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Abstract 

Small family farms, which cover roughly 36% of the Swiss landscape, employ mostly 

intensive agriculture, here defined as agricultural practices which generate high yield per 

unit area. In these intensive agricultural regions, pest control using pesticides is common, 

however, pesticides cause major negative effects on various ecosystems.  Studies have 

discovered pesticides in groundwater, surface water and soils all over Switzerland. A 

continuous spatial approximation of the potential pesticide pollution problem for 

Switzerland has not yet been established. The goal of this thesis is to calculate and map 

the distribution of pesticide use and identify areas with higher likelihood of pesticide 

occurrence. To this regard, I apply pesticide use, precipitation, and physiochemical 

properties mapped at 1km2 spatial resolution to calculate the Pesticide Occurrence Index 

(POI). In total 1236 tons of fungicide, 498 tons of herbicide and 36 tons of insecticide were 

applied for a one-year period, consisting of 166 different active ingredients. The POI 

insecticide and fungicide map showed similar patterns, mainly driven by grapevine 

production, which was expected due to high fungicide use. The valley of Sion in Valais and 

the northern region of Geneva showed high POI fungicide and insecticide values. 

Herbicide pesticide occurrence hot-spots appeared in Valais, Vaud, the Jura Region, and 

eastern Pre-Alp areas. Herbicide occurrence was highest among pesticide groups driven 

by the herbicides applied onto fields. Due to the sensitivity of grapevines and their need 

for fungal control, their impact on the POI of fungicide was in line with expectations. The 

large effect of herbicide application on fields was, however, unexpected, because only 5.9 

tons of herbicides were applied onto fields. However, the high POI herbicide values were 

in line with Swiss environmental pesticide pollution findings. Overall, these results 

suggest that the calculated POI in combination with monitoring data, retrieved from 

monitoring programs such as NAQUA, provide fundamental information that can aid 

developing future ecosystem monitoring programs, assist in defining monitoring sites, 

and consequently support pesticide policy development by government agencies. 

Keywords: Pesticides, Agriculture, Spatial Accounting, Pollution 

 

1. Introduction  

Agriculture and pasture are an integral part of the Swiss landscape. Agriculture is 

largely dominated by small family farms and covers roughly 36% of Swiss territory, and 

has become increasingly intensive (Agristat 2016; BAFU 2017). Agricultural 
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intensification arose with the second and third agricultural revolution (mid-19th to 20th 

century and latter half of the 20th century respectively), during which motorization and 

chemicalization became a driving force for the ever-increasing yields of Swiss agriculture 

(Moser 2019). Large-scale use of chemicals for crop fertilization and pesticide use for 

agricultural yield security continues to this day, resulting in lower costs and more stable 

agricultural revenue (Moser 2019). However, this intensification has led to an 

accumulation of pesticides in Swiss ecosystems. A study by Riedo et al. (2021) screening 

100 fields under organic and conventional management found 46 pesticides (16 

herbicides, 8 herbicide transformation products, 17 fungicides and 7 insecticides). In all 

fields including 40 organic fields pesticides were discovered. Up to 16 different pesticide 

residuals were found even after 20 years of organic agriculture.  However, not only soils 

are impacted by pesticide pollution. A study by Wittmer et al. (2014) investigating five 

medium sized surface rivers found a total of 104 different pesticides. Each sample 

contained around 40 different pesticides, often transgressing the legal quality limit of 0.1 

µg/l, most of them herbicides (Wittmer et al. 2014). Similarly, a study by Gerecke et al. 

(2002) investigating the effluents of wastewater treatment plants in two rivers during a 

four month period continuously found concentrations of various pesticides (e.g. atrazine, 

diuron, mecoprop) within their retrieved samples as well. However, all monitoring efforts 

so far, have been performed on isolated sampling sites in rivers and fields. Therefore, 

there is still a gap in the knowledge on the larger continuous spatial extent of the pesticide 

pollution problem.    

Pesticides are defined as substances or mixtures of substances intended for 

preventing, destroying, repelling, or lessening the damage of any pest (Eldridge 2008). 

Often, pesticides are named after the target species, i.e. the organism that the pesticide 

works against, and any other living organism is referred to as a non-target organism 

(Adisesh 2013). Pesticides are grouped by their target pests and include herbicide against 

weeds, insecticide against insects, fungicides against fungi. The active ingredients (AI) 

within the pesticide products are the chemical components that act to control the pests. 

There are different types of active ingredients, depending on their effectiveness and 

selectivity: (i) conventional, which are all ingredients other than biological and 

antimicrobial pesticides, (ii) antimicrobial, which are substances used to destroy or 

suppress the growth of harmful microorganism for example bacteria, viruses, or fungi, 

and (iii) biopesticides, which are types of ingredients derived from certain natural 

materials. All pesticide products contain at least one AI and one “inert ingredient”, i.e. 
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other intentionally added ingredients acting as solvents, surfactants, or preservatives, 

among many other functions (U.S. EPA 2021). 

Inerts can be chemicals, compounds or substances which consist of common food 

types (edible oils, spices, herbs) and some natural materials, e.g. beeswax, cellulose (Cox 

and Surgan 2006; U.S. EPA 2021). These substances reach high values in the environment 

as application doses vary spatially and temporally. The most common are kerosene, 

propane and other petroleum products, wintergreen oil, peanuts, beeswax, and salt, but 

it is unclear the extent to which each is applied (National Pesticide Information Center 

2021). Pesticides drift and contaminate the air, the soil, and water, and can be toxic to 

other non-target organisms, including humans (Felsot et al. 2011; Yadav and Davi 2017). 

Global pesticide application is currently (2018) estimated at 4.1 million tons each year 

(FAO 2021). Pesticides can enter ecosystems by a point source input or a diffuse source 

input. Point source inputs correspond to a locations with high concentration of these 

chemical pollutants and occur at a specific or a set of restricted entry points (Carter 2000). 

Examples of pesticide point sources are sewage plants, sewer overflows, and losses from 

farms (Holvoet, Seuntjens, and Vanrolleghem 2007). Diffuse input pesticides correspond 

to entry pathways into surface waters, such as surface and subsurface runoff, drain flow, 

drift, atmospheric deposition, soil erosion from treated fields, spray drift application, and 

deposition after volatilization (Carter 2000; Holvoet et al. 2007). Both of these entry 

pathways may affect the environment directly or indirectly, however, the research has 

shown that diffuse pesticide pollution input sources from agricultural areas are one of the 

greatest causes of contaminated surface waters (Loague, Corwin, and Ellsworth 1998; 

Müller et al. 2002; Schulz 2004).  

In total, there are four different ways humans can be exposed to toxic pesticides: 

ingestion (consuming polluted food or water), dermal (exposure through the skin), ocular 

(exposure through the eyes) and inhalation (exposure to polluted air) (Damalas and 

Koutroubas 2016). Polluted groundwaters can harm humans as well as entire ecosystems 

when exposed to toxic pesticide concentrations (Margni et al. 2002). Pesticides can cause 

diseases in humans such as cancer (Lee et al. 2005), respiratory disease (Chakraborty et 

al. 2009), Alzheimer’s disease, Parkinson’s disease (Elbaz et al. 2009), reproductive 

disorders (Petrelli and Mantovani 2002), and several other ailments (Yadav and Davi, 

2017).  

In Swiss ecosystems pesticide pollution has displayed a multitude of harmful effects 

(SCNAT 2021). Negative consequences of insecticide and fungicide application on 
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mycorrhizal fungi, which are beneficial for crop growth, have been established by 

Bünemann et al. (2006) and Riedo et al. (2021). Additionally, a study conducted in Vienna 

on earthworms and bacterial communities in root systems found that they were 

negatively impacted by seed treatment (Van Hoesel et al. 2017). Furthermore, soil 

organisms have shown to recover differently from pesticide application, causing 

ecosystem imbalances and diversity changes in soils (Kattwinkel et al. 2015). Besides soil 

organisms, water organisms such as insect larvae, algae, fungi, fish were negatively 

impaired by pesticide pollution within water systems (Burdon et al. 2019; Chiaia-

Hernández et al. 2020; Doppler et al. 2020; Junghans et al. 2019; Schneeweiss et al. 2019; 

Spycher et al. 2015, 2018, 2019). Due to increased herbicide use, diversity loss of arable 

flora has been found all over Europe (Andreasen and Streibig 2011; Freemark and Boutin 

1995; Richner et al. 2015). Additionally, the use of pesticides was found to be one of 

multiple factors which led to a significant loss of diversity and frequency of insects (Geiger 

et al. 2010; Gilburn et al. 2015; Sánchez-Bayo and Wyckhuys 2019; Wagner et al. 2021). 

This in turn influenced insect-eating bird and mammal populations. In Switzerland, the 

population of insect-eating bird species in cultivated regions reduced by 60% since 1990 

(Knaus et al. 2018). Lastly, small mammals such as bats have been shown to be especially 

sensitive to pesticide application (Carravieri and Scheifler 2012). 

To accurately predict the magnitude of pesticide use, pesticide occurrence, and the 

associated risks for hydrological and terrestrial ecosystems, it is important to know the 

extent of (i) the treated areas, which are highly driven by the topography, slope, soil 

quality and  precipitation (Carew, Smith, and Grant 2009; Jiang and Thelen 2004), (ii) the 

application rate, and (iii) the intervention number applied for individual crops (de Baan, 

Spycher, and Daniel 2020). Soil fertility has been known to negatively correlate with the 

topography, resulting in agriculture-free mountainous areas and low pesticide 

application in the regions (Jiang and Thelen 2004). Pesticide groups with higher 

application mass will more strongly impact pesticide use than others. In 2019, about 55% 

of the pesticides sold in Switzerland were fungicides, while only 27% were herbicides, 

and the rest insecticides (BLW 2020). This is highly indicative of the application mass, 

application rates, and intervention numbers of the different pesticide groups in 

Switzerland. In addition to pesticide use, several other factors at the field level can 

influence the fate of pesticides, such as physiochemical properties that encompass 

mobility in water and persistence in the soil, as well as factors such as topography, 

precipitation, soil properties, and hydrological connectivity (Holvoet et al. 2007; 
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Payraudeau and Gregoire 2012). Important physiochemical properties include (i) half-

life, which is defined as the time necessary for 50% of the initial concentration of the 

pesticide to degrade, and indicates how long a pesticide might impact an ecosystem (Pino 

and Dîaz 1998), (ii) the water/soil partition coefficient (KOC), which refers to the ratio of 

pesticide absorbed to pesticide remaining in the soil, and is often used to predict pesticide 

soil mobility (Weber, Wilkerson, and Reinhardt 2004), and (iii) water solubility, which 

explains how easily a pesticide is dissolved in water, since water is the vehicle by which 

pesticides move into ground water (Pino and Dîaz 1998). 

Modern insecticide are known to reside in the soil after applications rather than 

leaching into the ground water, therefore they often display low-to-moderate water 

solubility levels, but moderate-to-high soil persistence levels (Malaj, Liber, and Morrissey 

2020). Fungicides and herbicides show higher diversity of physiochemical property levels 

within the pesticide groups, depending on their active ingredient (AI). Some are mobile 

and travel into ground water systems while others persist in the soil. Additionally, crop 

types have an impact on the pesticide use and occurrence as well, due to their different 

sensitivities towards pests and the number of pests they are subjected to throughout their 

growing seasons, resulting in varying amounts of pesticides needed to control the 

respective pests, application rates, and intervention numbers (de Baan et al. 2020). For 

example, several pests and diseases have grapevine as their favorite host and the vineyard 

as preferred environment, leading to increased pesticide application rates and 

intervention numbers (Pertot et al. 2017). Keeping fungal infestation at bay on certain 

crop, such as stone fruits, grapevines, and potatoes can drive fungicide application mass 

into quantities unachieved by herbicide or insecticide use (BLW 2020).   

