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Abstract 

 

Saxaul (Haloxylon ammodendron) is an important component of the ecosystems in the 

Dzungarian Gobi and provides various ecosystem services including counteracting 

desertification, habitat provision, and source of food for both livestock and wildlife. However, 

with the ongoing decrease in spatial extent and density of the saxaul forests in the Mongolian 

Gobi, exhaustive monitoring of saxaul forests is urgently needed. 

Remote sensing data are characterised by repeated observations and high spatial coverage, 

making them a potential data source for monitoring saxaul forests. In this methodologically 

exploratory thesis, I attempt to map density and distribution of saxaul forests in the Great Gobi 

B Strictly Protected Area (GGB SPA) using Sentinel-1 and Sentinel-2 data. Furthermore, the 

added value of combining optical and SAR data and the importance of variables for mapping 

saxaul should be determined. The Google Earth Engine (GEE) was used for processing and 

analysing satellite data over several years for the study area of 18’000 km2.  

First, several methods were compared to determine the saxaul density near the Khonin us 

ranger station, including Random Forest regression and linear spectral mixture analysis 

(LSMA) with algorithm-extracted and RTM-simulated endmembers. Close-range camera 

images and a high-resolution SkySat-4 image were used for validation. The density estimation 

was carried out for August 2021. It was attempted to distinguish plant species from each other 

using the estimated density and additional variables in two oasis complexes, Takhi us and 

Khonin us. Second, a classification of the dominant vegetation communities in the GGB SPA 

took place to determine the potential spatial distribution of saxaul forests using a Random 

Forest classifier. To assess the influence of variable types on model performance, groups of 

variables were formed from Sentinel-1 and Sentinel-2 bands, various indices, temporal, and 

textural variables. For training and validation, vegetation plots from a previous mapping were 

used, which are spatially distributed over large parts of the GGB SPA. The vegetation 

community mapping was conducted for 2019 and 2020. 

The most spatially consistent estimation of saxaul forest density was achieved with LSMA of 

Sentinel-2 data, for which a combination of algorithm-extracted soil and RTM-simulated 

vegetation endmembers was used (R2 = 0.29 and 0.25, RMSE = 10 and 4% for two validation 

plots, respectively). However, the distinction of plant species in two oasis complexes was not 

possible. The most important variables for mapping the possible spatial distribution of saxaul 



forests (PA = 0.74 and UA = 0.64, average values over both years) included elevation and 

temporal variables, followed by textural and SAR variables. The spatial extent of saxaul forests 

in the GGB SPA was estimated at 8’141 and 8’323 km2 for 2019 and 2020, respectively. 

The results show that the density estimation of the saxaul forests in the Dzungarian Gobi is 

feasible using freely available medium-resolution satellite data and that the possible spatial 

distribution of saxaul forests in the GGB SPA can be roughly delineated. 
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1 Introduction 

Motivation 

Saxaul (Haloxylon ammodendron) is an important component of the ecosystems in the 

Dzungarian Gobi and one of the dominant woody plant species in Asian deserts (Huang et al., 

2003), where it is sometimes the only forest component (Enkhchimeg et al., 2020). The saxaul 

trees provide a wide range of ecosystem services, such as slowing down wind speed and 

fixating sand, counteracting soil erosion and desertification (Huang et al., 2003; Khaulenbek 

et al., 2018). The trees provide a habitat for insect species and facilitate the settlement of other 

plants (Batchuluun et al., 2020; Enkhchimeg et al., 2020). Saxaul is an important source of 

food for both livestock and wildlife, e.g., the focal species Khulan (Equus hemionus) (Burnik 

Šturm et al., 2017). Furthermore, the local human population uses saxaul forests to extract 

firewood (Khaulenbek et al., 2018). 

Biodiversity is often difficult to restore in arid ecosystems once degradation has occurred 

(Zheng and Wang, 2014). Therefore, monitoring changes in ecosystems is important to assess 

their general condition (Lee et al., 2021). Mapping of saxaul forests and its changes can help 

to understand the state of the Mongolian Gobi and the effects of climatic and anthropogenic 

pressures on the ecosystem (Kazantseva et al., 2012). Suvdantsetseg et al. (2008) reported a 

50% decrease in saxaul forest extent in the Mongolian Gobi between 1969 and 1994. 

Khaulenbek et al. (2018) observed a trend from dense to sparse forest since the 1970s. In light 

of these developments, several calls for further research have been made. 

For some time now, there has been the suggestion to monitor saxaul more closely, especially 

in protected areas (von Wehrden et al., 2009). Khaulenbek et al. (2018) criticised that basic 

research on the spatial distribution of saxaul is still insufficient. Correspondingly, saxaul forests 

are a research priority of the Great Gobi B Strictly Protected Area (GGB SPA) as a key habitat 

(Ganbaatar et al., 2019). 

Previous work 

Remote sensing data are characterised by repeated observations and high spatial coverage and 

are therefore ideally suited for mapping large areas (Joshi et al., 2016). Hence, remote sensing 

can be a potential data source for mapping saxaul forests (Batsaikhan et al., 2020). Many of 

the medium-resolution satellite data are freely available. Sentinel-1 (S-1) and Sentinel-2 (S-2), 



1 Introduction 

2 
 

part of the European Space Agency’s (ESA) Copernicus program, provide synthetic aperture 

radar (SAR) and optical data with up to 10 m resolution and revisit times of up to 5 days 

(Aschbacher, 2017; Gascon et al., 2017; Torres et al., 2012). The combination of spectral, 

spatial, and temporal information allows for a detailed investigation of the spectral reflectance 

properties and texture of the earth's surface, as well as the phenology of plants (Cheng and 

Wang, 2019). 

In the past, satellite remote sensing data were used for several mappings covering the 

Dzungarian Gobi. A vegetation map for the former extent of the GGB SPA using Landsat-7 

(L-7) data was prepared almost 20 years ago, showing the distribution of saxaul (von Wehrden 

and Gungalag, 2003). From today’s perspective, the map is no longer particularly up-to-date, 

and in 2019 the area of the GGB SPA was doubled (Ganbaatar et al., 2019). The global forest 

cover change map based on Landsat-8 (L-8) data by Hansen et al. (2013) has attracted a lot of 

attention from the remote sensing community. However, the product is limited to forest areas 

with a minimum height of 5 m and a minimum density of 25% canopy closure per pixel 

(Hansen et al., 2010) - requirements that sparse saxaul forests do not often meet. Heiner et al. 

