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Abstract 
 
As carsharing services are a relatively new mobility mode, most operators tend to establish 
stations in any available location or based on experience, especially in the beginning, as they 
do not possess the necessary means or power to impose themselves. In order to expand and 
increase their attractiveness and accessibility, carsharing services have to develop a strategy to 
implement when choosing locations for future stations. Recent literature on optimising 
carsharing networks tends to concentrate on the new driving modes developed, one-way and 
free-floating, even if the round-trip driving mode and the interactions it has are not yet 
completely understood. The present project is a case study of the carsharing operator Mobility 
in Switzerland that aimed to identify the factors that drive carsharing performance and discover 
new locations for future return carsharing stations. Significant carsharing drivers were selected 
by using multiple regression models. A multi-criteria decision analysis was then carried out to 
integrate the significant factors, and suitable locations for future stations were established. The 
analytical hierarchical process was used to weigh the importance of the factors. Subsequently, 
areas of interest for new carsharing stations were proposed by allocating demand to suitable 
locations through location-allocation models. The research findings showed that the success of 
carsharing stations is driven by different factors depending on the level of urbanisation of their 
location. The presence of existing members and shopping centres, as well as the station being 
close to a train station, were among the most important factors identified. Although urban areas 
had larger concentrations of high suitability scores, the study revealed that suburban and rural 
areas also exhibit moderate to high suitability scores for carsharing. Thus, when allocating 
demand, the model suggests that carsharing operators should concentrate on suburban and rural 
areas where the network is scarce, and the demand is not met. Despite from being highly 
suitable, urban areas had a considerable number of already existing stations that covered the 
demand. The present work can serve as a base for carsharing operators to build or expand their 
network while minimising the risk of placing stations with low operational efficiency.  
 
 
Keywords: carsharing utilisation drivers, return driving mode, multi-criteria decision analysis, 
location-allocation models, Geographic Information Systems  
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1. Introduction 
 
1.1   Background and Motivation  
 
In the last couple of years, traffic volumes have become a great disruptor for people living in 
urban agglomerations. Poorly designed infrastructure, together with inefficient public transport 
systems and the increased attractiveness and accessibility towards private vehicle ownership 
have critical implications, such as atmospheric and noise pollution, traffic congestion and 
excessive occupation of public land by cars. In Europe, transport is accountable for 27% of the 
total greenhouse gas emissions, 72% of which comes from road transportation (European 
Environment Agency, 2019). Moreover, private vehicles are responsible for as much as 44% 
of the total greenhouse gas emissions from the road transport (European Environment Agency, 
2019). Considering a different perspective, in the most congested cities globally, a person can 
lose up to 130 hours per year waiting in traffic (INRIX, 2020). Although specialists and 
policymakers have thoroughly discussed these impacts, unfortunately, the solutions 
implemented to reverse these trends have had no significant impact so far. 
 
Altering or building new infrastructure to accommodate the high number of vehicles on the 
road can be very time-consuming, requires an abundance of resources and some cities cannot 
sustain a change like this. For example, old historical cities that have crowded city centres with 
narrow and complex road networks cannot be adapted to the increasing volume of traffic, nor 
are they suitable for it. Private vehicles are the leading actor when it comes to traffic congestion, 
parking pressure and pollution. The principal asset of a private car is that it is always available, 
does not need any scheduling, personal belongings can be stored inside and can be used to 
transport goods (Neumann, 2021). Unlike public transport, where station locations, pre-settled 
routes and timetables constrain people, a private vehicle gives individuals all the freedom one 
could want. Seeking an alternative sustainable mobility solution (Baptista et al., 2014) and 
wishing to preserve part of the freedom offered by a private vehicle gave rise to the idea of 
carsharing. 
 
The concept behind carsharing is that multiple users can share between themselves a fleet of 
cars. As opposed to car rental, carsharing has the advantage of being more flexible, more 
straightforward, and for short periods of time, often being charged by the hour and by 
kilometre. There are two different types of carsharing (Figure 1.1): business-to-peer or peer-
to-peer. Business-to-peer carsharing means that an organisation has a fleet of cars and makes 
them available for customers. It can have three different driving types: return, one-way and 
free-floating. Return and one-way are station-based driving modes where the customer must 
either return the car to its original station or drive it to a station of their choosing. For the free-
floating driving mode cars can be picked up and dropped off at arbitrary locations in a 
designated area. For peer-to-peer carsharing, there exist platforms (such as Turo or Getaround) 
where individuals can advertise their personal car for other people to reserve and drive, without 
involving an organisation. 
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Figure 1.1: Classification of carsharing driving modes. 
 
Carsharing helps the environment by lowering greenhouse gas (GHG) emissions produced by 
road transportation sector, through minimising the number of vehicle kilometres travelled 
(VKT) and by removing vehicles off the road. A study made by Nijland and van Meerkerk 
(2017) in the Netherlands shows that carsharing members are responsible for around 240-390 
fewer kilograms of CO2 emitted per person per year. Another study by Martin and Shaheen 
(2011), done in North America, finds a reduction of 580 kg GHG per year and household. 
Moreover, the vehicles that operators have in their fleet are newer vehicles with better 
technology than the average private cars on the road and thus, they consume less fuel (Martin 
and Shaheen, 2011). After joining a carsharing programme, different case studies have shown 
that a share of customers gets rid of their cars: ranging between 10% and 29% (Katzev, 2003; 
Lane, 2005; Millard-Ball et al., 2005; Cervero et al., 2007); with an even more significant 
proportion forgoing buying a new car due to carsharing (Katzev, 2003; Millard-Ball et al., 
2005; Nijland and van Meerkerk, 2017). In terms of VKT, because driving a shared vehicle 
requires reservation and planning, customers are more inclined to drive only when it is 
necessary, thus reducing its percentage by 20-25% per year (Martin and Shaheen, 2011; Nijland 
and van Meerkerk, 2017). 
 
One should also consider the emissions and VKT added through carsharing by people who do 
not own a vehicle. However, since carsharing removes vehicles from the roads, the emissions 
and VKT reductions counterbalance the increase by people who would typically not have 
access to a car (Martin and Shaheen, 2011). Cohen et al. (2008) state that in North America, 
each carsharing vehicle removes an average of 15 privately owned cars from the community. 
In addition, a study done in Europe reveals that, on average, a carsharing vehicle replaces four 
to eight private cars (Loose, 2010). 
 
Besides environmental benefits, carsharing also has social, economic and health impacts. 
Firstly, it helps increase equitable access to vehicles for people who cannot afford a car of their 
own (Litman, 2000). Secondly, it helps people save money by not supporting the fixed and 
maintenance costs associated with a private vehicle (Litman, 2000; Lane, 2005). Lastly, 
carsharing increases physical activity by making customers integrate other active mobility 
modes, such as walking and biking, which in turn leads to less pollution and thus less impact 
on their respiratory and cardiovascular systems (Kent, 2014). 
 
 
 

Carsharing 

Business-to-peer Peer-to-peer 

Station based Free-floating 

Return One-way 
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1.2   Mobility Cooperative 
 
The Mobility Cooperative (short: Mobility) is the largest business-to-peer carsharing scheme 
in Switzerland, with 1’530 stations throughout the country and 3’120 vehicles available for any 
occasion. In terms of spatial coverage, Mobility is present in 100% of the Swiss municipalities 
with a population over 10’000 (Mobility Cooperative, 2019). Each Mobility car replaces at 
least 11 privately owned vehicles, and the fleet consumes on average 20% less fuel than all the 
new vehicles sold in Switzerland (Mobility Cooperative, 2019). Thus, Mobility saves 31’000 
tonnes of CO2 each year and keeps free 54’000 parking spaces (Mobility Cooperative, 2019). 
Mobility customers manage to save more than 4’000 CHF/year because they are carsharing, 
compared to privately owned cars (Mobility Cooperative, 2019). The renting process is easy, 
fast, entirely online, and tailored to one’s needs using their app or online portal. The cooperative 
offers the following driving modes: return and one-way. The one-way driving mode is limited 
to specific stations, meaning not all stations offer this option, but all stations offer the return 
driving mode. Having a highly developed market that can provide many insights for carsharing 
expansion, Mobility Cooperative makes the perfect study case for this project and a strong 
advantage to test the feasibility of the work. 
 
1.3   Aim of this Thesis  
 
Although Mobility Cooperative has a strong presence in Switzerland, their distribution of 
carsharing stations appears like the network was developed in a rather opportunistic way, that 
is, there are a lot of stations present in dense urban agglomerations and very few stations in 
smaller municipalities (Figure 1.2). Therefore, they are present but maybe not sufficient. 
Naturally, Mobility aims to expand and reach more people, but this requires, besides market 
knowledge and instinct, a strategy. Finding the best locations to place carsharing stations 
depends on different combinations of various parameters such as the socio-economic 
parameters for a specific area, accessibility to public transport and available space for a station. 
Hence, this study will seek to propose optimal locations for future return stations based on a 
modelled demand and a combination of key features that a successful station should have. This 
project aims to look at the already existing Mobility stations, highlight the factors that make a 
station successful, and search for new places within Switzerland with the same characteristics 
to expand the network and place new stations. The focus of this master’s thesis will be on the 
return driving mode and the stations that offer this service, as this is the widest and most 
developed service Mobility offers. 
 

 
Figure 1.2: Difference in return carsharing stations distribution between an urban area and a smaller 
municipality. In the map on the left there is the city of Zürich and on the right Worb municipality in 
canton Bern. 
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1.4   Structure of this Thesis  
 
This work is structured as follows. Chapter 2 provides an overview of the related work, 
presenting important background information on supply network optimisation and facility 
location problems along with summarising the most important themes in the carsharing 
literature field. Additionally, studies regarding success factors of carsharing station locations 
are outlined and interesting findings along with suitable methods are highlighted. Chapter 3 
presents the research questions and hypotheses of this project. In Chapter 4, the datasets used 
for the project along with their data sources will be discussed. Chapter 5 introduces and 
explains the different methods used to detect suitable locations for new carsharing stations, 
starting from the regression analysis to the multi-criteria analysis and, lastly, the location-
allocation models. The results of these three individual methodological parts, as well as the 
final optimal locations found, are presented in Chapter 6. Chapter 7 puts the findings into 
perspective, discussing the results with respect to the research questions and hypotheses. 
Furthermore, possible points for improvements are discussed. Finally, the most important 
results and findings are highlighted in Chapter 8, together with the limitations of this study and 
ideas for future work.  
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2. Background and Related Research  
 
Within this chapter, a broad overview of the state of the art about research in carsharing is 
given. First, basic principles of supply optimisation and facility location problems are 
introduced (Section 2.1). Subsequently, a closer look will be taken at carsharing research 
(Section 2.2) and studies on optimising carsharing networks will be presented, along with the 
methods used (Section 2.3). Furthermore, socio-demographic and built environment factors 
that drive carsharing utilisation will be introduced (Section 2.4). Lastly, the research gaps that 
this study aims to fill will be presented (Section 2.5).   
 
2.1   Background 
 
2.1.1   Supply Optimisation 
In today's world, the service industry is a crucial player for the economy, contributing more to 
the GDP than the manufacturing industries (Baltacioglu et al., 2007). For example, buying a 
car refers to the manufacturing industries, while using carsharing, the service to drive a car, 
refers to the service industry. Within this setting, supply and demand are the two forces that 
are driving the economy. Demand is the need customers have for a good or service. Supply is 
the total amount of a goods or services made available for customers. Having a higher demand 
than supply leads to a shortage of that good or service, while the opposite leads to a surplus. 
An equilibrium point, where the two are balanced, is desired but hard to attain as these entities 
dynamically change all the time, and with respect to them, so does the equilibrium point. 
Nonetheless, adjusting the supply according to the demand is very important for a successful 
business.   
 
A supply chain consists of the route from the earliest developments to the end-user that goods 
and services need to take (Papageorgiou, 2009). Managing correctly and efficient the supply 
chain is very important to businesses as it can help them attain certain advantages such as 
reduced costs or improved service quality (Baltacioglu et al., 2007). If a business does not give 
enough attention to its supply chain, this can result in a multitude of problems that ultimately 
would affect the delivery of goods or services to the customers. Supply chain optimisation 
focuses on the changes needed in the design phase of an existing chain that improve its 
performance (Papageorgiou, 2009).  Examples of these adjustments can be where to locate the 
warehouses, where and how to adjust the stock or personnel taking into consideration the 
demand and how to minimise operation costs. Melo et al., (2009) conclude in their review that 
facility location is a decisive characteristic in the supply chain network. 
 
2.1.2   Facility Location 
Location modelling is a field addressed by operations research, concerned with searching for 
the best location for any type of facility, such as public buildings, retail stores, hospitals, bus 
stops, carsharing stations, power plants, and more. Depending on the application for which 
location modelling is used or the goal set, there are different variables that can be taken into 
consideration when wanting to find optimal locations for new facilities, such as cost, service 
area or market coverage (Bowling et al., 2011).  
 
Needing to place a set of facilities in order to serve a set of customers is a problem studied 
extensively in the literature and is commonly referred to as the facility location problem (FLP) 
(Melo et al., 2009). Three components define facility location problems: customers, facilities 
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that need to be located, and the distance, time or cost between the customers and the facilities. 
Facility location problems can be very different based on what distance function is applied 
between customers and the facilities that need to be located, based on the number of facilities 
that need to be located and if the capacity of the facilities is taken into consideration and, based 
on the objective of the problem, if the facilities need to be reached by the customers or if the 
customers need to be reached from the facility (Farahani and Hekmatfar, 2009). Therefore, the 
resulting location model depends on the different decisions made, the specific application for 
which it is used and the inclusion or not of specific indices (Farahani and Hekmatfar, 2009).   
 
Almost all location models can be categorised into four general classes (Figure 2.1): median, 
covering, capacitated, or competitive (Church, 1999). The median models aim to minimise the 
total cost between demand points and the facilities to which they are assigned to (Church, 
1999). In the covering models, each facility has a pre-determined catchment area, and so the 
facilities must be placed such that the catchment area covers all or most of the demand (Church, 
1999). When the capacity of each potential facility is considered (i.e., the maximum demand it 
can supply) the problem is called the capacitated facility location problem. Otherwise, if the 
capacity is not of importance, we have the simple or the uncapacitated facility location 
problem. As markets and businesses evolve, more complex models are being developed, such 
as the competitive facility location problem, where competition and interaction between the 
businesses is considered when placing new facilities (Church, 1999; Aboolian et al., 2007). 
Moreover, other models that, for example, place facilities away from demand nodes (i.e., 
prisons, power plants, solid waste facilities) have been developed (Current et al., 2002). 
 
