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Abstract 
Recent and upcoming satellite missions providing high-quality spectrometric measurements are used 

for vegetation monitoring and studies of ecosystem functioning which are becoming increasingly 

important in the context of climate change. The calibration and validation of these measurements are 

crucial but remain a challenge. The need for in-situ references is high and is expected to increase with 

the trend toward mini-satellites without onboard calibration systems. In-situ measurements however 

need to be validated themselves before being used as a reference for air- or space-borne sensors. Cross-

validation of measurements with additional independent measurements is established but costly. Three 

approaches using two Radiative Transfer Models (RTM) namely the library for Radiative transfer 

(libRadtran) and the Soil Canopy Observation of Photosynthesis and Energy Fluxes Model (SCOPE) 

were built to validate in-situ irradiance and radiance measurements based on simulations. The 

performance of the approaches was assessed from summer to late autumn and over a single clear-sky 

day resulting in an average Root Mean Square Relative Error (RMSRE) of below 10% for irradiance 

simulations and 10%-38% RMSRE for radiance simulations compared to in-situ measurements. The 

higher RMSRE of radiance simulations originates in misspecifications of the reflectance spectrum 

which is either assumed constant (approach 1) or modelled (approach 2 & 3) based on vegetation 

parameters. The vegetation parameters however are themselves subject to large uncertainty. Shadowing 

on the vegetation canopy can additionally lead to ill-posed vegetation parameter selection. The 

experiments show the potential of coupled RTM-based quality assessment of high-frequency field 

measurements but also indicate the need for more accurate vegetation canopy parameter estimates and 

a more sophisticated optimization process to avoid the effects of ill-posedness. 

 

  



  

iii 
 

Contents  
Abstract ................................................................................................................................................... ii 

Contents ................................................................................................................................................. iii 

List of Figures ......................................................................................................................................... v 

List of Tables ......................................................................................................................................... vi 

Nomenclature and Abbreviations.......................................................................................................... vii 

1 Introduction .......................................................................................................................................... 1 

2 Data and Methods ................................................................................................................................ 5 

2.1 Study Site ...................................................................................................................................... 5 

2.2 Radiometric Data .......................................................................................................................... 6 

2.3 Radiative Transfer Modelling ....................................................................................................... 8 

2.3.1 Overview of Approaches ....................................................................................................... 9 

2.3.2 Atmosphere Model and Parametrization .............................................................................. 11 

2.3.3 Vegetation Model and Parametrization ................................................................................ 12 

2.3.4 Model Coupling ................................................................................................................... 13 

2.3.5 Model Parallelization ........................................................................................................... 13 

2.4 Statistical Analysis of Measurement and Simulation.................................................................. 14 

3 Results ................................................................................................................................................ 15 

3.1 Seasonal and Diurnal Irradiance and Radiance Dynamics ......................................................... 15 

3.1.1 Method Comparison – Seasonal Effects .............................................................................. 16 

3.1.2 Method Comparison – Diurnal Effects ................................................................................ 20 

4 Discussion .......................................................................................................................................... 23 

4.1 Correspondence between Simulated and Measured Radiance and Irradiance ............................ 23 

4.1.1 Irradiance ............................................................................................................................. 23 

4.1.2 Radiance ............................................................................................................................... 25 

4.1.3 Challenges and Limitations of this Study ............................................................................ 26 

4.1.4 Towards Improved Capacity to Evaluate Accuracy of Field Spectral measurements ......... 27 

5 Conclusion ......................................................................................................................................... 28 

Appendix ............................................................................................................................................... 29 



  

iv 
 

References ............................................................................................................................................. 34 

Acknowledgements ............................................................................................................................... 42 

Personal Declaration ............................................................................................................................. 43 

 

  



  

v 
 

List of Figures  
Figure 1: Location and aerial view of the laegeren within Switzerland. (Morsdorf et al., 2020, pp. 87) ................ 5 

Figure 2: Sketch of the measurement setup and the different radiation paths that contribute to the measured 

irradiance and radiance signal. Adapted from (Lillesand et al., 2015, pp. 23) ....................................................... 7 

Figure 3: Plot of the irradiance at 600 nm over a sunny day (left) with perfect irradiance and an overcast day 

(right) with non-perfect irradiance. ...................................................................................................................... 15 

Figure 4: Irradiance and radiance of sunny days from 05:00 to 18:10 at 600 nm. The decline in the magnitude of 

the signal over the measurement time was expected as a consequence of the seasonal variation in solar 

irradiance. Y-range for irradiance on the left and for the radiance on the right. ................................................. 16 

Figure 5: Examples of a day with well-fitting simulations (2021-09-02 upper) and a day with bad-fitting 

simulations (2021-10-24 lower) with corresponding fluorescence box measurements from the laegeren site. .. 16 

Figure 6: Root Mean Squared Relative Error (RMSRE) between measurement and simulation for all 3 

approaches on sunny days from 2021-06-14 to 2021-10-24 for irradiance (left) and radiance (right). Approach 

1: green circle, Approach 2: orange triangle, Approach 3: blue/violet star. ......................................................... 18 

Figure 7: Atmosphere- (upper) und biosphere- (lower) parameter distribution on sunny days. Y-limits are set to 

the respective parameter range for each atmosphere- and biosphere parameter. ............................................. 19 

Figure 8: Irradiance (left) and radiance (right) simulations of selected times on the 2nd of September 2021 

together with the measurement from 400 nm to 800 nm. ................................................................................... 20 

Figure 9: Plot of the Root mean Squared Relative Error (RMSRE) of irradiance (left) and radiance (right) 

simulations from 06:00 to 17:00 for all 3 approaches on the 2nd of September 2021 over time. ....................... 21 

Figure 10:  Atmosphere (upper) and biosphere (lower) parameters of optimal hourly simulations on the 2nd 

September 2021 from 06:00 to 17:00. .................................................................................................................. 22 

Figure 11: Reflectance spectra from fluorescence box measurements (left) for sunny days at 13:00 and (right) 

every two hours on the 2nd of September 2021. ................................................................................................... 24 

Figure 12: Irradiance (left) and radiance (right) simulations on sunny days over the period investigated by all 

approaches together with the measurement between 400 nm and 800 nm. ...................................................... 30 

Figure 13: Results of irradiance (left) and radiance (right) simulations on the 2nd of September from 06:00 to 

17:00 by all approaches together with the measurements from 400 nm to 800 nm. .......................................... 33 

 

  



  

vi 
 

List of Tables 
Table 1: Sensor specification of the two spectrometer installed in the fluorescence box (JB-Hyperspectral 

Devices UG, 2019). .................................................................................................................................................. 6 

Table 2: Overview of the tools and data used to estimate the effects of the atmosphere (Atmospheric transfer 

function) and the effect of the biosphere (Reflectance spectrum) on the top of canopy signal. Colour-coding: 

beige: model-based approximation, blue: empirical approximation. ..................................................................... 9 

Table 3: Parameter ranges used in the simulations as an approximation of the atmospheric conditions. The 

library of Radiative transfer (libRadtran) parameter “aerosol_modify tau set” sets the aerosol content in the 

atmosphere in [g/m^3] and “wc_modify tau550 set” sets the water cloud optical thickness at 550 nm in 

[g/m^3] for the libRadtran simulation based on the values provided. The parameter value ranges were defined 

according to literature and experience gained during the process (Al Asmar et al., 2021; Mayer and Kylling, 

2005). .................................................................................................................................................................... 12 

Table 4: Parameter ranges for the simulation of the vegetation canopy using the Soil Canopy Observation of 

Photosynthesis and Energy Fluxes Model. Parameter value ranges are based on literature and experience 

(Gitelson et al., 2002; Hosgood et al., 1994; Morley et al., 2020; Paul-Limoges, 2017; Scartazza et al., 2016; 

Thimonier Rickenmann and Schleppi, 2011). ........................................................................................................ 13 

Table 5: Summary of  Mean, Median and Standard Deviation (SD) of Root Mean Squared Relative Error 

(RMSRE) for Sunny Irradiance and Radiance Simulations in Percent [%]. ............................................................ 17 

Table 6: Mean, Median and Standard Deviation (SD) of Root Mean Squared Relative Error (RMSRE) for 

irradiance (left) and radiance (right) hourly simulations for all 3 approaches on the 2nd of September 2021 from 

06:00 to 17:00. ...................................................................................................................................................... 21 

 

  



  

vii 
 

Nomenclature and Abbreviations 
ARTMO Automated Radiative Transfer Models Operator 

BOA Bottom of Atmosphere 

CAB Chlorophyll A + B  

Cal/Val Calibration and Validation 

CCA Carotenoid 

DESIS DLR Earth Sensing Imaging Spectrometer 

DLR German Aerospace Center 

EnMAP Environmental Mapping and Analysis Program 

𝐸௦
଴  extraterrestrial solar irradiance 

ESA European Space Agency 

𝐸்ை஼  TOC Irradiance 

FLEX  Fluorescence Explorer  

FloX  Fluorescence Box 

GGE  Google Earth Engine 

HISUI Hyperspectral Imager Suite 

LAI  Leaf Area Index 

libRadtran  library for Radiative Transfer 

𝐿்ை஼  TOC Radiance 

LUT Look-Up-Table 

MODTRAN MODerate resolution atmospheric TRANsmission 

NASA National Aeronautics and Space Administration, U.S.A. 

𝜃௦  zenith angle of the sun rays  

PRISMA PRecursore IperSpettrale della Missione Applicativa 

RadCalNet Radiation Calibration Network 

𝑟ௗௗ  spatially filtered bi-hemispherical reflectance (BHR) of the surroundings 

𝜌ௗௗ  spherical albedo of the atmosphere 

𝑟ௗ௢  hemispheric-directional reflectance factor (HDRF) of the target 

RMSE: Root Mean Squared Error 

RMSRE: Root Mean Squared Relative Error 

𝑟௦ௗ  spatially filtered directional-hemispherical reflectance (DHR) 

𝑟௦௢  bi-directional reflectance factor (BRF) of the target 

RTM: Radiative Transfer Model 



  

viii 
 

SCOPE: Soil Canopy Observation of Photosynthesis and Energy Fluxes Model 

SD Standard Deviation 

SHALOM: Spaceborne Hyperspectral Applicative Land and Ocean Mission 

TOA: Top of Atmosphere 

TOC: Top of Canopy 

𝜏௦ௗ  the diffuse transmittance of the atmosphere for sunlight 

𝜏௦௦  direct transmittance of the atmosphere for sunlight 



 

1 
 

1 Introduction 
Climate change is affecting global vegetation dynamics through rising temperatures, changing 

precipitation patterns and increasing solar radiation in general (Afuye et al., 2022; Pricope et al., 2013; 

Walther, 2010; Wang et al., 2018). Photosynthesis in vegetation is the primary source of energy for life 

on Earth and results in CO2 uptake, making vegetation monitoring very important in the context of 

climate change. (Craggs, 2016; Guanter et al., 2014). Satellite remote sensing is a powerful tool to 

assess vegetation dynamics from local to global scale (Frappart et al., 2020). Multi-spectral images are 

used to derive a range of spectral vegetation indexes like the normalized difference vegetation index or 

the enhanced vegetation index and many more (Frappart et al., 2020) which are indicators of 

photosynthetic activity (Kawabata et al., 2010; Zhou et al., 2001) and productivity (Wang et al., 2010).  

