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Abstract 

I 

Abstract 

Vegetation phenology is an important indicator for climate change and biodiversity. 

Linking plant phenology (PP) and land surface phenology (LSP) has been a challenge 

due to their different spatial and temporal scales. The emergence of phenocams and 

high spatial-resolution satellite imagery like provided by Sentinel 2 opened up new 

perspectives to combine observations at species level with a large-scale coverage. 

In this thesis, near surface and satellite remote sensing based measurements of 

phenology at biodiversity test sites have been compared, in an effort to observe PP and 

biodiversity with phenocam and Sentinel-2 imagery and to compare it to LSP data, 

using Landsat 8 and Moderate-Resolution Imaging Spectroradiometer (MODIS). 

The analysis revealed that biodiversity in terms of functional groups of plant species 

can be detected with the proposed methods. Green-up patterns for the mixed 

deciduous forest at the Laegern test site showed a variation range of more than two 

weeks and for the tundra in Kytalyk up to one week, both in the phenocam and in the 

Sentinel-2 data. However, due to the different measurement techniques, the phenology 

transition dates differed considerably. 

Comparing small-scale PP with larger-scale LSP measurements showed an overall 

correspondence between the metrics from the different datasets within about two 

weeks. Furthermore, qualitative characteristics like the field of view (FOV), the camera 

angle and atmospheric influences as well as methodical influences of the data 

preparation and processing have been evaluated. 

A comparison between the two employed indices green chromatic coordinates (GCC) 

and normalised difference vegetation index (NDVI) has shown that NDVI detects an 

earlier increase of vegetation activity than GCC during the green-up period and a longer 

activity during senescence, mainly because NDVI is more sensitive for photosynthesis 

than greenness. This illustrates the definition issues that attend phenological studies: 

photosynthetic activity and greenness may reflect different ecological processes. 
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1 Introduction 

1.1 Definition 

Plant phenology, the main concept of this thesis, provides valuable information about 

climate change and biodiversity. It is the study of the timing of recurring biological events 

in the biosphere as well as of the causes of their timing (Lieth, 1974). The responses of 

ecosystems to climate variations can be examined with phenology metrics such as 

emergence of the first leaf, green-up, senescence and dormancy or on a more abstract 

level with the start of the growing season (SOS), end of the growing season (EOS) and 

length of the growing season (LOS). These events prove to be robust indicators for 

climate variations; phenology is therefore an emerging field of climate change science 

(Menzel et al., 2006; Cleland et al., 2007; Parmesan, 2007; Rodriguez-Galiano et al., 2015). 

Phenology is furthermore an indicator for biodiversity (Pereira et al., 2013; Skidmore et 

al., 2015) and useful to estimate carbon cycles (Goulden et al., 1996). 

The studies of Fitzjarrald et al. (2001), Cleland et al. (2007), Parmesan (2007) and many 

others have shown that the changing climate has led to an earlier biological onset of 

spring and has delayed the beginning of biological winter over the last decades. The study 

of Garonna et al. (2016) examined the LOS over the last three decades with worldwide 

Normalized Difference Vegetation Index (NDVI) data and the results show an on-going 

trend of longer growing seasons. However, they also found areas with a trend of towards 

a shortening season length. Reasons for this may include changes in biodiversity and less 

precipitation in summer (Sweet et al., 2015; Garonna et al., 2016). 

Phenology is sensitive to changes in biodiversity because different species have a 

different growing season length (GSL) and SOS and EOS. An example is the study of Sweet 

et al. (2015) in Alaska, which examined the phenology of deciduous shrubs and an 

evergreen graminoid area. The GSL of shrubs is shorter than the one of the graminoid 

area and since the abundance of shrubs has been increasing, land surface phenology 

(LSP) measurements show a negative trend of GSL. Vice versa, biodiversity is sensitive to 

changes in phenology. Ecological niches appear or vanish depending on the possible GSL. 
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Due to changes in temperature behaviour, snow melt and snow onset shift and thereby 

determine space for ecological niches. 

The duration of the biological growing seasons is furthermore strongly connected to the 

photosynthesis rate of plants, primary productivity, the gas and water exchange of 

ecosystems and many other processes in the biosphere and atmosphere. The GSL is a key 

constraint on primary productivity, and therefore for the gross photosynthesis rate. 

Phenology metrics are consequently useful to estimate carbon cycles from a local to a 

global level (Goulden et al., 1996; Nemani et al., 2003; Richardson et al., 2007; Ahrends 

et al., 2008; Penuelas et al., 2009, Richardson et al., 2012). 

1.2 Plant Phenology and Land Surface Phenology 

Phenological measurements have been produced for centuries. In the beginning, farming 

families created time series of plant emergence, fruiting and harvest dates (Sparks and 

Menzel, 2002; Ahrends et al, 2008). The scientific community nowadays uses field, 

camera and satellite observations of phenology as an indicator for climate variations, 

biodiversity and carbon fluxes. For over three decades, satellite images have been 

providing a way to observe LSP on a global scale. However, the temporal and spatial 

resolution is limited, as well as the observation of single species (Menzel, 2002; Hufkens 

et al., 2012). In the recent decade, many plant phenology (PP) studies using consumer-

grade cameras (phenocams) have emerged (e.g. Richardson et al., 2007; Ahrends et al., 

2008; Sonnentag et al., 2012; Hufkens et al., 2012; Richardson et al., 2013; Klosterman et 

al., 2014; D’Odorico et al., 2015). With relatively inexpensive off-the-shelf cameras, 

different greenness indices can be extracted and provide a way to calculate phenology 

metrics from specific species at a high temporal resolution. 

Nevertheless, assessing the relationship between changes in vegetation and 

measurements of LSP and PP remains a challenge (Hufkens et al., 2012). Satellites 

measure a combined signal from different plant species and are therefore not 

representative of smaller ecosystems or single species (White and Nemani, 2006). Near-

surface PP on the other hand is difficult to extrapolate over large scales (Hufkens et al., 

2012). Still, the two observation methods are complementary. Near-surface phenology is 
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often used as validation or calibration for satellite sensor data and conversely LSP to 

upscale PP (Menzel, 2002; Rodriguez-Galiano et al., 2015). 

1.3 Research Problem and Challenges 

So far, only a handful of studies have compared satellite data with phenocam data (e.g. 

Hufkens et al., 2012; Klosterman et al., 2014; Rodriguez-Galiano et al., 2015; Nijland et 

al., 2016; Baumann et al., 2017; Liu et al., 2017). Only the studies of Nijland et al. (2016) 

and Baumann et al. (2017) made use of high-resolution satellite data (Landsat imagery). 

The other studies used data from the Moderate-Resolution Imaging Spectroradiometer 

(MODIS) and Advanced Very High Resolution Radiometer (AVHRR) data with a pixel size 

between 250 metres and 1.1 kilometres (MODIS, 2017; NOAA, 2017). New options for 

comparing high-resolution satellite imagery with phenocam data emerged with the 

launch of Sentinel 2 in 2015. By merging Landsat-8 and Sentinel-2 images, the temporal 

resolution improves substantially, and the Sentinel-2 images with a spatial resolution of 

10 metres (as compared to 30 metres of Landsat 8) allow observing phenology on the 

level of communities or even plant species. 

Measuring the phenology of different species in a phenocam image or different pixels in 

a Sentinel-2 image allows measuring biodiversity and comparing PP and LSP not only 

quantitatively but also qualitatively. Qualitative differences can be the different field of 

view (FOV) of the sensors, the different viewing angle, observation of different species, 

the temporal and the spatial resolution or the different characteristics of the sensor.  

A sensor with a low spatial resolution, for instance MODIS, measures one vegetation 

signal over an area of several hundreds of metres. This means that signals from plants 

with an earlier SOS merge with the ones with a later SOS. Just by analysing trends with 

MODIS data it is therefore complicated to determine whether differences in phenology 

metrics stem from changes in biodiversity or from climate variations.  

Technically, sensors can only measure certain greenness indices from which phenology 

metrics are computed. SOS or EOS are thus mathematical definitions and are difficult to 

correlate to biological events of vegetation. With satellite or camera data, it is possible to 

detect the actual start of the greenness increase, as well as the peak of greenness, but in 
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most studies the SOS and EOS are simply defined as the day of maximum increase or the 

day at which 50 percent of the seasonal amplitude is reached. The relation between 

environmental processes at ecosystem level and the derived phenology metrics is still 

not well understood. For example, from phenology metrics it is not possible to detect the 

moment when an ecosystem turns from a carbon source to a carbon sink (Richardson, 

2007). Also, the knowledge of the physical processes that initiate leaf onset and 

senescence is still limited (D’Odorico et al., 2015). That is why Baldocchi et al. (2005) and 

D’Odorico et al. (2015) suggest that observational approaches using phenocams be 

broadly established and validated at ecosystem level to get new insights about the 

ecological processes that determine the phenology metrics. Hufkens et al. (2012) and 

Nijland et al. (2016) furthermore suggest using high-resolution satellite imagery in order 

to account for small-scale differences among vegetation and to create a better 

comparability with phenocam data. 

1.4 Motivation 

New approaches are necessary to understand the influence of environmental processes 

at ecosystem level on the timing of phenological events derived from satellite and 

phenocam data. A quantitative and qualitative comparison between PP and LSP at known 

biodiversity test sites could yield new insights on differences in phenology metrics. 

Explaining differences between near-surface and satellite remote sensing data from an 

ecological point of view can help finding qualitative, individual reasons for these 

differences and therefore improve the comparability between the methods and facilitate 

extrapolation of PP to a larger scale. 

1.5 Research Questions 

Based on the theory, the research problems and the motivation in the introduction part, 

two blocks of research questions were defined. The first one covers the topic of PP, with 

the aim to find out whether biodiversity can be assessed from phenocams and the high-

resolution satellite sensor of Sentinel 2. Subquestions treat the subject of the 

comparability of the near-surface and remotely-sensed data, as well as the stability and 

availability of the data. 
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1. Is it possible to measure plant phenology using phenocam and high-resolution 

satellite data? 

a. How well do the measurements from phenocam and high-resolution 

satellite data coincide? 

b. What influences does the data availability and stability have on the 

analysis? 

The second block of research questions targets the comparison of PP and LSP. Is 

phenocam data able to validate phenology mapped with satellite data, and conversely, is 

it possible to extrapolate from point (phenocam) to area (biodiversity test sites)? Besides 

the comparison of the two paradigms PP and LSP, the two vegetation indices green 

chromatic coordinates (GCC) and NDVI are compared. Quantitative differences are 

shown and qualitative differences interpreted using factors like different vegetation 

species, ecological processes, the field of view (FOV) of the sensor, and sensitivities of the 

indices. 