 

 
Figure 2.1: Representation of the four general facility location problems with a) median class, b) 
covering class, c) capacitated class and d) competitive class. The squares represent the facilities to which 
demand is allocated. The circles represent the demand points that need to be allocated to a facility, 
having the filled circles as demand points that were allocated to a facility and the hollow circles demand 
points that were not allocated to a facility. A line from a demand point to a facility means that the 
demand point was allocated to that facility. The yellow area around the facilities symbolises the service 
area of the facility and means that only demand points inside the service area can be served by that 
facility. For the fourth picture, lower right corner, the two different colours represent two facilities from 
different competitors. (from ESRI, 2020a). 
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The applications of facility location models are vast and can be found in a variety of industries. 
One example is the healthcare industry, where these models help place hospitals in optimal 
locations such that the whole population is within a reasonable distance from at least one 
facility (Ahmadi-Javid et al., 2017). The same principle can be applied to emergency services 
like fire stations (Tali et al., 2017).  Furthermore, facility location models can also be used for 
placing food delivery restaurants that have a fixed coverage area and need to cover as much 
demand as possible in their catchment (Current et al., 2002) or placing warehouses for a 
distribution business such that the average travel time is minimised (Jayaraman, 1998). Other 
examples can include placing bus stops, retail stores, public buildings, power plants, or waste 
management sites (Current et al., 2002; Erkut et al., 2008; Serra and Marianov, 2011; Delmelle 
et al., 2012).  
 
Geographic Information Systems (GIS) play an essential role in location modelling and solving 
the FLP by aiding with data structure and integration, aggregation, analysis, and visualisation 
(Church, 1999). Due to the multiple criteria that need to be integrated and different decisions 
that need to be taken when solving a FLP, this problem is often considered a multiple-criteria 
decision problem (Bowling et al., 2011). Thus, location-allocation models and multi-criteria 
decision analysis (MCDA) are two of the methods that have been extensively used in site 
selection for facility planning. With the help of MCDA, possible facility locations that satisfy 
a given set of spatially explicit criteria can be found. However, this method does not actually 
place the facilities, nor does it consider the travel distance or time from demand locations to 
supply locations. Location-allocation models allocate demand locations to supply locations, 
based on the facility location problem that needs to be solved, and do take into account the 
travel component between locations, thus finding optimal locations for facilities. Hence, 
MCDA can be used to reduce the possible search space of the facility placement and determine 
candidate locations for location-allocation models.  
  
GIS applications are well documented in areas of literature such as site selection for hospitals, 
fire stations, retail stores, and public facilities planning (Goodchild, 1984; Yeh and Chow, 
1996; Vahidnia et al., 2009; Gorsevski et al., 2012; Dehe and Bamford, 2015). For instance, 
Rikalovic et al. (2014) developed a decision-making process that combines GIS and MCDA 
for industrial site selection. Their process consists of 10 steps that generate and assess 
alternatives to find the optimal locations and assure the success of the industrial system. The 
result they generate is a suitability map of recommended sites and a list of sites ranked 
according to their scores. Based on these, a decision can be made as to where to place the 
industrial site. Alternatively, Zhao et al. (2017) use location-allocation models to plan a 
network of emergency shelters for urban disaster resilience, with the goal of minimising the 
total evacuation distance. In their method, they assume that the population of a given 
community is concentrated at its central point and take that as the demand points for the 
analysis. Moreover, they define a maximum distance between each community and its assigned 
shelter, as the shelters need to be able to be reached in a short time, and also define a shelter’s 
maximum capacity, to avoid crowded and unsuitable shelters. Similarly, Uddin and Warnitchai 
(2020) and Tali et al. (2020) are both optimising fire station networks through the use of GIS 
and location-allocation models. Moreover, Uddin and Warnitchai (2020) combine these 
methods with MCDA too. In their study, they first selected the criteria based on literature and 
experts’ opinions. Then they integrated all constraints in order to find available spaces for 
development. The optimal locations were selected based on site suitability for construction of 
new fire stations criteria, fire protection assessment criteria and existing demand in the service 
area. Sánchez-Lozano et al. (2013) combine GIS and MCDA to find the optimal placement for 
solar power plants in southeast Spain. According to them, this combination of tools is beneficial 
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for cases involving different types of criteria, such as restrictive criteria and criteria that need 
to be weighted based on their importance to the goal.   
 
2.2   Carsharing Research 
 
The field of carsharing research is in continuous development and change as it is a relatively 
novel idea. There are three main groups in which the existing research in this field can be 
categorised: (1) demand and supply analyses; (2) impact of carsharing; and (3) service 
optimisation. The first category focuses on building profiles of the existing carsharing 
customers (Becker et al., 2016; Luan et al., 2018), identifying potential demand based on those 
profiles (Ciari et al., 2016; Juschten et al., 2019), analysing the relationships between supply 
and demand (Balac et al., 2015; Chen et al., 2018), and identifying factors that impact 
carsharing usage (Millard-Ball et al., 2005; Celsor and Millard-Ball, 2007; Stillwater et al., 
2009; Kang et al., 2016; Tiejiao and Agrawal Weinstein, 2016; Willing et al., 2017). The 
second category examines the impacts carsharing has and their magnitude on users and the 
environment (Litman, 2000; Martin and Shaheen, 2011; Sioui et al., 2012; Baptista et al., 2014; 
Zhou et al., 2020; Roblek et al., 2021). Underlying themes of this category are studies on the 
changed travel behaviour of members; the consequences carsharing has on vehicle ownership, 
and vehicle kilometres travelled (VKT); studies on the environmental benefits, the degree of 
sustainability of carsharing and GHG emissions associated; and lastly, studies regarding the 
health and social impact of this travel mode. The third category concentrates on how carsharing 
networks can be made more efficient and optimal (Uesugi et al., 2007; Correia and Antunes, 
2012; Kumar and Bierlaire, 2012; Gavalas et al., 2016; Cheng et al., 2019). The interest in this 
area increased recently as driving modes, such as one-way and free-floating were developed 
and gained popularity. New research topics, such as relocation algorithms to solve the supply 
and demand imbalance are the focus of these studies.  
 
2.3   Optimisation of carsharing networks  
 
The central argument as to why carsharing is important and feasible is that the number of cars 
required in order to satisfy the needs of a group of individuals is less than each individual 
having his own private vehicle (Kumar and Bierlaire, 2012). Therefore, through carsharing less 
vehicles can be used to accomplish the same number of tasks. In fact, individuals generally 
actively use their private cars for only a small portion of the day (Kumar and Bierlaire, 2012), 
thus, making sharing a single vehicle between several individuals with different schedules 
practical.  
  
In order to convince the population that carsharing is a feasible alternative to private vehicle 
ownership, operators must highlight the advantages that this service has together with trying to 
attain the advantages that private vehicles have. Carsharing operators must adjust their supply 
networks to make sure the stations and vehicles are accessible for users. The two definitory 
aspects that can influence the attractiveness of carsharing systems are: (1) the location of 
stations and (2) the availability of vehicles at stations (Boyaci et al., 2015). Moreover, the 
supply of cars must be adjusted, taking into consideration demand. When analysing the demand 
for carsharing, besides taking into consideration the spatial and temporal distribution of the 
population, one has to also consider the purpose for which carsharing is used (Willing et al., 
2017).   
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As the one-way and free-floating driving modes become more and more popular in the 
carsharing business, a vast portion of the literature concerning optimisation concentrates on 
these modes. The fact that the cars do not have to be returned at a specific location unfolds a 
number of problems, such as, having the supply unequally distributed because users shift 
vehicles in a certain area and operators do not have a good relocation strategy. Thus, predicting 
movement patterns to adjust the supply for each individual location, making sure no station is 
left too empty or too full, looking for the best locations for one-way stations and designated 
areas for free-floating vehicles are only just a couple of the main themes in carsharing studies 
(Correia and Antunes, 2012; Boyaci et al., 2015; Willing et al., 2017; Chen et al., 2018; Chen 
et al., 2019; Cheng et al., 2019).  
 
The majority of the study cases aiming to optimise carsharing networks and propose future 
stations use different types of mathematical/statistical models and methods, such as multiple 
linear regression models, kernel density estimation, and generalised linear models (Kumar and 
Bierlaire, 2012; Willing et al., 2017; Chen et al., 2018; Cheng et al., 2019; Juschten et al., 
2019). Besides these, Balac et al., (2015) use multi-agent simulation tools to investigate the 
relationship between the supply side on the demand side of carsharing in order to provide 
optimisation advice for the operators.  
 
Some carsharing studies combine statistical methods with GIS in order to reach optimised 
networks. For example, Celsor and Millard-Ball (2007) use GIS to integrate different data 
sources and determine a set of characteristics that a neighbourhood needs to have so that 
carsharing is likely to flourish within it. They evaluate where carsharing works in terms of the 
demographic characteristics of the customers but also the characteristics of the neighbourhood 
as a whole. A similar case study using statistical analysis and spatial analysis was conducted 
by Stillwater et al. (2009) on return stations for a US carsharing operator. Their study is 
particularly interested in the relationship between the success of carsharing stations and built 
environment measures, including household density, sidewalk width, roads characteristics, and 
transit services, such as bus routes. Additionally, in order to help urban communities in 
California to identify new locations where carsharing will be successful, Tiejiao and Agrawal 
Weinstein (2016) built a GIS-based model that calculates a “carshare suitability score” for 
every neighbourhood within a city, taking into account both socio-demographic and urban form 
factors. de Oliveira Lage et al. (2019) use GIS to apply location-allocation models in order to 
determine the best place to settle carsharing stations in the City of Sao Paulo, Brazil.  
 
Other vehicle sharing services 
Apart from the literature on carsharing, studies regarding the analysis of bike sharing networks 
and stations are also worth mentioning. Similar to carsharing, researchers have developed 
methods to optimise bike sharing networks using GIS (Rybarczyk and Wu, 2010; Vogel et al., 
2011; García-Palomares et al., 2012). García-Palomares et al. (2012), for example, use 
location-allocation models to determine optimal locations for bike-sharing programs and their 
capacity based on potential demand for trips. Likewise, Vogel et al. (2011) use geographical 
information technology and data mining methods to propose new station locations based on 
usage patterns of already existing stations and their locations. Although not for bike sharing 
but for bike infrastructure, Larsen et al. (2013) create a GIS-based grid-cell model that ranks 
all the cells in the study area, with high ranking cells being locations where new bicycle 
infrastructure is most needed.  
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2.4   Success Factors of Carsharing Station Locations 
 
The location of carsharing stations is believed to have a considerable impact on their 
performance (Kumar and Bierlaire, 2012), and thus, it is important to understand and quantify 
what makes a location more successful. As mentioned before, a decent part of carsharing 
literature gives attention to the characteristics of the locations where service usage is high. By 
developing a list of such characteristics, locations where carsharing would presumably flourish 
can be found and thus networks can become more efficient and optimised.  
 
The ‘attractiveness’ of different station locations is based on a combination of various criteria. 
There are two categories in which these criteria can fall: socio-demographic factors or built 
environment factors. Several studies have explored how these categories are correlated with 
carsharing usage. The next two subsections briefly summarise the findings regarding this 
correlation for each factor.  
 
2.4.1   Socio-demographic factors  
The literature has explored quite extensively how socio-demographic factors correlate with 
carsharing utilisation (Table 2.1).  
 
 

Table 2.1: Socio-demographic factors linked with carsharing utilisation. 
Factor  Literature   
Age Millard-Ball et al. (2005);Ciari et al. (2016); Luan et al. 

(2018); Juschten et al. (2019) 
Income J Millard-Ball et al. (2005); Kumar and Bierlaire (2012); 

Luan et al.  (2018); Juschten et al. (2019) 
Education  Millard-Ball et al. (2005); Celsor and Millard-Ball 

(2007); Kumar and Bierlaire (2012); Luan et al. (2018); 
Juschten et al. (2019) 

Household Size  Millard-Ball et al. (2005); Celsor and Millard-Ball 
(2007); Luan et al. (2018) 

Vehicle Ownership  Millard-Ball et al. (2005); Celsor and Millard-Ball 
(2007); Stillwater et al. (2009); Luan et al. (2018); 
Juschten et al. (2019) 

Population Density  Millard-Ball et al. (2005); Stillwater et al. (2009); 
Correia and Antunes (2012); Kumar and Bierlaire (2012) 

Gender Millard-Ball et al. (2005); Kumar and Bierlaire (2012); 
Luan et al. (2018) 

Public Transport Subscription Ownership Ciari et al. (2016); Juschten et al. (2019) 
Bike Ownership  Juschten et al. (2019) 
Commute Mode  Millard-Ball et al. (2005) 

 
 
Age 
Although each study analysed and tested different age groups, almost all of them concluded 
that younger people are more likely to use carsharing services than older people (Millard-Ball 
et al., 2005; Ciari et al., 2016; Luan et al., 2018; Juschten et al., 2019;). The approximate range 
of 25-45 years old is found to correlate the strongest (Millard-Ball et al., 2005; Luan et al., 
2018), having one study stating that the probability of using carsharing reaches maximum at 
the age of 35 years (Juschten et al., 2019) and another study stating that people under 30 years 
old and people above 60 years old are less likely to be carsharing members (Ciari et al., 2016).  
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Income  
Many studies have concluded that carsharing users are typically from above-average income 
households (Millard-Ball et al., 2005; Kumar and Bierlaire, 2012; Luan et al., 2018; Juschten 
et al., 2019). 
 
Level of Education  
Surveying existing members of carsharing schemes, several studies have concluded that 
carsharing users generally have a form of higher education completed, having obtained a 
bachelor’s degree or higher (Millard-Ball et al., 2005; Celsor and Millard-Ball, 2007; Kumar 
and Bierlaire, 2012; Luan et al., 2018; Juschten et al., 2019). 
 
Even though these socio-demographic factors correlated strongly with carsharing usage, it must 
be taken into consideration that these characteristics cannot be extended to describe the 
neighbourhoods where carsharing is present (Millard-Ball et al., 2005). For example, in the 
study of Millard-Ball et al. (2005), 83% of the carsharing members surveyed had a Bachelor’s 
or higher degree, but only 55% of residents living close to carsharing stations had a Bachelor's 
degree. This difference is a consequence of the small proportion of residents that participate in 
carsharing schemes, and thus being a small sample, it cannot be representative of the whole 
population (Millard-Ball et al., 2005). 
 
Household Size 
Several studies concluded that carsharing users typically come from small households (Millard-
Ball et al., 2005; Celsor and Millard-Ball, 2007; Luan et al., 2018). The most common type of 
household amongst existing members is the one-person household (Millard-Ball et al., 2005). 
This is because, as the number of people in a household increases, the likelihood of being 
carsharing users decreases.  
 