There are several options to monitor pesticides in the environment, which include 

monitoring stations, maps, and models. Monitoring programs such as National 

Groundwater Monitoring (NAQUA) deliver information on ground water quality and 

pesticides therein (FOEN 2019).  

Chen et al. (2002) proposed a benchmark pesticide mobility index relevant to surface 

water runoff and soil erosion for multiple pesticides, i.e. a way to estimate pesticide 

exposure. Pesticide exposure estimates require information on chemical toxicity 

concentrations over time, which are often lacking over large spatial areas. Therefore, the 

authors proposed to use two key pesticide properties: Half-life and water/soil partition 

coefficient to calculate the surface water mobility index and model pesticide movement. 

The index allows us to investigate multiple chemicals in one index (Chen et al. 2002). 
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Process-based models have also become very popular to model pesticides in the 

environment, as they enable us to capture dominant physical, chemical, and biological 

processes that explain the movement of chemicals in soils over space and time. For 

example, the Soil and Water Assessment Tool (SWAT) and the Pesticide Root Zone Model 

(Akbar, Lin, and DeGroote 2011) have been widely used to predict the environmental 

impact of land use, land management practices, and climate change, and have shown a 

great capacity in determining the fate of pesticides in the environment. However, many of 

these models fail to accurately predict pesticide concentrations in water bodies within a 

watershed, and may result in predictions orders of magnitude different from the 

monitoring data (Holvoet et al. 2007). Spatially explicit predictive modeling for pesticide 

occurrence is rare but necessary to estimate surface waters and environment pesticide 

exposure (Malaj et al. 2020). For example, Ali Akbar et al. (2011) developed a spatially 

explicit model called ArcPRZM-3 for analyzing pesticide leaching potential from the soil 

surface towards groundwater. The model enables simulating the maximum dissolved 

bentazon concentration at a 0.75m soil depth for a two-year interval, and validation is 

implemented with bentazon data from monitoring wells from the same area. The results 

showed that 100% of the wells in which bentazon was detected were within the high-risk 

category based on the ArcPRZM-3 predictions. Unfortunately, bentazon is only one of 

many chemicals entering groundwater supplies by pesticide pollution (Akbar et al. 2011) 

and more models for the different chemicals are urgently needed.  

Despite the growing pesticide pollution in Swiss soils, groundwater supplies, and 

the negative side effects it thereby creates for many ecosystems discussed earlier, little 

large-scale continuous research exists on the extent and magnitude of the pesticide 

pollution problem for the Swiss landscape. A spatial analysis for Switzerland of the 

distribution of pesticide use, and the effect of precipitation and pesticide chemical 

properties may enable developing a vulnerability map (Akbar et al. 2011), which has yet 

to be established for Switzerland. To meet this gap in knowledge, in this thesis I establish 

a (relative) Pesticide Occurrence Index incorporating pesticide application rate and 

intervention numbers, pesticide chemical properties, and precipitation over Switzerland 

for the year of 2020. Ultimately, I provide a visualization of areas with higher likelihood 

of contamination (Malaj et al. 2020). This type of analysis can help prioritize sites for field 

monitoring programs, used in education and public information, and for pesticide policy 

development. 
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1.1.  Research Questions 

In this thesis I answer the following questions:  

1. Which areas of Switzerland experience the highest pesticide occurrence and 

pesticide use density? 

2. Which pesticide group displays the highest pesticide occurrence and pesticide use 

density? 

3. Which crop type has the highest impact on pesticide occurrence and pesticide use 

density? 

1.2.  Hypotheses 

1. The Pesticide Occurrence Index (POI) values will be strongly negatively correlated 

with the Swiss topography because higher/lower elevation areas will lead to a 

decreasing/increasing effect on POI for all pesticide groups. This is due to 

decreased soil fertility at high elevations and increased slope areas (Jiang and 

Thelen 2004). Additionally, little agriculture is done in these regions (Jiang and 

Thelen 2004). Lower quantities of pesticides are therefore applied, potentially 

resulting in a low POI value at high elevation and higher slope areas.   

2. The rPUDFungicide is higher than the rPUDInsecticide or rPUDHerbicide due to higher 

application rates and a higher number of fungicide applications relative to 

herbicides and insecticides. This is due to the impact of different numbers, and the 

distribution of fungal crop pathogens leading to fungal infections and fungicide use 

(Fausto, Rodrigues, and Coelho 2019). 

3. Regions with extensive vineyards will display higher POIFungicide values compared 

to any other crop type in the region. Grapevines are very sensitive to pests and 

experience one of the highest application rates of all pesticide groups in 

Switzerland. Vineyards are affected by numerous pests, especially fungal and 

insecticide infections, such as, Typholodromus exhilarates Ragusa (Liguori and 

Guidi 1995), grape berry moths (Thiery 2011), different kinds of grape powdery 

mildew  (Carisse et al. 2009), and many more.   
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2. Methodology 

2.1.  Study Area 

This research is conducted for the entire area of Switzerland. The country is 

dominated by 153 agricultural land cover types (BLW 2020). Swiss elevation varies 

between 193 m and 4379 m. The southern part of Switzerland is dominated by the 

mountainous Alps with elevations up to 4379 m, the north experiences lower elevations, 

however the lowest region of Switzerland can be found in the Lake Maggiore in the South 

with 193m. The average precipitation varied from 510 mm to 3749 mm from 1981 – 2010.  

2.2.  Measuring pesticide distribution and use at the country level 

To understand the spatial distribution of pesticide occurrence and pesticide use 

across Switzerland, I chose two indices: Pesticide Use Density (PUD) and Pesticide 

Property Index (PPI). I chose these indices because the PUD can predict continuous 

applied pesticide use by means of the crop type area and the applied pesticide mass per 

crop type. However, the PUD is not able to include local variations in pesticide mass due 

to changes in climate, natural environment, and pest occurrence.  The PPI is able predict 

the persistence and mobility of the applied pesticides by including three physiochemical 

properties (water solubility, half-life and KOC). Pesticide fate however is driven by many 

other factors beyond the three physiochemical properties, such as the application 

method, application time, and soil composition, among many others (Holvoet et al. 2007; 

Payraudeau and Gregoire 2012; Reichenberger et al. 2007). For this analysis I chose to 

calculate the two indices at a 1 km2 spatial resolution over all of Switzerland. The 

complete workflow for this analysis can be observed in Figure 1. 

2.2.1.  Pesticide Use  

The first step was to calculate the total quantity of pesticides applied for each 

pesticide group and crop type. Pesticide Use (PU) was calculated using the cultivated area 

(BLW 2021b), application rates, and number of interventions (de Baan et al. 2020) 

(equation 1). 

𝑃𝑈𝑖,𝑗,𝑔 = (𝐶𝑢𝑙𝑡𝑖𝑣𝑎𝑡𝑒𝑑 𝐴𝑟𝑒𝑎𝑖,𝑗,𝑔  ×  𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒𝑠𝑖,𝑗)  ×  𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐼𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑠𝑖,𝑗         

 (Equation 1)                       

Where, i is the crop type, j is the pesticide group, and g each grid cell. Unfortunately, by 

using only one application rate and intervention number per crop type, the accuracy of 

this method is highly reduced. The results will therefore not be able to visualize 
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differences of local application mass differences. However, the index is able to visualize 

and predict the effect of the pesticide mass differences between the individual crop types 

and pesticide group which is a primary focus of this thesis. Additionally, no distinction 

was made between organic agricultural areas and non-organic agricultural areas in this 

calculation.   

The application rate and intervention number for grapevine fungicide application 

was adjusted after comparing the values with a secondary literature source from the 

canton of Valais (Glasenapp and Bosshard 2013), which displayed a significantly lower 

intervention number compared to the calculated value retrieved from Agroscope used in 

this analysis (de Baan, Spycher, and Daniel 2015). Using a weighted mean on the 

secondary Valais data set resulted in a new intervention number of 1.25 which was 

significantly lower than the retrieved value of 9.4 by Agroscope. For further calculations, 

I used a mean of 
1.25+9.4

2
 leading to a new intervention number of 5.3. A similar approach 

was used for the adjustment of the application rate of 23.5 kg/ha. The total applied 

fungicide mass of grapevines stated in the Swiss agricultural report (BLW 2020) was 

divided by the total sum of cultivated area of grapevines and the new intervention 

number, resulting in a new application rate of 17.3 kg/ha. 

2.2.2. Total applied Pesticide Mass  

The second step was to calculate the Total applied Pesticide Mass (TPM; Equation 

2), which summed PU for all pesticide groups (fungicide, herbicide, and insecticide) 

together. TPM is an indicator of total pollution severity of pesticides in Switzerland.  

𝑇𝑃𝑀 = ∑ ∑ ∑ 𝑃𝑈𝑗,𝑖,𝑔

𝑛

𝑔 = 1

𝑘
𝑖 = 1

𝑝
𝑗 = 1  (Equation 2) 

Where, g is a grid cell, i is the crop type, j  is the pesticide group, k  is the number of crop 

type, n is the number of grid cells (n is 88800 for all of Switzerland), and p is herbicide, 

fungicide, or insecticide.  

2.2.2. Pesticide Use Density  

The Pesticide Use Density (PUD) was calculated using PU. However, a crop type 

fraction was incorporated into the final Index, resulting in a density rather than an 

absolute value. This approach accounts for area differences between the crop types. 

Lastly, the Index was scaled twice using (i) overall minima and maxima of all the pesticide 

groups to rescale the dataset, and (ii) each PUDj ranges exactly between 0 and 1 by means 
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of the formula 
𝑥 –min(𝑥)

∆ max(𝑥) –min(𝑥)
. In this way the pesticide groups are comparable to each 

other, resulting in a relative Pesticide Use Density (rPUD), 

𝑃𝑈𝐷𝑗,𝑔 = ∑ (𝑃𝑈𝑖,𝑗,𝑔 × 𝐶𝑇𝐹𝑖,𝑔)𝑘
𝑖=1   (Equation 3) 

CTF = crop type fraction in % =  
𝐶𝑢𝑙𝑡𝑖𝑣𝑎𝑡𝑒𝑑 𝐴𝑟𝑒𝑎 𝑓𝑜𝑟 𝑐𝑟𝑜𝑝 𝑡𝑦𝑝𝑒 𝑖 𝑗,𝑔

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑔𝑟𝑖𝑑 𝑐𝑒𝑙𝑙 (1000 𝑚2 )
 

Where, g is 1 km2 grid cell, i is the crop type, j is the pesticide group, and k is the number 

of crop types (k is nine). 

2.2.3.  Physiochemical Property Index  

The chemical properties of the different active ingredients in each pesticide play a 

crucial role in their pollution capacity (Nicholls 1988; Pino and Dîaz 1998) and are 

considered in the calculations. Three different properties are included: half-life, water-

soil partition coefficient (KOC) and water solubility at 20°C. Half-life and the water-soil 

partition coefficient were chosen to model and quantify the pesticide mobility capacity, 

similar to the Surface Water Mobility Index (SWMI) by Chen et al. (2002). In addition to 

those two parameters, water solubility was added as a parameter motivated by the 

research by Malaj et al. (2020) modeling a Wetland Pesticide Occurrence Index, who 

advocated that water solubility is a useful indicator for pesticide mobility within 

hydrological systems. The properties were approximated for each pesticide group using 

the sales number (in kg sold) for each active ingredient and information on which crops 

the pesticides are applied. This information  was gathered from the Federal Food Safety 

and Veterinary Office (BLV 2022). Following equations 4 and 5 results in a weighted mean 

for each chemical property (Equations 6-8). 

First, I calculate the Total Pesticide Use (TPU) for each crop. This factor is 

depending on the cultivated area, the intervention number, and the application rate, and 

will be used as a weighting factor for the next step.   