2. To what degree do the metrics derived from PP and LSP observations coincide? 

a. Which qualitative and quantitative differences can be described comparing 

the two paradigms? 

b. Which qualitative and quantitative differences occur comparing GCC and 

NDVI? 

1.6 Structure of the Thesis 

The analysed biodiversity test sites and the phenocam and satellite data used are 

introduced in chapter 2, followed by the methods in chapter 3. The results of the analysis 

are presented in chapter 4 and discussed in chapter 5. Finally, the conclusions complete 

the thesis in chapter 6.  
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▪ Aldabra 

▪ Borneo 

▪ Haibei 

(Tibet) 

▪ Kytalyk 

(Siberia) 

▪ Laegern & 

Lake Zurich 

 

2 Background and Data 

This chapter gives an overview of the biodiversity test sites (Section 2.1) and the data 

(Section 2.2). To compare PP and LSP, data from phenocams (Section 2.3) and satellite 

sensors (Section 2.4) had to be acquired. The former stems from phenocams installed at 

the test sites, the latter from Google Earth Engine (GEE, Gorelick et al., 2017).  

2.1 URPP Global Change and Biodiversity 

Currently, the University of Zurich (UZH) has ten University Research Priority Programs 

(URPP), one of them is on Global Change and Biodiversity (GCB). As part of this URPP, six 

biodiversity test sites have been established in different climatic zones and on different 

latitudes, each of them with different levels of impacts of the five global drivers habitat 

change, climate change, invasive species, overexploitation and pollution (URPP GCB, 

2017). 

 

Figure 2.1: URPP biodiversity test sites (GEE). 

2.2 Test Sites 

The test sites Laegern, Kytalyk, Haibei, Aldabra and Borneo (Figure 2.1) are equipped 

with phenocams that record images every hour. The data from Borneo was not used, 

because the tropical rainforest region does not show clear seasonality (URPP GCB, 

2016a). Phenocam images of Aldabra were processed initially, but did not lead to usable 

https://code.earthengine.google.com/717a30c099588d90e983522ff750bc2c
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results. The comparison between PP and LSP was therefore carried out for Laegern, 

Kytalyk and Haibei. 

Laegern 

The Laegern test site is located at 47.48N, 8.40E and the phenocam takes images of the 

mixed deciduous mountain forest (URPP GCB, 2016b). Thirteen different tree species 

grow in the test site area (Appendix: Table A-1). Sixteen regions of interest (ROIs, Figure 

3.2) covering different tree species in the images were examined. Data from the 

phenocam is available since July 2015. 2016 was therefore the only year to work with, 

where data from a whole growing cycle was available (Table 2-1). 

    

Figure 2.2:  Phenocam images from Laegern test site from the first of February, May, August and November 2016 
respectively. 

Kytalyk 

The test site is located in Siberia at 70.82N, 147.47E in the Kytalyk nature reserve (URPP 

GCB, 2016c). With grass and shrubs, at least two different tundra vegetation types can be 

discerned and analysed in the phenocam images. Data is available for 2015 and 2016 

(Table 2-1). Unfortunately, the camera angle changed slightly on the 22 and 23 June 2016. 

The reference panel moved the most (about 30 percent of the FOV to the right), 

fortunately, the FOV of the camera did only change marginally. By drawing the regions of 

interest with enough margin, the shifts in the FOV did not change the vegetation species 

content of a ROI and the data could still be used.  

Haibei 

The test site on the Tibetan plateau is located at 37N, 101.21E and the vegetation type is 

alpine meadow (URPP GCB, 2016c). The analysed ROI consists of the whole image 

because it was not possible to define different vegetation types in the image. Phenocam 
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images were just available from the end of July to December 2015 and from January to 

the middle of June 2016. It was therefore only possible to analyse two halves of a growing 

season (Table 2-1). 

Aldabra 

Aldabra is a limestone atoll that is part of the Seychelles Islands. The subtropical climate 

has dry and wet seasons (URPP GCB, 2016d). Several changes in the camera angle made 

alignment of the images challenging. Furthermore, for a time span of two months the 

camera was looking vertically to the ground, which led to unusable images and thus a 

data gap.  

2.3 Phenocam Data 

Phenocams are consumer-grade digital cameras that are used to observe vegetation. 

Consumer-grade means, that the cameras were designed to reproduce the human vision 

and to be used in everyday life. Most phenocams thus have a red, blue and green channel 

and are not able to measure infrared which is typically used to monitor vegetation in 

remote sensing (Nijland et al., 2014). These off-the-shelf cameras provide a relatively 

inexpensive way to monitor phenology. The automated recording of pictures allows 

producing a continuous record of vegetation data at a high temporal resolution with little 

effort for years or even decades (Richardson et al., 2009; Brown et al., 2016). 

Furthermore, outliers or disturbances in the data can easily be visually inspected and 

causes (e.g. snowfall or fog) can be identified (Richardson et al., 2007).  

On the other hand, phenocams are vulnerable to weather influences like lightning strikes 

or storms that change the camera angle or animals that damage the phenocam. Such 

disturbances can lead to data gaps if the installation is not monitored regularly 

(Richardson et al., 2013). Also, it might be difficult to find a FOV that is representative of 

the larger area (Rodriguez-Galiano et al., 2015). On the URPP GCB test sites however, the 

FOV was selected to represent the whole test site or even the regional vegetation system. 
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Figure 2.3: A phenocam overlooking vegetation (left) and the tower at Laegern test site mounted with two 
phenocams (right) (Flickr, 2011 & courtesy Bastian Buman). 

The phenocam is usually installed on a tower or something similar that places the camera 

above the vegetation. In the northern hemisphere, it should furthermore point north to 

reduce lens flare, observation of shaded vegetation and forward scattering of vegetation 

(Richardson et al., 2013).  

Phenocam images from the URPP biodiversity test sites are available from the beginning 

respectively middle of the year 2015. At the start of this thesis, only the years 2015 and 

2016 were ready for the data analysis (Table 2-1). 

Table 2-1: Temporal availability of phenocam data at the URPP GCB test sites. 

 Laegern Haibei 

(Tibet) 

Kytalyk 

(Siberia) 

Aldabra 

Availability 

(Effective 9/2017) 

07/2015-

12/2016 

07/2015-

06/2016 

01/2015-

12/2016 

01/2016-

12/2016 

Number of images 

(year) 

3843 

(2016) 

3997 (2015-

2016) 

4582 (2015), 

4300 (2016) 

2018 

(2016) 

 

2.4 Satellite Data  

Satellite data have provided a method to monitor phenology worldwide for over three 

decades. AVHRR data from National Oceanic and Atmospheric Administration (NOAA) 

satellites or MODIS aboard the National Aeronautics and Space Administration’s (NASA) 

Terra and Aqua satellites have provided data at a moderate spatial resolution (1.1 
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kilometre and 500 metres respectively; NOAA, 2017; MODIS, 2017). NASA’s Landsat-8 

and ESA’s Sentinel-2 satellites provide spectral data at much higher spatial resolution (30 

m and 10-20 m respectively). Landsat-8 data is available since April 2013, Sentinel-2A 

data since the end of June 2015. The second Sentinel satellite (2B) was launched in March 

2017 (ESA, 2018), thus for the years of interest 2015 and 2016 only data from Sentinel 

2A could be used. Landsat 8 and Sentinel 2 were selected for their high spatial resolution 

and MODIS for its daily worldwide coverage since the year 2000. Beside the swath width 

of a satellite, the number of images available (Table A-3) is also dependent on the latitude. 

The temporal resolutions in Table A-2 are average numbers for the equator; more images 

are recorded with latitudinal distance. For Sentinel 2, only few images are available for 

the year 2015 because of its launch date in the middle of that year (23 June 2015). 

Sentinel-2 data was therefore only processed for 2016. 

The Sentinel-2 (Level 1C) and Landsat-8 (Level 1T) data are both ‘top of atmosphere’ 

(TOA) products, which means that the data has not been corrected for the influences of 

the atmosphere. Because of their similarity, the two datasets could easily be merged 

together and a new dataset with more measurements could be created. The merged 

dataset (S2L8 in this thesis) allowed for a better temporal approximation of vegetation 

activity and more precise extraction of phenology metrics.  

On the other hand, the MODIS data used has been processed to represent the ‘bottom of 

atmosphere’ or more specifically ‘surface reflectance’ (SR). In order to have comparable 

data for MODIS, the Landsat-8 surface reflectance product (L8SR) was downloaded and 

processed separately for the three test sites for 2016. 

Google Earth Engine as data source 

GEE is a platform that makes a broad catalogue of satellite imagery available to users and 

allows them to process the data in the GEE application programming interface (API).  

The MODIS, Landsat-8 and Sentinel-2 products are freely available on GEE. Time series 

for a certain time span and in a certain ROI (point or area) can be created (Appendix E: 

GEE time series). In order to process the data more flexibly, the data was exported using 

PyCharm (JetBrains, 2017).  



Methods 

11 

3 Methods 

In this chapter, the process of deriving comparable phenology metrics from the available 

phenocam and satellite data is described. This includes extracting digital numbers (DNs), 

calculating indices, filtering the data, curve fitting and extracting phenology metrics 

(Figure 3.1). 

The goal of processing the data was, to distinguish between different plant species when 

analysing ROIs in phenocam images and to compare the measurements from phenocam 

and satellite data. To do so, ROIs were defined manually and their content processed 

using statistical computing software.  

3.1 Data Extraction 

3.1.1 Phenocam Data 

The phenocam data is available as common Red-Green-Blue (RGB) images in JPEG 

format. Because the phenocams at the URPP GCB test sites are not connected to the 

internet, the data has to be collected manually by the responsible researchers. Due to the 

difficult accessibility of some test sites, the data is being collected once or twice a year 

and is therefore available with a delay of up to one year (e.g. for Kytalyk).  

The study of Richardson et al. (2009) found that the variation of SOS dates between the 

different sub regions in an image varied up to one week. In this study, as many vegetation 

groups as possible were analysed to detect such indicators of biodiversity. For that 

purpose, ROIs were defined within the phenocam image of the test site. Figure 3.2 shows 

all the defined ROIs at the respective test sites. Beside the smaller ROIs containing a 

single vegetation type, one big ROI per test site was defined to cover a large FOV that 

approaches the mixed pixel a high-resolution satellite sensor would see. This ROI is 

referred to as the ROI of the ‘whole image’. Because of the slight change of the camera 

viewing angle in Kytalyk in 2016, different ROIs had to be drawn for the two years.  
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Figure 3.1:  Working steps for the generation of phenology analysis of phenocam and satellite products. The boxes 
with dashed lines contain the filenames of the code used. The yellow polygons refer to the chapter of 
this thesis, the white polygons represent the working steps. Abbreviations: Google Earth Engine (GEE), 
region of interest (ROI), digital numbers (DNs), green chromatic coordinates (GCC), plant phenology 
(PP), land surface phenology (LSP). 
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Figure 3.2:  Examined regions of interest at the test sites Laegern (2016), Kytalyk (2015), Kytalyk (2016) and Haibei 
(2015/2016) (from top to bottom). 
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In a next step, the average DNs of the three camera channels red, blue and green were 

extracted over the series of the whole year from each ROI. Figure 3.3 shows the DNs of a 

ROI at Laegern test site over the year 2016. The DNs are typically measured between 0 

and 255 and displayed over the course of one year. The data gaps in January and March 

stem from manually removed images with fog, snow or darkness (Section 3.1.2). The 

difference between the analysis with and without these images is evaluated in Section 

4.2. 