Vehicle Ownership  
Vehicle ownership is one of the factors most strongly correlated with carsharing usage 
(Millard-Ball et al., 2005; Stillwater et al., 2009). Studies uniformly agreed that 
households/people with low vehicle ownership rates (zero or one vehicle) are more likely to 
use carsharing services (Millard-Ball et al., 2005; Celsor and Millard-Ball, 2007; Stillwater et 
al., 2009; Luan et al., 2018; Juschten et al., 2019). Although this makes sense because a person 
that already owns a vehicle will not need a carsharing service (Ciari et al., 2016), there are 
arguments supporting that car availability does not have a purely negative correlation with 
carsharing usage. The study of Ciari et al. (2016) found that having a car available occasionally 
was a stronger predictor than never having a car available because individuals without access 
to a car are more probable to live a car-free life.  
 
Population Density  
There are conflicting opinions in the literature regarding the importance of population density 
on carsharing usage. While most studies agree that high population density brings a larger 
customer basis and correlates positively with high carsharing usage (Correia and Antunes, 
2012; Kumar and Bierlaire, 2012), some studies question its importance or find no correlation 
at all. Millard-Ball et al. (2005) suggest that residential density might not be a strong predictor 
for carsharing usage and that the relationship between the two is not as simple and 
straightforward. Their study explains that carsharing stations located in mixed-use centres or 
near rail stations, locations with low residential population but large daytime population, tend 
to have higher observed usage. Therefore, this suggests shifting the focus of the analysis from 
finding neighbourhoods that match the individual demographic characteristics of carsharing 
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members to giving more attention to the built environment factors of the neighbourhood that 
encourage carsharing (Stillwater et al., 2009).  
 
2.4.2   Built Environment Factors 
As with socio-demographic factors, studies have found links between built environment factors 
and carsharing success as well. All the built environment factors reviewed can be found in 
Table 2.2.  
 

Table 2.2: Built environment factors linked with carsharing usage. 
Factor  Literature   
Distance to Carsharing Station  Katzev (2003); Kumar and Bierlaire (2012); Ciari et 

al. (2016); Luan et al. (2018); 
Parking Pressure  Stillwater et al. (2009); Chen et al. (2018) 
Proximity to Transit Stops  Celsor and Millard-Ball (2007); Kumar and Bierlaire 

(2012); Chen et al. (2018); Luan et al. (2018) 
Intersection Density  Millard-Ball et al. (2005); Celsor and Millard-Ball 

(2007); Chen et al. (2018) 
Proximity to Points of Interest   Kumar and Bierlaire (2012); Wagner et al. (2016); 

Willing et al. (2017); Chen et al. (2018) 
Land-Use  Millard-Ball et al. (2005); Awasthi et al. (2007); 

Correia and Antunes (2012); Kang et al. (2016) 
Good Pedestrian and Bicycle Environment  Millard-Ball et al. (2005); Celsor and Millard-Ball 

(2007) 
 
 
Distance to Carsharing Station  
Case studies surveying existing members of carsharing schemes show that one essential aspect 
for users is the distance from their house or place of work to carsharing stations (Ciari et al., 
2016). Thus, accessibility to the station decreases as the distance to the station increases 
(Katzev, 2003; Ciari et al., 2016; Luan et al., 2018). Kumar and Bierlaire (2012) observed that 
58% of customers tend to use the closest carsharing station to their home, and 88% choose a 
station that is within walking distance.  
 
Parking Pressure  
As more space is allocated for public parking, it becomes easier and more convenient for people 
to use their own car and thus this generates more private vehicle trips. Public parking space 
was discovered to have a significantly negative impact on carsharing usage (Stillwater et al., 
2009; Chen et al., 2018). Neighbourhoods and cities where parking pressure already exists are 
more likely to be successful locations for carsharing stations as using this service would save 
people the time, effort, and money to find an empty parking spot. 
 
Proximity to transit stops  
As most of the carsharing users do not have a car always available, studies have found a strong 
correlation between the usage of carsharing stations and public transport locations, deeming it 
important for the two to be close to one another (Celsor and Millard-Ball, 2007; Kumar and 
Bierlaire 2012; Chen et al., 2018; Luan et al., 2018). Therefore, studies concluded that 
carsharing performance increases in the presence of  developed public transport systems (Luan 
et al., 2018). Locations where carsharing would flourish need to be locations where walking, 
biking and the use of the public transport system are realistic alternatives to private vehicles 
(Celsor and Millard-Ball, 2007). 
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Intersection Density  
As stated above, good pedestrian environments are crucial for the success of carsharing. 
Intersection density is considered a good indicator of pedestrian friendliness (Tiejiao and 
Agrawal Weinstein, 2016), with neighbourhoods with a higher intersection density being 
considered more walkable and thus attracting more carsharing users. Moreover, three studies 
found this factor to be correlated with neighbourhoods that have high carsharing use (Millard-
Ball et al., 2005; Celsor and Millard-Ball, 2007; Chen et al., 2018). 
 
Proximity to points of interest  
Carsharing stations that are close to points of interest (POIs), such as shopping centres, hotels, 
universities, medical services, attractions, and recreation spots were found to attract more 
customers and have a higher usage (Kumar and Bierlaire, 2012; Willing et al., 2017; Chen et 
al., 2018; Cheng et al., 2019). Studies are not consistent in testing the same categories of POIs, 
but those most often correlated with the success of carsharing stations are shopping centres, 
hotels, medical services, and universities. The correlation with POIs is strongly related to one 
of the most influential parts of the carsharing demand: trip purpose (Loose, 2010; Becker et al., 
2016; Willing et al., 2017). Thus, locations with a high density of amenities that drivers want 
to reach are naturally more attractive for carsharing (Willing et al., 2017). In a study done by 
Wagner et al. (2016) in the City of Berlin, the authors prove to be successful in using POIs as 
a proxy for the attractiveness of various areas within the city and use them to explain the spatial 
variation in carsharing activity. 
 
Land-Use  
Land-use, or the mix of land-use, is another factor used to describe the build environment 
(Millard-Ball et al., 2005). This factor is taken into consideration in multiple carsharing studies 
and correlated with carsharing usage (Awasthi et al., 2007; Correia and Antunes, 2012; Kang 
et al., 2016). While some studies test the land-use types individually (i.e., % of residential use/ 
% of commercial use/ % of business use in a carsharing district) (Kang et al., 2016), some 
studies take into consideration the mix of land-use, as different trip purposes can be coupled 
together (Correia and Antunes, 2012). 
 
Indicators particularly strong in Switzerland  
Ciari et al. (2016) and Juschten et al. (2019) are two case studies that showcase specifically 
carsharing in Switzerland, highlighting the country’s specific demand and supply 
characteristics. In contrast with other countries where carsharing usage is correlated negatively 
with regional rail and long-distance travel (Stillwater et al., 2009), Mobility has a partnership 
with SBB (Schweizerische Bundesbahnen / Swiss Federal Railway), meaning that most train 
stations are hosts for carsharing stations, and carsharing is viewed as a complement to the rail 
system, serving as the last leg of the journey. 
 
Regarding the socio-demographic factors, studies have found that not only the proximity to 
public transit stops is important for carsharing usage, but also the public transport/rail 
subscription ownership is a strong predictor for new carsharing memberships (Balac et al., 
2015; Becker et al., 2016; Ciari et al., 2016; Juschten et al., 2019). Moreover, as Switzerland 
is a tri-lingual country, the study done by Ciari et al. (2016) observed that residents in the 
German-speaking part of the country are more inclined to be carsharing members, compared 
to the French and Italian speaking regions.  
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2.5   Research Gaps  
 
Following from the literature review presented above, three research gaps can be identified that 
this work is trying to fill.   
 
Firstly, as presented in Section 2.2 and Section 2.3, there is a lack of research and study cases 
looking into optimising return carsharing networks. The return driving mode is the first 
carsharing service that has been developed and is considered the easiest from an operational 
point of view. When compared to the newly developed modes, station-based one-way and free-
floating, the return driving mode does not require sophisticated algorithms for establishing 
relocating strategies and predicting how the demand patterns will change to ensure availability 
of cars. Moreover, Balac et al. (2015) found that the return carsharing mode still could have 
great potential if the service is optimised, despite the gaining popularity of one-way and free-
floating driving modes.  
 
Secondly, in the already scarce literature on optimising return stations networks there is a real 
absence of studies using a GIS-based approach. In most of the cases, GIS methods are used to 
discover and integrate different success factors associated with carsharing stations and their 
particular location (Celsor and Millard-Ball, 2007; Willing et al., 2017), or serve as a tool to 
map and present the results (Juschten et al., 2019). In fact, there is only a small portion of 
studies that use GIS as a spatial analysis tool (Stillwater et al., 2009; Tiejiao and Agrawal 
Weinstein, 2016; de Oliveira Lage et al., 2019). A GIS-based model is a powerful tool as it not 
only allows to map and better visualise the data and integrate different datasets from different 
sources but also model, explore, analyse spatial patterns and relationships inherent to the data. 
 
Thirdly, there is a need for creating clear frameworks in choosing new locations for carsharing 
services to develop an optimal and efficient station network. As carsharing services are a 
relatively new mobility mode, most carsharing organisations tend to establish stations in any 
available locations or based on experience, especially in the beginning, as they are not wealthy 
enough to place stations in desired locations or are unable to obtain approbations from public 
authorities (Kumar and Bierlaire, 2012; Ciari et al., 2016). This unplanned approach can have 
clear disadvantages as it can cause significant losses for the operators and can result in stations 
with low operational efficiency (Cheng et al., 2019).  
 
Therefore, this study aims to fill the aforesaid research gaps by using real carsharing usage 
data, and applying GIS-based methods, in order to find new locations for return stations and 
optimise the carsharing network.  
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3. Research Questions and Hypotheses  
 
This study aims to develop a framework that would enable optimal placing of new carsharing 
return stations by taking into consideration the demand and the different factors making the 
station location favourable. In doing so, an attempt is made to help carsharing operators 
develop their station network, keeping in mind the drivers in their market. Depending on the 
goal a carsharing operator has, different factors that characterise the location of carsharing 
stations can be used. As suggested by Millard-Ball et al. (2005), Kumar and Bierlaire (2012) 
and Ciari et al. (2016), for various reasons listed in the last chapter, carsharing organisations 
are more inclined to place stations based on availability, rather than relying on a modelling and 
analysis of carsharing usage, demand and supply. More stations placed does not necessarily 
mean more usage and more members. Since the demand influences the supply, and vice versa, 
both are analysed with a focus on what role the location of the station plays in their relationship. 
 
In other words, the focus is on analysing the performance of the existing Mobility return 
stations throughout Switzerland and estimate the key features that make a station successful. 
The overall objective is to understand what drives carsharing usage at a particular location and 
find locations with similar characteristics, where carsharing is not established yet.  
 
Research Question 1: What are the factors that make a return station successful? Are there 
some factors more important than others?  
 
As discussed in the last chapter, there are a variety of factors that drive the success of a station 
(Celsor and Millard-Ball, 2007; Kumar and Bierlaire, 2012; Ciari et al., 2016; Chen et al., 2018; 
Luan et al., 2018). To answer this question, the characteristics and performance indicators of 
the return stations were linked to data on the built environment and socio-demographic data. 
Moreover, all available factors are statistically tested against the carsharing usage indicator 
number of bookings per station and, thus, significant factors are distinguished that can be used 
as criteria in the site selection process.  
 
Hypotheses:  

1. The factors that are presented as crucial for carsharing in the literature will also be 
significant for the particular case of Mobility.  

2. There will be some factors that correlate significantly with carsharing in Switzerland 
that in the literature are not considered so important (i.e., proximity to train stations).  

3. Depending on the level of urbanisation of the given location, carsharing usage has 
different drivers.  

 
Research Question 2: What are optimal locations for new return stations from a geographic 
point of view?  
 
All significant factors identified from the first research question are integrated as criteria in an 
MCDA and candidate locations that have the same characteristics as existing carsharing 
locations are identified. Subsequently, demand is allocated to these candidate sites, taking into 
consideration the already existing carsharing network, and final return station locations are 
chosen in a location-allocation model.



Data 

 16 

4. Data  
  
4.1   Mobility Cooperative Carsharing Data  
  
The main dataset used for this thesis was provided by the Mobility Cooperative. The 
cooperative has agreed provide their support in this project by allowing access to their database 
for relevant information, such as the stations’ performance and utilisation, customers, and 
reservations. Access to the company’s database was made through the business analytic 
service offered by Microsoft, Power BI (Microsoft, 2021).   
 
Time Span of the Study   
Through Power BI, data on stations’ performance such as reservation count, number of hours 
vehicles were used, number of hours vehicles were available, and revenue, could be viewed 
from the database, downloaded, and used for analysis. First, the stations data was filtered to 
contain only return stations. As the cooperative adjusts its network continuously, closing, and 
opening stations each year, for this project only stations that were open and active in the year 
2019 were taken into consideration. Because weekly, monthly, and seasonal trends can occur, 
the dataset was taken over the span of a whole year to avoid their influence over the stations’ 
performance. The year 2019 was selected as it was the last full year available that had no 
extraordinary events (i.e., the Coronavirus pandemic in 2020 that had an enormous impact on 
people’s mobility behaviour).  
 
Geography of Return Stations   
There were data available for 1’551 return stations during the year 2019. Out of these, 132 
stations were further excluded from the analysis as they were stations that had only one vehicle 
available, and that vehicle was available for less than 90% of the year.   
  
In Figure 4.1, the distribution of Mobility return stations can be seen. At first glance, distinct 
clusters can be observed around major cities in Switzerland i.e., Zürich, Bern, Basel, Geneva, 
Lausanne, Lucerne. Moreover, almost all stations are placed in municipalities that have some 
urban character. In Table 4.1 the attributes that were extracted from the database and were 
available for each station are listed.   
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Figure 4.1: Spatial distribution of Mobility return stations in Switzerland in 2019. The grey areas 
represent municipalities in Switzerland that are considered to have an urban character according to the 
classification done by the Federal Office of Statistics (Federal Office of Statistics, 2012).    

  
Table 4.1: The attributes available for each station in the dataset. 
Attribute  Description   
Base Number  Unique number of the return station   
Base Name  Name of the return station   
Reservation Count  Number of reservations recorded in 2019   
Net Vehicles Supplied  Number of vehicles available to customers, average quantity 

in 2019   
IsTrainStation  If the station is next to a train station or not  
Latitude  Latitude coordinate of the return station  
Longitude  Longitude coordinate of the return station   
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4.2   Auxiliary Data    
 
Besides the main dataset offered by Mobility, further datasets for socio-demographic and built 
environment factors were used in the analysis. Following the literature review and extensive 
search of available open-source data, the full list of data used with their associated source can 
be found in Table 4.2.    
  
Table 4.2: List of auxiliary datasets used, their data source, format, and year.   
Data     Data Source  Format  Year  
Public Transport Stops    Swisstopo  CSV  2015  
Train Stations    SBB  Shapefile  2017  
Points of Interest (i.e., hotels, shopping 
centres, universities, etc.)   