Current space-borne imaging spectroscopy systems like the German Aerospace Center (DLR) Earth 

Sensing Imaging Spectrometer (DESIS) (Eckardt et al., 2015), the Italian PRecursore IperSpettrale della 

Missione Applicativa (PRISMA) (Candela et al., 2016), the Japanese Hyperspectral Imager Suite 

(HISUI) (Iwasaki et al., 2011), the German Environmental Mapping and Analysis Program (EnMAP) 

(Guanter et al., 2015) and upcoming missions such as the European Space Agency’s FLuorescence 

EXplorer (FLEX) (Drusch et al., 2017) or the Space-borne Hyperspectral Applicative Land and Ocean 

Mission (SHALOM), a cooperation between the Italian and Israelian space agency (Feingersh and Dor, 

2015), will not only increase data availability and quality but also extend established spectroscopy-

based remote sensing approaches for vegetation monitoring with the measurement of the full 

chlorophyll fluorescence spectrum emitted by the vegetation (Mohammed et al., 2019).  

Spectroscopy offers many possibilities in earth observation.  However, spectrometric measurements are 

also among the most unreliable of all physical measurements (Kostkowski, 1997). Three major sources 

of error are: (1) the multidimensionality of the measurements, which makes it impossible to look at each 

measurement individually; (2) the instability e.g. smile and frown of the measuring instruments as well 

as the methods of their spectral-, geometric- and radiometric calibration; (3) that methods of reducing 

measurement errors due to the multidimensionality and instability are not widely spread (Schaepman et 

al., 2002). Further influencing factors include the atmospheric state (Thompson et al., 2019), possible 

degradation of the sensor (Liu et al., 2020; Nassar et al., 2018; Wang et al., 2012) and many more which 

cannot yet be properly estimated or corrected for (Curran and Hay, 1986; Hank et al., 2019; Malenovský 

et al., 2019; Schaepman et al., 2002) 

Systematic calibration and uncertainty assessments are of utmost importance for all satellite missions. 

Calibration and Validation (Cal/Val) activities in the context of imaging spectroscopy have been 

identified as a key requirement to address important scientific and environmental management 

objectives worth building a joint working group between the National Aeronautics and Space 

Administration, U.S.A. (NASA) and the European Space Agency (ESA) (Boccia and Adams, 2021). 
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The Radiation Calibration Network (RadCalNet) represents another push towards long-term publicly 

available Cal/Val data based on the cooperation of European organizations. RadCalNet consists of four 

automated measurement sites in mostly non-vegetated semi-arid regions providing a time-series of in-

situ measurements (Bouvet et al., 2019). The three main approaches to space-borne spectroscopy 

measurement Cal/Val are on-board calibration, the comparison to in-situ measurements and the 

comparison to space-borne measurements from other missions. In contrast to the larger satellites which 

are commonly equipped with on-board calibration systems, the rise of smaller satellites without on-

board calibration systems will increase the demand and importance of Cal/Val data even more (Sterckx 

et al., 2020).  

DESIS launched in 2018 has been calibrated and validated in orbit using spectrally homogeneous 

RadCalNet sites as well as by cross-calibration with Landsat-8 and Sentinel-2 scenes. Due to the lack 

of publicly available Top of Atmosphere (TOA) radiometric reference measurements, Bottom of 

Atmosphere (BOA) reflectance measurements were upscaled to TOA reflectance and converted to TOA 

radiance to be comparable to DESIS radiance measurements (Alonso et al., 2019). Cross calibration 

with other well-calibrated satellites is the second well-established approach applied to validate DESIS 

measurements (Li et al., 2017; Markham et al., 2014; Odorico et al., 2013; Shrestha et al., 2021). Bright, 

near-simultaneous nadir acquisitions between DESIS and Landsat-8 or Sentinel-2 over pseudo-

invariant sites are preferred to minimize the influence of the atmosphere and geometric properties. As 

Landsat-8 and Sentinel-2 are only multispectral sensors DESIS measurements need to be integrated to 

match the spectral resolution (Alonso et al., 2019). Even though being a well-established method cross-

validation of hyperspectral data with multispectral data forcibly results in loss of information. 

Validation with RadCalNet is limited by the sparse availability of measurement sites and the spectral 

resolution of 10 nm compared to 2.5 nm of DESIS full spectral resolution (Alonso et al., 2019). 

Measurements from PRISMA which is in orbit since March 2019 have been assessed over rural areas 

(Cogliati et al., 2021) and a wide range of water types (Giardino et al., 2020). In-situ, as well as airborne 

reflectance measurements, were collected over different landcover classes and propagated to TOA 

radiance using the MODerate resolution atmospheric TRANsmission (MODTRAN) RTM to compare 

to the satellite observations. The validity of this approach however is limited to similar land cover 

classes and needs to be redone for other land cover classes like snow, deserts or urban areas (Cogliati 

et al., 2021). Combining in-situ with airborne validation measurements allows the assessment of 

measurement quality at different scales. This approach is however not suitable for recurring 

measurement validation due to the high cost of airborne measurements. PRISMA water body radiance 

measurement quality has been assessed using autonomous in-situ radiometers and Sentinel-2 

observations at six measurement sites and nine measurement times. In-situ water reflectance 

measurements were propagated by radiative transfer modelling to TOA radiance compatible with the 

PRISMA measurements. To fully characterize the on-orbit calibration of the PRISMA sensor more 
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match-ups between PRISMA observation, in-situ measurement and Sentinel-2 observation are needed 

(Giardino et al., 2020).  

Measurements from EnMap launched in April 2022 are being validated following similar approaches 

as DESIS and PRISMA. In-situ data from Cal/Val sites and cross-validation with other satellites are 

applied. Being the latest of the three presented spaceborne spectrometers EnMap benefits from the 

available data from DESIS and PRISMA for validation purposes (Brell et al., 2021).  

The two main approaches to space-borne spectroscopy measurement validation (besides on-board 

validation) are the comparison to in-situ measurements or other satellite data. Regardless of the origin 

of the data, quality must be ensured. This brings up the problem that the validation data can suffer from 

the same problems as the products to be validated. Even though field spectroscopy is increasingly used 

in support of airborne and spaceborne calibration applications, the interaction between light and surface 

remains complex. Therefore, cross-validation between in situ and airborne spectroscopy measurements 

has been performed in studies to validate the in situ measurements (Hueni et al., 2017).  

The University of Zurich maintains multiple Fluorescence Box (FloX) sites which provide time-series 

of in-situ spectrometer measurements with the high temporal and spectral resolution needed for Cal/Val 

applications. The quality of the measurements however is not known and there exists no readily 

available system to validate them consistently. A new validation approach, independent of additional 

simultaneous measurements, is needed as installing additional measurement devices on the same site or 

conducting regular airborne measurements is costly and does not solve the inherent problems with the 

data.    

I propose an approach that simulates in-situ spectrometer measurements by coupling two radiative 

transfer models (RTM) to compare to the measurements.  To achieve accurate radiance simulations, I 

need to model the transmission of the light through the atmosphere, account for the fraction of light 

reflected on the surface and model the path back up to the sensor. The coupling of RTMs allows the 

usage of dedicated RTMs optimized for one specific sphere respectively (atmospheric effects: library 

for Radiative Transfer (libRadtran), vegetation effects: Soil Canopy Observation of Photosynthesis and 

Energy Fluxes Model (SCOPE)) to account for the combined effect (Mayer and Kylling, 2005; Van 

Der Tol et al., 2009). 

The idea of coupling RTMs has been applied in previous studies. The most common application so far 

however was the retrieval of vegetation parameters by model inversion. (Atzberger, 2004; Cui et al., 

2020; Kattenborn et al., 2018; Koetz et al., 2006; Laurent et al., 2013, 2011; Lauvernet et al., 2008; 

Quan et al., 2015; Verhoef and Bach, 2003).  

This study aims to develop and evaluate model-based approaches for in-situ spectrometer uncertainty 

assessment. Three approaches with different complexity and computational demand for simulating in-
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situ spectrometric measurements are presented. All approaches are based on libRadtran (Mayer and 

Kylling, 2005) and SCOPE (Van Der Tol et al., 2009; Yang et al., 2021) and applied to measurements 

from the FloX spectrometer installed on the Laegeren research site (JB-Hyperspectral Devices UG, 

2019; Sutter and Waldner, 2019). The correspondence or the fit between simulation and measurement 

is subsequently assessed in terms of Root Mean Squared Error (RMSE) and Root Mean Squared 

Relative Error (RMSRE).  
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2 Data and Methods 
A range of modelling tools as well as in-situ measurement data is needed to build an approach for in-

situ spectrometer measurement validation based on RTM modelling. The following section is going to 

introduce the data and tools used as well as the workflow of the three validation approaches built. 

2.1 Study Site 

The study site providing the in-situ measurements needed for this work was chosen based on the 

availability of high temporal- and high spectral resolution data. A spectrometer at the Laegeren research 

site provides the required time-series of measurements and is directed on a single tree which was 

suspected to facilitate vegetation modelling. The site is situated at N 47° 28′, 49″ and E 8° 21′, 05″ 682 

m above sea level on the south-facing side of the Laegeren mountain, approximately 15 km northwest 

of Zurich, Switzerland (Figure 1). The southern slope of the Laegeren marks the boundary of the Swiss 

Plateau which is bordered by the Jura and the Alps. A 45-m-tall tower, originally designed and built as 

part of the Swiss air quality monitoring network in 1986, provides micrometeorological data. The 

vegetation around the tower is dominated by beech (Fagus sylvatica L.) which includes the tree in the 

field of view of the FloX (Eugster et al., 2007). The growing season lasts from 170 to 190 days. The 

surface cover mainly consists of bare soil, boulders and litter with a sparse understory dominated by 

herbs and shrubs. The average canopy height was 24.9 m in 2020 with a stem density of 270 stems per 

ha (Morsdorf et al., 2020; Sutter and Waldner, 2019). 

 

Figure 1: Location and aerial view of the laegeren within Switzerland. (Morsdorf et al., 2020, pp. 87) 
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2.2 Radiometric Data 

The spectrometric measurements used in this thesis were acquired by a FloX system installed on top of 

the tower on the Laegeren research site. The FloX is designed to passively measure high-frequency 

spectral data whilst being exposed to the elements (JB-Hyperspectral Devices UG, 2019). Figure 2 

depicts the measurement setup.  

Two spectrometers are mounted inside the FloX housing each measuring the downwelling irradiance 

and the upwelling radiance. Based on these measurements the reflectance is calculated (JB-

Hyperspectral Devices UG, 2019).  

The data used were acquired between 2021/06/10 and 2021/11/10. The dataset contains a total number 

of 64’149 measurements of irradiance and radiance, and reflectance estimates from the FULL sensor 

(see Table 1). 

Table 1: Sensor specification of the two spectrometer installed in the fluorescence box (JB-Hyperspectral Devices UG, 
2019). 