 

Figure 3.3: Red, green and blue digital numbers (DNs) of an examined tree at Laegern test site 2016. 

The process of drawing ROIs and extracting the DNs over the whole time series of a ROI 

was conducted with the R package ‘phenopix’ (Filippa et al., 2016; R Development Core 

Team, 2008). This package provides functions to extract data from ROIs over a time 

series of a year as well as different filter, curve fitting, and metrics extraction methods. 

3.1.2 Data Stability of Phenocams 

The influence of different illumination conditions was evaluated for the Laegern test site 

with a ROI containing only the reference panel. Some studies (e.g. Richardson et al., 2009, 

Sonnentag et al., 2012, Richardson et al., 2013) already discussed the use of the reference 

panel and stated that it could be useful to correct for the day to day variation in 
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illumination, but that the values will still not be comparable across test sites because of 

the different cameras used. 

Furthermore, to assess whether dark phenocam images, or fog and snow have a 

disturbing influence on the calculated vegetation index, these images were manually 

removed for the months January to July. Both datasets were processed and the 

differences compared in Section 4.2. 

3.1.3 Satellite Data 

GEE allows processing the available satellite data directly in the GEE-API. However, in 

this study the data was exported from GEE and processed with the exact same methods 

as the phenocam images. Exporting a single image in GEE is possible with an already 

implemented export function. Exporting series of images is more complicated but 

possible using the PyCharm-API. 

3.1.3.1 Land Surface Phenology Analysis 

The geographic extents of the satellite data were defined to represent an area containing 

the FOV of the phenocam. Figure 3.4 shows the polygon representing the extent of the 

satellite data at the Laegern test site (green), the position of the phenocam (red point) 

and the ROI defined for the pixel-wise analysis (red, Section 3.1.3.2). The green polygon 

has a size of 500 x 250 metres and the exported data consists of every satellite data pixel 

that falls within or overlaps with the polygon. This means that the exported data may 

stem from a larger area than defined by the polygon. This applies mainly for the MODIS 

data with a pixel size of 500 metres and to a smaller extent for the Sentinel-2 and Landsat-

8 data. The four channels needed to calculate the GCC and NDVI (red, green, blue, and 

near infrared) were exported. 



Methods 

16 

 

 

Figure 3.4:  Laegern test site with the position of the phenocam (red point), the polygon for the land surface 
phenology analysis (green, 500 by 200 metres) and the polygon for the plant phenology analysis with 
Sentinel-2 data (red, 40 by 40 metres) (GEE). 

Like for the phenocam data, the files were processed with R and the mean reflectance 

values within the polygon were used for calculating phenological metrics. 

3.1.3.2 Plant Phenology Analysis 

In a next step, the Sentinel-2 data was evaluated pixel-wise (instead of the polygon mean) 

in order to assess PP as closely as possible. The goal was to measure the signal of different 

plant species and to assess biodiversity as well as to compare the phenological variation 

among the different pixels with the variation between the different phenocam ROIs. 

A smaller region of four by four Sentinel-2 pixels (i.e. 40 by 40 metres) in the FOV of the 

phenocam was selected for this purpose. Such an area approaches the extent for which 

individual trees – and thus species – can be distinguished in the phenocam imagery. As 

described in Section 3.1.3, the region containing these 16 pixels was exported, but instead 

of calculating the average of the values over the whole ROI, a loop to process every single 

pixel as an own ROI was created. Afterwards the same methods as for the other satellite 

products were applied (Sections 3.2 to 3.5). 

3.2 Index Calculation 

3.2.1 Phenocam Data 

The values of the DNs show a relatively high variation over a single day. Reasons for that 

are mainly the different recording times involving different illumination strengths but 

https://code.earthengine.google.com/1e26e00bef173e1804bd98e47338343d
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also weather effects like snow, rain, fog, clouds, sun or condensation on the camera lenses 

(Richardson et al., 2007). A vegetation index that is widely used for phenocam images 

(e.g. by Richardson et al., 2007; Sonnentag et al., 2012; Richardson et al., 2013; 

Klosterman et al., 2014 and Inoue et al., 2015) is the channel percentage, also known as 

chromatic coordinates (CC, Gillespie et al., 1987). CC normalise the data and show the 

ratio between one colour and the overall brightness. CC are calculated using Formula 1. 

𝐶𝐶[𝑐𝑜𝑙𝑜𝑢𝑟 𝑥] =
𝐷𝑁[𝑐𝑜𝑙𝑜𝑢𝑟 𝑥]

𝐷𝑁[𝑟𝑒𝑑]+𝐷𝑁[𝑔𝑟𝑒𝑒𝑛]+𝐷𝑁[𝑏𝑙𝑢𝑒]
    (1) 

The variation in brightness of the DNs can largely be suppressed by using CC (Richardson 

et al., 2013). Figure 3.5 shows the CC of the DNs in Figure 3.3. The ratio of the colours 

becomes visible, typical vegetation features like the higher greenness in summer and a 

maximum of red values in autumn are evident. 

 

Figure 3.5: Green-, red-, and blue-chromatic coordinates (GCC, RCC, BCC) of a tree at Laegern test site 2016. 

A similar index is Excess Green (ExGr), defined as follows (Woebbecke et al., 1995) 

𝐸𝑥𝐺𝑟 = 2 ∗ 𝐷𝑁[𝑔𝑟𝑒𝑒𝑛] − (𝐷𝑁[𝑟𝑒𝑑] + 𝐷𝑁[𝑏𝑙𝑢𝑒])   (2) 

ExGr shows very similar green-up patterns like GCC (Richardson et al., 2007) but the 

latter was found to be more effective in accounting for different illumination conditions 
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(Sonnentag et al., 2012). This means that the difference in absolute brightness between 

summer and winter months with the summer months usually being brighter, is smaller 

when using CC. The authors further argue that the difference between different camera 

sensors (e.g. colour balance or bit depth) has a stronger influence than the values 

between the two indices and that CC and ExGr are therefore difficult to compare 

(Sonnentag et al., 2012). 

Because of the marginal differences between the two indices and no advantageous 

benefits of ExGr, for this work, only CC were used to analyse the content of the datasets. 

3.2.2 Satellite Data 

In order to compare the satellite-derived data with the phenocam measurements, the 

same index had to be calculated. Using CC to monitor vegetation with satellite data is less 

common because of the strong sensitivity to atmospheric conditions. Instead, indices 

using the red-edge feature like the NDVI are more widespread (e.g. Hufkens et al., 2012; 

Klosterman et al., 2014; Nijland et al., 2014; D’Odorico et al., 2015; Garonna et al., 2016). 

For that reason, both GCC and NDVI were calculated for the satellite data. This allows a 

comparison between phenocam and satellite data as well as between the CC and NDVI. 

The NDVI is defined as (Tucker, 1979) 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅−𝑟𝑒𝑑

𝑁𝐼𝑅+𝑟𝑒𝑑
     (3) 

The advantage of the NDVI is, that is measures not only colour and brightness of 

vegetation but is also sensitive for the degree of vegetation activity and is not prone to 

the correlation that exists between the RGB bands. Tests to mount phenocams with 

infrared filters have been made (e.g. by Nijland et al., 2014), but the authors concluded 

that the conventional RGB images outperformed the infrared images due to issues with 

radiometric calibration. 

3.3 Data Filtering 

3.3.1 Phenocam Data 

The CC (Figure 3.5) still show a diurnal variation, mainly responsible for that are the 

different illumination conditions on overcast and sunny days, disturbances of rain, snow, 
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fog, white frost or dew and still marginally the acquisition time, season or the solar 

altitude (Sonnentag et al., 2012; Richardson et al., 2013). Images with disturbances tend 

to have lower GCC values, because neither darkness nor snow or fog makes the ROI 

greener (Section 4.2). To account for these effects, Sonnentag et al. (2012) propose a 

maximum-filter approach with a three-day moving window that uses the greenness 

values at the 90th percentile. The moving window collects all greenness values over a 

period of three days and assigns the value of the 90th percentile to the middle day of the 

three. After filtering the data with this method, one value every third day is left. To filter 

the phenocam data of this project, the method of Sonnentag et al. (2012) was adjusted, 

so that a value for every single day is calculated, consisting of the 90th percentile of a 

three-day window. 

 

Figure 3.6: Green Chromatic Coordinates (GCC) of Laegern test site (left) and maximum-filtered data (three-day 
moving window and 90th percentile value). 

Figure 3.6 shows the maximum-filtered GCC values for the ROI at the Laegern test site. 

The data resemble a typical phenology curve and are corrected for disturbances and 

illumination effects and therefore useful to calculate phenology metrics. 

3.3.2 Satellite Data 

Disturbances in the satellite data stem mainly from clouds. There is no diurnal variation 

of brightness because the images are always recorded at the same time. A seasonal 

variation remains due to the changing sun angle. The disturbances of clouds can be 

assumed to always lead to a less green image or to lower NDVI values because clouds 

tend to have a lower NDVI value due to a bright reflection in the red and a low reflection 

in the infrared range (Tang and Oki, 2007). Therefore, the maximum-filter is also suitable 
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for the satellite data. The same filtering method as for the phenocam data was used, 

whereby the moving window collected the values of three consecutive measurements. As 

a consequence, the moving window may have taken values from a much longer time 

period, because Landsat-8 and Sentinel-2 data have had sparser measurements. The size 

of the moving window was adjusted to five days for the MODIS data since the daily 

availability of images allowed this. Figure 3.7 shows the maximum-filtered GCC data 

(green) from the Sentinel-2 images at the Laegern test site plus all the GCC measurements 

(black). Cloud cover on at least three consecutive measurements lead to very low GCC 

values in June and August. To interpolate such gaps, as well as to extract metrics from the 

filtered data, a curve had to be fitted to the data.  

 

Figure 3.7:  Sentinel-2 green chromatic coordinates (GCC) data at Laegern test site (black) and the maximum-
filtered data (green). 

