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Abstract

Lake ice cover provides a variety of ecological and cultural ecosystem services. Therefore, the
loss of lake ice cover can lead to a range of ecological consequences. With increasing pressure on
account of climate-change the timing of seasonal lake ice freeze-up and break-up, also referred
to as lake ice phenology (LIP), is subject to change. Recent research shows that lakes around
the Northern Hemisphere have progressively earlier ice-off dates, later ice-on dates and a result-
ing shorter ice duration, up to the point where lakes fail to freeze. Due to its critical linkage to
the characterization of the Earth’s climate, lake ice phenology has been introduced by the Global
Climate Observing System (GCOS) as part of the 54 Essential Climate Variables. We present a
proof of concept for an extensive monitoring system for the European Alps based on a multi-
sensor remote sensing approach. As part of this thesis, we created a complete processing chain
implemented in the Google Earth Engine for the extraction of lake ice coverage and lake ice phe-
nology down to lake sizes of 0.1 km2 using random forest classifiers. Our accuracy assessment
with webcam-based ground observations shows that we can extract phenological key dates with
a high accuracy (R2 of 0.98) and a mean difference of -0.17 ±4.3 days. Our analysis using leave-
one-lake-out cross-validation showed that the performance for unseen lakes drops significantly.
Thus, model generalization over the entire European Alps has to be proven in future studies with
more extensive validation data before establishing an operational monitoring system.
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1 Introduction

1.1 Lake ice phenology

Lake ice cover provides a variety of ecological and cultural ecosystem services. Therefore, the
loss of ice cover can lead to a range of ecological consequences such as reduction in water quan-
tity, degradation of water quality, reduction in dissolved oxygen and proliferation of algal blooms
(Sharma et al., 2019). Cultural services affected include the loss of important ice roads and the
ability for ice fishing and recreational ice skating (Knoll et al., 2019). Furthermore the loss of
freshwater lake ice has been identified as one of the earliest observed impacts of climatic warm-
ing (Walsh et al., 1998) and the identification of freezing and thawing cycles plays an important
indicator in the modelling of the regional climate change and climate variability. With increas-
ing temperatures due to global climate change, the timing of lake-ice freezing and breaking up
is changing. This timing of seasonal lake ice freeze-up and break-up is also referred to as lake
ice phenology (LIP). Trends in delayed freeze-up and shortened ice duration have been found to
be six times faster in the last 25-year period (1992–2016) than in the previous quarter centuries
(Sharma et al., 2021). Recent research also shows that lakes around the Northern Hemisphere
have progressively earlier ice-off dates, later ice-on dates and a resulting shorter ice duration, up
to the point where lakes fail to freeze (Sharma et al., 2020).

Due to its critical linkage to the characterization of the Earth’s climate, lake ice phenology variables
have been introduced by the Global Climate Observing System (GCOS) as part of the 54 Essential
Climate Variables (ECV). This means that the measurement of these variables is a necessity for the
thorough understanding and prediction of the Earth’s climate. With the implementation plan of
2016, GCOS has established the requirements for lake ice coverage with daily measurements at <
300 m resolution and < 10% uncertainty (GCOS, 2016). Uncertainty requirements for LIP-events,
that describe the timing of the freeze-up and break-up cycles, have been suggested at ± 2 days
(Tom et al., 2019).
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1.2 Monitoring lake ice from space

Ice records based on in-situ observations play a critical part in the understanding of freshwa-
ter ice cycles. In-situ records have contributed the majority of working knowledge on the topic,
with some records dating back as early as 1443 (Sharma et al., 2020). However, due to its labor-
intensive nature, the available records are spatially and temporally non-comprehensive. Thus
satellite remote sensing is key to achieve economically feasible, frequent and also comprehensive
measurements of lake ice phenology. Previous approaches have made use of two main types of
data sources.

Extraction of lake ice phenology based on optical remote sensing makes use of the different spec-
tral characteristics of snow, ice, and water. These surfaces can usually be distinguished by their
differing reflectance (Figure 1.1) in the visible and thermal infrared (TIR) wavelengths. Depend-
ing on its formation, ice can further show a range of optical characteristics. A common distinction
is made between low reflective black and highly reflective white ice (Sharma et al., 2020). Black
ice forms in a downwards direction from the bottom of the ice layer as the ice continuously grows
due to freezing lake water. White ice is formed from the ice surface upwards, when water is in-
troduced into the snow matrix and the resultant slush refreezes. The introduced water can come
from rain, melting snow, or the intrusion of lake water as the weight of the snow layer depresses
the ice surface below the water level (Brown and Duguay, 2010). Multi-spectral optical sensors
have been used in a multitude of studies to obtain reasonable results in the identification of lake
ice formation cycles (Zhang et al., 2021; Yang et al., 2021; Tom et al., 2019; Latifovic and Pouliot,
2007; Nolan et al., 2003).

Figure 1.1: Lineplot of the optical signal (left) sampled from different surface classes based on
Sentinel-2B surface reflectance over Lake Eibsee in Grainau, Germany at the 20th of March 2019.
The corresponding Sentinel-2B image (right) with labeled sampling points is displayed as false
color composite.

Extraction of lake ice phenology based on active microwave remote sensing such as synthetic
aperture radar (SAR) has also been successfully demonstrated (Murfitt and Duguay, 2020; Tom
et al., 2020; Hoekstra et al., 2020; Nolan et al., 2003). In this approach the detection of lake ice is
based on the higher back-scatter of snow and ice relative to open water (Figure 1.2). Due to the
specular reflection of water a very low return signal can be observed for open water. On the other
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hand, snow and ice introduces backscatter at the uneven air-ice/snow and water-ice interfaces
and additional scattering due to air bubbles and cracks within the ice/snow layer (Atwood et al.,
2015; Koskinen et al., 2000).

Figure 1.2: SAR VV-polarized backscatter signal from Sentinel-1B of ice/snow compared against
water surfaces. The histogram (A) visualizes the distribution of signal strengths of the two differ-
ent surface classes with equal random samples (4,000 each) over Lake Eibsee in Grainau, Germany
at the 27th of March 2019. The lines indicate the estimated kernel density. The corresponding
Sentinel-1B image with annotations (B) and a high-resolution webcam image from the same day
(C) are displayed for context.

In all of the mentioned studies the focus has been set on a single or a small number of lakes. To
date, no study has extracted a ice phenology inventory for a large lake population over multiple
years. In addition, the use of low resolution sensors such as MODIS, often limited the usage on
large lakes (>3.2 km2). There have been only a few exceptions where phenological lake attributes
were extracted for small lakes. Even in these cases, only lakes down to a minimal size of 0.78 km2

(Tom et al., 2020; Tom et al., 2019) have been studied. In a recent review paper about remotely
sensed lake ice phenology, Sharma et al. (2020) have pointed out that the potential of lake ice
phenology extraction using optical remote sensing at "medium" resolution (referring to Landsat)
remains largely unexplored. Due to the technical trade-offs between temporal and spatial resolu-
tion within existing sensors, previous studies have also failed to achieve the GCOS requirements
of daily measurements with a resolution lower than 300 m.

This research gap highlights the need for an automated multi-sensor-based monitoring system
that allows to detect freezing and thawing cycles down to small lakes (>0.1 km2) with state-of-the-
art high resolution and high frequency observations to achieve measurements on a daily basis.

1.3 Research objectives

The aim of this thesis is to establish such a monitoring system for an alpine study area and ex-
plore the feasibility of lake ice phenology monitoring for small lakes. The main working part will
be an automated process for the classification of lake ice cover based on machine learning (ML)
methods. The classification results will be further processed in an automated extraction of lake
ice phenology. We will base our system on the Google Earth Engine (GEE) (Gorelick et al., 2017)
which allows for efficient cloud-based processing of the large datasets involved. As a final product

3



a GEE application with high ease of use should allow untrained users to easily query and display
LIP-statistics over a desired lake within our study area.

In the first part, we will explore the effectiveness of our ML-based lake ice detection approach
with remotely sensed input data. Furthermore, we will try to enhance our classification with the
addition of spectral, temporal and spatial features. For this part we want to answer the following
research questions:

– RQ1: How accurately can lake ice coverage (LIC) be extracted using RS-based methods in
an alpine environment?

– RQ2: How do the different sensors (S-1, S-2, S-3, L7, L8) compare on the ice/non-ice classi-
fication accuracy?

– RQ3: Which multi-spectral indices, temporal features, image textures and air temperature
features can be used as input features to enhance the classification accuracy of lake ice clas-
sifiers?

In the second part, we will use the obtained LIC results to extract lake ice phenology (LIP) and
assess the accuracy of the extracted phenological key dates. Furthermore, we try to gain an insight
into the relationship of lake ice cycles and climatic as well as lake-specific factors to answer the
following research questions:

– RQ4: How accurately can lake ice phenology events be extracted using RS-based methods
in an alpine environment?

– RQ5: Which relationship exists between the measured lake ice phenology and climatic fac-
tors (e.g. temperature)?

– RQ6: Which relationship exists between the measured lake ice phenology and lake-specific
factors (e.g. lake area, lake depth)?
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2 Study Area

Lake (512 total)

National Border

Alpine Convention Perimeter

Legend

Figure 2.1: Overview map of the study area showing the Alpine perimeter defined by the Alpine
Convention and the 512 lakes fully or partially within as defined by the HydroLAKES dataset.

The study area is the European Alps based on the Alpine perimeter as defined by the Alpine Con-
vention (Laner, 2018) and its lakes as defined by the HydroLAKES dataset (Messager et al., 2016).
The Alpine perimeter covers an area of approximately 190,700 km2 extending over 8 countries.

All lakes fully and partially within this perimeter with an area larger than 0.1 km2 are part of
the studied lakes. This covers a total of 512 lakes from an area of 0.1 up to 572 km2. Situated at
elevations as low as 62 up to 2,697 m above sea level. The study lakes are made up of 78% (399)
natural lakes and 22% (113) reservoirs. With a median lake area of 0.35 km2 and a median shore
length of 3.2 km most of the Alpine lakes (68.8%) are well below the previously studied lake sizes
(Figure 2.2).
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Figure 2.2: Histograms of the area (left) and elevation (right) of the study lakes created based
on the HydroLAKES attributes. In the lake-area histogram bins above the 90th percentile were
truncated to better represent the distribution of the overall data.

As a result of the strong influence of natural seasonal meltwater inflows as well as artificial dis-
charge control in reservoirs, many of the study lakes show seasonal fluctuations in their water
level leading to changes in surface area. The median amount of seasonal (non-permanent) water
surface lies at 10.7% (Figure 2.3).

Figure 2.3: Histogram of
the seasonality of the study
lakes. Seasonality is pre-
sented as the relative area
of the non-permanent water
surfaces. Seasonality is based
on the JRC Yearly Water Clas-
sification History v1.3 (Pekel
et al., 2016) for the year 2019.

Due to their topographically embedded condition, many Alpine lakes experience topographic
shading during low solar angles. This effect is amplified by the high latitude. During the winter
season, this can lead to prolonged periods of shading that strongly reduce the remote sensing
reflectance. The median winter coverage of shaded area reaches a maximum of 8.1% coverage for
the study lakes (Figure 2.4).
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Figure 2.4: Distribution
plot of the simulated rela-
tive shaded lake area over
time of the 512 study lakes.
The hill-shade is simulated
for the time of day dur-
ing Sentinel-2A/B acquisi-
tions in the Season 2019-
2020, thus representing the
expected remotely sensed
shading.

2.1 Training lakes

The training lakes are selected lakes at locations with publicly available high-quality webcam
imagery, suitable for the generation of training data. A total of 10 training lakes were chosen
based on data-availability while trying to represent the highest possible range in variability of
lake size, elevation and spatial distribution of the study area.