 FLUO FULL 

Wavelength range 650 nm to 800 nm 400 nm to 950 nm  

Spectral Sampling Interval ~0.17 nm ~0.65 nm 

Spectral resolution  ~0.3 nm ~1.5 nm 

Field Of View ~180° downwelling irradiance,  

~20° upwelling radiance 

~180° downwelling irradiance 

~20° upwelling radiance 

Signal-to-noise ratio 1000 250 

Quick measurements 20 seconds in bright sunshine, 60 seconds in overcast conditions,  

Both measurements are taken in one cycle 
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Figure 2: Sketch of the measurement setup and the different radiation paths that contribute to the measured irradiance and 
radiance signal. Adapted from (Lillesand et al., 2015, pp. 23)  
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2.3 Radiative Transfer Modelling  

To model irradiance and especially radiance at the Top Of the Canopy (TOC) the interactions between 

incoming radiation and the atmosphere as well as with the vegetation canopy need to be considered (see 

Figure 2). The top of canopy irradiance ETOC can be approximated according to (Damm et al., 2011) as: 

𝐸்ை஼ =  ቂ𝜏௦௦ + ఛೞ೏ାఛೞೞ௥ೞ೏തതതതതఘ೏೏
ଵି௥೏೏തതതതതఘ೏೏

ቃ ாೞ
బ௖௢௦ఏೞ 

గ
 (1.1)  

where 𝜏௦௦ is the direct transmittance and 𝜏௦ௗ is the diffuse transmittance of the atmosphere for 

sunlight. 𝑟௦ௗ represents the spatially filtered directional-hemispherical reflectance. 𝑟ௗௗ is the spatially 

filtered bi-hemispherical reflectance of the surroundings. 𝜌ௗௗ corresponds to the spherical albedo of 

the atmosphere. 𝐸௦
଴ is the extraterrestrial solar irradiance and 𝜃௦ the zenith angle of the sun rays.   

Top of canopy radiance 𝐿்ை஼ respectively can be approximated according to (Damm et al., 2011) as: 

𝐿்ை஼ =  ൤𝜏௦௦𝑟௦௢ +
𝜏௦ௗ + 𝜏௦௦𝑟௦ௗതതതത𝜌ௗௗ

1 − 𝑟ௗௗതതതത𝜌ௗௗ
𝑟ௗ௢൨

𝐸௦
଴𝑐𝑜𝑠𝜃௦

𝜋
(1.2) 

where 𝑟௦௢ is the bi-directional reflectance factor of the target and 𝑟ௗ௢ is the hemispheric-directional 

reflectance factor of the target.  

The main difference between irradiance and radiance as shown in equations 1.1 and 1.2 is the 

multiplication with the reflectance terms of the target (𝑟௦௢ and 𝑟ௗ௢) of the latter. Radiance is therefore 

directly linked to the reflectance of the target. Irradiance is influenced by the reflectance of the target 

and surrounding area via the spherical albedo of the atmosphere. Irradiance measurements and 

simulations are therefore also dependent on the reflectance of the target and surroundings but not as 

sensitive as radiance measurements or simulations.  

To account for the interaction with the atmosphere and the fraction of light reflected on the vegetation 

canopy approximations of the atmospheric transmission and the reflectance spectrum are needed. The 

transmission through the atmosphere is modelled in all approaches (Table 2). The reflectance spectrum 

applied by approach 1 however is drawn from the measurements themselves resulting in a simplified, 

less computationally demanding setup. Approach 2 and approach 3, with approach 3 being a refinement 

of approach 2, model the reflectance spectrum based on vegetation traits for higher independency from 

the measurements to be validated. Two individual RTMs, each accountable for one sphere (atmosphere 

or biosphere), are used and coupled to simulate the measurements and account for the effects in the 

respective spheres. 
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Table 2: Overview of the tools and data used to estimate the effects of the atmosphere (Atmospheric transfer function) and the 
effect of the biosphere (Reflectance spectrum) on the top of canopy signal. Colour-coding: beige: model-based approximation, 
blue: empirical approximation. 

 Approach 1 Approaches 2 & 3 

Atmospheric transfer function libRadtran libRadtran 

Reflectance spectrum Measurement-based SCOPE 

 

2.3.1 Overview of Approaches 
Consideration of the trade-off between computational effort and dependence on the measurements to 

be validated led to two main approaches and one further development thereof to model irradiance and 

radiance. All approaches are based on the assumption that irradiance measurements are less uncertain 

(equation 1.1 & 1.2) and estimate the atmospheric parameters by iteratively optimizing irradiance. This 

first step allows checking if irradiance can be reproduced at all. In the second step, radiance is modelled 

which requires a more accurate reflectance estimation. Two main strategies to estimate reflectance and 

a further development thereof lead to the three approaches presented in detail below. The underlying 

motivation of the three strategies however is as follows. First strategy: by using reflectance from the 

measurements the performance and consistency of the radiance measurements can be assessed directly. 

Second strategy: by simulating reflectance using vegetation parameters it is possible to check if radiance 

can be reproduced at all. The higher level of independence from the measurements additionally allows 

for assessing the correspondence between irradiance and radiance measurement. Third strategy: by 

using a Look-Up-Table (LUT) of reflectance simulations the influence of using fewer simulations 

resulting in lower computation times can be assessed. The next paragraphs introduce these approaches 

in detail. 

Approach 1  “FloX-based reflectance” determines the reflectance as the ratio of radiance to irradiance 

measurements around 13:00. The apparent reflectance is suspected to be closest to the true reflectance 

at noon to early afternoon as the high sun position should lead to minimal shading (see Figure 4 showing 

highest radiance in relation to irradiance at roughly 13:00). To provide a more stable signal the 

reflectance spectra from 12:45 to 13:15  are averaged before being used as input to libRadtran. Using 

the reflectance spectrum of the FloX makes the coupling of libRadtran with SCOPE obsolete and 

decreases the number of simulations compared to more advanced approaches relying on SCOPE 

simulations for the reflectance spectrum. Irradiance and radiance signals are simulated solely by 

libRadtran and the best fit is determined using RMSE minimization between simulation and closest 

measurement. 

Given date and time, the model checks if a reflectance file is already existing. Otherwise, the reflectance 

file for libRadtran is calculated and saved so it does not have to be recalculated in a future run. Irradiance 

is then simulated for all input combinations of aerosols and water cloud optical depth. The best 
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simulation(s) are determined and the corresponding values of aerosols and water cloud optical depth 

are saved. Radiance can be simulated by just one run per measurement given date and time as well as 

the previously determined optimal parameters of aerosol and water cloud optical depth. Even if this is 

computationally efficient, the high degree of dependence on the measurements is problematic 

considering the approach is designed to validate the same data.  

Approach 2 the “Literature-based parametrization” was designed to work more independently from the 

measurements. For higher independence from FloX reflectance estimates, we refer to SCOPE 

simulations based on vegetation parameters to provide a wavelength-dependent reflectance spectrum 

which is used as albedo in libRadtran.  

In the first step, the composition of the atmosphere is approximated by iterating over the predefined 

range of values of atmospheric properties in the attempt to model irradiance. The composition of the 

vegetation is left to default except for parameters relating to the time and general setup geometry. These 

values however are kept constant over iterative runs of altering the atmospheric composition. Inputs to 

libRadtran are provided by the input string which is adjusted for every successive run of libRadtran. 

The best fit of the simulation is determined using RMSE minimization between simulation and 

observation. The atmosphere parameters of the irradiance simulation with the smallest RMSE are then 

forwarded to the radiance simulation. 

In the second step, the radiance simulation is optimized by using the atmospheric composition 

determined in the first step and iterating over every possible combination of biophysical properties 

within the given range. The influence of the biophysical properties is modelled with SCOPE and evident 

in the resulting reflectance file. The MATLAB-based SCOPE model gets called from within Python 

using the MATLAB ENGINE API (Mathworks, 2021). Altering the input values of the individual runs 

is achieved by adapting the “Input_data_default.csv” file in the SCOPE folder. Upon completion of all 

radiance simulations, the best fit is again determined using RMSE minimization. Due to the large 

number of runs needed approach 2 can however result in high computation times or in low parameter 

sampling density and thus poorly fitting simulations.  

Approach 3 the “LUT-based parametrization” is built upon approach 2 and designed to mitigate the 

computational burden of the literature-based parametrization approach. A SCOPE model inversion was 

built to simulate reflectance, compare the simulations to FloX reflectance estimates and save the 

vegetation parameters that did lead to the best fitting simulations to a LUT. The date-specific estimation 

of vegetation parameters allows a narrower, more densely sampled parameter range in the following 

radiance simulation. The model inversion is best run over the whole period of interest focusing on days 

with near-perfect irradiance to generate a timeline of vegetation parameters. Days without clouds lead 

to less interaction with the atmosphere and are found by plotting irradiance at one wavelength (e.g. 600 

nm) over a day. Given a sunny day, the resulting curve is a smooth parabola with its maximum around 
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noon. A total of 26 days with near-perfect irradiance were found and simulated over our investigated 

period. 

Atmospheric parameters are again optimized by RMSE minimization between simulation and 

measurement. The LUT is then used to retrieve temporally dependent vegetation parameter estimates 

for the radiance simulations. The model chooses the LUT entry closest to the input time, retrieves the 

vegetation parameters and runs coupled SCOPE-libRadtran radiance simulations for a tighter range 

around the retrieved values. The best-fitting radiance simulation is found using RMSE minimization. 

The third approach allows faster computing times or higher parameter sampling density once the LUT 

is calculated.  

 

2.3.2 Atmosphere Model and Parametrization 
libRadtran is used in the presented approaches to model the transmission of radiation through the 

atmosphere. The RTM included in libRadtran is designed to estimate the radiation field for given 

atmospheric and surface conditions (Mayer and Kylling, 2005). libRadtran, in contrast to other in 

remote sensing more widespread RTMs like MODTRAN (Guanter et al., 2009), is open source which 

allows everyone to adapt or further develop the approaches presented in this thesis.  

Uvspec is libRadtran’s main tool. The user can choose between ten radiative transfer equation solvers 

and specify the composition of the atmosphere in detail (Mayer et al., 2017; Mayer and Kylling, 2005).  

The simulations in this thesis are based on the widely used  DIScrete Ordinante Radiative Transfer, 

solver short DISTORT, code (Mayer et al., 2017; Stamnes et al., 1988).  

The atmosphere interacts with the radiation that passes through it in two ways. First, it reduces the 

amount of radiation that illuminates the ground and is reflected from the ground by scattering and 

absorption. Second, it increases the measured signal by adding scattered extraneous radiation, acting as 

a reflector (Lillesand et al., 2015). Aerosols and water cloud optical depth were found to have the 

greatest impact on irradiance (Al Asmar et al., 2021). Reasonable ranges for the parameters at the 

Laegeren test site were found based on literature and experience gained during the process (ranges see 

Table 3). The aerosol type below 2 km is set to rural assuming high air quality outside of major cities 

in Switzerland. 
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Table 3: Parameter ranges used in the simulations as an approximation of the atmospheric conditions. The library of Radiative 
transfer (libRadtran) parameter “aerosol_modify tau set” sets the aerosol content in the atmosphere in [g/m^3] and 
“wc_modify tau550 set” sets the water cloud optical thickness at 550 nm in [g/m^3] for the libRadtran simulation based on 
the values provided. The parameter value ranges were defined according to literature and experience gained during the 
process (Al Asmar et al., 2021; Mayer and Kylling, 2005). 

