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Abstract

Future GIS systems need to distribute data storage and -processing
over multiple computers not only due to increasing storage and processing
demands, but also due to new applications requiring the possibility to
participate in a decentralized fashion. In the context of democratization
of GIS, such a collection of computers forming a peer-to-peer (P2P) system
should be self-organizing in order to be of use for the average citizen.

Optimal manual or automatic allocation of fragments of data proves
to be notoriously difficult. The key is to group data that is likely to be ac-
cessed together, also known as locality. This thesis presents a new method
to lower the dependence on locality by creating an overlay enriched with
redundancy through Reed-Solomon erasure coding where the amount of
information needed to satisfy a request is less than 100% of the amount
needed without the overlay.

By going through an example, a multidimensional range query using
a distributed Quadtree and the node lookup procotol Chord as proposed
by Tanin, Harwood, Samet, Nayar and Nutanong in 2006, it is shown how
erasure coding not only can be used for traditional fault-tolerance, but how
the presented optimization method using erasure coding can contribute
to both the Quadtree and the Chord protocol. In order to calculate the
profitability, this thesis contributes an analysis method respecting the
history of recently made queries. The optimization method increases the
node lookup efficiency of Chord to O((1 − β

logN
) · logN); β nodes do not

have to be contacted if the history of operations make the optimization
method profitable. Applied to the Quadtree, which is applied to Chord
by Tanin et al., the method improves index utilization since it is sufficient
to find just enough randomly selected peers that are within a moving
window for processing a spatial query, thereby reducing transmission costs
in a P2P setting. As a consequence, the dependence on locality can be
reduced.
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1 Introduction

1.1 Towards the statement of the problem of this master
thesis

In data processing there exists a general ideal: EVERYTHING - ALWAYS and
EVERYWHERE.

This ideal can only be achieved in an ideal world where changes are not
possible. One can think of universal libraries that are located everywhere. Each
library would contain the whole knowledge of humanity. Since there are no
changes, the status quo of this universal knowledge remains absolutely constant.
But such a world without changes is only possible if time is standing still.

By allowing time in such a world, changes become possible. As a matter of
fact, knowledge will increase. Consequently, there are three adverse possibilities:

Firstly, every library of this world (EVERYWHERE) would need to collect
and provide all new books (EVERYTHING). Since such an update needs time,
the ALWAYS, i.e. the availability, can not be guaranteed at all times.

Secondly, if it should be guaranteed that EVERYTHING is ALWAYS available,
only a central library is feasible. In such a central library, the increase in
knowledge is adapted continuously and in real time. The EVERYWHERE has
become impossible.

Thirdly, if knowledge is distributed to all libraries in this world (EVERY-

WHERE) and if knowledge is ALWAYS made available, then the content of the
libraries is reduced to conservative knowledge, since current knowledge can not
be feasibly adapted by all libraries (not EVERYTHING). Contrary to changing
knowledge, only canonical knowledge can be made available optimally EVERY-

WHERE. This does not mean that updates to knowledge of certain libraries is
impossible, the knowledge is just not made available everywhere optimally.

This thought experiment reveals that the ideal of having all data (EVERY-

THING) ALWAYS and EVERYWHERE available is not possible in a world with
time and space - our world -, since one of the three requirements always re-
mains unclaimed in favour of the other two requirements:

• Firstly, EVERYTHING and EVERYWHERE leads to NOT ALWAYS.

• Secondly, EVERYTHING and ALWAYS leads to NOT EVERYWHERE.

• Thirdly, EVERYWHERE and ALWAYS leads to NOT EVERYTHING.

If it is wished to get away from an unwanted possibility of this list, it is only
possible to select from two other equally unwanted possibilities.

This trilemma exists because of locality. The distribution of updates of the
ever increasing knowledge needs to overcome distances. The distribution of
data in the digital world is equivalent to the distribution of data in the physical
world (libraries). An event is always happening locally. The knowledge about
this event remains local until it overcomes distances and is finally available as
global knowledge. Our real world exists in space and time. Consequently, the
problem of locality arises.

There are two possible ways to deal with locality: either 1. locality is ignored
or 2. locality is taken seriously. There are 1. attempts to escape from the
dependence of space and time. These attempts optimize communication lines or
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focus on computers with always increasing processing speeds. These approaches
most likely encounter limits, because technical progress is hardly likely up to the
task of handling the ever increasing amount of data. If locality is taken seriously
(2.), the ideal is reformulated as “optimal fragment allocation”. In other words,
the knowledge is distributed optimally according to the interests. Of course,
the “optimal fragment allocation” remains an ideal because the future interests
regarding knowledge are unknown or difficult to forecast.

An understanding of the “optimal fragment allocation” can be reached with
the help of Öszu and Valduriez [29, p. 114]:

Assume that there are a set of fragments F = {F1, F2, . . . , Fn} and a
distributed system consisting of sites S = {S1, S2, . . . , Sm} on which
a set of applications Q = {q1, q2, . . . , qn} is running. The allocation
problem involves finding the “optimal” distribution of F to S.

Due to the introduction of applications, the example can be detailed more
specifically: The example involving books and libraries distributed knowledge
universally if possible since it was assumed that knowledge, that was taking part
in education, was an end in itself. In the scope of applications, however, appro-
priated interest is introduced. Such an appropriated interest manifests itself in
telephone books, for example. The set of fragments F can be understood as the
set of telephone books. The telephone books are distributed to different humans
at different places. In the example, applications are the relevant operations (Q)
of an human operator in relation to telephone books. Two possible operations
are read and write, this is finding an entry or updating an entry in a telephone
book, respectively.

Since telephone books are for a specific purpose - the retrieval of a phone
number of a certain person in order to call this person -, the desire for optimal
distribution in relation to locality can be explained. It is highly probable that
a person gives a call to another person who speaks the same language. As
a consequence, telephone books listing German-speaking members should be
distributed mainly to the German-speaking area, and not in English-language
countries.

The optimization of this problem is a concern in data management. In a
first step, I outline two branches of science and illustrate the main ideas with
the telephone book example. In a second step I explain how the two branches of
science can be interlinked, from which the main problems of this master thesis
are derived.

The branch of science regarding locality is concentrated on the ALWAYS and
EVERYWHERE of the availability of data, always with respect to the realistic ob-
jectives of the “optimal fragment allocation”. The distributed database research
tries to achieve the ALWAYS and EVERYWHERE by minimizing the distance that
data has to cover. As a result, effords are made to reduce the amount of con-
tacted nodes as much as efforts are made to reduce the amount of exchanged
data. Two approaches to a solution are of particular interest: firstly the organi-
zation along a hierarchy and secondly the organization according to distributed
hash tables, or skip lists.

The main idea of the optimization through hierarchization is the assignment
of responsibilities along nodes of a search tree. Applied to the telephone book
example: If a telephone number of a German-speaking member is requested in

2



an area where German is a foreign language, the request is redirected to the
correct country, the appropriate state, and down to the matching municipality,
which has the needed local knowledge.

The main idea of the optimization of the distributed hash table is an intelli-
gent search along a line or along a single-dimensional identifier space. Thereby,
the costs associated with the creation and maintenance of an hierarchy are
avoided, and no chaos results. The principle of a search in a distributed hash
table is explained with the telephone book example as follows: Every member
of the telephone system has a private telephone address list. In order to contact
another member who is located in Parkes, Australia, for example, the querying
member contacts the person on his list who has assumingly most likely to do
with Australia. This could be a person, for example, who has made holidays
in Australia. This person has met an Australian, who himself is in contact
with someone living in Parkes. For the sake of this example, it is assumed that
the “bush telephone” is working, because it is assumed that everybody knows
everybody in Parkes.

The branch of science regarding redundancy is concentrated on the EVERY-

WHERE and EVERYTHING of the availability of data, also always with respect to
the realistic objectives of the “optimal fragment allocation”. The main focus is
on redundancy, high availability and failure tolerance. These researchers try to
guard against data loss with the help of following strategies: on the one hand by
distributing copies widely, on the other hand by the mathematical calculation
of checksums, which allows the reconstruction of the original data packet if a
data loss is observed during the transmission of the data packet. In the case of
the telephone book example, this is achieved by distributing replicas to as much
persons as possible on the one hand, or by constructing telephone books with
checksums in the appendix on the other hand. As a consequence, it has become
possible to reconstruct pages that went missing due to a careless transport, be-
cause the checksums from the appendix could be used. This principle is called
erasure coding.

It is remarkable that the two branches of science, which developed by fo-
cussing on locality and redundancy, are doing research mostly independently.
My idea in this master thesis is to inquire - in the sense of an interdisciplinary
dialogue - what can be won if the two research efforts are merged.

• Is it possible to reasonably apply redundancy (II) onto the principle of
hierachization (Iα) or onto the principle of distributed hash tables (Iβ)?

• How is the benefit of such applications of redundancy (II) calculated and
assessed?

1.2 The problem statement of this master thesis

It is not apparent that redundancy not only can be applied to data contents,
but also to data structures.

Obviously, nobody has recognized the opportunities lying within the redun-
dancy: At the moment, files are extended by files which contain checksums for
an increase in reliability. As a consequence, there are more files afterwards.
Now, my idea is to increase the files directly with checksums. As a result, there
are as many files after applying redundancy as there were before, but the files
are each enlarged by checksums. See figure 1.
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Figure 1: Redundancy (symbol +) applied to files (symbol O).

Up to now, it seems that redundancy has not been applied to structures,
since almost no research can be found. If redundancy was applied to structures
according to the traditional approach, additional nodes would be needed for the
storage of the checksum symbols. See figure 2. With my approach of applying
redundancy, no additional nodes are needed within the structure, because the
checksums become integrated with the original structural elements.

With the traditional approach, the collection of needed information dis-
tributed over three nodes involves visiting all the three nodes. If one of the
three nodes is corrupted, a fourth node containing a checksum needs to be
visited.

With my idea of directly integrating the checksums with the original struc-
tural elements, the collection of needed information stored on the original three
nodes involves visiting only two nodes. This is because the information stored
on the third node can be calculated from the checksums that were additionally
stored on the first two nodes. If one of the two visited nodes is corrupted, the
third node has to be contacted.

In sum: with my direct extension of the original structural elements by the
checksums, less nodes need to be contacted in order to reach the full information
case as opposed to the traditional approach. This comparison between the two
approaches even holds in the case of corrupted nodes.
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Figure 2: Redundancy applied to data structures: Redundancy (symbol +)
applied to a set of elements (symbol O) participating in a data structure.

The two approaches to the application of redundancy can be exemplified in
the telephone book example. It is assumed that a telephone book only contains
one telephone number per page.

The traditional approach uses a single page for each telephone number and
for each checksum1. A telephone book containing the telephone numbers 43 33,
51 90 and 65 34 has following content:

Page 1: 43 33

Page 2: 51 90

Page 3: 65 34

Page 4: 15 47

Page 5: 39 78

Page 6: 0c ac

Table 1: A telephone book with an appendix of checksums.

My approach regarding application of redundancy appends the checksums
directly to the telephone numbers. As a result, only the original pages are
modified:

Page 1: 43 33 15 47

Page 2: 51 90 39 78

Page 3: 65 34 0c ac

Table 2: A telephone book with directly appended checksums.

1In the following examples, the checksums were calculcated using the program “Reed
Solomon”, which is available at https://github.com/tomerfiliba/reedsolomon. Section
3.3.3 exemplifies how new checksums are calculated out of these telephone numbers. Section
3.3.4 describes how the original telephone numbers can be reconstructed out of the gathered
telephone numbers and checksums.
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If the telephone book has a low quality bookbinding, the pages fall apart.
With the traditional approach, three pages need to be collected in order to
successfully reconstruct the original content of the telephone book. With my
approach, only two pages are needed for a successful reconstruction.

It is possible to argue that it is more probable to find three out of six pages,
instead of two out of three. But the objection only affects the architecture of the
example, which relates to figure 1 because an analogy has been made. It is easily
possible to double the number of telephone book pages with my approach. As a
consequence, both approaches result in telephone books with the same number
of pages:

Page 1: 43 33 15 47

Page 2: 51 90 39 78

Page 3: 65 34 0c ac

Page 4: 55 ec ec bf

Page 5: 07 0c 95 4c

Page 6: ae fb 4f 91

Table 3: A telephone book with telephone numbers with directly appended
checksums and an appendix of checksums.

The traditional approach of applying redundancy still has to find three out
of six pages in order to reconstruct the original telephone book. My approach
continues to need two pages for successful reconstruction. As a consequence,
the higher probability of reconstruction with my approach is evident.

Up to now, the telephone book example focussed on the data contents. The
example can be transferred to data structures as follows:

Suppose that the single pages of a telephone book were attached to differ-
ent advertising pillars. Assume that the original telephone numbers should be
reconstructed from these attached pages, which is equivalent to a query of a
computer. With the traditional approach, three advertising pillars need to be
visited, in the case of a corrupted telephone page even four. If the pages were
calculated according to my approach, on the other hand, only two advertising
columns need to be visited. If the second page is corrupted, it is not necessarily
needed to visit a third advertising pillar. If one half of the page was undamaged,
there is enough information available for a successful reconstruction of the whole
original telephone book.

By showing the possibility of an application to both data files and data
structures, chances residing in redundancy are highlighted, chances that were
not recognized so far to the best of the author’s knowledge.

Up to now, redundancy (II) was applied to to data contents. With respect
to the elevated ideal, this is the application to the EVERYTHING, or the “what”.
More concretely, it is the application of redundancy to the fragments F in the
context of the optimal allocation of fragments.

The branch of science focussing on locality (Iα and Iβ) related to the AL-

WAYS and EVERYWHERE, and subsequently on the “when” and “where”. Con-
sequently, this branch of science optimizes the route that data takes.

This route that data takes was optimized without the application of redun-
dancy up to now. With the help of my direct application of redundancy, the
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two branches of science can be bridged, because redundancy can be applied in
order to optimize the route that data takes.

The advantages of such an application can be conjectured as follows:
Assume a query, during which data has to be gathered. If contacting all

nodes is not needed anymore, because contacting the most local nodes is suf-
ficient, the risk of network congestion is minimized since data flow is more
optimally spatially distributed.

Spatial dependence, which has to be taken seriously and which is taken
seriously by both highlighted branches of science, is not an obstacle anymore,
but also an opportunity for a reduction of the dependence on locality. Being at
one place at a time is no longer only an disadvantage, but also an advantage in
the sense of a locational advantage, since locational advantage is distributed on
as much places as possible. Like it is possible to fight fire with fire, it is possible
to largely offset the disadvantages of locality by the advantages of locality. Every
place becomes attractive precisely because it is a stationary place.

This idea is the subject of the investigation in this thesis. This thesis exam-
ines the real applicability and benefit of such an application.

• Is it possible to reasonably apply redundancy (II) onto the principle of
hierachization (Iα) or onto the principle of distributed hash tables (Iβ)?

• How is the benefit of such applications of redundancy (II) calculated and
assessed?

The structure of this thesis is derived out of these main problems.

1.3 Structure of the master thesis

In order to explain how the two main questions are handled by this thesis, the
structure is explained. The application of redundancy (II) to the principle of
hierachization (Iα) or to distributed hash tables (Iβ) is verified by the section
concerning the method (section 3). The verification is done by effectively ap-
plying redundancy to real systems which employ the principles. The benefit of
the application of redundancy is then calculated and assessed in the analysis
with the help of a cost model (section 4).

Section 3 is divided into different subsections. In the first part, the analysis
method and the cost model are introduced. The second part is concentrated on
describing the textbook knowledge of foreign methods and on the basic descrip-
tion of the application of redundancy. In the third part, an existing method
which is able to calculate and apply redundancy (II) is described (section 3.3).

The fourth part of the section 3 describes how I apply redundancy (II) to
the existing methods. Section 3.4.1, contains the description of the history h.
Namely, section 3.4.2 describes how redundancy is applied to the distributed
hash table (II→Iβ). This modification also performs scope expansion. In the
telephone book example, scope expansion was performed when I doubled the
number of pages to 6. Section 3.4.3 explains how redundancy is introduced to
an hierarchical structure (II→Iα). In this modification, no scope expansion
was performed. An equivalent alternation in the telephone book example would
be the modification to existing telephone book pages by appending checksums
to each existing page. The last part goes through a running example (section
3.4.4).
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The section 3.5 continues with two excursus. In the first excursus in sec-
tion 3.5.1, the distinction between affecting locality through altering the struc-
ture (only Iα) and affecting locality through the introduction of redundancy
(II→Iα) is shown. In the telephone book example, this distinction can be
explained by comparing optimization of the process of retrieval of a telephone
number through the optimization of the original pages versus the optimization
through redundancy. In the second excursus in section 3.5.2, I apply redun-
dancy to a large set of nodes. The last section answers the first main question
(section 3.6).

In the analysis (section 4), a cost model (section 4.1) is presented. My cost
model contains relevant parameters and allows a quantification of the profit.
The specific research questions RQ1, RQ2 and RQ3 - elaborated in section
4.2 - regarding the benefit of the application of redundancy are answered by
the sections 4.2.1, 4.2.2 and 4.2.3, respectively. Section 4.2.1 analyses whether
the method from section 3.3 outperforms other forms of redundancy, namely
making plain copies. In the telephone book example with advertising pillars,
this distinction is explained as follows. In the caching approach, no checksums
are calculated. But existing original telephone book pages are copied and dis-
tributed to advertising pillars. In the other approach, however, checksums are
calculated. Section 4.2.1 then analyzes the different implications from the two
approaches. Section 4.2.2, on the other hand, analyzes how adding checksums
to existing structural elements, or how adding checksums to existing telephone
book pages influence the dependence on locality (II→Iα). The application
of redundancy is compared to the method of Tanin, Harwood, Samet et al.
[21, 49, 48, 47], who employ full redundancy, or who copy each full telephone
book to each location. Section 4.2.3 is concerned with the modification which
has to perform scope expansion in order to fit reasonably into a real structure
(II→Iβ). Not only are there implications resulting from applying redundancy,
but also resulting from the scope expansion that has to be performed. This
section derives whether the application of redundancy remains profitable and
what the exact allowable share of updates in the recorded history made on this
set is. In section 4.3 and 4.3.1, the limits of applying redundancy to a large set
are made clear in an excursus. The remaining sections within section 4.4 are
concerned with general implications. Afterwards, section 4 concludes (section
4.5).

Section 2 is important because it contains the requirements for a next-
generation GIS (section 2.1), the research context in relation to this thesis (sec-
tion 2.2), the research questions (section 2.3), the overview of the research in
GIScience (section 2.4) and, finally, the overview of the research in Computer
Science (section 2.5).

The thesis concludes with an outlook (section 5) and a summary (section 6).

1.4 Motivation

According to the declarated values and the explicit mission statements that are
enlisted in the mission statement of the Faculty of Science of the University of
Zurich [12],

• We have the technical expertise to identify, implement, and
successfully develop new and relevant research topics at an early
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stage.

• We advance knowledge for the benefit of society.

• We actively foster national and international networks and sup-
port the transfer of innovations and discoveries developed by us
into applications that are useful to society.

• At all levels of study, we place considerable emphasis on optimal
guidance, interdisciplinarity, and the application of innovative
teaching methods.

the university lecturer of the course GEO 661 has led us students to inde-
pendent scientific research.

In a first step, we had to identify and define important and unsolved problems
of society that can be solved with the help of GIScience.

In order to ease the identification of the problems for us students, “Drivers of
Change” of Arup Foresight [3], part of the Arup University, and the 2030 Agenda
for Sustainable Development of the United Nations [36] were recommended.

In a second step we had to demonstrate our competence in GIScience through
tackling a research challenge. For this, we had to embed a research challenge in
the current state of the research in order to weigh up on the different proposed
solutions.

I evaluated the 2030 Agenda [36] as a “GIScience scientist” with knowledge
in computer science. I noticed problems that I can tackle and solutions which I
can contribute to interdisciplinary:

A desiderata in our global world is the public access to information (goal
16.10 in [36]). This is achieved by employing a system that gives access to data
to all citizens, also disaggregated by geographic location. GIScience has a similar
intention since research regarding participation of large masses of humans with
the aim to exchange information is being done. The support for participation
aims for community-defined goals, and is therefore different to the requirements
for a traditional Geographic Information Systems, which are geared to the needs
of corporations with bottom lines driven by profits.

The development of such a distributed spatial database supporting partici-
pation was hindered by the problem of locality, as it was set out in detail above.

The concrete placement in the research and the exact elaboration of the
resulting research questions follows (section 2).
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2 Elaboration of the research questions in re-
spect to the current state of the research

2.1 The case for a decentralized spatial database

A substantial amount of challenges faced by humanity is listed in the 2030
Agenda for Sustainable Development of the United Nations [36] in form of goals
and targets. The ambitious agenda proposes targets such as eradication of
poverty and hunger, universal primary education, gender equality, the empow-
erment of women and environmental sustainability amongst other targets [36].