𝑇𝑃𝑈𝑖,𝑗 =  ∑ 𝑃𝑈𝑔,𝑖,𝑗
𝑛
𝑔=1   (Equation 4) 

Where, g is 1 km2 grid cell, i is the crop type, j is the pesticide group, and n is the number 

of grid cells (n is 88800 for all of Switzerland). 

Second, I assume that the amount of AI used on each crop (FSA) is dependent on 

the sales mass for the AI and a fraction coefficient (TPU). The fraction coefficient explains 

the proportional distribution of how much AI is applied to each crop, i.e. crops with a 
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higher fraction coefficient use more pesticides compared to crops with a lower fraction 

coefficient.   

𝐹𝑆𝐴𝑎,𝑖,𝑗 =
𝑇𝑃𝑈𝑖,𝑗 

∑ 𝑇𝑃𝑈𝑖,𝑗
𝑘
𝑖=1

 ×  𝑆𝑎𝑙𝑒𝑠 𝑁𝑢𝑚𝑏𝑒𝑟𝑎,𝑗;  ∀𝑎 𝑢𝑠𝑒𝑑 𝑜𝑛 𝑐𝑟𝑜𝑝 𝑡𝑦𝑝𝑒 𝑖  (Equation 5) 

Where, a is the active ingredients, i is the crop type, j is the pesticide group, and k is the 

number of crop types (k is nine).  

To estimate the final mean value of each physiochemical property (water solubility 

(ws), half-life (hl), and soil organic carbon-water partition coefficient (KOC)) for each crop 

type and pesticide group, I applied a fraction coefficient comprised of the FSA, to 

approximate the weight of each AI resulting in a weighted mean, see equations 6-8. 

𝑚𝑒𝑎𝑛 𝑤𝑠 𝑖,𝑗 =  ∑ ( 
𝐹𝑆𝐴𝑎,𝑖,𝑗

∑ 𝐹𝑆𝐴𝑎,𝑖,𝑗
𝐴
𝑎=1

 × 𝑤𝑠𝑎 )
𝐴
𝑎=1 ; ∀𝑎 𝑢𝑠𝑒𝑑 𝑜𝑛 𝑐𝑟𝑜𝑝 𝑡𝑦𝑝𝑒 𝑖  (Equation 6) 

𝑚𝑒𝑎𝑛 ℎ𝑙 𝑖,𝑗 =  ∑ ( 
𝐹𝑆𝐴𝑎,𝑖,𝑗

∑ 𝐹𝑆𝐴𝑎,𝑖,𝑗
𝐴
𝑎=1

 × ℎ𝑙𝑎 ) ; ∀𝑎 𝑢𝑠𝑒𝑑 𝑜𝑛 𝑐𝑟𝑜𝑝 𝑡𝑦𝑝𝑒 𝑖 𝐴
𝑎=1  (Equation 7) 

𝑚𝑒𝑎𝑛 𝐾𝑜𝑐 𝑖,𝑗 =  ∑ ( 
𝐹𝑆𝐴𝑎,𝑖,𝑗

∑ 𝐹𝑆𝐴𝑎,𝑖,𝑗
𝐴
𝑎=1

 × 𝐾𝑜𝑐𝑎)𝐴
𝑎=1 ; ∀𝑎 𝑢𝑠𝑒𝑑 𝑜𝑛 𝑐𝑟𝑜𝑝 𝑡𝑦𝑝𝑒 𝑖  (Equation 8) 

Where, a is the active ingredient, A is the number of active ingredients, i is the crop type, 

j is the pesticide group, ws is the water solubility for the active ingredient a, hl is the half-

life for the active ingredient a, and KOC is the soil organic carbon-water partition 

coefficient for the active ingredient a.  

Third, to spatially calculate the final water solubility, half-life, and KOC, the mean 

physiochemical properties for each crop type and pesticide group are multiplied by the 

crop type fraction CTF.  

𝑤𝑎𝑡𝑒𝑟 𝑠𝑜𝑙𝑢𝑏𝑖𝑙𝑖𝑡𝑦𝑗,𝑔 =   ∑ (𝑚𝑒𝑎𝑛 𝑤𝑠𝑖,𝑗 × 𝐶𝑇𝐹𝑖,𝑔)𝑘
𝑖=1   (Equation 9) 

ℎ𝑎𝑙𝑓 − 𝑙𝑖𝑓𝑒𝑗,𝑔 = ∑ (𝑚𝑒𝑎𝑛 ℎ𝑓𝑖,𝑗 × 𝐶𝑇𝐹𝑖,𝑔)𝑘
𝑖=1   (Equation 10) 

𝐾𝑜𝑐𝑗,𝑔 = ∑ (𝑚𝑒𝑎𝑛 𝑤𝑠𝑖,𝑗 × 𝐶𝑇𝐹𝑖,𝑔)𝑘
𝑖=1     (Equation 11) 

CTF = crop type fraction in % =  
𝐶𝑢𝑙𝑡𝑖𝑣𝑎𝑡𝑒𝑑 𝐴𝑟𝑒𝑎 𝑓𝑜𝑟 𝐶𝑟𝑜𝑝 𝑇𝑦𝑝𝑒 𝑖 𝑗,𝑔

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑔𝑟𝑖𝑑 𝑐𝑒𝑙𝑙 (1000 𝑚2 )
 

Where, g is 1 km2 grid cell, i is the crop type, j is the pesticide group, and k is the number 

of crop types (k is nine). 

 To finally map the Pesticide Property Index (PPI), the physiochemical parameter, 

water solubility, half-life, and KOC are summed together and divided by three.  

𝑃𝑃𝐼𝑗,𝑔 = (𝑤𝑎𝑡𝑒𝑟 𝑠𝑜𝑙𝑢𝑏𝑖𝑙𝑖𝑡𝑦𝑗,𝑔 +  ℎ𝑎𝑙𝑓 − 𝑙𝑖𝑓𝑒𝑗,𝑔 +  𝐾𝑜𝑐𝑗,𝑔) ×
1

3
  (Equation 12) 
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Where, g is 1 km2 grid cell, i is the crop type, j is the pesticide group, and k is the number 

of crop types (k is nine). Before the parameters were summed, the parameters were 

scaled twice (i) using overall minima and maxima of each physiochemical parameter of 

all the pesticide groups to rescale the dataset and (ii) parameter ranged exactly between 

zero and one for each pesticide group separately using the formula 
𝑥 –min(𝑥)

max(𝑥) –min(𝑥)
. I 

purposefully did not rescale PPI, the overall sum of the parameters, from zero to one, to 

preserve the impact each parameter has independently.  

2.2.4.  Precipitation 

Precipitation can induce pesticide movement and thereby accelerate pesticide 

distribution over ecosystems and was regarded by Malaj et al. (2020) in their wetland 

pesticide occurrence prediction efforts. Precipitation is a main driver for pesticide 

leaching into ground waters especially in structured loamy and heavy clay soils prone to 

fast preferential water flow in soil macropores (Lewan, Kreuger, and Jarvis 2009). For 

said reason, precipitation was an important factor to consider when modeling pesticide 

fate.  

The precipitation data retrieved by the Federal Office of Meteorology and 

Climatology (2019) had an original spatial resolution of 500m2. The data was rescaled to 

match the resolution of the other parameters at 1 km2 spatial resolution. I used the 

nearest neighbor interpolation (NNI) method, as this method allows aggregating the 

pixels to the needed spatial resolution. The NNI method is an image interpolation method 

that uses a source image as a reference to construct a new rescaled image. When 

performing a digital image interpolation, empty pixels emerge, which are then filled with 

the nearest neighboring pixel value, hence the name (Rukundo and Cao 2012). Once the 

pixel resolution was rescaled, I chose to only display the pixels in which the PUDj or PPIj 

values were positive to avoid creating pesticide occurrence values due to precipitation in 

areas where no agriculture and therefore pesticide application was even occurring (j 

stands for the different pesticide groups). 

2.2.5.  Pesticide Occurrence Index  

The Pesticide Occurrence Index (POI) and the relative Pesticide Occurrence Index 

(rPOI) are comprised of the PUD, PPI and precipitation and rPUD, rPPI and precipitation 

respectively (Equation 3 and 12).  The resulting pesticide occurrence index (POI) is a 

modeled indicator of pesticide pollution occurrence for Switzerland (Figure 9). 
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𝑃𝑂𝐼𝑗,𝑔 =  (𝑃𝑈𝐷𝑗,𝑔 + 𝑃𝑃𝐼𝑗,𝑔 +  𝑃𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑔) ×
1

3
  (Equation 13) 

𝑟𝑃𝑂𝐼𝑗,𝑔 =  (𝑟𝑃𝑈𝐷𝑗,𝑔 + 𝑟𝑃𝑃𝐼𝑗,𝑔 +  𝑃𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑔) ×
1

3
  (Equation 14) 

Where, j is the pesticide group and g the 1 km2 grid cell. 

 Applying a likelihood analysis by means of a composite index can allow different 

entities to be added together to create one descriptive indicator, the Pesticide Occurrence 

Index (POI). For this analysis, the three entities pesticide use density (PUD), pesticide 

property index (PPI), and precipitation are added together to create one descriptive 

index, analogous to the Wetland Pesticide Occurrence Index by Malaj et al. (2020). The 

PUD is calculated by means of the pesticide use (PU) of the respective crops, which allows 

estimations of total applied pesticide mass (TPM). Beside modeling the parameters in an 

absolute format ranging from zero to one for each separate parameter and pesticide 

group, the parameters are also calculated in a relative format to compare pesticide group 

patterns with each other, resulting a relative PUD (rPUD), relative PPI (rPPI) and final 

relative POI (rPOI).  

  

Figure 1: Workflow for the calculation of the Pesticide Occurrence Index. Created with Biorender.com. 
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2.3.  Data  

Pesticides: This analysis profited greatly from already aggregated data regarding 

pesticide application (Table 1). For example, Agroscope was able to provide one single 

mean application rate and intervention number, using an average from 2009 to 2018 (de 

Baan et al. 2020) for each crop and pesticide group using an approximation methodology 

by Baan et al. (2015). For this work, I assume mean application rates and intervention 

numbers are robust and have therefore not changed since. The application rates and 

intervention numbers were used to calculate the PU and the PUD. Herbicide, insecticide, 

and fungicide were the pesticide groups chosen for the analysis in this study as they are 

the most frequently bought pesticide groups in Switzerland (BLW 2020). The applied AI 

for each crop type used to calculate the PPI, 166 AI in total, were obtained from the 

Federal Food Safety and Veterinary Office (state: 2020) providing detailed information 

on the crops they are applied to and pesticide group they belong. The Federal Office of 

Agriculture provided sales numbers of the respective AIs for the year 2019. The Pesticide 

Properties Database created by the University of Hertfordshire supplied the required 

pesticide properties of each active ingredient which is used in this analysis (Lewis et al. 

2016). 

Table 1: Intervention number and application rate for the nine investigated crop types and fungicide, herbicide, and 
insecticide. Adjusted grapevine application rate and intervention number. Data provided by de Baan et al. (2020) from 
Agroscope.  