Training lake

National Border

Alpine Convention Perimeter

Legend

Figure 2.5: Overview map of
the training lakes used in the
generation of training data
for the monitoring system.
Lake IDs correspond to the
lakes in Table 2.1. Note the
two lakes Stausee Mooserbo-
den and Stausee Wasserfall-
boden are captured on the
same webcam and share the
same lake ID.

Table 2.1: Table of the training lakes that serve as input lakes for model-training

Lake name Lake ID
Elevation
(m a.s.l.)

Area
(km2)

Latitude Longitude

Eibsee 1 973 1.7 47° 27’ 24" N 10° 58’ 22" E
Silsersee 5 1,797 4.1 46° 25’ 20" N 9° 44’ 16" E
Silvaplanersee 6 1,791 3.2 46° 27’ 1" N 9° 47’ 34" E
St. Moritzersee 7 1,768 0.78 46° 29’ 39" N 9° 50’ 42" E
Sihlsee 4 889 10.7 47° 8’ 14" N 8° 46’ 45" E
Schlegeisspeicher 2 1,780 2.2 47° 1’ 59" N 11° 42’ 17" E
Turrachsee 8 1,763 0.19 46° 55’ 7" N 13° 52’ 35" E
Stausee Mooserboden 3 2,038 1.6 47° 9’ 32" N 12° 42’ 46" E
Stausee Wasserfallboden 3 1,674 1.5 47° 11’ 21" N 12° 43’ 8" E
Zeller See 9 750 10.7 47° 19’ 25" N 12° 48’ 22" E
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3 Data

Investments and efforts towards open data policies in Earth Observation have greatly increased
in recent decades. As a result, the availability of open-access satellite imagery has experienced
a strong growth. To overcome technical trade-offs between temporal and spatial resolution and
achieve the highest possible temporal resolution for the monitoring of small lakes, we try to lever-
age this growing data source by combining imagery from multiple satellite missions. Namely,
we combine the freely available data of the Sentinel satellite suite from the Copernicus program
operated by the European Space Agency (ESA) and of the Landsat satellite suite operated by the
National Aeronautics and Space Administration (NASA) and the United States Geological Survey
(USGS). Both missions provide suitable imagery and supply a high combined temporally resolu-
tion with ensured future data availability.

Figure 3.1: Mission timeline (left) and data availability of Landsat 7/8 and Sentinel-1/2/3 imagery
(right). The number of available scenes corresponds to the yearly scene-count for the year 2019 at
Lake Sils, Switzerland.

The sensors used in this study can be divided into two main categories. The Sentinel-1A/B C-
SAR instrument uses active microwave remote sensing. Whereas the Landsat 7 ETM+, L8 OLI
and TIRS, S-2A/B MSI and S-3A/B OLCI EFR are multi-spectral passive optical remote sensing
sensors.
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3.1 Optical data

3.1.1 Landsat 7/8

The Landsat 7 (L7) mission was launched on April, 1999 and carried the Enhanced Thematic
Mapper Plus (ETM+) sensor. With a a sun-synchronous, near-polar orbit and a repeat cycle of
16-days, L7 has delivered global imagery from its service start in April of 1999 until its recent
decommission in April of 2022. The L7 ETM+ sensor imagery used in this thesis consists of data
from four visible and near-infrared (NIR) bands and two short-wave infrared (SWIR) bands at
a spatial resolution of 30 meters. Additionally, imagery from the thermal band with a 60 meter
resolution was used (collection "LANDSAT/LE07/C02/T1_L2" on GEE).

Most of the L7 imagery is provided with data gaps in a consistent zig-zag pattern (Figure 3.2)
as a result of permanent instrument failure of of the Scan Line Corrector (SLC) on May 31, 2003.
Without the SLC the imagery cannot be compensated for the forward motion of the satellite, lead-
ing to duplicated image areas starting near the center of the scene with increasing width toward
the edges. The duplicated areas are removed in a processing step and result in a loss of 22% of
pixels. However, the incomplete scenes referenced as SLC-off still maintain the radiometric and
geometric correction as before the instrument failure.

Figure 3.2: Land-
sat 7 ETM+ scene
(LE07_194028_20170617)
after the Scan Line Corrector
(SLC) failure in May 31,
2003. The two close-ups
demonstrate the gap near
the unaffected center of the
image corresponding to a
single pixel (30m) in width
(lower close-up), reaching
14 pixels in width (420m) at
the image borders (upper
close-up).

Its successor Landsat 8 (L8) was launched in February of 2013 with the goal of continued ac-
quisition and availability of Landsat data and is still operational as of 2022. With identical orbit
characteristics, L8 provides data with the same temporal, spatial and similar spectral resolution.
The acquisition instrument was split up into two individual sensors. The Operational Land Im-
ager (OLI) covers the visible, NIR and SWIR spectrum and the Thermal Infrared Sensor (TIRS)
the thermal infared spectrum. The L8 OLI sensor imagery used in this thesis consists of data from
five visible and near-infrared (NIR) bands and two short-wave infrared (SWIR) bands at a spatial
resolution of 30 meters. Additionally, thermal imagery from the TIRS-instrument with a 60 meter
resolution was used (collection "LANDSAT/LC08/C02/T1_L2" on GEE).
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The available Landsat derived products have constantly evolved over the years and are available
in different processing levels. For our study we used the reprocessed USGS Collection 2 Level 2
(C2L2) dataset accessible over GEE. These reprocessed Landsat science products make use of aux-
iliary data inputs and robust processing algorithms to derive atmospherically corrected surface
reflectance (SR) and land surface temperature (LST) with consistency and high quality.

The data is provided as overlapping image tiles covering an approximate area of 170 km by 183
km. The high latitude of the study area leads to increased overlap between acquisitions and a con-
sequently higher data availability than at equatorial orbit revisit period of 16 days. Considering
the loss of usable data by cloud coverage, we can achieve a median coverage frequency for L7 and
L8 of approximately 28.1 (see Appendix A) and 26.1 days (see Figure 3.3), respectively.

* based on Landsat 8 Lvl. 2 Coll. 2
data from the year 2019, Google
Earth Engine LANDSAT/LC08/C02/
T1_L2 dataset cloud-masked with
CFMask (v3.3.1)

Training lakes
Alpine Convention 
Perimeter
National Border

Landsat 8 OLI
data availability*
Coverage frequency,
cloud-masked (days)

11.8 - 20.5

20.5 - 29.3

29.3 - 38.0

38.0 - 46.8

46.8 - 55.5

55.5 - 64.3

64.3 - 73.1

Legend

Figure 3.3: Map of the study area showing the spatial distribution of the coverage frequency of
Landsat-8 imagery after cloud-masking in the year 2019.

3.1.2 Sentinel-2

The ESA Copernicus Sentinel-2 (S-2) mission was launched on June, 2015 with its first satellite
the S-2A. It was later expanded with the launch of S-2B in March, 2017. Together the two units
phased at 180 degrees build a two-satellite constellation with the same sun-synchronous, polar
orbit and a combined revisit period of 5-days (equatorial). Both satellites carry the Multi-Spectral
Instrument (MSI), an optical multispectral sensor with a total of 13 spectral channels. The S-2
MSI imagery used in this thesis consists of data from 10 visible and near-infrared (NIR) bands and
two short-wave infrared (SWIR) bands at a spatial resolution of 20 meters (collection "COPERNI-
CUS/S2_SR" on GEE). To get a common resolution of 20 meters, the two bands (B1 and B9) are
downsampled from a resolution of 60 metres and the four bands (B2, B3, B4, B8) are upsampled
from a resolution of 10 meters. The constellation’s lifetime is planned to be extended with the
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addition of S-2C/D in the years 2024 and 2025, respectively.

The S-2 derived products are available in different processing levels. For our study we used the
reprocessed Level-2A products that are converted to Bottom Of Atmosphere (BOA) reflectance ac-
cessible over GEE. The atmospherically corrected Level-2A products are systematically generated
over Europe since March 2018, and the production was extended to global in December 2018.

The data is provided as overlapping image tiles covering an approximate area of 100 km by 100
km. The high latitude of the study area leads to increased overlap between acquisitions and a
consequently higher data availability than at the equatorial orbit revisit period of 5 days. Consid-
ering the loss of usable data by cloud coverage, we can achieve a median coverage frequency of
approximately 5.1 days (see Appendix A.2).

3.1.3 Sentinel-3

The ESA Copernicus Sentinel-3 (S-3) mission was launched on June, 2015 with its first satellite the
S-3A. It was later expanded with the launch of S-3B in March, 2017. Together the two units phased
at 140 degrees build a two-satellite constellation with the same sun-synchronous, near-polar orbit
and a combined revisit period of 1.1 days (equatorial). Both satellites carry the Ocean and Land
Color Instrument (OLCI), an optical multispectral sensor that has 21 spectral bands ranging from
the visible to the near-infrared. The S-3 OLCI imagery used in this thesis consists of data from all
21 bands (collection "COPERNICUS/S3/OLCI" on GEE). The constellation’s lifetime is planned
to be extended with the addition of S-3C/D in the years 2024 and 2028, respectively.

The S-3 OLCI derived products are available in different processing levels and resolutions. For
our study we used the Level-1B Land Full Resolution (LFR) products that are provided in Top
Of Atmosphere (TOA) reflectance at the full resolution of 300 metres accessible over GEE. As
of the submission of this thesis none of the available S-3 products were available over GEE in
atmospherically corrected Level-2 processing.

The data is provided as overlapping image tiles covering an approximate area of 1270 km by 1270
km. The high latitude of the study area leads to increased overlap between acquisitions and a
consequently higher data availability than at equatorial orbit revisit period of 1.1 days. Consid-
ering the loss of usable data by cloud coverage, we can achieve a median coverage frequency of
approximately 1.5 days (see Appendix A.3).
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3.2 Synthetic aperture radar data

3.2.1 Sentinel-1

The ESA Copernicus Sentinel-1 (S-1) mission was launched on April, 2014 with its first satel-
lite the S-1A. It was later expanded with the launch of S-1B in April, 2016. Together the two
units phased at 180 degrees build a two-satellite constellation with the same sun-synchronous,
near-polar orbit and a combined revisit period of 6 days (equatorial). Both satellites carry the
C-band synthetic-aperture radar (C-SAR) instrument. The C-SAR instrument actively measures
microwave back-scatter at 5.405 GHz (wavelength of 5.5 cm) and supports operation in dual po-
larisation (HH+HV, VV+VH) modes. The constellation’s lifetime is planned to be extended with
the addition of S-3C and S-3D in the year 2023.

* based on Sentinel-1 IW GRD data
from the year 2019, Google Earth
Engine COPERNICUS/S1_GRD
dataset
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Sentinel-1A/B C-SAR
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1.5 - 1.8
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Legend

Figure 3.4: Map of the study area showing the spatial distribution of the coverage frequency of
Sentinel-1A/B imagery in the year 2019.

The S-1 C-SAR derived products are available in different processing levels. For our study we
used the Ground Range Detected (GRD) products that are provided in calibrated, ortho-corrected
back-scatter. Only scenes available in the Interferometric Wide (IW) swath mode and VV/VH-
polarized back-scatter bands in raw power values were used (collection "COPERNICUS/S1_GRD_FLOAT"
on GEE). The dataset is provided in a pixel-spacing of 10 metres. Since the radiometric resolution
is limited to 20 metres, a down-sampling to 20 meters is applied.

The data is provided as overlapping scenes covering an approximate area of 170 km by 250 km.
The high latitude of the study area leads to increased overlap between acquisitions and a conse-
quently higher data availability than at the equatorial orbit revisit period of 6 days. Due to the
active SAR technique, cloud coverage can be penetrated and does not impact the coverage fre-
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quency. Thus we can achieve a median coverage frequency of approximately 3.1 days (Figure
3.4).