In order to asses how GIScience can contribute to those challenges it is im-
portant to lay Geographical Information Systems (GIS) into the societal context.
According to John Pickles [30], the classic discussion amongst geographers sees
either GIS from a technicist, instrumentalist or from a positivist point of view,
or, on the other hand, sees absolutely no implications in the use of GIS at all.
Since GIS are developed according to certain interests, GIS have an important
impact. This is prevalent even though GIS is used as a tool, where the social
implications are dependent on how the tool is used [30]. For example, geode-
mographic information systems suppose socially homogeneous neighbourhoods,
and therefore allow the construction of individual profiles out of neighbourhood-
derived profiles [30]. In the course of democratization of GIS, such as the GIS-2
in [30], certain challenges must be tackled. The historically grown requirements
of GIS as defined by large public or private institutions are according to John
Pickles surveillance, continuous monitoring, ownership and control [30]. A de-
mocratized GIS, on the other hand, makes access possible, allows participation
and involves the community in the GIS, leading to informed citizens [30], public
participation, as mentioned by Sui and Goodchild [45] and, subsequently, feed-
back, as outlined by Janssen, Charalabidis, Zuiderwijk [25]. Therefore, GIS-2
must be of use for a wider range of users, and, consequently, must be more ac-
cessible, cheaper and more flexible [30]. By exploiting the emerging possibilities
of technology, such an accessible GIS-2 will be able to integrate multiple data
components in one single interface [30].

The goals stated by the United Nations are similar to GIS-2 in spirit. The
United Nations state in the preamble of the 2030 agenda [36] that they focus on
the weakest since they do not want to leave anybody behind. Education is the
key medium for communication in order to provide technologies [36]. GIScience
must be usable and available for the least developed countries. This is achieved
by closing the digital divide, that is, providing universal and affordable access
to the Internet and providing information and communication technology, as
mentioned in goal 9.c and 17.8 of the 2030 Agenda [36]. The call ”to strengthen
the scientific and technological capacity to move towards more sustainable pat-
terns of consumption and production”, as mentioned in goal 12.a, is aiming
for the introduction of access to science and therefore promotes the usability
of GIScience, too. This introduction of access to science, as mentioned in goal
17.6 [36], is envisioned to be done with the ”Technology Facilitation Mecha-
nism”, as mentioned in §70 [36], which will host a website that provides science
technologies [36].

Interestingly, the UN are interested in private business activity since this
leads to economic growth and job creation, as mentioned in §67 [36]. According
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to Pickles [30], GIS is influenced by demands of corporate interests and has
unclear forms of access to information that systems promote and deny. The
question is how a win-oriented business can be supported by the UN only be-
cause it promises productivity. The UN state in the same paragraph that several
standards and agreements must be met to alleviate the negative consequences
that are introduced by the necessity of win-orientation. In the context of GIS,
this will enable access for the general public in the best case, or, in the worst
case, promote established behaviour of private businesses, if Human Rights are
not enforced as it is required in §67 [36].

In line with the envisioned GIS-2 [30], the United Nations are calling for pub-
lic access to information, as mentioned in goal 16.10 [36]. The democratization
of data is also pushed by the UN in goal 17.18 [36]. In the context of capacity-
building, there should be a general availability of high-quality data, including
the possible disaggregation by geographic location. As a matter of fact, the UN
want to strengthen the capacity of developing countries of ”statistical offices and
data systems to ensure access to high-quality, timely, reliable and disaggregated
data” [36]. A special focus is laid on the contribution of earth observation and
geospatial information, as mentioned in §76 [36]. The development and imple-
mentation of the goals are controlled by the UN by using evidence which is also
disaggregated by geographic location, as mentioned in §74.g [36].

The call for public access to data as a means for transparency should not
result in blind publication of all data, including personal data. With the illus-
tration of the universal libraries, which are located everywhere, in the mind, it
should not be the case that all diaries and photographic albums of each person
should be accessible to the public. First and foremost, the mentioned goal 16.10
[36] explicitly calls for “protection of fundamental freedoms”, and links thereby
to both the copyright and privacy debate. The UN want to have such a pro-
tection “in accordance with national legislation and international agreements”,
hinting to the Berne Convention [36]. Furthermore, the idea of unrestricted
dissemination is, as stated by Janssen, Charalabidis and Zuiderwijk, a myth
that surrounds open data [25]. Not only that such a distribution of public data
may effectively bring no benefits, in addition there would be a complete lack of
quality control [25].

Regarding myths surrounding open data, pure publications do not beget
the targets such as engagement of the public [25]. It is necessary to close the
loop between the government and the governed people by introducing a feed-
back mechanism [25]. Within the context of the universal libraries, which are
located everywhere, it should be the society which decides which diaries and
photographic albums are a common property and, subsequently, publicly acces-
sible. For example, the diary of Anne Frank is valuable to humanity. Similary, a
photographic album of Joseph Beuys had to be a common property, because he
claimed: “Every human being is an artist!”. On system level, this means that is
should be possible to contribute back and that frequent changes are accepted.
These changes are then available as basis for further changes, thereby closing
the loop [25].

A possible way to achieve general availability of high quality data, as men-
tioned in goal 17.18 [36], would be the distribution of the data. This is both an
organizational issue as well as a technical one. From the organizational point
of view, there are arguments for and against applying decentralization as an
answer to guaranteeing access and participation [5]. The key arguments revolve
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around the benefits of distribution versus loss of mandatory control, even if the
control is in the hands of a large public group [5, 25].

The technical aspect is largely decoupled from the organizational one. For
example, it is possible to provide a system on a central server that allows col-
laboration, participation, crowdsourcing et cetera [6]. On the other hand, it
is possible to outsource authoritative spatial data in the context of Location
Based Servives on clients with mechanisms that verify the integrity of data
[7, 22, 54, 23].

In this scientific context, this master thesis selects a decentralized system
without the control of a single organization since the system should be capable
of organizing itself [30]. The crucial step for the integration of multiple data com-
ponents in one single interface [30, 39] is done in this master thesis by focussing
on the location of data alone and organizing computers optimally in relation
to the geographical location of data and to the access patterns in the case of a
GIS. This master thesis includes a decentralized index over continuous spatial
data, which differs from linked data where ontologies link entities together [43].
Such an index supports both feature-based and field-based geospatial datasets.

By making the organization of spatial data in a decentralized environment
as an automatic process, Sui and Goodchild [45] argue that a step is made
towards the convergence of the three categories of people and organizations:
1. the ones who create data, 2. the ones who collect data and 3. the ones
who have the expertise to analyze the data [45]. This way, they argue, that
social and political issues of corporations with bottom lines driven by profits
are mitigated by reintroducing the concerns of the public good [45]. The goals
of geographers to engage the public and possibly change the world in mean-
ingful ways becomes more possible by introducing a mechanism that enables
resource discovery and data insertion [45]. Such a mechanism eases the illus-
tration of issues ranging from earthquake relief and environmental disasters to
human rights abuse [45]. By applying such a mechanism, more prominence of
the development of spatial intelligence in eduation is less needed [45]. Espe-
cially for developing countries, access to the technology GIS allows the public
to get an impression of what is happening in the country - the typical control
function of maps. This not only helps to prevent crimes hindering substainable
development, but also nourishes and promotes the possibility for a sustainable,
functional democracy. By allowing open read and write access to geographical
data for the general public, democratic societies, as well as public participation,
as well as community-defined goals are supported [6, 30, 36].

Summarizing, a GIS-2 requires on the technical level that a Peer-to-Peer
infrastructure can be used. Such a system is only feasible if the system is
efficient enough for the average user.
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2.2 The research context in relation to this thesis

Figure 3: Structured overview on the relevant research.

13



In Geographic Information Systems, following three spatial queries are sup-
ported: spatial join queries, nearest neighbour queries and range queries.

Spatial join queries support the selection of relevant spatial features based
on their location or attributes and foreign location or attributes. For example,
it is possible to select all restaurants within Zurich.

Nearest neighbour queries support the selection of the nearest spatial fea-
tures in relation to a point. The nearest neighbour query may be limited by the
maximal distance or the maximal number of nearest features. For example, a
nearest neighbour query finds all restaurants that are 500 metres away from a
given location, or finds the 50 nearest restaurants.

A range query defines a range. In the one-dimensional case, a range window
specifies the interval within which all requested values lie. For example, all ob-
jects within a specified interval on a street are returned. In the two-dimensional
case, the range query specified a two-dimensional window. All spatial features
lying within the query window are returned. For example, all spatial objects of
a city are returned. In the three-dimensional case, the range is a box, and the
airspace of the city is included.

All queries are accelerated if the data structure is ordered according to spe-
cific rules that are geared towards the expected type of queries. An hierarchical,
recursive tree is an effective choice for a large number of query types since it
is possible to request roughly only the parts within a data structure that are
effectively needed. All unneeded objects are quickly identified as unneeded, and
not considered furthermore. This is called pruning.

Tree structures are well supported in a Database Management System (DBMS)
on a central server (CS). Distributed database management systems consist of
a collection of computers that are centrally organized. Such a collection may
be in the form of a parallel cluster, which is supporting ACID properties, or
in the form of decentralized servers or outsourced GIS, which rely on eventual
consistency (BASE). There are existing solutions regarding distributed storage
and querying of spatial objects.

Peer-to-Peer system (P2P) are much more difficult to support. The intro-
duction of Distributed Hash Tables (DHT) enabled the effective processing of
lookup queries, this are queries that can fetch spatial objects based on a given
search key. Chord [44] is a lookup protocol operating on a DHT.

Spatial queries are more complex queries than lookup queries. While it is
possible to support more complex queries by performing a sequence of more
complex basic queries, such an approach is not feasible since it is inefficient.

Tanin, Harwood, Samet et al. [21, 49, 48, 47] tackle the problem of sup-
porting complex queries with basic queries. They apply an hierarchical tree
supporting complex queries to a line, a DHT. Since efficiency is a major re-
quirement, especially in the context of P2P systems, Tanin, Harwood, Samet et
al. [21, 49, 48, 47] and Chord optimize queries. In the context of a function-
ing smart city project with a high amount of participants and data movement,
these implementations should be improvable in relation to the optimal fragment
allocation (OFA).

The optimal allocation of fragments results in the fact that data is dis-
tributed in relation to the expected queries. In the concrete case, this means
that the actual location of a computer or server is considered, as well as the
location of a client. As a result, data is distributed amongst the network in
such a way that the data is placed to the requests as local as possible. The data
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is placed where the probability is highest that the data is requested.
As a matter of fact, data is made available to the location where the data

is needed most. Computer science also strives for availability by introducing
high availability, that is, striving for complete datasets if possible. High avail-
ability (HA), however, has roots in methods that are concerned with different
objectives.

During the transmission of data over a noisy channel, data loss occurs. Dur-
ing the storage of data, crashes may happen and again, data loss occurs. Mo-
tivated by the problems of data loss, Reed and Solomon [35] enriched signals
mathematically with redundancy in order to filter out noise. The main idea
consists of providing a context, within errors such as a verbal error may be
corrected [15]. If the context of a conversation is about radio telescopes, it is
possible to replace wrong spelled words such as “periscopes” with the correct
word “telescopes” [15]. This is called erasure coding.

The communication with the space probe Voyager II occured over a noisy
channel. The Voyager II space probe enriched the messages with redundant
bits. As a matter of fact, the communication became faster as a whole, even
though more information was sent at a time. Since the mathematical context
provided enough information, less subsequents requests for retransmissions had
to be made.

Erasure coding has the roots in the reconstruction of data. It has become
possible to restore damaged data and it has become possible that failures are
handled reliably. This situation lead to the question whether crashes and chan-
nel noise could be used for high availability. Dealing with errors requires the
calculation of additional information, and, subsequently, one has to deal with
additional information. For the case of high availability, this additional infor-
mation is not erased and, as a consequence, is usable for further applications.

My question is, whether it is possible to use the high availability principle
in order to gain an advantage in relation to locality.
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Figure 4: Context of this master thesis.
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Efficiency is a key requirement of GIS-2. Existing solutions, namely the
method of Tanin, Harwood, Samet et al. [21, 49, 48, 47] and Chord [44], optimize
for locality in order to become efficient. I optimize again, but this time by
enriching existing data structures with redundancy.

By doing this, the idea of high availability is applied in this master thesis:
redundancy is not only used during emergencies or failures, but as an improve-
ment during normal operation. This improvement is made in order to make
spatial queries running within the context of a decentralized spatial database
operating in a P2P network more efficiently.

It is a justified hope that the taking of the optimal allocation of fragments
seriously does not only result in the fact that my method has contributed to
more efficiency, but that this master thesis has made a contribution, which
allows to move towards less dependence on locality through erasure coding.

Figure 5: The range query (red) has to be performed. Assume that spatial de-
pendence is destroyed completely. A method that achieves to perform a spatial
query better than full linear scanning is needed. If the method improves over no
locality successfully, it also performs better on any method that it piggybacks
to, subject to the quality of adaption. Therefore, any underlying method that
has few locality properties can gain locality properties from the piggybacking
method. Even though the underlying method groups spatial data suboptimally,
by applying the method of this thesis, spatial data is grouped more optimally
since it is possible to find any 90% nodes that are enough to answer the spatial
query 100%. In any case, there is no need to find all suboptimally grouped
spatial objects.
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2.3 Research questions

The architecture employed by Tanin, Harwood, Samet et al. [21, 49, 48, 47] is
the Open P2P Network architecture (OPeN) consisting of the Application layer,
the Core services layer and the Connectivity layer. The application logic is
confined in the Application layer [47]. The Core services layer keeps consistency
and performs the actual range search and relies on the lowest layer to perform
key-based routing [47]. The Connectivity layer has the task of routing, dealing
with object replication and migration, handling the introduction and departure
of peers called churn, and providing connectivity amongst participating peers
[47].

Figure 6: The layers of the Open P2p network architecture (OPeN). Adapted
from Tanin, Harwood, Samet [47].

A core service adapted to a certain application has an interface [48]. All
services make use of the underlying layer in a consistent manner, allowing the
replacement of the lower Connectivity layer [48]. The participants in the system
running a core service can answer queries stated by the Application layer [48].
For example, range queries, insertion and deletion of spatial objects are handled
by the Core services layer.

Supporting multi-dimensional queries over P2P systems consists of partition-
ing and routing [14]. Since the OPeN architecture abstracts the P2P protocol
away through a layered approach, it achieves a separation of the spatial index
and the routing protocol [48]. Still, the Core services layer is concerned with
routing to a certain degree. Routing through the tree is handled by the Core
services layer and routing to nodes is handled by the Connectivity layer. This
explains why the routing cost in the analysis of Tanin, Harwood, Samet et al.
[48] is affected by both the Core services layer and the Connectivity layer.

The thesis is concerned with placing redundancy strategically and analyzing
the effects of piggybacking such a redundancy in the spirit of RSEC. Applying
RSEC is a success if the total number of contacted nodes is smaller, even in
the light of updates. There are three important concerns that need to be dealt
with.

The first concern is about whether RSEC alone is worthwhile regarding the
number of contacted nodes. Does RSEC reduce the amount of contacted nodes?
Is RSEC better than the alternative caching?

The second concern: It is interesting whether RSEC, which is known for its
high repair costs, can lower the costs of the method of Tanin, Harwood, Samet
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et al. [21, 49, 48, 47]. They use full replication, and all elements are affected by
a change, too. The introduction of RSEC is only worthwhile if updates are not
too expensive.

The third concern: Updates to the sets prove to be the decisive factor re-
garding profitability of RSEC. It is interesting to analyze how RSEC changes
the required ratios of read operations and update operations in order to remain
profitable. This is done for a situation where the integration of RSEC also
affects the underlying data structure.

RQ 1 Does the introduction of redundancy result in a lower number of contacted
nodes during read operations than without? Is copying elements of the set
to multiple participating nodes more efficient in terms of contacted nodes
than Reed-Solomon erasure coding?

RQ 2 Assuming the method of Tanin, Harwood, Samet et al [21, 49, 48, 47] as
an underlying method with nodes in a set P , each holding one copy of a
spatial object: Does the introduction of RSEC-calculated devices over the
nodes in P result in less contacts for a given history h of read operations
and update operations than without?

RQ 3 How is the exact maximal share of update operations of a given history h
determined so that the introduction of RSEC is still worthwhile, even if
the identified set has been expanded and is distributed over more nodes
than before?

2.4 Overview of the research maximizing locality proper-
ties in GIScience

There are a lot of studies aiming at reducing the number of nodes that have to
be visited, or aiming at grouping data that is likely accessed together during
range queries in a distributed setting. The approaches try to minimize the query
latency.

Globe [51] stores objects in a distributed tree. These objects are situated
on multiple levels. The level is dependent on whether the object is mobile or
not, that means, whether the object has updates to its location. The addresses
of the object are maintained amongst the participating nodes. Pointer caches
within the hierachical search tree lower query latency. Globe performs location
management and therefore maximizes locality properties.

Karapiperis et al. [26] and Gupta et al. [19] use locality preserving Local-
ity Sensitive Hashing (LSH), and thus optimize the above-mentioned locality
requirement number ??. The idea is to preseve spatial dependence during the
conversion of higher dimensions to lower dimensions. Similarly, Ganesan et al.
[14] employ SCRAP, which maps multidimensional data to single-dimensional
data using a space-filling curve. The problem is that it is always possible to
find points that are simulateneously near in the multidimensional space and far
apart in the single-dimensional space [8].

Tanin, Harwood, Samet et al. [21, 49, 48, 47] all build on the idea that
the overlay of a spatial data structure can maximize locality properties in an
environment of distributed hash tables that destroy any spatial dependence by
hashing the keys. The proposed indexes are an adapted MX-CIF Quadtree or
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its three-dimensional variant, the MX-CIF Octree. Resilience against network
failures, for example, is handled by the underlying layer. Chord [44] is used as
the underlying method, but the authors stress that the underlying method can
be exchanged easily in order to keep up with recent developments.

Gu et al. [18] also support a distributed tree. Contrary to the above-
mentioned tree overlay [21, 49, 48, 47], which uses recursive decomposition as
the space partitioning strategy, the proposed tree of Gu et al. has a direct
mapping. The method of Tanin, Harwood, Samet et al. [21, 49, 48, 47] has a
sensitive underlying topology originally designed for the exact key query [18].
Gu et al. [18] propose the Hierarchically Distributed Tree that supports multidi-
mensional range queries at the structured P2P overlay layer [18]. As a matter of
fact, locality properties are maximized by the application of a structure geared
towards the expected type of queries [18]. Interestingly, Gu et al. [18] state
in 2013 that the recursive decomposition as an alternative to direct mapping
only supports range queries by relying on the three structures Chord [44], the
Content-Addressable Network [34] or skip graphs [18].

The approach of Tanin, Harwood, Samet et al. [21, 49, 48, 47] exhibits
similarities to PGrid and the shower protocol both mentioned in the analysis
of Blanas and Samolads [9]. As the method of Tanin, Harwood, Samet et al.
[21, 49, 48, 47] is based on a volume-based topology, it belongs to the faster
group in the analysis of Blanas and Samoladas [9], as opposed to data-balanced
topologies such as those employing kd-tree, like MURK employs [14]. The MX-
CIF Quadtree can also support non-spatial data in higher dimensions, as long
as the range is similar [37].

Methods having the locality awareness property connect to near nodes by
considering the location of the nodes [50]. Dynamic Prefix Average Distance
(DPAD) identifies nodes that become possible landmarks. These landmark
nodes cluster other nodes under them if the other nodes have the same prefix.
A joining node measures the lowest latency, which is also dependent on distance
because of the finite speed of light, and prepends the prefix of the fastest node to
its key. Therefore, the nodes are grouped according to the geographical location
[50]. The method of Toda et al. [50] minimizes the dependency on landmarks,
while still exhibiting the locality awareness property. By assigning membership
vectors that are close to other nodes that are geographically close to each other
on a number line, and by implying that this improves the performance, the
authors assume the validity of Tobler’s law implicitly [50].

The method of Plaxton et al. [33] is also locality aware. In fact, the method
is concerned with answering the queries as locally as possible, with the help of
replicas. Caching is a dominant strategy: each node caches information gained
from visiting queries.

Bisadi et al. [8] reference more recent work of customized indexing sup-
porting multiple dimensions. The trend is towards lower number of contacted
nodes during queries and lower per-node state. The focus is on the design of
the structures. For example, Sioutas et al. [42] employ a D3-Structure.

Spatial decomposition can also be done with Voronoi overlays, that can be
hierarchical or not [13]. Voronoi-based systems have to deal with the potentially
large number of possible neighbours.

20



Figure 7: Skip graph with an highlighted skip list (red) adapted from [50] and,
apparently, from [24].

2.4.1 Skip list, Skip graph, Skip tree

A P2P system is a large structure where pointers cross machine boundaries [4].
In the case of a Distributed Hash Table (DHT), the effectively resulting pointers
are controlled by a hash function [4]. A DHT with hashed values does not prove
to be a performant choice for supporting range queries, since only lookups on
single nodes are possible [4, 17]. The introduction of the skip graph allows for
nearest neighbour- and range-queries over ordered datasets [4, 17]. Skip graphs
are increasingly popular amongst researchers [50].

A skip graph can be viewed as a distributed extension of skip lists, and
therefore have a lot in common [17]. A skip list and a skip graph consist of
levels containing increasingly sparse doubly linked lists [17], as shown in figure
7.

Each node has a membership vector consisting of an infinite amount of bits
[17]. The bit at position o defines whether the node is participating in a doubly
linked list at level o or not [17]. In the case of skip lists, there is only one list on
each level, in the case of skip graphs, there are 2o such lists on each level [17].
Only nodes residing on level o qualify as members for a list on level o+ 1 [17].
In the case of a skip list, there is ultimatively a single node at the highest level
[17].