Intervention number              

 
Grapevine Potato 

Stone 
fruit 

Sugar 
beet 

Barley Wheat 
Rape-
seed 

Corn Fields 

Herbicide 1.2 2.1 1.3 4.1 1.2 1.2 1.3 1.1 0.1 
Fungicide 5.3 5.3 5.6 1.2 1.6 1.4 0.8 0.0 0 
Insecticide 0.4 1.1 2.1 0.2 0.0 0.1 1.9 0.0 0 

Application rate (kg/ha)          

 
Grapevine Potato 

Stone 
fruit 

Sugar 
Beet 

Barley Wheat 
Rape-
seed 

Corn Fields 

Herbicide 1.2 2.4 0.9 5.1 1.5 0.8 1.7 1.4 0.1 
Fungicide 17.3 6.3 5.9 0.4 0.9 0.8 0.3 0.0 0 
Insecticide 0.3 3.0 2.6 0.1 0.0 0.0 0.2 0.0 0 

 

Land cover types:  The Minimal Geodata Model (state: 2021), mapping the different 

land use areas of Switzerland, was provided by the Federal Office of Agriculture and 

includes 153 different land use categories (BLW 2021b). The model was used to calculate 

the cultivated area of each crop type and was utilized in several steps of the analysis 

(Equation 1,3, 9-11). Agroscope provided mean application rates and intervention 
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numbers for exactly 12 crop types, however the crop types (legumes, pome fruits, and 

“other grains” were excluded since no respective land use category was designated to 

them, and therefore I was unable to estimate their cultivated area. The remaining nine 

crop types which are included in this analysis and possessed land use categories in the 

Minimal Geodata Model were barley, potato, corn, rapeseed, wheat, sugar beet, grapevine, 

stone fruits, and fields.  

An empty 1 km2 spatial resolution raster grid covering the extend of Switzerland 

and containing 88800 empty pixel was intersected with the Minimal Geodata Model map, 

providing the cultivated area of each crop in each grid cell. The resulting spatial files 

contains the cultivated area in each grid cell (Figure 2). 

(a) Barley (b) Potato 

(c) Corn (d) Rapeseed 

(e) Wheat (f) Sugar beet  



21 

(g) Grapevine (h) Stone fruits  

(i) Fields   

Figure 2: Cultivated areas for the nine investigated crop types (a)-(i). 

Climate: A major climate factor for pesticide fate is precipitation, which induces 

pesticide movement and is a main driver for pesticide leaching into ground waters 

(Lewan et al. 2009) and was therefore included in this analysis. The precipitation raster 

data was retrieved from the Federal Office of Meteorology and Climatology (2019) with 

500m2 spatial resolution and represented the average precipitation of the years 1981-

2010 (Figure 3). Using the 

average precipitation values 

can reduce yearly variation 

in the data and thereby give 

a more distinct picture of the 

expected precipitation. For 

this analysis, I assume no 

major changes in 

precipitation in the mean 

values. 

  

Figure 3: Average precipitation map of 1981 – 2010 of Switzerland in millimeters 
provided by Federal Office of Meteorology and Climatology. 
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Table 2: The data collection table presents the descriptions, units, sources, links and in which equations the data was 
used. The data was collected from various Federal Offices encompassing different years and time frames.   

 Description Units Source Link Equation 
Cultivated 
Planted 
 

Minimal Geodata 
Model displaying 
the agricultural 
landcover types 
for 2021. 

[m2] Federal Office of 
Agriculture 
(2021) 
 
Received by Beat 
Tschumi on the 
30.09.21 via E-
Mail 
 

https://www.bl
w.admin.ch/blw/
de/home/politik
/datenmanagem
ent/geografische
s-information 
ssystem-gis/mini 
male-geodaten 
modelle.html 

1,3,9-11 

      
Application 
Rates & Number 
of Interventions 
 

Mean value of 
intervention and 
application rate 
per crop and 
active ingredient 
group (2009 - 
2018). 

[kg/ha] 
[-] 

de Baan et al. 
(2020) 

https://www.a
grarbericht.ch/
de/umwelt/wa
sser/verkauf-
und-einsatz-
von-pflanzen 
schutzmitteln?
_k=4yLaidwL 

1 

      
Precipitation Average 

precipitation for 
1981 – 2010. 

[mm] Federal Office of 
Meteorology and 
Climatology 
(2019)  
 
Map: Precipitation 
1981-2010 
(climate normal) 
 

https://map.geo.
admin.ch/?layers
=ch.meteosmete
os.klimanormwer
tk-niederschlag 
_aktuelle_periode
&lang=en&topic
=ech&bgLayer=
ch.swisstopo.pixe
lkartefarbe&E=2
692020.08&N=1
201301.63&zoo
m=1.217460617
038049&catalog
Nodes=532,628 

13,14 

      
Physicochemical 
Properties 

     

Utilized active 
ingredients 

Plant Protection 
Directory 
describing which 
active ingredients 
are used on each 
crop type. 

[-] Federal Food 
Safety and 
Veterinary Office 
(2020) 

https://www.p
sm.admin.ch/d
e/produkte 

 

5-9 

Sales number of 
active 
ingredients 

Sold amount of 
each active 
ingredient in 
2019. 

[tons] Federal Office of 
Agriculture 
(2019) 

https://www.bl
w.admin.ch/blw/
de/home/nachha
ltige-produktion 
/pflanzenschutz/
verkaufsmengen-
der-pflanzen 
schutzmittel-
wirkstoffe.html 

5 

Water solubility 
at 20° C 

Physiochemical 
property of AI. 
Explains how 
easily pesticides 
are dissolved in 
water. 

[mg/L] 
 

PPDB: Pesticide 
Properties 
DataBase 
(Lewis et al. 2016) 
State: Jan. 2021 
  

http://sitem.hert
s.ac.uk/aeru/ppd
b/en/atoz_fung.h
tm#A 

6 

Half-life (DT50) Physiochemical 
property of AI. 
Necessary time for 

[days] PPDB: Pesticide 
Properties 
DataBase 

http://sitem.hert
s.ac.uk/aeru/ppd
b/en/atoz_fung.h
tm#A 

7 
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50% of the initial 
concentration to 
degrade. 

(Lewis et al. 2016) 
State: Jan. 2021 
  

Soil organic 
carbon-water 
partition 
coefficient (KOC) 

Physiochemical 
property of AI. 
Refers to the ratio 
of pesticide 
absorbed to 
pesticide 
remaining in the 
soil. 

[-] PPDB: Pesticide 
Properties 
DataBase 
Lewis et al. (2016) 
State: Jan. 2021 
 

http://sitem.hert
s.ac.uk/aeru/ppd
b/en/atoz_fung.h
tm#A 

8 

      
Topography  
Digital Height 
Model (DHM)  

DHM25 is a 
dataset 
representing the 
3D form of the 
Swiss surface 
without 
vegetation and 
buildings.  

[m] Federal Office of 
Topography 
(2004) 

https://www.s
wisstopo.admi
n.ch/de/geoda
ta/height/dhm
25.html#downl
oad 

Finding POI 
patterns 
related to 
the Swiss 
topography 
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2.4.  Statistical Analyses  

2.4.1.  Which areas of Switzerland experience highest pesticide occurrence and 
pesticide use density? 

To find areas and patterns with high pesticide use density and pesticide 

occurrence, the two parameters were mapped over Switzerland and visually analyzed. 

Furthermore, to test my first hypothesis that POI will strongly negatively relate to 

topography, I applied a focal correlation method between the Digital Height Model (DHM) 

and the POI map. First, I rescaled the DHM of Switzerland from 25m2 to 1km2. Second, I 

applied the focal correlation method, which allows me to detect local relationships 

between topography and pesticide occurrence. The focal correlation method does not use 

all the data values of the two maps at once to calculate 

one overarching correlation value, but instead utilizes 

each pixel and their respective surroundings separately. 

This allows us to investigate local patterns more 

precisely. Correlation is a statistical measure of the 

linear relationship between two variables X and Y, 

resulting in a value ranging from -1 to 1, and references 

the degree to which the variables are linearly related to 

each other (Akoglu 2018). 

For every single pixel location in both parameter 

maps, a 5×5 pixel neighborhood around it was chosen and correlated with each other, 

meaning for example that 25 pixels from the POI map and 25 pixels from the DHM map 

were correlated, resulting in a single correlation value for the investigated central pixel 

(see orange pixel Figure 4). The degree of correlation therefore indicates what influence 

elevation has on local pesticide occurrence patters and can be interpreted as to which 

extent the POI varies with the elevation.1  

  

 
1 https://ch.mathworks.com/de/company/newsletters/articles/how-matlab-represents-pixel-colors.html 

Figure 4: Visualization of a 5×5- pixel 
neighborhood of the investigated main 
center orange pixel. Image retrieved 
from MathWorks, January 20201. 
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2.4.2.  Which pesticide group displays the highest pesticide occurrence and 

pesticide use density? 

To answer my question regarding which pesticide group displays the highest 

pesticide occurrence and pesticide use density, I used a relative scaling approach, 

rescaling the parameters to produce the rPUD and rPOI, which allows us to compare the 

parameter between the three pesticide groups. Additionally, the pixel values of the PUD 

and POI were plotted in frequency histograms to numerically compare the pesticide 

groups.  

2.4.3.  Which crop type has the highest impact on pesticide occurrence and 
pesticide use density? 

To investigate which crop type has the greatest impact on the different pesticide 

pollution parameters in Switzerland and to answer my research question, I applied an 

ANOVA analysis in Rstudio. A type III SS analysis, i.e. an analysis that tests the effect of the 

different crops on the final parameter using the 88800 pixel values as sample size, was 

chosen to ensure that the crop types were examined independent from their model order. 

I tested whether PUD, PPI, and the POI varied with crop type. 

Throughout the analysis, model errors arose because the final parameters (sum 

PUD, PPI, and POI) ran out of residuals to compute the sum of squares with, because the 

sample size of 88800 was rather high. Therefore, the final parameters in each model were 

rescaled respectively by a factor 1x1012 for PUD, 1x106 for PPI, for 1x106 for POIHerbicide to 

ensure that the models did not run out of residuals to calculate the SS with. Only crop 

types onto which the respective pesticide group was applied to were included in the 

ANOVA analysis. For fungicide, the crop types corn and fields, and for insecticide barley, 

corn, wheat, and fields were removed in the models. 
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3. Results 

3.1.  Total applied Pesticide Mass 

 The total applied pesticide mass (TPM) was calculated to a total of 1770.7 tons 

over Switzerland for 2019 to 2020, with the assumption that application rates, 

intervention numbers, and precipitation are robust mean values and therefore did not 

include major changes. The 1770.7 tons of pesticide were 1235.9 tons of fungicide, 498.8 

tons of herbicide, and 36 tons of insecticide (Table 3). Grapevine pesticide application was 

the highest compared to the other investigated crops with 908.6 tons, which is roughly 

51% of the total applied pesticide for all of Switzerland. Sugar beets comprised the second 

highest pesticide use with 257 tons of pesticides, mainly herbicides.  

Table 3: Pesticide Use for each crop type and pesticide group. Pesticide Use numbers from the Swiss agricultural report 
were reported in the last row for comparative measures.  

 

 

  

[tons] Fungicide Herbicide Insecticide Total 
Barley 26.3 32.7 0 58.9 
Potato 183.8 28.9 18.2 230.9 
Corn 0 69.5 0 69.5 
Rapeseed 4.3 39.6 6.8 50.8 
Wheat 64.3 55.1 0 119.4 
Sugar beet 5.8 251.0 0.2 257.0 
Grapevine 893.4 14.0 1.2 908.6 
Stone fruit 58.2 2.1 9.6 69.9 
Fields 0 5.9 0 5.9 
Sum 1235.9 498.8 36.0 1770.7 
Agricultural 
Report 2020* 

1006 575 280 1771 
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3.2.  Pesticide Use  

I found that the distribution of pesticide use varied greatly over Switzerland 

(Figure 5). Insecticide displays the lowest pesticide input with 148 kg per grid cell, while 

fungicides show the highest with 5741 kg per grid cell.  