3.2.2 ALOS AW3D30

For the processing of the SAR imagery the Japan Aerospace Exploration Agency (JAXA) Ad-
vanced Land Observing Satellite (ALOS) Global Digital Surface Model (AW3D30) was used. The
AW3D30 is a global digital surface model (DSM) dataset with a resolution of approximately 30
meters (1 arcsecond). The elevation of the DSM is globally calculated with stereo mapping of
optical images acquired by the ALOS/Daichi mission operated by JAXA from 2006 to 2011.

3.3 Lake data

3.3.1 HydroLAKES

The HydroLAKES v1.0 dataset (Messager et al., 2016) is a global lake database with shoreline
polygons of all global lakes with a surface area of 10 ha (0.1 km2) and higher. The dataset has
been coalesced from multiple auxiliary data sources of lake polygons. In addition to the shoreline
polygon, a number of geometrically derived and externally sourced attributes are available.

Table 3.1: List of available HydroLAKES v1.0 attributes used in this study

Attribute Unit Description
Lake type [-] Indicator for the type of lake
Lake area km2 Lake surface area
Shore length km Length of shoreline
Shore deviation [-] Measure for complexity of shoreline
Total volume mcm Estimated or reported total lake reservoir volume
Avg. depth m Estimated lake depth derived from area and volume
Avg. discharge m3 s−1 Avg. discharge derived from modeled estimates
Avg. residence time d Avg. residence time derived from volume and discharge
Elevation m a.s.l. Elevation of lake surface

3.3.2 JRC Global Surface Water Mapping Layers

The JRC Global Surface Water Mapping Layers v1.3 dataset (Millard and Richardson, 2015) con-
tains the spatial and temporal distribution of surface water from 1984 to 2020. The existence of
surface water was extracted and mapped from over 4.4 million scenes from Landsat 5, 7, and 8.
Each pixel was individually classified into water/non-water using an expert system and the re-
sults were combined into a monthly history for the entire time period with a resolution of 30 m.
Areas where water has never been detected are masked. For this study we make use of the yearly
aggregated JRC Yearly Water Classification History v1.3. This dataset has been derived from the
monthly history and contains a year-by-year classification into permanent and seasonal surface
water.
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3.3.3 Webcam imagery

High-resolution webcam imagery was obtained from foto-webcam.eu for eight of the study lakes.
A total of 10’524 daily images were acquired at 12:00 PM local time. The webcam network set
in place by foto-webcam.eu utilizes repurposed single-lens reflex cameras installed in a custom
enclosure instead of relying on commercially available standard webcam products. This allows
them to provide high-quality and high-resolution imagery in 10 min time intervals. Access to their
webcam network and image archive, as well as detailed documentation on the camera system, are
freely available on their website.

Additional webcam imagery for two adjacent study lakes (Silsersee and Silvaplanersee) was sam-
pled from one Roundshot system by Seitz Phototechnik AG. Their commercial Roundshot cam-
era system produces full panoramic images which are archived in 10 min intervals and generally
freely available.

3.3.4 Auxiliary training data

For our study we reused lake ice coarse classification results obtained by (Tom et al., 2019) for four
of our study lakes. This training data consists of daily labels that give coarse estimates of the lake
ice coverage for the entire lake. The training data was produced by manual visual classification of
webcam imagery.

3.4 Climate data

3.4.1 ECMWF ERA5-Land

The European Centre for Medium-Range Weather Forecasts (ECMF) ERA5-Land dataset provides
a collection of 50 global climatic land variables. This climate reanalysis dataset is provided in
the form of gridded data in hourly intervals with a resolution of approximately 9 km. For our
study we made use of the variables 2m air temperature and eastwards and northwards 10m
wind component.
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3.4.2 MeteoSwiss Grid-Data Products

The MeteoSwiss grid-data products TabsD, TminD, TmaxD (MeteoSwiss, 2021) are comprised
of daily mean, minimum and maximum air temperature at 2 m height above ground level. The
three temperature datasets are a product of 90 homogenized long-term in-situ measurement series
based on the operational station network SwissMetNet. The measurements are interpolated based
on a deterministic analysis method to describe the km-scale distribution of day-to-day tempera-
ture variations in Switzerland during the past decades, dating back as far as 1961. Additionaly,
we used the products RhiresD and SrelD. These two products give daily mean precipitation and
relative sunshine duration measurements.

Table 3.2: List of all MeteoSwiss Grid-Data Products used in this thesis

Product Description
RhiresD Daily precipitation in mm/day
TabsD Daily mean air temperature in °C
TminD Daily mimimum air temperature in °C
TmaxD Daily maximum air temperature in °C
SrelD Daily relative sunshine duration in %
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4 Methods

In this chapter we outline our methods used to extract lake ice coverage and phenology metrics
from remotely sensed imagery. Figure 4.1 gives a simplified overview of the processing steps
involved from data acquisition up to phenology extraction. The entire processing workflow is im-
plemented within GEE, allowing efficient cloud-based execution. The two main output products
consist of LIC and LIP metrics, which can be accessed and explored by untrained users over a GEE
application.

Figure 4.1: Simplified flowchart of the steps applied for lake ice monitoring in this study
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The workflow for the monitoring system is structured into four main parts: Data preprocessing,
training set generation, classification and information extraction. With the exception of training
data generation, the entire workflow is automatized and the temporal coverage could be easily
extended if necessary. Furthermore, for the analysis of the outputs, validation metrics are collected
in a validation step. In addition, a correlation analysis gives insight into the relationships between
lake ice and climatic, as well as lake-specific factors.

4.1 Data preprocessing

In the data preprocessing step, the five input datasets are individually prepared for classification
and training set generation. Firstly, this includes the step of masking the imagery for lake extents
and unusable pixels. Pixels are classified as unusable due to either cloud cover in optical imagery
or radar shadow and layover effects in SAR imagery. Secondly, in the feature enhancement step
we generate and add additional spectral, textural, temporal and temperature image layers to the
datasets. The goal of this step is to extend the dimensionality of the feature spaces with meaningful
information content to improve classification performance. The intermediate output of the data
preprocessing are five individual, masked and enhanced raster collections for each sensor.

4.1.1 Lake masking

As showed in Figure 2.3, many of the alpine lakes experience seasonal fluctuations in lake extent.
Because we pursue a binary classification approach that only differentiates between water and
ice/snow, a static lake mask could potentially introduce land pixels in the classification process
and negatively impact the classification performance. To discard land pixels we use the JRC Yearly
Water Classification History v1.3 to create yearly lakemasks consisting of surfaces that contain
only permanent water (see Figure 4.2).

Figure 4.2: Cropped extent of
the JRC Yearly Water History
v1.3 layer for the year 2019.
The map shows the classifi-
cation in seasonal and per-
manent water pixels derived
from RS imagery for Klön-
talersee, a natural lake within
the study area in Glarus,
Switzerland. In the year 2019
over one third of the lake’s
surface was classified as sea-
sonal water. Basemap pro-
vided by the Federal Office of
Topography swisstopo.
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4.1.2 Optical data

Due to the differences in RS methods used, preprocessing steps for optical and SAR imagery are
different. Figure 4.3 gives a detailed view of the preprocessing steps we applied to the optical
imagery. In a first step the full optical scenes are clipped to the area of interest using the yearly
lakemasks. In a subsequent step cloudy pixels are further masked out from the images. We then
apply a coverage filter to the resulting images and discard images with less than 30% of usable
pixels. In a final feature enhancement step we combine the optical input imagery with layers
consisting of textures, spectral indices and ERA5 2m air temperature. The individual sensor-
specific raster collections are then ready for classification and training set generation.

Figure 4.3: Detailed flowchart of the steps applied for the preprocessing of optical imagery

4.1.2.1 Cloud masking

Cloud masking (also called cloud filtering) is a crucial step in the processing of optical RS im-
agery. For our purpose clouds are obstacles that partially or fully reduce visibility on the area of
interest and impart atmospheric interference that affects the ability to execute a clean classifica-
tion. Furthermore, shadows cast by the clouds can also affect the classification results. There are
a variety of general and sensor-specific approaches and products to carry out cloud masking. In
the case of L7/8 and S-2 we apply the most proven methods.

For L7/8 imagery we used the pixel flags provided by the C Function of Mask (CFMask) algorithm
(Foga et al., 2017) developed specifically for Landsat imagery. CFMask is a multi-pass algorithm
based on decision trees that labels pixels in different classes according to static or scene-based
dynamic thresholds. In addition, CFMASK also extracts cloud shadows by iteratively estimating
the height of detected clouds and projecting their shadows. The CFMASK quality flag is included
in the GEE Landsat Level 2 datasets. If either of the "Cloud" or "Cloud shadow" flags were set, we
discarded the pixel.
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For S-2 imagery we used the cloud probability metrics provided by s2cloudless (Skakun et al.,
2022). s2cloudless is a machine learning based classifier developed specifically for S-2 imagery
based on the LightGBM gradient boosting classifier. The cloud probability output of s2cloudless,
that gives the probability that a pixel is cloudy, is available as a standalone dataset over GEE. If
this cloud probability indicator was above 20% we discarded the pixel.

For the cloud masking of S-3 imagery pixel flags are available as part of the official S-3 Synergy
(S3-SYN) product. However, as of the submission of this thesis no satisfactory approach for cloud
masking of the S-3 OLCI dataset was available over GEE. By using the "bright" pixel flag included
in the dataset, it is possible to remove clouds, yet this approach will also remove snow/ice pixels
in many cases which is unacceptable for the purpose of this study. Therefore, we developed
a custom cloud masking method that makes use of the cloud detection algorithm of the Terra
Moderate Resolution Imaging Spectroradiometer (MODIS) sensor.

To cloud mask the S-3 OLCI scenes the cloud mask from the most timely Terra MODIS MOD11A1
v061 scene available over GEE is acquired. Using the time delay between the two scene acqui-
sitions (based on the "day_view_time" band for MOD11A1) and the ERA5 hourly 10m u- and v-
components of wind, the mask is further iteratively moved accross the S-3 scene to create a buffer
along the possible drift movement of the clouds. If a pixel was within the resulting buffered
MOD11A1 cloud mask and the S-3 "bright" pixel flag was set, the pixel was discarded. From a
set of non-exhaustive visual inspections, we found that this approach produced acceptable results
(see Figure 4.4). The resulting time delays between the two sensors ranged from 46 to 122 minutes
(5th and 95th percentile) for all applied masks.

Figure 4.4: Example of the custom S-3 OLCI cloud mask by combining the Terra MOD11A1 cloud-
flag, S-3 bright pixel flag and ERA5 10m wind components for buffering. The images show the S-3
scene (S3A_20190415T093540_20190415T093840) before (left) and after (right) applying the custom
cloud-filtering method. Since the Terra MODIS MOD11A product is provided for land use only,
ocean pixels are masked out as well.
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4.1.2.2 Spectral indices

For our optical input datasets we calculated a total of six spectral indices listed in Table 4.1. Spec-
tral indices are mathematical equations that combine the information of image bands from two or
more wavelengths in an index value. The most popular type are Normalized Difference Indices
(NDI) with the form:

NDI =
(bandx − bandy)

(bandx + bandy)
(4.1)

This simple type of index represents the difference between two bands normalized by their sum.
Normalized difference indices are very useful because they reduce the data dimensionality and
enhance spectral features. Because they are ratio-based they can also minimize effects of illumina-
tion (topographic shadows and cloud shadows). It has been shown that the use of spectral indices
to expand the feature space for classification problems can lower classification errors (Ezimand
et al., 2018).