Parameter name libRadtran Min Max Step size 

aerosol_modify tau set [g/m^3] 0 2.3 0.2 

wc_modify tau550 set [g/m^3] 0 8 1 

 

2.3.3 Vegetation Model and Parametrization 

SCOPE is used to estimate the spectral reflectance of the surface in approaches 2 and 3 based on 

vegetation traits and auxiliary data. SCOPE was developed in MATLAB and simulates the radiative 

transfer in the soil, leaves and vegetation canopies considering photosynthesis and non-radiative heat 

dissipation (Van Der Tol et al., 2009; Yang et al., 2021). A large range of outputs can be produced but 

for this project, only the TOC reflectance in viewing direction is used. Please note that in contrast to 

equation 1.2 applying six individual reflectance and albedo terms (rso, rdo, rsd, rdd ρso and ρdd), only one 

reflectance output of SCOPE is passed on to the libRadtran simulation. Experiments providing 

libRadtran with individual terms were conducted but resulted in lower correspondence between 

simulation and measurement and were therefore discontinued.  

The composition of the vegetation at the study site and time of measurement is not known. Ideally, the 

parameters would be measured with high temporal resolution in the field but the high effort involved 

makes it impossible. Knowledge of the composition of the vegetation however is crucial for the 

estimation of the reflectance spectrum which directly impacts the simulated radiance. Multiple 

approaches to parametrize the biosphere which do not require field measurements were examined and 

applied. Additionally, a simplified approach which works independently of vegetation parameterization 

was developed. 

A multitude of different approaches to estimate reasonable ranges for the parameters of the biosphere 

failed including satellite-derived estimation, plant trait database estimation as well as brute force 

approaches. Satellite Chlorophyll A+B (CAB) products mainly focus on the oceans, the Google Earth 

Engine (GGE) data catalogue does not contain any Carotenoid (CCA) products and the highest spatial 

resolution of Leaf Area Index (LAI) products is with 500 m (Gorelick et al., 2017) too large for any 

reasonable point estimation. The plant trait database TRY with close to 12 million entries was queried 

for fagus sylvatica (beech) and the required trait measurements (Kattge et al., 2020). The availability of 

measurements was too low, spatially dispersed over the whole world and unfortunately temporarily 

clustered to an extent that seasonal patterns were no longer reconstructable. In addition to the sparse 

availability of parameter measurements for beech trees, the transmissibility within species is highly 

doubtable as leaf side, leaf age and stress status of the tree were found to superimpose the effect of plant 
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species on the reflectance spectrum (Mohammed et al., 2000). The seasonal dynamic of overstory and 

understory LAI was measured at the Laegeren in 2015 indicating LAI between 4 and 6 during the season 

of investigation (Paul-Limoges, 2017). Even if the measurements were taken on the Laegeren, this does 

not mean that they come from the same tree that is in the field of view of the FloX. The ranges for the 

biosphere parameters are therefore largely based on literature, experience gained during the process and 

deliberately widened to decrease the risk of bad fitting simulation due to too narrow parameter ranges 

(ranges see: Table 4). The ranges do not claim to be exact or transferable to different locations.  

Table 4: Parameter ranges for the simulation of the vegetation canopy using the Soil Canopy Observation of Photosynthesis 
and Energy Fluxes Model. Parameter value ranges are based on literature and experience (Gitelson et al., 2002; Hosgood et 
al., 1994; Morley et al., 2020; Paul-Limoges, 2017; Scartazza et al., 2016; Thimonier Rickenmann and Schleppi, 2011). 

Parameter name SCOPE Min Max Step size 

Leaf chlorophyll concentration [μg/cm2] 30 45 5 

Leaf carotenoid concentration [μg/cm2] 5 20 5 

Leaf Area Index [m2/m2] 3 15 1 

 

2.3.4 Model Coupling  

libRadtran is capable of calculating the atmospheric effects but not optimized to estimate the interaction 

with the vegetation. Default reflectance spectra are available (Mayer and Kylling, 2005) but not fit for 

our purpose. SCOPE is well suited to estimate the spectral reflectance at the study site as the vegetation 

in the field of view is known. Accurate simulations, therefore, require a coupled model where libRadtran 

is provided with SCOPE-based estimations of the spectral reflectance or albedo.  

SCOPE and libRadtran are coupled by adapting the SCOPE reflectance output to the format of the 

libRadtran albedo files and providing it as input to libRadtran.  

2.3.5 Model Parallelization 
Parameters for the atmosphere (aerosols and water cloud optical depth), biosphere (CAB, CCA and 

LAI) as well as the point in time (determines illumination geometry) lead to a six-dimensional input 

space for the coupled model. The high dimensionality of the input space not only causes high 

computation times but also a huge input sampling space and low sampling density. Low sampling 

density increases the probability of bad-fitting simulations. The architecture of the coupled model was 

therefore improved to achieve higher sampling and lower computation time. 

To break down the sampling space the optimization process of atmospheric parameters and vegetational 

parameters was split apart. The sensitivity to reflectance spectrum misspecification is, based on 

Equations 1.1 and 1.2, smaller for irradiance simulations compared to radiance simulations. The 

atmospheric parameters are therefore optimized by iterative runs over atmospheric compositions using 

a single SCOPE reflectance estimation. The SCOPE configuration is left to default except for site and 
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date-specific inputs (e.g. date, coordinates, altitude, vegetation height, measurement height (Sutter and 

Waldner, 2019), solar- and viewing zenith angle calculated by pysolar (Zebner et al., 2014)) which are 

still provided. The atmospheric parameters get fixed to the values of the irradiance simulation with the 

highest correspondence to the measurement. The atmospheric parameters are then used as input for the 

radiance simulations which iterate over the combinations of vegetation parameters. 

In a second step, the setup of the models was optimized to run in parallel on as many cores as the 

available system allows. Running the models on a small server with 8 cores based on the 

multiprocessing library in python (“Process-based parallelism”, 2022) helped additionally and made 

running simulations overnight more convenient. Overall the computing time was reduced by more than 

85% compared to the original setup on a local machine.  

 

2.4 Statistical Analysis of Measurement and Simulation 

To evaluate the performance of each model, simulations were run on all sunny days of the 154-day 

measurement period at 1 pm. The time for the simulations was chosen as shading is suspected to be 

lowest in the early afternoon as Figure 4 shows the largest radiance in relation to irradiance at roughly 

13:00. The correspondence between measurement and simulation is determined using the RMSE in the 

wavelength region between 400 and 800 nm (Despotovic et al., 2016).  

The RMSE is defined by 

𝑅𝑀𝑆𝐸 = ටଵ
௡

∑ (𝑜𝑏𝑠௜ − 𝑠𝑖𝑚௜)ଶ௡
௜ୀଵ   (2.1)  

As a more tangible measure of error, the  RMSRE is provided additionally and used for the analysis 

(Despotovic et al., 2016). 

The RMSRE is defined by  

𝑅𝑀𝑆𝑅𝐸 =  ටଵ
௡

∑ ቀ௢௕௦೔ି௦௜௠೔
௢௕௦೔

ቁ
ଶ

௡
௜ୀଵ (2.2)  

where 𝑜𝑏𝑠 are the observations of the FloX, 𝑠𝑖𝑚 the simulations to be validated and 𝑛 the number of 

wavelengths considered.   
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3 Results  
The performance of the individual models was assessed over the season and over the time of a single 

day. To do so irradiance and radiance were simulated for every day of the investigated period at 13:00 

and at hourly rates on the 2nd of September and compared to the measurements. 

3.1 Seasonal and Diurnal Irradiance and Radiance Dynamics 

The focus of the analysis was placed on sunny days, as today's models cannot fully compensate for the 

influence of the weather (Al Asmar et al., 2021). Most outliers in the error measurement time-series are 

suspected to be caused by weather-related effects. This conjecture is supported by usually very low 

irradiance and radiance measurements at the time of bad-fitting simulations.  

Days with perfect irradiance were identified by visually assessing the curve of the irradiance at 600 nm 

plotted over the time of the day. If the curve is a smooth parabola with its maximum around noon 

without any major disruptions in the profile the day is considered perfectly sunny or also clear-sky 

(Figure 3).  

 

Figure 3: Plot of the irradiance at 600 nm over a sunny day (left) with perfect irradiance and an overcast day (right) with 
non-perfect irradiance. 

Of the 154 days in total, only 8 were found to match the requirements. The irradiance and radiance 

curves of the selected days are displayed in Figure 4. The radiance signals are less regular showing 

sharp short-term variation in the measurements. Given the smooth irradiance profile, the sharp changes 

in the radiance profile must be caused by sudden changes in the reflectance profile. As the composition 

of the vegetation does not alter at that temporal rate the changes in reflectance are assumed to be induced 

by illumination effects or shadowing. The effects of shadowing on reflectance cannot be modelled with 

the current setup and are one of the main reasons for the higher uncertainty of radiance simulations. 
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Figure 4: Irradiance and radiance of sunny days from 05:00 to 18:10 at 600 nm. The decline in the magnitude of the signal 
over the measurement time was expected as a consequence of the seasonal variation in solar irradiance. Y-range for irradiance 
on the left and for the radiance on the right. 

 

3.1.1 Method Comparison – Seasonal Effects 

Irradiance and radiance simulations were run on all sunny days and by all approaches. Figure 5 shows 

the variation in correspondence between measurement and simulation on days with good-fitting 

simulations to days with poor-fitting simulations. To visually assess the fit of all simulations consult 

Figure 12 in the appendix. To make the approaches more comparable, the focus of the analysis was 

placed on the RMSRE instead of the visual assessment.   

 

 

Figure 5: Examples of a day with well-fitting simulations (2021-09-02 upper) and a day with bad-fitting simulations (2021-
10-24 lower) with corresponding fluorescence box measurements from the laegeren site. 
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The mean and median RMSRE for irradiance simulations on sunny days is below 8.5 % for all 3 

approaches (Table 5). Approach 1 is marginally lower in RMSRE and Standard Deviation (SD) than 

approaches 2 & 3. Based on their architecture approaches 2 & 3 result in the same irradiance simulation 

if given the same parameter range and measurement to optimize - which was the case in this analysis 

(see Table 3 for applied parameter ranges). The small difference between mean- and median RMSRE 

as well as the generally small SD can be seen as an indication of model stability. 

Radiance simulations have higher RMSRE compared to irradiance simulations independent of the 

applied approach. Approach 1 results in the lowest RMSRE of ~10 % compared to ~24 % and ~21 % 

for approaches 2 & 3 respectively. Approach 1 again has a marginally lower mean RMSRE and low 

SD. Approaches 2 & 3 however show 4 - 5 % lower median RMSRE compared to mean RMSRE and 

a ten-fold increase in SD compared to Approach 1. These measures suggest lower stability of 

approaches 2 & 3 in radiance simulations.  

Table 5: Summary of  Mean, Median and Standard Deviation (SD) of Root Mean Squared Relative Error (RMSRE) for Sunny 
Irradiance and Radiance Simulations in Percent [%]. 