(2015) created a freely accessible web-based geographic information system (GIS) for the 

Mongolian Gobi by combining various data sources. It provides information on biogeographic 

regions, ecosystem types, and landforms with a resolution of about 80 m. In particular, one 

ecosystem type explicitly refers to saxauls, but isolating single saxaul communities is 

impossible from the dataset. Nyamsuren et al. (2019) used space-born Global Precipitation 

Mission dual-frequency precipitation radar (GPM DPR) data for vegetation monitoring in 

Mongolia. However, the spatial resolution of 5 km is too low to provide information about 

saxaul forests on a local scale. The ESA WorldCover product provides a global land cover 

classification based on S-1 and S-2 data (Zanaga et al., 2021). Despite remarkable preciseness 

for certain areas, the vast majority of the Dzungarian Gobi is classified as barren or sparsely 

vegetated. Recently, Chuluunkhuyag et al. (2021) published a classification of the Dzungarian 

Gobi based on the dominant vegetation communities. However, the classification is based on 

L-8 data from 2015, and saxaul cannot be isolated as a separate species. Meng et al. (2021) 

used Landsat time series to quantify desertification processes in Mongolia for the period from 

1990 to 2020. However, no explicit conclusions can be drawn about the distribution of saxaul. 

Despite these numerous approaches, there is still a lack of an up-to-date and explicit saxaul 

mapping that covers the entire current area of the GGB SPA with moderate spatial resolution. 
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Also, it remains unclear to date which methods are most appropriate for S-1 and S-2 data to 

address this open issue and what is the added value of combining optical and SAR data. 

Aims and objectives 

The purpose of this thesis is to explore the potential of combining S-1 and S-2 data for mapping 

saxaul from 2019 to 2021 with a specific focus on applying different remote sensing 

approaches. The thesis is divided into two parts. First, it is to be investigated which methods 

are most suitable to estimate the density of saxaul on the pixel level. Due to data availability, 

the saxaul density estimation is carried out for August 2021. Second, I repeated the mapping 

of vegetation communities by Chuluunkhuyag et al. (2021) with S-1 and S-2 data with a higher 

spatial resolution to assess the importance of individual predictor variables and the added value 

resulting from the inclusion of additional variable types and SAR data. This mapping is carried 

out with the data of 2019 and 2020. 

The methodological focus lies on machine learning classification and regression as well as 

linear spectral mixture analysis (LSMA). The Google Earth Engine (GEE) allows for large-

scale and fast processing of remote sensing data and provides access to complete archives of 

various sensors without the need for downloading (Amani et al., 2019; Gorelick et al., 2017) 

and is frequently used for vegetation mapping applications (Campos-Taberner et al., 2018; Jin 

et al., 2019). 

Research questions 

Two main challenges in mapping saxaul were identified. First, the saxaul trees mostly grow in 

sparse communities, therefore, the target is often smaller than the resolution of the satellite 

data. Second, distinguishing between different shrub species is difficult, especially if no 

extensive field data is available. For me, this results in two research questions: 

1) How can the saxaul density be estimated most accurately on the pixel level? 

2) How accurately can the vegetation community distribution be mapped using moderate-

resolution satellite remote sensing data? 

To answer the first research question, a test area near the Khonin us ranger station is 

investigated. This spatial limitation is due to the availability of field data. The mapping of 

vegetation communities takes place for the whole area of the GGB SPA. 
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Outline 

This thesis is structured as follows: in materials, the study area and the saxaul are introduced 

in more detail followed by an overview of the available data and their respective pre-

processing. In methods, the saxaul density estimation and the vegetation community mapping 

are explained step by step. In results, the outcomes of the analyses are presented. The discussion 

consists of four parts, focusing on data issues, the two practical parts, and future possibilities 

for improving saxaul mapping approaches. The conclusion summarises the most important 

findings. 
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2 Materials 

2.1 Study area 

Dzungarian Gobi 

The Dzungarian Gobi is a semi-desert basin located in south-western Mongolia and lies at an 

altitude of 1’100 to 3’400 m.a.s.l. (Shukherdorj et al., 2021). Strong seasonal variations in 

temperature and precipitation characterise the temperate continental climate (Kaczensky et al., 

2008). The average temperature is -0.5°C with minimum and maximum temperatures of -40 

and 40°C and annual precipitation is approximately 100 mm/a (ibid.). The climatic conditions 

are strongly influenced by the basin’s topography (Chuluunkhuyag et al., 2021). The lack of 

screening mountains towards precipitation from the West represents unique topographical 

conditions in Southern Mongolia and leads, for example, to a relatively large amount of snow 

in winter (von Wehrden et al., 2006). 

Biodiversity in both plant and animal species is high due to a topographically determined 

multitude of land cover types, including wetlands, saline sites, steppes, and meadows 

(Chuluunkhuyag et al., 2021; Shukherdorj et al., 2021). The Dzungarian Gobi represents a 

specific phytogeographical region of Mongolia (Shukherdorj et al., 2021) and is home to a 

unique composition of species (von Wehrden et al., 2006). A longitudinal gradient dominates 

plant species distribution in altitude (Chuluunkhuyag et al., 2021) with low local heterogeneity 

of most vegetation types (von Wehrden et al., 2006). At lower elevation, vegetation is mainly 

limited to drainage lines and other water-storing areas, such as sand dunes (von Wehrden et al., 

2009), since surface waters are rare (Kaczensky et al., 2011). Common ungulate species include 

black-tailed gazelles (Gazella subgutturosa), Asiatic wild ass (Equus hemionus), argali (Ovis 

ammon) and ibex (Capra sibirica). The large predator community consists of grey wolves 

(Canis lupus) which are common and lynx (Lynx lynx) and snow leopard (Uncia uncia) which 

are much rarer (Kaczensky et al., 2008).  

Great Gobi B Strictly Protected Area 

The GGB SPA, founded in 1975 to conserve the Dzungarian Gobi ecosystem and ensure its 

sustainable development, covers about 18’000 km2 (Ganbaatar et al., 2019). It is also known 

for a successful reintroduction project of Przewalski horses (Equus ferus przewalskii) that 

started in the 1990s (Kaczensky et al., 2017). 
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Despite its protection status, the GGB SPA is not uninhabited. Local herder families and their 

livestock use the protected area primarily in winter and during spring and fall migration, and 

border patrol personnel is stationed at three stations along the Chinese-Mongolian border 

(Michler et al., 2022). 