Table 4.1: Table of the 6 spectral indices used to enhance the classification. The rho-symbol (ρ)
denotes the reflectance in the specified spectral range. * Fractional Snow Cover is only defined
and applied for S-2 imagery.

Spectral index Abbrev. Equation Reference
Normalized Difference
Vegetation Index

NDVI
ρNIR−ρRed
ρNIR+ρRed

Rouse et al. (1973)

Normalized Difference
Snow Index

NDSI
ρGreen−ρSWIR
ρGreen+ρSWIR

Dozier (1989)

Normalized Difference
Water Index

NDWI
ρGreen−ρNIR
ρGreen+ρNIR

McFeeters (1996)

Modified Normalized
Difference Water Index

mNDWI
ρGreen−ρMIR
ρGreen+ρMIR

Xu (2006)

Bare Soil Index BSI
(ρSWIR+ρRed)−(ρNIR−ρBlue)
(ρSWIR+ρRed)+(ρNIR+ρBlue)

Rikimaru et al. (2002)

Fractional Snow
Cover *

FSC 0.5 tanh (2.65NDSI − 1.42) + 0.5 Gascoin et al. (2020)
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4.1.3 Synthetic aperture radar data

The acquired S-1 C-SAR dataset from GEE consists of Level-1 Ground Range Detected (GRD)
scenes processed to backscatter coefficient σ0. This means that a number of important processing
steps are already applied to the data. Namely the GEE processing consists of: Updating orbit
metadata with restituted orbits, border noise removal, thermal noise removal, radiometric cali-
bration (conversion to σ0) and terrain correction using the NASA SRTM 30m DEM.

Figure 4.5 gives a detailed view of the preprocessing steps we applied to the SAR imagery. In a
first step the full SAR scenes are clipped to the area of interest using the yearly lakemasks. To get
the S-1 dataset to an analysis-ready state, we applied some of the additional steps proposed by
Mullissa et al. (2021). The additional border noise correction is applied by masking out incidence
angles lower than 31.0 and higher than 45.0 degrees from the sensor’s range of 29.1 to 46.0 de-
grees. Due to the steepness of the terrain at many of the alpine lakes there is a possibility of radar
layover and shadow effects. The signal returned over these areas is not representative of the sur-
face. To mitigate these effects, the ALOS DSM is used in combination with the masking algorithm
by Mullissa et al. (2021) to create a radar layover and shadow mask. The proposed radiometric
terrain flattening (conversion to γ0) is not applied. For the sole purpose of studying lakes a radio-
metric terrain flattening is not necessary due to the flat nature of the studied surfaces. We then
apply a coverage filter to the resulting images and discard images with less than 30% of usable
pixels. The mono-temporal Refined Lee filter is further applied to suppress speckle noise. Then
we convert the backscatter signal from raw power values to dB. In a final feature enhancement
step we combine the SAR input imagery with layers consisting of textures, temporal features and
ERA5 2m air temperature. The S-1 raster collection is then ready for classification and training set
generation.

Figure 4.5: Detailed flowchart of the steps applied for the preprocessing of SAR imagery
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4.1.4 Temporal features

To incorporate the temporal context into the feature space we used a total of 14 temporal features.
Without the addition of these features the classifier would have no temporal input data and could
only perform classification based on daily measurements. The feature layers are constructed by
taking the difference between small weekly and two-weekly temporal windows against a large
yearly window.

We generated all of the 14 temporal features shown in Table 4.2 for the SAR input dataset. Since
cloud interference reduces the temporal resolution of optical imagery and can create large gaps in
the datasets, we only computed the five two weekly features for the optical datasets.

Table 4.2: Table with description of the temporal features used to enhance the classification

Feature suffix Description
_w_min weekly aggregated minimum
_w_max weekly aggregated maximum
_w_median weekly aggregated median
_w_mean weekly aggregated mean

_w_pX
difference between weekly aggregated
mean and yearly X-th percentile with
X = [10, 30, 50, 70, 90]

_tw_pX
difference between two-weekly aggregated
mean and yearly X-th percentile with
X=[10, 30, 50, 70, 90]

4.1.5 Textures

To incorporate the spatial context into the feature space we used a total of 18 image textures. Im-
age textures describe the distribution of gray levels within a defined image area. The two most
common ways to compute image textures are from first-order or more complex second-order mea-
sures. Textures from first-order measures (e.g. mean, standard deviation) are statistical metrics
that do not consider the pixel-neighbor relationships. They can also be simply derived from the
histogram of an image area. Textures from second-order measures (e.g. co-occurrence matrix and
variogram) take the gray levels of neighbouring pixels into account. A common approach is to
use a grey level co-occurrence matrix (GLCM) in a moving window. This matrix is computed by
counting the number of times a pixel of value X lies next to a pixel of value Y, in a particular
direction and distance within a local image area. Then statistical measures are extracted from the
GLCM and allocated to the center-pixel. First-order texture metrics are generally less effective
and the use of the GLCM textires is a commonly used approach in the remote sensing community
to increase model performance in classification tasks (Berberoǧlu et al., 2010; Rodriguez-Galiano
et al., 2012).
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We generated all of the 18 textures listed in Table 4.3 and implemented within the GEE platform.
This includes 13 GLCM textures proposed by Haralick et al. (1973), four GLCM textures proposed
by Conners et al. (1984) and the first-order windowed entropy texture. Since image textures can
be computed at different levels of resolution, the texture bands were generated at three different
windows sizes of 3x3, 5x5 and 7x7 pixel neighbourhoods.

Table 4.3: Table of the 18 textural features used to enhance the classification

Texture
Angular Second Moment (GLCM) Sum Average (GLCM)
Contrast (GLCM) Sum Varianc (GLCM)
Correlation (GLCM) Sum Entropy (GLCM)
Variance (GLCM) Difference variance (GLCM)
Inverse Difference Moment (GLCM) Information Measure of Corr. 1 (GLCM)
Difference entropy (GLCM) Information Measure of Corr. 2 (GLCM)
Dissimilarity (GLCM) Cluster prominence (GLCM)
Inertia (GLCM) Cluster Shade (GLCM)
Entropy (GLCM) Windowed Entropy

4.2 Training set generation

In the training set generation step, the five prepared sensor-specific datasets are used to cre-
ate training sets for the each sensor’s classifier. All of the image features from pixels with a
known class were extracted and annotated with a corresponding class-label. For this step pix-
els have to be referenced in time and space to a corresponding ground-truth label. To generate
these ground-truth labels we used the acquired daily webcam imagery of our training lakes and
the manual coarse-classification labeling approach proposed by Tom et al. (2019). In the manual
coarse-classification step a total of 10’524 daily high-resolution webcam images were inspected by
one operator and labeled according to the classes shown in Table 4.4. An example of the applied
annotation can be seen in Figure 4.6.

Table 4.4: Manual coarse classification classes as proposed by Tom et al. (2019)

Class Description
s snow, when snow is on lake ice, lake frozen to ca. 90-100%
i ice, frozen lake to ca. 90-100%
w water, lake covered by water to ca. 90-100%
ms more snow, ca. 60-90%, but a small part water
mi more ice, ca. 60-90%, but a small part water
mw more water, ca. 60-90%, but a small part frozen
c clouds or fog covering all lake
u unclear, when you cannot judge the lake state
n no webcam data available
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Figure 4.6: Example of the manual coarse classification scheme from Tom et al. (2019) applied to
the webcam imagery acquired for lake Schlegeisspeicher. The time bar on top visualizes the ap-
plied labeling from the 3rd to the 11th January of 2017. The images below show the corresponding
webcam images at three selected days with different classes.

4.2.1 Manual approach

In the traditional approach for training set generation from optical RS imagery a single or multi-
ple operators draw polygons and annotate them with class labels. All pixels within the polygon
can then be extracted and added to the feature space for model training. This approach can yield
high quality training sets with very low noise from incorrect labeling. However, the main draw-
backs of this method are its inefficiency and the need for high-resolution imagery. Annotating
large datasets is a very time-consuming process. From visual inspection, we found that the low-
resolution imagery from S-3 is to coarse for manual labeling. In addition, the interpretation and
labeling of SAR imagery, that does not show the feature characteristics humans are used to from
the visual light spectrum, can be very difficult. We found that a precise annotation of lake ice
signals from our collected SAR imagery was impossible for a human operator. Mainly due to a
low signal-to-noise ratio and unclear boundaries compared to optical imagery (see comparison
between Figure 1.1 and Figure 1.2).

As a result, we opted for an automated approach and used the traditional manual approach to
create only one training set for S-2 imagery. S-2 imagery from the covered time period was man-
ually inspected by one operator and labeled into a total of six classes listed in Table 4.5. A total of
1’193 polygons were created and labeled. In the labeling process shadowed surfaces and dark (op-
tically thin) ice were distinguished. In case of unclear signals, the webcam imagery and the coarse
classification labels were used to support the annotation process. If a surface could not be labeled
with clear boundaries and high confidence it was left out. This training set serves as a benchmark
and can be used to verify the performance of our automated approach. Furthermore, we can also
use the spectral information from the fine class structure to study the effects of shadow and ice
thickness.
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Table 4.5: Class labels used for the training set generation in the manual approach

Class Class description
1 ice
2 ice with shadow
3 thin ice (dark ice)
4 snow
5 snow with shadow
6 water

4.2.2 Automated approach

In the automated approach the daily labels from the coarse classification that classify the state of
the lake’s ice coverage based on webcam imagery are processed to extract training pixels. Days
with full water or full ice/snow coverage were used to create training polygons covering the entire
unmasked lake extent. Days with partial ice coverage were discarded in this approach because
they contain the signal of multiple classes. This approach can be executed unsupervised and
allows us to automatically label both optical and SAR imagery. Training sets for all five input
datasets were generated using the automated approach.

4.3 Classification

In the classification step the five previously generated training sets were used to train a sensor-
specific supervised pixel-wise binary classifier model. Before generating the final classifiers that
was used for the lake ice monitoring system, a feature selection and subsequent hyper-parameter
tuning step were executed. Once the fully trained and tuned models were created they were used
to classify input imagery into water and ice/snow pixels.

4.3.1 Random forest classifier

The supervised classification model used in this study is a Random Forest (RF) classifier based on
the Statistical Machine Intelligence and Learning Engine (Smile) implemented within GEE. The
RF model is a machine learning (ML) algorithm that is used widely in classification and regression
problems and was first introduced by Breiman (2001).

In the training sequence of an RF model an ensemble in the form of a multitude of individual
decision tree models is generated. The individual decisions trees are regarded as weak learners
that can classify a set of input features. Each decision tree is trained using the bagging method
(also called bootstrap aggregation), the selection of a random subset of the training set. In each
individual tree, this tree-specific random training set is used to grow a decision tree with consecu-
tive decision nodes that each split into two new nodes based on a threshold condition. Ultimately,
each path through this tree will end in a terminal leaf node that defines the output of the decision
tree. Decision nodes and the resulting splits are created with random selection of features, using
only a random subset of all available input features at each node. By combining the class output

25



from all independent trees using the majority vote, the class output with the highest number of
votes, the output of the ensemble is determined.