3.4 Curve Fitting 

To extract phenology metrics like SOS and EOS, a curve had to be fitted to the filtered 

data. A fitted curve allows interpolating data and assigning a distinct value for the 

phenology metrics. The phenopix package provides already implemented curve fitting 

methods such as ‘spline fit’ or double logistic functions like the ‘Beck fit’, ‘Elmore fit’, 

‘Klosterman fit’ and ‘Gu fit’ (Beck et al., 2006; Elmore et al., 2012; Klosterman et al., 2014; 

Gu et al., 2009 respectively, Filippa et al., 2016). 
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Filippa et al. (2016) recommend using a double logistic function instead of a spline fit as 

long as the fits are anyway similar, as the former are more robust. Furthermore, most of 

the recent studies on phenology with remote sensing data used logistic models (e.g. 

Fisher et al., 2006; Richardson et al., 2006; Richardson, 2007; Richardson et al., 2009; 

Schwartz and Hanes, 2010; Zhang et al., 2003; Hufkens et al., 2012). In their study, 

Klosterman et al. (2014) assessed different fits (cubic spline and three simple sigmoid 

fits) including their own method with the root mean square error (RMSE). 

The decision on which fitting method to use for this thesis was made after assessing the 

three criteria success of fitting a curve to the data, the RSME and how much sense the 

fitted curve made modelling vegetation activity. Not every method could be applied to 

every sensor and test site. Therefore, the aim was to use the same fitting method for at 

least a vegetation index of the same sensor (e.g. all the GCC data of Landsat 8 was fitted 

with a Beck fit, Table A-4). 

Figure 3.8 shows examples of the different fits for the filtered datasets: Laegern Landsat-

8 GCC (left), Haibei Landsat-8 NDVI (left middle), Haibei Sentinel-2 NDVI (right middle) 

and Laegern Phenocam GCC. The provided algorithms did not always provide a suitable 

fit, e.g. the spline fit is not meaningful in any of the first three examples and the 

Klosterman fit does not work for the dataset in the first column. In these cases the 

respective RMSEs are not significant either. 

The second column in Figure 3.8 containing the Landsat-8 NDVI data from Haibei gives 

an example for the (second) criteria RMSE. After testing all curve fits for Landsat-8 data 

over all test sites and years, only the Klosterman and the Beck fit have been shortlisted. 

Finally, the Beck fit was chosen for its lower RMSE. 

The same two fitting methods were the only options for the Sentinel-2 NDVI data 

(example from Haibei in the third column). Here the choice fell on the Beck fit, because 

the curve modeles the vegetation activity better than the Klosterman curve. Whereas the 

former is closer to the maximum values, the latter does not reach the maximum values 

because of lower values that drag the curve down. It is assumed that these lower values 
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stem from cloud cover and that therefore the maximum values represent vegetation. For 

that reason the Beck fit was chosen despite the higher RMSE (third criteria). 

 

Figure 3.8: Different fitting methods (Spline, Beck, Elmore, Klosterman and Gu) for the filtered Laegern Landsat-8 
green chromatic coordinate (GCC) data (left), Haibei Landsat-8 NDVI data (left middle), Haibei Sentinel-2 
NDVI data (right middle) and Laegern Phenocam GCC data (right). The number indicates the RMSE. Certain 
methods were not able to generate a suitable fit due to issues with the algorithm, in these cases the RMSE 
is not significant.  

Table A-4 summarises the chosen fitting methods per dataset and vegetation index. For 

the S2L8 NDVI and the L8SR products, different fitting methods had to be chosen 

depending on the test site.  

The lowest RMSE and the best fit for the phenocam data was reached with the spline fit 

method (fourth column of Figure 3.8). As the phenocam datasets provide much more data 

points than the satellite datasets and because of less disturbances between vegetation 

and the sensor (e.g. clouds, fog), the filtered data had already a very small variation and 

allowed the spline function to be very accurate. 
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3.5 Metrics Extraction 

The most common phenology metrics extraction methods are derivatives and thresholds. 

For the former, the SOS and EOS are assigned to the maximum increase respectively 

decrease of the curve or the highest curvature change rate. These metrics are computed 

with the first respectively second derivative of the curve. Using thresholds to assign 

values to the metrics was the more appropriate way for this work, especially because 

different fitting methods were used. A threshold is usually set at 50 percent between the 

maximum and the minimum value of the curve. The first day over this threshold is taken 

as the SOS and the first day after the last time the curve was over the threshold as the 

EOS. However, this method is not always robust if the curve crosses the threshold more 

than twice due to outliers. Figure 3.9 shows phenology metrics derived by the 

implemented phenopix functions ‘threshold (trs)’ and ‘derivatives’ and problems that 

can occur. In the first row, the phenopix threshold method defines the EOS only a couple 

of days after the SOS, because the curve crosses the 50-percent threshold again. To 

account for this problem, two other functions were developed. One function takes the 

longest consecutive part over 50 percent as the growing season and the other one assigns 

the first value over 50 % to the SOS and the first value after the last time the curve was 

over 50 % to the EOS. The first function had to be applied on data like the one in the 

second row of Figure 3.9 and the second function on data like in the first row. Deciding 

which of the different threshold functions to take was done manually after analysing the 

fitted curve.  

An issue with the derivatives method can be recognised in the second row on the right of 

Figure 3.9. The SOS is assigned to the maximum increasing part of the curve, but due to 

an outlier at the end of the year, this value is not representative of the actual SOS. 
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Figure 3.9: Spline fit for the Laegern green chromatic coordinate (GCC) (top) and NDVI (bottom) data 2016 with 
extracted phenology metrics (middle: 50% threshold (TRS), right: maximum increase/decrease 
(derivatives)) SOS (red), EOS (green) and peak of season (blue). 

3.6 Comparison of GCC and NDVI 

In order to compare the phenocam and satellite-derived GCC data with the NDVI data, 

the differences between the two indices had to be assessed quantitatively as well as 

qualitatively.  

The study of Keenan et al. (2014: supplementary information) analysed the relation 

between satellite-derived GCC and NDVI data and ground observations (budburst for 

spring and leave colour change in autumn). They found an earlier SOS and a later EOS for 

the NDVI measurements and a later SOS and earlier EOS for the GCC measurements 

compared to the ground observations when using a spline fit. When using a logistic fit 

however, the NDVI values led to a later SOS compared to the ground measurements. 

Hufkens et al. (2012) compared metrics derived from ExGr, which is used almost 

identically to GCC (Richardson et al., 2007; Sonnentag et al., 2012; Inoue et al., 2015) and 

NDVI and found an earlier SOS but also an earlier EOS for the NDVI-derived metrics. 

Klosterman et al. (2014) on the other hand found that measurements from remotely-

sensed data led to a later SOS and EOS, but they also remarked that the GCC data from 

satellite measurements was noisy, an issue that found support by Brown et al. (2016). 

The study of Walther et al. (2016) assessed the differences and relations between 

greenness, and photosynthetic activity. They found that the green-up lags behind the 

beginning of photosynthetic activity and that this effect is stronger on high latitudes. 



Methods 

25 

Furthermore, they found that NDVI MODIS data generated an earlier SOS and later EOS 

than the greenness indices and that greenness generally shows a shorter season length 

than photosynthesis. For coniferous species, the photosynthesis lasts shorter than the 

greenness. As the NDVI is more sensitive to photosynthesis than GCC, it can be assumed 

that NDVI data should lead to longer seasons than GCC data for the deciduous forest and 

grasslands in Kytalyk and Haibei.  

Since the comparison of metrics derived from the two indices depends highly on the 

processing methods, the test site and the instruments used, an own assessment for the 

three test sites with the same filtering, fitting and extraction methods as the ones in the 

main analysis was conducted. A MODIS time series between 2000 and 2016 was 

analysed, extracting phenology metrics for the NDVI and the GCC data. The goal was to 

find out, whether phenology metrics of one index can be expected to be systematically 

earlier or later than the ones of the other index as well as to detect a possible correlation 

between the metrics from the two indices. 
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4 Results 

The observation of PP and LSP with focus on biodiversity, data stability, the 

correspondence between metrics derived from near-surface and remotely-sensed data 

and the comparison of the vegetation indices GCC and NDVI led to revealing results. In 

the first part of this chapter, phenology on species level (PP) is presented and analysed 

with near-surface measurements from phenocams and remotely-sensed data from 

Sentinel 2. The second part presents phenology from an ecosystem or test site level (LSP) 

and sets the results in relation to the PP measurements and compares the quantitative 

differences between the two used vegetation indices, GCC and NDVI. 

Examinations were made for the temperate mixed forest at Laegern test site and the 

tundra in Kytalyk. For both sites, a continuous record of data with the possibility to 

discern between different vegetation types was available. Data gaps of phenocam images 

from Haibei and Aldabra test sites, however, made it difficult to model vegetation activity 

at these test sites. Beside the data gap in the Aldabra data in April and May, the factor 

mainly responsible for the amplitude in the vegetation indices was image quality rather 

than vegetation activity. The images were blurry and darker in the second half of the year. 

Because it was not possible to discern a green-up, the decision was made not to conduct 

an analysis for this test site. 

Besides the presented graphs and tables (Figure 4.1 to Figure 4.4, Table 4-1), results that 

are referred to in this chapter can be followed up on in the Appendix (Figure B.1 to Figure 

D.8 and Table A-1 to Table D-7). 

4.1 Observations of Plant Phenology 

The examination of different plant species in the phenocam images showed revealing 

differences in vegetation activity concerning not only the SOS and EOS but also different 

green-up speeds, different magnitudes of GCC and different peaks of greenness. Both the 

near-surface measurements with the phenocam and the remotely-sensed data of Sentinel 

2 allowed assessing biodiversity and measuring characteristics of different vegetation 

species. 
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4.1.1 Plant Phenology from a Near-Surface Perspective 

The observations of the mixed deciduous forest at Laegern and the tundra in Kytalyk 

allowed distinguishing between up to thirteen different tree species in sixteen ROIs for 

the former test site and between the two vegetation types ‘grass’ and ‘shrubs’ in five ROIs 

for the latter test site. 

The GCC representing the different species at Laegern test site showed a small variation 

in the phase where vegetation is not active. The green-up started at different times and 

with different speeds. The 50-percent threshold was reached between DOY 110 and DOY 

125. For the whole image this was at DOY 113 (Figure 4.1, Table 4-1). During the growing 

season, the variation of the different greenness values was rather high and among the 

EOS dates the variation was much broader than for the SOS (DOY 251 to 307, DOY 278 

for the whole image). 

The analysed vegetation at the Kytalyk test site in 2015 also showed different green-up 

speeds, greenness levels and phenology metrics in summer during the growing season. 

The SOS varied between DOY 172 and 179 (178 for the whole image) and the EOS 

between DOY 231 and 234. In the phenocam image distinguishing between shrubs and 

grass was possible. The ROIs with shrubs had an earlier SOS (DOY 172 and 175) and EOS 

(231 and 232) than the ROIs containing grass (SOS DOY 177 and 179, EOS DOY 134). The 

SOS estimate for the whole image was – as anticipated – between the values of grass and 

shrubs (Table 4-1, Appendix B: Table B-5, Figure B.1). 