Regional ecosystem threats 

Arid ecosystems are vulnerable and their restoration is complex, often leading to a decrease in 

biodiversity once disturbance has occurred (Zheng and Wang, 2014). Human and non-human 

factors threaten Mongolian drylands, such as road construction, mining, the absence of long-

term land management planning, the lack of financial resources for reforestation, and the 

grazing pressure of an increasing livestock population (Khaulenbek et al., 2018).  

In the GGB SPA, illegal mining, poaching, and the illegal use of woody plants like saxaul for 

heating are threatening the fragile ecosystem (Ganbaatar et al., 2019). In addition, the combined 

grazing by wild animals and rapidly increasing livestock can negatively impact the sparse 

vegetation, although grazing pressure is not as severe in the GGB SPA as in other protected 

areas in Southern Mongolia (Michler et al., 2022).  

2.2 Saxaul (Haloxylon ammodendron) 

Distribution 

Saxaul belongs to the dominant plants in Asian deserts at an altitude between 1’030 and 1’710 

m.a.s.l. (Huang et al., 2003; Shukherdorj et al., 2021). Saxaul trees are the largest carbon stock 

in Southern Mongolia and Central Asia (Batsaikhan et al., 2020). In Mongolia, the area covered 

by saxaul forests is estimated at approximately 20’000 km2 (FAO, 2020, 2014; Government of 

Mongolia, 2018). However, there is no unique definition of the term saxaul forest. On the one 

hand, it can be defined as an area of at least 1 ha with trees higher than 1 m and with a total 

canopy cover of at least 4% (FAO, 2020). On the other hand, it is common practice to consider 

all sparse communities of saxaul trees as forests (Khaulenbek et al., 2018).  

Several studies have documented changes in saxaul distribution over the past decades. Since 

the 1970s, a large-scale increase in sparse and a decrease in dense saxaul forests has been 

observed (Khaulenbek et al., 2018). Other researchers reported a decrease in saxaul forest 

extent of 50% between 1969 and 1994 (Suvdantsetseg et al., 2008). It is assumed that the 
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combined effects of climate change and human impact are the main drivers of these 

developments (Kazantseva et al., 2012). 

 

Figure 1: A relatively large saxaul tree in front of a Great Gobi B Strictly Protected Area ranger. Image credits: Great Gobi B 
Strictly Protected Area rangers. 

Physiology and resistance 

Saxaul trees are stem-succulent shrubs (Nyongesah et al., 2015) with a typical height of 40-70 

cm (Chuluunkhuyag et al., 2021). Tree heights above 2 m are rare (von Wehrden et al., 2009). 

The leaves are usually degenerated, and photosynthesis occurs in young twigs, so-called 

assimilating branches (Nyongesah et al., 2015). Correspondingly, the chlorophyll 

concentration in saxaul branches is low compared to other species (Li and Wang, 2013). The 

phenology, e.g., the moment of green-up, is in close relationship with the amount of 

precipitation (Ganbaatar, 2021, personal communication). 

Most of the water demand of saxaul trees is met by accessing the near-groundwater layer (Wu 

et al., 2019). Subsequently, groundwater availability is closely associated with saxaul 

distribution and height (Batsaikhan et al., 2020; von Wehrden et al., 2006). Saxaul trees favour 

coarse-textured soils with a high fraction of sand, as they allow for the growth of deep root 

systems up to 10 m improving access to groundwater (Zou et al., 2010). 

In the Dzungarian Gobi and elsewhere, saxaul trees grow and survive under harsh conditions 

including droughts and saline soils (Khaulenbek et al., 2018; Wu et al., 2019). Even during 

long-lasting droughts or after high precipitation events, the photosynthetic activity of saxaul 

remains relatively stable through morphological adjustment (Xu and Li, 2006). The processes 

of morphological adjustment allow the plant to react to changes in water availability by shoot 
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defoliation or root system adjustment (Zou et al., 2010). Additionally, saxaul is a xero-

halophyte, which means the plant can resist high salinity (Huang et al., 2003). Adapting to high 

salinity includes salt avoidance, tolerance, and evasion (Ramadan, 1998). 

2.3 Software and processing environments 

In this thesis, the GEE JavaScript API (https://code.earthengine.google.com/) was used for the 

(pre-)processing and analysis of large amounts of satellite data. QGIS 3.20.3 Odense (QGIS 

Development Team, 2021) was used for smaller image analysis and visualisation tasks. Most 

of the machine and deep learning model optimisation and data visualisation tasks were done 

locally in a Python environment. The most important packages included the following: Scikit-

learn 0.22.2 (Pedregosa et al., 2011) for machine learning, Keras API 2.4.3 (Chollet, 2015) 

running on top of TensorFlow 2.3.0 (TensorFlow Developers, 2022) for deep learning, and 

Rasterio 1.2.10 (Gillies, 2019), GeoPandas 0.10.2 (Jordahl et al., 2014), and seaborn 0.11.2 

(Waskom, 2021) for visualisation. I used MATLAB 2021a (MathWorks, 2021) for the 

extraction of endmembers and running the Automated Radiative Transfer Models Operator 

(ARTMO) toolbox (Verrelst et al., 2012) to simulate vegetation spectra. ArcGIS Pro 2.8.3 

(ESRI Inc., 2021) was used to determine spatial autocorrelation (SAC). 

2.4 Field data and reference map 

2.4.1 Forest inventory 2020 

Three different institutions conducted forest inventories on behalf of the Forest Research and 

Development Center (FRDC) for the Altai, Bulgan, and Üyench sums of the Khovd aimag in 

2020 (Khatant Forest LLC, 2020; Munkh Nogoon Joodoo LLC, 2020; Zaluu Tugul LLC, 

2020). The non-public database contains the location, height, crown area, and species 

information of trees recorded in groups of four circular sampling plots with a radius of 14.5 m 

each 50 m apart (Figure 2). 

The total number of trees, the number of saxaul trees, and the total crown area for each plot 

inside the GGB SPA boundaries were calculated. Only trees not lacking necessary properties 

for these calculations, e.g., plot assignment, species, and crown radius information, were 

considered. The resulting dataset consists of 47’220 trees and 5’924 plots. Over 95% of the 

trees are labeled as saxaul and over 90% of the plots only contain saxaul trees. 
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Figure 2: Spatial distribution of the plots of the forest inventory 2020. The locations of the plots in the Altai, Bulgan, and 
Üyench sums of the Khovd aimag, Dzungarian Gobi, are indicated by black dots. The dashed red line represents the 

boundaries of the Great Gobi B Strictly Protected Area. 