PUFungicide per grid cell varies from 0 to 5741 kg, which is the highest application 

amount out of all pesticide groups, and seven times the maximum for herbicides, the 

second highest pesticide group. The valley of Sion in Valais following the river system of 

the Rhone, the cantons of Vaud and Geneva, and the river system of the Rhein in the canton 

of Grisons were all areas in Switzerland with high pesticide use (Figure 5a). These regions 

correspond to vineyard production in the country (Figure 2g). Therefore, it is not 

surprising that grapevine production accounted for roughly 72% of the fungicide input 

(Table 3). 

The values for PUHerbicide varied from 0 to 813 kg per grid cell. Areas with high 

PUHerbicide values are mainly the canton Vaud, northern areas of Thurgau and Zurich, as 

well as small parts of Fribourg.  

The PUInsecticide values in Switzerland ranged from 0 to 178 kg per grid cell which is 

the lowest compared to any other pesticide group (Figure 5c). The main areas of 

insecticide input were the valley of Sion in Valais and the Rhein river system. The main 

driver of PUInsecticide input is, however, potatoes, as they account for half of the insecticide 

input (Table 3). It can be observed that the high PUInsecticide values are located in areas with 

grapevine production (Figure 2g, 5c). Furthermore, a large area of Switzerland was not 

affected at all by any PUInsecticide.  
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(a) PUFungicide (b) PUHerbicide 

  

(c) PUInsecticide Figure 5: Fungicide, Herbicide, and Insecticide Use in 
kilograms per grid cell for all nine investigated crop 
types. 
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3.3.  Pesticide Use Density and relative Pesticide Use Density  

3.3.1.  Pesticide Use Density  

Observing the PUD for the different pesticide groups, the patterns and areas of 

concern appear to be similar as in the PU map, which is not surprising as the bases of both 

calculations are similar (Figure 7). However, differences can be allocated for each 

pesticide group (Figure 5 and 7). 

Many areas of high PUFungicide have now lower PUDFungicide, however, the valley of 

Sion and following the riverbanks of the Rhone up to the lake of Geneva still display high 

values. The region of Schaffhausen and Rhein display lower relative values compared to 

the PUFungicide values. The PUDFungicide pattern follows agricultural grapevine production 

(Figure 2g and 7a). Additionally, the PUDFungicide experiences the highest number of grid 

cells with densities above 0.2 compared to herbicide and insecticide (Figure 6). 

Areas of high PUDHerbicide values include the region of Schaffhausen, northern 

Geneva, Zurich, Thurgau, as well as the riverbanks of the Rhone. Yet, Vaud is the canton 

with highest PUDHerbicide values in Switzerland. The hotspots of high PUDHerbicide visually 

overlap with agricultural sugar beet production of Switzerland (Figure 2f and 7b).  

The PUDInsecticide displays the least amount of grid cells above 0.1 compared to the 

other pesticide groups (Figure 6b). Only the valley of Sion, the Rhein, and isolated grid 

cells in Vaud experienced high PUDInsecticide values, very likely due to agricultural 

grapevine production in these regions (Figure 7c and 2g).  
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(a) PUDFungicide Histogram (b) PUDInsecticide Histogram 

(c) PUDHerbicide Histogram Figure 6: Histogram of PUD grid cell values (88800 grid cells 
in total) for fungicide, herbicide and insecticide.  

 

3.3.1.  Relative Pesticide Use Density  

Fungicides display overall the highest rPUDFungicide values, which range from zero 

to one, whereas the maximal value for herbicides was 0.079 and 0.011 for insecticides 

(Figure 7d-f). Because of the scaling method, the rPUDFungicide and PUDFungicide are identical.  

To find potential areas of high pesticide pollution, only high levels of PUD values 

will be examined. These values were only found for PUDFungicide, mainly in the valley of 

Sion, following the Rhone River system to Geneva, and by the Rhein close to Chur, all areas 

with intensive agricultural grapevine production (Figure 2g). The rPUD for herbicides and 

insecticides did not display any values above 0.1. 

 



 
 

(a) PUDFungicide  (b) PUDHerbicide (c) PUDInsecticide 

   

(d) rPUDFungicide (e) rPUDHerbicide (f) rPUDInsecticide 

   

Figure 7: Pesticide Use Density (a) – (c) and relative Pesticide Use Density (d) – (f) for fungicide, herbicide, and insecticide for all nine crop types. The final densities were scaled twice, 
first in an absolute fashion so that each PUD pesticide map ranged exactly from 0 to 1 (a) – (c) and the second time so that the pesticide groups are comparable to each other (d) – (f).



 
 

3.4.  Pesticide Property Index and relative Pesticide Property Index  

3.4.1.  Pesticide Property Index 

To examine which properties of pesticides most impact Switzerland, the Pesticide 

Property Index (PPI) and relative Pesticide Property Index (rPPI) display patterns of 

negative environmental impacts by accentuating areas of damaging physiochemical 

pesticide properties, as some active ingredients are more harmful to natural systems than 

others. The PPI and rPPI for Switzerland are shown in Figure 9.  

High PPIFungicide values are mainly distributed in the mid-region of Vaud and the 

southern edge of the Neuchatel Lake in Fribourg. A secondary hotspot can be observed in 

the north of the cantons Zurich and Thurgau, as well as parts of Schaffhausen, all of which 

are regions of expanded agricultural potato production (Figure 9a). Potatoes had the 

highest mean water-solubility as well as half-life values of all crop and pesticide groups, 

which is a potential driver for the high values in the region (Table 4). In the valley of Sion, 

following the river system of the Rhone, increased PPIFungicide values are found, most likely 

due to the intensive agricultural grapevine production in these regions (Figure 2g and 

9a).  In total, 72 fungicide AIs were applied onto Swiss crops, however, the crops corn and 

fields did not receive any fungicide treatment, and therefore had zero as their mean 

chemical property values (Table 4). The PPI for herbicide had the largest number of 

values above 0.1 followed by fungicide and insecticide (Figure 8a-c).   

The PPIHerbicide map displays a pattern unlike any other map plotted thus far. High 

values are found in the Pre-Alp regions, especially in the cantons of St. Gallen, Appenzell 

Innerrhoden, Appenzell Ausserrhoden and Fribourg, as well as on the Jura plateau (Figure 

9b). The high occurrence of fields in those regions could be the potential driver of high 

PPIHerbicide values (Figure 2i). In total, 73 herbicide AIs were utilized on crops and 

herbicides were applied onto all the investigated crop types. The physiochemical 

properties of the herbicide AIs applied onto fields, stone fruits and grapevines were 

extremely high, with half-lives for all three crop types above 250 days (Table 4). The 

combination of high physical pesticide properties and larger areas impacted by these 

properties most likely led to large regions of high PPIHerbicide values.  

The amount of AIs applied in insecticide is only a fraction of those for fungicide or 

herbicide, with 21 AIs. The insecticide AIs display exceptionally high KOC values, with the 

overall maxima of all pesticide groups in stone fruits (Table 4). The applied AIs therefore 
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attach themselves efficiently onto organic soil particles rather than water, however the 

half-life is rather low and does not range above 100 days.   

Areas of high PPIInsecticide values are the Valley of Sion at the river system of the 

Rhone, and in the northern corner of Geneva, both areas of extensive agricultural 

grapevine production (Figure 2g and9c). 

Table 4: Calculated mean water-solubility at 20°C (ws), half-life (hl), and Koc for each crop type. Blue highlighted cells 
display the high physiochemical properties of grapevine, stone fruits, and fields. Bold numbers represent the maxima 
of the respective physiochemical property.  

[ml, days, - ] 

Fungicide Barley Potato Corn 
Rape 
seed 

Wheat 
Sugar 
Beet 

Grapevine 
Stone 
Fruit 

Fields 

Mean ws  36 228665 0 29 33 30 37096 5765 0 
Mean hl 63 323 0 54 68 290 129 70 0 
Mean Koc 4011 2233 0 8040 3976 4810 2846 1446 0 

Herbicide          

Mean ws  29958 514 10833 4012 29690 1573 42073 107857 114756 
Mean hl 21 43 24 52 21 17 302 273 259 
Mean Koc 1939 4272 1743 3337 1917 323 110486 100499 94690 

Insecticide            

Mean ws 0 325 0 645 0 19 0.1 2 0 
Mean hl 0 15 0 13 0 64 64 65 0 
Mean Koc 0 166086 0 74702 0 8989057 8760301 9069139 0 

 

(a) PPIFungicide Histogram (b) PPIInsecticide Histogram 

(c) PPIHerbicide Histogram Figure 8: Histogram of PPI grid cell values (88800 grid cells 
in total) for fungicide, insecticide and herbicide.  
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3.4.2. Relative Pesticide Property Index 

Visually examining the different rPPI maps, it is evident that rPPIHerbicide more 

frequently displays values above 0.2 (Figure 9d-f).  The maximum for rPPIHerbicide is 0.68 

and is the highest among all pesticide groups. The hotspot areas for the rPPIHerbicide can be 

found in the Pre-Alp regions as well as on the Jura plateau in Neuchatel (Figure 9d). 

The rPPIFungicide map displays the lowest values relative to the other pesticide 

groups, as the maximal value is only 0.11 (Figure 9d). Furthermore, the general grid cell 

values of the map are comparatively low as well. The maximal rPPIInsecticide value is a little 

higher with 0.35. The rest of the map is very similar to the rPPIFungicide patterns (Figure 9f). 

  



 
 

(a) PPIFungicide  (b) PPIHerbicide (c) PPIInsecticide 

   

(d) rPPIFungicide (e) rPPIHerbicide (f) rPPIInsecticide 

   

Figure 9: Pesticide Property Index (a) – (c) and the relative Pesticide Property Index (d) – (f) for fungicide, herbicide, insecticide for all nine investigated crop types. The color code used 
for the maps range from 0 to 1 and was chosen to display extremely small as well as high values. This was achieved by exponentially increasing the values until 0.1 followed by a steady 
linear increase up to 0.7 for PPI, 0.6 for rPPI. Only few values were found lager than these thresholds, therefore the last coloring interval ranged from 0.7/0.6 to 1.



 
 

3.5.  Pesticide Occurrence Index and relative Pesticide Occurrence 

Index  

3.5.1.  Pesticide Occurrence Index  

I found that the highest POIFungicide values occur in the valley of Sion at the river side 

of the Rhone, and at a single region in the northern part of Geneva (Figure 11a), both 

locations of agricultural grapevine production (Figure 2g). Similar patterns showed high 

values for POIInsecticide, in the valley of Sion and following the river system of the Rhone as 

well as the northern part of Geneva (Figure 11c). 

In the region of southern Zurich and Zug, the northern parts of Schwyz, the west of 

St. Gallen as well as areas of Jura show the highest values of POIHerbicide (Figure 11b). The 

POIHerbicide patterns clearly follow the Pre-Alp region as well as the Jura region, which are 

both areas with a high frequency of the crop type fields, which yielded high values for the 

PPIHerbicide. The POIHerbicide dispayed the most values above 0.3, clearly indicating the 

strong effect of herbicide compared to fungicide and insecticide on the pesticide 

occurrence in Switzerland (Figure 10). 

(a) POIFungicide Histogram (b) POIInsecticide Histogram 

(c) POIHerbicide Histogram Figure 10: Histogram of POI grid cell values (88800 grid 
cells in total) for fungicide, herbicide and insecticide. 
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3.5.2.  Relative Pesticide Occurrence Index  

The rPOIHerbicide displayed the highest values at 0.46, closely followed by 

rPOIFungicide which had a maximum of 0.45. The rPOIInsecticide maximum, however, was 

considerably lower with 0.29 (Figure 11d-f). The pesticide group with higher values was 

herbicide, covering the Pre-Alpine and Jura region with high values (Figure 11e).  

The rPOIFungicide, rPOIInsecticide, and rPOIHerbicide maps all displayed medium-high 

values in the canton of Ticino. Other areas of high rPOIFungicide values were found on the 

river sides of the Rhone, and isolated hotspot regions in northern Geneva (Figure 11d).  