 RMSRE on Sunny Days 

 Irradiance Radiance 

Approach # 1 2 3 ∅ 1 2 3 ∅ 

Mean RMSRE [%] 8.10 8.36 8.36 8.27 10.36 
 

23.81 
 

20.83 18.33 

Median RMSRE [%] 8.00 
 

8.29 
 

8.29 
 

8.19 10.70 
 

20.02 
 

16.47 
 

15.52 

SD of RMSRE 0.0058 0.0065 0.0065 0.0063 0.0081 0.0924 0.0843 0.0616 
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Figure 6 (left) displays the temporal distribution of  RMSRE for irradiance and shows clearly that 

approach 1 performs best over the whole period investigated. The range of error is between 7.5% and 

10%. The value range of RMSRE of radiance simulations (Figure 6 right)  is ~10 to ~45%. Approach 

1 yields the lowest RMSRE values, shows low variance and no seasonal pattern. Approaches 2 & 3 

yield higher RMSRE values in general, have higher variability and do show a seasonal pattern of 

increasing RMSRE towards the end of the season. However, RMSRE stays below 25% for all 

approaches and days except the last two days which result in very high RMSRE estimates for 

approaches 2 & 3.  

 

Figure 6: Root Mean Squared Relative Error (RMSRE) between measurement and simulation for all 3 approaches on sunny 
days from 2021-06-14 to 2021-10-24 for irradiance (left) and radiance (right). Approach 1: green circle, Approach 2: orange 
triangle, Approach 3: blue/violet star. 
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3.1.1.1 Input Parameter Distribution 

The parameters of the atmosphere (Figure 7 upper) cluster in a limited space of the previously defined 

parameter range (Table 3). No pattern over the season is apparent. Approach 2 & 3 do again agree on 

the chosen parameters based on their architecture which can therefore not be seen as two independent 

approaches converging to the same optimum.  

Biosphere parameters are only available for approaches 2 and 3 as approach 1 works independently of 

a specification of the biosphere. No distinct seasonal pattern is visible. The two approaches did converge 

in a stable level of 10 μg/cm2 CCA content in the majority of the simulations. Biosphere parameters 

and radiance simulations in general are not forced to converge by the architecture of the model and 

therefore indicate agreement in parameter selection by the two models.  The CAB content is estimated 

in a narrow range by both approaches. Approach 3 results in slightly lower CAB values in the second 

half of the investigated measurement time which could be caused by decreasing CAB content during 

senescence. The LAI is generally estimated very high at 14 for most simulations by approach 2. The 

temporal distribution of LAI by approach 3 is parabola shaped with the minimum at 6 right at halftime 

of the investigated period.  

 

 

 

Figure 7: Atmosphere- (upper) und biosphere- (lower) parameter distribution on sunny days. Y-limits are set to the respective 
parameter range for each atmosphere- and biosphere parameter. 

  



 

20 
 

3.1.2 Method Comparison – Diurnal Effects 
Hourly simulations by all approaches were run on the 2nd of September 2021. Simulations past 18:00 

did result in an RMSRE of 100% as the best simulations dropped heavily below the measurements. The 

investigated time was therefore limited between 06:00 and 17:00. The simulation fit of selected times 

can be assessed in Figure 8. For the visual assessment of all simulations consult Figure 13 in the 

appendix.  

 

 

 

Figure 8: Irradiance (left) and radiance (right) simulations of selected times on the 2nd of September 2021 together with the 
measurement from 400 nm to 800 nm. 

The mean RMSRE of irradiance simulation for all approaches is below 10%. Approach 1 provides 

simulations with a very slightly lower mean RMSRE compared to approaches 2 and 3 (Table 6). 

Radiance simulations did result, independent of the applied approach, in much higher RMSRE values 

than irradiance simulations. The mean RMSRE for radiance simulations over all approaches (28.83) is 
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just over three times larger than the mean RMSRE for irradiance simulation over all approaches (9.63). 

Approach 1 performed worst with an RMSRE of ~38% compared to approaches 2 and 3 with ~24% 

and 25% respectively. The SD in RMSRE of approach 1 radiance simulations is by far the highest 

observed indicating large variability between the fit of the simulations and low stability over the day. 

Table 6: Mean, Median and Standard Deviation (SD) of Root Mean Squared Relative Error (RMSRE) for irradiance (left) and 
radiance (right) hourly simulations for all 3 approaches on the 2nd of September 2021 from 06:00 to 17:00. 

 RMSRE on the 2nd of September 2021 

 Irradiance Radiance 

Approach # 1 2 3 ∅ 1 2 3 ∅ 

Mean RMSRE [%] 9.51 9.69 9.69 9.63 37.81 
 

23.95 
 

24.74 28.83 

Median RMSRE [%] 7.79 
 

7.95 
 

7.95 
 

7.90 29.16 
 

23.12 
 

21.58 
 

24.62 

SD of RMSRE 0.0332 0.0332 0.0332 0.0332 0.2424 0.0784 0.0835 0.1348 

 

Figure 9 displays the temporal distribution of RMSRE values over the day and the agreement of the 

three approaches. The temporal distribution of RMSRE values for irradiance simulations is a parabola 

with a wide bottom around noon. Simulations before 08:00 and after 14:00 have higher RMSRE. All 

approaches performed about equally. 

RMSRE values of radiance simulations peak from around 09:00 to 10:00 depending on the approach. 

Approach 1 shows higher variance in RMSRE over time compared to approaches 2 and 3 which have 

a similar temporal pattern but less variance between simulations. The lowest RMSRE values are at 

13:00 for approach 1 and at noon for approaches 2 and 3 respectively.  

 

Figure 9: Plot of the Root mean Squared Relative Error (RMSRE) of irradiance (left) and radiance (right) simulations from 
06:00 to 17:00 for all 3 approaches on the 2nd of September 2021 over time. 
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Figure 10 illustrates the temporal parameter distribution of the atmosphere (upper) and the biosphere 

(lower) within their respective parameter ranges over time. 

Optimal aerosol and cloud optical depth values cluster within the lower half of the parameter range. No 

distinctive pattern is visible. Vegetation parameters are quite stable in the morning but show 

unrealistically large variation over the whole day. 

 

Figure 10:  Atmosphere (upper) and biosphere (lower) parameters of optimal hourly simulations on the 2nd September 2021 
from 06:00 to 17:00. 
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4 Discussion 

4.1 Correspondence between Simulated and Measured Radiance and Irradiance 

4.1.1 Irradiance 
Irradiance simulations did generally fit the FloX measurements better in terms of RMSRE compared to 

radiance simulations. This was expected as misspecification in the reflectance spectrum has a much 

lower influence on irradiance than on radiance. Irradiance simulations on sunny days were consequently 

not heavily affected by seasonal senescence and show only a marginal increase of 1% RMSRE on the 

last date in the investigated period compared to the mean RMSRE over the investigated period. The 

water cloud optical depth parameter applied in the simulations is the most important parameter to 

compensate for clouds which have a large impact on irradiance on non-clear-sky days (Al Asmar et al., 

2021). Simulations on cloudy days did show, however, that the current setup can only partially 

compensate for clouds and results in increased RMSRE. Including fractional cloud coverage in 

irradiance simulations has been proposed to further increase the accuracy of direct irradiance estimates 

(Al Asmar et al., 2021). Due to the multiplicative increase of model runs needed by iterating additional 

atmosphere parameters the greatest disadvantage would be the increase in computational demand. The 

performance of a sensor in real-life applications however usually deteriorates over a prolonged time 

(Liu et al., 2020; Wang et al., 2012) which makes sensor validation based only on sunny days feasible. 

If measurement validation on cloudy days is needed the adaption of fractional cloud cover in the model 

could be beneficial. 

Approach 1 performed best for every sampled day in the season at 13:00. The increase in accuracy 

however is only marginal (0.26%). We do suspect that the difference originates in the reflectance spectra 

as the transmission through the atmosphere is modelled the same for all methods. Conversely, this 

implies that modelling the reflectance spectrum with SCOPE only leads to an increase in the mean 

RMSRE of 0.26% in irradiance simulations at 13:00, compared to using reflectance spectra directly 

from the measurement. However, based on the daily simulations we are unable to tell whether the 

SCOPE simulations approach the true reflectance or if the influence of the reflectance spectra is just 

very low. 

The time of the simulation influences the resulting RMSRE. Simulations before 08:00 and past 15:00 

result in high RMSRE values reaching 100% already at 18:00. The time of the day surely determines 

insolation but is accounted for in libRadtran as well as in SCOPE (Mayer et al., 2017; Mayer and 

Kylling, 2005; Zebner et al., 2014).  As the influence of the vegetation canopy and the reflectance 

spectrum on irradiance simulations is expected to be small we suspect that the underestimation of 

irradiance in our simulations (Figure 13) and the increase in RMSRE (Figure 9) in the early morning 

and late afternoon by all approaches to be caused mainly by libRadtran. The effects could however also 

be caused by the measurement setup. 
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Approach 1 uses the reflectance spectrum calculated based on the measurements at 13:00 for all times 

of the day to simplify the model. However, investigations of the apparent reflectance in the 

measurements (Figure 11 right) show large variation in reflectance over the day in wavelength regions 

upwards of 725nm due to shading and possibly due to variation in the composition (e.g. leaf water 

content, stress) or orientation (e.g. leaf angle) of the vegetation (Cipar et al., 2008; Petibon et al., 2021, 

Alex Damm, Personal Communication 2022). Figure 11 left shows that the variation in the reflectance 

spectra on sunny days over the season is smaller than the variation over a day.  

 

Figure 11: Reflectance spectra from fluorescence box measurements (left) for sunny days at 13:00 and (right) every two hours 
on the 2nd of September 2021. 

Surprisingly approach 1 still performs slightly better than the other approaches even if constantly using 

the reflectance spectrum at 13:00. As the simulations overall are fitting rather well with a mean RMSRE 

of below 10% we conclude that the reflectance spectra are not of high importance in irradiance 

simulations. Additionally, we find that the SCOPE simulations are not capable of fully reconstructing 

the reflectance as the two approaches which tried to simulate the reflectance at the time of the 

measurement performed slightly worse than using reflectance from measurements at 13:00. Including 

additional vegetational parameters may lead to a better fit at the cost of higher computing time.  