Aspnes et al. [4] try to maximize locality properties by grouping data ac-
cessed together on the same node. The main idea is to truncate the skip graph
such that there is only a certain amount of intermachine pointers as opposed to
Chord [4].

The skip tree from Alaei et al. [2] maximize locality properties by ordering
the nodes by a tree. Range queries are supported with more efficiency than
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alternatives with the equal amount of per-node state.

2.5 Overview of the redundancy research in Computer
Science

As mentioned already, Reed and Solomon [35] have introduced a mathematical
solution for noisy channels. This mathematically complex paper was explained
by Plank by creating a guideline [31]. As a result, the PAR specifications and
programs such as Parchive emerged. This insightful paper enlighted the method
of Reed and Solomon. A correction of the former paper, the paper by Plank and
Ding [32] refered to the advantage of RSEC in providing the freedom to choose
n closest blocks. By doing this, Plank and Ding identified the advantages that
are inherent in high availability regarding the dependence on locality. Geisel
[15] is helpful for the understanding of Reed-Solomon erasure coding, because
the mathematical basics are explained logically.

RSEC can also be used for hiding information. Xu and Bhalerao [52] dis-
tribute the pieces resulting from the coding procedure amongst cloud providers.
Similar ideas are found in the work of Abu-Libdeh et al. [1] and Chen et al.
[11]. The idea is that the secret original input is unknown to a single cloud
provider if less pieces are stored on a certain cloud provider than are needed for
successful reconstruction. The authors of [52] oversee that they also distribute
data pieces, which are not secret. If security is preferred, a solution such as the
related Shamir’s Secret Sharing Scheme (SSSS) can be used [41].

Sathiamoorthy et al. [38] reduce the high repair cost that is associated with
RSEC by introducing a method that supports locally repairable codes.
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3 Method

In this section, the analysis method is presented first, because it is important
to know that the redundancy method has to be profitable in relation to the un-
derlying method (section 3.1). As a matter of fact, the cost model is introduced
in its basic forms. The parameters of the basic formula of the cost model are
specified during the whole section 3.

The introduction of the two underlying methods (section 3.2) is needed out
of two reasons. Firstly, in order to know to what redundancy has to be applied
to. Secondly, in order to know against what the new redundancy method has
to be compared to. This allows to calculate the profitability. The description
starts with the Core services layer of the method of Tanin, Harwood, Samet et al.
[21, 49, 48, 47], and then continues with the lowest Connectivity layer containing
the Chord lookup protocol, because the upper layer informs the requirements
of the lower layer.

After is is explained to what exactly within the underlying methods redun-
dancy has been applied to, it has to be explained what is applied during the
application of redundancy, i.e. RSEC (section 3.3). Finally, redundancy is ef-
fectively applied technically to the underlying methods (section 3.4). This is
first done for the lowest layer, and then for the Core services layer as a part of
a bottom-up approach.

3.1 Analysis method: Introduction to the cost model

A database management system stores facts in form of records. In order to
process a read query successfully, certain records are needed. For the decision,
whether a record is to be used or not, a database management system would
have to go through the whole list of records if no use of any optimization is
made.

A fundamental optimization is achieved by a tree-like index. It becomes
possible to decide more quickly whether certain records are relevant to a query
or not. With the help of the tree, a read query can decide what categories of
records do not come into question at all, and that the remaining candidates are
possibly important records. There exist different index structures. For example,
it is possible to organize records along a line instead along a tree. This is not
further relevant for the moment.
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Figure 8: Some records in a database and two possible index approaches.

Assume that a certain read query needs a certain set of records, i.e. the
content of each record must be made known to the read query for a successful
completion of the read query. I call this set of records group. I enrich this
group with redundancy. By doing this, I do not increase the group by adding
new elements, but I replace existing records with a mix of existing fragments
of records and newly calculated checksums. I replace the original records by
distributing this mix evenly onto the original places of the participating records.
As a result, less modified records are needed during a read query.

Figure 9: Applying redundancy (dashed line) to existing records. Note the
similarity to figure 1.

In a distributed database management system, records are spread over nodes.
Nodes are computers or servers, which are interconnected by a network infras-
tructure. The completion of a read query is only possible if all records of a
group are found; but the records of such a group may be distributed over mul-
tiple nodes. For example, the read query fetching the needed records has to
contact three separate nodes. With my redundancy method, the read query
has to fetch less records within a group. This means that less nodes have to be
contacted within the context of distributed systems.

Records can change their values. Dependent on the type of query2 and the

2Queries include, but are not limited to, read queries and update queries. The formulation
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system used, the number of affected records varies. Either only one record is
changed, independently of the other records within a group, or multiple records
at once, or possibly all records at once.

Figure 10: How updates are handled by the original method and my redundancy
method: Updates in the original method may affect only one or all elements
within a group. Updated records are symbolized as jagged lines, and changed
values are in red.

My application of redundancy uses a mathematical method which has the
characteristic property that updates are affecting the checksums of the whole
group. Even if only one record gets updated, each participant of the group has
to update its redundancy information, too. This is also the case if more than
one record is changed in the original method or if all records are changed in the
original method.

I do not only apply redundancy to the record-storing nodes belonging to a
group. Sometimes, I increase the number of participating nodes by including
otherwise unaffected nodes. This is done in order to increase the benefit of the
current location of a requester. By doing this, it is achieved that a query may
reach records more quickly, because the required information is distributed over
more nodes. But this advantage of my extension comes at the cost of more
contacted nodes during updates in relation to the original method. If the mix
consisting of fragments of original data and checksums is distributed over 4 nodes
instead of originally 3 nodes, then 4 nodes instead of originally 3 nodes need to
be contacted during an update. This is always disadvantageous if two contacted
nodes are not enough for a read query in order to reach the full information case.
In other words: my extension for the benefit of less dependence on locality only
makes sense if the application of my extension results in less contacted nodes
during a read query compared to the unmodified original situation.

describing the optimal fragment allocation ideal conceived read queries and update queries as
applications. Compare page 2 containing the definition.
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Figure 11: Advantages and disadvantages of an extension of a dataset: Storing
information on more nodes than originally has advantages regarding locality
and disadvantages regarding updates. If a read query only needs 3 nodes out of
4 nodes, the overall application of redundancy makes no sense because not only
the same number of nodes are contacted during read queries, but additional
nodes have to be contacted during update queries. Consequently, a read query
must contact less nodes than a read query of the original method would.

It is possible to track the number of contacted nodes during a read query and
the number of contacted nodes during an update query, both for the original
method and for my redundancy method. The values for my redundancy method
differ from the values for original method. If full redundancy is applied, a
read query only has to contact one node within the group. If the amount of
redundancy is chosen to be smaller, a fraction of the share of nodes needs to be
contacted, or a large share of nodes needs to be contacted, depending on the
amount of redundancy. During an update query, all nodes within a group need
to be contacted. All nodes need to have the possibility to update their mix of
fragments of records and checksums.

The number of contacted nodes during a read query in the original method
is represented in the variable a. The number of contacted nodes during a read
query in the context of my redundancy method is represented in the variable
a′. Within the scope of an update query, the equivalents are b for the original
method and b′ for the redundancy method, respectively.

My redundancy method results in a profit during read queries, because less
nodes than originally are contacted. This is not true, if the amount of redun-
dancy is r = 0. If the update query of an original method contacts all nodes, then
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the usage of my redundancy method does not result in loss. But if an update
query of an original method only changes a single record, and subsequently only
contacts a single node out of the participating nodes within a group, then my
redundancy method is disadvantageous in comparison to the original method.
This is because my redundancy method contacts more nodes than are contacted
originally, becuase all nodes out of a group need to be contacted.

In order to answer the question whether an application of redundancy effec-
tively reduces the amount of contacted nodes in relation to the original method,
an analysis of the type of queries has to be done. If a group only experiences read
queries, the application of redundancy is worthwhile because each read query
has to contact less nodes than originally. If only update queries are made, the
redundancy method is not worthwhile if only a single record is changed in the
original method. Otherwise, an update query that contacts all nodes within a
group does not result in a disadvantage in relation to the original method. It is
conceivable that there is an original method that is capable of changing multiple
records simultaneously, without having to update all records necessarily. Such
a case is not treated in this thesis: Chord [44] only changes one record within
a group, and the method of Tanin, Harwood and Samet et al. [21, 49, 48, 47]
change all records within a group. As a consequence, the profit of my appli-
cation of redundancy only has to be determined in relation to origin methods
which only change one or all records at once within a group.

My redundancy method introduces the history h, which records the executed
query types over the group. The history h lists the 50 last executed query types:
read query (R) and update query (U). If the history h is filled completely because
50 elements are listed, the oldest entry is removed in order to make space for
the new element. I treat a group as a totally new group whenever a record is
added or removed from the existing group. As a consequence, the history h is
not affected by the insertion or deletion of records.

h0 = [R]
h1 = [R,R′]

h2 = [R,R′, R′′]
h3 = [R′, R′′, U ]

Figure 12: History h through the time: The contents of a history h, which
is limited to size 3, after three read queries (upper three entries) and after
a subsequent update query (lowest entry). Note how the oldest element is
automatically removed.

It is possible to determine, whether the application of redundancy has re-
sulted in a profit, a zero-sum situation or in a negative profit, that is a loss.
Illustrated on a example: assume a history of queries that led to h = [R,R,U ].
Assume a group consisting of three nodes and full redundancy. As a conse-
quence, each node stores all records of the group (r = 1). A read query in the
context of my redundancy method only needs to contact one out of the three
nodes within the group (a′ = 1). The original method needs to contact all three
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nodes in order to obtain all records (a = 3). Consequently, the profit of my
redundancy method compared to the original method is a − a′ = 2 during a
read query. Assume that the original method only contacts one node during an
update query, because only one record within the group is changed originally
(b = 1). Because of the properties of my redundancy method, it is needed to in-
form all participating nodes about the change (b′ = 3). As a matter of fact, the
profit during an update query is negative, specifically b−b′ = 2. Because history
shows that the group experienced two read queries and one update query, the
total profit is 2+2−2 = 2. In fact, for the history h = [R,R,U ], the application
of redundancy paid off. According to section 4.1, the profit over history h is
quantified as p(h). The formula

p(h) = |R| · (a− a′) + |U | · (b− b′)

only adds up the profits according to history h.
In effect, it is possible to establish whether an application of redundancy is

worthwhile for a given history h. It is possible to determine how many update
queries U in history h are tolerable, such that p(h) ≥ 0. This depends on the
amount of redundancy actually, because the amount of redundancy determines
the profit of the read queries R. By setting p(h) = 0, is is possible to derive
the exact ratio between update queries and read queries, with the result that
an application of redundancy does not result in a loss. With p(h) > 0, the
application of redundancy is worthwhile.

Figure 13: The maximal allowable share of updates for a given redundancy can
be determined by solving for p(h) = 0. The share of updates is smaller if there
is overall profit, or p(h) > 0 (assuming same r for all cases).

It is possible to find out where the border between being profitable and
not profitable lies, always dependent on the chosen redundancy. By assuming
the best case, that is full redundancy (r = 1), one can state for sure that
an application of redundancy is not worthwhile if the share of update queries
exceeds the allowable share of update queries. My redundancy method respects
the maximally allowable share of update queries and it is my recommendation to
abandon an application of redundancy during adverse conditions, i.e. if p(h) < 0
for r = 1.

As a matter of fact, full redundancy is a waste of storage space. Even though
storage space is not represented in the cost model, I jump at the chance given
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by the gap between the maximally allowable share of update queries and the
actual share of updates, because my contribution aims to reduce the dependence
on resources as much as possible.

During an update query, all nodes need to be contacted anyway. This is
why I seize the opportunity to adapt the amount of redundancy in relation
to the history h. On the one hand, in order to reduce the damage as much
as possible by setting full redundancy (r = 1), if the share of update queries
has crossed the maximally allowable share of updates. On the other hand, in
order to make economical use of storage space, which is achieved by adapting
the redundancy to the needs. This could be a reduction of the amount of
redundancy, if necessary.

So, the amount of redundancy is adapted during an update query. It would
be possible to adapt the amount of redundancy during a read query, but this
would result in the fact that redundancy has reduced itself ad absurdity: the
main idea of redundancy is exactly that the number of contacted nodes required
to reach the full information case is reduced. In the case of an adaption of the
amount of redundancy during a read query, there would be no reduction. As a
consequence, I abstain from an adaption of the amount of redundancy during
read queries. Consequently, the profit of a read query stays the same, until the
amount of redundancy is adapted during an update query.

The cost model is simplified to the effect that old read queries are evaluated
with a global redundancy value. It is possible to enhance the model, which
would allow a more accurate determination of the maximal allowable share of
update queries.

The profit of read queries is effectively dependent on the amount of redun-
dancy, and the definition of a new amount of redundancy is recursively depen-
dent on itself. A recursive definition requires the use of complex mathematics.
The benefit of a more accurate adaption is is out of proportion to what the
simplified model provides. In the simplified model, I use a default value if the
maximal allowable share of updates is not overstepped. This default amount of
redundancy is the ratio of read queries in the history h, and not a fixed value.
Otherwise, I employ full redundancy (r = 1), as already described.

My master thesis can determine the exact maximal allowable share of update
queries in the history h for the simplified case of full redundancy. By doing this,
I can guarantee a cap on expenses. The optimal amount of redundancy, which
is dependent itself on the amount of redundancy, is not employed, because I
make use of default values.

Not reaching the optimum, however, is not a serious shortcoming, because
the redundancy is adapted within the winning zone. A zone which differenti-
ates storage space utilization, which does not take part in the simplified cost
model. The master thesis can satisfactorily answer whether an application of
redundancy is worthwhile or not.

3.2 Original methods: Basis for the redundancy applica-
tion

I applied the application of redundancy to two layers within the method of
Tanin, Harwood, Samet et al. [21, 49, 48, 47]. In a first step I explain the two
layers, in a second step I explain how I apply redundancy to those two layers.
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3.2.1 The Core services layer

Tanin, Harwood, Samet et al. [21, 49, 48, 47] use the MX-CIF Quadtree, hence-
forth referred to as Quadtree. Regarding Quadtree, the discussion is within the
context of the method by by Tanin, Harwood, Samet et al. [21, 49, 48, 47]; and
without optimizations at first. Tanin, Harwood, Samet et al. [21, 49, 48, 47] call
a node within a Quadtree “control point”. Every control point has four chil-
dren. The first child A is responsible for the upper left quadrant of the square
for which the parent control point is responsible. The child B is responsible for
the upper right quadrant, the child C for the lower left quadrant, and the child
D for the lower right quadrant.

Figure 14: A MX-CIF Quadtree: The quadrants A, B, C and D on each square
and the corresponding MX-CIF Quadtree. The control point is the centroid of
a square.

Every two-dimensional spatial object has a minimum bounding rectangle
(MBR). In three dimensions, the equivalent is the minimum bounding box
(MBB). The three-dimensional tree dealing with the MBB is called Octree.
In the following the explanations for the two-dimensional plane are analogous
for the three-dimensional space. All operations on the Quadtree only use the
MBR. During the insertion of a spatial object in the Quadtree new children
are initialized if the MBR of the spatial object only covers one quadrant of an
uninitalized control point. The initialization of a child is tracked by the par-
ent by incrementing a counter, which itself is initialized to 0. The insertion is
continued until the MBR overlaps more than one quadrant. As a consequence,
each spatial object is stored at one control point.
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Figure 15: Some example objects in the Quadtree. The MBR of the spatial
object S is shown in grey.

Consider figure 15. The responsible control point for the spatial object S is
root, since S covers the quadrants A and C. The responsible control point for the
spatial object P is ABD, since P covers multiple quadrants rooted at ABD. Assume
that each control point is a node in a distributed system. Within the context of
the method of Tanin, Harwood, Samet et al. [21, 49, 48, 47], responsible nodes
store the whole spatial objects and its MBR in the metadata, whereby the MBR
can be recalculated from the spatial object at any time. The node responsible
for root therefore has to store S and its MBR, and the node responsible for ABD
has to store P and its MBR.

A lookup query running over the Quadtree knows the MBR of the wished
object. Consequently, the lookup query knows the responsible control point
where the spatial object has to be stored. If it is known that the spatial object
was inserted, and if it is possible to directly contact the node responsible for the
identified control point, then the lookup query can contact the responsible node
instantly. Otherwise, the Quadtree has to be traversed because the child may
be uninitialized. In this case, the Quadtree is traversed by following pointers to
children until the wished control point containing the geometry of the spatial
object is reached if possible. The traversal always begins at the globally known
entry point root.

The original method of Tanin, Harwood, Samet et al. [21, 49, 48, 47] does
not mention update queries. Update queries can be simulated by the sequence of
a deletion of a spatial object, followed by the insertion of a new, modified object.
As a matter of fact, it is possible to modify the original method by introducing
the possibility of an update query. The update query is very similar to a lookup
query. Instead of the download of the spatial object, the node issuing the update
query pushes the new spatial object, or only the difference, to the node which
is storing the spatial object.

3.2.2 The Connectivity layer

Tanin, Harwood, Samet et al. [21, 49, 48, 47] apply the hierarchical Quadtree
to a line, this is a Distributed Hash Table (DHT). Chord [44] is used as the
lookup protocol over the distributed hash table.

A Distributed Hash table is a number line with a limited number of possible
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identifiers or keys, the identifier space. The parameter t specifies the size of the
DHT. A DHT with t = 8 has space for 28 = 256 keys, the keys 0 to 28 − 1.
t = 8 Bits are sufficient for the declaration of a key position.

A DHT is subject to modular arithmetic. This means that all calculations
made over keys are subject to the modulo operation. As a matter of fact, no
operation made over keys can result outside the interval [0, 2t − 1]. This is why
the line can be represented as circle. Similar to a clock, if the end is overstepped
(rightmost part of the line), counting continues at the beginning (leftmost part
of the line).

Figure 16: The DHT of Chord.

In the context of the method of Tanin, Harwood, Samet et al, a DHT can
include both control points and nodes. Control points are included as logical
elements. The nodes of a P2P-network, i.e. computers, are active participants
in the DHT. Both the control points and the computers need to be mapped to
a key. This is done with a hash function. A Hash function has two relevant
properties: for one thing, the output of a hash function has always the same
size, irrespective of the size of the input. For another thing, a hash function
spreads the output evenly and with the same probability, independent of the
similarity of the input. This property is named avalanche effect and results in
the fact that a similar input leads to a completely different output with high
probability.

The control points get mapped to the DHT as follows (t = 160):
key=H(ABD)=164791f3ecd0bcf3387a67a7f1d43f2baf1fde19. The nodes are
also mapped on the DHT, i.e. they receive a key. The key is the hash of the IP
address of the node.

Figure 17: Chord Example: A DHT with three registered nodes κ, λ and µ and
seven logical elements, the control points ABD, root, BCA, CDA, BBD, CD and CAD.
Note that κ is responsible for the control point BCA.
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Every node is responsible for a range in the identifier space. The range
reaches from the key of the preceding node +1 to the own key [53]. Conse-
quently, it is clear what node is responsible for what control point. In figure
17, κ is responsible for ABD, root and BCA, and λ for CDA and BBD. Taking re-
sponsibility means that κ has to store all spatial objects that are connected
with control point ABD, for example. Furthermore, κ has to process all queries
pertaining to the quadrant in question. It is possible that a node is responsible
for multiple control points. This is to be expected if there are less nodes than
control points. This is most certainly the case for a central server or a smaller
cluster of computers. On the contrary, it is possible that there are so many
nodes, that some nodes are effectively not responsible for any control point.
This is imaginable for P2P systems, see section 2. As a stress test for my appli-
cation of redundancy, I assume the worst case throughout this thesis that any
node is maximally responsible for one control point.

Every node in a DHT has to maintain a pointer to the IP address of its prede-
cessor and a pointer to the IP address of its successor. By doing this, it becomes
possible to find the responsible node for a key, for example the key of the control
point ABD, which is H(ABD)=164791f3ecd0bcf3387a67a7f1d43f2baf1fde19.
For the moment, the optimization called finger table is ignored. A message
containing the IP address of the originator and target key H(ABD), in handed
over to the successor of each participating node, until the identifier of the cur-
rently processing node is larger than, or equal the key H(ABD). The currently
processing node (κ in figure 17) is the responsible node for the key H(ABD). This
responsible node (κ) contacts the originator of the node lookup.

Figure 18: Chord neighbours: Node B maintains a pointer to its preceding node
A and a pointer to its successor C. By interlinking neighbouring nodes, line
traversal becomes possible. Only nodes are shown, logical control points are
not shown.

If it is known that a certain spatial object was inserted, a lookup query can
now contact the responsible node directly with the help of Chord. Otherwise,
the lookup query has to traverse the Quadtree in the hope to find the control
point in question initialized, starting with the control point root.

The method of Tanin, Harwood, Samet et al. [21, 49, 48, 47] has applied
the Quadtree successfully to the DHT. As a matter of fact, the traversal in the
Quadtree corresponds to repeated node lookups in the DHT. Consequently, it
becomes possible to perform range queries with the help of the node lookup pro-
cedure in Chord, which constitutes the main idea of method of Tanin, Harwood,
Samet et al. [21, 49, 48, 47].