Figure 4.7: Simplified schematic view of a random forest model with a bagged fraction of 0.5

The combination of the bagging method and the random selection of features at decision nodes
allows to grow an ensemble of diverse and uncorrelated decision trees. Even though the indi-
vidual trees are regarded as weak learners or weak classifiers, the RF ensemble outperforms the
individual trees. This will generally create a robust model that can process large datasets with
a high number of input features and a low risk of overfitting. Another key benefit is that the
individual decision trees are trained independently from each other and can also classify inputs
independently. This allows to execute the training and classification procedure of an RF model
fully parallelized and thus in an efficient manner.
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4.3.2 Training procedure

4.3.3 Data balancing

Most classification models, including RF classifiers, rely on training sets with evenly distributed
classes. If this is not the case, classification models are likely to be biased towards the classes with
higher occurrence. Since many real-world classification problems have an imbalanced class dis-
tribution, multiple methods have been established to balance training sets prior to model training.
The same imbalance can be found in the case of lake ice detection. The occurrence of lake ice in the
Alps is limited to the winter months which results in training sets that over-represent the water
class and under-represent the ice/snow class.

One of the simplest methods to deal with this imbalance is to use under-sampling. We can balance
the training set by randomly discarding samples of the water class until the class abundances
between water and ice/snow are equalized (see Figure 4.8). Since the imbalances occurring in
our datasets are not too severe and we are able to collect large training sets using the automated
approach, we can make use of this method to trade in training samples to reach a balanced set.

Figure 4.8: Simplified visualization of the data balancing. The majority class is randomly under-
sampled to reach the same feature count as the minority class and balance the class abundances.

4.3.4 Feature selection and feature importance

The additional temporal, textural and spectral features added to the training sets in the feature
enhancement step strongly increase the dimensionality and size of the training sets. In the case of
the S-2 input imagery, we would reach a total of 835 input features if we included all additional
features from the feature enhancement step. Even though RF models can generally handle large
datasets with high dimensionality due to the bagging and random feature selection methods that
are applied, the speed of the training procedure would be strongly reduced. In addition, mem-
ory limitations set within the GEE framework can be easily reached with training sets of large
sizes. This problem makes a feature selection step necessary, which removes features with low
information content before training and tuning of the final models. In this step prior to the hyper-
parameter tuning, we generate RF models for all four optical datasets with default parameter
settings and using only the original bands. This allows us to find the two most important bands
for each optical sensor. The feature enhancement is then limited to these bands and the presented
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temporal and textural features are only generated for these two selected bands. This step is omit-
ted for the S-1 imagery because the input imagery consists of only two image bands (VV and VH
polarization).

To determine the feature importance of the input features and control the feature selection process
we make use of the Gini-importance measure. The Smile RF model used in this study is generat-
ing the optimal splits at its decision nodes based on the the Gini-impurity. This measurement is
defined as the probability of misclassification of a new random observation, ranging from 0 to 0.5.
The lower the Gini-impurity, the lower the likelihood of misclassification and the better the split.
Once the Gini-impurity is at zero the terminal leaf node is reached, since only one class is remain-
ing. The Gini-importance is then computed by adding up the decreases for each individual input
feature over all trees in the RF ensemble. This gives us an aggregated impurity that represents the
feature importance within the trained RF model.

Since the Gini-impurity metric is already computed as part of the RF model, the Gini-importance
is widely used as a measure of feature importance (Chen et al., 2021; Nabil et al., 2022) and is one of
the advantages RF classifiers have over alternative ML-based classification algorithms. The use of
Gini-importance as a feature selection measure has been demonstrated to eliminate unimportant
variables and outperformed other non RF-based approaches (Chen et al., 2020).

4.3.5 Validation of classification model

One of the most important steps in the generation of a classification model is the evaluation of
its performance. In our case, we want to see how well our sensor-specific binary classifiers can
differentiate between water and snow/ice pixels.

4.3.5.1 Validation metrics

To assess the performance of a binary classifier a variety of validation metrics are available. For
the validation step we made use of the Overall Accuracy (OA). OA is defined as the probability
that an individual sample will be correctly classified. For this measurement we count the number
of each possible outcome.

– TN (true negative) - count of water pixels correctly classified as water
– FN (false negative) - count of ice/snow pixels incorrectly classified as water
– TP (true positive) - count of ice/snow pixels correctly classified as ice/snow
– FP (false positive) - count of water pixels incorrectly classified as ice/snow

With all outcomes defined we can now define the validation metrics.
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OA =
TP + TN

TP + FP + TN + FN
(4.2)

As explained in Section 4.3.3, the distribution of water and ice/snow pixels in our study area
is inherently imbalanced. The data-balancing procedure can only be applied to the training set.
Balancing the test set would produce misleading validation metrics that do not represent the real
model performance. Since the OA metric does not take this class imbalance in the test set into
account, it will be skewed towards the classifier’s performance on the majority class. Therefore,
we also calculate the sensitivity (also called true positive rate) and specificity (also called true
negative rate or recall). The sensitivity describes the model’s ability to predict true positives –
correctly classified ice/snow pixels. Whereas specificity describes the model’s ability to predict
true negatives – correctly classified water pixels.

Sensitivity =
TP

TP + FN
Speci f icity =

TN
TN + FP

(4.3)

Furthermore, we also calculate the Cohens Kappa (κ) that is well known in the geographical and
medical sciences. The Cohens Kappa measures the inter-rater reliability for categorical items. The
resulting kappa values are in a range from 0 to 1 and can be interpreted according to Table 4.6.

Table 4.6: Cohens kappa ranges and their interpretation according to Landis and Koch (1977)

Cohen‘s Kappa statistic (κ) Strength of agreement
<0.00 Poor
0.00 - 0.20 Slight
0.20 - 0.40 Fair
0.41 - 0.60 Moderate
0.61 - 0.80 Substantial
0.81 - 1.00 Almost perfect

4.3.5.2 k-fold cross-validation

The classical approach to test a classification model is to use a train-test-split that splits the input
data into a training set for model-generation and the test set for model testing. Generally this split
is applied randomly to generate around 70% training data and 30% test data with the same class
proportions. The model is then trained with the large set and tested on the smaller set of unseen
data. Validation metrics can finally be retrieved to evaluate the model’s classification performance.

A more robust approach is to use a k-fold cross-validation (k-fold CV). In this approach instead
of a single split, k number of random splits with equal class distributions are first created. Then
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the model is evaluated in k-iterations while holding out a single set for testing and k − 1 sets for
training at each iteration. The validations metrics retrieved are finally aggregated. Because k-fold
CV is using all training data available, the risk for a biased model evaluation due to a poorly
chosen split is reduced.

Figure 4.9: Schematic visualization of the k-fold cross-validation with 5 folds

For our model validation procedure we made use of a 10-fold CV (k = 10) to examine the overall
performance of our binary sensor-specific classifiers.

4.3.5.3 Leave one lake out cross-validation

In the k-fold CV the splits are applied randomly. Therefore, it is likely that all training lakes are
available within the train and test set. Even though a single pixel is not allowed to be repeated in
both sets, the chance is still very high that close neighbouring pixels from the same acquisition are
present in both sets. Due to the high positive spatial auto-correlation that occurs in neighbouring
pixels, the classifier is already familiar with the presented feature values, even though it is not
trained on the specific sample itself. In case of a monitoring system without extensive training
data the generalization of the classifier, the performance on unseen lakes is more important than
the performance of classifying already seen lakes and values.

We can give an estimate on the generalization of the model using the Leave-one-lake-out cross-
validation (LOLO-CV). Instead of applying random splits for the test and train sets, we can move
all but one lakes inside the train set. The validation metrics will then tell us how well our classifier
performs on the completely unknown held out lake. Analogous to the k-fold CV, we can repeat
this for all lakes and get information about how well the classifier handles unseen lakes in the final
monitoring system.

In the validation step we applied LOLO-CV for all sensors to examine the generalization power
of our binary sensor-specific classifiers.
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4.3.6 Hyper-parameter tuning

After the feature-selection step the final classifier models for all five sensors are generated using
the balanced and feature-enhanced training sets. For the training procedure hyper-parameters
that control the learning process have to be set by the user before starting the model generation.
For this we apply a hyper-parameter tuning step. In this step four hyper-parameters (see Table
4.7) are tuned and set at values to optimally solve the classification problem.

Table 4.7: RF model settings and their definitions

Hyper-parameter Definition Default setting

numberOfTrees
number of decision trees to create
as part of the ensemble

-

variablesPerSplit
number of variables to randomly
sample per decision node/split

square root of
input features

minLeafPopulation
only create nodes whose training
set contains at least this many points

1

A widely used method for the hyper-parameter tuning is to use a grid search. A grid of manually
set hyper-parameter values is used to train multiple models and assess their performance. The
combination set of hyper-parameters that produces the best classification results is then used to
train the final model.

A grid tuning with all three hyper-parameters and 100 settings each would require a total of 1
million (1003 combinations) models to be trained for each sensor. To reduce this number and
make the tuning procedure feasible, we first extracted the optimal values for numberOfTrees (100
settings). With this parameter set, a grid-search using minLeafPopulation and variablesPerSplit is
executed with 100 settings for each hyper-parameter (1002 combinations). This reduces the total
amount of models to be trained from 1 million to only 10’100 per sensor. The models are each
evaluated using the LOLO-CV method to maximize the generalisation performance of the final
sensor-specific models.

4.4 Information extraction

With the final models prepared, all input data for days with at least 30% of available lake coverage
were processed and classified into water and ice/snow pixels. From the resulting classified time-
series we then extracted the lake ice coverage (LIC) as a daily percentage of relative covered lake
area. Subsequently this signal was processed in a lake ice phenology (LIP) event detection to find
the start and end dates of the lake freezing and thawing periods.
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4.4.1 Lake ice coverage

The daily LIC values build one of the main outputs of this study. After generating the classified
maps of water and ice/snow, we merged the LIC data retrieved from all sensors. This resulted
in a time-series of daily datapoints which were then fitted with a curve using a sliding window
aggregation with a window size of 10 days and a weighted mean. The weights were chosen
according to the available unmasked lake coverage for each datapoint.

4.4.2 Lake ice phenology

To define the phenology of a lake’s ice coverage, we extract four key events that describe the ice
cycles from the start of freezing to the end of thawing. We used the LIP event definitions proposed
by Tom et al. (2020) shown in Table 4.8. For the extraction we iterated through the LIC curve and
checked each day for the necessary LIP event conditions. An event was recorded if the conditions
were fulfilled and the preceding events had been detected.

Table 4.8: Lake ice phenology event definitions as proposed by Tom et al. (2020)

Event Definition

Freeze-Up Start (FUS)
30% or more of the non-cloudy portion of the lake is frozen
and the just previous non-cloudy day should be <30% frozen

Freeze-Up End (FUE)
70% or more of the non-cloudy portion of the lake is frozen
and the just previous non-cloudy day should be <70% frozen

Break-Up Start (BUS)
30% or more of the non-cloudy portion of the lake is non-frozen
and the just previous non-cloudy day should be <30% non-frozen

Break-Up End (BUE)
70% or more of the non-cloudy portion of the lake is non-frozen
and the just previous non-cloudy day should be <70% non-frozen

Ice Coverage Duration (ICD) BUE - FUS
Complete Freeze Duration (CFD) BUS - FUE

4.5 Validation of lake ice phenology

To assess the accuracy of the LIP event extraction, we compared the extracted events against
events detected based on webcam imagery. A total of 86 LIP events have been manually detected
and extracted by one operator using collected webcam imagery. Only days with good visibility
were processed using the same LIP event definitions used for the RS extraction. In an accuracy
assessment all matching events available in both sets were compared using a linear regression
analysis.