2.4.2 Vegetation plots across the Dzungarian Gobi 

Chuluunkhuyag et al. (2021) used a collection of plots located in the GGB SPA and the 

northern surroundings to create a landcover and vegetation community map of the Dzungarian 

Gobi (Figure 3). Oyundari Chuluunkhuyag provided access to the plot collection. 

The collection consists of 644 plots of a size of 10 x 10 m. For each plot, information about 

land cover, dominant vegetation community, species richness, and fractional vegetation cover 

(FVC) is available. 151 plots contain saxaul trees, of which 6 plots are exclusively populated 

by saxaul.  

Figure 4 provides an overview of some of the plot’s key attributes. Most plots are only sparsely 

vegetated. Usually, the vegetation is not homogeneous but consists of several plant species. 

Most plots are located at an altitude between 1’000 and 2’000 m.a.s.l. and in a steppe or desert 

environment.  
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Figure 3: Spatial distribution of the vegetation plots provided by Oyundari Chuluunkhuyag. The black dots represent the 644 
plots. The dashed red line represents the boundaries of the Great Gobi B Strictly Protected Area. 

 

Figure 4: Histograms of key attributes of the vegetation plots provided by Oyundari Chuluunkhuyag. For most plots, the 
vegetation consists of several species and the fractional vegetation cover is lower than 50%. Most plots are located at an 

altitude between 1’000 and 2’000 m.a.s.l. and in a steppe or desert environment. 

2.4.3 Monitoring plot near Khonin us ranger station 

In consultation with co-supervisor Petra Kaczensky, a monitoring plot of a size of 5 x 5 km2 

was set up within the GGB SPA, close to the Khonin us ranger station. In a field survey taking 

place from June 24th to July 1st, 2021, GGB SPA rangers recorded all vegetation exceeding 20 

cm in height along pre-defined transects with a width of 1 m to the left and right (Figure 5). 

For each record, the rangers determined plant species and height and used Garmin GPSMAP 

and/or eTrex Global Positioning System (GPS) devices to assign coordinates. Pictures were 

taken regularly with Xiaomi Redmi Note 8 and Samsung Galaxy A10s phones.  
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The results of the field survey consist of 10’327 records and 314 pictures. Of all entries, only 

29 were assigned to a species other than saxaul, of which 28 were tamarisk (Tamarix 

ramosissima) and 1 was salsola (exact species not known). The vegetation is usually smaller 

than 1 m (Figure 6). 

 

Figure 5: Spatial distribution of the Great Gobi B Strictly Protected Area ranger records. The black dots represent the 
locations of shrub vegetation recorded in a field survey along pre-defined transects with a width of 1 m to the left and right 

in the eastern part of the Great Gobi B Strictly Protected Area. 

 

Figure 6: Histogram of tree heights of the Great Gobi B Strictly Protected Area ranger records. Most shrubs recorded in a 
field survey are smaller than 1m. Outliers with a height of more than 250 cm are not shown. 

2.4.4 Phytosociological vegetation map 

Von Wehrden and Gungalag (2003) classified the extent of the GGB SPA (before the 2019 

expansion) according to a phytosociological system. They have used numerous vegetation plots 
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and L-7 data to train a maximum likelihood algorithm. The georeferenced data with a spatial 

resolution of approximately 15 m was available (Figure 7). 

 

Figure 7: Spatial extent of the reference map by von Wehrden and Gungalag (2003). The old and new boundaries of the 
Great Gobi B Strictly Protected Area are included for orientation. Saxaul forests according to the reference map are shown 

in dark green color. 

2.5 Remote sensing data 

2.5.1 Sentinel-1 

Data characteristics 

The Copernicus Sentinel-1 (S-1) mission consists of two identical polar-orbiting satellites 

carrying Synthetic Aperture Radar (SAR) sensors launched in 2014 and 2016, respectively 

(Potin et al., 2019). The sensors operate at 5.405 GHz, providing VV/VH dual-polarisation 

imagery with a revisit time of six days and a pixel spacing of 10 m (Rüetschi et al., 2021; Torres 

et al., 2012). SAR sensors are active systems that emit radiation for illumination, which makes 

them independent from solar illumination (Filipponi, 2019). The ability of the emitted radiation 

to penetrate through clouds heavily reduces the effect of weather conditions on data availability 

(ibid.). The signal recorded by the sensor is the result of the interaction between the emitted 

signal and the target on the ground, providing information about its backscattering properties 

(Mandal et al., 2020). Vegetation backscatter is mainly caused by volume scattering 

(Vreugdenhil et al., 2018). S-1 data are frequently used for vegetation applications, including 

forest research (Soudani et al., 2021; Weber et al., 2020), biomass estimation (Periasamy, 
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2018), crop growth monitoring (Mandal et al., 2020), and land cover mapping (Carrasco et al., 

2019). 

Pre-processing 

Several pre-processing steps are required to obtain an S-1 Analysis Ready Data (ARD) product 

from the S-1 Ground Range Detected (GRD) product (Truckenbrodt et al., 2019) (Figure 8). A 

framework implemented in the GEE allows the user to select the data of interest and define 

both the pre-processing steps to be included and the parameter values to be used (Mullissa et 

al., 2021). 

 

Figure 8: Pre-processing steps of Sentinel-1 data. Blue boxes represent data, and white boxes represent steps and list the 
tunable parameters of each step. 

For the study period from April to October 2019 and 2020, I selected all S-1 GRD images that 

overlap the GGB SPA for each month individually. Figure 9 shows the number of available 

images. Due to the observation scenario, parts of the GGB SPA are almost never covered by 

images acquired from an ascending orbit. Therefore, only images acquired from a descending 

orbit were used to ensure consistency in the data and exhaustive spatial coverage. 
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Figure 9: Monthly image availability of Sentinel-1 data. All images overlapping the Great Gobi B Strictly Protected Area 
during the period from April to October 2019 and 2020 were aggregated per month. The colors refer to the orbit from which 

the images were taken. 

Not all artefacts in the images get fully corrected by the border noise correction which is applied 

by default to all images acquired after March 2018 (Mullissa et al., 2021). Hence, the additional 

border noise correction of the GEE framework was applied. 

Speckle filtering is a standard pre-processing step, as speckle occurs in all SAR images 

(Mullissa et al., 2021). The choice of an adequate filter is crucial, otherwise, structures and 

details in the images can be lost (Chierchia et al., 2017). I used a 15-image multi-temporal 7 x 

7 Refined Lee Filter (RLF) (Lee, 1999), as multi-temporal speckle filtering is recommended 

(Quegan and Yu, 2001) and the type and/or size of the applied filter were also used in previous 

studies (Carrasco et al., 2019; Yommy et al., 2015; You and Dong, 2020).  