Vegetation activity in 2016 was generally very similar to 2015 with the only difference 

being an overall earlier SOS for 2016 (DOY 171). The SOS and EOS lay within a range of 

four (DOY 169 to 172) respectively three (DOY 233 to 235) days. For 2016, it was not 

possible to recognise differences between shrubs and grass. The differentiation between 

the two vegetation types was difficult because only one ROI containing shrubs could be 

analysed (Section 3.1.1).  



Results 

28 

 

 

Figure 4.1:  Phenology curves of sixteen regions of interest (ROIs) at Laegern test site 2016 with respective SOS and 
EOS as vertical lines from phenocam data (top) and Sentinel-2 data (bottom). Upper graph: The dashed 
line represents the data from the ROI containing the whole phenocam image and should by design be 
somewhere in the middle of the other curves as the data consists of all the other ROIs. It is expected that 
the ROI of the whole image approximates to what a satellite measures, as it merges the signals of the 
smaller ROIs and vegetation species, similarly to the signal a satellite sensor measures. 
Lower graph: Phenology curves of sixteen Sentinel-2 pixels in the FOV of the phenocam at the Laegern 
test site. The red graph represents the Sentinel-2 dataset of the whole test site. 
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Table 4-1: Meta-analysis of plant phenology observations from phenocam and Sentinel 2. The range, mean and 
standard deviation (Stdev) of the examined region of interests (Phenocam) and the 16 pixels (Sentinel 2) 
are shown as day of year (DOY). 

  Start of Season (DOY) End of Season (DOY) 

  Min Max Mean Range Stdev Min Max Mean Range Stdev 

Near-
surface 

(Phenocam) 

Laegern 110 125 117.07 15 4.58 251 307 284.53 56 14.33 

Kytalyk 
2015 

172 179 176.20 7 2.77 231 234 232.80 3 1.30 

Kytalyk 
2016 

169 172 170.50 3 1.29 233 235 234.00 2 1.15 

Remotely-
sensed GCC 

2016 
(Sentinel 2) 

Laegern 
91 110 100.13 19 5.99 256 298 276.67 42 11.15 

Haibei 
160 170 164 10 2.36 260 269 263.73 9 2.42 

Remotely-
sensed NDVI 

2016 
(Sentinel 2) 

Laegern 108 122 113.67 14 6.02 285 312 297.07 27 8.43 

Kytalyk 158 173 165.73 15 4.81 257 261 258.80 4 1.17 

Haibei 152 156 153.40 4 1.03 286 291 287.93 5 1.71 

 

4.1.2 Plant Phenology from the Remote Perspective of Sentinel 2 

The analysis of PP at the test sites with remotely-sensed data revealed, similarly to the 

near-surface measurements, a significant variation of vegetation activity. The sixteen 

Sentinel-2 pixels within the FOV of the phenocam were the best possible approach to 

measure PP and to compare it to the near-surface measurements (Figure 4.1, Table 4-1). 

The detected variation in vegetation activity of the mixed deciduous forest is again 

smaller for the SOS than for the EOS (19 and 42 days respectively). The Sentinel-2 data 

furthermore allowed analysing PP with NDVI instead of GCC. A similar variation of 19 

days for the SOS and a shorter one of 28 days for the EOS was detected (Table 4-1). 

In Kytalyk, the variation of vegetation activity revealed a different picture. The vegetation 

activity increased with different speeds and led to a variation of sixteen days among the 

SOS dates, whereas the decrease of vegetation activity proceeded simultaneously and led 

to a small variation of four days (Table 4-1). Furthermore, two groups of curves are 

distinguishable, one with a slightly faster green-up and lower maximum NDVI values, and 

a second group with a longer green-up period and marginally higher maximum values.  
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The analysis of PP was carried out with NDVI data because the low green reflection values 

of TOA products on high latitudes led to GCC values with an amplitude of only 0.02 and 

no distinct green-up was recognisable.  

4.2 Data Stability of Phenocams 

The additional ROI containing the reference panel at the Laegern test site was examined 

with the aim to check whether absolute brightness had an influence on the data. The 

results (Figure 4.2) show that the GCC remain very stable during the course of the year 

at a value around 0.335. Only the images without or with limited daylight (due to clouds 

or fog) led to lower values. 

 

Figure 4.2: Green chromatic coordinates (GCC) for the reference panel at Laegern test site 2016. 

To analyse whether illumination and weather influences limit the observation of 

vegetation activity, a second analysis was conducted. For the months January to July, 

every image that did not show vegetation due to disturbances of fog, snow cover or 

darkness (images taken before sunrise and after sunset) was manually removed from the 

dataset. As the maximum GCC values were not affected by removing these images, the 

process was not continued for the second half of the year and the other test sites. GCC 

values of dark images are the ones with the values around 0.22 of the days of year (DOYs) 

0 to 40 as well as DOYs 310 to 365. Fog and snow cover lead to GCC values between 0.25 
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and 0.35 (Figure 4.3). The maximum-filter is therefore suitable to account for 

disturbances that affect the illumination or distort the measured colour of the vegetation. 

 

Figure 4.3: Green chromatic coordinates (GCC) of a ROI at Laegern test site 2016 without images of darkness, snow 
and fog between January and July (left) and with every image taken (right). 

4.3 Observations of LSP 

The LSP perspective allows observing regional ecological processes and analysing the 

vegetation activity of a small ecosystem or, in this case, of the biodiversity test sites. 

Instead of a distinction between vegetation species, the observation analyses the 

response of a merged signal of the whole area. In the first part, PP and LSP measurements 

are compared in order to assess whether PP can be used to validate LSP measurements 

and conversely whether PP can be extrapolated using LSP measurements. The second 

part evaluates the relation between the vegetation indices GCC and NDVI. 

4.3.1 Comparison of PP and LSP 

To find out whether the phenological activity of a single plant species is representative 

of the whole area around it, the LSP measurements had to be compared to the range of 

the PP signals. Comprehensive results presented in this section can be followed up on in 

Figure 4.4 and Appendix C. 

The most successful comparison was the one using the same instrument for PP and LSP 

observations. In this case, the analysis with Sentinel-2 data. The observation of small 

regions with an area of 10 by 10 metres was compared to the area of the whole test site, 

with a size of 200 by 500 metres for the mixed deciduous forest and the alpine meadow, 

and 1 by 2 kilometres for the tundra test site. 
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The LSP metrics (whole ROI) from Laegern and Kytalyk test sites lay within the variation 

of the PP measurements for both the GCC and NDVI analysis. The analysis at the Tibetan 

test site revealed a different picture. LSP measurements detected a later green-up, 

marginally lower GCC values and an earlier EOS when analysing the GCC data. 

The differences between the near-surface measurements of single vegetation species and 

LSP measurements with satellite sensors, however, were more pronounced. At Laegern 

(Figure 4.4, Table B-5), the Sentinel-2 and Landsat-8 data coincided very strongly for the 

SOS (DOY 106-108). MODIS detected a later SOS (DOY 119) and the SOS of the phenocam 

images (DOY 113) lay in-between the two. The SOS from the NDVI data was earlier than 

from GCC, except for the Sentinel-2 data. The EOS of the phenocam data (DOY 278) 

coincided very well with Sentinel 2 and MODIS (DOY 280 and 278 respectively). The 

merging of Landsat-8 and Sentinel-2 data led to an improved dataset with the same EOS 

as the phenocam and the MODIS data (DOY 278). The EOS derived from NDVI values was 

generally later than for the GCC values (except for MODIS one day before) and was very 

close to the phenocam measurement for Landsat 8 and MODIS (DOY 279 and 277 

respectively) and a bit later for the merged S2L8 dataset (DOY 287). 

For the SOS, the LSP metrics coincided better with the range of remotely-sensed PP 

measurements than the range of the near-surface measurements that lay later. Only SOS 

dates of MODIS GCC and Sentinel-2 and S2L8 NDVI measurements lay in this range. The 

EOS dates of both phenocam and Sentinel-2 data covered about the same ranges of DOYs 

which included all LSP metrics except the SR dataset from Landsat 8.  

In Kytalyk, measurements of LSP revealed a longer growing season than the PP data from 

the phenocam for the years 2015 and 2016, excluding the Sentinel-2 data. The season 

length in 2015 calculated from MODIS GCC data was longer than the one calculated from 

the ground data (SOS: -12 days, EOS +9 days) and again longer from MODIS NDVI data 

(SOS: -15 days, EOS: +29 days). 
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Figure 4.4: Phenology curves from the satellite and phenocam datasets for Laegern 2016. Both Landsat top of 
atmosphere (TOA) and surface reflectance (SR) data was used. The Sentinel-2 data represents also TOA 
values, MODIS data is processed to model SR. The dashed lines stand for the NDVI data, the solid line for 
the green chromatic coordinate (GCC) data. The vertical lines represent the start of season and end of 
season, calculated with the 50-percent value of the amplitude. 

In 2016, the phenology metrics calculated from Sentinel 2, MODIS, L8SR and S2L8 

coincided much better with the near-surface measurements from the phenocam (SOS: 

DOY 171, EOS: DOY 235). This was mainly due to the earlier SOS of the phenocam data, 

compared to 2015 (-8 days). MODIS also detected an earlier SOS, but only one and two 

days for GCC and NDVI measurements respectively. The SOS dates derived from the 

satellite GCC data varied between DOYs 162 and 180 and the EOS dates varied between 

DOYs 232 and 245. The season lengths calculated from NDVI data were longer yet again. 

For every dataset the SOS was earlier and the EOS later than the ones from the GCC data. 

4.3.2 Comparison of GCC and NDVI Measurements 

The results of the comparison of MODIS GCC and NDVI data showed unambiguously, that 

the 50-percent threshold was reached earlier for the SOS and lasted longer for the EOS 

of the NDVI data. Comprehensive figures, regression analyses and tables referred to in 

this section can be followed up on in Appendix D (Figure D.7, Figure D.8 and Table D-7). 
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In addition, the regression offered insights on the correlation between the metrics of the 

two indices GCC and NDVI. A correlation could only be detected for the Kytalyk test site 

(R2 of 0.66 and 0.49 for SOS and EOS respectively) and the SOS at Haibei test site (R2 of 

0.44). 

The correlation analysis of the pixel-wise processed data only showed a correlation 

between the metrics of the two indices for the EOS of Kytalyk and Haibei (R2 of 0.36 and 

0.33 respectively). Furthermore, at the Laegern test site the GCC data led to an earlier 

SOS and EOS. The season length was shorter for GCC at Haibei test site than the season 

length analysed with NDVI data whereas the Kytalyk GCC data was not suitable for 

comparison. Unlike for the MODIS time series, Sentinel 2 did not distinctly discover an 

earlier SOS for NDVI data. The EOS, however, was still detected to be later for NDVI data 

than for GCC data over all analyses (S2, S2L8, pixel-wise). 