4.6 Correlation analysis

To understand the relationships between the extracted phenology and climatic and lake-specific
factors we executed a correlation analysis. In this step we created a correlation matrix using the
Pearson correlation coefficient (PCC). The PCC is calculated as the ratio between the covariance
of two variables and the product of their standard deviations. Thus, it results in a normalized
measurement ranging from -1 (perfect negative correlation) to 1 (perfect positive correlation).
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We calculated the PCC by combining the retrieved phenology with climatic data from the Me-
teoSwiss Grid-Data Products (see Table 3.2) and lake-specific attributes from the HydroLAKES
v1.0 dataset (see Table 3.1). Since the MeteoSwiss product availability is limited to Switzerland,
the climatic relationships were only calculated for 112 lakes. The lake-specific relationships were
calculated for all lakes within the study area.
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5 Results

5.1 Spectral class profiles

To get insight into the class separability of water and ice/snow covered surfaces, we extracted
the mean spectral profiles of the fine class structure resulting from the S-2 manual polygon clas-
sification. The spectral profiles show a high separability between the snow, shadowed snow, ice
and water surfaces. In comparison, the spectral differences between the classes water, thin ice
and shadowed ice are much smaller and their spectra show a strong overlap. This overlap could
potentially lead to high signal ambiguity and wrong classification results.

Generally, the spectral separability of the classes is high within the visual (400 to 700 nm) and
near-infrared (700 to 1400 nm) spectrum and is strongly reduced in the short wave infrared (1400
to 3000nm) spectrum.

Figure 5.1: Mean spectral
profiles retrieved from all
training samples from the
Sentinel-2 imagery created
with the manual approach.
The shaded areas corre-
sponds to ±1 standard
deviation per band cal-
culated from all available
samples.
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5.2 Training procedure

5.2.1 Feature importance

Feature importance was extracted using the normalized Gini-importance as explained in Section
4.3.4. The results were used to assess the importance of the input features and for the feature
selection in the generation of textural and temporal features. The extracted importance metrics
are only valid for the model and feature space they were extracted from. Therefore, executing the
importance analysis with multiple combinations was necessary. We generated RF classifiers using
different feature combinations for all sensors. We also extracted the importance metrics for the
full feature spaces used for the final classifier models.

The feature importance results for the L7 classifiers (see Figure 5.2), combining all original image
bands and spectral indices (B+SI), show that the surface temperature band ST_B6 is clearly the
most important band for the classification. At the second place with much lower importance lies
the NDSI feature. These two bands were further processed in the texture generation to generate
the 10 most important texture features at different window sizes (3x3, 5x5, 7x7) and all temporal
features. Overall the texture bands showed a higher importance compared to the spectral indices,
once added to the feature space. In the full feature space the ERA5 air temperature feature and the
surface temperature band, as well as temporal and textural information retrieved from it, show
the highest importance values.
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Figure 5.2: Feature importance of Landsat 7 RF classifiers with different feature combinations
computed with normalized Gini-impurity outputs

The results extracted for the L8 classifiers (see Figure 5.3) are similar to the ones from L7. They
equally show that the highest importance for the B+SI combination is given to the surface temper-
ature band ST_B10. The second place with much lower importance, is given to the SR_B1 (blue)
band. These two features were processed in the textural and temporal feature generation. In the
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full feature space the ERA5 air temperature feature takes the highest place again. However, it is
nearly matched by temporal features retrieved from surface temperature.
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Figure 5.3: Feature importance of Landsat 8 RF classifiers with different feature combinations
computed with normalized Gini-impurity outputs

The results for the S-2 classifiers (see Figure 5.4) are based on the manual training set. The B+SI
combination show that the bands B1 (aerosol) and B2 (blue) were the most prominent features.
These two features were selected for feature generation and further processed. In the full feature
space the ERA5 air temperature feature takes over the first place followed by a B2-based texture
feature.
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Figure 5.4: Feature importance of Sentinel-2 RF classifiers (manual-approach) with different fea-
ture combinations computed with normalized Gini-impurity outputs
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For the S-3 classifiers (see Figure 5.5) no textural features were calculated due to the low resolution
of the sensor. The two most important bands were B2 (Yellow substance and detrital pigments)
and B21 (atmospheric/aerosol correction). In the full feature space the ERA5 air temperature
feature takes the lead again followed by temporal features based on the B2 band.
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Figure 5.5: Feature importance of Sentinel-3 RF classifiers with different feature combinations
computed with normalized Gini-impurity outputs

Finally, the feature importance results for the S-1 classifiers (see Figure 5.6) and the B+T com-
bination show a sleight preference for the VV-polarized over the VH-polarized band. For the
full feature space the incidence angle measurements (angle) and a ratio based on both main in-
put bands (VVVH_ratio) were added. Here, the ERA5 air temperature feature is clearly the most
important input feature, followed by the incidence angle. Generally, VV-based textures showed
higher importance than VH-based ones.
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Figure 5.6: Feature importance of Sentinel-1 RF classifiers with different feature combinations
computed with normalized Gini-impurity outputs

In total, the feature importance results for all classifiers trained on the full feature spaces show that
the ERA5 air temperature feature was the most important input. If available, the surface temper-
ature bands (L7 and L8) were ranked very highly as well. Generally, the optical classifiers gave a
higher importance to input bands in the low visual spectrum (blue), corresponding to the spectral
range with higher class separability (see Figure 5.1). Bands in the higher short wave infrared range
were ranked at lower importance. From the features generated in the feature enhancement step,
temporal features show the highest importance followed by textural and lastly spectral features.
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5.2.2 Effects of feature enhancement

To assess the effects of our feature enhancement step, we tested the performance of classifiers with
different input combinations. The performance impacts with and without feature enhancement
are best visible for the S-1 classifiers. In the extracted LIC curve we can see that the added fea-
tures can greatly increase the stability of the retrieved ice signal (see Figure 5.7). Less notable
improvements were observed for the optical classifiers.

Figure 5.7: Feature enhancement com-
parison of Sentinel-1 LIC output from
lake Silsersee during the period from
1st of August 2018 to the 1st of Au-
gust 2020. The upper plot shows the es-
timated LIC using the webcam-based
coarse-classification. The lower plot
shows the classification output of two
Sentinel-1 classifiers with application
of feature enhancement and without.

By adding each feature enhancement set individually and running a 10-fold cross-validation, we
can compare the impacts of the added textural, temporal and temperature features (see Figure
5.8). The greatest impact on performance can be observed by adding the ERA5 air temperature
features. Slightly less notable, but still high impacts on performance are obtained by adding the
temporal features. In comparison, the performance increase from the addition of textural features
is low. Overall the results show that the feature enhancement can greatly increase the sensitivity,
the model’s ability to correctly classify ice pixels.

0.
86

0.
86

0.
95

0.
91 0.

95

0.
69 0.

71

0.
87

0.
87 0.
88

0.
94

0.
93

0.
99

0.
98

0.
98

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

B B+T B+ERA5 B+t B+T+t+ERA5

Sentinel-1 - Validation
Effects of feature enhancement

Accuracy Sens Spec

Figure 5.8: Comparison of
validation metrics retrieved
from Sentinel-1 classifiers
with different feature com-
binations including the final
full feature space.

38



5.2.3 Hyper-parameter tuning results

In the hyper-parameter tuning step we estimated the optimal model settings for three hyper-
parameters as explained in Section 4.3.6. We used the 10-fold-CV for the hyper-parameters num-
berOfTrees and the LOLO-CV for minLeafPopulation and variablesPerSplit. The resulting optimal
settings are displayed in Table 5.1 together with the suggested Smile RF default settings.

Figure 5.9: Hyper-parameter tuning results for Sentinel-1. The left plot shows the tuning results
of the hyper-parameter numberOfTrees using 10-fold cross-validation. The right plots shows the
grid-tuning results of the hyper-parameters minLeafPopulation and variablesPerSplit using leave-
one-lake-out cross-validation.

We found that the performance gains from an increase of numberOfTrees stagnate at zero after
reaching a maximum of approximately 200 trees. This was observed for all trained models. At
this size, adding more trees to the model would only increase the training time.

The hyper-parameters minLeafPopulation and variablesPerSplit were tuned together in a grid-
tuning to optimize model generalization. Contrary to the number of trees, these two hyper-
parameters showed peak model performance at a maximum followed by a decrease.

Table 5.1: Optimal model settings from the hyper-parameter tuning step

Hyper-parameter Default settings Tuning results
S-1 S-2 S-3 L7 L8

numberOfTrees - 200 200 200 200 200

variablesPerSplit
square root of

input variables
9 11 5 3 5

minLeafPopulation 1 7 1 17 15 3
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5.3 Validation results

5.3.1 Binary Classification

For the performance assessment of the tuned and enhanced final classifier models we applied a
10-fold CV (see Figure 5.10). The retrieved validation result from the high-resolution optical L7,
L8 and S-2 classifier all show excellent performance at similar scores for all three applied metrics.

For the S-2 input imagery the performance of both models, trained using the manual approach
and using the automated approach, were extracted to allow a comparison of the two approaches.
The classifier trained using the manual approach showed a higher score in all three metrics and
was therefore chosen for the LIC and LIP extraction.

The S-1 classifier shows the lowest overall accuracy (OA) score of 93.4%. However, even though
the S-3 classifier performed slightly better on the OA with 94.7% it shows the worst performance
in sensitivity with only 79.9% of correctly classified ice pixels. This is possible due to the inherent
class imbalance in the validation set and indicates that the S-3 classifier performs the worst in the
distinction of water and ice/snow pixels.
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Figure 5.10: Validation re-
sults from the 10-fold cross-
validation of the final clas-
sifer models. Validation met-
rics displayed are computed
as the aggregated mean of all
folds.

5.3.2 Leave one lake out cross-validation

To assess the generalization performance of the tuned and enhanced final classifier models, we
further applied a LOLO-CV. This validation method tells us how well the classifiers can perform
on samples from unseen lakes. A full overview of all values can be found in Appendix B. The
sensor-aggregated results are shown in Table 5.2 and the lake aggregated results in Table 5.3.

The reached mean overall accuracy is within excellent and moderate levels, ranging from a max-
imum of 96.3% with S-2 (manual) to a minimum of 83.8% with S-1. Due to the imbalanced class
distribution the metrics sensitivity and specificity are more meaningful than OA. For Specificity,
the ability to correctly classify water pixels, the mean values range from a maximum of 98.6% with
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S-2 (manual) to a minimum of 85.1% with S-1. For Sensitivity, the ability to correctly classify ice
pixels, the mean values range from a maximum of 97.8% with S-2 (auto) to a minimum of 74.1%
with S-3. With the lowest mean sensitivity values and the lowest minimal sensitivity values the
S-3 classifier show the overall worst generalization performance.

Table 5.2: Sensor-aggregated results from the Leave-one-lake-out cross-validation

Overall accuracy Sensitivity Specificity
Sensor Mean Min Mean Min Mean Min

S-1 83.8 67.6 74.4 53.5 85.1 64.5
S-2 (manual) 96.3 91.3 94.4 84.2 98.6 95.2

S-2 (auto) 94.7 89.1 97.8 92.6 89.4 68.9
S-3 86.8 79.6 74.1 27.0 89.7 42.9
L7 94.5 87.7 89.2 72.3 97.9 89.6
L8 93.8 67.9 93.5 67.8 98.0 90.0

The lowest per lake mean OA, mean specificity and mean sensitivity were all reached for St.Moritzersee
with values of 77.8%, 78.0% and 76.9% respectively. The lowest sensitivity was reached for Eibsee
with a value of 27.0% (S-3).