OpenStreetMap  Shapefile  2021  

Road Data, 
Road Intersection Density, and Administrative 
Boundaries    

Swisstopo  Shapefile  2021  

Population Data (i.e., age, household size)   Federal Office of 
Statistics  

CSV  2019  

Land-Use Data    OpenStreetMap  Shapefile  2021  
Municipality Classification based on Urban 
Agglomeration Type    

Federal Office of 
Statistics  

CSV  2012  

 
Public Transport Stops    
The dataset containing the locations of public transport stops was retrieved from Swisstopo. 
Swisstopo is the short name for the Swiss Federal Office of Topography (Swisstopo, 2021a). 
Through an interactive map portal, it offers a collection of thematic maps and geographic 
datasets that are available as open data (https://map.geo.admin.ch/).  
  
The original dataset contains stops for all public transport modes available in Switzerland (lift, 
bus, gondola, metro, boat, chairlift, funicular, tram, rack railway, train). For the purpose of this 
project, the dataset was filtered to contain only bus, tram, and metro stops. Throughout this 
thesis the term “public transport stops” will be used to refer only to the above-mentioned modes 
of transportation. There were 22’976 public transport stops considered after filtering the 
dataset.    
  
Train Stations    
As short-distance travel modes and long-distance travel modes can impact carsharing 
performance in different ways, locations of train stations are considered separately from public 
transport stops. The dataset used for train station locations was retrieved from the SBB open 
data portal (Swiss Federal Railways, 2021). The dataset contained 832 train stations.      
  
Points of Interest  
The data used for the locations of Points of Interest (POIs) was retrieved from OpenStreetMap 
(OSM). OSM is a crowd-sourced project, that allows anyone to take part, map features and 
complete the global map in order to make detailed geographical data available for everyone 
(OpenStreetMap Wiki contributors, 2021a). In order to have access and use this data, one can 
easily download the entire database or extract specific parts through APIs. The data for 
Switzerland is updated frequently and only the latest, up-to-date version is available for 
download. The OSM datasets used in this project were downloaded through Geofabrik 
(Geofabrik, 2021).  

https://map.geo.admin.ch/
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For the POIs, a dataset containing all categories of POIs in Switzerland was downloaded. It 
was then filtered for the categories of interest: accommodation (i.e., hotels, motels, hostels), 
shopping centres and universities. The number of points in each layer were: accommodation – 
2637 points; shopping centres – 6030 points; and universities – 186 points. Accommodations 
were taken into consideration based on the hypothesis that tourism/overnight stays attract 
customers that do not travel with a car. Shopping locations were taken into consideration based 
on the hypothesis that a car is needed for transporting goods, and universities were taken into 
consideration based on the hypothesis that students are not usually vehicle owners. Other POI 
categories such as bars, pubs, restaurants, cinemas, were not taken into consideration for the 
analysis, as for the return driving mode it would not be plausible to book and pick up a car in 
the vicinity of a restaurant, for example, drive it and then return it to its station.   
 
Road Data, Road Intersection Density and Administrative Boundaries    
The datasets containing the roads, road intersections and administrative boundaries of 
Switzerland were retrieved from Swisstopo. The road and road intersection datasets used are 
part of the swissTLM3D model created by Swisstopo. The swissTLM3D model is a large-scale 
topographic landscape model of Switzerland that includes both natural and artificial features 
(Swisstopo, 2021b). The road dataset contained the whole road network present in Switzerland, 
including all road types, from walking paths to highways. The road intersections were filtered 
from the roads feature class present in the swissTLM3D model. The administrative boundaries 
datasets are part of the swissBOUNDARIES3D model, which is a landscape model that 
contains all administrative units and national boundaries of Switzerland: national, cantonal, 
district and municipal boundaries (Swisstopo, 2021c).   
  
Population Data  
For the population variables, the STATPOP dataset was used. STATPOP is short for 
Population and Households Statistics, and it is a national register survey created by the Federal 
Office of Statistics (Federal Office of Statistics, 2019). This dataset includes 69 individual 
population variables and 8 household variables. The individual population variables include 
total permanent resident population; permanent resident population by nationality, by place of 
birth, by age group and gender, according to length of presence in the municipality and by 
place of residence one year ago. The household statistics variables include the number of 
households of a certain size (1 person households, 2 person households, …, 6+ person 
households). The statistical variables on the population and households are aggregated by 
hectare and have the south-west coordinates as an identifier. For this project, the survey done 
in 2019 was used. The variables used from the dataset are present in Table 4.3. 
 
Table 4.3: Variables used from the STATPOP 2019 dataset aggregated by hectare.  

Variable   Description   
Permanent resident population by age group   

20 – 39 years old      
Population count in the respective age group   40 – 64 years old   

65 + years old   
Household statistics – Total private households   

with 1 person      
Count of households of the respective 

dimension   
with 2 persons   
with 3 persons   
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As the data come in a CSV format, it was first pre-processed in ArcMap 10.6.1. There, the 
point data were transformed into a raster by using the Point to Raster command from the Raster 
toolset. Rasters for all individual population variables and household variables were 
created. As the variables were from the same data sources, the raster layers were aligned.     
  
Land-Use Data    
The land-use data were retrieved from OSM. A dataset containing all land-use types was 
downloaded for Switzerland. Then, the dataset was filtered for the commercial, residential, 
industrial, and retail land-use types. The structure of this dataset was as polygons, so in order 
to associate it with the dataset of stations’ locations, each station was mapped to the nearest 
land-use polygon. Further, to be able to test this factor against carsharing utilisation, dummy 
columns were created taking the value 1 if the land-use polygon contains the respective station 
and 0 for the other polygons.  
   
Municipality Classification based on Urban Agglomeration Type    
A dataset that classifies the municipalities of Switzerland by the type of urban character was 
used in order to subdivide the stations based on different levels of urbanisation (Table 4.4). This 
dataset registered the urban agglomerations present in Switzerland and then divided the 
municipalities present in these urban agglomerations in different subdivisions. The 
classification was based on population density, job density, area, and more. The dataset used is 
from the Federal Office of Statistics and represents a classification done in 2012 (Federal 
Office of Statistics, 2012). This dataset comes in the form of an Excel file that states each type 
of municipality. For pre-processing, the dataset was joined in R, with the spatial dataset 
representing the boundaries of the municipalities in Switzerland, based on the unique number 
of the municipality.    
   
Table 4.4:  The classification of the municipalities based on their urban character.  
Grouping done 
for this project   

Classification done by the 
FSO   

Description   

   
Urban   

Agglomerationskerngemeinde   
(Kernstadt)   

Principal core city of the urban 
agglomeration    

Agglomerationskerngemeinde   
(Nebenkern)   

Secondary core of the urban 
agglomeration    

   
Suburban   

Agglomerationskerngemeinde   
(Hauptkern)   

These are municipalities that are 
considered a main core on their 
own or municipalities surrounding the 
cores of the urban agglomeration   

Agglomerationsgürtelgemeinde   

Rural   -   The remainder of the municipalities that 
have no urban character    
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5. Methodology   
  
5.1   Overview  
  
The general workflow for this master’s thesis can be divided into three parts: (1) discovering 
the significant factors that make a return station successful, (2) integrating those factors to find 
all locations with similar characteristics that will serve as candidate locations for future 
return stations, and (3) allocating demand to candidate locations to find new locations for 
carsharing stations. The general framework of this thesis can be seen in Figure 5.1.   
  

 
Figure 5.1: The workflow of this study. The numbers in brackets refer to the corresponding sections.  

As presented in Section 2.4, the first step of Part 1 consisted of gathering and filtering the 
factors used in the analysis. A list of factors that are correlated with carsharing utilisation in 
literature was comprised. This list was then edited based on what data was available for the 
different factors for Switzerland, and a new list of potential key features of a station was 
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created. These potential key features were then statistically tested against return stations’ 
performance, to determine whether they were significant or not in the location placement of 
the station. This first part resulted in a list of criteria that a return station needed to have to be 
considered successful. Second, all criteria discovered significant were integrated together with 
the constraints. Some characteristics were more important than others (for example: the return 
station being close to a train station might be more important that it being close to a shopping 
centre or university) and so depending on their influence, each criterion was weighted 
differently. After the integration, every candidate location was assigned a suitability score i.e., 
how suitable was the location for carsharing based on this analysis. Lastly, demand was 
allocated to the candidate locations, in order to select optimal new carsharing stations.  
  
A large part of the analysis, the regression model and MCDA, together with most of the data 
preparation and integration steps, were done in R version 4.0.5 (R Core Team, 2021). The last 
step of the analysis was done in the ArcMap software (ESRI, 2020b) version 10.6.1, together 
with data pre-processing for the population variables. The QGIS software (QGIS Development 
Team, 2021) version 3.4 was used during the analysis to visualise and inspect different datasets 
as well as intermediary steps.   
  
5.2   Selecting Drivers of Carsharing Performance  
   
An extensive literature review was done in order to assemble a list of factors that drive 
carsharing performance. Factors that were found significant in other carsharing studies were 
all taken into consideration. The list was then adjusted based on what data was available for 
Switzerland for those factors. During this step, some factors had to be discarded because 
of unavailability or incompleteness of the data. After searching for and collecting all necessary 
data, the list was complete and significant drivers of carsharing performance were ready to be 
analysed.   
  
To identify the drivers of carsharing performance, a multiple regression model was built. 
Multiple regression analysis is a technique used for modelling and analysing the relationship 
between an outcome (i.e., the dependent variable) and several predictor variables (i.e., the 
independent variables), as well as the contribution of each of the predictors to the relationship.  
  
This model assumes that there is a linear relationship between the dependent variable and 
the independent variables. The formula for a multiple regression model is:    
  
 
 
                                               
                                               𝑦 =  𝛽0 + 𝛽1 𝑋1 + ⋯ +  𝛽𝑛 𝑋𝑛 +  𝜀                (Equation 5.1) 
  
 
 
where:  
 𝑦  = is the dependent variable  
X1….Xn = are the independent variables  
𝛽0 = is the intercept i.e., the value of 𝑦 when all other parameters are set to 0 
𝛽𝑘  = is the kth regression coefficient representing the change in y relative to a one-unit change 
in 𝑋𝑘; also representing the slope coefficient for each independent variable 
𝜀 = is the models’ random error, residual term   
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The best regression model was chosen in a backward stepwise selection manner where first all 
the variables were inputted in the model and then the term with the highest p-value was 
systematically removed one-by-one until only significant predictors remained. The models 
were also compared based on their Akaike Information Criteria (AIC) value. Moreover, 
attention was paid to the adjusted and predicted R-squared values. 
 
This method is a popular technique in carsharing literature for exploring the relationship 
between carsharing utilisation or demand and different spatial attributes. Both the studies of 
Kumar and Bierlaire (2012) and of Kang et al. (2016) use linear regression models in order to 
identify factors that influence the performance of carsharing stations. Stillwater et al. (2009) 
created a carsharing demand model using a GIS-based multivariate regression and looked at 
the relationship between the activity of carsharing locations and different factors. Lastly, Cheng 
et al. (2019) applied different statistical models in order to compare their results and find the 
best method that would help carsharing operators to choose new optimal locations for 
carsharing stations. Amongst others they used logistic regressions in order to estimate the 
probability of existence of demand at a certain location based on different carsharing drivers.   
 
For this project, the depended variable refers to the return station performance and is measured 
by the total number of bookings per station. There were several candidate indicators to measure 
a station’s performance: total number of bookings, total number of bookings per vehicle, total 
revenue, or total hours the vehicles were used at a station. Depending on how a carsharing 
operator defines its success and performance a different indicator can be chosen. Although 
being strongly correlated, each individual performance indicator can tell its own different 
story.   
  
The independent variables used were based on the set of factors gathered from the literature 
and on the available datasets, presented in Table 5.1. A circular buffer of 500 m was created 
around the stations’ location to correlate the variables with the stations' performance. For each 
factor, its density inside the 500 m buffer was calculated and associated with the specific 
station. Firstly, this distance was chosen for the buffer because the 500m distance was found 
in literature to be the service area of a public transport stop (El-Geneidy et al., 2014). Secondly, 
members usually prefer having a carsharing station within 500m from their house or place of 
work in carsharing studies (Luan et al., 2018). Lastly, 500 m is a convenient distance for 
walking. Moreover, Kumar and Bierlaire (2012) also use a 500 m buffer around carsharing 
stations in order to associate values of various parameters with the stations. All variables were 
normalized to a range of [0-1] using the min-max normalization method.  
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Table 5.1: Variables tested in the regression analysis. The outcome variable is the dependent variable 
used. The built environment factors and the socio-demographic factors are the independent variables 
used. 
Variable Description   Value calculated in buffer  

Outcome Variable  
Total number of reservations per station  Count  

Built Environment Factors  
Total number of public transports stops  Count  
IsTrainStation   Dummy Variable  
Total number of accommodations   Count  
Total number of shopping centres   Count  
Total number of universities  Count  
Total number of road intersections  Count  
Land-use type: Residential   Dummy Variable  
Land-use type: Commercial   Dummy Variable  
Land-use type: Retail   Dummy Variable  
Land-use type: Industrial   Dummy Variable  
Total number of carsharing stations   Count  

Socio-demographic Factors  
Total number of already existing members   Count  
Population between 20 and 39 years old    Count  
Population between 40 and 64 years old   Count  
Population above 65+   Count  
Total number of 1 person households   Count  
Total number of 2 person households   Count  
Total number of 3 person households   Count  
  
For the variable IsTrainStation, instead of using the number of train stations in the 500m 
buffer area, a dummy variable was used with a value of 0 – the carsharing station is not placed 
near a train station and 1 – the carsharing station is placed near a train station. This is because 
firstly, in the Mobility dataset it was registered if a station is placed at a train station (due to 
the partnership between Mobility Cooperative and SBB) and secondly, if the counting method 
was chosen, the variable would have looked almost the same, as usually train stations are not 
within 500 m from each other. For each land-use type considered, a dummy variable was used 
with the value of 0 – the carsharing station was not assigned to that particular land-use type 
and 1 – the carsharing station was assigned to that particular land-use type.    
  
Besides the factors discussed in Section 2.4, the total number of carsharing stations within the 
500 m buffer of a station was added to the regression analysis in order to determine if short 
distances between stations affect their performance. Kumar and Bierlaire (2012) found in their 
study that a small distance between stations impacts their performance in a negative way, as 
their service area has a big overlap and even if more stations are added, they are not bringing 
any new customers.  
  
In order to discover how the influence of carsharing utilisation drivers may vary in different 
levels of urbanisation and improve the prediction of regression models, three different models 
were created for each urbanisation level. The fact that carsharing performance is different 
based on the level of urbanisation of the location is a detail identified and discussed in the 
literature. In their study, Kumar and Bierlaire (2012) also created two different models for 
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carsharing stations situated in the city versus carsharing stations situated in suburban areas, as 
the drivers for demand change based on the different demographic characteristics and travel 
behaviour patterns. Based on the classification of municipalities done by the Federal Office of 
Statistics presented in Section 4.2, the three models created contained: stations that are located 
in municipalities that are considered the primary and secondary core of an urban 
agglomeration, stations that are located in municipalities around the core of an urban 
agglomeration and stations that are located in municipalities with no urban character (i.e., rural 
municipalities). After this division, there were 854 carsharing stations in urban areas, 405 
stations in suburban areas and 160 stations in rural areas.   
  
