest number in 

absolute and relative values. These findings are in accordance with 
Dalton (2003), who found that navigators favor conserving 
linearity by walking as straight a route as possible. 

 

Figure 28: Table showing at what intersection type navigators 
unintentionally deviated from the predetermined route. Columns 

from left to right: (1) intersection types according to Figure 13, (2) 
frequency of intersection type across all five city models, (3) 

numbers of encounters considering 51 (Study I) and 53 (Study II) 

participants, (4) number of deviations measured, (5) expected 
number of navigators to pass an intersection before an unintended 

off-track deviation occurs. 



 

 45 

Time between consecutive show-map events: 
 

For this analysis, datasets from the two user studies were 
considered separately. This allowed me to investigate the effects 
of map section depiction modification implemented between the 

studies (see Section 3.1.5). In addition, map behavior between 
stress groups and between stress induction approaches could be 
analyzed. Figure 29 shows the average time between two 

consecutive map retrievals. In Study I, the group without 
additionally induced time pressure (M = 46.8, SD = 25.8) 
consulted the map significantly more often than the stressor group 

(M = 53.5, SD = 29.3), t(555) = 2.89, p = .004. In Study II, 
however, participants in the stress group displayed the map more 
frequently (M = 29.3, SD = 15.1) than participants without 

performing an additional spatial tapping task (M = 35.5, SD = 
16.5), t(744) = 5.30, p < .001. 

When comparing map intervals between the two studies, the 

effect of map section depiction modification from 1:106 in Study I 
to 1:156 in Study II becomes evident. On average, participants in 
the first user study with the larger map display consulted the 

navigation aid significantly less often (M = 49.9, SD = 27.7) than 
participants in the second user study with a smaller map display 
(M = 31.8, SD = 15.9), t(1301) = 14.89, p < .001. 

These findings also go along with the linear distances 
between two consecutive show-map events (see Figure 30). In 
Study I, the distance between two consecutive show-map events 

was significantly higher (M = 127.0, SD = 63.5) compared to 
Study II (M = 84.5, SD = 42.7), t(1301) = 14.45, p < .001. 
Results for linear distances were also significant in both studies 

between the two stress groups. 

Figure 29: Density plots showing the time [s] passed between two 

consecutive show-map events for both user studies. 
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Time between map consultation and unintended route 

deviation: 
 
To evaluate if unintended route deviations were impacted by the 

amount of interaction between a navigator and the navigational 
assistant, it is necessary to know the time and linear distance to 
the preceding map consultation. Therefore, it was decided for this 

analysis to use the linear distance instead of the absolute walking 
distance between two events. Both time and linear distance are 
necessary to prevent false conclusions due to navigators standing 

still or moving in circles. 
In Study I, participants in the no time pressure group (M = 

43.1, SD = 29.8) deviated from the predetermined route sooner 

(see Figure 31) than participants in the time pressure group (M = 
47.3, SD = 25.2). However, this difference was not significant, 
t(54) = 0.56, p = .58. Likewise, no significant difference was 

Figure 30: Density plots depicting linear distances [m] between two 
consecutive show-map events for both user studies. 

Figure 31: Density plots displaying the time [s] passed between the 
initiation of an unintended off-track event and the preceding map 

consultation for both studies. 
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found in Study II between the tapping group (M = 32.4, SD = 
18.0) and no tapping group (M = 33.9, SD = 11.9), t(55) = 0.32, 

p = .75. 
Between the two user studies, there was a significant 

difference in unintended route deviations in relation to time 

passed since the last map consultation. Participants with the 
smaller map section being displayed on the front screen of the 
CAVE deviated significantly sooner (M = 32.9, SD = 16.1) than 

participants with a larger map section at hand (M = 45.8, SD = 
16.8), t(111) = 3.10, p = .002. 

Similar to the amount of time passed between a map 

retrieval and an unintended deviation, the linear distance between 
these events is not significant between the two stress groups 
across both studies (see Figure 32). In Study I, navigators without 

time pressure on average deviated sooner (M = 109.0, SD = 76.0) 
than navigators with time pressure (M = 129.0, SD = 58.6), t(54) 
= 1.13, p = .263. In Study II, the difference between the tapping 

group (M = 89.7, SD = 43.0) and the no tapping group (M = 96.6, 
SD = 36.0), t(55) = 0.61, p = .547, was even smaller. 

Between the two studies, a significant effect was also for the 

linear distance between an unintended deviation and a preceding 
map event. In Study I, a deviation occurred significantly further 
(M = 122.0, SD = 65.4) from the map retrieval location than in 

Study II (M = 92.0, SD = 40.6), t(111) = 2.94, p = .004. 

 

Figure 32: Density plots depicting the linear distance [m] between 
the starting point of an unintended route deviation and the 

preceding map consultation location for both studies. 
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To conclude, due to the map scales' modification between the two 
user studies, results must be viewed separately. However, the 

ratio of time and distance between map retrievals and route 
deviations remains similar across both studies. 

To obtain a clear overview of the relationship in time and 

linear distance between two consecutive map events and a map 
event followed by an unintended off-track event, please refer to 
Figure 33. Different two-sample t-tests were conducted to test for 

differences between Map::Map and Map::OT events. Since they 
all returned not significant, it can be stated that route deviations 
occur at times when navigators are usually consulting the 

navigation aid. 