Table 5.3: Lake-aggregated results from the Leave-one-lake-out cross-validation

Overall accuracy Sensitivity Specificity
Lake Mean Min Mean Min Mean Min

Eibsee 90.3 81.1 79.8 27.0 94.0 68.9
Schlegeis 92.8 82.4 91.8 66.7 90.6 74.7

Schwaigerhaus 92.0 88.8 94.7 75.8 92.2 88.5
Silsersee 91.3 87.0 88.5 78.4 94.0 88.3

Turrachersee 93.6 84.2 90.7 64.5 97.4 88.7
Zellersee 96.0 85.6 78.8 53.5 97.7 88.8

Sihlsee 92.8 84.9 79.9 55.2 98.0 93.5
Silvaplanersee 89.5 80.8 89.1 81.5 92.5 70.0
Silvaplanersee 77.8 67.6 78.0 67.8 76.9 42.9

5.3.3 Lake ice phenology event extraction

To assess the accuracy of the LIP events extracted from LIC data we applied a linear regression
analysis. A total of 78 LIP events (LIP_RS) extracted from our remotely sensed data were matched
up against manually extracted events (LIP_GT) retrieved from webcam imagery. We were not
able to match up 8 events due to missing cycle detections resulting in a LIP event omission error
of 9.3%. The matched up events were fitted with a regression line resulting in an R2 value of 0.98
(see Figure 5.11).

The achieved mean difference of the matched events lies at -0.17 ±4.3 days. Figure 5.12 shows the
distribution of difference between LIP_GT and LIP_RS. The highest difference was found for a
FUE event which was detected 15 days too early using the RS-based LIP algorithm.
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Figure 5.11: Linear regression analysis using remotely sensed LIP events as predictor for observa-
tions from webcam-based LIP events

Figure 5.12: Histogram of time dif-
ferences between remotely sensed LIP
event dates and webcam-based events.
Negative values indicate earlier re-
motely sensed detection of date.

5.4 Correlation analysis

To explore the relationships between extracted phenological events and lake-specific as well as
climatic factors, we applied a correlation analysis. As explained in Section 4.6, full LIP cycles
extracted from the dataset were extended with lake attributes from the HydroLAKES dataset (see
3.3.1) and climatic variables from the MeteoSwiss Grid-Data Products (see 3.4.2) to build two
correlation matrices. For the entire study area 387 lakes (75.6% of all study lakes) were found to
have at least one full ice cycle from the observed period from the year 2016 to 2021.

For the correlation analysis between LIP events and lake-specific factors a total of 1775 ice cycles
were extracted from the LIC coverage over the entire study area. 85 ice cycles shorter than 4
days (based on CFD) were filtered out. We then selected meaningful lake-specific attributes that
estimate the hydrological and geomorphological properties of the lakes. The retrieved coefficients
reach a maximum positive correlation of 0.76 between BUS and elevation and a minimum negative
correlation of -0.35 between FUS and elevation.
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Figure 5.13: Correlation matrix
showing the correlation between
LIP events and HydroLAKES at-
tributes based on the Pearson’s co-
efficient. Blue ellipses show a neg-
ative correlation and red ellipses a
positive correlation. The elliptic-
ity of the plotted datapoint indi-
cates the strength of correlation.

For the correlation analysis of LIP events and climatic factors only lakes within Switzerland were
extracted due to the spatial availability of the MeteoSwiss Grid-Data Products. We applied the
same filtering condition to retrieve 502 ice cycles. The retrieved coefficients reach a maximum
positive correlation of 0.43 between BUE and mean yearly 0 °C days. A minimum negative corre-
lation of -0.25 was reached between BUE and the 95-percentile yearly maximum air temperature.

Figure 5.14: Correlation matrix
showing the correlation between
LIP events and climatic factors
based on the MeteoSwiss Grid-
Data Products. Blue ellipses show
a negative correlation and red el-
lipses a positive correlation. The
ellipticity of the plotted datapoint
indicates the strength of correla-
tion. The 0 °C dates (autum-
n/spring) represent the seasonal
number of days when air temper-
ature reached 0 °C.
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5.5 Google Earth Engine Application

To visualize the LIC and LIP data extracted for this thesis and to make the data accessible for po-
tentially interested users, we have developed a GEE application. Figure 5.15 shows an overview
of the application with annotations for all main working parts. Within the application a user
can query LIC data and LIP event dates for all of the study lakes within the Alpine Convention
Perimeter. After selecting the lake of interest, the user can specify a time range in the infopanel.
The estimated daily LIC values are then displayed with the fitted curve in a chart panel. With
a button the chart can be converted to a table with detected LIP events within the selected time
range. Furthermore, individual datapoints can be clicked to get a thumbnail preview of the scene
used for LIC extraction. With this feature it is possible to quickly identify outliers. The application
can be accessed at licmonitoring.com.

Figure 5.15: Overview of the GEE lake ice monitoring application with annotations of the main
working parts
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6 Discussion

6.1 Strengths and weaknesses of our Methods

The main focus of this thesis has been the implementation of a lake ice monitoring system using RS
imagery and pixel-wise supervised classification models. From the outset, we have approached
this problem using a multi-sensor approach. Due to the trade-offs between temporal and spatial
resolution of current RS sensor technology, this is the only approach to achieve high-frequency
observations of lake ice down to lake sizes of 0.1 km2 and the resolution requirement of 300m
posed by GCOS. Furthermore, due to the cloud effects in optical sensors, we had to expand the
input imagery with the active cloud-penetrating S-1 C-SAR products to fulfill the requirement of
high temporal resolution.

One of the key steps of this process was the generation of five sensor-specific training sets. The
manual interpretation and classification of imagery from multiple sensors is a labour intensive
task with many pitfalls. Generally, it is not possible to create a perfect and completely unbiased
training set using this approach. Furthermore, the interpretation and labeling of SAR imagery can
be very difficult. We used the traditional manual approach to create a S-2 training dataset with
a fine class structure. Firstly, we used this training set to show, that water and ice/snow classes
can be spectrally distinguished (see Figure 1.1) even with the effects of topographic shadowing
that is affecting a large proportion of the studied alpine lakes. Secondly, we were able to use it
to create a classifier that showed very good classification results for the binary classification of
water and snow/ice pixels. To automatically generate the remaining training sets we adopted the
method put forward by Tom et al. (2019). In the automated approach webcam-imagery is used
to classify fully ice-covered and ice-free days. For these days, samples are then taken from the
entire lake area. Using this approach, the manual interpretation is shifted from RS imagery to
webcam imagery that can be more accurately interpreted. Another benefit is that we can use this
method to generate training data for SAR imagery. In our validation we were able to compare the
manual and automated approach using two differently created S-2 training sets. The comparison
(see Figure 5.10) has shown that the automated approach is able to deliver satisfactory results
comparable to the results achieved with the traditional manual method used as a benchmark.

Nonetheless, there are some clear disadvantages to this approach. The labeling of webcam im-
agery can be difficult. In our case the webcams that were used did not always cover the entire
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lake extent. Thus, it is possible that days with partial coverage were processed and produced
wrong sample labels. Even though the interpretation of webcam imagery is a much easier task
than the interpretation of RS imagery, there are still ambiguous signals that can be encountered.
For example, thin ice is very hard to differentiate from open water. Thus, it is likely that the result-
ing labels are inconsistent. Another big disadvantage is that days with partial coverage, that build
a key element of lake ice phenology and define the transition state, are ignored. This leads to less
training samples and more importantly, none of the retrieved samples contain information from
the partial state. Overall, we also found that the coverage of high-quality webcam imagery that
is freely available is still very limited. We were only able to source freely available imagery from
two providers. As a result, the selected training lakes are of small number and additionally clus-
tered together in the central part of the study area. For this reason, it is possible that the generated
training sets are not representative of all lakes within the study area.

With the training sets fully prepared we applied a supervised pixel-wise binary classification. For
this step a multitude of classification methods are available. We opted for Random Forest models
due to many reasons. RF models are generally regarded as less prone to overfitting than other
classification models available (Fernández-Delgado et al., 2014). Breiman (2001) has shown that
due to the bagging and random feature selection, the number of decision trees in a RF model can
be increased without the risk of overfitting. Fernández-Delgado et al. (2014) has further shown
that RF models outperform other ML-based models in real world application. A major advantage
is that the training and classification procedure in RF models can be easily parralelized. In com-
parison, linearly executed models such as the often used Support Vector Machine (SVM) are much
less memory- and time-efficient. This is especially important for a fully-parallelized environment
such as the Google Earth Engine. However, studies with more contemporary Convolutional Neu-
ral Networks (CNN) have shown to achieve higher classification performances for lake ice (Tom
et al., 2020) classification than our models have reached.

A clear benefit of the RF model is the supplementary output of importance metrics. For our thesis
the Gini-importance was a key tool in the identification of important input features and feature
selection. The feature selection was necessary to allow a model computation within the memory
constraints posed by the GEE platform. With the extracted importance metrics we were able
to show that the most important input features were the ERA5 air temperature feature and the
surface temperature bands if available (L7 and L8). The feature importance analysis also showed
that the added textural and temporal features were of high importance for all classifiers. For the
input bands of optical classifiers the results show that bands in the lower visual spectrum (blue)
are of higher importance. This finding fits the spectral profiles retrieved for S-2 which show the
highest class separability in the lower part of the visual spectrum.

To finish the model generation, we assessed each model’s performance using 10-fold cross-validation
(10-fold CV), a well-established method to estimate model performance. The results showed high
overall accuracy (OA), sensitivity and specificity scores ranging from 92.4% up to 99.8% for all
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models except for S-3 which has shown a clear underestimation of ice pixels with a sensitivity of
only 79.9%. However, we argue that this validation method is not fitting for our purpose. Due
to the spatial auto-correlation that occurs in neighbouring pixels, the classifier is already famil-
iar with the presented feature values even though it is not trained on the specific sample itself.
This leads to over-optimistic validation results. Since our intention is to build an extensive mon-
itoring system, the performance on data of unseen lakes is much more important. Therefore, we
subsequently applied a leave-one-lake-out cross-validation (LOLO-CV) to assess the generaliza-
tion performance of our classifiers. In the LOLO-CV results we can see that all validation metrics
dropped in value. Most notable, the sensitivity, the ability to correctly classify ice pixels dropped
strongly for S-1 and S-3 to a mean sensitivity of 74.4% and 74.1%, respectively. We believe that the
main cause for the drop in S-1 performance are untrained incidence angles. A lake is usually cov-
ered by four relative orbits with specific incidence angles for lake pixels. The retrieved backscatter
signal of thin ice surfaces can differ with changing angles Atwood et al. (2015). If the model is
not trained on the matching relative orbits and specific angles it is likely to perform worse in the
signal classification. The LOLO-CV results for S-3 show overall bad generalization performance
and high ice underestimation. We believe that the reasons for this are mainly geometric errors in
the georectification process and spectral mixing (see 6.2.1).

To finish the lake ice coverage (LIC) extraction we merged the datapoints extracted from all in-
dividual sensors. We applied a moving window aggregation with a weighted mean. By using
weights based on the available lake coverage our method takes partial lake coverage into account
and gives higher preference to non-cloudy images. With this approach it possible to smooth out
the retrieved signal, remove outliers and provide daily LIC datapoints. We decided on a win-
dow size of 10 days for the aggregation. This value showed good results in our tests and is in
accordance with the window size tuning results from (Tom et al., 2019). However, due to the
high impact on the final LIC results, we recommend that a more thorough analysis of the chosen
aggregation parameter and aggregation metric should be carried out.

6.2 Lake ice phenology event extraction

To extract phenelogical key dates that describe the freezing (FUS and FUE) and thawing (BUS
and BUE) cycles, we further applied a LIP event detection algorithm. Currently, there are no
widely agreed-upon threshold values to clearly define these transitional states between the fully-
unfrozen and fully-frozen state. A multitude of LIC threshold values have been used in lake ice
studies (Tom et al., 2020). We have chosen to define the transitional states based on a 30% and
70% thresholds as proposed by Tom et al. (2020) (see Table 4.8). To assess the accuracy of the
extracted LIP event dates we matched up 78 LIP events labeled from webcam imagery against the
remotely sensed dates in a linear regression analysis. We were able to show that our algorithm can
identify LIP event dates with a high R2 value of 0.98. However, the achieved mean difference of
-0.17 ±4.3 days, between predicted and independent variable, shows a large spread. The resulting
distribution of the mean difference (see Figure 5.12) shows that in most cases we cannot exactly
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identify the LIP event date. In turn, this indicates that the daily LIC uncertainty of ±10% posed
by GCOS is likely not reached by our algorithm. We argue that the cause for this relatively high
spread partially lies in the inaccuracy of the webcam-based LIP dates. In most cases it is very hard
or impossible to clearly define the relative coverage from webcam imagery within a 10% margin.