Terrain flattening is used to reduce the influence of terrain on the quality of the signal (Loew 

and Mauser, 2007). The present framework applies an angular-based slope correction (Vollrath 

et al., 2020) because the use of the terrain-flattened gamma nought (γ 0 ) backscatter (Small, 

2011) is not possible in the GEE. For the radiometric terrain normalisation, I used the volume 

terrain flattening model and the National Aeronautics and Space Administration (NASA) 

Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM) with a spatial 

resolution of 30 m (Farr et al., 2007).  

2.5.2 Sentinel-2 

Data characteristics 

The Copernicus Sentinel-2 (S-2) mission consists of two identical satellites carrying 

multispectral optical sensors (MultiSpectral Instrument, MSI) launched in 2015 and 2017 

(Claverie et al., 2018). The S-2 mission provides imagery with a spatial resolution between 10 

and 60 m and a revisit time of five days ranging from the ultra-blue to the short-wave infrared 

part of the electromagnetic spectrum (ibid.) (Figure 10). In contrast to active SAR sensors, 



2 Materials 

15 
 

optical sensors are passive systems (Lillesand et al., 2015). In other words, the signal recorded 

by the sensor is the result of the interaction of incident solar radiation with particles in the 

earth’s atmosphere on the downwelling path, partial reflectance at the surface, and subsequent 

interaction with the atmosphere on the upwelling path (Richter and Schläpfer, 2017). Two 

implications follow from the dependence on solar radiation: first, imaging is possible during 

the day only, and second, data availability might be limited due to cloud cover. The 10:30 AM 

overpass time at the descending node of the S-2 satellites is a compromise between high solar 

altitude and low cloud cover (ESA, 2015).  

 

Figure 10: Sentinel-2A MultiSpectral Instrument spectral response functions. The twelve bands are in the range between 
400 and 2’500 nm. The colors are for visualisation purposes only and are not related to the human perception of color. 

Pre-processing 

I used the S-2 MSI Level-2A data available in the GEE. The Level-2A data was generated from 

Level-1C using the Sentinel 2 (atmospheric) Correction (Sen2Cor) algorithm, which performs 

an atmospheric and topographic correction and produces a scene classification band (SCL) 

(Louis et al., 2016; Müller-Wilm, 2017). The further pre-processing included the steps shown 

in Figure 11. 
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Figure 11: Pre-processing steps of Sentinel-2 data. Blue boxes represent data, and white boxes represent steps and list the 
tunable parameters of each step. Steps marked with * were not applied to all data products. 

All images overlapping the GGB SPA during the study period were selected. The first two 

steps after the data selection, cloudiness threshold and masking, were not applied in all 

workflows to avoid data gaps. Whether the two steps were applied is declared in each case 

when the data is used. The monthly data availability including the mean cloudy pixel 

percentage is shown in Figure 12. 

 

Figure 12: Monthly availability of Sentinel-2 data. All images overlapping the Great Gobi B Strictly Protected Area during the 
period from April to October 2019 and 2020 were aggregated per month. The orange line represents the mean cloud cover 

of all images per month.  

Cloud removal is one of the most basic pre-processing steps for optical remote sensing data 

(Mateo-García et al., 2018). Accordingly, there are several approaches. Available methods for 

S-2 data include a recent version of Fmask, Sen2Cor, s2cloudless, and the Sentinel-2 Cloud 

Displacement Index (CDI) (Frantz et al., 2018; Sanchez et al., 2020). These methods differ in 

complexity and use of ancillary data. I compared the performances of the Sen2Cor and 
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s2cloudless approaches to determine a robust cloud correction algorithm for our study area that 

does not require additional ancillary data and has a reasonable level of complexity. Based on 

our comparison, I chose Sen2Cor because the performance was better for the dominant type of 

cloud cover. Further details about the comparison of Sen2Cor and s2cloudless in 

Supplementary Materials A. 

For some data products, I discarded images with a very high cloudy pixel percentage (>90%) 

by applying a cloudiness threshold. In the masking step, individual image pixels were discarded 

using the SCL bit mask. Only vegetation, bare soil, and water were kept.   

The Bidirectional Reflectance Distribution Function (BRDF) correction is used to eliminate 

the effects of the viewing geometry on the measured reflectance (Franch et al., 2019). By 

applying the BRDF correction, the view angle is set to nadir and the solar zenith angle to the 

respective latitude of the image (Claverie et al., 2018). Poortinga et al. (2019) implemented the 

BRDF correction in the GEE.  

Subsequently, the possible range of values was restricted to the physically meaningful inclusive 

interval of 0 to 1 (Schaepman-Strub et al., 2006) and all bands were resampled to a spatial 

resolution of 10 m using the GEE default nearest-neighbor interpolation. 

2.5.3 SkySat-4 

A high-resolution optical image taken by the SkySat-4 satellite covering the extent of the 

monitoring plot near the Khonin us ranger station was available. The image was taken on 

August 10th, 2021 at 11:21 local time (UTC+7) and delivered orthorectified, radiometrically 

calibrated, and atmospherically corrected to bottom-of-atmosphere (BOA) reflectance (Planet 

Labs Inc., 2018a). SkySat-4 images contain four bands in the visible and near-infrared 

spectrum (Planet Labs Inc., 2018b) (Figure 13). The image is composed of three strips with 

overlapping scenes. Spectral differences between the individual scenes hinder the 

comparability of different image regions (Figure 14). 
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Figure 13: SkySat-4 spectral response functions. The four bands are in the range between 400 and 1’000 nm. The colors are 
for visualisation purposes only and are not related to the human perception of color. 

 

 

Figure 14: SkySat-4 Normalised Difference Vegetation Index. The value range is trimmed to highlight the systematic 
differences between the three vertical strips. Visible cloud cover in the south.  
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3 Methods 

3.1 Saxaul density estimation 

The focus of the first practical part of the thesis was on the estimation of saxaul density on the 

pixel level and was spatially limited to a test area near the Khonin us ranger station. The applied 

methods could be divided into two groups (Figure 15). The methods of the first group relied 

on saxaul density determined with field data and the SkySat-4 image to serve as training inputs 

for machine learning models. Subsequently, these models were used to predict saxaul density 

with S-2 data. The methods of the second group estimated the saxaul density directly from the 

S-2 data.  