Generally, it is found that for irradiance simulations, differences in RMSRE between simulations are 

caused by libRadtran and differences between approaches on the same date are caused by SCOPE. The 

influence of the reflectance spectra on irradiance is not high enough to make a large difference in 

performance between the approaches, but it is the only difference between the approaches on the same 

date and time of the simulation. Additionally, it follows that the choice of the approach does not matter 

as much as the time and parameter range of the atmosphere parameters.  
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4.1.2 Radiance 

Radiance simulations generally result in higher RMSRE and show higher variation between the 

approaches. As the transmission through the atmosphere is optimized during irradiance simulation and 

always run with the same configuration there is not much potential for additional error based on 

atmospheric transmission except for the path back from the surface to the sensor. The additional path 

is compensated for by providing measurement height and vegetation height to libRadtran and should 

not have a large influence. Approach 1 performs by far the best with a mean RMSRE of ~10.5% over 

sunny days at 13:00 and shows no seasonal pattern compared to 24 % and 21 % with distinct seasonal 

patterns (Figure 6). The fact that all approaches lead to similar good agreement in irradiance, but 

approaches 2 and 3 lead to lower agreement in radiance, shows that reflection simulation is problematic 

Especially simulations towards the end of the season (14th and 24th of November) have high RMSRE 

with values around 30% and 42% respectively. As approach 1 which is relying on the spectral 

reflectance from measurements on the respective dates does not suffer from similar effects we conclude 

that SCOPE-based reflectance simulations do not maintain a constant degree of fit to the true reflectance 

over the season. This indicates that the parametrization of SCOPE is problematic and needs better 

ground truth. The outcomes additionally demonstrate the high sensitivity of radiance simulations to 

reflectance spectra simulation misspecification. The increasing RMSRE towards the end of season is 

suspected to be caused by a too high CAB value in reflectance simulations which leads to an 

underestimation of radiance between 550 nm and 700 nm (Figure 12). CAB was expected to decrease 

during senescence which it only did in approach 3. CAB in approach 2 however was not able to decrease 

as it was already estimated at the lowest possible value in June. This indicates that the literature-based 

parameter range estimation is off or that interaction between multiple vegetation parameters leads to 

unrealistic combinations. Overstory LAI at the laegeren site over the months of interest was measured 

at between 4 and 6 in 2015 (Paul-Limoges, 2017) which is considerably lower than the simulation 

estimates of LAI up to 14. As high CAB content reduces reflectance and high LAI increases reflectance 

one explanation for the unexpectedly high values in both parameters could be the compensation of too 

high CAB by too high LAI. The origin of the compensatory mechanisms could either be a too high 

lower limit for CAB but also effects of ill-posedness concerning high LAI generally resulting in good 

fitting simulations. 

Against the simplifying assumption of constant reflectance over the day the apparent reflectance 

spectrum was found to vary heavily over the time of a day which is not compensated for by approach 

1. Approach 1 accordingly results in a very high mean RMSRE of ~38% in simulations over the course 

of a day. Approaches 2 & 3 allow higher variability in reflectance by either iterating all possible 

combinations or retrieving the best parametrization from LUT resulting in 25% and 24% mean RMSRE 

respectively. Interestingly the highest RMSRE of 80% by approach 1 does not occur at marginal times 

of the day but at 09:00. Measurement-based reflectance estimations (Figure 11) are lowest around 09:00 
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to 10:00 which could explain the overestimation of reflectance by SCOPE and the resulting 

overestimation of radiance at 09:00 evident in simulations by all approaches but strongest in approach 

1 (Figure 13).  

As opposed to irradiance simulations where temporal performance differences are suspected to be 

caused by libRadtran the same does not hold for radiance simulations. The influence of the reflectance 

spectrum largely dominates the resulting simulation fit. The current SCOPE configuration is not capable 

of maintaining the same fit of modelled spectral reflectance over the season or the time of the day. Over 

the time of a day, however, the reflectance modelling approach provides a better fit resulting in smaller 

SD between simulations compared to assuming constant reflectance.  The cause of the low reflectance 

at 09:00 (largest RMSRE) is not known but could be caused by shadowing effects. Vegetation 

parameters were expected to be stable over the span of a day. The results however show variation in the 

vegetation parameters suspected to be triggered by illumination effects. SCOPE simulations in the 

current setting are not capable of compensating for shadowing effects directly. The effects of the 

shadowing are partially compensated by altering vegetation canopy composition. The improvement in 

the modelled reflectance does therefore not correspond to a more accurate model but compensation of 

shading effects by vegetation composition. 

4.1.3 Challenges and Limitations of this Study 

Parameters used in the optimal runs can be retrieved but are ill-posed which is characteristic of model 

inversions (Laurent et al., 2013).  Currently, the simulations are optimized to fit the measured signal by 

RMSE minimization but do not take into account the likelihood of input combinations. The problem of 

ill-posedness could be reduced by using a priori information, temporal restraints or Bayesian statistics 

(Laurent et al., 2011; Lauvernet et al., 2008; Quan et al., 2015).  

Especially for radiance simulations more accurate, a priori biosphere parameter knowledge would be 

beneficial to run simulations with a smaller value range but higher sampling density. Accurate field 

measurements with high temporal sampling would allow defining smaller ranges around time-based 

optimal parameters with very high sampling density. However as field measurements are only valid for 

one location, time-consuming and expensive, Bayesian network-based approaches may be more 

promising. Bayesian statistics are used to reduce the probabilities of unrealistic combinations by 

introducing the model’s free parameter into their prior joint distribution (Quan et al., 2015). Currently, 

we suspect that shadowing effects are often compensated by the interplay of CAB and LAI. Allowing 

only realistic combinations as model input would therefore help to develop a more stable model. The 

problem of ill-posed parameter selection and large uncertainty of the parameter ranges together with 

shadowing effects lead to high RMSRE for simulations over the day. To achieve a consistently good fit 

throughout the day, more a priori knowledge of the vegetation parameters, as well as a more 

sophisticated optimization process, is needed.  
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4.1.4 Towards Improved Capacity to Evaluate Accuracy of Field Spectral measurements 

The current approaches presented in this work remain limited to clear-sky days with perfect irradiance 

as clouds cannot be fully compensated for. Whilst irradiance could be modelled through the whole 

investigated period and over most of the time of the day with good accuracy, radiance measurements 

showed much higher sensitivity to errors in the reflectance spectrum. The high accuracy of radiance 

simulations at 13:00 of approach 1 should not blindly be trusted as the simulations are dependent on the 

measurements we are trying to validate. The suitability of the simulations to validate the measurements 

overall is hard to assess as we do not have validated nor corrupt measurements to compare to.  

We propose to run simulations on sunny days at 13:00 by approaches 2 &3 during a period when the 

FloX sensor was known to be degraded and compare the resulting RMSRE values to the values obtained 

in this project. Approach 1, even though delivering the best accuracy over the season at 13:00 is not 

appropriate for measurement validation due to its heavy dependency on the measurements themselves. 

Better a priori parameter estimation and a more sophisticated optimization process are needed to 

increase the consistency of the parameter estimations which would ensure that simulation fits are not 

due to chance. To validate all measurements of the FloX in live time more computational power or the 

use of emulators that approximate RTMs with statistical learning (Rivera et al., 2015; Verrelst et al., 

2019, 2017) is needed as the current setup would take more than 24 hours to run simulations for all 

measurements of a day which makes live validation impossible. The Automated Radiative Transfer 

Models Operator (ARTMO) emulator toolbox could be used for that task (Verrelst and Rivera, 2021). 
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5 Conclusion 
I conclude that simulated and measured irradiance agree well with a mean RMSRE of below 10% over 

the season and over the time of the day for all approaches. Radiance simulations resulted, due to the 

higher sensitivity to canopy reflectance, in a higher RMSRE of ~10 %, ~24 % and ~20% over the season 

at 13:00 and ~38 %, ~24% and ~25% over the time of the day for the respective approaches. 

Investigations showed large variation in the estimated reflectance profiles of the measurements over the 

day caused by shadowing effects which currently cannot fully be compensated for by the model. I 

conclude that more accurate reflectance spectrum modelling is needed to enable validation of field 

spectroscopy radiance measurements, e.g. by using better a priori vegetation parameter estimates and a 

more sophisticated optimization process. Bayesian network approaches would additionally allow to 

reduce the compensation of shadowing effects by vegetation composition changes and provide more 

stable simulations. To enable measurement validation on non-clear-sky days the adaption of the cloud 

fractional cover and possibly additional atmosphere parameter is needed. To meet the increased demand 

for computational power the use of emulators should be considered as an option to allow more dense 

parameter sampling with higher computational speed. Finally, I would like to stress the importance of 

further research on the effect of shadowing and how these effects could be integrated into RTM-based 

field spectroscopy measurement validation. 
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Appendix 
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Figure 12: Irradiance (left) and radiance (right) simulations on sunny days over the period investigated by all approaches 
together with the measurement between 400 nm and 800 nm. 
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Figure 13: Results of irradiance (left) and radiance (right) simulations on the 2nd of September from 06:00 to 17:00 by all 
approaches together with the measurements from 400 nm to 800 nm.  



 

34 
 

References 
Afuye, G.A., Kalumba, A.M., Busayo, E.T., Orimoloye, I.R., 2022. A bibliometric review of vegetation 

response to climate change. Environ. Sci. Pollut. Res. 29, 18578–18590.  

Al Asmar, L., Musson-Genon, L., Dupont, E., Dupont, J.C., Sartelet, K., 2021. Improvement of solar 

irradiance modelling during cloudy-sky days using measurements. Sol. Energy 230, 1175–1188. 

https://doi.org/10.1016/J.SOLENER.2021.10.084 

Alonso, K., Bachmann, M., Burch, K., Carmona, E., Cerra, D., de los Reyes, R., Dietrich, D., Heiden, 

U., Hölderlin, A., Ickes, J., Knodt, U., Krutz, D., Lester, H., Müller, R., Pagnutti, M., Reinartz, P., 

Richter, R., Ryan, R., Sebastian, I., Tegler, M., 2019. Data Products, Quality and Validation of 

the DLR Earth Sensing Imaging Spectrometer (DESIS). Sensors 2019, Vol. 19, Page 4471 19, 

4471. https://doi.org/10.3390/S19204471 

Atzberger, C., 2004. Object-based retrieval of biophysical canopy variables using artificial neural nets 

and radiative transfer models. Remote Sens. Environ. 93, 53–67. 

https://doi.org/10.1016/J.RSE.2004.06.016 

Boccia, V., Adams, J., 2021. NASA-ESA Cooperation on the SBG and CHIME Hyperspectral Satellite 

Missions: a roadmap for the joint Working Group on Cal/Val activities. 

Bouvet, M., Thome, K., Berthelot, B., Bialek, A., Czapla-Myers, J., Fox, N., Goryl, P., Henry, P., Ma, 

L., Marcq, S., Meygret, A., Wenny, B., Woolliams, E., 2019. RadCalNet: A Radiometric 

Calibration Network for Earth Observing Imagers Operating in the Visible to Shortwave Infrared 

Spectral Range. Remote Sens. 11, 2401. https://doi.org/10.3390/rs11202401 

Brell, M., Guanter, L., Segl, K., Scheffler, D., Bohn, N., Bracher, A., Soppa, M.A., Foerster, S., Storch, 

T., Bachmann, M., Chabrillat, S., 2021. The EnMAP Satellite-Data Product Validation Activities. 

Work. Hyperspectral Image Signal Process. Evol. Remote Sens. 2021-March. 

https://doi.org/10.1109/WHISPERS52202.2021.9484000 

Candela, L., Formaro, R., Guarini, R., Loizzo, R., Longo, F., Varacalli, G., 2016. The PRISMA mission, 

in: International Geoscience and Remote Sensing Symposium (IGARSS). 

https://doi.org/10.1109/IGARSS.2016.7729057 

Cipar, J., Cooley, T., Lockwood, R., 2008. Measurements of seasonal changes in vegetation reflectance 

spectra. Int. Geosci. Remote Sens. Symp. 3, 812–815. 

https://doi.org/10.1109/IGARSS.2008.4779473 

Cogliati, S., Sarti, F., Chiarantini, L., Cosi, M., Lorusso, R., Lopinto, E., Miglietta, F., Genesio, L., 

Guanter, L., Damm, A., Pérez-López, S., Scheffler, D., Tagliabue, G., Panigada, C., Rascher, U., 



 

35 
 

Dowling, T.P.F., Giardino, C., Colombo, R., 2021. The PRISMA imaging spectroscopy mission: 

overview and first performance analysis. Remote Sens. Environ. 262. 

https://doi.org/10.1016/J.RSE.2021.112499 

Craggs, G., 2016. Photosynthesis and its Role in Climate Change and Soil Regeneration. Futur. Dir. Int. 