A range query is started by a user in the application layer, which is one out of
three layers in the method of Tanin, Harwood, Samet et al. [21, 49, 48, 47]. The
user draws a query rectangle. The user expects to discover all spatial objects
whose MBR intersect the query rectangle. The application layer calls the service
in the interface between the Application layer and the Core services layer. The
Core services layer then starts the range query.
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Figure 19: A range query: All spatial objects (black) that intersect the query
window (red) have to be returned.

The range query messsage containing the query rectangle and the IP address
of the requester is sent to the root control point. The root control point compares
the query rectangle to the MBRs of the spatial objects that the control point is
responsible for. Every intersecting spatial object is uploaded to the IP address
of the requester, this is the computer from which the range query originates.
Afterwards, the root node compares the MBR with its four quadrants. If the
search rectangle intersects a quadrant, and if the quadrant is initialized since
the counter is > 0, the root node relays the range query message to the node
which is responsible for the quadrant of the child control point. Each child
proceeds exactly as described for the root control point. That means that each
control point receiving a range query has to compare the query rectangle to the
MBRs of the spatial objects that the control point in question is responsible for.
Afterwards, each control point checks whether the query rectangle intersects an
initialized quadrant and relays the range query message in such a case.

It is possible that a control point stores spatial objects whose MBRs do not
intersect with the query rectangle. These spatial objects are not within the
range and are not sent.
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Figure 20: Query rectangle and its objects: A node which is responsible for a
certain control point, whose area is depicted in blue, only has to return spatial
objects that intersect the query rectangle, depicted in red. For this figure, the
node has to return spatial objects B and C. A is not within the range and is not
sent.

Whenever a parent control point has to contact one of its child control points,
the method of Tanin, Harwood, Samet et al. [21, 49, 48, 47] have to locate the
responsible node for the child control point in the DHT.

3.2.3 Optimizations in existing methods

As a matter of fact, a range query in the described system would be possible,
but this endeavor is inefficient without any optimization. Each time a respon-
sible node for a control point has to be looked up in unoptimized Chord, it is
statistically expected that the query needs to contact half of all participants (N2 )
due to the arithmetic mean (see figure 21). Additionally, the node responsible
for the root control point has an unfair share of the total load in the system,
because every range search has to start at the root. As a matter of fact, ap-
plying hierarchical trees in a distributed system constitutes a challenge to the
requirement that load sould be balanced. Additionally, the node responsible for
the root node may become a central point of failure, since no tree traversal may
be started without a root node [9].
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Figure 21: Chord lookup without optimization: Assume that all possible starts
and ends of searches are equally probable. As a consequence, all possible dis-
tances listed in the array {1, 2, 3, . . . , N} are equally possible. The sum of this
array divided by the size of the array results in N

2 .

Both Tanin, Harwood, Samet et al. [21, 49, 48, 47] and Chord each make use
of an optimization. The first optimization concerns the variant of the Quadtree
used by the method of Tanin, Harwood, Samet et al. [21, 49, 48, 47]. The
second optimization affects Chord.

Optimization done by Tanin, Harwood, Samet et al.

Tanin, Harwood, Samet et al. [21, 49, 48, 47] introduce the globally known
and immutable parameters fmin and fmax.

fmax defines the maximal height of the Quadtree. It becomes impossible to
store any spatial object at a level l deeper than fmax, even though a spatial
object only intersects one quadrant.

fmin defines the minimal allowable level of the whole Quadtree. Instead of a
root control point there are 4fmin control points. The equivalent for the Octree
would be 8fmin control points. Consequently, the Core services layer has to
calculate the starting control points for a given query rectangle at the start of
a range query. This is achieved by the method called Subdivide, as described
by Tanin, Harwood, Samet et al. [21, 49, 48, 47]. The nodes responsible for
the control points at level fmin proceed normally, as it was described. During
insertion, however, spatial objects that would be stored at a level l < fmin need
special consideration. In fact, such a spatial object is subdivided into parts.
The spatial object is no longer associated with its minimum enclosing Quadtree
quadrant [37]. Actually, the Subdivide method is called and the intersecting
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control points at level fmin are determined. This list of control points at level
fmin for a certain spatial object is called Gmin throughout this thesis. These
control points can then proceed normally, even though the MBR is not wholly
contained within the area for which the control point is responsible for.

Figure 22: The effects of the parameters fmin and fmax in the MX-CIF
Quadtree. No spatial object is stored on level l > fmax. Any object that
would be stored on level l < fmin has to be subdivided. The tree has now
multiple roots, i.e. AA, AB, AC, ...

As a consequence, a spatial object, that had to be subdivided, is effectively
stored on multiple control points. Applied to the telephone book illustration, the
spatial object is a complete telephone book, and the original method replicates
the telephone book to each participant.
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Figure 23: An example of a divided spatial object in the Quadtree:
The spatial object S to be inserted has to be subdivided to Gmin =
{AA, AB, AC, AD, CA, CB, CC, CD} (fmin = 2). Afterwards, it is processed in the
tree. The spatial object is finally replicated to the control points Geff =
{AC, AD, CA, CB, AAD, ABC, CCB, CDA}, since the parts can not fall down further than
level 2 (AC, AD, CA, CB) or further than level 3 (AAD, ABC, CCB, CDA). Geff is
marked in the Quadtree as red points. Each node stores the whole spatial
object and the MBR. Adapted from Tanin, Harwood and Samet [47].

Optimization done by Chord

Every node has to maintain a finger table with t entries, which is comparable
to a private telephone contact list. A so-called finger is a pointer to the IP
address of another node in the DHT which is responsible for a chosen key. A
finger is comparable to an entry in the private telephone contact list: the name
and address of the person is the key and the telephone number is the IP address.
The fingers to succeeding nodes are chosen with an exponentially increasing
distance, or more formally, the entry i contains the link to the successor node
responsible for position (ownPosition+2(i−1)) mod 2t [44]. As a consequence,
each node maintains a large number of pointers to succeeding IP addresses that
are near, and less and less pointers to succeeding nodes far away.

Figure 24: A finger table in Chord, the exponential distribution in dependence
on the distance and the visual representation of the pointers.

Any node can start the Chord node lookup. During a lookup of a responsible
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node for a given key, finger tables are used if possible. The node which initiates
the node lookup can relay the search coarsely into the target zone. The con-
tacted node can relay more accurately to the target zone, becuase the target key
is nearer to the contacted node than to the initiating node. The contacted node
maintains more pointers aroung the target zone than the initiating node since
the contact node maintains more pointers for nearer succeeding nodes. The
search message is relayed. After each relay, the target key is approached more
accurately. At some point, the responsible node for the target key is found. The
paper describing the Chord node lookup protocol [44] shows that the effort for a
node lookup is log(N); N is the number of participants in the DHT. Assuming
1’000’000 participants, the number of contacted nodes is reduced from 500’000
on average to approximately 20. With the help of my piggybacking method,
this value can be underbidded.

Figure 25: Search using finger tables in Chord: Search (blue) arriving at the
target C, that is responsible for K. The arcs to the right of the nodes take part
in the finger table.

3.2.4 Optimization through applying redundancy

This master thesis identifies groups of commonly accessed elements and enriches
the group with redundancy.

Optimizing the method of Tanin, Harwood, Samet et al.

The method of Tanin, Harwood, Samet et al. [21, 49, 48, 47] replicates the
spatial object to every responsible node for a control point listed in Geff . I
identify these nodes as a group and replace the spatial object with a mix of
fragments of the serialized spatial object and checksums. Thereby, it becomes
possible to contact only a subset of nodes that are responsible for a control
point listed in Geff . The fragments and checksums from the subset of nodes are
sufficient now for the successful reconstruction of the spatial object. Using the
telephone book illustration: I enrich the telephone book pages with redundancy
and distribute the pages evenly amongst the participants.

It is possible to object, that because the original method of Tanin, Harwood,
Samet et al. [21, 49, 48, 47] copies the spatial object to every node which is
responsible for a control point, only one single node is enough for the complete
download of the spatial object. Because this is also the case with my redundancy
method for r = 1, one could think that nothing is gained.
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Setting r = 1 is actually a waste of storage space. My redundancy method
additionally provides the possibility to use a lower amount of redundancy, which
is not possible in the original method. Consequently, my first strength of my
redundancy method is that less storage space is wasted.

Parallelism is an advantage for the method of Tanin, Harwood and Samet
et al. [21, 49, 48, 47], because spatial objects from different search instances
are returned from multiple nodes. But there is the disadvantage that the same
spatial object may be returned multiple times. In a variant used in the method of
Tanin, Harwood and Samet [47], this disadvantage is alleviated by only storing
the spatial object at the “owner node”, and all nodes in Geff point to the owner
node. For my method, however, every additional source for a spatial object is
actually an advantage.

With my redundancy method, the requester receives fragments of responsible
nodes. Consequently, all parallely downloaded informations are usable and new
knowledge. Additionally, it becomes possible to stop downloading, as soon as
enough fragments (telephone book pages) are gathered. Therefore, this is the
second strength of my redundancy method: it becomes possible to download
from multiple sources, and a complete download is not needed. This reduces
the overall download time and prevents network congestion. Compared to the
telephone book illustration: Because less complete telephone books have to be
sent around, since only pages are available, the postal office has less workload.

The third strength: with the help of my redundancy method, the fastest
nodes can be used. It seems evident that speed of light determines that the
fastest nodes are the nearest ones. But if there are complex reasons why the
most local nodes are not the fastest to respond, those reasons are not relevant
to my redundancy method, because my redundancy method always profits from
the optimum. As it happens, only the most local nodes on a cost surface are
needed, and the reasons do not have to be quantified, because it is affordable to
be blind to those reasons, even though it can be assumed that the nodes listed
in Geff residing at the deepest level in the Quadtree are likely the last ones to
respond, because every traversal of a level begins with a Chord node lookup.
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Figure 26: Enriching a spatial object in the Quadtree: Instead of replicat-
ing the spatial object, the serialization of the spatial object is divided into
data fragments {d0, d1, . . . } and checksums are calculated ({c0, c1, . . . }). Each
control point receives a data “device” and a checksum “device”. The nodes
{AC, AD, CA, CB} at level 2 are most likely the fastest to respond, since these
nodes do not suffer from the additional delay of a further Chord node lookup,
as compared to the nodes at level 3. Four downloads from four different nodes
are enough for the successful reconstruction of the original spatial object. Any
other combination is also tolerable.

The number of contacted nodes during an update is the same for both the
original method and my redundancy method (b = b′ = |Geff |). For both cases,
the changes must be made on all participating nodes. During read queries and
r = 1, I contact as much nodes as the original method (a = a′ = 1), this is
the fastest node that responds. If a lower amount of redundancy is used during
read queries, more than one node need to download their mix of fragments and
checksums to the issuing node. Thereby, I support a lower redundancy than
r = 1, which is not supported by the original method.

Optimizing the Chord node lookup

A search in Chord first makes big steps, and the steps become smaller as the
search in nearing the target key.
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Figure 27: How a search compares to finger tables. The visited nodes during
a search are concentrated near the target key. The pointers of each node are
concentrated near the node in question.

Because the most steps are made just in front of the target key, I have
introduced a moving window just in front of the target. See figure 33 and figure
28 for an example of a moving window. This moving window is rooted at the
target node and, as a consequence, contains the target node itself. The moving
window contains the IP addresses of all participants. Assume full redundancy
(r = 1). As soon as the search encounters a moving window of which the target
is a participant of, it becomes possible to jump directly to the target node,
because all IP addresses within the moving window become instantly known
(a′ = 1). If the amount of redundancy is smaller, more than one step within the
area of the moving window is needed (z steps). But the total amount of steps
z is still lower than without application of redundancy. In this case, a′ = z.

Figure 28: Introducing a moving window: This particular moving window is
rooted at node tC . Similar to finger tables, each node has a moving window
rooted at the node in question.

Because the contacts of the node lookups are distributed randomly in front of
the target, it is impossible to determine a certain set of contacted elements. The
size of the moving window is therefore larger than the the amount of normally
contacted nodes during an average search. If the size of a moving window is s,
a search normally contacts a = log s elements. This means that I made a scope
expansion (log s < s). I enlarged the group of commonly accessed elements.
This and the fact that only a single element in the group is changed during an
update of an IP address results in the fact that an update is cheaper in the
original method (b = 1) in comparison to my redundancy method (b′ = s). In
the original method, only the node changing its IP address is affected3. With my

3Actually, its predecessor and successor, too. But it is assumed that this is a problem of
the Chord internals and does not influence the cost model.
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piggybacking method, all nodes within the moving window need to be contacted.
Again, if a node departs or a new node is introduced, completely new groups
or moving windows are defined. Inserts or deletions of elements within a group
are not updates.

Solving for p(h) = 0 results in the maximal allowable share of updates is
dlog(s)e−z+1

|h| , or more exactly, due to the parameter αChord = 0.5 derived by the

authors of Chord [44], dαChordlog(s)e−z+1
|h| .

Summarizing, an application of redundancy is only worthwhile if the maxi-
mally allowable share of updates within a history h is not overstepped.

If the maximal allowable share of updates is not overstepped, this thesis can
guarantee that redundancy is of help regarding the number of contacted nodes.
Consequently, it is possible to reduce the dependence of locality. This is valid
for both the normal spatial space and the virtual space.

3.3 Reed-Solomon erasure coding

Reed-Solomon erasure coding (RSEC) has important properties that make an
application to files or data structures worthwhile. Mainly, RSEC introduces
the freedom to choose randomly a minimal subset out of a set. Altering the
dependence on locality is only possible thanks to this favourable property of
erasure coding, especially RSEC. It is important to explain the fundamentals in
detail since there are interesting properties and limits inherent in RSEC. Any
method applying RSEC has to cope with these properties.

Let there be blocks of the size k bytes or k ·8 bits. A byte has a value ranging
from 0 to 255 inclusive [52]. There are n data devices given, each of size k [31].
Furthermore, there are m checksum devices, also each of blocksize k [31]. Reed-
Solomon coding calculates the value of the checksum devices in a way that if m of
the data devices or checksum devices may be erased, the contents from the failed
devices can be reconstructed from the non-failed devices [31]. The calculations
are made over words of size w bits [31]. Unnecessary padding of words, that
means extension to the size of words, can be avoided by choosing w as multiples
of 8, as word boundaries subsequently fall directly on byte boundaries [31]. Each
device is split into a sequence of words. For simplicity, assume that each device
holds exactly one word. Actually, for I input data bytes and J output checksum
bytes, the blocksize or the size of a device k can be chosen arbitrarily, as long
as following two conditions hold [31]:⌈

I

k

⌉
+

⌈
I

k

⌉
< 2w

n+m < 2w

If
⌈
I
k

⌉
6= I

k or
⌈
J
k

⌉
6= J

k , the input sequence of bytes does not align with
the block size, and the space left needs to be filled with non-important padding
bits, as depicted in figure 29. This is achieved by converting the binary input
to base 2, and adding a binary 1 to the end of the payload, followed by zeroes
until the block is filled up. In the special case of a perfect fit, it seems that no
padding is required. But the recipient can not distinguish between data bits and
padding bits in this case. It is impossible to interpret the end correctly. The
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Figure 29: Padding in order to align with block borders.

producer has to append a whole block starting with the bit 1 and containing
nothing else than zeroes after that starting bit. This worst case of having to add
a whole block is impossible to circumvent since all available information space is
used up for the binary object. Adding at least one bit reserved for information
about padding at the end of the binary object is the only way to match block
sizes without further external information. I decided that padding is normally
required even in the case of

⌈
I
k

⌉
= I

k or
⌈
J
k

⌉
= J

k , since external information
would be needed at higher levels otherwise. Choosing k and w wisely reduces
the impact of the worst case of a whole padding block, and such a padding block
at the end of the last data device may be the only overhead. Otherwise, every
data device would additionally have to transport at least one byte containing
padding instructions.

3.3.1 Basic idea

Suppose following system of equations:

4V − 5W = 8 (1)

−2V + 6W = 10 (2)

There are two unknown variables, but with two equations, the system of
equations is solvable. The solution to this system is V = 7, W = 4 and is
caluclated with Gaussian Elimination. It is possible to add another equation to
the system of equations:

3V + 5W = 41 (3)

Since 3 · 7 + 5 · 4 = 41, this equation is a valid equation taking part in the
presented solvable system of equations. Equation 3 over-defines the system of
equations. Addition of an infinite number of distinct equations to this system
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Figure 30: As long as W = f(V = 7) = 4 holds, any two lines are sufficient to
derive the intersection point (V,W ) = (7, 4). Equation 3 (red) is optional unless
one of the other lines is unknown. If V and W are already known, calculating
the intersection is superfluous.

of equations is possible. As long as the added equations hold for V = 7 and
W = 4, the system of equations remains uniquely solvable. Calculation of V and
W is always possible as long as at least any two equations out of the solvable
system of equations are known, as shown in figure 30.

The idea is to treat the two variables V and W as important words of
data devices and specifying m more equations than needed. The coefficients of
the two variables are generated deterministically depending on the number of
input variables n and the number of equations n+m (the information dispersal
matrix). The right part of the equations represents the calculated checksum
word.

Since the coefficients of V and W are generated deterministically, the po-
sition of the equation needs to be known in order to derive the coefficients
successfully for a given position. At the core, Reed-Solomon Coding calculates
checksum words by multiplying the coefficients with the data words, and sum-
ming up these products. During reconstruction of the original data words, such
systems of equations are solved. This is done by Gaussian elimination on a
square matrix (matrix inversion), as outlined in section 3.3.4.

3.3.2 Galois field algebra

The arithmetic over the words is done over finite fields [31]. A field GF (2w) is a
closed set of 2w elements or symbols on which addition, substraction, multipli-
cation and division is possible without leaving the set [31, 15]. The elements are
actually binary coefficients of binary polynomials [31]. The elements are enu-
merated with an irreducible generator polynomial [15]. A polynomial of degree
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Generated element Power representation Polynomial element Binary element Decimal element
0 0 0 0000 0
1 1 1 0001 1
α1 X1 x 0010 2
α2 X2 x2 0100 4
α3 X3 x3 1000 8
α4 X4 x+ 1 0011 3
α5 X5 x2 + x 0110 6
α6 X6 x3 + x2 1100 12
α7 X7 x3 + x+ 1 1011 11
α8 X8 x2 + 1 0101 5
α9 X9 x3 + x 1010 10
α10 X10 x2 + x+ 1 0111 7
α11 X11 x3 + x2 + x 1110 14
α12 X12 x3 + x2 + x+ 1 1111 15
α13 X13 x3 + x2 + 1 1101 13
α14 X14 x3 + 1 1001 9
α15 X15 = X0 = 1 1 0001 1

Table 4: Enumeration of the elements of GF(24). Irreducible polynomial: x4 +
x+ 1 [31, 15].

w can not be factored and is irreducible if it divides x2
w−1 + 1, but not xH + 1

for any 0 < H < 2w − 1 [15]. Such a polynomial is comparable to a prime
number which is also not divisible by anything smaller than itself; not counting
1 since H > 0. For w = 4, such a polynomial is x4 + x + 1, for w = 16 it is
x16+x12+x3+x+1 [31, 15]. Each operation is calculated modulo the generator
polynomial if the result has a degree ≥ w [31]. Enumeration of the field as in
table 4 is therefore achieved by multiplying the previous element with x and
calculating the result modulo the generator polynomial, with the polynomial
elements 0, 1 and x as the first elements [31].

The addition of the two polynomials x3 +x+ 1 (1011) and x2 +x+ 1 (0111)
modulo x4 + x + 1 results in x3 + x2 (1100). The substraction of those two
elements has the same result since we are calculating with binary coefficients.
Addition is actually the same as substraction. Addition can be effectively made
by calculating the bitwise exclusive-or on the binary elements [31, 52].

Multiplication or division of two polynomials is analogous if the method
“polynomial multiplication or division” by Geisel [15] is applied. There are
also other methods. For example, using the “exponent mod n multiplication
method” for w = 4:

α5α14 = α19 = α19 mod 24−1 = α4

Division is analogous by multiplying with inverse symbols:

α5/α14 = α5α−14 = α−9 = α−9 mod 24−1 = α6
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i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
gflog[i] - 0 1 4 2 8 5 10 3 14 9 7 6 13 11 12
gfilog[i] 1 2 4 8 3 6 12 11 5 10 7 14 15 13 9 -

Table 5: Mapping the binary element to the logarithm (gflog) and the power
Q to the binary element (gflog) in the Galois field for w = 4 [31]. The lower
row is actually the enumeration of the decimal elements, and the middle row is
derived by taking the lower row and swapping the index with the value.

Otherwise, a method is to keep dividing by the unity until a symbol within
the finite field is obtained, defined by Geisel as “multiply or divide by unity
method” [15]. Keep in mind that α24−1 = α−2

4−1 = α0 = 1 [15].

α5/α14 = α5α−14 = α−9 = α−9 mod 24−1 = α−9α24−1 = α6

By precomputing the mapping between the binary element and the power
Q (9 in the case of α9) in both directions, multiplication or division becomes
a matter of lookups in a multiplication table [35]. All what is left to do is the
addition or substraction of the powers. Symbol α11 has the power 11, which
is the logarithm to its binary element 11102 = 1410. Conversely, the binary
element is the inverse logarithm to the power Q. Within the context of the
paper of Plank [31], these tables of length 2w − 1 are called gflog if the index
is the decimal element, or gfilog if the index is the power Q (table 5).