 

Figure 15: Processing workflow of saxaul density estimation. Blue boxes represent data, and grey boxes represent steps 
with optional comments in white boxes. 
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3.1.1 Machine learning models 

Usability assessment of field data 

I assessed the usability of the forest inventory 2020 and the records by the GGB SPA rangers 

for serving as input labels for machine learning models. The vegetation plots provided by 

Oyundari Chuluunkhuyag were not considered because saxaul trees are only present in 151 of 

the 644 plots and only six of the plots are exclusively covered by saxaul. The mean FVC is 

about 4.5%, with most values being lower (Figure 16). Therefore, I considered the prospects 

of obtaining a robust model with this small number of plots to be too low. 

 

Figure 16: Histograms of key attributes of the vegetation plots provided by Oyundari Chuluunkhuyag containing saxaul 
trees. Few plots contain only saxaul trees and the area of the plots covered by saxaul trees is usually less than 5%. 

Forest inventory 2020 

The usability of the forest inventory for this thesis was assessed in two ways. On the one hand, 

a relationship between FVC expressed through the crown cover of each plot and vegetation 

indices (VIs), such as the Normalised Difference Vegetation Index (NDVI), should be present. 

Tang et al. (2020) have shown a positive correlation between FVC and NDVI in desert 

ecosystems. On the other hand, the dataset could be split into training and testing sets to 

determine the predictability of FVC based on spectral information. 

Regarding the relationship between FVC and VIs, I calculated the S-2 yearly median composite 

for 2020. Cloudiness threshold and masking were not applied to avoid data gaps. Several VIs 

(Table 1) were added to the S-2 spectral bands (B2-B8A, B11-B12). A circular area with a 

radius of 14.5 m was sampled for each of the 5'924 plot centers. 
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Table 1: Overview of calculated vegetation indices for the usability assessment of field data. These indices can all be 
calculated with bands of the visual spectrum and a near infrared band. 

Index Formula Source 

NDVI 𝑁𝐼𝑅−𝑅𝑒𝑑

𝑁𝐼𝑅+𝑅𝑒𝑑
  Zafari et al. (2019) 

MSAVI 2 ∗ 𝑁𝐼𝑅 + 1 − √(2 ∗ 𝑁𝐼𝑅 + 1)2 − 8 ∗ (𝑁𝐼𝑅 − 𝑅𝑒𝑑) 

2
 

Zafari et al. (2019) 

EVI 
2.5 ∗

𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 6 ∗ 𝑅𝑒𝑑 − 7.5 ∗ 𝐵𝑙𝑢𝑒 + 1
 

Zafari et al. (2019) 

NGBDI 𝐺𝑟𝑒𝑒𝑛−𝐵𝑙𝑢𝑒

𝐺𝑟𝑒𝑒𝑛+𝐵𝑙𝑢𝑒
  Hunt et al. (2005) 

RGRI 𝑅𝑒𝑑

𝐺𝑟𝑒𝑒𝑛
 

Verrelst et al. (2008) 

DVI 𝑁𝐼𝑅 − 𝑅𝑒𝑑 Xue and Su (2017) 

 

Two regression models were used to test for the predictability of FVC. The first model was a 

Random Forest regressor (RF-R). A Random Forest consists of decision trees that are built 

from randomly selected variables (Breiman, 2001). The final output of a RF-R is the average 

of the outputs of the decision trees (Pedregosa et al., 2011). The second model was a one-

dimensional convolutional neural network (1D-CNN) that uses convolution operations to 

detect features in the input data (LeCun and Bengio, 1995). This type of CNN has already been 

proven effective in biophysical variable retrieval (Annala et al., 2020; Pullanagari et al., 2021). 

The parameter settings and model architectures are listed in Supplementary Materials B. The 

dataset was randomly split into 80% training and 20% testing data. Both models were trained 

with the same training data and predicted the same testing data. FVC and the S-2 spectral bands 

served as input labels and features, respectively. For each model, I calculated the coefficient of 

determination (R2) and the root mean square error (RMSE). 

An existing positive correlation between FVC and VIs and a certain degree of predictability of 

FVC were set as conditions for further use of the data. 
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GGB SPA ranger records 

The usability assessment of the GPS locations of the GGB SPA ranger records was based on 

the assumptions that the VI values of the SkySat-4 pixels at the records’ locations indicated a 

higher presence of vegetation compared to random points. I expected a left-skewed distribution 

of the sampled VI values in the case of the records’ locations and a normal distribution in the 

case of random points.  

First, I extracted all pixel values of the ranger records and random pixels (n = 10’327) in the 

high-resolution SkySat-4 image. Second, the records’ point density was calculated for each S-

2 image cell overlapping the transects. These cells (n = 4’817) were sampled in both the 

SkySat-4 and the S-2 image of August 12th, 2021 (optional pre-processing steps applied), which 

has the greatest temporal proximity to the SkySat-4 image. For this, the spatial resolution of 

the SkySat-4 image was reduced to 10 m by calculating the zonal mean per S-2 grid cell. I 

calculated the same VIs as for the forest inventory 2020 for all extracted spectra. 

A noticeable difference in the distributions of the ranger records’ locations and random 

locations and/or an at least moderate relationship between aggregated point density and index 

value of the (aggregated) overlapping S-2 cells were set as conditions for further use of the 

data. 

Generation of training data 

As previously outlined, the first group of methods to estimate saxaul density relied on training 

data for machine learning models. The results of the usability assessment showed that the forest 

inventory 2020 and the locations of the ranger records were not suitable for this purpose (cf. 

chapter 4.1.1). Therefore, I used the close-range camera pictures of the GGB SPA ranger for 

the generation of training data. They allowed the detection of vegetation in the SkySat-4 image 

because its spatial resolution of 50 cm is high enough to visually link features in the close-

range camera pictures with the satellite image.  

A subset of the SkySat-4 image in the northwest of the monitoring plot was selected as a 

training area, where the saxaul trees were visually distinguishable from the background. At this 

point, I equated saxaul with vegetation since the ranger records consist almost entirely of saxaul 

trees. I used four methods to generate different saxaul density maps for the training area. 
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Unsupervised clustering 

Unsupervised clustering and classification methods do not require labeled training data because 

they work exclusively with the pixel values of the input image (Lillesand et al., 2015). Thus, 

the image is first decomposed into different clusters or classes. Only afterward, the individual 

informational utility (ibid.) of the clusters or classes is determined. 