   



 
 

(a) POIFungicide  (b) POIHerbicide (c) POIInsecticide 

   

(d) rPOIFungicide (e) rPOIHerbicide (f) rPOIInsecticide 

   

Figure 11: Pesticide Occurrence Index (a) – (c) and relative Pesticide Occurrence (d) – (f) for fungicide, herbicide, and insecticide for all nine investigated crop types. The resulting map 
was displayed in a linear color code because few small values were present in this index.  The legend for the rPOI only reaches 0.5 as higher values were scarce and no further division 
increased visualization of the index. 



 
 

3.6.  ANOVA 

The ANOVA was used to test whether PUD, PPI and POI were influenced by the 

crop types. Results showed that all the investigated crop types had a significant effect on 

the final indices.  

3.6.1.  Pesticide Use Density  

I found that for PUDFungicide, all crop types showed a significant effect on the 

resulting density of the different pesticide groups (Table 5). Out of the tested crop types, 

grapevines had the strongest effect, followed by potatoes, stone fruits and wheat; these 

results are in line with the PUDFungicide map (Figure 7a). The ANOVA analysis for 

PUDHerbicide showed that for this type of pesticide group, again all crops had significant 

effect, with the strongest being attributed to sugar beets, followed by grapevines, wheat, 

and corn. However, the crop types explaining the highest variation for PUDInsecticide were 

stone fruits and potatoes followed by grapevines and rapeseeds. 

Table 5: ANOVA table of all pesticide use densities for all pesticide groups.   

PUDFungicide 
Response: PUD_F$PUDSmFn * 1e+12 

Sum Sq    Df    F value    Pr(>F) 
 (Intercept)   0.0000e+00     1 1.1288e+02 < 2.2e-16 *** 

Grapevine PUD_F$PUDRBFn 1.6486e+25     1 1.1740e+28 < 2.2e-16 *** 
Potatoes PUD_F$PUDKTFn 2.4961e+22     1 1.7775e+25 < 2.2e-16 *** 
Stone Fruit PUD_F$PUDSOFn 2.0351e+22     1 1.4492e+25 < 2.2e-16 *** 
Wheat PUD_F$PUDWFng 2.2970e+21     1 1.6357e+24 < 2.2e-16 *** 
Barley PUD_F$PUDGFng 9.4129e+19     1 6.7031e+22 < 2.2e-16 *** 
Sugar Beet PUD_F$PUDZRFn 2.5341e+19     1 1.8045e+22 < 2.2e-16 *** 
Rapeseed PUD_F$PUDRFng 5.8096e+18     1 4.1371e+21 < 2.2e-16 *** 

Residuals     1.2500e+02 88792 

PUDHerbicide 
Response: PUD_H$PUDSmHr * 1e+12 

Sum Sq    Df    F value    Pr(>F) 
 (Intercept)   0.0000e+00     1 6.8262e+02 < 2.2e-16 *** 

Sugar Beet PUD_H$PUDZRHr 7.6309e+24     1 9.7341e+28 < 2.2e-16 *** 
Grapevine PUD_H$PUDRBHr 6.4789e+23     1 8.2645e+27 < 2.2e-16 *** 
Potatoes PUD_H$PUDKTHr 9.5548e+22     1 1.2188e+27 < 2.2e-16 *** 
Corn PUD_H$PUDKMHr 2.9940e+23     1 3.8191e+27 < 2.2e-16 *** 
Wheat PUD_H$PUDWHrb 2.6022e+23     1 3.3194e+27 < 2.2e-16 *** 
Rapeseed PUD_H$PUDRHrb 7.8492e+22     1 1.0012e+27 < 2.2e-16 *** 
Barley PUD_H$PUDGHrb 2.2674e+22     1 2.8923e+26 < 2.2e-16 *** 
Stone Fruit PUD_H$PUDSOHr 4.0662e+21     1 5.1869e+25 < 2.2e-16 *** 
Fields PUD_H$PUDWWHr 8.9228e+21     1 1.1382e+26 < 2.2e-16 *** 

Residuals     7.0000e+00 88790 
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PUDInsecticide 
Response: PUD_I$PUDSmIn * 1e+12 

Sum Sq    Df    F value    Pr(>F) 
 (Intercept)   0.0000e+00     1 1.2627e+02 < 2.2e-16 *** 

Stone Fruit PUD_I$PUDSOIn 4.4746e+24     1 4.9224e+27 < 2.2e-16 *** 
Potatoes PUD_I$PUDKTIn 1.9992e+24     1 2.1992e+27 < 2.2e-16 *** 
Grapevine PUD_I$PUDRBIn 2.2737e+23     1 2.5012e+26 < 2.2e-16 *** 
Rapeseed PUD_I$PUDRIns 1.4584e+23     1 1.6043e+26 < 2.2e-16 *** 
Sugar Beet PUD_I$PUDZRIn 3.8578e+20     1 4.2438e+23 < 2.2e-16 *** 

Residuals     8.1000e+01 88794 

 

3.6.2.  Pesticide Property Index  

The crop types explaining the highest SS for the PPIFungicide were almost identical to 

the PUDFungicide, which were potatoes and grapevines, followed by sugar beets and wheat. 

For PPIHerbicide however, fields and grapevines were the crop types explaining the most SS, 

followed by wheat. Grapevines also explain most of the variation for PPIInsecticide, followed 

by sugar beets and rapeseeds. All crop types were again highly significant for all pesticide 

groups (Table 6).  

Table 6: ANOVA table of all Pesticide Property Indices for all pesticide groups. 

PPIFungicide 
Response: PPI_F$PPISmFn * 1e+06 

                  Sum Sq    Df    F value    Pr(>F)     
 (Intercept)   0.0000e+00     1 1.5083e+03 < 2.2e-16 *** 

Potatoes PPI_F$PPIKrtF 1.3569e+13     1 2.9545e+21 < 2.2e-16 *** 
Grapevine PPI_F$PPIRbnF 1.1639e+13     1 2.5344e+21 < 2.2e-16 *** 
Sugar Beet PPI_F$PPIZckF 6.8056e+12     1 1.4819e+21 < 2.2e-16 *** 
Wheat PPI_F$PPIWznF 6.7205e+12     1 1.4634e+21 < 2.2e-16 *** 
Rapeseed PPI_F$PPIRpsF 3.9845e+12     1 8.6761e+20 < 2.2e-16 *** 
Barley PPI_F$PPIGrsF 1.3355e+12     1 2.9080e+20 < 2.2e-16 *** 
Stone Fruit PPI_F$PPIStnF 1.1332e+11     1 2.4675e+19 < 2.2e-16 *** 

Residuals     0.0000e+00 88792 

PPIHerbicide 
Response: PPI_H$PPISmHr * 1e+06 

                  Sum Sq    Df    F value    Pr(>F)     
 (Intercept)   0.0000e+00     1 1.0565e+03 < 2.2e-16 *** 

Fields PPI_H$PPIWdWH 1.6543e+15     1 6.2354e+22 < 2.2e-16 *** 
Grapevine PPI_H$PPIRbnH 1.5635e+13     1 5.8932e+20 < 2.2e-16 *** 
Stone Fruit PPI_H$PPIStnH 8.0734e+11     1 3.0431e+19 < 2.2e-16 *** 
Wheat PPI_H$PPIWznH 7.6033e+10     1 2.8659e+18 < 2.2e-16 *** 
Corn PPI_H$PPIMsHr 1.6434e+10     1 6.1945e+17 < 2.2e-16 *** 
Barley PPI_H$PPIGrsH 1.5783e+10     1 5.9490e+17 < 2.2e-16 *** 
Rapeseed PPI_H$PPIRpsH 1.0025e+10     1 3.7787e+17 < 2.2e-16 *** 
Potatoes PPI_H$PPIKrtH 1.2672e+09     1 4.7766e+16 < 2.2e-16 *** 
Sugar Beet PPI_H$PPIZckH 6.0016e+08     1 2.2621e+16 < 2.2e-16 *** 

Residuals     0.0000e+00 88790 
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PPIInsecticide 
Response: PPI_I$PPISmIn * 1e+06 

                  Sum Sq    Df    F value    Pr(>F)     
 (Intercept)            0     1 5.2159e+03 < 2.2e-16 *** 

Grapevine PPI_I$PPIRbnI 3351358463     1 1.6934e+17 < 2.2e-16 *** 
Sugar Beet PPI_I$PPIZckI 1205168847     1 6.0895e+16 < 2.2e-16 *** 
Rapeseed PPI_I$PPIRpsI  637482359     1 3.2211e+16 < 2.2e-16 *** 
Stone Fruit PPI_I$PPIStnI  196903050     1 9.9492e+15 < 2.2e-16 *** 
Potatoes PPI_I$PPIKrtI   81987108     1 4.1427e+15 < 2.2e-16 *** 

Residuals              0 88794 
  

3.6.3. Pesticide Occurrence Index 

The ANOVA results for POI showed that all crop types had a significant effect. 

Agricultural grapevine production displayed the highest SS for POIFungicide, followed by 

potatoes and stone fruits. A high amount of SS for the POIHerbicide ANOVA analysis was 

explained by fields, followed by grapevines, sugar beet and stone fruit. This is in line with 

the POIHerbicide maps (Figure 11b). The crop types with the strongest effect on POIInsecticide 

were stone fruits and potatoes, followed by grapevines. All crop types had a strong 

significant effect on the final index (Table 7). 

Table 7: ANOVA table of all Pesticide Occurrence Indices for all pesticide groups.  

POI Fungicide 
Response: POI_F$POISmFn 

              Sum Sq    Df    F value Pr(>F)     
(Intercept)   0.0000     1 5.0670e-01 0.4766     

Grapevine POI_F$POIRBFn 5.8926     1 6.1169e+06 <2e-16 *** 
Potatoes POI_F$POIKTFn 1.6600     1 1.7232e+06 <2e-16 *** 
Stone Fruit POI_F$POISOFn 1.4580     1 1.5135e+06 <2e-16 *** 
Sugar Beet POI_F$POIZRFn 0.8008     1 8.3125e+05 <2e-16 *** 
Wheat POI_F$POIWFng 0.7029     1 7.2971e+05 <2e-16 *** 
Rapeseed POI_F$POIRFng 0.4712     1 4.8910e+05 <2e-16 *** 
Barley POI_F$POIGFng 0.2359     1 2.4484e+05 <2e-16 *** 

Residuals     0.0855 88792 

POI Herbicide 
Response: POI_H$POISmHr * 1e+06 

                  Sum Sq    Df    F value    Pr(>F)     
 (Intercept)   0.0000e+00     1 1.1132e+02 < 2.2e-16 *** 

Fields POI_H$POIWWHr 1.7222e+14     1 6.5817e+22 < 2.2e-16 *** 
Grapevine POI_H$POIRBHr 2.4007e+12     1 9.1748e+20 < 2.2e-16 *** 
Sugar Beet POI_H$POIZRHr 8.6094e+11     1 3.2902e+20 < 2.2e-16 *** 
Stone Fruit POI_H$POISOHr 1.0582e+11     1 4.0443e+19 < 2.2e-16 *** 
Wheat POI_H$POIWHrb 7.1092e+10     1 2.7169e+19 < 2.2e-16 *** 
Corn POI_H$POIKMHr 4.5909e+10     1 1.7545e+19 < 2.2e-16 *** 
Potatoes POI_H$POIKTHr 1.8160e+10     1 6.9401e+18 < 2.2e-16 *** 
Rapeseed POI_H$POIRHrb 1.7566e+10     1 6.7131e+18 < 2.2e-16 *** 
Barley POI_H$POIGHrb 1.2751e+10     1 4.8730e+18 < 2.2e-16 *** 

Residuals     0.0000e+00 88790 
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POI Insecticide 
Response: POI_I$POISmIn 

               Sum Sq    Df  F value    Pr(>F)     
 (Intercept)    0.0341     1   278.41 < 2.2e-16 *** 

Stone Fruit POI_I$POISOIn  5.8596     1 47847.81 < 2.2e-16 *** 
Potatoes POI_I$POIKTIn  5.4475     1 44482.55 < 2.2e-16 *** 
Grapevine POI_I$POIRBIn  1.7696     1 14450.01 < 2.2e-16 *** 
Rapeseed POI_I$POIRIns  1.6117     1 13160.65 < 2.2e-16 *** 
Sugar Beet POI_I$POIZRIn  0.8084     1  6601.55 < 2.2e-16 *** 

Residuals     10.8740 88794 

 

3.7.  Effect of elevation  

I found a clear north-south trend with north facing areas showing more positive 

correlation values and the south predominately negative correlation values between -1 

and 1 (Figure 12). The degree of correlation indicates what influence elevation has on the 

local pesticide occurrence patterns and can be interpreted as to which extent the POI 

varies with the elevation. Positive correlation relates to local increasing pesticide 

occurrence with increasing elevation, meanwhile negative correlation values refer to local 

decreasing pesticide occurrence with increasing elevation.  