5.3   Multi-Criteria Decision Analysis    
  
The second part of the analysis was to perform a multi-criteria decision analysis (MCDA). The 
advantage of using an MCDA in the decision making process is given by its capability of 
simultaneously evaluating and comparing multiple criteria, that can be contrasting or 
conflicting, and of classifying the alternative solutions generated (Malczewski, 1999). This 
type of analysis can be used in any field to look at a wide range of problems where there may 
be multiple favourable solutions. Examples of its application can be found in the healthcare 
industry, environmental decision making, risk assessment, resource management, land 
use planning, and site selection.   
  
There were two studies found in the literature that used the MCDA method in order to select 
optimal new locations for carsharing stations: Awasthi et al. (2007) establish a decision system 
consisting of 15 evaluation indicators which are calculated from big data, and through using 
MCDA, a synthetic score is calculated to evaluate the candidate sites available for carsharing 
stations. In the study of Li et al. (2017) the analysis is structured into three main 
parts. Firstly, criteria for selecting carsharing stations are identified using the literature and 
experts opinions. Secondly, the criteria and the stations are weighted on a ratio scale using 
pairwise comparison and lastly, stations whose overall weights exceed the threshold limit are 
selected.   
  
Based on the theory presented by Malczewski (1999), the main elements that form a MCDA 
are (1) a goal; (2) the decision makers involved in the process; (3) a set of objectives and 
attributes; (4) a set of decision alternatives; (5) the decision environment; and (6) the set of 
outcomes. The relationships between the elements of MCDA are shown in Figure 5.2.   
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Figure 5.2: Framework for MCDA showing the relationships between all the components (based on 
Malczewski, 1999, p. 82).  

Through a GIS-based MCDA, spatial data is combined and transformed in order to generate 
new information based on which decisions can be made (Drobne and Lisec, 2009). Several 
approaches exist to develop a framework for spatial decision making. Drobne and Lisec (2009) 
describe two of them: the alternative-focus approach that is aiming to generate as many 
alternative solutions as possible at first and then evaluate them, and the value-focus 
approach that is focusing more on the criteria used in the analysis and how they influence the 
outcome. This study takes a value-focus approach, as the drivers of carsharing utilisation are 
the centre of the analysis. Figure 5.3 shows a simple workflow of the approach followed.   
  

 
Figure 5.3: Workflow of the value-focus approach taken in this project (based on Drobne and Lisec, 
2009, p. 461).  
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A GIS-based MCDA can be implemented both with raster and vector data models. For this 
project, a raster data model was used. Each raster cell on the map has attached a suitability 
score that is a result of combining multiple criteria together (simple visualisation of the process 
in Figure 5.4). Firstly, an empty raster grid was created over the study area (i.e., the whole 
Switzerland). The resolution of the grid is 500x500 m. Then, for all the factors 
the rasterize function from the raster package in R was used to combine the factor data with 
the empty raster and count the frequency of each variable in each cell, thus generating new 
rasters. For the land-use data, presence-absence rasters were created for each land-use type. 
The last pre-processing step was to use the mask function from the same R package to mask all 
the factors into the three different urbanisation level categories. Because each urbanisation 
level has its own model and significant drivers, the MCDA was calculated separately for each 
of the three groups. In the end, the resulting rasters were merged into one final raster.   

 
Figure 5.4: Visualisation of the GIS-based MCDA process. Each criterion is represented by a raster. 
From each raster, pixels in the same position are combined for the final result (figure taken form Drobne 
and Lisec, 2009, p. 462).  

This study used the simple additive weighting (SAW) method and the Analytical Hierarchy 
Process (AHP) developed by Saaty (1990) in order to combine the significant factors associated 
with carsharing utilisation that were discovered in the regression analysis. The simple additive 
weighting method represents a weighted average where the criteria are first standardised, then 
get assigned their respective weight and lastly the products are summed (Drobne and Lisec, 
2009). Any constraints that need to be taken into consideration are applied outside the 
summation.  After the scores are calculated for each raster cell, a suitability map is created. The 
suitability score is a synthetic score created. The higher the score the more suitable is the raster 
cell. The formula used for the SAW is the following:   
 
  

𝑠 =  (Σ𝑖=1
𝑛  𝑤𝑖𝑥𝑖)  ×   𝑐                               (Equation 5.2) 

 
where  𝑠 = suitability score  
           𝑤𝑖 = weight attributed to factor 𝑥𝑖 
           𝑥𝑖  = value of the ith factor  
           𝑐 = any constrain needed to be applied 
  
Before calculating the suitability scores, the weights for each factor were determined. The 
ranking of the factors for each urbanisation level group was established based on the 
importance of the regression coefficients. Following this, the AHP was used to derive the 
weights associated with each criterion. The AHP is a weighting technique in which the factors 
are arranged in a hierarchical structure and the weights are based on pair-wise comparisons 
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between the criteria (Saaty, 1990; Drobne and Lisec, 2009). The comparisons indicate the 
relative importance that the criteria have towards the goal. Saaty (1990) also created a scale for 
these comparisons, present below in Table 5.2.   
  
Table 5.2: Pairwise comparison values for AHP (after Saaty 1990). 

Intensity of importance on an absolute 
scale  

Definition  

1  Equal importance  
3  Moderate importance of one over another  
5  Essential or strong importance  
7  Very strong importance  
9  Extreme importance  

2,4,6,8  Intermediate values between the two 
judgements  

  
In order to develop weights, a pairwise comparison matrix is used, where every criteria is 
compared to one another (Table 5.3). Then, the principal eigenvector of the matrix is computed 
to produce the weights for each criterion.  
  
Table 5.3: Pairwise comparison matrix, where C1-Cn are the criteria and rij are the comparison values. 

  C1  C2  …  Cn  

C1  1  r12  …  r1n  

C2  r21  1  …  r2n  

…  …  …  1  …  

Cn  rn1  rn2  …  1  

  
Because the process involves numerous comparisons, Saaty (1990) also developed a procedure 
to calculate the degree of consistency that has been used in developing the weighting: a 
consistency ratio (CR).  Saaty (1990) suggested that matrices that have a CR greater than 0.1 
are found to be inconsistent in their comparisons and should be re-evaluated. The formula for 
the CR is:   
 

𝐶𝑅 =  𝐶𝐼
𝑅𝐼

                                            (Equation 5.3) 
 
where CI is the consistency index:  
 

𝐶𝐼 =  𝜆−𝑛
𝑛−1

                                          (Equation 5.4) 
 
where 𝜆 = the average value of the consistency vector  
           n = the number of criteria 
and RI is the random index that is fixed and given by Saaty (1990), shown in the Table 5.4.  
Table 5.4: Random inconsistency indexes for different number of criteria. 

Size of matrix   1  2  3  4  5  6  7  8  9  10  
Random 
consistency   

0  0  0.58  0.9  1.12  1.24  1.32  1.41  1.45  1.49  
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The average value of the consistency vector (𝜆) in Equation 5.4 is obtained by first calculating 
the weighted sum vector. This is calculated by multiplying the weight of each criterion with its 
respective column from matrix and summing the resulting values over each row. Then, by 
dividing the weighted sum vector by the criteria weights, the consistency vector is determined.  
 
Therefore, for this second part of the analysis, Figure 5.5 exhibits a flowchart of all the steps 
taken. Each raster layer created for the different significant factors determined by the regression 
models in Section 5.2 was divided into 3 different raster layers. Each of them represented an 
urbanisation level group and had non-zero values only in the municipalities that are part of that 
group and 0 outside of the municipalities. Secondly, respective weights were calculated using 
the AHP method illustrated above, for each raster layer. The results from these two steps were 
combined by using Equation 5.2 and suitability scores were calculated. This resulted in three 
different rasters as the calculation was done once for every urbanisation level group. In the end, 
they were combined, forming the final raster. In this raster, every raster cell symbolised a 
potential location for new carsharing stations, with cells that have a higher score being more 
suitable. Thus, it is a grid-cell model for prioritizing locations for carsharing. This raster served 
as the basis for the last part of the analysis.  
 

 
Figure 5.5: Flowchart representing the steps taken in the second part of the analysis. 
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5.4   Location – Allocation Models   
 
For the final part of the overall workflow, the choice of new optimal locations for carsharing 
stations was made using location-allocation models. Location-allocation models determine 
simultaneously the locations of facilities and who is served by which facility, having the goal 
to create an optimal and efficient network (ESRI, 2020a). A classic and general representation 
of the location-allocation model can be seen below in Figure 5.6. The demand points are 
allocated to facilities and connected to them through allocation lines. Depending on the 
optimisation goal (i.e., minimising the distance from the demand point to the facility, 
maximizing the number of demand points allocated to one facility or minimising the total 
number of facilities chosen so that all demand points are allocated to one facility), there can be 
different analyses computed.  
 

                    
Figure 5.6: General visualisation of location-allocation models. The squares represent the facilities that 
were chosen by the location-allocation model. The orange points represent the demand points that need 
to be allocated. The orange lines display which demand point was allocated to which facility.  

In the carsharing literature, one study was found to use a location-allocation model in order 
to place carsharing stations. In their study, de Oliveira Lage et al. (2019) are looking at 
identifying types of economic activities that could support carsharing utilisation. They apply a 
location-allocation model to find the best places for placing carsharing stations so that possible 
partnerships with several types of commercial establishments could flourish their performance.  
 
The location-allocation analysis was performed in the ArcMap software. The ArcMap software 
was favoured instead of running the analysis in R, because of its broader spectrum of options 
offered. The ArcMap software contains seven problem types that allow to answer specific kinds 
of questions: minimize impedance, maximize coverage, maximize capacitated coverage, 
minimize facilities, maximize attendance, maximize market share, and target market share 
(ESRI, 2020a). For this analysis, the Maximise Attendance problem type was used. This 
problem type has the goal to choose the facilities such that the amount of demand points a 
facility can cover is maximised, while also specifying an impedance cut-off and implementing 
a distance decay function. The underlying assumption is that the chance of interaction between 
the facility locations and the demand locations decreases with an increasing distance (ESRI, 
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2020a). This model is useful for the carsharing field as the literature has shown that the majority 
of carsharing users are located near stations (Juschten et al., 2019) and because this type of 
problem is particularly beneficial for businesses that have no competitors (ESRI, 2020a), which 
is the case of this study. 
 
For the implementation of the model and for finding a solution to the Maximise Attendance 
problem, 3 elements were required. First, a set of candidate locations was needed. This was 
obtained from the resulting raster in the second part of the analysis. The raster dataset was pre-
processed and converted to point features in ArcMap using the Raster to Point tool. The new 
point layer represented the centroid of each raster cell in the dataset, each point having 
associated the suitability score of that cell. Second, a set of demand points was needed. This 
was obtained from the census population dataset. As mentioned in Section 4.2, the population 
data were aggregated by hectare, i.e., 100x100 m. In order to aggregate it on a scale 
comparable with the raster, i.e., 500x500 m, a weighted mean centre was calculated for the 
population layer in R, using the total population registered at each point. Last, a network 
dataset was needed to be built in order to connect the candidate facilities and demand 
points. This network dataset was built in ArcMap using the roads dataset for the whole 
Switzerland. 
  
In the location-allocation models, the already existing return carsharing stations were taken 
into consideration. These stations were marked as required facilities, and their original raw 
location was used. Therefore, when demand was allocated, it was first allocated to already 
existing stations and then to candidate locations. Additionally, the candidate facilities were 
weighted based on the suitability scores developed in the second step of the analysis. Therefore, 
a candidate facility point that had a higher suitability score was considered more important and 
demand was first allocated to it. The impedance cut-off value for the Maximise Attendance 
problem was set at 1 km. The number of locations that end up being chosen from the candidate 
locations can be chosen depending on the needs of the carsharing operator.   
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6. Results   
  
This chapter presents the results of applying the developed framework and its methods, 
presented in Chapter 5, to the carsharing dataset and the factors considered. Following the 
workflow illustrated in Figure 5.1, this chapter will be divided into three subsections, each 
showcasing the results of the three methods used. Firstly, the results of the regression analysis 
are presented (Section 6.1). The factors that drive carsharing utilisation in the different levels 
of urbanisation are displayed and factors present in all three models are highlighted. Secondly, 
the results of the MCDA are shown (Section 6.2). Following the AHP process, the developed 
weights for the significant factors that drive carsharing usage are displayed. Subsequently, 
maps of the final raster with suitability scores for carsharing locations are shown. Lastly, maps 
displaying potential future locations for carsharing return stations, chosen with the help of 
location-allocation models are presented (Section 6.3).   
  
6.1   Regression Analysis   
  
In order to identify the factors that affect carsharing utilisation, linear regression modelling was 
performed as described in Section 5.2. The dependent variable selected was the total number 
of reservations per station that occurred in the year 2019, and the independent variables selected 
were the ones present in Table 5.1.  The stations were divided based on the level of urbanisation 
of the municipality they are in, and thus three groups were created: urban, suburban, and rural. 
For each group a different model was run using the stats R package. The variables that entered 
the best-fitting models, chosen in a stepwise manner by backward elimination, are shown in 
Table 6.1, Table 6.2, and Table 6.3, respectively. First, the model was fitted with all candidate 
variables, and by using the stepAIC function in the R package MASS, variables that were 
statistically insignificant were excluded. 
  
Table 6.1: Regression model estimating the effect of the independent variables on carsharing utilisation 
for stations located in municipalities within the urban group. The significance level is shown in brackets 
for each variable. 