3.3.3 Calculating and maintaining checksum words

The element ai,j at position i, j of a Vandermonde matrix is defined to have
the value ij [32, 28]:

00 01 02 · · · 0n−1

10 11 12 · · · 1n−1

20 21 22 · · · 2n−1

...
...

...
. . .

...
(n+m− 1)0 (n+m− 1)1 (n+m− 1)2 . . . (n+m− 1)n−1


The matrix has a maximum number of rows since the arithmetic is over a

closed field, motivated by operation over words of fixed size [28, 31]. Therefore,
n and m must adhere to n + m < 2w. The closed field is needed since Gaus-
sian elimination described in section 3.3.4 of this master thesis is not solvable
otherwise [31].

So, for n = 3 and m = 3 over GF(24), the Vandermonde matrix of dimension
(n+m)× n = (3 + 3)× 3 = 6× 3 is [32]:

A =


00 01 02

10 11 12

20 21 22

30 31 32

40 41 42

50 51 52

 =


1 0 0
1 1 1
1 2 4
1 3 5
1 4 3
1 5 2
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The element at row 3, column 2 is actually the result of the multiplication of
the decimal element 3 with the decimal element 3. With the help of gflog, we
find that the power representation is X4 (gflog[3]=4). Using the “exponent
mod n multiplication method” by Geisel [15] we find α4α4 = α4+4 = α8. With
the help of gfilog, we find that the decimal representation of the result is 5
(gfilog[8]=5).

The information dispersal matrix B is derived from the Vandermonde matrix
A by a finite sequence of elementary matrix transformations [32, 52]. The
element at the i-th row and j-th column is denoted by bi,j . The n × n matrix
in the first n words of B has to be the identity matrix, and any submatrix
derived from B by deleting m rows has to be invertible [32]. This is achieved by
swapping columns and replacing values on the diagonal of the identity matrix
by its multiplicative inverse, since bi,j · b−1i,j = 1, affecting the whole column that
the element is part of. Afterwards, the columns that do not contain a 0 on the
height of the row of the replaced element, get substracted by itself multiplied
by bi,j . See Plank [32] for the formal description of the algorithm. The deletion
of maximally m rows from A does not change the property that A′ remains
invertible [32]. Since elementary matrix operations do not change the rank of a
matrix, the matrix B remains invertible, too [32].

B =


1 0 0
0 1 0
0 0 1
1 1 1
15 8 6
14 9 6

 =



1 · · · 0
...

. . .
...

0 · · · 1
bn,0 bn,1 bn,n−1
bn+1,0 bn+1,1 bn+1,n−1

bn+m−1,0 bn+m−1,1 bn+m−1,n−1


The calculation of the vector C of checksum words out of the vector of data

words D = [d0, d1, . . . , dn−1] is now done by following formula [52]:

B ·D =



d0
...

dn−1
−−
c0
...

cm−1


=

 D
−−
C

 = E (4)

With reference to section 3.3.1 of this master thesis:

c0 = bn,0 · d0 + bn,1 · d1 + . . .+ bn,n−1 · dn−1

c1 = bn+1,0 · d0 + bn+1,1 · d1 + . . .+ bn+1,n−1 · dn−1
. . .

cm−1 = bn+m−1,0 · d0 + bn+m−1,1 · d1 + . . .+ bn+m−1,n−1 · dn−1
Actual numbers, ⊕ is the exclusive-or operation:

D =

 3
13
9
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c0 = (1 · 3)⊕ (1 · 13)⊕ (1 · 9) = 3⊕ 13⊕ 9 = 7

c1 = (15 · 3)⊕ (8 · 13)⊕ (6 · 9) = 2⊕ 2⊕ 3 = 3

c2 = (14 · 3)⊕ (9 · 13)⊕ (6 · 9) = 1⊕ 15⊕ 3 = 13

All words within the same device are multiplied by the same element in the
matrix B, allowing I � n+m.

Each word in the checksum device is therefore dependent on all data words.
Suppose that one data word changes its value. The difference between the former
data word di and the new data word d′′i is exactly the same as the difference
between the former checksum word ci and the new checksum word c′′i [31, 28].
Therefore:

c′′i = ci + bi,j · (d′′j − dj)

Consider the case where data devices are distributed amongst computers.
An update in a data device requires each node holding a checksum device to
update its checksum device. All what is needed is the data word containing the
change, not all input words, since the checksum word remains dependent on all
data words.

Appending or deleting the last data device is actually the same as an update
in relation to an implicit empty data device [28]. In this case, all nodes holding
checksum devices need to follow the described update procedure, but all nodes,
even possibly unaffected nodes, that hold devices, need to update their value of
n and m, too.

For the telephone book example, as it is listed in table 3 on page 6, the
following is the procedure for calculating the checksum words: First, a matrix
providing space for the whole input and output is selected. Then, the data de-
vices are identified as variables (example: 6 variables) and additional equations
are added (example: 18 equations). Finally, the information dispersal matrix is
derived from the original matrix and the data devices are multiplied with the
coefficients of the information dispersal matrix.

More concretely: The number of data devices and data words is 6 ({d0, d1, d2, d3, d4, d5} =
{43, 33, 51, 90, 65, 34}) and the number of checksum devices is 18 ({c0, c1, . . . } =
{15, 90, . . . }). The data words are treated as variables and are input variables
for the 18 additional equations, which are represented as additional rows in the
information dispersal matrix B. The Vandermonde matrix A and the informa-
tion dispersal matrix B therefore have the dimension 24 × 6. The input words
and output words therefore have the necessary space in the matrix. The result-
ing vectors D and C are the result of the multiplication as it is performed in
formula 4.

3.3.4 Recovering from failures

Suppose that qd data devices and qc checksum devices were erased. qd+ qc ≤ m
must hold. Since we assume that each device only contains a single word, this is
equivalent to qd missing words in D and qc missing words in C. Otherwise, there
are continuous sequences of qd · 8kw words missing in D and continuous sequences

of qc · 8kw words missing in C. The erased elements are therefore removed from
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E =

 D
−−
C

 (formula from [52]), resulting in:

E′ =

 D′

−−
C ′

 =



d′0
...

d′qd−qc−1
−−−
c′0
...

c′qd−qc−1


=

 e′0
...

e′n−qd+m−qc−1



with n − qd + m − qc elements. Since the position of the erased elements are
known, it is possible to delete the corresponding rows in B and to choose any
remaining n rows, resulting in a n × n matrix B′ [31]. Reconstruction is now
done by solving for D in

B′D = E′ (5)

Since A is a Vandermonde matrix, any row is linearly independent to any
other row [31, 35]. B′, derived from A through elementary matrix operations
that do not change the rank of a matrix, is non-singular and invertible [31,
52], since the determinant of any square submatrix consisting of elements uj ∈
GF (2w), j = 0, . . . ,min(2w − 1, |A|) is never 0: detA =

∏
i<j(uj − ui) 6= 0 and

detA =
∏
i<j(u1 + uj) 6= 0 [28, 35]. The calculation of the inverse F = B′−1

can be done from B′ using Gaussian elimination [31, 52]. F consists of elements
fi,j , where 0 ≤ i ≤ n− 1 and 0 ≤ j ≤ n− 1 [52]. Afterwards, the data words -
the other e′x are useless as no new information is gathered - get restored [52]:

D = B′−1E′ = F ·

 D′

−−
C ′

 =

 f0,0 · · · f0,n−1
...

. . .
...

fn−1,0 · · · fn−1,n−1

 ·
 e′0

...
e′n−p+m−q−1


dn−1 = fn−1,0 · e′0 + fn−1,1 · e′1 + · · ·+ fn−1,n−1 · e′n−1

Assume that, in the scope of the running example of n = m = 3, D and C, that
d1, d2 and c0 were lost. The recovery calculation is only needed for d1 and d2
[31]:

B′ =

 1 0 0
15 8 6
14 9 6

E′ =

 3
3
13


F = B′−1 =

 1 0 0
1 1 1
6 10 13


d1 = f1,0 ·e′0+f1,1 ·e′1+· · ·+f1,n−1 ·e′n−1 = (1·3)⊕(1·3)⊕(1·13) = 3⊕3⊕13 = 13

d2 = f2,0·e′0+f2,1·e′1+· · ·+f2,n−1·e′n−1 = (6·3)⊕(10·3)⊕(13·13) = 10⊕13⊕14 = 9
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Gathered Decoded Notes

{3, 141, 5, 92, 107, 230, 90} {3, 141, 5, 92} Perfect information case

{3, 141, ?, 92, 107, 230, 90} {3, 141, 5, 92} One erasure

{3, ?, ?, 92, 107, ?, 90} {3, 141, 5, 92} Three erasures (max.)

{3, ?, ?, ?, 107, ?, 90} - Too many erasures

Table 6: Recovery cases for n = 4, m = 3, {d0, d1, d2, d3} = {3, 141, 5, 92}.

If needed, c0 can then be reconstructed according to section 3.3.3 of this
master thesis:

c0 = bn,0 · d0 + bn,1 · d1 + . . .+ bn,n−1 · dn−1

c0 = (1 · 3)⊕ (1 · 13)⊕ (1 · 9) = 3⊕ 13⊕ 9 = 7

For the telephone book example, as it is listed in table 3 on page 6, the
following is the procedure for restoring the original data devices: As soon as
two telephone book pages are gathered, there are enough devices available for
the reconstruction since eight words are known now. First, the information
dispersal matrix B is calculated in the same way as it was for a calculation of
checksum words. Then, rows are deleted from B, resulting in B′. These rows
are corresponding to the missing words. Then, B′ is inverted using Gaussian
elimination, and F is obtained. Finally, F is multiplied with the vector of
gathered words and the vector of original data words is obtained. Because we
assume that one device holds exactly one word, the original devices are hereby
restored.

These two pages may be page 1 containing the devices {d0, d1, c0, c1} =
{43, 33, 15, 47} and page 4 containing the devices {c6, c7, c8, c9} = {55, ec, ec, bf}.

3.3.5 Properties

Since the maximal number of devices are n+m < 2w, it is impossible to choose
100% redundancy (n = m), if n > 2w

2 . Choosing a larger w results in larger
words, each of size 2w bits. Recovery of all original data devices is only possible
if at least n devices are gathered, whether these are data devices or checksum
devices. Every device is dependent on every data device. Therefore, every device
contributes to the recovery. See table 6.

n symbols are always needed, even if all participants share a common dictio-
nary. Applying a dictionary only results in calculating the exclusive or (⊕) of
the elements of the dictionary and all results. Even occupying some data words
with a dictionary word has no use since the number of devices that need to be
gathered is exactly the number of unknown data devices.

A node can only make use of a device if the parameters n, m and the position
of the device is known, 0 being the first position. This is seen in action in figure
35 of this master thesis. n and m are assumed to be known to the node. But
each device is labeled with the required position which is offset by the position
of the node in the moving window. Whether the device is a data device or a
checksum device is instantly clear, since no checksum device has a position < n.
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Data devices Calculated data and checksum devices

{3, 141, 5, 92} {3, 141, 5, 92, 77, 24, 71, 55, 192, 84, 130, 244, 106, 122}
{3, 141, 5, 93} {3, 141, 5, 93, 149, 218, 216, 88, 7, 10, 221, 133, 247, 187}
{3, 141, 4, 92} {3, 141, 4, 92, 12, 38, 157, 74, 160, 106, 74, 182, 179, 174}
{141, 3, 5, 92} {141, 3, 5, 92, 138, 219, 80, 154, 202, 121, 72, 99, 7, 211}

Table 7: Example of the effects of changes in the input devices (n = 4, m = 10,
k = 1, w = 8). Observe how the checksum devices change completely.

k is instantly known as soon as one device has been obtained. k is simply the
number of bytes of the device.

An update to a data device affects the node holding the data device. Fur-
thermore, all nodes holding checksum devices are affected and need to update
their checksum device as described in section 3.3.3. The effect is shown in table
7. While this is efficient in terms of bandwidth, the analysis is not influenced
since the number of nodes that have to be contacted stays the same.

Altering the redundancy allows to control the proportion of nodes that have
to be contacted to the total number of nodes for successful recovery. Very low
redundancy requires the agent gathering devices to contact nearly all nodes.
Very high redundancy results in a very low number of nodes that have to be
contacted.

Since there is the maximum of n+m devices, problems occur for too small
blocksizes k if the dataset changes. There is the tradeoff between w, k and
n+m. A big w results in big words, which may enlarge the devices too much if
no addition is planned. But a big w allows the addition of a lot of devices without
contacting the rest, especially at a later time. See section 3.3.3. Similarly, a
big k allows for the reduction of devices, but each new device may allocate too
much wasted space. For example, adding one byte may result in a new data
device of one mebibyte. Allowing the possibility of an exorbitant high number
of checksum devices results in larger data words.

Regarding the limit of n+m, there are implementations that break up the
message into chunks and calculate different RSEC-encoded sets of devices. With
such a setting, it is not possible to gather any n devices anymore as the data
words do not contribute to all checksum devices anymore. No use of chunking
is made throughout this thesis.

If there is external information available, it is possible to extract information
without having acquired n devices, called brute-forcing. This is achieved by
testing through all possible values of an unknown data device, observing the
calculated values for other unknown data devices and checking the plausibility
with the help of external information. Again, no such use of an extension is
made throughout this thesis.

3.4 Applying redundancy

Up to now, it has become more ascertainable thanks to the previous parts, how
the main idea of this master thesis can utilize locality as locational advantage.
As a matter of fact, the idea of high availability aiming for a reduction of
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the dependence on locality is supported by the both the direct application of
redundancy to data elements and by the application of redundancy to data
structures. A location is no longer the contrary to EVERYWHERE, but a location
gains a locational advantage.

Resulting from the preceding explanations, figure 1 and 2 dealing with the
application of redundancy can be specified as follows:

Figure 31: The method of this thesis has the ability to adapt to underlying
structures in order to integrate seamlessly. Bringing freedom to choose randomly
from a set, thereby lowering the need to discover all elements that are accessed
together normally. Supporting random accesses even if there is less than full
redundancy. Technically, the method of this thesis identifies the data elements
and replaces the data elements with structural elements that contain a mixture
of original data and checksum data.
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Figure 32: As long it is possible to encounter already gathered elements or copies
of already gathered elements, there is no freedom to choose a random sequence
of structural elements. No distribution of cached elements can guarantee truly
random accesses, even if adaption to underlying structures is performed.

In the following sections, redundancy is applied to the DHT in the Con-
nectivity layer (section 3.4.2) and to the Quadtree in the Core services layer
(section 3.4.3). In the preceding section 3.4.1, the redundancy, as it is applied
afterwards, is formulated and written as a formula. The formula plays a key
role in the cost model, which is applied after the application of the redundancy.

3.4.1 Adapting the redundancy

This section describes how the redundancy is being adapted to the history h
consisting of the last operations over the set of devices. There are two classes
of operations: The first class consists of read queries that make use of the set
of devices. The second class consists of updating queries.

h is the array containing the last |h| operations on the set. The only two
possible operations are R and U . |h| is limited to maximally 50 throughout this
thesis. h is initally empty and gets filled each time an operation is made by
applying add(op ∈ {R,U},h). For example, after four reads of the set and one
update, h = [R,R,R,R,U ]. The oldest value gets deleted as soon as the array
is full:

h = [R,R,R,R,U ], |h| = 5

h = add(R, hold) = [R,R,R,R,U,R], |h| = 6

. . . 44 operations . . .

h = [R,R,R,R,U,R, . . . , R,R, U ], |h| = 50

h = add(R, hold) = [R,R,R,U,R, . . . , R,R,U,R], |h| = 50
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0% redundancy is available if no RSEC is performed. For I input data bytes
there are J = 0 checksum bytes available. 100% redundancy results in J = I+ε
checksum bytes, ε being the number of padding bytes. 200% redundancy results
in J = 2(I + ε) checksum bytes. In 2-way redundancy, there are m = 2n
checksum devices. Generally, for v-way redundancy, there are J = v · (I + ε)
checksum bytes available. Full redundancy is achieved if every participating
node holds 1 distinct data device and n− 1 distinct checksum devices, thereby
each participating node becomes capable of restoring the I input bytes, or n data
devices. Full redundancy is therefore p−1-way redundancy, p being the number
of participants. The equation m = (p − 1) · n holds for full redundancy. Full
redundancy has the same effect as copying I input data bytes to all participants.

Each time an update to the set is made, the opportunity to adjust the
redundancy is taken. Redundancy r is defined as follows:

r =

{
1 if updateCost ≤ |R| or readProfit ≤ |U |
|R|
|h| otherwise

(6)

|R| is the number of elements R in h, analogous for |U |. updateCost and
readProfit depend on the piggybacking method and are determined with the
cost model introduced in section 4.14. During a read operation, the node giv-
ing out the checksum device increments a read counter. During an update, a
deterministically elected node participating in the set5 finds and contacts all
participating nodes. The number of read queries is gathered from all nodes,
which reset their counter afterwards. Then, the elected node determines the
redundancy r with the help of equation 6. If current k and r do not result in
n + m < 2w anymore, then the elected node has to determine a suitable and
padding-reducing blocksize k. k can be held fixed if the piggybacking methods
requires it. Afterwards, the elected node calculates checksum device after check-
sum device and sends the checksum devices to the appropriate nodes. This is
actually the Fan-in algorithm [31]. Of course, if the participant can not derive
the data device itself, then the data devices are distributed, too.

If n+m < 2w still holds, only the changed data words need to be communi-
cated to the affected nodes holding data devices and need to be communicated
to all nodes holding checksum devices. Blocksize k can not be changed in this
case, since the node responsibility of checksum words shift in a cascading fash-
ion. But, additions of blocks or deletions of blocks are still possible, as it is
explained at the end of section 3.3.3 of this master thesis.

3.4.2 Altering Chord in the Connectivity layer

This section gives an idea how RSEC-encoded sets can be adapted to exist-
ing data structures, as depicted in figure 31. Furthermore, scope expansion is
explained.

The example used in the following section is Chord with its finger tables, as
it is used by Tanin, Harwood, Samet et al. [21, 49, 48, 47]. But the methodology
presented in this section remains generally applicable to any data structure that

4updateCost and readProfit actually depend on r themselves. This loop is handled by
both the modifications and analysis.

5For example, the peer with the lowest IP address. Depends on the piggybacking method
actually.
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Figure 33: Some moving windows over the DHT. The rightmost moving window
for the node at address 6e has L = Rwin = 4 neighbours on each side.

contains a linked list and optionally random skip pointers, similar to the method
of Aspnes et al. [4], which is also generally applicable. For example, the skip
graph used by Toda et al. [50] or Huq and Ghosh [24], the 1D skip graph used
in MURK-Ran [14], the n-dimensional skip graph used in MURK-SF [14] or the
rainbow skip graph [17] all can make use of the presented methodology on the
list on level 0.

Tanin, Harwood, Samet et al. [21, 49, 48, 47] exploit parallelism to speed
up spatial queries. Parallelism defies the use of redundancy since the query
objects that operate in parallel do not communicate with each other. Still,
applying redundancy to a strategic place helps to improve query latency. Tanin,
Harwood, Samet et al. [21, 49, 48, 47] remain dependent on the Connectivity
layer. Actually, the Chord lookup method is invoked a large number of times.
Not only are the nodes residing at level l = fmin looked up this way, but also the
children of each control point. Each node returning a spatial object needs to find
at least the issuing node or the node holding extra information, which itself needs
to find the node which issued the query. As a matter of fact, even if parallelism is
taken into account, at least O(logN) hops to the nodes at level fmin are needed,
and 0 to maximally O(logN + fmax − fmin) message hops during the traversal
of the tree [47]. Assuming a network of N = 1000000 nodes, this are at least
log(1000000) ≈ 20 hops on average. Taking the parameter αChord ≈ 0.5 from
[44] into account - shifting in a zero bit from the distance does not necessitate
to follow a finger -, this are still ≈ 10 hops on average within a tight bound.
This is at least one second of latency if 100ms latency to establish a connection
with a peer is assumed. Caching the addresses of the children of a control point
alleviates the need to optimize the lookup, but cache misses make use of the
Chord lookup method again. Therefore, it makes sense to optimize the lookup
in terms of number of contacted nodes.

In order to describe the modification, a model is presented. Then, parame-
ters of the model are fitted to represent the case where only the redundancy is
increased, i.e. the case where the modification adapts to the underlying struc-
ture. Afterwards, scope expansion is performed.

The model consists of a moving window containing the addresses of the
L preceding neighbours, the own address, and Rwin succeeding neighbours,
depicted in figure 33. Every node has L preceding pointers, even the nodes
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at the beginning of the identifier space. Because of modular arithmetic, the
same holds for the nodes at the very end of the identifier space with their Rwin
successors.