 This trend is clearer for the POIFungicide cor. DHM map: the plateau and the Pre-Alps, 

as well as the eastern parts of Jura follow a distinct positive correlation trend between 0.5 

and 1. However, the western part of Jura, the Alps and the southern Alps display negative 

values between -0.5 and -0.92. The cantons of Zurich and Aarau display little-to-no clear 

correlation between -0.5 and 0.5. Additionally, it can be observed that along the river 

systems, there are strong positive correlation values in locations near rivers, while the 

surrounding shows negative correlation values (Figure 12a).  

For the POIHerbicide cor. DHM map, the north displays few positive correlations with 

index values between 0.5 to 1. The south also shows negative correlations between -0.5 

and -0.94. However, the Jura region changed to almost solely negative correlation 

between -0.5 and -1, while the Vaud plateau remains displaying positive values from 0.5 

to 1 (Figure 12b).  

The least visible trends were observed in the POIInsecticide cor. DHM map, as the north-

south trend is barely-to-non- existent. Only the region of Jura experiences negative values 

from -0.5 to -0.89, while the west side of the plateau displays positive correlation values 

ranging from 0.5 to 1. Additionally, the Rhone and Rhein River systems display clear 

negative correlation values comprised between -0.5 to -0.89 (Figure 12c).   

  



43 

 (a) POIFungicide cor. DHM 

 

(b) POIHerbicide cor. DHM  

(c) POIInsecticide cor. DHM (d) Topographical Regions 

  

Figure 12: Map of the Pesticide Occurrence Index correlation with Digital Height Model for fungicide, herbicide, and 
insecticide (a) – (c). The box in the first map, represents the phenomenon of positive values in the riverbed and immediate 
negative surroundings. In figure (d) the map of Switzerland divided into Topographical Regions, image retrieved from 
Brunner et al. (2019). 
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4. Discussion 

The total applied pesticide in Switzerland was calculated to be 498 tons of herbicides, 

1236 tons of fungicides, and 36 tons of insecticides. The POI and PUD patterns vary by 

canton and by pesticide groups as well as by elevation. The absolute PUD for fungicides 

and insecticides was higher in areas in the valley of Sion and following the riverbanks of 

the Rhone up to the lake of Geneva- all areas of intensive agricultural grapevine 

production, which I found to be the land use with the strongest effect on PUD (Table 5). 

For PUDHerbicide, the plateau of Vaud experienced the highest densities, driven by increased 

frequency of agricultural sugar beet production in the region. POIFungicide and POIInsecticide 

patterns were very similar, displaying increased values in the plateau of Vaud, the valley 

of Sion following the river flow of the Rhone up north, and the north corner of Geneva. In 

contrast, the POIHerbicide patterns displayed different high areas in the Pre-Alp region in 

the northern part of Switzerland and most of the Jura region, as well as the Rhein and 

Ticino river systems.  

The rPUD and PUD analysis revealed clearly that fungicides accounted proportionally 

for the highest Pesticide Use. For the POI and rPOI, herbicides presented the highest index 

values, mainly driven by fields, but all crop types had a significant effect on the POI values 

in general. I found that grapevines had the strongest effect, followed by potatoes, stone 

fruits and wheat for the PUDFungicide. However, stone fruits and potatoes had the strongest 

effect on PUDInsecticide. Furthermore, the analysis for PUDHerbicide showed that the highest 

explaining variable can be attributed to sugar beets, followed by grapevines, wheat, and 

corn. Sugar beets contributed 251 tons of herbicide input, which is about half of the 

calculated total herbicide input of Switzerland. Grapevines accounted for 893 tons out of 

the 1235 tons of applied fungicide input and had the strongest impact on the POIFungicide. 

More than half, 18.2 tons of out of the 36 tons, of the insecticide input were accounted for 

by potato cultivation (Table 3), which had the second strongest influence on the 

POIInsecticide after stone fruits. Fields accounted for only 5.9 tons of herbicide application 

however had the highest impact on the POIHerbicide followed by grapevines.  

The calculated Total applied Pesticide Mass resulted in values very similar to those 

reported by the Swiss Agricultural Report of 2020 (BLW 2020); however, fungicide 

application values were overestimated by about 230 tons while herbicide and insecticide 

numbers were underestimated.  However, there is a difference in the data that was used 

in the calculations presented and those in the Swiss agricultural report from 2020: here I 
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approximated the mass through application rate, intervention numbers and cultivation 

area while the agricultural report used sales numbers and not application amounts due 

to a lack of specific application data (BLW 2020). Even though adjustments were made, 

fungicide application numbers were still overestimated which can potentially be 

attributed to an overestimation of commercial grapevine production.  Organic grapevine 

production today uses little to no fungicides, and accounts for 13.3% of the total 

agricultural grapevine production in Switzerland (BLW 2021a), and was not considered 

in this analysis but nevertheless decreases fungicide application mass. Still, my results 

agree with those from the Swiss Agricultural Report (2020) where fungicide and 

herbicide were identified as the main contributors to pesticide application mass. An 

overall decreasing trend in sales of pesticides was identified from 2008 to 2020 in 

Switzerland, with herbicide sales dropping by 33%, fungicide sales increasing by 6%, and 

with no clear trend for insecticide (BLW 2020). This was due to current agricultural 

policies in Switzerland in place since 2018, which incentivize farmers through 

compensation strategies, to use production systems with no herbicides in combination 

with prevention efforts against soil degradation (Böcker, Möhring, and Finger 2019). 

As expected, the rPUDFungicide displayed the overall greatest densities compared to the 

other pesticide groups due to high application rates and intervention numbers in stone 

fruits and grapevines. The regions with extensive vineyard production displayed, as 

expected, higher POIFungicide values compared to any other crop in the region. This is most 

likely a consequence of the multitude of pests and diseases that have grapevines as their 

favorite host and preferred niche. Therefore, intensive pesticide application is generally 

required to upkeep the quality and quantity of the grapes  (Pertot et al. 2017). 

Additionally, in contrast to other annual crops, most grapevine production cannot benefit 

from crop rotation or radical change of the cropping system, making it harder to protect 

the crop from pests (Pertot et al. 2017).  

The pesticide occurrence shows a strong north-south correlation pattern within the 

Swiss landscape. This contradicts the expectations as it was expected that the Swiss 

topography would be negatively correlated with the POI values, meaning increasing 

elevation would lead to lower pesticide occurrence due to decreased agricultural 

suitability. This was the case for mountainous areas leading to negative correlation values. 

Decreased agricultural suitability with increasing elevation can be caused by shorter 

growing seasons, decreased temperature (Holzkämper, Calanca, and Fuhrer 2013), 

reduced soil fertility, lower soil carbon content (Jiang and Thelen 2004; Prasuhn et al. 
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2013), increased erosion and mass movement due to slopes (Prasuhn et al. 2013), and 

the difficult terrain for machinery However, focusing on non-mountainous areas, 

agriculture suitability and therefore pesticide occurrence increased with rising elevation. 

Potential drivers of increased suitability with rising elevation in these regions could be 

rising soil thickness and stronger solar radiation, however further research on the drivers 

of agriculture suitability with elevation in non-mountainous areas could help predict 

pesticide occurrence.  The elevation threshold which separated the two opposite trends 

can be observed in the clear Pre-Alp line (Figure 12).  

Even though applied herbicide mass was only 5.9 tons for fields, it had a larger effect 

on the POI for herbicide compared to the 251 tons of applied herbicides by sugar beet 

cultivation. The impact of fields on the POI even surpassed the effect of the 893.4 tons of 

applied fungicide on grapevines. The strong effect of fields on the POI and rPOI values was 

a surprising find, considering that the application rate of herbicides on fields was only 0.1 

kg/ha. However, fields cover the largest agricultural area in Switzerland and, in 

combination with the exceptionally high physiochemical properties of the active 

ingredients, led to substantial areas with increased PPIHerbicide values and subsequently 

POI values. Future adjustments, potentially reducing the impact of the PPI to the PUD or 

on-site validation of the herbicide impact due to fields could increase the accuracy and 

predictability of the index.  

Nevertheless, the high risk of herbicides compared to fungicides and insecticides 

represented by high POI and rPOI values was in line with recent field measurement 

findings. A study by Riedo et al. (2021) analyzing 100 fields under organic and 

conventional management found 46 pesticides, 16 herbicides, 8 herbicide transformation 

products, 17 fungicides, and 7 insecticides. Doppler et al. (2017) and Spycher et al. (2019) 

each investigated five small surface waters sites with agricultural catchment areas across 

Switzerland. Doppler et al. (2017) found 128 pesticides, 61 herbicides, 45 fungicides and 

22 insecticides. In total 32 pesticides transgressed the legal 0.1µg/l legal quality limit, of 

which 17 were herbicides, 11 were insecticides and 4 were fungicides. Spycher et al. 

(2019) found 31 pesticides which transgressed legal quality limit within their samples 

and a total of 145 pesticides across all sites, 50 herbicides, 39 fungicides, 10 insecticides 

and 1 molluscicide. Wittmer et al. (2014) investigated five medium sized surface waters 

for polar organic-synthetic pesticide, which represent half of the sold pesticides in 

Switzerland, and found 104 different pesticides in total, 54 herbicides, 31 fungicides and 

17 insecticides. 
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The POI was able to predict the risk of herbicide occurrence by incorporating the PPI 

into the Pesticide Occurrence Index, which was validated by the literature above. An 

analysis only focusing on the pesticide use of Switzerland could not have predicted the 

herbicide risks for the Swiss environment. The potential of toxicity through persistence 

and mobility clearly overshadowed the impact of application mass on the index, which 

was a surprising finding. 

While these results show for the first time a spatial map approximating the 

distribution of pesticide incidence over the country, several considerations about data 

quality need to be discussed. First, this analysis was only possible due to the availability 

of the open-source data in Switzerland, which is plentiful. However, the precision of the 

calculation could profit from more comprehensive data detail in many regards.  For 

example, about 25 % of the polygons in the land cover map provided by the Federal Office 

of Agriculture were empty and lacked any description, potentially resulting in 

uncertainties, underestimations, and imprecisions regarding the extent of the agricultural 

areas. In total, the computed cultivated area was underestimated by 613 km2, which is a 

deficit of about 7.5%. Furthermore, in the calculations presented herein, I have main 

differences in the calculated agricultural areas of rapeseed, potatoes, barley, and 

grapevines compared to the Swiss agricultural report (2020) (Table 8), which could be 

due to the “empty” cells in the land use dataset. All cantons besides Jura, Neuchatel and 

Valais had “empty” polygons in their extent, some of which could be agricultural areas. 