Variables  Estimate Standard Error t-Ratio Prob > | t | 
Intercept  -40.06 119.98 -0.334 0.739 
IsTrainStation (***) 1466.53 105.18 13.943 0.000 
Total number of public transport stops (**) 746.58 267.04 2.796 0.005 
Total number of already existing members (***) 3533.48 516.20 6.845 0.000 
Total number of accommodations (.) 574.26 323.99 1.772 0.077 
Total number of shopping centres (***) 1103.97 270.22 4.086 0.000 
Total number of 2 person households (**) -4896.61 1484.89 -3.298 0.001 
Population between 20 and 39 years old (*) 2413.61 1135.69 2.125 0.034 
Population above 65+ (**) 1672.15 624.07 2.679 0.008 
Total number of carsharing stations (***) -1895.14 345.89 -5.479 0.000 

Summary Statistic:  
Number of observations 854 

R-squared 0.315 
Adjusted R-squared  0.308 

F-statistic (Probability) 43.21 (0.00) 
(.) Significant at the 0.10 alpha level; (*) Significant at the 0.05 alpha level; (**) Significant at the 0.01 alpha level; (***) Significant at the 0.001 alpha level 
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Table 6.2: Regression model estimating the effect of the independent variables on carsharing utilisation 
for stations located in municipalities within the suburban group. The significance level is shown in 
brackets for each variable. 
Variables   Estimate  Standard Error  t-Ratio  Prob > | t |  
Intercept   -23.12  73.50  -0.315  0.7533  
IsTrainStation (***)  291.07  48.56  5.994  0.000  
Total number of road intersections (*)  504.85  204.47  2.469  0.014  
Total number of already existing members (***)  4827.27  613.79  7.865  0.000  
Total number of accommodations (***)  2396.14  608.81  3.936  0.000  
Total number of shopping centres (***)  1177.70  265.32  4.439  0.000  
Land-use type: Commercial (.)  186.72  100.84  1.852  0.065  
Total number of carsharing stations (.)  -649.12  367.79  -1.765  0.078  

Summary Statistic:   
Number of observations  405  

R-squared  0.402  
Adjusted R-squared   0.392  

F-statistic (Probability)  38.18 (0.00)  
(.) Significant at the 0.10 alpha level; (*) Significant at the 0.05 alpha level; (**) Significant at the 0.01 alpha level; (***) Significant at the 0.001 alpha level  

  
Table 6.3: Regression model estimating the effect of the independent variables on carsharing utilisation 
for stations located in municipalities within the rural group. The significance level is shown in brackets 
for each variable. 
Variables   Estimate  Standard Error  t-Ratio  Prob > | t |  
Intercept   -34.95  103.95  -0.336  0.737  
IsTrainStation (***)  322.33  71.89  4.483  0.000  
Total number of already existing members (***)   16344.19  2823.21  5.789  0.000  
Total number of shopping centres (***)  2067.54  447.56  4.620  0.000  
Total number of universities (*)  12014.20  6074.59  1.978  0.050  
Land-use type: Industrial (**)  278.61  94.20  2.958  0.004  
Total number of 2 person households (**)  7346.64  2536.40  2.896  0.004  
Population between 40 and 64 years old (**)  -8126.52  2444.22  -3.325  0.001  
Total number of carsharing stations (*)  -2664.88  1271.74  -2.095  0.038  

Summary Statistic:   
Number of observations  160  

R-squared  0.555  
Adjusted R-squared   0.531  

F-statistic (Probability)  23.54 (0.000)  
(.) Significant at the 0.10 alpha level; (*) Significant at the 0.05 alpha level; (**) Significant at the 0.01 alpha level; (***) Significant at the 0.001 alpha level  

  
For the first model, the R-squared value was 0.315, meaning that the 9 independent variables 
collectively accounted for 31.5% of the variance observed in the carsharing usage data for the 
stations associated in the urban group. For the suburban group model, the R-squared value was 
slightly bigger, 0.402, meaning that the 7 independent variables accounted for 40.2% of the 
variance observed in the data. The last model, for carsharing stations in the rural group, had 
the highest R-squared value, 0.555, meaning that the 8 independent variables accounted for 
55.5% of the variance in the data. 
 
From the three linear models, it can be observed that carsharing utilisation can be explained 
and predicted by very different significant factors, depending on the level of urbanisation that 
the stations are in. However, there are some key factors identified that remain significant across 
all three models: whether it is a carsharing station associated with a train station; the number 
of already existing carsharing members; the number of shopping centres; and the number of 
carsharing stations that are in the vicinity.   
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6.2   Multi-Criteria Decision Analysis   
  
An MCDA was used in order to integrate the significant factors found to drive carsharing 
utilisation and to find suitable locations for new carsharing return stations. Before combining 
the variables by using the simple additive weighting method, the factors were weighted in 
accordance with their importance to the goal, using the AHP process. Table 6.4, Table 6.5, and 
Table 6.6 reveal the pairwise comparison matrices, where each factor is compared to each other 
with the help of the scale showed in Table 5.2. The resulting weight for each factor, together 
with the consistency ratio (CR) and the average value of the consistency vector (𝜆 ), are also 
present in the tables below.  
 
The initial ranking for the factors is based on their importance in each of the regression models. 
Thus, the relationships between two factors can be different across the tables if their 
importance in the regression model changes. Moreover, the weights of the factors that are 
found significant in more than one model are different based on their ranking and the 
comparisons within that group. For example, the presence of train stations and shopping centres 
have the second highest weight in the urban group, while in the suburban group the second 
highest weight is attributed to the presence of accommodations, and in the rural group it is 
corresponding to the presence of universities.  
  
Table 6.4: Pairwise comparison matrix for the factors found to drive carsharing utilisation for the 
stations in the urban group. C1-C5 are notations used for the factors to calculate the matrix more easily. 
  C1 C2 C3 C4 C5 Weights 
IsTrainStation C1 1 3 1/3 5 1 0.200 
Total number of public transport stops C2 1/3 1 1/5 3 1/3 0.087 
Total number of already existing members C3 3 5 1 7 3 0.470 
Total number of accommodations C4 1/5 1/3 1/7 1 1/5 0.043 
Total number of shopping centres C5 1 3 1/3 5 1 0.200 

𝜆 = 5.127; CR = 0.03 
Table 6.5: Pairwise comparison matrix for the factors found to drive carsharing utilisation for the 
stations in the suburban group. C1-C6 are notations used for the factors to calculate the matrix more 
easily. 
  C1 C2 C3 C4 C5 C6 Weights 
IsTrainStation C1 1 1 1/7 1/5 1/3 3 0.059 
Total number of road intersections C2 1 1 1/7 1/5 1/3 3 0.059 
Total number of already existing members C3 7 7 1 3 5 9 0.472 
Total number of accommodations C4 5 5 1/3 1 3 7 0.253 
Total number of shopping centres C5 3 3 1/5 1/3 1 5 0.128 
Land-use type: Commercial C6 1/3 1/3 1/9 1/7 1/5 1 0.029 
 𝜆 = 6.255; CR = 0.05 

Table 6.6: Pairwise comparison matrix for the factors found to drive carsharing utilisation for the 
stations in the rural group. C1-C5 are notations used for the factors to calculate the matrix more easily. 
  C1 C2 C3 C4 C5 Weights 
IsTrainStation C1 1 1/7 1/5 1/7 1 0.050 
Total number of already existing members C2 7 1 3 1 7 0.380 
Total number of shopping centres C3 5 1/3 1 1/5 5 0.179 
Total number of universities C4 7 1 5 1 5 0.341 
Land-use type: Industrial C5 1 1/7 1/5 1/5 1 0.050 

𝜆 = 5.154; CR = 0.03 
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Thus, all factors were multiplied by their respective weight and added together. This created a 
suitability score for each raster cell and thus a final raster could be constructed, shown in Figure 
6.1. After calculating the suitability scores, one constraint was applied. As the regression 
analysis showed a negative association between carsharing utilisation performance and 
having a higher number of stations in the 500 m buffer area around a station, all raster cells 
that contained an already existing station were assigned the suitability score 0. This step was 
done to avoid placing new stations in the vicinity of already existing stations. The difference 
in the suitability scores raster before and after applying this constrain is visible in Figure 6.1, 
Figure 6.2, and Figure 6.3 below. Moreover, after the calculation, the scores were normalised.  
  
Figure 6.1 displays the resulting suitability raster after weighting and integrating all factors. 
Areas with high suitability scores can immediately be observed around the big cities of 
Switzerland: Zürich, Bern, Basel, Lucerne, Lausanne, Geneva, and Lugano. Moreover, the 
areas surrounding these big cities are observed to have low to moderate suitability scores.   
  
In the zoomed-in visualisation of the city of Zürich (Figure 6.2), besides the high suitability 
scores inside the city, small clusters of high suitability scores cells can be noticed in the areas 
surrounding it. In addition, although there is a strong presence of already existing carsharing 
stations in the city, the lower map still shows several locations with high suitability scores 
where new stations could be placed.   
  
In Figure 6.3 a zoomed-in visualisation of a rural area is shown. It can be noted that in the rural 
areas the variability in suitability scores is much lower, as there are cells exhibiting medium to 
high scores neighbouring cells with no suitability at all.   
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Figure 6.1: Visualisation of the entire suitability raster. The top image displays the suitability raster 
before applying the constraint that all cells that contain at least one already existing carsharing station 
are attributed the value 0. The bottom image displays image displays the suitability raster after applying 
this constraint. Cells that had a suitability score of 0 due to this constraint were assigned the colour 
grey.  
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Figure 6.2: Zoomed-in visualisation of the suitability raster. The area displayed in this figure is the city 
of Zürich and its surrounding area. The exact extent of the display can be visualised on the locator map 
in the corner. The top image displays the suitability raster before applying the constraint that all cells 
that contain at least one already existing carsharing station are attributed the value 0. The bottom image 
displays the suitability raster after applying this constraint. Cells that had a suitability score of 0 due to 
this constraint were assigned the colour grey.  
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Figure 6.3: Zoomed-in visualisation of the suitability raster. The area displayed in this figure is a rural 
area between the cities of Lucerne (South-East), Olten (North), Solothurn (North-West), and the city of 
Bern (South-West). The exact extent of the display can be visualised on the locator map in the 
corner. The top image displays the suitability raster before applying the constraint that all cells that 
contain at least one already existing carsharing station are attributed the value 0. The bottom image 
displays the suitability raster after applying this constraint. Cells that had a suitability score of 0 due to 
this constraint were assigned the colour grey.  
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6.3   Location – Allocation Models   
  
By using the suitability raster and applying location-allocation models, new potential locations 
for carsharing stations were found. The models were run in ArcMap 10.6 using the Network 
Analyst extension and were chosen to solve the Maximum Attendance problem. There were 
multiple models developed depending on the desired number of locations to be selected. The 
list of models is presented in Table 6.7 below. Model 1 represents a baseline model that 
assessed the situation as it is at present. For this model only the already existing carsharing 
stations were loaded and designated as required facilities to be placed. For Models 2-5, apart 
from loading the already existing carsharing stations as required facilities, the candidate 
locations were loaded as well as candidate facilities. From there, by allocating demand points 
to the required facilities and candidate facilities the model chose the n most optimal locations 
(n being the desired number of facilities to be placed). The same demand points 
dataset was used for all models.  
  
Table 6.7: A list of all the models run and their description. 
  Description of model   

Model 1  Allocate demand only to the already existing stations  
Model 2  Choose 100 new facilities from the candidate list   
Model 3  Choose 250 new facilities from the candidate list   
Model 4  Choose 500 new facilities from the candidate list   
Model 5  Choose 1000 new facilities from the candidate list   

  
Although in the initial dataset of Mobility stations there were 1’551 return stations, which were 
all categorised as required facilities, in the solution for Model 1, only 1’330 were chosen. At 
the end of the solution calculation the software displayed a warning stating that only 1’330 
facilities are present in the solution set, as locating all 1’551 facilities would not result in a 
better solution because some facilities have locations that are redundant. This means that in 
some areas, for the demand model used, fewer stations could serve the same number of demand 
points and thus some locations could be inefficient. Upon inspection, the redundant locations 
were observed to concentrate in the big cities where there is already a high density of existing 
stations (Figure 6.4). The Maximum Attendance problem does not take into account the 
capacity of a facility, as it is an uncapacitated facility location problem, and therefore there is 
no limit for how many demand points can be allocated to a facility. This could be one of the 
reasons why the locations were considered, by the model, redundant when in fact they might 
not be.   
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Figure 6.4: Zoomed-in visualisation of the city of Bern. In this map a subset of the facility locations 
that were considered redundant by Model 1 can be observed. It can be seen that almost each redundant 
location is in the immediate vicinity of other stations that where allocated demand to by the model.  

When running the other 4 models and adding candidate facilities to the model, the solutions 
included all existing carsharing stations as required facilities, but the stations considered 
redundant by Model 1 had no demand allocated to them. Nevertheless, the data and locations 
of those stations were kept in all the models as they represent the current state of the network. 
The number of demand points served by the solutions of the models, the mean distance 
travelled between demand points and facilities, and the total area covered by the facilities were 
calculated and can be found in Table 6.8.   
  
Table 6.8: List of performance variables for each model. 
  Number of facilities in 

the solution  
Share of demand 

points served (%)  
Total area 
covered   

(km2)  

Mean distance 
travelled   

(m)  
Model 1  1’330  9.66  2’065  588 
Model 2  1’651  11.19  2’369  581 
Model 3  1’801  13.37  2’825  577 
Model 4  2’051  16.81  3’568  574 
Model 5  2’551  23.15  4’979  573 

Total number of demand points = 55’577; Total number of candidate facilities = 38’269  
  
The trends of the indicators against the increase in the number of stations can also be seen in 
Figure 6.5. As more facilities were added to the solution the share of demand points covered 
increased significantly. Moreover, the total area covered also increased while the mean distance 
travelled gradually decreases.   
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Figure 6.5: Three graphs that display the trends in the indicators of the location-allocation models 
against the increase in the number of stations.  

The locations of the candidate facilities chosen in each solution dataset of Model 2, Model 3, 
Model 4, and Model 5 can be seen in Figure 6.6, Figure 6.7, Figure 6.8, and Figure 6.9, 
respectively. As each successive model was set to choose more facilities from the candidate 
list, it can be seen that the models still chose as optimal new locations the locations proposed 
by their predecessor model, adding as many new locations as required to the solution. The 
proposed new locations for return carsharing stations tend to be placed outside the big cities.   
  

 
Figure 6.6: Map of the facility locations determined by Model 2. In red, the already existing carsharing 
stations are represented while in blue, the 100 new locations chosen by the model are represented. The 
cut-off impedance for each facility was set at 1 km. Demand points beyond this distance cannot be 
allocated to a facility.    
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Figure 6.7: Map of the facility locations determined by Model 3. In red, the already existing carsharing 
stations are represented while in blue, the 250 new locations chosen by the model are represented. The 
cut-off impedance for each facility was set at 1 km. Demand points beyond this distance cannot be 
allocated to a facility.  

 
Figure 6.8: Map of the facility locations determined by Model 4. In red, the already existing carsharing 
stations are represented while in blue, the 500 new locations chosen by the model are represented. The 
cut-off impedance for each facility was set at 1 km. Demand points beyond this distance cannot be 
allocated to a facility.   
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Figure 6.9: Map of the facility locations determined by Model 5. In red, the already existing carsharing 
stations are represented while in blue, the 1000 new locations chosen by the model are represented. The 
cut-off impedance for each facility was set at 1 km. Demand points beyond this distance cannot be 
allocated to a facility.   
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7. Discussion  
 
The goal of this thesis was to find new optimal locations for carsharing return-stations to be 
placed. For this, locations that share the same characteristics as locations with already existing 
high-performing carsharing stations were searched for. The search has been accomplished by 
taking into consideration what are the factors that drive carsharing performance and integrating 
them in order to identify new optimal locations. In this chapter, the results presented in Chapter 
6 will be discussed in regard to the research questions and hypotheses formulated in Chapter 3, 
as well as with respect to the previous research in the field presented in Chapter 2.  
 