Cui, T., Sun, R., Xiao, Z., Liang, Z., Wang, J., 2020. Simulating spatially distributed solar-induced 

chlorophyll fluorescence using a BEPS-SCOPE coupling framework. Agric. For. Meteorol. 295, 

108169. https://doi.org/10.1016/j.agrformet.2020.108169 

Curran, P.J., Hay, A.M., 1986. The importance of measurement error for certain procedures in remote 

sensing at optical wavelengths. Photogrammetric Engineering & Remote Sensing 

Damm, A., Erler, A., Hillen, W., Meroni, M., Schaepman, M.E., Verhoef, W., Rascher, U., 2011. 

Modeling the impact of spectral sensor configurations on the FLD retrieval accuracy of sun-

induced chlorophyll fluorescence. Remote Sens. Environ. 115, 1882–1892. 

https://doi.org/10.1016/j.rse.2011.03.011 

Despotovic, M., Nedic, V., Despotovic, D., Cvetanovic, S., 2016. Evaluation of empirical models for 

predicting monthly mean horizontal diffuse solar radiation. Renew. Sustain. Energy Rev. 56, 246–

260. https://doi.org/10.1016/J.RSER.2015.11.058 

Drusch, M., Moreno, J., Del Bello, U., Franco, R., Goulas, Y., Huth, A., Kraft, S., Middleton, E.M., 

Miglietta, F., Mohammed, G., Nedbal, L., Rascher, U., Schuttemeyer, D., Verhoef, W., 2017. The 

FLuorescence EXplorer Mission Concept-ESA’s Earth Explorer 8. IEEE Trans. Geosci. Remote 

Sens. 55, 1273–1284. https://doi.org/10.1109/TGRS.2016.2621820 

Eckardt, A., Horack, J., Lehmann, F., Krutz, D., Drescher, J., Whorton, M., Soutullo, M., 2015. DESIS 

(DLR Earth Sensing Imaging Spectrometer for the ISS-MUSES platform), in: International 

Geoscience and Remote Sensing Symposium (IGARSS). 

https://doi.org/10.1109/IGARSS.2015.7326053 

Eugster, W., Zeyer, K., Zeeman, M.J., Michna, P., Zingg, A., Buchmann, N., Emmenegger, L., 2007. 

Methodical study of nitrous oxide eddy covariance measurements using quantum cascade laser 

spectrometry over a Swiss forest. Biogeosciences 4. 

Feingersh, T., Dor, E. Ben, 2015. SHALOM - A Commercial Hyperspectral Space Mission, in: Optical 

Payloads for Space Missions. John Wiley & Sons, Ltd, Chichester, UK, pp. 247–263. 

https://doi.org/10.1002/9781118945179.ch11 

Frappart, F., Wigneron, J.P., Li, X., Liu, X., Al-Yaari, A., Fan, L., Wang, M., Moisy, C., Le Masson, 

E., Lafkih, Z.A., Vallé, C., Ygorra, B., Baghdadi, N., 2020. Global Monitoring of the Vegetation 



 

36 
 

Dynamics from the Vegetation Optical Depth (VOD): A Review. Remote Sens. 2020, Vol. 12, 

Page 2915 12, 2915. https://doi.org/10.3390/RS12182915 

Giardino, C., Bresciani, M., Braga, F., Fabbretto, A., Ghirardi, N., Pepe, M., Gianinetto, M., Colombo, 

R., Cogliati, S., Ghebrehiwot, S., Laanen, M., Peters, S., Schroeder, T., Concha, J.A., Brando, 

V.E., 2020. First Evaluation of PRISMA Level 1 Data for Water Applications. Sensors 2020, Vol. 

20, Page 4553 20, 4553. https://doi.org/10.3390/S20164553 

Gitelson, A.A., Zur, Y., Chivkunova, O.B., Merzlyak, M.N., 2002. Assessing Carotenoid Content in 

Plant Leaves with Reflectance Spectroscopy¶. Photochem. Photobiol. 75, 272.  

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., Moore, R., 2017. Google Earth 

Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27. 

https://doi.org/10.1016/j.rse.2017.06.031 

Guanter, L., Kaufmann, H., Segl, K., Foerster, S., Rogass, C., Chabrillat, S., Kuester, T., Hollstein, A., 

Rossner, G., Chlebek, C., Straif, C., Fischer, S., Schrader, S., Storch, T., Heiden, U., Mueller, A., 

Bachmann, M., Mühle, H., Müller, R., Habermeyer, M., Ohndorf, A., Hill, J., Buddenbaum, H., 

Hostert, P., Van Der Linden, S., Leitão, P.J., Rabe, A., Doerffer, R., Krasemann, H., Xi, H., 

Mauser, W., Hank, T., Locherer, M., Rast, M., Staenz, K., Sang, B., 2015. The EnMAP 

Spaceborne Imaging Spectroscopy Mission for Earth Observation. Remote Sens. 2015, Vol. 7, 

Pages 8830-8857 7, 8830–8857. https://doi.org/10.3390/RS70708830 

Guanter, L., Richter, R., Kaufmann, H., 2009. On the application of the MODTRAN4 atmospheric 

radiative transfer code to optical remote sensing. Int. J. Remote Sens. 30, 1407–1424. 

https://doi.org/10.1080/01431160802438555 

Guanter, L., Zhang, Y., Jung, M., Joiner, J., Voigt, M., Berry, J.A., Frankenberg, C., Huete, A.R., Zarco-

Tejada, P., Lee, J.E., Moran, M.S., Ponce-Campos, G., Beer, C., Camps-Valls, G., Buchmann, N., 

Gianelle, D., Klumpp, K., Cescatti, A., Baker, J.M., Griffis, T.J., 2014. Global and time-resolved 

monitoring of crop photosynthesis with chlorophyll fluorescence. Proc. Natl. Acad. Sci. U. S. A. 

111. https://doi.org/10.1073/PNAS.1320008111 

Hank, T.B., Berger, K., Bach, H., Clevers, J.G.P.W., Gitelson, A., Zarco-Tejada, P., Mauser, W., 2019. 

Spaceborne Imaging Spectroscopy for Sustainable Agriculture: Contributions and Challenges. 

Surv. Geophys. 40, 515–551. 

Hosgood, B., Jacquemoud, S., Andreoli, G., Verdebout, J., Pedrini, G., Schmuck, G., 1994. Leaf Optical 

Properties EXperiment 93 (LOPEX93). Jt. Res. Cent. 

Hueni, A., Damm, A., Kneubuehler, M., Schlapfer, D., Schaepman, M.E., 2017. Field and Airborne 

Spectroscopy Cross Validation -Some Considerations. IEEE J. Sel. Top. Appl. Earth Obs. Remote 



 

37 
 

Sens. 10, 1117–1135. https://doi.org/10.1109/JSTARS.2016.2593984 

Iwasaki, A., Ohgi, N., Tanii, J., Kawashima, T., Inada, H., 2011. Hyperspectral Imager Suite (HISUI)-

Japanese hyper-multi spectral radiometer, in: International Geoscience and Remote Sensing 

Symposium (IGARSS). https://doi.org/10.1109/IGARSS.2011.6049308 

JB-Hyperspectral Devices UG, 2019. The Fluorescence Box , a hyperspectral instrument for unattended 

observation of chlorophyll fluorescence and reflectance . Manual for Installation and Operation. 

Kattenborn, T., Erlangung, Z., Bau-, V.D.F., Umweltwissenschaften, G.-, Kit, T., 2018. Linking 

Canopy Reflectance and Plant Functioning through Radiative Transfer Models. Karlsruher Institut 

für Technologie (KIT). 

Kattge, J., Bönisch, G., Díaz, S., 2020. TRY plant trait database – enhanced coverage and open access. 

Glob. Chang. Biol. 26, 119–188. https://doi.org/10.1111/gcb.14904 

Kawabata, A., Ichii, K., Yamaguchi, Y., 2010. Global monitoring of interannual changes in vegetation 

activities using NDVI and its relationships to temperature and precipitation. 22, 1377–1382. 

https://doi.org/10.1080/01431160119381 

Koetz, B., Member IEEE, Student, Sun, G., Member IEEE, Senior, Morsdorf, F., Ranson, K., 

Kneubühler, M., Itten, K., Allgöwer, B., 2006. Inversion of combined radiative transfer models 

for imaging spectrometer and LIDAR data. IEEE Xplore 395–398. 

https://doi.org/10.1109/IGARSS.2006.106 

Kostkowski, H.J., 1997. Reliable Spectroradiometry, Spectroradiometry Consulting. 

Laurent, V.C.E., Verhoef, W., Clevers, J.G.P.W., Schaepman, M.E., 2011. Estimating forest variables 

from top-of-atmosphere radiance satellite measurements using coupled radiative transfer models. 

Remote Sens. Environ. 115, 1043–1052. https://doi.org/10.1016/j.rse.2010.12.009 

Laurent, V.C.E., Verhoef, W., Damm, A., Schaepman, M.E., Clevers, J.G.P.W., 2013. A Bayesian 

object-based approach for estimating vegetation biophysical and biochemical variables from 

APEX at-sensor radiance data. Remote Sens. Environ. 139, 6–17. 

https://doi.org/10.1016/j.rse.2013.07.032 

Lauvernet, C., Baret, F., Hascoët, L., Buis, S., Le Dimet, F.X., 2008. Multitemporal-patch ensemble 

inversion of coupled surface-atmosphere radiative transfer models for land surface 

characterization. Remote Sens. Environ. 112, 851–861. 

https://doi.org/10.1016/J.RSE.2007.06.027 

Li, S., Ganguly, S., Dungan, J.L., Wang, W., Nemani, R.R., 2017. Sentinel-2 MSI Radiometric 

Characterization and Cross-Calibration with Landsat-8 OLI. Adv. Remote Sens. 06, 147–159. 



 

38 
 

https://doi.org/10.4236/ARS.2017.62011 

Lillesand, Kiefer, Chipman, 2015. Remote Sensing and Image Interpretation, Photogrammetric 

Engineering & Remote Sensing. https://doi.org/10.14358/pers.81.8.615 

Liu, B., Do, P., Iung, B., Xie, M., 2020. Stochastic Filtering Approach for Condition-Based 

Maintenance Considering Sensor Degradation. IEEE Trans. Autom. Sci. Eng. 17, 177–190. 

https://doi.org/10.1109/TASE.2019.2918734 

Malenovský, Z., Homolová, L., Lukeš, P., Buddenbaum, H., Verrelst, J., Alonso, L., Schaepman, M.E., 

Lauret, N., Gastellu-Etchegorry, J.P., 2019. Variability and Uncertainty Challenges in Scaling 

Imaging Spectroscopy Retrievals and Validations from Leaves Up to Vegetation Canopies. Surv. 