The L + 1 + Rwin = s addresses concatenated together form the I input
bytes to a RSEC-encoded set of devices. Each node receives some checksum
devices. Redundancy is determined with the help of the adaptive redundancy
algorithm described in section 3.3.3, and will be discussed in more detail later.
The number of participants, p, is s = L + 1 + Rwin in this case. n is p. k is
held fixed as the size of an address of a node, no padding is applied. w and m
are defined by section 3.3.3. For example, for p = 9, there are n = 9 input data
devices. Full redundancy results in n − 1 = 8 checksum devices at each node,
totalling to m = 8p = 72. No redundancy results in 0 checksum devices, and
the moving windows are unusable: the fact that each node is having its data
device, the address, does not help. Apart from 0, rmin = 1

p−1 = 1
8 is the lowest

redundancy that is supported. In this case, each node receives one checksum
device. The effective redundancy has to be rounded to the nearest multiple of
the minimum redundancy rmin = 1

8 . Figure 34 shows the distribution in the
case of r = 2

8 .
The number of nodes that have to be contacted for successful reconstruction

of data devices is

z =

⌈
p

(r + 1
p−1 )(p− 1)

⌉
(7)

Note that for r = 2
8 , z = 3 =

⌈
p

(r+ 1
p−1 )(p−1)

⌉
, not z = 5 =

⌈
p

r(p−1)

⌉
. This can be

checked by counting nine boxes in figure 34. Both data devices and checksum
devices contribute towards the reconstruction of the data devices.

The crucial redundancy (equation 6) is not only adapting to the history h,
but is also affected by the analysis of this piggybacking method being described.
The analysis in section 4.2.3 derives updateCost = p − 1 and readProfit =
dαChord log pe − z + 1 for the worst case. r is therefore defined as:

r =

{
1 if p− 1 ≤ |R| or dαChord log pe − z + 1 ≤ |U |
|R|
|h| otherwise

(8)

z is the number of nodes that have to be contacted for a given redundancy
and was defined in equation 7. In order to deal with a recursive definition

reasonably, the r in equation 7 has the value |R||h| . αChord is 0.5 [44].

Node lookup

Each node knows the IDs of the moving windows crossing its address, as
well as the own position in the moving windows through metadata. The issuing
node constructs a lookup message containing the target key. The issuing node
creates an array of empty buckets representing the moving windows of which the
issuing node is part of. Then, the issuing node fills the buckets with all available
devices in the hope that subsequent nodes can make use of this information. A
visualization is provided in figure 35. For example, the bucket with the label
702d receives the data device and some checksum devices, depending on the
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Figure 34: How the data devices and checksum devices are distributed over
a moving window for redundancy r = 2

8 . The number of actually available
checksum devices can be read from the formula r = 2

8 , and is therefore 2.
8 = p − 1 is the maximal number of checksum devices that a node can hold.
The devices d4, c8 and c9 are situated at the node with the IP address 6e.

Figure 35: Some of the checksum devices node 6e is holding (r = 2
8 ). The data

device, that is the own address, and all checksum devices are attached to the
message looking up a node.
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redundancy. Then the lookup message is sent to the next node according to the
finger table [44].

The intermediate node adds its devices and checks whether the information
is sufficient to reconstruct the target node. The intermediate node proceeds as
follows:

1. The node inspects the lookup message for buckets labeled with a moving
window ID which the node itself is part of.

2. If so, the node adds its data device and all checksum devices belonging to
such a bucket.

3. The node creates additional buckets if there are moving window IDs from
which the node is part of, but that are not in the lookup message. For
each created bucket, the node fills in the data device and every checksum
device.

4. The node checks each bucket. If there are enough devices for a given
bucket, the data devices can be reconstructed, as described in section
3.3.4. The node remembers the reconstructed moving window and deletes
the bucket from the lookup message.

5. The node checks whether each reconstructed moving window contains the
target address. If so, the lookup can be sent to the destination instantly.
If not, the node introduces the data devices to all other buckets if the
other buckets representing moving windows are overlapping. Figure 37
depicts this operation as red arrows.

6. The node checks again and continues until it is not possible anymore to
reconstruct a moving window. The node subsequently sends the lookup
message to the next node according to the finger table.

The node increments the reading counter of a moving window whenever the
node reads a device from it - see section 3.4.1. The node increments such a
counter only once per lookup message and moving window.

Node update, node insertion and node deletion

In Chord there are three types of events affecting moving windows: addresses
of nodes change, there are nodes being introduced to the DHT and there are
nodes that depart. Afterwards, Chord heals the ring [44]. Each time a node
detects changes, the overlay needs to be updated afterwards, as shown by figure
36. All nodes that were possibly part of all moving windows that the missing
peer was part of need to be contacted and found. Then, the nodes elect the
node with the lowest hash in the identifier space with the task to update the
moving window situation to a valid state. The node with the lowest hash in the
identifier space is selected because the algorithm can traverse the successor list.

A moving window is constructed the same way as already described. A
moving window is updated by sending the new address to every participant
in the moving window, who integrate the update to the checksum devices as
described in section 3.3.3.
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Figure 36: The moving windows containing the address of a peer gone missing
need to be invalidated. New moving windows with a new ID need to be con-
structed. The inverse case of a node insertion also causes invalidation. In such
a case the original situation is on the right and the invalidated moving windows
are on the left, each marked with a node containing a red X.

Figure 37: The search aiming for the rightmost peer gathers enough devices in
order to jump to the target. Node A alone does not communicate enough devices
for the lower moving window (6 < 12). But the data devices derived from the
reconstruction of the upper moving window give the necessary information (6+6
red arrows = 12). This case shows that the last node A is also important.

Overlaying the moving windows and scope expansion

In order to fit the model to Chord, the parameters need to be set in order to
adapt to the underlying structure. The model fits perfectly to the existing mov-
ing windows consisting of the predecessor, the current node and the successor
by setting L← 1, Rwin ← 1 and s← L+ 1 +Rwin = 3.

Scope expansion alters the locality properties and the consistency mainte-
nance properties of the underlying method. Scope expansion is achieved by
allowing the moving window to be larger than s = 3. The working number of
this thesis is s = 9 if it is not made explicit otherwise. As a consequence, there
is an advantage for lookups and additional costs in terms of number of nodes
that have to be looked up in the case of updates. For skip graphs, L = Rwin is
kept. For Chord and scope expansion, Rwin is set to 0 in all instances since all
searches use finger tables; such a search is illustrated in figure 25. The last node,
the target node, also stores checksum symbols since the checksum devices held
by the last node may be used for calculating the values of the moving window
which contributes to other moving windows as soon as the data words become
known; see figure 37.

This modification altering the Connectivity layer can be explained with the
telephone book illustration as follows: Originally, every person has a private
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telephone contact list of other members. If the telephone number of a person
located in Parkes, Australia had to be looked up, then the telephone number
of someone who has most to do with Australia was picked. This modification
has resulted in following change: the private telephone contact list of everybody
was enlarged by a constant number of entries. These entries are parts of the
telephone numbers of the neighbours of a person. Whenever the search for a
telephone number arrives in the area close to the destination, the last steps can
be skipped as soon as enough parts of telephone numbers are gathered from
the large contact lists. Because the contact lists are always enlarged by entries
pertaining to neighbours, it can be shown that there are less steps on average.
As a result, the required granularity of the search is lowered. It is enough to
resolve a neighbourhood, as a single house does not have to be resolved anymore.
The same procedure can operate on a more generalized or more coarse level on
a map. Dependence on locality is therefore minimized.

3.4.3 Altering the Core services layer

This section deals with the application of redundancy to data elements itself.
Consequently, the original data elements are replaced by a mix of fragments
of original data elements and checksums. The application of redundancy is
done in the Core services layer of the method of Tanin, Harwood, Samet et al.
[21, 49, 48, 47].

The spatial object S is assigned to a set of responsible control points [47].
The list Gmin, the list of responsible control points at level fmin, is determined
by invoking Subdivide(S, root, Gmin) [48]. Afterwards, the spatial object
is forced down to lower levels if the spatial object only covers one subdivided
area. Departing from the original method by Tanin, Harwood, Samet et al.
[21, 49, 48, 47], the list of responsible control points at all levels, P = Geff ,
is calculated. Geff therefore contains the complete list of responsible control
points for a spatial object. The list contains all control points that are effectively
responsible for the spatial object. Geff is calculated by using following method
called DetermineG eff:

// Var iab l e s and methods are kept c o n s i s t e n t with the o r i g i n a l method
g l o b a l G e f f
DetermineG ef f ( ob j e c t X, c o n t r o l po int u) {

i f (X i s not with in exac t l y one R(C(u , i ) ) or L(u)=f max ) {
add u to G e f f

} e l s e {
f o r i :=1 to 4 do s e q u e n t i a l l y {

i f ( I n t s (X,R(C(u , i ) ) ) i s not empty ) {
DetermineG ef f (X,C(u , i ) )

}
}

}
}

Each node responsible for the control point listed in Geff stores the complete
replica of the spatial object [21, 49, 48, 47]. The general method introduced in
this section is the application of the second last idea enlisted in figure 31. The
modification to the original approach works as follows:

The serialized spatial object S has I bytes. A file containing the spatial
object is also a binary serialization of the spatial object. These I bytes are the
input bytes to a RSEC-encoded set of devices. n is the number of responsible
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nodes, or n = |Geff | = p, p being the number of participants. Thereby, n = p.
The redundancy r is 0 if there are no checksum devices. In the case of no
redundancy, each node i at control point Geff i only holds a data device of
spatial object S. Full redundancy is defined as r = 1 and results in p − 1
checksum devices at each node, m is m = (p − 1) · n in this case. For n = 9,
m = 8 · 9 = 72. k, w and m are defined according to the constraints defined in
section 3.3 of this master thesis. Storing 1 additional checksum word at a node
results in redundancy r = 1

p−1 = 1
8 . The situation is analogous to the situation

in figure 34.
Updates are handled according to section 3.4.1 of this master thesis. The

redundancy can be freely chosen, such as

r =
|R|
|h|

(9)

.
The overlay is now made by distributing one distinct data device to each

participant. The checksum devices are distributed evenly amongst the partici-
pants.

No scope expansion is performed. Neither neighbours to the area controlled
by the control point nor parents hold additional checksum devices.

If the spatial object is simply a point, then the modification brings no ben-
efits. If the underlying method maximizes locality properties, then definitions
of groups of spatial objects that are likely accessed together can be identified.
Tanin, Harwood, Samet et al. [21, 49, 48, 47] do not define such groups6. As a
consequence, the piggybacking method can not help more than it does already.
Still, it is possible to define such a grouping. For example, points are commonly
stored on the same spatial layer and have attributes. Even if the query statistics
are unknown, points can be grouped opportunistically. For example, all points
with the same value of an attribute can be grouped together. Grouping the
points does not change the discoverability. The only change results in possibly
more data that needs to be downloaded to the node issuing the query since the
minimum bounding rectangle (MBR) or the three-dimensional variant minimum
bounding box is enlarged, as shown in figure 38. Another candidate for grouping
consists of the pixels of a raster image. Because the effects are not changing the
impact of erasure coding on locality, no such optimizations are made.

The serialization may destroy the correspondence between the part of the
area of the polygon with the area of the control point. By treating the vertices
of a polygon as data words (n=number of vertices), and by making intersection
calculus on the vertices instead on the MBR, the correspondence can be kept,
as shown in figure 39. A node may then perform intersection calculations on
the part of the polygon. An analogous approach can be made with the pixels
of a raster image, if the spatial objects are pixels, not the raster image itself.

Again, it is not the task of the overlaying piggybacking method to group
data. The analysis remains on the level of spatial objects, the finest resolution
of grouping mentioned by Tanin, Harwood, Samet et al. [21, 49, 48, 47]. The
nodes can only determine whether an object intersects by comparing the MBR
in the metadata with the search rectangle.

For the telephone book illustration see page 39 f.

6Except all spatial objects under a control point, which is useless since the objects reside
at the same node.
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Figure 38: Effect of grouping: The blue area controlled by a control point may
respond with three points instead of one even though the query window in red
only selects one point finally. In isolation, the MBR of a point would have no
area.

Figure 39: A redundant polygon distributed over two areas controlled by differ-
ent control points for r = 2

1 . The MBR is in grey and would normally be the
only information available for intersection calculations.
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3.4.4 A typical insertion and search procedure

The user interacts with a Graphical user interface (GUI). It is possible to start
a range search, insert an object or select an object and delete it.

Figure 40: The Graphical user interface.

After the user presses the button labeled “Insert into system”, the applica-
tion layer makes use of the service “object insertion” of the interface between the
Application layer and the Core services layer. The application layer delegates
the task of inserting the object into the system. The Core services layer adds
redundancy and calls InsertObject(Object S), which determines the list of
control points at level fmin that intersect with the spatial object, called Gmin.

The list Gmin is determined with the procedure Subdivide(). Namely,
the spatial object is subdivided into parts until the fundamental minimum is
reached. Assume fmin = 2. The red polygon in figure 41 is subdivided into
a lower part and an upper part for the first iteration of the recursive function
Subdivide() [47]. Furthermore, the Subdivide() is recursively called again for
the areas where the spatial object intersects, unless the control point is at the
level fmin. For the spatial object in figure 41, Gmin = {AA, AB, AC, AD, CA, CB, CC, CD}.
Additionally, departing from the original method, Geff is calculated by set-
ting temporarily fmin = fmax and using the modified version of Subdivide

with the replaced if-statement. For the spatial object in figure 41, Geff =
{AC, AD, CA, CB, AAD, ABC, CCB, CDA}. n = |Geff | = 8. Assume that r = rmin =

1
|Geff |−1 = 1

7 . Consequently, m = |Geff | = 8.

In order to add redundancy, the spatial object first has to be serialized.
The file already contains a serialization of the spatial object. In this case,
the file /mnt/data/CH Forest/polygon5468.wkt has the content POLYGON((4

7,10 7,9 2,5 2,4 7)). After adding the padding byte, the input size is I =
31 + 1 = 32. Therefore, k = 4.
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Figure 41: The spatial object (red) in the tree. The MBR is grey. Adapted
from Tanin, Harwood and Samet [47].

ASCII P O L Y G O N ( . . . 7 ) )
Base 10 80 79 76 89 71 79 78 40 . . . 55 41 41 128
Base 16 50 4f 4c 59 47 4f 4e 28 . . . 37 29 29 80

Device d0 = 504f4c59 d1 = 474f4e28 . . . d7 = 37292980

Table 8: The serialized spatial object S and the resulting data devices. k = 4

All needed parameters for the calculation of the checksums are known. The
resulting devices are assigned to the nodes in Geff according to figure 34 as
follows:
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Node AC d0 = 504f4c59, c0 = a1f8189b

Node AD d1 = 474f4e28, c1 = b0a4b385

Node CA d2 = 28342037, c2 = ed89183f

Node CB d3 = 2c313020, c3 = 9c0a9177

Node AAD d4 = 372c3920, c4 = ac0cdb4d

Node ABC d5 = 322c3520, c5 = 82d3ead8

Node CCB d6 = 322c3420, c6 = e1799e9f

Node CDA d7 = 37292980, c7 = 43919b98

Table 9: The resulting devices and assignment to the nodes.

As part of the InitiateInsertion procedure, the insertion is delegated in
parallel to the nodes listed in Gmin. The nodes responsible for the control
points AA, AB, AC, AD, CA, CB, CC and CD residing at the addresses Hash(AA),
Hash(AB), Hash(AC), Hash(AD), Hash(CA), Hash(CB), Hash(CC) and Hash(CD),
respectively, are contacted with the help of the Connectivity layer, which is
explained next.

On the Connectivity layer, a control message containing the necessary de-
vices, the Minimum Bounding Rectangle of the spatial object S, the target node
tC and the procedure information DoInsert is routed towards target node tC .
The devices assigned to the same prefix as the node at level fmin are attached
to the message. For example, node AA receives a control message containing the
devices d4 and c4, since the assignment AAD of the devices shares the same prefix
with AA. In this example, only two devices are sent with each control message.
This must not hold for the general case.

Assume that the target node is

tC = Hash(AA) = 801c34269f74ed383fc97de33604b8a905adb635.

The node V at address 238efd6b43cf340d153d55b9cb039f490637f7d5 issues
the query. A subset of the distributed hash table is as follows:
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238efd6b43cf340d153d55b9cb039f490637f7d5 Node V

2f4466b21d0e7be7dbcaef8442633a7438793889 Node responsible for control point CAB
. . .

36d9a6df06b9f610f7db8e036896ed03662d168f A participating node
391dfd55226bd544eba386bba448e869cd9e9f74 A participating node
4c994f835d5b565f9f4a2656d73e40c91998a7a1 A participating node
4ffeeef313824dd1205430053d405828d5a491ff A participating node, p0
57c513654c56a969364760fe15d7343c51750594 A participating node, p1
58251f478ae442b85c62861e078022242aa84a46 A participating node, p2
6094b6877e6d5bbb523c1688d3163ab9054a30be A participating node, p3
6acbc1e3bc738effad1f88f6d3d87693e17fa5a9 A participating node, p4
71cbcf163cf812ab6f6fb5934a1ebc27ec3f9e3f A participating node, p5
7c89bbd1a0fc355a99696bdabd54653471204e76 A participating node, p6
801c34269f74ed383fc97de33604b8a905adb635 Node responsible for control point AA, p7

. . .
b1fb3bec6fdb22e19a94fe4c6c4481ccba2ee9f0 Node responsible for control point AC
f3af8f9ca13efbcf7ca51aff3995b160e590f80e Node responsible for control point AAD

Table 10: A subset of the distributed hash table. If applicable, pi is the name
of a node in the moving window of size s = 8 defined by node AA.

Node V has the node responsible for control point CAB as its successor. The
routing towards key 801c34269f74ed383fc97de33604b8a905adb635 is achieved
by following a finger pointer in node V. The finger pointer, which is smaller than
the key 801..., but which has the lowest difference to 801... compared to
other preceding finger pointers in the list of finger pointers at node V, points
to the Internet Procotol (IP) address of the node p0. p0 is participating in a
moving window defined by AA, amongst others. The moving window is enriched
with redundancy. Since r = 3

7 , every node holds three additional checksum
devices:

Node p0 IPp0 = d0 = fdfd11...7a, c0 = eb7dda...18, c1 = 6c9605...7f, c2 = b77d6d...29

Node p1 IPp1 = d1 = fdfdfa...68, c3 = 27c348...61, c4 = ebcb62...b5, c5 = e607dc...55

Node p2 IPp2 = d2 = fdfd99...4f, c6 = cd6ad5...04, c7 = 5708e7...18, c8 = 62e866...1a

Node p3 IPp3 = d3 = fdfd14...16, c9 = e5b3e8...b0, c10 = 64fc1b...b5, c11 = 0adbd9...3c

Node p4 IPp4 = d4 = fdfdf0...ec, c12 = c92dc2...e7, c13 = 85fee5...64, c14 = 911bc6...04

Node p5 IPp5 = d5 = fdfd77...98, c15 = b0e79b...68, c16 = c6beb7...11, c17 = 69b9cf...ca

Node p6 IPp6 = d6 = fdfd4d...34, c18 = babb0a...73, c19 = 3bc230...c1, c20 = 1ef42c...d2

Node p7 IPp7 = d7 = fdfde0...85, c21 = b537ce...76, c22 = b5202c...03, c23 = 8fd67a...fc

Table 11: The devices of the moving window rooted at node AA.

For simplicity, data sharing between moving windows is not thematized. p0
receives the control message, creates the bucket called MWAA and adds its devices
d0, c0, c1 and c2 to the bucket MWAA. p0 then sends this altered control message
to p4. p0 registers this reading operation on the moving window by incrementing
its read counter by 1. p4 adds d4, c12, c13 and c14. p4 also adds its devices to
the bucket MWAA. Since p4 can restore the devices d0, d1, d2, d3, d4, d5, d6 and d7

67



out of the eight devices d0, d4, c0, c1, c2, c12, c13 and c14, the control message
is instantly sent to p7, the target node AA of the Chord node lookup. p4 also
increments its read counter. p6 would have been contacted if redundancy were
not used during the lookup. p7 can now continue with executing DoInsert in
the Core services layer.

The messages sent to the other nodes that are responsible for control points
residing at level fmin are processed analogously. The other nodes execute
DoInsert and store the devices assigned to the control points the nodes are
responsible for if the spatial object intersects more than one area under the
area controlled by the other nodes [47]. Otherwise, the spatial object insertion
is delegated to one of the four or eight subareas and a counter is increased.
Observe that each delegation invokes a full Chord lookup procedure, during
which lower number of contacts are observed on average if RSEC is applied.
For the example spatial object in figure 41, the spatial object is stored at
Geff = {AC, AD, CA, CB, AAD, ABC, CCB, CDA} at the end. If there is no control
point available, the control point is implicitly allocated with default parameters
[48].

A range query is very similar to the insertion procedure. In fact, the method
InitiateRangeQuery is semantically equivalent to the procedure InitiateInsertion.
Similarly, the procedure DoRangeQuery is very similar to the procedure DoInsert
in terms of delegation. For a range query, the issuing node determines the nodes
responsible for the spatial object at level fmin, which delegate the query to their
children if the spatial objects crosses divisions. Different to the insertion case,
the ultimatively responsible nodes - those responsible for areas covered by the
range query - intersect the range query window with the MBRs of all locally
stored spatial objects. Then, the responsible nodes send all devices pertaining
to the intersecting spatial objects back to the issuing node.