  
7.1   Research Question 1: What are the factors that make a return station successful? 
Are there some factors more important than others?  
  
The first research question seeks to determine what are the factors that make a return station 
successful. This question is answered by creating a multiple linear regression model in order to 
test if and how the different factors chosen explain carsharing performance. Three models were 
created based on the different level of urbanisation that the stations were in: urban, suburban, 
and rural. The results of the regression models were presented in Section 6.1. Regarding the 
hypotheses established in Chapter 3, the analysis showed that indeed most of the carsharing 
factors that are presented as crucial in the literature are also significant for the case of Mobility, 
although unique factors were discovered. Moreover, the three models created found that 
depending on the level of urbanisation of the given location, carsharing usage has different 
drivers, even though there are a number of factors that remain consistent irrespective of the 
level of urbanisation.  
 
Train Stations   
Whether or not the carsharing station is associated with a train station was expected to be a 
significant predictor for carsharing performance in Switzerland. The first reason for this is that 
Mobility has a strong partnership with SBB, the Swiss Federal Railways. Following this 
association, Mobility is able to place carsharing stations in the parking area of train stations. In 
literature, it has been documented that regional transit agencies are hesitant to carsharing 
companies and restrict them from establishing stations in their parking lots due to fear of 
competition (Stillwater et al., 2009). However, in Switzerland, carsharing vehicles present at 
train stations are thought to complete the customers’ journey. Moreover, Mobility cars can be 
booked directly on the SBB website and the SwissPass card (a chip card issued by SBB) can be 
used as a key to access the Mobility vehicles once registered. In addition, train stations are 
locations with high daytime population and their locations are placed in a way to serve as much 
of the population as possible. Thus, there is strong evidence to say that train stations represent 
a significant factor that drives carsharing, irrespective of the level of urbanisation, and indeed 
this can be seen also across all three models constructed in this study (Section 6.1).  
 
Public Transport Stops   
The presence of public transport stops (bus, tram, metro) was another variable that was highly 
correlated with carsharing performance in literature and is also found significant in this study 
for the urban group model. In accordance with the present results, previous studies have 
demonstrated that carsharing performance increases in the presence of a developed public 
transport system (Celsor and Millard-Ball, 2007; Kumar and Bierlaire, 2012; Chen et al., 2018; 
Luan et al., 2018). The relationship between carsharing performance and the presence of public 
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transport stops may partially be explained by people who do not have a car always available 
deliberately choosing to live in an area with high accessibility to public transport. Moreover, 
prior studies have noted that people who own a public transport subscription, are more likely 
to use carsharing services, when public transport is less suitable for their needs (Ciari et al., 
2016). Thus, the results suggest that areas with high public transport accessibility and 
connectivity are flourishing areas for carsharing. A possible explanation as to why the total 
number of public transport stops is only significant in the urban area but not in the suburban 
and rural areas might be given by the distribution of the public transport network itself. In rural 
and suburban areas, where population density is low and sparse, public transport networks face 
numerous challenges, as it is difficult to provide high frequency quality services without having 
them run with low occupancy (Petersen, 2016). Due to this, rural and suburban areas are 
sometimes largely car-dependent. This is also supported by the proportion of Swiss population 
(above 16 years old) that has a public transport season ticket being 45.1% in areas outside the 
influence of urban centres compared to 61.5% in urban centre areas (FSO/ARE, 2017).   
 
Mobility Members   
The number of already existing mobility members surrounding the carsharing stations is a 
variable that correlated highly with carsharing performance across all three models. As stated 
in the literature review, this finding is consistent with several reports in the carsharing literature, 
where authors found that customers concentrate close to a carsharing stations (Ciari et al., 2016) 
and that accessibility to a carsharing station is thought to decrease as the distance to the station 
increases (Kumar and Bierlaire, 2012; Luan et al., 2018). The results of the regression models 
show that carsharing membership has a substantial impact on stations’ performance and that 
stations that have a high density of members surrounding them have a higher performance. On 
the one hand, this could be due to people becoming members because of having a carsharing 
station in the vicinity of their residence or place of work and thus having greater accessibility 
to the service. Therefore, in principle, high-density urban areas should be key areas to place 
new carsharing stations as the probability of having a higher membership density is greater. On 
the other hand, carsharing stations could be placed in an area where a high density of members 
is already observed. In the study of Juschten et al. (2019), the authors are identifying two 
“deviator” groups from the expected impact that the accessibility to a carsharing station has on 
becoming a member: (1) people who are not carsharing members despite having high 
accessibility to multiple carsharing stations and (2) people who are carsharing members despite 
having low accessibility to carsharing stations. From their point of view, the interest should be 
centred on the second group, as they are considered “early adopters” and their characteristics 
should be examined in order to achieve further growth in areas where the supply is limited, 
such as the suburban and rural areas (Juschten et al., 2019). Thus, the models in this 
study suggest that potential areas to expand are those where there are already existing members 
but where the supply is scarce and cannot meet the demand.   
 
Points of Interest   
Among the POIs variables, the presence of shopping centres in the vicinity of carsharing 
stations showed a statistically significant influence on carsharing utilisation across all levels of 
urbanisation. This result reflects those of Kumar and Bierlaire (2012) who also found that the 
presence of commercial centres increases carsharing usage. Furthermore, the study of Becker 
et al. (2016) explains the reason for this significant correlation by identifying that one of the 
frequent trip purposes of station-based carsharing users is shopping and transporting items. 
Shopping centres represent an essential location for people to acquire goods and groceries. 
Moreover, usually grocery stores tend to be placed near a multitude of other types of retail 
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stores. Thus, these locations attract an extensive daytime population that could potentially 
influence carsharing performance for the stations in the vicinity.   
  
The presence of accommodations (i.e., hotels, motels, and hostels) was a significant predictor 
for carsharing performance only for stations existent in the urban and suburban groups. This 
finding is consistent with that of Kumar and Bierlaire (2012) who also found that the presence 
of hotels has a positive effect on carsharing performance in both urban and suburban 
areas. Accommodations bring additional overnight stays, the majority of which could have 
travelled without their private vehicle, especially in urban areas where access is easily made by 
plane or train. These could then be potential carsharing users. Moreover, the result that a higher 
number of accommodations is correlated with a higher performance for carsharing stations can 
also be impacted by the distribution of accommodations in urban areas. Hotels choose to locate 
close to one another in order to improve their occupancy levels by getting positive spill over 
effects from their neighbours (Barros, 2005; Canina et al., 2005; Yang et al., 2012). One 
explanation for the variable not being significant for the rural group could be that for overnight 
stays in the rural area, people would need a private vehicle to reach it, as the public transport 
network might be limited, thus not needing to use a carsharing service. In urban and suburban 
areas, tourists and visitors can rely much more on the public transport and therefore, a lot of 
their trips might not be made with their private vehicle. This study however does not take into 
account the locations of short-term rented apartments and other accommodation types, as there 
was no data available for this.  
  
The total number of universities was found to be a statistically significant predictor for 
carsharing performance in the rural group. In literature, this variable was tested among a 
number of different studies, but there was only one study, Kumar and Bierlaire (2012), that 
found a significant positive relationship between universities and carsharing usage. However, 
their study found the relationship to be significant in urban and suburban areas. Upon 
inspection, 5 out of the 186 points that were considered in this analysis for the universities 
locations datasets were in municipalities with no urban character. Moreover, 3 out of the 5 
university locations had a carsharing station near them with moderate performance. A possible 
explanation could be that, as rural municipalities can be highly car-dependent, and levels of car 
ownership are low amongst students. Therefore, students in rural areas use carsharing more 
than the ones in urban areas where there is a more developed public transport system. In 
addition, another possible reason for the high performance can be the placement of student 
accommodations that concentrate near universities.   
  
Land-Use  
Out of the land-use types considered in this study, the commercial land-use type showed 
significant correlation with carsharing performance in the suburban group. The description of 
the commercial land-use type from OSM is referring to predominantly commercial businesses 
and their offices (OpenStreetMap Wiki contributors, 2021b). Large business and commercial 
centres tend to cluster in suburban areas as there is no available area in the city to build them. 
The result supports arguments from previous studies that also found that the ratio of area for 
business use has a positive influence of carsharing performance (Kang et al., 2016). These 
locations bring a large daytime population that is found in literature to be a strong predictor for 
carsharing performance (Millard-Ball et al., 2005). A reason why this variable was not found 
to be significant for the urban group could be that in urban areas different land-use types are 
placed very close to one another. There could be commercial neighbourhoods that are also seen 
as residential or industrial neighbourhoods and, in the dataset, they would be recorded only 
under one type. Therefore, a higher resolution dataset would be needed to investigate this 
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relationship further and also taking in consideration the mix of land-use in an area, like the 
studies of Awasthi et al. (2007) and Correia and Antunes (2012). Further, Kang et al. (2016) 
uses percentage of building floor area instead of land-use because of the vertical mix for 
activities in the city of interest, method which could improve the accuracy of the analysis.  
 
The industrial land-use type showed significant correlation with carsharing performance in the 
rural group. The description of the industrial land-use type from OSM is referring to 
predominantly workshops, factories, or warehouses (OpenStreetMap Wiki contributors, 
2021b). Therefore, these are areas of high activity that bring a big daytime population that could 
potentially drive carsharing usage. Moreover, industrial land-use areas tend to appear more in 
rural than urban and suburban areas due to the space required.   
  
Intersection Density   
The total number of intersections present around carsharing stations showed significant 
correlation with carsharing performance only in the suburban group. Swiss urban areas are 
usually considered highly pedestrian friendly, which is also supported by highly developed 
public transport networks, thus there might be no difference between the pedestrian 
friendliness and the performance of carsharing stations. In the suburban areas, where the public 
transport network and the road network are not very dense, intersection density might be more 
important for people who do not have a car always available.   
  
Demographic Variables  
In the model created for stations in the urban group, the demographic variables that were found 
to be statistically significant predictors of carsharing performance were population between 20 
and 39 years old and population above 65 years. Although customers can use Mobility services 
form an age as early as 17 years old, the data for the population between 17 and 20 was not 
integrated in the analysis due to the structure of the STATPOP data that is recording the 
population in age groups of 5 (i.e., 15-19 age group). The result that population between 20 and 
39 years old is a significant predictor for carsharing performance is consistent with other studies 
within the carsharing literature (Millard-Ball et al., 2005; Kang et al., 2016; Luan et al., 2018). 
The result of the present study suggests that younger people in Switzerland are less likely to 
own a private vehicle. This could be due to the high costs associated with owning a car, since 
apart from having to pay for the vehicle itself, insurance and other associated costs are higher 
for young people.  
 
Contrary to the expectations and findings in other studies, the model created for stations in the 
urban group also found the population above 65 years old as a significant predictor. The result 
implies that population over the age of 65 tends to use carsharing more which further 
suggest that this population is also less likely to own a private vehicle. There is no public data 
available on vehicle ownership by age group in Switzerland but in the Mobility and 
Transport microcensus that is conducted every 5 years, the average daily distance per person 
for people with ages between 65 and 79 was 27.2 km and for people with ages of 80 years and 
over was 13.3 km, which is more than 50% less than the average distance travelled by younger 
age groups (FSO/ARE, 2017). Thus, one explanation for the result could be that, in Switzerland, 
elderly people tend to travel less and therefore give up their private vehicle, using carsharing 
when needed.  
 
In the model created for stations in the rural group, population between 40 and 64 years old was 
found to negatively correlate with carsharing performance. A possible cause of this could be 
that people in this age group are more likely to be car owners, especially in rural areas, where 
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in the absence of a reliable public transport system they might be dependent on their private 
vehicle and thus, are less likely to use carsharing.   
  
Household Variables  
The only household variable that was found to be a statistically significant predictor was the 
number of 2-person households, that correlated negatively with carsharing performance in the 
model for the stations assigned in the urban group and correlated positively in the model for the 
rural group. For the urban group, the result is somewhat in accordance with the findings in other 
carsharing studies, which conclude that as the number of people in a household increases, the 
likelihood of being carsharing users decreases, with one person household being the most 
frequent household type of carsharing members (Millard-Ball et al., 2005; Celsor and Millard-
Ball, 2007; Luan et al., 2018). However, in all three models constructed, one person households 
are found to be an insignificant predictor for carsharing performance. Moreover, the number of 
3-person households was not found to be statistically significant in predicting carsharing usage 
at all. Further, the spatial distribution of households by dimension could also play an important 
role, as more 2-person households might mean a denser residential area, thus implying that 
dense residential areas in urban environments negatively impact carsharing.  
 
Contrary to the results from the urban group, the number of 2-person households correlated 
positively with carsharing performance in the rural area. This result may be explained by the 
fact that in rural areas households tend to be bigger, with one-person households being less 
common in a rural environment. Another possible explanation could be that in rural areas that 
are car-dependent, for bigger households, carsharing could substitute the second vehicle in the 
household.   
  
Carsharing Stations  
Across all three models, the presence of clusters of carsharing stations correlated negatively 
with stations’ performance. This result is in accordance with a previous study done by Kumar 
and Bierlaire (2012) which suggested that as the distance between stations gets smaller, the 
catchment area of the stations gets impacted. Despite the fact that new stations are established, 
no new customers are added. If two carsharing stations are too close to each other, their service 
area becomes almost identical and thus no new customers can be reached. However, the small 
distance between stations can be a result of unavailable parking space to increase the capacity 
of an already existing carsharing station in order to match the demand at that location. In this 
case, a possible solution would be to move the station to a location that permits its expansion, 
when needed.  
 
7.2   Research Question 2: What are optimal locations for new return stations from a 
geographic point of view?   
  
The second research question seeks to determine what optimal new locations for carsharing 
return stations are based on the carsharing drivers identified in the first part of this study. This 
question is answered by integrating the significant factors that influence carsharing 
performance and performing an MCDA in order to determine candidate locations for new 
stations. Through this, the possible search space of the facility placement is reduced. 
Afterwards, location-allocation models are used to allocate demand to candidate facilities and 
thus choose optimal new locations for return stations. The results of the analysis indicate that 
new optimal locations for return stations concentrate in suburban and rural areas, which are 
highly suitable for carsharing and where demand is also present.  
 



Discussion 

 49 

Before integrating the resulting significant factors, weights needed to be assigned to each one, 
in order to show and establish their importance towards the goal, the suitability score. For this 
the AHP process developed by Saaty (1990) was used. This process was also used in previous 
carsharing studies for weighting different criteria (Awasthi et al., 2007; Li et al., 2017). The 
advantages of using the AHP process are that the factors are arranged in a hierarchical structure, 
by using a relative scale to compare their importance with respect to the goal ( Saaty, 1990; 
Awasthi et al., 2007). Through AHP the relative priorities given for a set of factors are 
quantified.  
 