I used the K-means clustering algorithm implemented in the GEE (Arthur and Vassilvitskii, 

2007) to decompose the training area into 20 clusters. The algorithm calculated the class 

centroids from 5’000 randomly sampled pixels before classifying the remaining image pixels. 

Subsequently, I manually classified the output classes as vegetated or not vegetated, generating 

a binary mask. 

Random Forest classification and regression 

In the case of the Random Forest methods, classes of interest are defined a priori. The classifier 

or regressor learns the relationship between input and class using training data associated with 

each class (Lillesand et al., 2015). 

I used a Random Forest model with 500 trees for both output modes, classification (RF-C) and 

regression (RF-R). All other parameters were set to default (for detailed information see: 

https://developers.google.com/earth-engine/apidocs/ee-classifier-smilerandomforest). I 

defined three classes: vegetation, bright soil, and gravel. For these classes, training polygons 

were created, 50 each for vegetation and bright soil and 10 for gravel. The training sets were 

created from the mean spectra of these polygons. In classification mode, the training sets were 

used unchanged for the training, i.e., the pixels were classified as vegetation, bright soil, or 

gravel. In regression mode, vegetation was coded as 1 and the other classes as 0 to approximate 

FVC. Input properties in both modes were the SkySat-4 spectral bands and the previously used 

VIs. 

Linear spectral mixture analysis 

Linear spectral mixture analysis (LSMA) is one of the most widely used methods to determine 

the sub-pixel fraction of image components, so-called endmembers (Somers et al., 2011). In 

theory, the image should be explainable by the linear combination of the selected endmembers. 

In other words, the fractions of the respective pure endmembers summed always add up to 1 

(Lillesand et al., 2015). This assumption is not satisfied in many cases, but it can be enforced 

with a constraint (Small, 2001). Conversely, if not set, the proportion of pixels whose fraction 
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sums close to 1 can be an indicator of whether this assumption was satisfied (Raksuntorn and 

Du, 2010). An additional constraint can ensure that the proportions are nonnegative 

(Nascimento and Dias, 2005). Following Ji et al. (2005), the constraints are hereafter referred 

to as the abundance sum-to-one constraint (ASC) and abundance nonnegativity constraint 

(ANC). To obtain a unique solution to the inversion, the number of endmembers must be 

smaller than the number of spectral bands (Somers et al., 2011). Consequently, the maximum 

number of endmembers in the SkySat-4 image is three.  

I defined the endmembers according to the previously used classes: vegetation, bright soil, and 

gravel. The most extreme pixels should be selected to generate the purest possible endmember 

spectra from the SkySat-4 image. I selected three pixels per endmember at our subjective 

discretion, of which the mean value was calculated in each case. 

I used the unmixing function implemented in the GEE and applied it twice, once with and once 

without active ASC. The ANC was active in both cases. 

Evaluation and reduction of spatial resolution 

The saxaul density maps were visually assessed by comparing them with the close-range 

camera pictures and the SkySat-4 image. I reduced the spatial resolution of the two most 

suitable maps to 10 m by calculating the zonal mean per S-2 grid cell to harmonise the spatial 

resolution of the density maps and the S-2 data. 

Determination of predictor variables 

The saxaul density maps created with RF-R and LSMA were found to be the most suitable for 

further use (cf. chapter 4.1.3). After reducing the spatial resolution, the maps could be used to 

create training labels for machine learning models. Our goal was to train Random Forest 

regression models with S-1 and S-2 data to predict saxaul density outside the training area and 

without further use of the commercial SkySat-4 image.  

For a well-performing model, the appropriate predictor variables must be defined. I trained two 

Random Forest regression models, one for each selected saxaul density map, with various 

combinations of predictor variables. I checked for the respective feature importance of the 

variables and assessed the effect of a reduced number of variables on the model performance, 

as the reduction of data dimensionality can minimise the processing load and lead to more 

accurate results (Chen et al., 2020). 
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I created two Random Forest regressor models with 500 trees, all other parameters were set to 

default. The labels were taken from the saxaul density maps, I called the models RF-RF and 

RF-LSMA. Table 2 provides an overview of all used variables. 

Table 2: Predictor variables of machine learning models used for saxaul density estimation. All variables were calculated 
from the bands of Sentinel-1 and Sentinel-2. The temporal variables corresponded to the standard deviation of the time 

series of various indices. The textural variables were derived from the blue band. 

Variable group Elements 

S-1 bands VV, VH 

S-1 indices Cross ratio (CR) 

S-2 bands Blue, Green, Red, RE1, RE2, RE3, NIR, RE4, SWIR1, SWIR2 

S-2 indices NDVI, MSAVI, EVI, NGBDI, RGRI, DVI, RVI, ReNDVI, GRVI, GNDVI, NDII, 

Brightness, Greenness, Wetness 

Temporal 

variables 

NDVI Std., MSAVI Std., Brightness Std., Greenness Std., Wetness Std. 

Textural 

variables 

Angular Second Moment, Contrast, Correlation, Dissimilarity, Entropy, Inverse 

Difference Moment, Sum Average, Variance 

 

S-1 bands and indices 

I used the VV and VH bands of the S-1 image from August 14th, 2021, because it has the closest 

temporal proximity to the SkySat-4 image. In addition, I calculated the cross ratio (CR), which 

is often used in vegetation studies with SAR data (Soudani et al., 2021; Vreugdenhil et al., 

2018). 

S-2 bands and indices 

I used the spectral bands of the S-2 image of August 12th, 2021, calculated different VIs from 

the spectral bands, and applied the Tasseled Cap Transformation (TCT). The TCT performs a 

transformation of the input bands into three vegetation components: brightness, greenness, and 

wetness being indicative of soil reflectance, green vegetation, and canopy and soil moisture 

(Lillesand et al., 2015). I used the 6-band TCT coefficients calculated for S-2 Level-1C (Shi 

and Xu, 2019). 
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Temporal variables 

Vegetation phenology describes the recurring temporal development of leaf characteristics 

(Gao et al., 2021; Morisette et al., 2009) and can be derived from VIs (Soudani et al., 2021). I 

assumed that the VI values for vegetation change more over the year than for soil and calculated 

the standard deviation of the monthly composites for several VIs and the TCT variables for 

2021 to quantify this temporal change. 