The fastest nodes ofGeff are sufficient for the complete download of a spatial
object, even though the redundancy is r < 1. If the speed of light is a root cause
in the response delay, then the application of a piggybacking method resulted
in the fact that the spatial objects were gathered from the most local nodes in
respect to the issuer of the query. Additionally, since moving windows are used
during node lookup, the number of contacted nodes during lookup is smaller
if there is enough redundancy. The average performance and scalability of the
network is increased.

Even if speed of light were not the root cause in the query delay, but any
other unknown factor, the piggybacking method in the Core services layer with
any r ≥ rmin or the original method with r = 1 are capable of taking advantage
of the most favourable route that data takes, oblivious to the myriads of possible
causes of delays. The piggybacking method in the Core services layer is capable
of maintaining parallelism during object acquisition, different to the original
method were it is not guaranteed that every byte received is new knowledge.

At the end of a range search, the spatial objects collected at the issuing
node are handed over from the Core services layer to the Application layer. The
application, as depicted in figure 40, draws the spatial object on the map. Ad-
ditionally, the application layer can prune unneeded parts of the spatial object,
since the MBR of the spatial object may intersect with the search range, but
not the spatial object itself. See figure 42.
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Figure 42: The spatial object S does not take part in the range query (red
rectangle), even though the MBR intersects.

3.5 Excursus

3.5.1 Changing the spatial objects in the Core services layer

This section shows the difference between piggybacking a method and in-
creasing the locality of an underlying method, like it is potentially done by scope
expansion.

Changes resulting in maximized locality properties are not part of a pig-
gybacking method if the changes do not increase redundancy with the help of
erasure coding or if more locality is achieved by replication (r = 1).

Assume following change to the method of Tanin, Harwood, Samet et al.
[21, 49, 48, 47]: all spatial objects are buffered before being inserted into the
index, as shown in figure 43. As a result, Geff will have more control points on
average. If the buffer size is at least half the width or height or depth of the area
controlled by the control point at the highest level within Geff (+ε), the min-
imum bounding rectangle or its three-dimensional variant minimum bounding
box will always cross a partition boundary. Therefore, the search rectangle can
exclude at least one superfluous area controlled by a control point on each of
the four sides or eight sides, respectively. For example, the range query in figure
43 can remove the intersection with the left blue rectangle before starting. The
disadvantage is that the client has to prune some objects because the tree does
not do this job for the client on the level of original MBRs anymore. Ignoring
updates, the number of nodes that have to be contacted is lower during a query.

The change does increase redundancy since more replicas are stored in the
whole system. But no use of erasure coding is made. Thus, the analysis of the
influence of erasure coding on locality properties is not affected.

3.5.2 Synchronizing the fmin level in the Core services layer

This section illustrates how the core idea manifests itself in other parts of
the data structure. This is done in order to explain better the idea of the thesis.
This example shows that RSEC is always applicable since there is always at
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Figure 43: By calculating buffers (circle) with globally known buffer sizes around
all spatial objects (point), a range query (red) has to visit less control points on
average (areas controlled by control points in blue).

least one group of elements.
The addresses of the peers at level l = fmin are synchronized globally and

made known to every node in the full redundancy case. For any lower redun-
dancy value, continue as follows: While routing the query to the nodes at level
fmin, the nodes participating in the Chord lookup method for the particular
query attach their device(s) containing information about the globally synchro-
nized state to the query. Each node analyzes whether the query has enough
devices and computes the target address from it if possible. If so, the query is
redirected directly to the node residing at level fmin, underbidding the average
Chord routing cost in the average case.

Any update of a node that resides at level fmin affects all data devices holding
its address, as well as all checksum devices. If there are more control points than
peers, the most efficient strategy in terms of contacted nodes would be to send
all devices around the ring of Chord. Otherwise, the most efficient strategy
regarding parallelism can be applied: updates would be trickled downwards the
tree.

Regarding the update through the ring of Chord, the devices can be sent
sequentially, which has the effect that updates of the global state are constant
background traffic, and are not blocking other operations as burst traffic.

Since the nodes that are responsible for the control point on level l < fmin
are idling on the Core services level, a combination of the ring-update and
tree-update makes sense. The global state is synchronized amongst the nodes
responsible for level l < fmin by sending all devices at once and trickling down
the tree. Then, each node injects the update into the ring of Chord by sending
device after device to its successor. Assuming random distribution of the nodes
at level l = fmin − 1 on the ring of Chord, the procedure is accelerated from
contacting O(N) nodes sequentially to contacting O(N) nodes in parallel by the
factor 4fmin−1 in the case of a Quadtree and 8fmin−1 in the case of an Octree.
Every node participating in the distribution knows whether it is responsible
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for a control point at level l = fmin − 1 or not and can stop the distribution
accordingly.

3.6 Interim conclusion

The whole section 3 has enabled us to answer the first main question of this
master thesis:

Is it possible to reasonably apply redundancy (II) onto the principle
of hierachization (Iα) or onto the principle of distributed hash tables
(Iβ)?

The answer to this question is “yes” because I successfully applied redun-
dancy in two cases. Redundancy has been applied to a method organizing
spatial objects along a hierarchy (Iα), namely to the Quadtree in the Core ser-
vices layer. Additionally, redundancy has been applied to a method organizing
data along a line (Iβ), namely to Chord in the Connectivity layer.

The relevant parameters for the cost model introduced in section 3.1 are
now specified in detail in sections 3.4.1, 3.4.2 and 3.4.3, and, as a matter of
fact, can be used by the cost model for the calculation of the profitability of my
piggybacking method in relation to the original method in question.
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4 Analysis

4.1 The cost model

Figure 44: The cost model for |R| = 4, |U | = 1, a = 3, b = 1, a′ = 2, b′ = 3,
h = {R,R,R,R,U}. p(h) = 4 · (3− 2) + 1 · (1− 3) = 4 · 1 + 1 · −2 = 4− 2 = 2

In order to calculate whether the application of redundancy is worthwhile in
comparison to the original method, a cost model that deals with history h was
conceptualized in section 3.1, and following formula was derived:

p(h) = |R| · (a− a′) + |U | · (b− b′) (10)

The context of the cost model is always in relation to the group, that is the
set of elements P .

a′ is dependent on the amount of redundancy r. In the course of the method,
the paramters of this formula were elaborated: r and z.

r was modified according to the specific application of redundancy. z is the
number of contacted nodes for a given amount of redundancy. A new r, which
is derived from the profit, is dependent on z itself. I deal with this recursion

reasonably by setting the default value |R||h| .

In relation to the application of redundancy, following three formulas for
r ensued: for the general application of redundancy (section 3.4.1), for the
application of redundancy to Chord (section 3.4.2) and for the application of
redundancy to the Quadtree (section 3.4.3).

• For the general case (formula 6 on page 55):

r =

{
1 if updateCost ≤ |R| or readProfit ≤ |U |
|R|
|h| otherwise

• For the application of redundancy to Chord (formula 8 on page 57):

r =

{
1 if p− 1 ≤ |R| or dαChord log pe − z + 1 ≤ |U |
|R|
|h| otherwise

In this section, z was introduced (formula 7 on page 57):

z =

⌈
p

(r + 1
p−1 )(p− 1)

⌉
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• For the application of redundancy to the Quadtree (formula 9 on page
62):

r =
|R|
|h|

In the following analysis, calculations are made with these specified listed
formulas.

Regarding a, b, a′ and b′, observe that the average number of hops required
to reach the target node tC from any node on the identifier space is d({tC}) =
αChord logN [44]. The average number of hops required to reach the |Gmin|
nodes at level fmin is d(Gmin) = |Gmin| ·αChord logN hops on average. αChord
is 0.5 and is derived from the fact that the distance only reduces the maximal
possible distance with probability 0.5 [44].

Finding p participants in a moving window on the Chord DHT always costs
d({p0, p1, . . . }) = p− 1 + αChord logN hops, since the predecessor pointers and
successor pointers can be used. Consistency maintenance of the neighbouring
pointers is assumed to be a problem of the lower layer and does not affect the
cost model.

4.2 Analyzing the profitabilities of the redundancy appli-
cations

4.2.1 Relation to caching

Reed-Solomon erasure coding (RSEC) exhibits similarities to caching. Caching
is done by storing copies of acquired data. For example, Globe [51] makes use of
cache pointers, or Tanin, Harwood, Samet et al. [49, 48, 47] cache the pointers
to the children. Tanin, Harwood, Samet et al. [21, 49, 48, 47] cache the full
spatial object on every responsible node.

Caching only certain data devices on other nodes results in the following
problem similar to the Coupon collector’s problem: An agent such as a lookup
query needs to gather information. Each time a random node is visited, data
devices are gathered. The probability of obtaining a new data device belonging
to the same group is getting smaller and smaller with more and more data
devices already in memory. For example, assume that d0 and d′2 from figure
31 on page 53 are gathered. Obtaining d2 afterwards is a waste of resources,
because d′2 is a copy of d2 with the same content.

RSEC, on the other hand, always contributes to the local knowledge. This
results in the property that the number of nodes that have to be contacted is
always minimal and constant in relation to redundancy r. Using only caching
results in a constantly higher number of nodes that have to be looked up on
average, and this number distributes around the mean since device gathering is
subject to chance. Still, it is possible to achieve to contact a sequence of nodes
so that only distinct data devices are gathered. Such a special case is less and
less probable if the number of possible nodes to contact is increased.

As a matter of fact, RSEC allows to effectively reduce the dependence on
locality while caching does not. Whatever the spatial location of the elements,
choosing any most local locations containing n elements out of n + m satisfies
the request. Caching can not guarantee that, unless r = 1. Of course, in the
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case of caching the agent may choose freely between d0 and d′0. But still, all
objects such as d0, d1, and d2 need to be resolved. For an illustration see figure
32 on page 54. The improvement of RSEC over caching is the freedom to choose
any rmin ≤ r ≤ 1 without affecting the freedom to choose any subset out of a
set, leading to the answer to the first research question:

Research Question 1: Does the introduction of redundancy result in
a lower number of contacted nodes during read operations than without? Is
copying elements of the set to multiple participating nodes more efficient in
terms of contacted nodes than Reed-Solomon erasure coding?

Answer to Research Question 1: Redundancy, as applied by RSEC,
results in a lower number of contacted nodes during read operations as soon
as the redundancy is > 0%. The worst case of RSEC regarding the number of
contacted nodes is better than the worst case of caching if the redundancy is
> 0% and equal if full replication is employed. In the best case, both are equal.
In the average case, RSEC performs better.

The difficulty lies in finding candidate sets. For example, Tanin, Harwood,
Samet et al. [21, 49, 48, 47] provide two sets: the set of spatial objects at a node
responsible for a control point and the parts of a spatial object. The devices
provide the flexibility to download from the fastest nodes in conjunction with
RSEC in the context of the second modification (section 3.4.3). But a range
query still has to contact all nodes covered by the range query. Reducing the
locality regarding the search itself can be achieved with the help of the mod-
ification to the spatial objects in the Quadree or Octree, respectively (section
3.5.1). But this has nothing to do with the effect of erasure coding on locality.

The method altering Chord (section 3.4.2) has to define a custom set P in
order to make an adaption of RSEC possible.

4.2.2 Altering the Core services layer by introducing redundancy

This modification is the example case for analyzing the effects of erasure coding
on locality without any external effects. The analysis differs from the adaption
to Chord therein that the number of contacts during updates are the same for
both cases. Furthermore, the analysis is not affected by scope expansion. This
analysis is therefore solely affected by erasure coding.

Lemma 1. In an environment without updates ( |R||h| = 1), the application of

this modification with r = 1 results in the same number of nodes that have to be
contacted as without this modification.

Proof. Tanin, Harwood, Samet et al. [21, 49, 48, 47] implicitly set r = 1. For
their approach and the approach of this modification, only one node needs to be
looked up in order to obtain the full information case regarding a spatial object,
since r = 1 is full replication.

Lemma 2. In an environment without updates ( |R||h| = 1), the application of

this modification results in gradually more freedom to choose from the nodes
responsible for |P | = |Geff | with increasing redundancy.
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Proof. Any node can be contacted because any n rows can be selected from
the Vandermonde matrix. Regarding the redundancy: the minimal number of

nodes that have to be contacted is z =

⌈
|P |

(r+ 1
|P |−1

)(|P |−1)

⌉
. z ≈ |P | for r = 0 + ε

and z ≈ 1 for r = 1− ε. ε in this case is ε > 0, and 1
ε ≫ 1.

Lemma 3. In an environment without read operations ( |R||h| = 0) and r > 0, the

application of this modification results in the same number of nodes that have
to be contacted as without this modification.

Proof. In the case of the method of Tanin, Harwood, Samet et al. [21, 49, 48, 47],
an update affects all replicas. In the case of this modification, an update must be
represented in all checksum devices, since the checksum devices are dependent
on all data words. The checksum devices are distributed evenly amongst the
participants. Therefore, all nodes need to be contacted in both cases.

In the case of r = 0, only nodes responsible for affected data devices would
need to be contacted. r = 0 in the original method of Tanin, Harwood, Samet
et al. [21, 49, 48, 47] would result in the fact that no hit is superfluous. But the
original method only supports r = 1.

Lemma 4. Applying this modification never results in a loss according to the
cost model in relation to the method of Tanin, Harwood, Samet et al [21, 49,
48, 47].

Proof. Consider p(h) = |R| · (a− a′) + |U | · (b− b′). Updates contact the same
number of nodes in both cases (b − b′ = 0). The right part of the equation is
therefore always zero. Assuming the worst case of r = 0, a − a′ becomes zero,
too. Therefore, it is impossible to reach a negative value.

Corollary 1. The value of r only influences the amount of profit in relation
to the method of Tanin, Harwood, Samet et al [21, 49, 48, 47], if the same
redundancy is used for comparision. p(h) ≥ 0. Maximal profit is achieved by
setting r = 1.

Proof. It is assumed that r < 1 is achieved by copying parts of the spatial object
to participating nodes in the original method (called caching). r = 1 results in
a minimal b′ and a maximal b − b′. Since the right part of the equation 10 on
page 72 is not affected by r, maximal profit is achieved by setting r = 1. Since
additional storage costs are not represented in the cost model, Tanin, Harwood,
Samet et al. [21, 49, 48, 47] with r = 1 are optimal in this regard. Otherwise,
it is not guaranteed that newly gathered knowledge is new knowledge, since
caching as alternative is assumed in the original method if r < 1.

Lemma 5. This modification may never reach the maximal theoretical profit.

Proof. If the last elements in h are read operations, this modification can not
adapt to a new redundancy. This modification is always lagging behind and
reactive, never proactive. Consider the worst case of |h| update operations,
followed by |h| read operations, alternating eternally. The profit always stays
zero, which is suboptimal. This pathological case is, however, unlikely.
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Figure 45: Not introducing RSEC to the set of elements commonly accessed
together (r = 0).

Lemma 6. The profit from read operations is as global as the task of maintain-
ing consistency.

Proof. The number of hops is at least d(P ) = |P | ·αChord logN in both cases.

Corollary 2. Even though a minimal amount of nodes need to be contacted
for the download of a spatial object if RSEC is profitable, the number of initial
contacts to nodes responsible for control points stays the same.

Proof. Due to the way the method of Tanin, Harwood, Samet et al [21, 49, 48,
47] works, namely due to the use of parallelism with non-communicating search
instances, it is not possible to effectively reduce the number of contacted nodes
for a given range query. It is impossible to reduce the number of contacted
nodes for a given range query since every node may be responsible for a spatial
object that is only stored on this single node. Still, downloads of the spatial
objects are fast since the fastest nodes can be used due to the properties of
RSEC. Additionally, only new knowledge is downloaded.

The rest of this section summarizes some insights because all lemmas are stated.

Consider figure 45. All nodes need to be contacted in order to obtain all
data devices. Now consider figure 46. Introducing RSEC has alleviated the
need to contact all nodes responsible for a spatial object during download. As
a consequence, stragglers as defined by Halbawi et al. [20] are avoided. Final
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Figure 46: Effects of increasing the redundancy.

query delay is effectively less dependent on bandwidth-starving nodes. During
updates, the whole set has to be contacted. In the worst case of r = 0, the
number of nodes that have to be contacted stays the same. The profit of the
cost model is never negative. Answering research question 2:

Research Question 2: Assuming the method of Tanin, Harwood, Samet
et al [21, 49, 48, 47] as an underlying method with nodes in a set P , each holding
one copy of a spatial object: Does the introduction of RSEC-calculated devices
over the nodes in P result in less contacts for a given history h of read operations
and update operations than without?

Answer to Research Question 2: The number of contacted nodes stays
the same for both the underlying method and the piggybacking method due to
parallelism. Regarding the number of contacted nodes during the download of a
spatial object: There is no profit and no loss in an update-only environment in
relation to the method of Tanin, Harwood, Samet [21, 49, 48, 47], as discussed
in lemma 3. In all other cases, applying RSEC with redundancy > 0% always
results in profits in relation to the method of Tanin, Harwood, Samet [21, 49,
48, 47] according to the cost model and if the same level of redundancy is used
for the comparison, as it is shown by corollary 1. Applying RSEC in relation
to the method of Tanin, Harwood, Samet [21, 49, 48, 47] never results in a loss
according to the cost model (lemma 4).

4.2.3 Altering Chord in the Connectivity layer

As the modification to the Chord lookup method is on a lower layer than the
Core services layer, the changes are affecting all queries equally. The intention
of the modification was not only to show how overlaying redundancy and how
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scope expansion works, but also in order to analyze whether addition of erasure
coding to a data structure dictated by hashes results in tangible improvements
regarding the number of nodes that need to be contacted. Hashes have the orig-
inal intention to destroy any similarity between the input and output, called
avalanche effect. The sets of commonly accessed elements is random, since use
of finger tables is made and random distances occur. Therefore, the analysis
analyzes what the gains or losses from the embedding of RSEC to a data struc-
ture are. The advantages from RSEC are only practically usable if RSEC deals
with real-world constraints that stem from the adaption of the data structure
to support RSEC.

Lemma 7. Fitting the modification to Chord, i.e. L = Rwin = 1, does not
result in less contacted nodes.

Proof. The lookup will never read the third element. If the middle element is
in a lookup table, the lookup has succeeded. For the last element, the leftmost
one, assume the best case with full redundancy r = 1. Even with the knowledge
of the whole moving window, the last step to the target node has to be made.
Therefore, the number of contacted nodes is the same. Actually, the node at
the leftmost element already has a successor pointer to the target.

Corollary 3. The Rwin successor nodes of the owner of the moving window
are not contacted during Chord lookup of the owner node.

Proof. Lookups are dictated by the finger tables at each node [44]. The search
algorithm reduces the distance to the target by redirecting the lookup message
to the nearest node in the finger table that is preceding the target node. On a
number line from left to right, the search never goes past the target node.7

Lemma 8. Assume scope expansion and a constant s during the lookup of a
node (s ≥ 4, Rwin = 0). The number of nodes that have to be contacted on
average are lower than without this modification.

Proof. This is achieved on average by setting the redundancy to r = 1, i.e.
by employing full redundancy. Assume that the elements d0, d1 and d2 in
figure 31 are the last three information pieces that had to be acquired in order
to successfully find the responsible node for a given key. By applying this
modification, knowing one element of the moving window is enough in order
to jump to the target. This is the case if d0, d1 and d2 are parts of a moving
window with s ≥ 4. For the case of s = 4, Rwin = 0, if the search hits the
leftmost element, the lookup of the predecessor to the target is spared. All
other elements have finger pointers to the target. This explains why s < 4 does
not result in an improvement: the finger tables of all participants are already
pointing to the target. The pathological case for any s ≥ 4 always hits nodes
with direct finger pointers to the target, and does not result in a lower number
of contacted nodes on average. But the pathological case does not happen with
high probability, especially not on the average case.

Corollary 4. The number of nodes that have to be contacted on average are
lower than without this modification if there is at least one element in the moving
window that does not contain a finger table entry pointing to the target. Any
moving window holds an entry having this property with size s ≥ 4.

7This is why Rwin = 0 is chosen.
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Proof. See proof from previous lemma 8.

Corollary 5. In a environment without updates ( |R||h| = 1) and a fixed s = 4,

the application of this modification with r = 1 results in a lower number of nodes
that have to be contacted than without this modification.

Proof. This is the full redundancy case mentioned by Plaxton [33], if only for
each and every moving window. Setting r = 1 in such a situation is the best
choice in relation to the available information encoded in h.

Corollary 6. In a environment without updates ( |R||h| = 1) and a fixed s = 4,

the application of this modification with r = rmin = 1
p−1 = 1

3 does not result on
average in a lower number of nodes that have to be contacted than without this
modification.

Proof. It is needed to prove that all possibilities result in the same number of
nodes that have to be contacted. If the only case resulting in a lower number
of contacted peers from corollary 5 is analyzed, it is shown that the number of
contacted peers is the same. The lookup message visiting the leftmost node in
the moving window gathers two devices: d0 and c0. Then, the routing reduces
the distance by 2, 4 would overshoot the target. Additional devices d2 and c2
are gathered. It is not needed that the moving window is recovered, since the
successor to the node in question is the target. All other nodes have finger
pointers to the target.