For this study, the initial relative priorities of the factors considered were extracted from the 
regression models. Further, the factors were compared to each other using the pairwise 
comparison and relative scale developed by Saaty (1990) and described in Table 5.2. As 
different factors drive carsharing performance based on the level of urbanisation, the process 
was calculated individually for each group. The results of applying the AHP process for all 
three groups (urban, suburban, and rural) were presented in Table 6.4, Table 6.5, and Table 6.6, 
respectively. For all three models, the factor with the highest weight is the total number of 
existing members. This finding is consistent with the study of Li et al. (2017) where the density 
of members had also the highest weight in their calculation for placing carsharing stations using 
the MCDA method. The rest of the factors that are present in all three groups had different 
importance relative to the factors in that group and thus resulted different weightings. For 
example, the presence of train stations had the second highest weight in the urban group, the 
fourth highest weight in the suburban group and the smallest weight in the rural group. One 
possible explanation for this could be the population that commutes by train on a daily basis 
for work. As urban centres have higher job densities, usually people commute form rural and 
suburban areas into the city, thus bringing in more daily population that could represent more 
potential carsharing users. The presence of shopping centres is weighted similar across the three 
groups having the second highest weight in the urban group and the third highest weight in the 
suburban and rural groups. This might be explained by the fact that the influence of shopping 
centres on carsharing stations remains mainly the same, having the same relationship across all 
levels of urbanisation However, a reason why it is considered a more important factor in urban 
areas could be due to the higher population density. Therefore, apart from demonstrating that 
carsharing performance is driven by different factors depending on the level of urbanisation, 
the present study also found evidence that even for the factors that are significant across all 
levels of urbanisation, the level of their importance might vary.  
 
The first three figures of Chapter 6 reveal the final raster layer that presents how suitable the 
locations for carsharing stations are, based on the performed analysis. The resolution of the 
raster is 500x500 m and hence the decision unit of the analysis is also made up of 500x500 m 
grid cells. The results show that the majority of cells with high scores are distributed in urban 
centres, especially in the big cities in Switzerland. Moreover, a vast majority of the cells with 
suitable scores are present on the Swiss Central Plateau, one of Switzerland’s three 
geographical regions (Figure 7.1), that covers 30% of its area and is home for more than 75% 
of the countries’ population (FDFA, 2019). In addition, the majority of the factors used in this 
analysis are also concentrated within this area, thus resulting in higher scores. The already 
existing mobility stations are also located mainly on the Swiss Central Plateau. However, the 
results also suggest that suitable locations for carsharing stations exist beyond areas of and 
influenced by the big cities and that carsharing stations could be distributed more dispersed, 
expanding the coverage, and improving the accessibility to carsharing.  
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Figure 7.1: The carsharing suitability raster and the three main geographical regions of Switzerland. 
Data for the geographical regions from FOEN (2020).  

When looking at the resulting raster, in rural areas it can be observed that the suitability scores 
exhibited are high and the variety in scores is quite small. A reason for this could be that rural 
settlements usually have a small area of anthropogenic land cover, being surrounded by other 
land cover types such as agricultural fields and forests or having a restrictive topography such 
as narrow valleys. On the other hand, rural settlements are also quite dispersed, with low 
population and buildings density. Thus, the density of factors considered concentrates in the 
centre of the rural municipality and that is where high scores were observed. The resolution at 
which the analysis is done also had an impact on the results. The MCDA analysis was done 
using rasters whose resolution was 500x500 m, and therefore, all factors were aggregated to 
this resolution. One repercussion of this could be that structures and patterns in the data can get 
lost with lower resolution. As urban areas are denser, they get more impacted by a lower 
resolution, making it hard to detect any areas that could potentially not be suitable for 
carsharing. 
 
The suitability of a location should not be the only thing taken into consideration when 
placing new carsharing stations, or any type of facility. There might be a lot of suitable 
locations, but if there is no demand to allocate to that facility, the location does not bring any 
value to the network. For this reason, after suitable areas for carsharing stations were found, 
location-allocation models were used in order to allocate demand to candidate facilities and 
select the optimal ones.   
 
The aim of this project was to determine an optimal location configuration of a fixed number 
of facilities that maximizes accessibility to carsharing services. Thus, the location-allocation 
model implemented was the Maximise Attendance model. The choice of this model was done 
for several reasons. One of the most used and known location-allocation model is the minimize 
impedance (p-median). However, this problem did not suit the aim of this analysis as the goal 
is not to minimise the costs between demand points and the chosen facilities. Carsharing 
members would not travel any distance to reach carsharing station just because this is the 
closest. Therefore, an impedance cut-off around the facility was needed. Maximize coverage 
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problems locate facilities such that they serve as many demand points as possible within a 
specified maximum distance. However, this model is more suitable for emergency services such 
as fire stations and police stations that need to cover as much of the population as possible 
within a certain distance and time (ESRO, 2021a). Thus, beyond needing an impedance cut-off, 
the model applied needed to also take into consideration that the demand is traveling to the 
facilities, not vice versa. For this, the maximise attendance model is better suited. This is 
because apart from implementing a service area for the facility through having an impedance 
cut-off, it also implements a distance decay function, assuming that the demand weight 
allocated to the facility is inversely proportional with the distance between the demand point 
and the facility (ESRI, 2020a). Therefore, it was concluded that this was the most appropriate 
model to be used for the analysis as the probability of a customer to use a carsharing station 
decreases with the increase of the distance to the station.  
  
The candidate locations for the location-allocation models were extracted from the MCDA 
raster, as the centroid of the raster cells. Moreover, the suitability score of each cell was 
attributed to the points. No threshold value was set for the suitability scores of the candidate 
locations. Because of the ability to set weights for candidate locations in the location-allocation 
model, the suitability score of each location was used to represent this weight. Candidate 
locations with higher suitability scores had a greater weight associated with them and thus were 
considered more attractive to allocate demand to. Applying no threshold is useful in situations 
where a candidate location has a lower suitability score but the demand in the area is high. One 
downside of applying no threshold is that there is no elimination of candidate locations, and the 
computation time of the model increases. If the same framework were applied for another 
country with a bigger area, a threshold could be considered to be applied in order to avoid high 
computation times.   
 
In the solution for Model 1, out of 1’551 already existent stations, only 1’331 were part of the 
solution of the model, the rest being considered to have redundant locations, although all 
stations were characterised as required. Taking a closer look at the stations performance that 
were considered redundant by the model, no obvious pattern was observed. This group includes 
both high- and low-performance stations. However, taking a look at their spatial distribution 
showed that almost all redundant locations were in the immediate vicinity of a station that was 
part of the solution. This result supported the findings from the regression analysis that a small 
inter-distance between stations has a negative impact on the performance of the stations and the 
service areas overlap. On the other hand, this result could also be explained by the resolution 
of the analysis and the way the demand was aggregated. In order to aggregate the population to 
the same level of aggregation as the factors used, a weighted mean of the population was done, 
and the resulting demand points locations were “skewed” towards the points that had higher 
registered population. However, by doing this, the size of the population at that point was no 
longer registered, the demand point representing the location where there is the highest 
population density within the 500 m2. Therefore, in urban areas this is an oversimplification of 
the demand locations and magnitude, which can lead to the assumption that there is less demand 
to be served, and thus some already existing locations were considered redundant. Furthermore, 
the current models did not take into consideration the capacity a carsharing station has.  
 
The results from Models 2-5 support the findings from the MCDA analysis that suburban and 
rural areas have great potential for carsharing services expansion. Areas as such not only 
exhibited high suitability scores but also exhibited potential demand for carsharing. Moreover, 
even if urban areas exhibited high suitability scores, with the demand model used it appears 
that the areas were saturated with carsharing stations. Although, the demand model used was 
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quite simplistic, using the population density, several studies concluded that population density 
can be a driver for carsharing performance (Correia and Antunes, 2012; Kumar and Bierlaire, 
2012) and the probability of having more carsharing members increases with denser population. 
In accordance with the present results, the previous study of  Juschten et al. (2019) has also 
established that, in Switzerland, areas with low levels of carsharing supply, like the suburban 
and rural areas identified in this study, exhibit high potential in terms of carsharing 
attractiveness. All of the aforementioned lead to the conclusion that when thinking of expanding 
the carsharing network, suburban and rural area show great potential and even though urban 
areas are the intuitive choice, other areas should be investigated too.  
 
Regarding the performance variables of the models, the trends of both the share of demand 
points and total area covered were very similar. As the number of stations placed increased, 
both the share of demand and the area covered increased. For the number of models run and the 
maximum number of stations added (1’000) no trade-off curve could be observed (Figure 6.5). 
It is evident that infinite stations cannot be added to the network, but a point where the growth 
in demand or area covered by the number of facilities becomes less substantial has not been 
observed. These results suggest that there is enough room for Mobility to expand from the point 
of view of demand and area available only without concerning additional costs of the new 
facilities and management. A possible reason for the increasing trend could be that carsharing 
is a young business with a lot of potential and room for expansion. The trend of the mean 
distance indicator, between demand points and facilities, displays a decreasing trend. A smaller 
mean distance travelled means that stations are added closer to the demand, thus providing 
better accessibility. However, after the network reaches 2’000 stations, the decrease in the mean 
distance travelled becomes very small.  
 
In sum, this chapter has provided the main findings of this study, answering to the two research 
questions established in Chapter 3. The density of already existing members, the presence of 
train stations and shopping centres were factors that were discovered to drive carsharing 
performance irrespective of the level of urbanisation. Further, locations suitable for carsharing 
were identified by integrating all drivers of carsharing. Locations for future carsharing stations 
were chosen not only based on their suitability but also by allocating demand to them and 
detecting a need for this service in that area. Although urban areas exhibited the highest 
suitability scores, they are areas with a high number of already existing stations, and the 
demand was allocated to those. Thus, suburban and rural areas were detected as attractive areas 
for carsharing expansion.   
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8. Conclusion   
  
8.1   Summary and Main Findings   
  
This project is a case study of Mobility, a carsharing service in Switzerland. In need for another 
transportation mode that can be more flexible than public transport but less problematic than 
owning a private car, the idea of carsharing appeared, where multiple users can share between 
themselves a fleet of cars. Beyond the environmental benefits that this transportation mode has, 
by reducing VKT and vehicle ownership, carsharing also provides social, economic and health 
impacts. The aim of this project was to reveal what surrounding factors make a carsharing 
station successful and determine new locations for carsharing stations based on these factors. 
For this, a framework based on identifying the drivers of carsharing performance and 
combining MCDA and location-allocation models was proposed.  
 
In response to the first research question, factors surrounding the stations that might drive 
carsharing utilisation were analysed. This was achieved by using multiple regression linear 
models. The list of variables that were tested against carsharing performance was constructed 
from literature and the variables used in other carsharing studies. There were 18 independent 
variables tested against one dependent variable: the number of reservations at each carsharing 
station.  In the interest of observing if there is any variation in the drivers based on the different 
levels of urbanisation, the stations were divided in three groups: urban, suburban, and rural. 
The results showed that while there are several factors that are significant across all three 
groups, in general the performance of carsharing stations can be explained by different factors 
depending on the level of urbanisation.  
 
Responding to the second research question, new locations for carsharing stations were 
identified. Firstly, an MCDA was used to integrate the factors discovered in the first part of the 
analysis and find locations with similar characteristics as locations where successful carsharing 
stations already exist. The AHP method was used to determine the weights of the significant 
factors. The density of members turned out to be the most important indicator determining the 
location of a station, irrespective of the level of urbanisation. The rest of the factors present in 
all three groups had different importance based on pairwise comparisons and relative to the 
factors present in the group. The resulting raster shows that urban areas have the largest 
concentration of high suitability scores, but after applying the constraint associated with already 
existing carsharing stations, this is eliminated. Moreover, suburban and rural areas also exhibit 
moderate to high suitability for placing carsharing stations. Thus, based on the performed 
analysis there are favourable locations for carsharing expansion beyond urban areas. Secondly, 
location-allocations models were used to allocate demand to candidate locations that were 
extracted from the MCDA raster. The models placed new carsharing stations mainly in 
suburban and rural areas, suggesting that the urban areas are saturated with supply. 
Thus, rural and suburban areas are found to be attractive locations for placing new carsharing 
services, having good suitability scores and demand for this service.   
  
8.2   Limitations   
  
The main limitation of this study is the data availability for particular factors. As the list of 
factors that were tested against carsharing performance was created after an extensive literature 
research, where all studies tested and considered different factors, some of them could not be 
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considered in the present study due to lack of data availability. For instance, there were a lot 
of factors that were discovered to be significant drivers in certain carsharing studies but could 
not be used in the present analysis because no data was available for them. These latter include 
data on vehicle ownership, on driving licence ownership, on public transport subscription 
ownership, on income and on the level of education of the population. Moreover, the amount 
of parking space is also a variable often included in the analysis of carsharing studies, but for 
this study only one dataset was found from OSM which in the end could not be used because 
of its low quality. Having these data available could potentially improve the percentage of 
explained variance in the regression models. Nevertheless, this work has put in place a 
workflow that could be extended by including more predictor variables, if more data becomes 
available.  
  
Another limitation of the study is that it is not taking into consideration any aspect regarding 
the actual placement of the proposed new carsharing stations, such as land availability and the 
costs associated with its opening. Moreover, although the methodological workflow can be in 
principle applied to any study area, the results and the conclusions that can be drawn from this 
study are limited to Switzerland, as it was proven by this study and other studies in literature 
that the factors that influence carsharing performance can be particular from one study area to 
another.    
  
8.3   Future work   
  
Due to the multiple disadvantages associated with owning a private vehicle and the rapid 
growth of the sharing economy concept, carsharing is promising to gain increased popularity 
in the future. In order to be successful and benefit the entire network, developing frameworks 
for choosing new locations for return carsharing stations is a subject on which further studies 
should be conducted.   
  
Beyond focusing on the location of the stations, it would be essential for future studies to take 
into consideration the capacity of the return stations and analyse how it can be adjusted with 
respect to the demand in that area. Hence, certain guidelines could be developed for carsharing 
services in order to determine the size of future stations. Moreover, studies focusing on the type 
of vehicles present at a station could provide insights into what certain vehicle types are used 
for and where these types are used the most. This would help carsharing services provide a 
better and more attractive service for their customers.   
  
For future studies that are concerned with optimising carsharing networks, a more refined 
demand model used would be essential. Constructing a demand model that is built on the 
characteristics of already existing members or the target population for carsharing will increase 
the accuracy of the location and of the magnitude of potential demand.   
  
Finally, conducting studies on optimising carsharing networks on a smaller scale, would 
improve the accuracy of the analysis and of the locations proposed. While a large-scale analysis 
can help by minimising the search area for where the next expansion of the network is most 
needed, a smaller scale analysis would help capture the particularities and variations in travel 
patterns and usage for which carsharing is used.  
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