While route deviation incidences with respect to map retrieval 
events do not vary between stress groups, the number of absolute 

deviations is significantly impacted by stress induction. A chi-
square goodness of fit test revealed that the number of 
unintended route-following errors differed from the expected 

equal distribution. There was a significant difference in route 
deviations between the time pressure (36) and the no time 
pressure (20) group, x2(1) = 4.37, p = .036 as well as between 

the tapping (38) and no tapping (19) group, x2(1) = 5.64, p = 
.018. 

Together with the findings that unintended route deviations 

are most likely to occur within the immediate surroundings of 
intersections and the fact that some intersection types tend to 
cause more deviations than others, there is a chance to predict 

imminent route-following errors. A navigational assistant being 
able to measure the amount of interaction from its user may 
prevent navigators from going astray at complex intersections if 

they have not been consulting the navigation aid for a certain 
amount of time. 

 

Figure 33: Overview of the relationship in time and distance 

between two consecutive map events (Map::Map) and unintended 
off-track deviations following map events (Map::OT). 
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CHAPTER 6 
6 DISCUSSION & CONCLUSION 

DISCUSSION & CONCLUSION 

The main goal of this thesis was to assess pedestrian navigation 
performance under the influence of different stress induction 

approaches in a virtual urban environment. Therefore, navigation 
performance was defined as reaching a given destination as 
quickly as possible by executing a route-following task with the 

help of a track-up navigational assistant. Two datasets from 
separate virtual reality experiments conducted by Credé (2019) 
served as a basis for this work. 

While performing the navigation task, regardless of stress 
categorization, study participants were asked to memorize relative 
locations of highlighted landmarks within the environment 

concurrently. Furthermore, they were told that the navigation task 
and the spatial learning task were weighted equally. In this thesis, 
the spatial learning task was not taken into account in order not 

to overlap with Credé's research. 
Previous research has shown that different stress induction 

approaches can lead to different results of similar wayfinding tasks 

(Duncko et al., 2007; Klopp et al., 2012; Credé, 2019). In 
addition, the amount of exerted stress, as well as task complexity, 
have a significant impact on the level of performance (Yerkes & 

Dodson, 1908). Finally, individuals' reactions to stress can vary 
considerably (Noack et al., 2019). 

This thesis provides evidence that navigation performance 

using a highly functional navigational assistant is affected 
differently under separate stress induction approaches. No global 
effect was found for time pressure induction. When comparing 

cities and their respective route lengths individually, time pressure 
positively influenced navigation performance for short runs. 
However, this effect vanished for longer runs. While time pressure 

did not significantly influence run duration in Study I, an opposite 
effect was found for Study II. Participants performing a concurrent 
spatial tapping task needed significantly more time to reach the 

destination. This finding is contradicting my expectations from the 
first research question. 

This negative effect can be explained by the complexity of 

the spatial tapping task that impaired working memory in such a 
way that it interfered with the navigation task. The high 
concurrent task demand resulting from simultaneously performing 

a route-following task, a spatial learning acquisition task, and a 
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tapping task led to excessive arousal in study participants. 
Diamond et al. (2007), referring to Yerkes & Dodson (1908), 

showed that a lot of combined stress could heavily influence 
performance. This negative effect of concurrent task demands in 
accord with Credé (2019), who found more deficient survey 

knowledge acquisition under these circumstances. 
Furthermore, against my expectations, no learning effect 

was found with increasing task experience under time pressure. 

However, due to the experimental design, testing the influence of 
stress, city model, and trial number at once made the model very 
susceptible to outliers, especially for the present number of study 

participants. To overcome the issue of low statistical power, a 
larger sample size or a more uniform route length across city 
models would have been helpful. 

In Study II, a positive effect was detected for run duration 
with increasing task experience. This effect was intensified for the 
group performing a concurrent spatial tapping task. Despite the 

linear mixed-effects model not returning a significant difference 
between trials, this p-value must be interpreted with care. Luke 
(2017) found that p-values are somewhat anti-conservative, 

especially for smaller sample sizes, crossed designs, and 
unbalanced datasets. All these factors apply to both datasets used 
in this thesis. 

A vast majority of unintended off-track events were found 
within the immediate surroundings of intersections regarding 
route deviations. This finding is consistent with prior research that 

found decision points to be crucial for potential route-following 
errors (Janzen & Hawlik, 2005). Following an approach taken by 
Schirmer et al. (2015), five different types of intersections with 

respect to route direction were identified to evaluate unintended 
deviations further. Two major findings were generated concerning 
route deviations at intersections. First, navigators went astray 

more often at intersections with a larger number of legs, therefore 
confirming Richter's (2009) complexity analysis. Second, a 
majority of deviations occurred when navigators went straight 

past an intersection despite the route taking a turn. This 
behavioral pattern of walking as straight as possible was also 
found by Dalton (2003). By analyzing the pattern of periodic map 

retrievals, I determined that unintended route deviations were 
likely to occur in the same time window as the subsequent map 
event. 

For further analyses, it would have been helpful not just to 
be able to reproduce participants' vista space but to track eye 
movement. Thus, the interaction of a navigator with the 

navigational assistant could have been investigated in more detail.  
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REFLECTION 

I was initially planning on getting more profound insights into 
unintended route deviations. Therefore, this work was originally 
titled "Predicting imminent deviations from a predetermined route 

using high-resolution tracking data". When I received the dataset 
of the first user study, I ingenuously expected that every recorded 
off-track event makes up for one unintended route deviation. It 

was soon to be found that only 30% of these events across both 
user experiments could be categorized as unintended route 
deviations. Because this number was too small for a quantitative 

evaluation, I shifted my focus to navigation performance. 
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