Corollary 7. In an environment without updates ( |R||h| = 1) and a fixed s ≥ 4,

the application of this modification with r = rmin = 1
p−1 never results in a lower

number of nodes that have to be contacted than without this modification.

Proof. Assume the worst case of a lookup always decreasing the maximal dis-
tance to the target. The minimum redundancy required for jumping to the
target is always r > rmin, as listed exhaustively for s = 17 in figure 47. More
generally, it is impossible to gather s devices if there are only log s visits in the

moving window if they add only two devices each.
dn−log n

log n e
n−1 > 1

n−1 .

Lemma 9. Assume an environment with equal number of reads and updates

involving a certain moving window ( |R||h| = 0.5), s = 9, b = 1 and b′ = 9. With

r = 0, the application of this modification results in a larger number of lookups
on average.

Proof. With equal |R| and |U |, p(h) = a − a′ + b − b′. a = dαChord log se =
d0.5·log se in the average case: finger tables are effective in reducing the distance
and do not contact many nodes near the target, as shown in figure 47 for a certain
case (s = 17) [44]. Assuming r = 0, a′ = a. Since b < b′, this modification does
not improve the number of nodes looked up.

Lemma 10. Assume b = 1 and b′ = 9. With r = 1, the application of this
modification does not result in a larger number of lookups on average as soon as
|h| consists of (8) · |R| read operations and (d0.5 log se − 1) · |U | operations.
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Figure 47: The required redundancy r in the moving window, if skipping the
rest has to be supported, is shown. In this case, n = 17 devices need to be
gathered. δ visits gather |D|+ |C| = 1 +

⌈
n−δ
δ

⌉
devices at each node, resulting

in |C|
n−1 required checksum devices for a given position in the figure.
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Proof. With equal |R| and |U |, p′(h) = a − a′ + b − b′. From above, a =
dαChord log se = d0.5 · log se in the average case. Assuming r = 1, a′ = 1. One
read operation results in a − a′ = d0.5 log se − 1 nodes that do not have to be
contacted. One update operation results in b′ − b = 8 nodes that have to be
contacted additionally, the profit is b−b′ = −8. The number of contacted nodes
over history h is equivalent if b′ − b = a− a′, or updateCost = readProfit. For

general |R||h| , the number of contacted nodes is equivalent if

updateCost · readProfit = readProfit · updateCost

updateCost · |R| = readProfit · |U |

(b′ − b)(a− a′) = (a− a′)(b′ − b)

8 · (d0.5 log se − 1) = (d0.5 log se − 1) · 8

The last equation holds.

Corollary 8. Selecting a lower redundancy than r = 1 requires a higher number
of reads in h for p(h) ≥ 0 than stated in lemma 10 or lemma 11, respectively.

Proof. a′ with r = 1 is a′ = 1. a′ with any r is

a′ = z − 1 =

⌈
s

(r + 1
s−1 )(s− 1)

⌉
− 1

.

a− a′ = dαChord log se −

⌈
s

(r + 1
s−1 )(s− 1)

⌉
+ 1 = dαChord log se − z + 1

a − a′ affects p(h), and a − a′ is lower if r is lower. A r < 1 requires
|R|new > |R|old in the history in order to continue to reduce the total number of
contacted nodes. In order to reach a positive p(h), a high redundancy is optimal
if there are only slightly more read operations than needed. Additionally, if there
are not enough |R|, or if r is chosen too low, lemma 9 is repeated: the total
number of node contacts is not reduced.

Lemma 11. If h has at least the needed share of operations (lemma 10),
p(h) ≥ 0. This modification reduces the number of contacted nodes during Chord
lookup on average if the history has at least (s − 1) read operations for every
dαChord log(s)e − z + 1 update operations. The share of updates in the history

should not exceed dαChord log se−z+1
|h| .

Proof. See lemma 10 and corollary 8. The redundancy r is adapted to this
identified worst case, see equation 6. This modification sets r = 1 proactively,
that is, even though a smaller share would have profited.

Lemma 12. This modification provides advantages within stated limits (see
lemma 11) if the scope is global, and exhibits disadvantages if the scope if local.
Maintaining consistency is a local task and only affects neighbours.
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Figure 48: If the elements of the moving windows were increasing exponentially
in distance and the search distance only contained binary ones, such as 111112,
it would have been known what is accessed together. If all queries arriving at
node E used the same hops, only redundancy would have been applied. But
then, the set of nodes that can make use of RSEC is limited to A, B, C and D.
Even worse, in the case of same number of reads and updates, more elements
need to be found during updates if A never looks up E using the Chord method.

Proof. The cost of contacting the nodes in a moving window during an update is
not d(P ) = |P |·αChord ·logN hops on average, but d(P ) = |P |−1+αChord ·logN
hops.

The rest of this section summarizes some insights because all lemmas are stated.

In relation to the method of Tanin, Harwood, Samet et al. [21, 49, 48, 47],
applying RSEC proves to never have loss in relation to replication if the set
of elements accessed together is stable (lemma 4). In a randomized lookup
protocol, it is difficult to identify such sets of elements. This modification has
to deal with the situation that the elements that are accessed together during
a lookup are nearly unknown. It is only known that there will be small jumps
just in front of the target. This situation differs from the modification affecting
redundant spatial objects (section 3.4.3), where the nodes that will be contacted
for the download of a spatial object are known and listed in P . If the distance
from the initiator to the target were always consisting of ones in the binary
representation (111112), it would have been possible to adapt to such lookups
to a certain length, as shown in figure 48. As this is not the case, the modification
can only capture the lookup at the end of the search.

The entries in finger tables are elements that are accessed together, but
applying RSEC to this set makes no sense since the set only covers one node.

Different to the redundant spatial object case, the number of contacted nodes
is unbalanced in the case of same number of reads and updates, see lemma 10.
This property of the underlying method affects the properties of the piggyback-
ing method. Consequently, applying RSEC only makes sense if history h has
a certain share of reads and updates. It is possible to mitigate the damage by
increasing the redundancy, which lowers the number of contacted nodes during
reads, resulting in a larger profit which is competitive to the number of ad-
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Figure 49: Effects of scope expansion. p was originally 3. This modification to
Chord selects neighbours as participants in a set. Consequently, updates stay
local in the identifier space.

ditional contacted nodes during updates. Otherwise, the modification is only
profitable according to lemma 11.

If no scope expansion is performed, the worst case of an environment, where
only updates exist, does not alter the dependence on locality (b = b′). If scope
expansion has to be performed, this must not hold, but since maintaining con-
sistency can be done locally, the costs are not as high as one may expect.

Applying RSEC can contribute to a lower number of contacted nodes during
Chord lookup. At least β nodes do not have to be contacted, β being dependent
on r and, subsequently, z. Therefore, Chord lookup efficiency is O((1− β

logN ) ·
logN) if RSEC is profitable.

Research question 3 can now be answered:

Research Question 3: How is the exact maximal share of update oper-
ations of a given history h determined so that the introduction of RSEC is still
worthwhile, even if the identified set has been expanded and is distributed over
more nodes than before?

Answer to Research Question 3: This is done by analysing the update
cost and read profit for the operations of the piggybacking method according
to the cost model. Afterwards, this is done by requiring at least as much reads
as the value of the update cost and allowing maximally as much updates as
the value of the read profit (lemma 10). The shares are then normalized by |h|
(lemma 11). If the observed share of update operations in h grows beyond the
allowed share, the application of RSEC with scope expansion is not worthwhile.
Regarding the exact value: Chord lookup is a randomized protocol. Therefore,
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the maximal share is based on the average case. Still, the redundancy is adapted
to lemma 10, which analyses the costs. This allows to guarantee that this
modification is not worthwhile as soon as the share is overstepped in h.

4.3 Analyzing excursus

4.3.1 Synchronizing the fmin level in the Core services layer

Largely, the addition of redundancy as proposed in the section 3.5.2 makes only
sense for read queries, as the costs for updates are prohibitive except for special
cases.

The parameter fmin is paramount in determining whether this modification
is an improvement. If fmin is small, the cost of updates is reduced since less
updates can be expected. Increasing fmin trades available bandwidth rapidly if
this modification is used. The delay time of sending the next device is affect-
ing the bandwidth used per time interval. Economic use of the bandwidth is
made by delaying the synchronization of the global state until an update has
crossed the whole ring. Still, in the majority of cases, the global synchronization

makes no sense since the required redundancy has to be at least dimfmin

O(log p) · 100%

(p=number of participants, dim=dimension 4 or 8). fmin being close to zero is
the special case where this modification reduces the difference of costs between
read and updates enough to be paying off.

4.4 General reflections

4.4.1 History h

The size of the history must adhere to two requirements. First, the history
must represent enough events in order to estimate the proportion between read
operations and update operations. Secondly, it must not be too long, as it must
cope with recent developments. The choice of |h| does not affect much since
equation 6 tries to optimize for storage that is not included in the cost model.
Still, there are some thoughts that need to be communicated:

It is impossible to define any optimal length in relation to the future as the
history is an online statistic. The future is not ours to see.

The number of accesses is balanced over history h if p(h) = 0. If the propor-
tion between optimal number of reads and the optimal number of updates can
not be represented, then |h| is too small. For example, using the values from
lemma 11, s−1 reads are opposed to dαChord log(s)e−z+1 updates. Reflecting
the share is therefore possible if |h| is at least s−1+dαChord log(s)e−z+1. For
s = 9, the working number |h| = 50 of this thesis is a conservative approach.

Too long histories may not adapt to a new situation. The impact could be
mitigated by limiting the length of the history to a maximal age. But by intro-
ducing this requirement, all participants need to have their clocks synchronized.
While this proves to be an avenue for further research, the scope of the thesis
remains on determining whether the method makes sense in terms of number of
contacted nodes or not. More accurate prediction only broadens the restrictions
on the share of reads and updates, and does not alter the conclusion that ap-
plying the method can reduce the number of contacted nodes, even in the light
of updates.

84



If the set of elements listed in h is expanded, more accurate adaption is
possible. For example, JUMP could be introduced. JUMP would state that
the node could jump to the full information case because enough devices were
available for successful reconstruction. Again, better adaption only broadens
the restrictions and the conclusion of this thesis is not affected.

4.4.2 Parallelism

Parallelism defies the use of redundancy. If a collected information piece does
not increase the information available to a common pool, but to an isolated one,
the advantages of RSEC are restricted to each isolated pool.

Still, especially in the case of the method of Tanin, Harwood, Samet et al.
[21, 49, 48, 47], using RSEC brings advantages. The nodes that would cause the
highest number of Chord lookups are likely the last to respond to the issuing
node and are not needed as soon as enough devices are collected.

4.4.3 Effects of data sharing between moving windows on address
discovery

Data sharing between moving windows is possible since each node attaches
devices of all moving windows, of which the node is participant of, to messages.
As a matter of fact, situations such as in figure 37 allow for an improvement
over the worst case that was analyzed. The worst case is the case where only
information from a single moving window is available. The net effect is that
contacting one node results in the knowledge of a moving window of size s′ =
s+ r · L+ r ·Rwin.

Even though the change would alter the needed ratio of read operations to
update operations for p(h) ≥ 0, this more accurate prediction would not alter
the conclusion that applying the method of this master thesis can reduce the
number of contacted nodes, even in the light of updates.

4.4.4 Effects of RSEC on overall performance

Overall performance is dependent on a large number of variables that are a
candidate for being optimized. Query delay, data transfer costs, connection
establishment costs, per-query network traffic (M in [9]) and even message dis-
tribution are only a few. My cost model only captures the number of contacted
nodes since it is assumed that the connection establishment delay is significant
in relation to subsequent data transfer time costs. As a consequence, the aim
is for a lower number of affected nodes during a query. According to Blanas et
al. [9], average per-query network traffic is reduced most if the query affects as
few nodes as possible. As a consequence, a smaller number of contacted nodes
is preferable over more even message distribution as the network scales [9].

Regarding total amount of data: RSEC introduces redundancy in order to
reduce the number of contacted nodes if possible. This is a tradeoff. The net-
work usage and storage usage finally dictate whether RSEC should be favoured
or not. If network congestion occurs, applying RSEC can be favourable since less
nodes are contacted. If storage space is the limiting factor, storing additional
redundancy makes no sense.

If the case of r = 1 were prohibitive, then the method of Tanin, Harwood,
Samet et al. [21, 49, 48, 47] would be prohibitive, too. Applying RSEC to
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Chord is not prohibitive regarding the amount of data since the data devices
occupy only a few bytes.

Summarizing, whether to apply RSEC or not depends on the limiting factors
of the applied system. As these factors are considered to be unknown, no
general recommendation regarding the usage of RSEC can be given, even though
advantages in exactly defined situations are derived analytically in this thesis.

4.5 Conclusion

Regarding the download of spatial objects, applying RSEC does not result in
additional costs in relation to the method of Tanin, Harwood, Samet et al.
[21, 49, 48, 47]. If scope expansion is done in order to piggyback RSEC to an
underlying method, the number of nodes contacted is always lower if there are
only reads. If there are additionally updates, the share of update operations
must not be larger than the share of read operations over a history h. For

the introduced modification the share of updates is dαChord log(s)e−z+1
|h| and the

share of reads is s−1
|h| (s being the window size). Even though RSEC increases

the number of contacted nodes during updates, scope expansion continues to be
affordable if the restrictions on h are met.

The introduced modification affecting the download of the spatial objects
shows that there is never a loss in terms of number of contacted nodes in re-
lation to the method of Tanin, Harwood, Samet et al. [21, 49, 48, 47], even if
the task of maintaining consistency is included [33]. This applies only if the
same redundancy is used in both the underlying method and the piggybacking
method. Actually, the application of RSEC results in the freedom to use more
granular redundancies.

The number of links per node stays the same for the modification introduced
in section 3.4.3. The modification affecting Chord has different properties. The
number of links per node is not the original O(logN) [44], but is increased by
2 · s− 1 to O(logN + 2 · s− 1), because the node is additionally part in moving
windows to the left and to the right. This is if the predecessor and the successor
are ignored since they belong to the lower layer. Otherwise, the number is
increased by 2 · s− 3.

The analysis focussed on worst cases if possible. I expect that the advan-
tages are even greater than this analysis has documented.

With the contribution of this analysis (section 4), it has become possible to
solve the second main problem of this master thesis, this is how the benefit of
an application of redundancy (II) is calculated and assessed. 8

8In order to answer this main question, section 4 has to be read. In order to avoid a
recursion, it is recommended to stop reading section 4 now.
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5 Outlook

During analysis, worst case situations were assumed. In the light of research
literature, applying the general and optimal forward error correcting system
RSEC as it was done in this thesis becomes a bad choice. For example, Tornado
codes prove to be an interesting alternative to RSEC because of their speed [10].
Tornado codes share many properties with RSEC, such as recovering devices.
But Tornado codes can only reconstruct the set if n + ε devices are gathered.
Byers et al. [10] assessed during 10000 trials that the inefficiency of Tornado
codes was 1.0536 on average, with a maximum of 1.1 and a standard deviation
of 0.0073 [10]. Including Tornado codes would affect z and, subsequently, p(h).

RSEC has to contact all checksum devices since every checksum device is
dependent on all data devices. Shahabinejad et al. [40] and Sathiamoorthy et
al. [38] reduce the high repair cost. The effects of an inclusion of this approach
would be manifold and would affect both r and the required share of updates
in h.

Improving the adaption of r would be an interesting challenge, too. The
optimal definition is recursive and needs to include more information in h. The
communication across moving windows motivates the need to introduce JUMP.
r is affecting and affected by the statistics of neighbouring moving windows.

The piggybacking of erasure coding with its locality-reducing properties on
underlying methods is an interesting task. Since there are many settings in a
distributed spatial database where commonly accessed elements occur, and since
scope expansion can be performed, the methodology presented in this thesis can
be used to reduce the dependence on locality for more than the two proposed
modifications.
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6 Summary

GIS-2 systemes have requirements that are defined by the concerns of the public
good [45]. The requirements motivate the need for a self-organizing, decentral-
ized spatial database. Even the optimization of the most basic queries such as
range queries is difficult since the optimal allocation of fragments of the spatial
database is a difficult problem.

The research has focussed on striving for more locality properties or on
caching. The effects of introducing redundancy on locality, however, are little-
known. This thesis introduces an overlay enriched with redundancy. The ap-
plication of such an overlay results in less dependence on locality. It is shown
that such an overlay results in a smaller number of contacted nodes per query
if only read requests on objects are made. There is a maximal ratio of updates
that may be tolerated in the history of queries if the overlay should stay prof-
itable in terms of number of contacted nodes, especially if the overlay has to
alter underlying structures in order to be able to apply redundancy. This thesis
derives how this ratio of updates is determined exactly.

The results of the application of redundancy are less contacted nodes during
a Chord node lookup. Additionally, I provide the possibility of fast parallel
object acquisition in the context of the method of Tanin, Harwood, Samet et
al. [21, 49, 48, 47], because every information piece is new knowledge. With
my method, it is not required to perform a complete download at a single node
anymore.

Furthermore, the effect of redundancy as applied by the overlay method of
this thesis that employs RSEC is analyzed thoroughly.

The resulting system supports basic queries of a GIS-2 more efficiently. The
automatic organization of spatial data is an automatic process since data is
sorted according to a tree. Furthermore, the Connectivity layer uses Chord, a
decentralized lookup protocol. The Core services layer enables resource discov-
ery and data insertion through a decentral Quadtree or Octree.

Such a system is beneficial for a public that wishes to participate in a global
spatial database. It becomes possible to get an impression of what is going on,
and it becomes possible to participate by contributing to the spatial database
[45]. As a matter of fact, the necessary feedback loop is closed [25].

The advantages stemming from the self-organization of Chord [44] make
the operation of the spatial database a simple matter, and thereby ease the
entry. Additionally, the system is resilient and supports network partitioning,
an important advantage in areas with low access speeds to the global internet
[16, 27, 46]. My performance improvements resulting from more locality of the
system further lower the barrier to adoption. Building a system that promotes
participation and informed citizens and which is usable for the general public
nourishes and promotes the possibility for a sustainable, functional democracy
[45].

The goals of a GIS-2 such as democratic societies or community-defined goals
have become more possible by the contribution of this thesis [45].
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Iα : Research concentrated around the idea of making use of hierarchies.
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A : Vandermonde matrix with elements ai,j
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a : The number of nodes that have to be contacted for a read operation in
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a′ : The number of nodes that have to be contacted for a read operation in
the piggybacking method

αi : Element i of a Galois field

αChord : From Chord [44], altering the path length by αChord = 0.5

B : Information dispersal matrix with elements bi,j

B′ : Information dispersal matrix with n selected rows

b : The number of nodes that have to be contacted for an update operation
in the underlying method

b′ : The number of nodes that have to be contacted for an update operation
in the piggybacking method

β : The number of nodes that do not have to be contacted during a Chord
lookup with the piggybacking method. Without the piggybacking method,
β=0

C : Vector of checksum words with elements ci. c′i is a copy of ci. c′′i is an
updated element of vector C.

D : Vector of data words with elements di. d
′
i is a copy of di. d

′′
i is an updated

element of vector D.
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λ : A node in the DHT

MBR : Minimum bounding rectangle

m : number of checksum devices

µ : A node in the DHT

n : number of data devices

N : Total number of participants in the Chord DHT

O(logN) : Chord lookup contacts logN nodes on average

o : Doubly linked lists reside at level o of the Skip graph of Goodrich et al.
[17]

P : List of p nodes participating in a set encoded with erasure coding with
nodes labeled p0, p1, et cetera.

p : Number of participants in an RSEC-encoded set, p = |P |. For the modifi-
cation of section 3.4.2, p = |P | = s. For the modification of section 3.4.3,
p = |P |. For the modification of section 3.5.2, p = |P | = N . In figure 32,
p = 4.

p(h) : The profit according to the cost model

Q : Power of an element in a Galois field
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qd : Number of missing data devices in the context of section 3.3.4

qc : Number of missing checksum devices in the context of section 3.3.4

R : Read operation affecting a set of devices, possible element of h. |R| is the
number of read operations listed in h.

Rwin : Number of elements right of node defining a moving window.

RSEC : Reed-Solomon erasure coding [35]; the RAID-like algorithm calculating
checksum devices and restoring data devices [31, 32]

r : Redundancy. r = 1 is equivalent to full replication over all p participants

r in percent : 100% needs twice as much storage than the set of data devices needs

rmin : Each participant holds one data device and one checksum device

S : Spatial object in the context of the method of Tanin, Harwood, Samet et
al. [21, 49, 48, 47]

s : Size of the moving window

t : Parameter defining the size of the Chord identifier space

tC : Target node of a Chord node lookup

tG : Node on which a spatial object or a part thereof is stored on.

tM : The first contacted node in a moving window.

T : Maximal number of objects in a bucket (from [37])

U : Update operation affecting a set of devices, possible element of h. |U | is
the number of update operations listed in h.

uj : Element j of matrix A.

V : A variable in a system of equations (actually a data word)

v : v-way redundancy is v · 100% redundancy

W : A variable in a system of equations (actually a data word)

w : Word size of a word in bits

X : Coordinate on first dimension

Xi : Power representation of an element of a Galois field

Y : Coordinate on second dimension

Z : Coordinate on third dimension

z : Number of nodes that have to be contacted for the successfull reconstruc-
tion of the data devices (equation 7 on page 57)
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