The phenocam-derived GCC measurements showed a later SOS and earlier EOS than the 

NDVI measurements of the different satellite sensors for both years at Kytalyk test site 

and the Laegern analysis in 2016. The only exception from the deciduous forest was the 

Sentinel-2 derived NDVI data (S2 and S2L8) with a later SOS and the MODIS and Landsat-

8 data with the same EOS as the phenocam measurements. 
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5 Discussion 

The results presented in chapter 4 are discussed and compared in the following chapter 

and set into the context of the research questions. In line with the first research question, 

the first part focuses on PP and the data stability of phenocams. To discuss the second 

research question, the two paradigms PP and LSP are compared with a focus on 

qualitative differences and the differences between GCC and NDVI are critically assessed.  

5.1 Plant Phenology from a Near-Surface and Remote Sensing Perspective 

The analysis of vegetation activity of single species (phenocam) or the area of small 

canopies (pixel analysis with Sentinel 2) has revealed a significant variation in SOS dates 

and an even broader variation for the EOS at the deciduous forest test site. The variation 

during the green-up is an informative indicator for biodiversity. Reasons for the broader 

variation concerning the EOS are manifold. Depending on the species, the leaves turn red 

earlier, later or not at all for coniferous trees. On the other hand, the nutrient, water and 

sunlight availability lead to a variability of vegetation activity even among the same 

species. Factors like the location and the surroundings of a species are therefore 

responsible for the variation in EOS rather than just biodiversity. Richardson et al. (2009) 

found in their study that the green-down takes much longer than the green-up and 

observed also a broader variation within deciduous forests among the EOS dates than 

SOS dates. 

The variation of the phenology metrics at Laegern is about the same size for the near-

surface and the remote-sensing analysis (15 and 19 days respectively). This is more than 

expected from previous studies in a similar ecosystem such as the one of Richardson et 

al. (2009). These findings suggest that the methods are suitable to measure PP and 

therefore to detect biodiversity and ecological processes on the level of single plants or 

plant communities. However, the range of the extracted dates differs between the two 

observation methods. The observation with remotely-sensed data revealed an earlier 

green-up and earlier SOS dates. The different 50-percent values can partly be explained 

with the smaller amplitude of GCC from the remotely-sensed data. Because the 

perception of greenness depends on the sensor and the atmosphere between sensor and 
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vegetation, differences in the amplitude of greenness occur. The 50-percent threshold is 

furthermore a mathematical rather than a biological characteristic. However, the satellite 

measurements also detected an earlier green-up. One reason might be the different 

viewing angles. As the satellite sensor points vertically to the ground, it also measures 

signals from the forest floor during the time the trees are leafless, whereas the phenocam 

ROIs contained almost no ground signals from the background of the examined tree. As 

grasses and small plants on the forest floor tend to start growing earlier than the leaves 

of the trees (due to the greater sunlight availability), satellite sensors could measure an 

overall earlier green-up than the phenocam at the deciduous forest test site. This 

assumption finds support by the analysis of Mizunuma et al. (2013) and D’Odorico et al. 

(2015). Both studies detected an earlier green-up with a downward looking camera, 

compared to the oblique looking phenocam and attributed this to the understory 

vegetation. D’Odorico et al. (2015) further mentioned, that this finding does not apply for 

satellite data at a coarse spatial resolution because a much larger area is integrated. The 

comparison of the phenocam metrics with the remotely-sensed datasets at the Laegern 

test site fits this theory. The four datasets consisting of high-resolution satellite data 

(Sentinel 2, Landsat 8, S2L8 and L8SR) detected an earlier and MODIS a later SOS than 

the phenocam. 

In Kytalyk, the distinction between grass and shrubs was possible. Shrubs showed an 

earlier green-up and a lower maximum of greenness values compared to grass. The study 

of Sweet et al. (2015) supports the observation of an earlier green-up for shrubs. This 

information could successfully be transferred to the satellite data analysing PP as two 

groups are discernible in the data (Figure C.4). Being able to detect the phenology of 

functional groups by analysing pixels of high-resolution satellite data can be used as an 

indicator for shrub encroachment (Sweet et al., 2015, Myers-Smith and Hik, 2018) and 

consequently to analyse its ecological influence and its drivers (e.g. Myers-Smith et al., 

2015). It has to be considered, however, that in Kytalyk NDVI and GCC data were 

compared and that in the phenocam data the distinction of the two vegetation types was 

no longer possible for the second site year (2016). 
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5.2 Data Stability 

The ratio of the green colour in the reference panel at Laegern test site was stable over 

the seasons, the normalisation that was performed by calculating CC already eliminated 

the effects caused by different diurnal and seasonal illumination strengths. The lower 

values, caused by darkness, were removed when performing a maximum filtering (Figure 

4.2, Section 4.2). It was therefore not necessary to use the reference panel. 

Additionally, the reference panel does not account for the variable illumination of 

vegetation. The illumination of vegetation is not homogeneous, the values of the 

reference panel are therefore not suitable for correcting the variation in illumination 

within a ROI. The reference panel can however be used to detect images with major 

disturbances. Because the calculation of CC already normalises the data and the reference 

panel does not account for the heterogenous illumination of vegetation, it was not used 

for the analysis in this thesis. 

The analysis of the influence of images with weather disturbances has shown, that 

normalising the data by calculating CC and using a maximum-filter afterwards, suffices 

to account for such influences. However, this does not account for satellite data: due to 

the smaller number of images, more than three consecutive measurements with cloud 

disturbances led to values that did not represent vegetation, whereas in the phenocam 

data even in longer rainy or foggy periods, vegetation was visible very regularly. Only 

heavy snow cover for several days or weeks would have an influence on the data.  

5.3 Linking Plant Phenology and Land Surface Phenology 

For answering the second research question, quantitative and ecological differences 

between PP and LSP were assessed. Extracted metrics from PP and LSP lay in a range of 

maximum 14 days for the deciduous forest and 18 days for the tundra test site (without 

outliers of unsuccessful analyses) and the metrics of the whole phenocam image always 

lay within that range (Table B-5). 

So far, studies that compared satellite and phenocam observations, found that the 

derived phenological transition dates were not equivalent but did correlate (D’Odorico 

et al., 2015; Rodriguez-Galiano et al., 2015; Baumann et al., 2017; Liu et al., 2017). The 
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studies of Hufkens et al. (2012) and Klosterman et al. (2014) did not detect a correlation 

between the measurements of the two paradigms, mainly because of a too small site-year 

sample. Hufkens et al. (2012) argue, that the satellite measurements with a much lower 

temporal or spatial resolution cannot be expected to be as precise as the phenocam 

metrics. To analyse the correlation between the near-surface and remote sensing metrics 

however, many more years are necessary than the ones used in this study. The derived 

results of this study allow to qualitatively analyse the abovementioned viewing angle of 

the sensors, the FOV of the phenocam, the level of processing of the data and the quality 

of the used fits. 

Camera angle 

As described in section 5.1, the high-resolution satellite data detected an earlier SOS and 

the MODIS data a later SOS than the phenocam measurements for the deciduous forest. 

It is expected, that the nadir view of the satellite discovers understory vegetation with an 

earlier green-up (Mizunuma et al., 2013; D’Odorico et al., 2015), whereas the coarse 

resolution of MODIS integrates a much larger area which reduces this effect.  

FOV of the phenocam 

Comparing the PP (single pixels in the FOV of the camera) and the LSP measurements 

from Sentinel-2 data, shows that the metrics for the whole test site lay within the range 

of the PP metrics for both Laegern and Kytalyk test site. Therefore, it can be assumed that 

the FOV of the camera is representative of the whole test site and that thus, the 

measurements of the camera can be extrapolated to the larger area. At the Tibetan test 

site, however, the FOV of the phenocam is not perfectly representative of the whole test 

site as the SOS and EOS metrics of the whole test site are outside the range of the pixels 

in the FOV of the camera (Table C-6 and Figure C.5). But even if the vegetation in the FOV 

is representative of the whole test site, further analysis of single species with different 

surroundings or illumination conditions would be necessary to find out whether the 

measurements of one point show the same transition dates under slightly different 

conditions and are therefore suitable to be extrapolated. Analyses of ROIs containing the 

same species in the deciduous forest and the tundra have shown different phenology 
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metrics. Small variations of transition dates have thus to be expected even within a 

vegetation species.  

If the FOV is representative of the larger area, phenocam data could also be used to 

validate satellite data. Due to the temporal resolution, it can be expected, that the 

uncertainty of the satellite data is much larger than the one of the phenocams. Still, the 

different viewing angle of the two sensors, with the satellite being more sensitive for 

understory vegetation in a deciduous forest, as well as the different characteristics of the 

sensors and the atmospheric influences lead to uncertainty when the two paradigms are 

compared. A phenocam with a nadir view and a comparison of metrics like the start of 

green-up or the peak of greenness would therefore be more appropriate to validate LSP 

measurements using phenocam data. 

Level of data processing 

The GCC values derived from the TOA products of Landsat 8 and Sentinel 2 were much 

lower than the ones from the SR data from MODIS and Landsat 8. Responsible for that 

was the different level of processing of the data. Even though this should not have 

affected the phenology metrics because they were extracted as relative and not absolute 

values, the analysis of some datasets led to inaccurate results (e.g. Landsat-8 and 

Sentinel-2 data in Kytalyk).  

The amplitude of the GCC values derived from the phenocam lay between the TOA and 

SR datasets in Laegern and Haibei; in Kytalyk the amplitude was even higher than for the 

SR data. NDVI data did not show differences between TOA and SR data as the influence 

of the atmosphere at higher latitudes was strongest in the blue and green channels. 

Quality of curve fits 

LSP measurements at the tundra test site revealed a longer season and earlier green-up 

than measured in situ. The NDVI increased even earlier than GCC. On the one hand, this 

confirms the findings of Walther et al. (2016) that greenness lags behind photosynthesis, 

particularly at high latitudes. On the other hand, both indices increased at times when 

the ground was still covered by snow (snow lay until 1st June in 2016/DOY 153). The 
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main reason for this issue is the curve fit, that did not account for the short decrease of 

NDVI before the increase (Figure 5.1) and therefore showed an untimely green-up. 

Satellite-derived GCC values increased slightly during the last days of snowmelt due to 

changes in the colour of the snow. A possibility to account for these issues is to flag images 

with snow cover and just use data that shows vegetation. Moreover, the spline fit 

underestimates the amplitude of NDVI values, due to lower values that drag the curve 

down. This could be mitigated by iterative fitting while eliminating values that deviate 

more than a threshold from the expected (fitted) value.  