Basel displayed the highest count of empty polygons with nearly 60% of undefined 

polygons (see Appendix, Table 1). 

Table 8: Calculated cultivated area for each crop type compared to reported area in km2 retrieved from the Swiss 
Agricultural Report (2020). 

 Agricultural Report 
[km2] 

Calculations [km2] ∆ % 

Barley 269 182 - 87 - 32  
Potatoes  110 55 - 55 - 50  
Corn 627 451 -176 - 28  
Rapeseed 1 179 178 178  
Wheat 803 574 - 229 - 29  
Sugar beets  176 120 - 56 - 32  
Grapevines 147 97 - 50 - 34  
Stone fruits 17 18 1 6  
Fields 6019 5880 - 139 - 2  
Total cultivated 
area 

8169 7556 - 613 - 7.5  



48 

Second, many other crop types beside the nine considered are cultivated in 

Switzerland e.g. spelt, oats, millet, soy, sunflowers, peas and many others which account 

for roughly 370 km2 of agricultural land which was not accounted for in this thesis (BLW 

2020). Third, one cause for overestimation of use and impact of pesticides might be 

rooted in the disregard for organic agricultural areas. Their production tends to use little 

to no pesticides, however no distinction between commercial and organic agricultural 

production was made for this analysis. This distinction potentially led to an 

overestimation in pesticide use, particularly in agricultural grapevine production, as 

organic grapevine production has become more popular in Switzerland (BLW 2020).  

Fourth, fungicides, herbicides and insecticides are not the only pesticide groups 

applied onto crops in Switzerland. In the country, bactericides (against bacteria), 

algicides (against algae), molluscicides (against snails), nematicides (against nematodes), 

rodenticides (against rodents), miticides (against mites) are a few of many other 

important pesticide groups that can contain pests and contaminate the environment, but 

were not regarded in the analysis, potentially further underestimating the likelihood of 

pollution. 

Fifth, pesticides can be applied by different application methods, and the 

contamination risk with each method varies greatly. For this study I made no distinction 

regarding the different application methods or point source vs. diffuse source input.  

Besides the general arrangement and makeup of the land cover types, crop types, and 

pesticide groups, more specific refinements could be implemented specifically for the 

PUD and the PPI. One of the fundamental elements for the PUD calculations is the 

application rate and intervention numbers for each crop type and pesticide group. The 

same number was applied regardless of the location in Switzerland. This can cause 

inaccuracies since regional variation due to climate, soil quality, and pest occurrence 

should be accounted for. This generalization greatly reduces regional precision and could 

be greatly improved by using local pesticide application rates and intervention numbers. 

Besides increasing the precision of the PUD, increasing the precision of the PPI could 

further raise the accuracy of the calculations of the POI. The PPI visualized the potential 

risks that AIs display, by persisting in the soil or moving offsite and therefore polluting 

waterbodies, using the physiochemical properties of water-solubility, half-life and KOC of 

the AI.  Many studies have shown the long-term environmental risks of persistent and 

water-soluble pesticides compared to rapid degrading pesticides (Bonmatin et al. 2015; 

Hladik, Kolpin, and Kuivila 2014).  
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Finally, due to the lack of exact application numbers for AIs on crops, sales numbers 

were again used as a proxy. However, knowing the exact amount of AIs that are applied 

on each crop type would give insight into the risk factor they pose. Unfortunately, exact 

application numbers of the AIs were not available, hence sales data and the plant 

protection register of the Federal Food Safety and Veterinary Office were used to estimate 

the AIs applied. The pesticide property databank helped to identify the pesticide 

properties of the AIs. 166 AIs were applied in total, along with 72 fungicides, 73 herbicides 

and 21 insecticides. However, missing data within the databank was a recurring problem 

as 16 AIs displayed one or more NaNs in their properties. Additionally, for the KOC two 

different isotherms (the Linear and Freundlich isotherms) were used interchangeably. 

Even though they are very similar and explain a parallel process, they refer to two 

different approaches and ideally should not be compared to each other.  Water solubility, 

half-life and KOC are meaningful descriptors for soil and groundwater pollution risk, 

however no specific chemical toxicity values were included in the PPI. Overall, the 

discrepancies emphasize the urgency for more accurate data regarding pesticide use and 

their respective active ingredients. This would allow for more accurate and regional 

variability to be displayed that relies less on approximation and extrapolation of 

incomplete and coarsely-scaled datasets.  

Precipitation highly impacts pesticide fate as more frequent and intense precipitation 

events have shown to lead to movement of pesticides from their application point to 

surface waters (Lewan et al. 2009). The nature of the water movement is greatly 

interlinked with the corresponding soil structure. Linking those two parameters together 

would greatly improve the precision of the predictability of the pesticide fate through 

water movements. Besides precipitation close to mountain surfaces, runoff from 

snowmelt, for example from spring snow melt, may be crucial to pesticide movement and 

should be included in future analysis in these regions. I acknowledge that many other 

factors could improve the calculations, for example specifying vegetation, topography, 

and chemical features of the AIs. 

To visualize the variability within the datasets and between the parameters in the final 

POI, the parameters need to vary within the same interval (zero to one) and ought to 

follow a normal distribution. Neither the PUD nor the POI displayed such a distribution. 

The visualization of the POI would greatly profit from modifying the parameter 

distributions. To be sure, implementing different approaches could improve the data 

distribution. Throughout my work I tried logging the respective parameters, but this 
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proved more counterproductive as it did not yield the intended results. For further 

research, I highly suggest a scaling approach in which certain value intervals are scored 

and only afterwards scaled. Especially the PPI would profit from such an approach, as 

using a ranking system could make the results of the PPI more meaningful. One could 

clearly identify within which chemical property and risk interval the grid cell is located, 

compared to the current investigation technique. 

Overall, the relatively simple Pesticide Occurrence Index incorporating Pesticide Use, 

Physiochemical Properties and precipitation varied with topography, crop type and 

pesticide group. Most of the utilized pesticides in Switzerland, however, were fungicides 

and were applied on grapevines in the valley of Sion, following the river system of the 

Rhone. Herbicides were applied onto all nine investigated crops, resulting in a large 

application area. High herbicide use mainly converged in the canton of Vaud and was 

driven by sugar beet production. Insecticide use was negligibly low compared to the other 

two pesticide groups and mainly driven by potato cultivation. Crop types had varying 

strong effects on the PUD, PPI and POI, however, grapevines, fields, potatoes, and stone 

fruits were the crop types that influenced the parameters the strongest. 

The POI was able to predict the impact of herbicides on the Swiss environment 

discovered through field research efforts by modeling the spatial patterns of the 

persistence and mobility of the applied active ingredients using the PPI. The PPI revealed 

high physiochemical properties of the active ingredients within herbicides applied on 

fields, grapevines, and stone fruits. Mean half-life for the active ingredients applied on said 

crops all surpassed 250 days. High PPI values were found in the northern Pre-Alp regions 

as well as in the canton of Vaud and Jura, all areas of cultivated fields. Consequently, the 

POI for herbicide which included the PPI for herbicide was strongly driven by the PPI 

distribution. Investigating and adjusting the disproportionate large impact of the PPI 

through fields, in respect to the application amount of only 5.9 tons, could advance the 

precision of the POI.   

The Swiss topography correlated positively with the POI in the north, and negatively 

in the south, separated by the Pre-Alp line (north-south trend). The contradictory trends 

are driven by agricultural suitability of the topography. However, further research 

regarding the driver of agricultural suitability with increasing elevation in non-

mountainous areas could indicate factors which influence pesticide occurrence in these 

regions.    
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The POI provides a unique tool for the assessment of early identification of probability 

of pesticide occurrence which can incentivize field sampling efforts and help policy 

makers make informed decisions. However, the POI would greatly profit from on-site 

validation to further examine the strength and weakness of the index. Additionally, 

incorporating soil types in combination with the precipitation could better predict the 

effect of leaching. 

5. Conclusion 

Transgressing legal quality limits, pesticides have been found in Swiss surface waters 

and fields and have shown to negatively impact a diverse group of Swiss ecosystems, 

including humans (Doppler et al. 2017, 2020; Riedo et al. 2021; Spycher et al. 2018, 2019; 

Wittmer et al. 2014). However, monitoring efforts thus far have been performed on 

isolated sampling sites. A model of the continuous spatial extent of the pesticide pollution 

problem in Switzerland was missing. In this thesis, I established an index which mapped 

the occurrence of pesticides over all of Switzerland utilizing (i) application rates and 

intervention numbers for fungicide, herbicide and insecticide, and cultivated area of 

barley, potato, wheat, corn, sugar beet, rapeseed, stone fruit, grapevine, and fields (ii) 

three physiochemical properties of the applied active ingredients and (iii) precipitation. 

I was interested in finding areas and patterns with high pesticide occurrence, regarding 

elevation as a potential factor. Additionally, I questioned the impact of the nine different 

crop types and three pesticide groups on the pesticide occurrence index.  

Little-to-no pesticide occurrence was found in the Swiss Alps. In the Alps, pesticide 

occurrence decreased with increasing elevation, due to declining agricultural suitability 

of the landscape following rising elevation. In the low, elevated north, however, rising 

elevation did not increase pesticide occurrence. Further research into the driving 

elements of agricultural suitability and elevation impacting pesticide occurrence could 

increase predictability of the index. Separating these two opposite trends is a threshold 

elevation level which follows the Pre-Alp line. The north-east and west of Switzerland as 

well as river systems and lake sides all displayed a high likelihood of pesticide occurrence. 

The different crop types had varying effects on the pesticide occurrence and use. Crops 

with higher pesticide application, such as grapevines, or crops which were treated with 

active ingredients possessing high physiochemical properties, for example fields, 

impacted the pesticide occurrence substantially.  
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Fungicide application accounted for roughly half of the applied pesticide mass in 

Switzerland, most of which applied to grapevines; however high pesticide occurrence was 

driven by herbicide use, due to high persistence and mobility of the active ingredients 

within herbicides. Future research regarding establishing and implementing mitigation 

strategies to reduce fungicide use, specifically on grapevines, could be valuable work to 

reduce pesticide pollution.  Further incentivizing the creation and use of less damaging 

herbicides could lower environmental contamination in Switzerland significantly.   

Future efforts must also include model validation by means of a cross correlation of 

the index with field measurements to provide important insight regarding the quality and 

precision of the index. In addition, combining the soil type and precipitation of the 

cultivated area into a single parameter could increase predictability of leaching more 

accurately.   
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Appendix  

Table 1: Overview of number of polygons with undefined land use categories for each canton within the Minimal 
Geodata Model from BLW (2020). 

Canton Empty polygons Total polygons % 
Basel 45361 77769 58.33 
Grisons 243862 445763 54.71 
Appenzell 
Ausserrhoden 

19614 40952 47.9 

Schaffhausen 20619 43839 47.03 
Bern 152415 324206 47.01 
Solothurn 31053 66543 46.67 
Zug 16148 35231 45.83 
Fribourg  35435 82914 42.74 
Thurgovie 45422 110625 41.06 
Lucerne 81368 205612 39.57 
St Gall 86156 218520 39.43 
Glarus 2046 15596 13.12 
Nidwald 2885 24831 11.62 
Appenzell 
Innerrhoden 

1315 13403 9.81 

Vaud 36808 435678 8.45 
Schwyz 2354 37942 6.2 
Obwald 959 18231 5.26 
Uri 251 12368 2.03 
Ticino 714 59594 1.2 
Zurich 673 129145 0.52 
Argovie 82 101008 0.08 
Geneva 0 11190 0 
Jura 0 173147 0 
Neuenburg 0 125676 0 
Valais 0 422453 0 
Total     825540 3232236 25.54 
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