6.2.1 Problems of input imagery

During the data-processing steps in our study we came across several problems regarding the
used input imagery. Most problems were encountered with the low resolution (300 meter) S-3
imagery. A crucial difference from S-3 to the other optical datasets used in this study is the pro-
cessing level. Whereas the S-2, L7 and L8 datasets are all processed to level-2 surface reflectance,
the S-3 dataset is currently only available as level-1 top-of-atmospere (TOA) radiance on GEE. This
means that the used imagery is uncorrected for atmospheric effects, which is likely contributing to
the low achieved performance. In addition, due to the lack of processing, no supplementary cloud
flagging was available. Thus, we had to implement a custom cloud masking algorithm based on
the cloud masks of MODIS imagery (see Section 3.1.3). Within this thesis we were not able to thor-
oughly assess the performance of this cloud masking algorithm. We are therefore not confident
that the resulting images are cloud-masked with a high accuracy.

Another major problem lies in the low-resolution of S-3 imagery. Our screening has shown that
many images have geometric errors and do not align well with lake polygons. Figure 6.1 illustrates
this problem with the example of Silersee, one of the medium-sized training lakes at 4.1 km2.
Additionally, due to the coarse resolution, pixels along the shoreline have a high tendency for
spectral mixing. Thus, the measured signal is a result of overlapping signals originating from
both land and lake. Due to the small lake sizes studied, we were not able to buffer the lakemasks
and discard shoreline pixels, as this would have resulted in only a few to no remaining pixels for
the smallest training lakes. We infer that S-3 is not well suited for the analysis of lake ice cycles at
the small lake sizes studied in this thesis (< 10.7 km2).

Figure 6.1: Cropped S-3 scene of lake Silsersee
with overlapped lake polygon. Due to geomet-
ric misalignment and spectral mixing the signal
retrieved over the lake is untrustworthy.

For the S-1 imagery, our validation has also shown lower performance in comparison with the
high-resolution optical sensors. The main cause for this is low sensitivity for ice/snow (see Figure
5.10). Since the SAR imagery is based on microwave backscatter, moisture content and surface
roughness have to be considered. Conditions affecting the roughness of the measured surfaces
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will alter the retrieved backscatter. This can cause signal ambiguities between ice and water when
the ice is wet and smooth. Additionally, windy conditions can increase the surface roughness of
water, increasing the backscatter and leading to difficulties in ice detection (Sobiech and Dierking,
2013).

The screening of S-1 imagery has also shown that for lakes with steep surrounding slopes severe
layover effects can cause geometric distortions. These effects are not corrected in the terrain-
correction steps applied in the GEE processing. Figure 6.2 illustrates this problem with a timeseries
retrieved from Speicher Zillergründel in Austria. As a result, the backscatter retrieved from lake
pixels can be altered, leading to drops in classification performance.

Figure 6.2: Cropped Sentinel-1 (VV-polarized) time-series of Speicher Zillergründl, Austria. The
consecutive days are imaged from different relative orbits. The oblique viewing angle of the ac-
quisition on the 5th of October 2018 leads to pronounced layover effects over the lake, affecting
the retrieved backscatter signal.

6.3 Implications of correlation analysis

To explore the relationships between lake ice phenology and lake-specific and climatic factors we
applied a correlation analysis. As a part of this analysis we were able to show that the majority
of the alpine lakes within the study area (387 lakes, 75.6% of all study lakes) show at least one ice
cycle during the period of 2016 to 2021.

For the correlation between lake-specific factors and LIP events (see Figure 5.13) our main find-
ings are:

– Elevation shows the highest correlation with LIP events. Elevation and freeze-up patterns
show a moderate negative correlation (-0.34). Break-up patterns show a strong positive cor-
relation (0.77). This indicates earlier freeze-up, later break-up and overall increased ice du-
ration at higher elevations. From the strength of correlation, we conclude that break-up
patterns are more affected by elevation.

– Mean average depth and residence time mainly show a moderate positive correlation with
break-up pattern (0.40 and 0.37), leading to later ice break-up with increasing depth and
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higher residence time.

– Lake area and shoreline length have a moderate positive correlation with freeze-up (0.19 and
0.22) and sleight negative correlation with break-up patterns (-0.04 and 0.08). This indicates
later freeze-up, earlier break-up and overall decreased ice duration for increases in lake size
and shoreline length.

For the correlation between climatic factors and LIP events (see Figure 5.14) our main findings
are:

– The strongest correlation can be found between the mean number of yearly below 0°C dates
and ice cyles with a moderate negative correlation for freeze-up (-0.18) and a moderate pos-
itive correlation for break-up patterns (0.42). This indicates earlier freeze-up, later break-up
and overall increased ice duration with increase in days below 0°C.

– The mean yearly air temperature, 5th percentile minimum and 95th percentile maximum air
temperature all show a moderate positive correlation with freeze-up (0.19) and a moderate
negative correlation with break-up patterns (-0.24). This shows that higher air temperatures
reduce the length of ice cycles across the studied lakes.

– Percipitation shows a moderate negative correlation with freeze-up (-0.15) and a moderate
positive correlation with break-up patterns (0.11). This indicates that ice cycles increase in
duration with higher experienced precipitation.
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7 Conclusion

As we have now shown and discussed our results, we would like to address our initial research
questions.

– RQ1: How accurately can lake ice coverage (LIC) be extracted using RS-based methods in
an alpine environment?

Our model validation has shown that our generated classifiers can retrieve lake ice coverage
with a mean overall accuracy of 96.1%. We reached a mean sensitivity (ability to correctly
classify ice) of 93.8% and a mean specificity (ability to correctly classify water) of 98.4%.
The leave-one-lake-out cross-validation has shown that the generalization performance, the
accuracy to classify pixels of unseen lakes, is significantly lower with mean overall accuracy,
mean sensitivity and mean specificity values of 91.0%, 85.1% and 93.9% respectively

– RQ2: How do the different sensors (S-1, S-2, S-3, L7, L8) compare on the ice/non-ice classi-
fication accuracy?

Our model validation using a 10-fold cross-validation has shown that the high resolution
optical sensor S-2, L7 and L8 used can retrieve lake ice coverage with a high mean overall
accuracy across sensors of 96.2%. We reached a mean sensitivity (ability to correctly classify
ice) of 98.8% and a mean specificity (ability to correctly classify water) of 99.8% across these
sensors. In comparison S-1 and S-3 have shown worse performances and underestimation
of ice with overall accuracy values of 93.4% and 94.7% and sensitivity values of 92.4% and
79.9%, respectively.

– RQ3: Which multi-spectral indices, temporal features, image textures and air temperature
features can be used as input features to enhance the classification accuracy of lake ice clas-
sifiers?

With our feature importance analysis and model evaluation results we have shown that the
feature enhancement using ERA5 air temperature data has the highest potential to improve
model performance for ice classification. The most prominent increase in performance was
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reached for S-1 with OA, sensitivity and specificity increases of 9.1%, 4.9% and 18.8%, re-
spectively. At the second place, temporal features such as the proposed weekly aggregated
difference to the yearly mean, have shown a similarly high feature importance and potential
to improve model performance. GLCM-based textures have also shown a small improve-
ment with moderate to high feature importance. Finally, the addition of spectral features for
optical sensor has shown only a small increase in model performance. We advise their use
mainly as a substitute for image bands.

– RQ4: How accurately can lake ice phenology (LIP) events be extracted using RS-based meth-
ods in an alpine environment?

Our algorithm was able to extract key lake ice phenology dates (FUS, FUE, BUS, BUE) with
a R2 value of 0.98 and a difference of -0.17 ±4.3 days between remotely sensed and ground-
based measurements. This shows that LIP dates can be accurately derived from remotely
sensed imagery.

– RQ5: Which relationship exists between the measured lake ice phenology and climatic fac-
tors (e.g. temperature)?

The strongest correlation can be found between the mean number of yearly below 0°C dates
and ice cyles with a moderate negative correlation for freeze-up (-0.18) and a moderate pos-
itive correlation for break-up patterns (0.42). This indicates earlier freeze-up, later break-up
and overall increased ice duration with increase in days below 0°C.

– RQ6: Which relationship exists between the measured lake ice phenology and lake-specific
variables (e.g. lake area, lake depth)?

Elevation shows the highest correlation with LIP events. Elevation and freeze-up patterns
show a moderate negative correlation (-0.34). Whereas, break-up patterns show a strong
positive correlation (0.77). This indicates earlier freeze-up, later break-up and overall in-
creased ice duration at higher elevations. From the strength of correlation, break-up patterns
are more affected by elevation.

As part of this thesis, we created a complete processing chain for the extraction of lake ice coverage
and lake ice phenology based on RS imagery in the European Alps. Since the entire workflow
is implemented as part of the Google Earth Engine it allows us to further expand the retrieved
information with future imagery. In addition, the processing chain could be adjusted for near
real-time production without the need of much additional work. With our results and findings we
were able to answer all the initially posed research questions. Furthermore, we could show that a
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multi-sensor approach can give a good estimation of lake ice coverage and phenology that fulfills
the GCOS requirements of daily temporal resolution. The reached accuracy in LIP estimation
shows that we likely did not fulfill the ice coverage uncertainty requirements of ±10%. Due to the
low validation scores and generalization performance reached by S-3 imagery and the observed
problems with geometric accuracy, we advise against the use of S-3 imagery for lake ice detection
for small lakes (< 10 km2).

With the limited training data collected for this study, we were only able to cover a very limited ex-
tent of the study area. Thus, we were not able to make an extensive generalization assessment that
proves a good model performance over the entire study area. We argue that more training data is
necessary to create classifiers for an extensive and operational monitoring system. If possible, the
used training data should also include information from the partial states of ice coverage. There-
fore we would like to present our work mainly as a proof of concept. We are excited and optimistic
for future implementations using more contemporary approaches such as Convolutional Neural
Networks. Finally, we encourage the reader to inspect the obtained results at licmonitoring.com.
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A Coverage frequency figures

* based on Landsat 8 Lvl. 2 Coll. 2
data from the year 2019, Google
Earth Engine LANDSAT/LC08/C02/
T1_L2 dataset cloud-masked with
CFMask (v3.3.1)
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Figure A.1: Map of the study area showing the spatial distribution of the coverage frequency of
Landsat-8 imagery after cloud-masking in the year 2019

* based on Sentinel-2 Level-2A data
from the year 2019, Google Earth
Engine COPERNICUS/S2_SR dataset
cloud-masked with s2cloudless
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Figure A.2: Map of the study area showing the spatial distribution of the coverage frequency of
Sentinel-2A/B imagery after cloud-masking in the year 2019
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Figure A.3: Map of the study area showing the spatial distribution of the coverage frequency of
Sentinel-3A/B imagery after cloud-masking in the year 2019
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B Leave-one-lake-out cross-validation
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Figure B.1: Validation results from the leave-one-lake-out cross-validation (LOLO-CV). Sentinel-2
acquisitions do not overlap with the temporal range of the ground-truth labels of Sihlsee, Silva-
planersee and St.Moritzersee repurposed from the work of (Tom et al., 2019) and are therefore not
available.
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