 

Figure 5.1:  Spline fit and maximum-filtered MODIS NDVI data from Kytalyk test site 2016. After day of year (DOY) 
140, the NDVI values decrease but the fitted curve already increases. 

5.4 Comparison of GCC and NDVI 

The analysis of the MODIS data showed, that NDVI derived phenology metrics led to a 

longer season than metrics of GCC data. Furthermore, the SOS and EOS dates only 

correlated in Kytalyk for the GCC and NDVI data. An earlier SOS in the NDVI data at the 

Laegern test site did not necessarily lead to an earlier SOS in the GCC data. The Sentinel-

2 data and the merged dataset S2L8, however, showed a later SOS with NDVI data than 

with GCC data. The most probable reasons for this are the different widths and centre 

wavelengths of the satellite bands. 

The findings of the MODIS time series analysis accord with the studies of Keenan et al. 

(2014) and Walther et al. (2016). The earlier onset and later end of vegetation activity 
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measured with NDVI data compared to the greenness derived metrics, coincide with the 

theory, that photosynthetic activity starts earlier than the increase of greenness, and that 

in autumn the greenness decreases earlier than the photosynthesis rate. As NDVI is 

supposed to be more sensitive to photosynthesis than GCC, the index detects earlier SOS 

and later EOS dates. Also, a visible inspection of the phenocam images from Kytalyk 

showed that the GCC decreased while vegetation turned red (end of August, DOY 230 to 

240), whereas the NDVI decreased rather quickly three to four weeks later (EOS at DOY 

259 and 261). The NDVI reached a value of 0 at about the same time the first snow fell 

(DOY 269). As described by Walther et al. (2016), the effect of a longer photosynthesis 

rate compared to greenness was stronger at high latitudes, and GCC and NDVI coincided 

better for the deciduous forest. Furthermore, the variation of phenology metrics derived 

from the sixteen Sentinel-2 pixels in the FOV of the phenocam was smaller for the NDVI 

data than for the GCC data. A qualitative reason for this difference might be, that the 

colour development between the species varies more than the photosynthetic activity.  

The comparison of the two indices in combination with a visual inspection of the 

phenocam images and the ecological knowledge about the test sites greatly improves 

relating biological events, phenology measurements, greenness and plant activity. 

5.5 Limitations 

Several factors involved can limit the success of the analysis. From the data part, 

limitations can stem from the data availability and quality. Regarding the methods, the 

definition of ROIs, the filtering, fitting, index choice and extraction method can lead to 

errors or uncertainties.  

Data availability of satellite imagery is limited; the availability of phenocam images every 

hour and of L8SR data in Kytalyk once every two weeks leads automatically to a different 

level of uncertainty. This issue however was well-known in advance (e.g. Hufkens et al., 

2012). The simplest measures to improve the availability is merging products from 

different sensors. Concerning the data quality, cloud disturbance is the major issue for 

satellite data. Besides cloud cover, the second factor responsible for the data quality is 

the influence of the atmosphere upon the TOA products. At high latitudes like in Kytalyk, 
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the TOA data could not be used, a correction to surface-reflectance level would have been 

necessary first. The data quality and availability of phenocam images was stable and 

already analysed in Section 5.2. The only factor that was not analysed are systematic 

errors such as the viewing angle or the illumination. Because the camera is facing 

vegetation sideways, there is always some vegetation analysed, that is covered in shade. 

This effect is smaller with satellite data, as the satellites orbit the earth in a sun-

synchronous mode. With the phenocam pointing north, this effect is minimised.  

Further sources of error can occur during the processing of the data. Firstly, the 

definition of ROIs was implemented arbitrarily. The selection of trees of the deciduous 

forest as well as the size of the ROI for the LSP analysis could have been chosen differently 

and therefore probably could have affected the results. The filtering method was without 

a doubt suitable for the phenocam images with their availability of one image per hour. 

Choosing the window size for the satellite data was more delicate. With a window size of 

three measurements, three consecutive overcast days led to data that did not represent 

vegetation. A larger window size on the other hand would have taken the maximum value 

of a time span of three weeks and more for Sentinel-2 and Landsat-8 data which would 

have led to a much greater uncertainty in the received data. For datasets with scarcer 

image availability, a cloud filter would be more valuable than a maximum-filter. A 

successful filtering of the data facilitates the fitting of a curve. The use of predefined 

fitting algorithms (Spline, Beck and Klosterman fits, Filippa et al., 2016) made it 

necessary to use different curve fitting methods for different datasets (Section 3.4). As a 

consequence, the different datasets were more difficult to compare, because of slight 

differences in the shape of the curves. The spline fit was closer to the actual data and 

therefore more sensitive to outliers or cloud disturbances whereas the Beck and the 

Klosterman fits were more robust but therefore capturing small variations less precisely. 

For instance, the curve fitted into the MODIS data is below the maximum values because 

of lower values, caused by cloud disturbances, dragging the curve down (Figure 5.1). For 

the Sentinel-2 data, the Klosterman fit would have had a smaller RMSE, but it did not 

account for the maximum values, therefore the Beck fit was chosen.  
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The choice of the vegetation index and the method to determine the SOS and EOS has 

mainly influenced the phenology metrics. The 50-percent value as well as the maximum 

increase of the curve are generally not related to a biological process (D’Odorico et al., 

2015). The maximum change of curvature of a greenness index like GCC could be related 

to the start of vegetation green-up. Furthermore, as discussed in Section 3.6, 

photosynthetic activity is difficult to relate to greenness. But although the chosen indices 

or extraction methods are not directly relatable to biological events, they allowed a 

comparison between the different observation methods and datasets. 

Quantify uncertainty 

Besides the detection of sources for uncertainty, the quantification of the uncertainty is 

of great interest. Considering the uncertainties that are created by the abundance of data, 

the frequency of clouds, the different fitting methods and the few site years, the margin 

of error can easily be larger than the differences between the compared data. Besides the 

RMSE for the fitted curves, the number of data points available during the green-up 

period could work as an accuracy metric under the condition that clouds are accurately 

filtered. The example of the Laegern test site shows that the uncertainty of the Landsat 

SR curve is accordingly much higher than for MODIS and the phenocam data. The green-

up period of the L8SR dataset contained 4 measurements whereas MODIS and the 

phenocam provide 50 measurements each for the same time-span. The MODIS data, 

however, contained an unknown number of measurements affected by clouds. 

5.6 Outlook 

The presented analysis has shown a method of applying phenocam and high-resolution 

satellite data in order to determine biodiversity and link PP and LSP. The findings can 

clearly be enhanced by a more sophisticated preparation of satellite data (cloud and 

snow filtering, processing to SR) and an analysis of more site years. With the launch of 

the second Sentinel-2 satellite, the availability of high-resolution satellite imagery has 

increased relevantly and applying the presented method to a vast number of site years 

allows detecting correlations between different datasets and between phenology 

measurements at different scales. 
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Analysing more site years and more different biomes will lead to a better understanding 

between the relations of small- and large-scale phenology patterns and allow relating 

biological processes to phenological metrics as well as scaling between species, 

community and ecosystem. 
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6 Conclusion 

In line with the two blocks of research questions, the findings of the thesis are briefly 

summarised.  

Measuring plant phenology (PP) with phenocam and high-resolution satellite data 

The analysis of PP has revealed that biodiversity can be assessed, and the phenological 

characteristics of single species analysed, with both phenocam and high-resolution 

satellite imagery. The presented method therefore enables an analysis of whether 

changes in land surface phenology (LSP) are climate driven, like a shift in the growing 

season length of a plant, or due to changes in biodiversity and the appearance of 

ecological niches. For a successful comparison of near-surface and remotely-sensed data, 

a representative field of view of the camera is crucial and the different viewing angle and 

atmospheric influences are important to consider when explaining shifts in the results. 

Normalising and filtering the phenocam data suffices for successful modelling of 

vegetation activity, for satellite imagery a cloud and snow filter would be necessary for a 

precise vegetation analysis. 

Correspondence and relation between PP and LSP 

The results of the PP analysis show, that the method used is suitable to detect ecological 

processes on species level. The high spatial resolution of Sentinel 2 enables new options 

to measure PP with a world-wide coverage and to compare and upscale it to LSP. 

Phenocams, in return, allow relating biological processes to the PP measurements either 

by inspecting images or with the support of ecological knowledge about the examined 

test sites. The combination of the two measurement techniques therefore facilitates the 

understanding of influences of environmental processes at community level (e.g., shrub 

encroachment, growth of understory vegetation, shifts in ecological niches, shifts in 

phenology), on an ecosystem, or even on a global level.  

Even though phenology metrics of the different sensors lay within two weeks per test 

site (without obvious outliers), comparing satellite-derived LSP with PP measurements 

quantitatively proved to be more complicated. Differences between the different datasets 
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were often larger than between the phenocam and a satellite sensor itself. Qualitative 

differences and sources of uncertainty could be evaluated, but for a quantitative analysis 

like the correlation between the different measurements, many more site years are 

necessary. 

NDVI tends to be sensitive for vegetation activity earlier during green-up and longer 

during senescence than green chromatic coordinates (GCC). The findings corroborate the 

theory on greenness and photosynthetic activity of the two indices from Keenan et al. 

(2014) and D’Odorico et al. (2015). NDVI is more sensitive to photosynthetic activity than 

GCC and greenness usually lags behind photosynthesis during green-up and lasts longer 

during senescence. The relation between greenness and photosynthesis rate gives 

important insights on carbon fluxes and on the relation between phenology 

measurements and biological processes. However, exceptions were detected and the 

findings of the relation between the two indices are always dependent on the method, 

test site and satellite sensor (Sections 3.6 and 5.4). 
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Appendix 

A: Data 

Table A-1: Tree species and abundances at Laegern test site (courtesy Carla Guillen Escriba). 

 

Table A-2: Spatial and temporal resolution of satellite data used (GEE, 2018). 

 MODIS Landsat 8 Sentinel 2A 

Spatial resolution 500m 30m 10m 

Temporal resolution 

(at the equator) 

daily 16 days 10 days 

 

Table A-3: Satellite images per year at the analysed test sites (GEE, 2018). In Kytalyk, Landsat 8 surface reflectance (L8 
SR) has a smaller availability than the top of atmosphere images. 

 MODIS Landsat 8 Sentinel 2 

Laegern 2016 355 37 67 

Kytalyk 2015 364 45 (26 for L8 SR) 13 

Kytalyk 2016 355 45 (22 for L8 SR) 80 

Haibei 2015 364 44 3 

Haibei 2016 355 44 72 



A: Data 

55 
 

Table A-4: Curve fitting methods for GCC and NDVI for the different satellite datasets. Abbreviations: top of atmosphere 
(TOA), merged Sentinel 2 and Landsat 8 dataset (S2L8), surface reflectance (SR). 