Geophys. 40, 631–656. https://doi.org/10.1007/S10712-019-09534-Y/FIGURES/5 

Markham, B., Barsi, J., Kvaran, G., Ong, L., Kaita, E., Biggar, S., Czapla-Myers, J., Mishra, N., Helder, 

D., 2014. Landsat-8 Operational Land Imager Radiometric Calibration and Stability. Remote 

Sens. 2014, Vol. 6, Pages 12275-12308 6, 12275–12308. https://doi.org/10.3390/RS61212275 

Mathworks, 2021. MATLAB Engine API [WWW Document]. URL 

https://ch.mathworks.com/help/matlab/matlab-engine-for-python.html (accessed 5.2.21). 

Mayer, B., Kylling, A., 2005. Technical note: The libRadtran software package for radiative transfer 

calculations-description and examples of use. Atmos. Chem. Phys 5, 1855–1877. 

Mayer, B., Kylling, A., Emde, C., Buras, R., Hamann, U., Gasteiger, J., Richter, B., 2017. libRadtran 

User ’ s Guide. Ed. Libr. version 2.0.2. 

Mohammed, G.H., Colombo, R., Middleton, E.M., Rascher, U., van der Tol, C., Nedbal, L., Goulas, 

Y., Pérez-Priego, O., Damm, A., Meroni, M., Joiner, J., Cogliati, S., Verhoef, W., Malenovský, 

Z., Gastellu-Etchegorry, J.P., Miller, J.R., Guanter, L., Moreno, J., Moya, I., Berry, J.A., 

Frankenberg, C., Zarco-Tejada, P.J., 2019. Remote sensing of solar-induced chlorophyll 

fluorescence (SIF) in vegetation: 50 years of progress. Remote Sens. Environ. 231, 111177. 

https://doi.org/10.1016/j.rse.2019.04.030 

Mohammed, G.H., Noland, T.L., Irving, D., Sampson, P.H., Zarco-Tejada, P.J., Miller, J.R., 2000. 

Natural and stress-induced effects on leaf spectral reflectance in Ontario species Science 

Development and Transfer   Ontario Ministry of Natural Resources. 

Morley, P.J., Jump, A.S., West, M.D., Donoghue, D.N.M., 2020. Spectral response of chlorophyll 

content during leaf senescence in european beech trees. Environ. Res. Commun. 2. 

https://doi.org/10.1088/2515-7620/aba7a0 

Morsdorf, F., Schneider, F., Gullien, C., Kükenbrink, D., Leiterer, R., Schaepman, M.E., 2020. The 



 

39 
 

Laegeren Site: An Augmented Forest Laboratory, in: Remote Sensing of Plant Biodiversity. pp. 

1–581. https://doi.org/10.1007/978-3-030-33157-3 

Nassar, A., Aboutalebi, M., McKee, M., Torres-Rua, A.F., Kustas, W., 2018. Implications of sensor 

inconsistencies and remote sensing error in the use of small unmanned aerial systems for 

generation of information products for agricultural management. Proc. SPIE--the Int. Soc. Opt. 

Eng. 10664, 1. https://doi.org/10.1117/12.2305826 

Odorico, P.D.’, Gonsamo, A., Damm, A., Schaepman, M.E., 2013. Experimental Evaluation of 

Sentinel-2 Spectral Response Functions for NDVI Time-Series Continuity. IEEE Trans. Geosci. 

Remote Sens. 51. https://doi.org/10.1109/TGRS.2012.2235447 

Paul-Limoges, E., 2017. Biosphere-Atmosphere CO2 Exchange and its Link to Sun-Induced 

Fluorescence in a Mixed Forest and a Cropland. ETH. https://doi.org/10.3929/ethz-b-000250830 

Petibon, F., Czyż, E.A., Ghielmetti, G., Hueni, A., Kneubühler, M., Schaepman, M.E., Schuman, M.C., 

2021. Variation in reflectance spectroscopy of European beech leaves captures phenology and 

biological hierarchies despite measurement uncertainties. bioRxiv 2021.03.09.434578. 

https://doi.org/10.1101/2021.03.09.434578 

Pricope, N.G., Husak, G., Lopez-Carr, D., Funk, C., Michaelsen, J., 2013. The climate-population nexus 

in the East African Horn: Emerging degradation trends in rangeland and pastoral livelihood zones. 

Glob. Environ. Chang. 23, 1525–1541. https://doi.org/10.1016/J.GLOENVCHA.2013.10.002 

Process-based parallelism [WWW Document], 2022. URL 

https://billiard.readthedocs.io/en/latest/library/multiprocessing.html (accessed 5.24.22). 

Quan, X., He, B., Li, X., 2015. A Bayesian Network-Based Method to Alleviate the Ill-Posed Inverse 

Problem: A Case Study on Leaf Area Index and Canopy Water Content Retrieval. IEEE Trans. 

Geosci. Remote Sens. 53, 6507–6517. https://doi.org/10.1109/TGRS.2015.2442999 

Rivera, J.P., Verrelst, J., Gómez-Dans, J., Muñoz-Marí, J., Moreno, J., Camps-Valls, G., 2015. An 

Emulator Toolbox to Approximate Radiative Transfer Models with Statistical Learning. Remote 

Sens. 2015, Vol. 7, Pages 9347-9370 7, 9347–9370. https://doi.org/10.3390/RS70709347 

Scartazza, A., Di Baccio, D., Bertolotto, P., Gavrichkova, O., Matteucci, G., 2016. Investigating the 

European beech (Fagus sylvatica L.) leaf characteristics along the vertical canopy profile: Leaf 

structure, photosynthetic capacity, light energy dissipation and photoprotection mechanisms. Tree 

Physiol. 36, 1060–1076. https://doi.org/10.1093/treephys/tpw038 

Schaepman, M.E., Dangel, S., Kneubühler, M., Schläpfer, D., 2002. Quantitative Field Spectroscopic 

Measurement Instrumentation and Techniques, in: EPFS Workshop on Field Spectrometry. pp. 1–



 

40 
 

12. 

Shrestha, M., Helder, D., Christopherson, J., 2021. DLR earth sensing imaging spectrometer (Desis) 

level 1 product evaluation using radcalnet measurements. Remote Sens. 13. 

https://doi.org/10.3390/rs13122420 

Stamnes, K., Tsay, S.-C., Wiscombe, W., Jayaweera, K., 1988. Numerically stable algorithm for 

discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. 

Appl. Opt. 27, 2502. https://doi.org/10.1364/ao.27.002502 

Sterckx, S., Brown, I., Kääb, A., Krol, M., Morrow, R., Veefkind, P., Boersma, K.F., De Mazière, M., 

Fox, N., Thorne, P., 2020. Towards a European Cal/Val service for earth observation. Int. J. 

Remote Sens. 41, 4496–4511. https://doi.org/10.1080/01431161.2020.1718240 

Sutter, F., Waldner, P., 2019. Laegeren research site [WWW Document]. URL 

https://www.envidat.ch/dataset/laegeren-research-site (accessed 6.22.21). 

Thimonier Rickenmann, A., Schleppi, P., 2011. Blattflächenindex - WSL [WWW Document]. URL 

https://www.wsl.ch/de/ueber-die-wsl/versuchsanlagen-und-labors/lwf-demoflaeche/20-

vegetation-und-biodiversitaet/24-lai.html (accessed 4.5.22). 

Thompson, D.R., Guanter, L., Berk, A., Gao, B.C., Richter, R., Schläpfer, D., Thome, K.J., 2019. 

Retrieval of Atmospheric Parameters and Surface Reflectance from Visible and Shortwave 

Infrared Imaging Spectroscopy Data. Surv. Geophys. 40, 333–360. 

Van Der Tol, C., Verhoef, W., Timmermans, J., Verhoef, A., Su, Z., 2009. An integrated model of soil-

canopy spectral radiances, photosynthesis, fluorescence, temperature and energy balance. 

Biogeosciences 6, 3109–3129. https://doi.org/10.5194/BG-6-3109-2009 

Verhoef, W., Bach, H., 2003. Remote sensing data assimilation using coupled radiative transfer models. 

Phys. Chem. Earth, Parts A/B/C 28, 3–13. https://doi.org/10.1016/S1474-7065(03)00003-2 

Verrelst, J., Caicedo, J.P.R., Vicent, J., Pallarés, P.M., Moreno, J., 2019. Approximating Empirical 

Surface Reflectance Data through Emulation: Opportunities for Synthetic Scene Generation. 

Remote Sens. 2019, Vol. 11, Page 157 11, 157. https://doi.org/10.3390/RS11020157 

Verrelst, J., Rivera Caicedo, J.P., Muñoz-Marí, J., Camps-Valls, G., Moreno, J., 2017. SCOPE-Based 

Emulators for Fast Generation of Synthetic Canopy Reflectance and Sun-Induced Fluorescence 

Spectra. Remote Sens. 2017, Vol. 9, Page 927 9, 927. https://doi.org/10.3390/RS9090927 

Verrelst, J., Rivera, J.P., 2021. ARTMO v.3.29. 

Walther, G.R., 2010. Community and ecosystem responses to recent climate change. Philos. Trans. R. 

Soc. B Biol. Sci. 365, 2019–2024. https://doi.org/10.1098/RSTB.2010.0021 



 

41 
 

Wang, D., Morton, D., Masek, J., Wu, A., Nagol, J., Xiong, X., Levy, R., Vermote, E., Wolfe, R., 2012. 

Impact of sensor degradation on the MODIS NDVI time series. Remote Sens. Environ. 119, 55–

61. https://doi.org/10.1016/J.RSE.2011.12.001 

Wang, J., Rich, P.M., Price, K.P., Kettle, W.D., 2010. Relations between NDVI and tree productivity 

in the central Great Plains. 25, 3127–3138. https://doi.org/10.1080/0143116032000160499 

Wang, Z., Zhao, Y., Wang, B., 2018. A bibliometric analysis of climate change adaptation based on 

massive research literature data. J. Clean. Prod. 199, 1072–1082. 

https://doi.org/10.1016/J.JCLEPRO.2018.06.183 

Yang, P., Prikaziuk, E., Verhoef, W., Van Der Tol, C., 2021. SCOPE 2.0: A model to simulate vegetated 

land surface fluxes and satellite signals. Geosci. Model Dev. 14, 4697–4712. 

https://doi.org/10.5194/gmd-14-4697-2021 

Zebner, H., Zambelli, P., Taylor, S., Obinna Nwaogaidu, S., Michelson, T., Little, J., Lahmeyer, I., 

2014. Pysolar [WWW Document]. URL https://pysolar.readthedocs.io/en/latest/ (accessed 

5.24.22). 

Zhou, L., Tucker, C.J., Kaufmann, R.K., Slayback, D., Shabanov, N. V., Myneni, R.B., 2001. Variations 

in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999. 

J. Geophys. Res. Atmos. 106, 20069–20083. https://doi.org/10.1029/2000JD000115 

 

  



 

42 
 

Acknowledgements 
I would like to thank Alex for consulting and supervising me during the thesis. The countless 

meetings helped to keep on the right track and were a great motivator as well as an excellent source of 

ideas and approaches to solving complicated problems. His comments on my drafts improved my 

writing style overall. I thank Veronika for her advice on radiative transfer. Her experience with 

libRadtran and SCOPE helped a lot. A big thank you goes to Bastian who mentored me during the 

thesis and was always willing to help whether it was conceptual coding or proofreading. Last but not 

least I would like to thank my family and friends for their advice and company throughout the 

creation of this work. 

  