Fitting 

method 

MODIS Landsat 8 

TOA 

Sentinel 2 S2L8 Landsat 8 SR 

GCC Spline Beck Beck Klosterman Klosterman 

(Laegern & 

Kytalyk), Beck 

(Haibei) 

NDVI Spline Klosterman Beck Klosterman 

(Laegern & 

Haibei), Beck 

(Kytalyk) 

Klosterman 

(Laegern & 

Kytalyk), Beck 

(Haibei) 
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B: Phenology Metrics 

Table B-5:  Phenology metrics showing start of season (SOS) and end of season (EOS) for the three test sites Laegern, 
Kytalyk and Haibei. Up to sixteen regions of interest (ROI) of phenocam data and MODIS, Sentinel-2, and 
Landsat-8 datasets were analysed. The metrics are depicted as day of year (DOY). 

  

Laegern 

2016 

Kytalyk 

2015 

Kytalyk 

2016 

Haibei 

2015 

Haibei 

2016 

SOS EOS SOS EOS SOS EOS SOS EOS SOS EOS 

Phenocam 

GCC 

ROI 1 113 278 177 234 170 235  247 146  

ROI 2 119 302 175 231 172 233     

ROI 4 124 289 172 232 171 235     

ROI 5 113 251 179 234 169 233     

ROI 6 120 284 178 233       

ROI 7 111 275         

ROI 8 124 298         

ROI 9 117 298         

ROI 10 117 307         

ROI 11 110 271         

ROI 12 114 296         

ROI 13 125 278         

ROI 14 115 270         

ROI 15 116 280         

ROI 16 118 291         

Whole Phenocam 

Image 113 278 178 233 171 235 

no 

data 247 149 304 

Satellite 

GCC 

Landsat 8 106 239 142 255 102 293 154 287 155 273 

Sentinel 2 108 280   180 232   169 256 

MODIS 119 278 166 241 165 240 171 250 169 233 

Sentinel 2 & Landsat 

8 (S2L8) 107 278 

  

162 240   160 260 

Landsat 8 Surface 

Reflectance (L8SR) 107 318 

  

165 245   155 276 

Satellite 

NDVI 

Landsat 8 101 279 148 264 155 274 176 297 167 292 

Sentinel 2 120 299   159 259   161 289 

MODIS 100 277 163 262 161 261 152 278 151 283 

S2L8 115 287   156 259   146 278 

L8SR 92 323   146 260   154 294 
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Figure B.1:  Phenology curves of regions of interest (ROI) in the phenocam images at Kytalyk test site 2015 (top) and 
2016 (bottom) with respective start of season (SOS) and end of season (EOS) as vertical lines. The dashed 
line represents the data from the ROI containing the whole phenocam image. 
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Figure B.2:  Phenology curves from the satellite and phenocam datasets for Kytalyk 2015 and 2016 (top and bottom 
respectively). Both Landsat top of atmosphere (TOA) and surface reflectance (SR) data was used. The 
Sentinel-2 data also represents TOA-values. MODIS data is processed to model SR. The dashed lines stand for 
the NDVI data, the solid line for the GCC data. The vertical lines represent the start of season and end of 
season calculated with the 50-percent value. 
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Figure B.3:  Phenology curves from the satellite and phenocam datasets for Haibei 2015 and 2016 (top and bottom 
respectively). Both Landsat top of atmosphere (TOA) and surface reflectance (SR) data was used. The 
Sentinel-2 data also represents TOA-values. MODIS data is processed to model SR. The dashed lines stand for 
the NDVI data, the solid line for the GCC data. The vertical lines represent the start of season and end of 
season calculated with the 50-percent value. For the phenocam curve in Haibei 2016, the data from the 
second half of 2015 was taken as data for the second half of 2016. 
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C: Pixel-Wise Sentinel-2 Analysis 

Table C-6:  Phenology metrics of the analysis of sixteen Sentinel-2 pixels in the field of view of the phenocam at Laegern, 
Kytalyk and Haibei test site. Metrics are indicated as day of year. Minimal (Min) and maximal (Max) value, the 
mean of all measurements, the range between min and max and the standard deviation (Stdev) are indicated 
at the bottom of the table. 

 Laegern Kytalyk Haibei 

 SOS EOS SOS EOS SOS EOS 

ROI GCC NDVI GCC NDVI GCC NDVI GCC NDVI GCC NDVI GCC NDVI 

1 93 111 282 309 132 160 260 260 165 153 262 286 

2 102 109 264 312 154 169 256 258 161 152 265 290 

3 94 114 284 294 124 168 266 259 162 152 266 286 

4 108 122 286 295 166 173 246 258 167 153 262 286 

5 96 114 283 290 130 161 262 259 164 154 262 287 

6 94 111 279 295 159 171 255 257 164 153 265 291 

7 97 108 282 297 137 162 265 260 160 153 266 290 

8 109 111 281 298 131 158 266 261 163 153 262 287 

9 100 112 264 291 129 165 263 258 164 156 264 287 

10 97 108 283 297 150 168 258 257 164 153 260 287 

11 105 109 256 289 150 171 260 258 163 153 262 288 

12 102 116 258 285 124 160 267 260 164 154 262 288 

13 110 115 274 299 131 161 265 260 NA 154 269 291 

14 91 120 298 309 124 169 264 258 164 154 265 287 

15 104 125 276 296 133 170 259 259 165 154 264 288 

16 97 127 279 313 148 168 256 259 170 155 260 287 

Whole 

test site 
108 120 280 299 180 159 232 259 169 161 256 289 

Min 91 108 256 285 124 158 246 257 160 152 260 286 

Max 110 127 298 313 166 173 267 261 170 156 269 291 

Mean 99.94 114.50 276.81 298.06 138.88 165.88 260.50 258.81 164 153.50 263.50 287.88 

Range 19 19 42 28 42 15 21 4 10 4 9 5 

Stdev 5.99 6.02 11.15 8.43 13.54 4.81 5.50 1.17 2.36 1.03 2.42 1.71 

R2 -0.0648 0.0856 0.0775 0.3564 -0.071 0.3304 
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Figure C.4:  Pixel-wise analysis of Sentinel-2 GCC and NDVI data at Laegern (top) and Kytalyk test site 2015 (middle) and 
2016 (bottom). 
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Figure C.5: Pixel-wise analysis of Sentinel-2 GCC and NDVI data at Haibei test site 2015 (top) and 2016 (bottom). Due to 
an issue with the fitting algorithm an outlier curve occurred (upper graph). 
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D: NDVI and GCC Comparison 

 

 

Figure D.6:  MODIS GCC (black) and NDVI (green) data from 2000 to 2016 at Laegern (top), Kytalyk (middle) and Haibei 
(bottom) test site. 



Appendix 

64 

Table D-7:  Time-series of MODIS GCC and NDVI data for Laegern, Kytalyk and Haibei test site. Metrics are indicated as 
day of year. Minimal (Min) and maximal (Max) value, the mean of all measurements, the range between min 
and max and the standard deviation (Stdev) are indicated at the bottom of the table. 

 Laegern Kytalyk Haibei 

 SOS EOS SOS EOS SOS EOS 

Year GCC NDVI GCC NDVI GCC NDVI GCC NDVI GCC NDVI GCC NDVI 

2000 141 90 270 295 175 167 241 266 170 90 255 283 

2001 127 128 244 305 177 163 231 236 185 162 255 274 

2002 126 71 278 284 176 167 242 267 163 152 257 282 

2003 111 72 280 295 189 178 233 249 167 157 266 277 

2004 127 107 271 279 182 173 243 261 170 152 262 284 

2005 126 94 277 277 167 156 237 263 172 147 260 275 

2006 125 119 297 313 161 158 226 228 161 143 258 290 

2007 99 88 284 292 168 161 243 266 169 149 242 269 

2008 117 116 277 298 179 173 243 272 168 142 261 286 

2009 106 99 285 294 174 164 232 258 180 158 250 283 

2010 141 102 270 301 167 165 245 263 184 159 254 274 

2011 99 77 281 288 178 166 236 259 165 153 249 277 

2012 120 61 274 278 167 157 234 263 172 152 260 279 

2013 129 146 257 268 160 159 236 240 166 153 247 282 

2014 101 65 285 295 180 162 235 272 170 151 261 287 

2015 109 72 286 281 166 163 241 262 171 152 250 278 

2016 119 100 278 355 165 161 240 261 169 151 233 283 

Min 99 61 244 268 160 156 226 228 161 90 233 269 

Max 141 146 297 355 189 178 245 272 185 162 266 290 

Mean 119.00 94.53 276.12 294.00 172.41 164.29 237.53 258.00 170.71 148.41 254.12 280.18 

Range 42 85 53 87 29 22 19 44 24 72 33 21 

Stdev 13.21 23.75 12.00 19.41 8.02 6.01 5.28 12.50 6.65 15.92 8.28 5.46 

R2 0.1399 -0.0321 0.6584 0.4914 0.4354 -0.0146 
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Figure D.7:  Linear regressions of the MODIS time series from 2000 to 2016, depicting the correlation between GCC and 
NDVI metrics at Laegern (top), Kytalyk (middle) and Haibei (bottom) for the SOS (left) and EOS (right). 
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Figure D.8:  Linear regressions for the correlation of the GCC and NDVI metrics for the pixel-wise analysis at Laegern 
(top), Kytalyk (middle) and Haibei (bottom) for the SOS (left) and EOS (right). 
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E: Code 

The files, containing the code to export and extract the data and to process them, are 

enclosed as external files. 

Google Earth Engine (GEE) 

-GEE time series: 

https://code.earthengine.google.com/e07698d6724e31299b606c56b3b86713 

-GEE test sites: 

https://code.earthengine.google.com/717a30c099588d90e983522ff750bc2c 

 

Table E-8: Overview of the filenames containing the code used for this thesis (R and PyCharm software) The application 
of the code is depicted in Figure 3.1. 

 Phenocam Images Satellite Imagery 

PyCharm  -ExportEEcollection.py 

R Preparation -Phenopix_installer.R 

Main files -testsite_configPC.R 

-draw_ROI.R 

-testsite_configuration.R 

Required functions -calculate_VIs.R 

-PhenoMetricsPC.R 

-calculateSOSEOS.R 

-plotPhenoRois.R 

-ReadTiff.R 

-mergeDatasets.R 

-PhenoMetricsSat.R 

-calculateSOSEOS.R 

-plots2p.R 

-plot_data.R 

-GCCNDVIts.R 

https://code.earthengine.google.com/e07698d6724e31299b606c56b3b86713
https://code.earthengine.google.com/717a30c099588d90e983522ff750bc2c
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