Textural variables 

Remote sensing data contains a lot of contextual information (Moser et al., 2013). The gray 

level co-occurrence matrix (GLCM) metrics are based on the spatial patterns between pixel 

values in a specific image band (Haralick et al., 1973). I calculated several of these metrics 

using a 7 x 7 window and the yearly median of the blue band (optional pre-processing steps 

not applied) (Huang et al., 2017; Pandit et al., 2020; Verde et al., 2020). 

With these variables, I formed different combinations and tested different train/test splits. I 

started with the S-2 spectral bands, which were augmented by further groups of variables until 

all variables were used. The mean decrease in impurity (also called mean decrease Gini, MDG) 

was used as a measure of feature importance to reduce the number of variables. The size of the 

variable combination including the S-2 spectral bands and the S-1 variables serves as 

benchmark (13 variables). This number was halved again to check for further improvement. 

The train/test splits were 50/50 and 80/20. For each combination, a 3-fold random subsampling 

was performed to mitigate the influence of the training sample selection on model performance 

(Berrar, 2018). Averaged R2 and RMSE were calculated for each combination and split. The 

most suitable combination of variables and the most suitable split per model (RF-RF and RF-

LSMA) were determined based on the model performance and the number of features required. 

Subsequently, the two models were used to predict saxaul density for the spatial extent of the 

SkySat-4 image. 

3.1.2 Linear spectral mixture analysis of Sentinel-2 data 

The methods of the second group were all LSMA applications with different endmember sets. 

The endmembers were exclusively algorithm-extracted or simulated, i.e., not defined via the 

SkySat-4 image or field data. I used the S-2 image from August 12, 2021 (optional pre-

processing steps applied) for all LSMA applications. 
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Algorithm-extracted endmember sets 

I applied four endmember extraction methods that generate endmember signatures from the 

image data: the pixel purity index (PPI), N-finder (N-FINDR), vertex component analysis 

(VCA), and minimum volume constrained non-negative matrix factorisation (MVC-NMF). 

The number of endmembers to be extracted (the only user-defined input parameter) was 

determined a priori using the noise-whitened Harsanyi-Farrand-Chang (NWHFC) method 

(Chang and Du, 2004). 

I used the four endmember sets as inputs for the unmixing function implemented in the GEE 

and applied it twice, once with and once without active ASC. The ANC was active in both 

cases. 

Combination of algorithm-extracted and simulated endmembers 

I considered the probability of saxaul being identified as an endmember in the S-2 image by 

the applied extraction methods to be low. Therefore, I created an additional endmember set in 

which simulated vegetation spectra were integrated. 

Radiative transfer models (RTM) are a common tool to simulate vegetation reflectance (Lu et 

al., 2021). PROSPECT-4 is a simple RTM for simulating directional reflectance and 

transmittance from 400 to 2’500 nm that requires only four parameters: a leaf structure 

parameter (N), equivalent water thickness (Cw), dry matter content (Cm), and chlorophyll 

content (Cab) (Verrelst et al., 2016). 

I set N according to the literature (Pyankov et al., 1999; Su et al., 2005) and calculated the 

remaining parameters based on records in the TRY Plant Trait Database (www.try-db.org). The 

mean values of three available entries for leaf water content per leaf dry mass (Sheremetev, 

unpublished) and leaf area per leaf dry mass (with petiole excluded) (Wang et al., 2017) were 

used for Cw and Cm, respectively. Cab was already included in the database (Sheremetev, 

unpublished). To ensure some variability in the simulated reflectance, value ranges were 

defined for each parameter (Table 3). 
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Table 3: Overview of PROSPECT-4 parametrisation. The reference values for the simulation of saxaul spectra correspond to 
values from the literature or were calculated from entries in the TRY Plant Trait Database. The applied value ranges 

correspond to the minimum and maximum possible values of the parameters for the simulations. 

Parameter Reference value Applied value range Unit 

N 3 2 - 4 - 

Cw 0.066 0.055 - 0.075 cm3 cm-2 

Cm 0.0235 0.0015 - 0.0035 g cm-2 

Cab 15.4 10 - 20 µg cm-2 

 

A subset of five combinations was simulated, which was determined by Latin hypercube 

sampling (LHS) to cover most of the multidimensional input space (Verrelst et al., 2017). LHS 

is a frequently applied technique to reduce the number of RTM simulations (de Sá et al., 2021; 

Verrelst et al., 2019). The values used for the simulations were drawn from uniform 

distributions. 

LSMA with only the simulated vegetation spectra is not possible, since the condition that all 

pixels can be represented by a linear combination of the endmembers is not fulfilled. Hence, I 

integrated MVC-NMF-derived endmembers to represent the soil background. I chose MVC-

NMF because of the four applied algorithms it is the only one that does not assume pure spectra 

to be present in the image. 

As previously mentioned, the number of endmembers must be smaller than the number of 

bands. In the present case, the ten S-2 spectral bands allowed for nine endmembers. I removed 

three of the nine MVC-NMF-derived endmembers because they seemed untypical for soil. 

Subsequently, I added three randomly selected simulated endmembers. 

I scaled the spectra of the endmembers as well as the S-2 image pixels, as systematic 

differences between extracted and simulated endmember were to be expected. Each spectrum 

was divided by the total energy in the spectrum to convert it to a unit vector with length = 1 

(Randolph, 2006). 

Again, I used the endmember set as input for the unmixing function implemented in the GEE 

and applied it twice, once with and once without active ASC. The ANC was active in both 

cases. I summed up the resulting fractions of the saxaul and soil endmembers to get the total 

fractions of saxaul and soil per pixel.  
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3.1.3 Validation 

Two validation plots were created within the footprint of the SkySat-4 image: the larger one in 

the south of the training area, the smaller one about 5 km southeast (Figure 17). Their different 

positions should allow for investigating the influence of the spatial proximity between the 

training and validation area.  

As mentioned in chapter 2.5.3, the comparison of different SkySat-4 image regions is difficult 

due to the visible spectral differences between the image scenes. Therefore, I estimated saxaul 

density individually for both validation plots. I trained a Random Forest regressor with 500 

trees (all other parameters were set to default) with 20 vegetated and 20 non-vegetated point 

samples, which were selected by using the close-range camera images and visual interpretation 

of the SkySat-4 image. Subsequently, the spatial resolution of the density estimates was 

reduced in the manner previously outlined.  

The saxaul density estimates of the following methods were validated: the two Random Forest 

regressor models (cf. chapter 3.1.1) and the unmixed saxaul fraction of the S-2 image with the 

set of algorithm-extracted and simulated endmembers (cf. chapter 3.1.2). For the comparison 

of model performances, I sampled all pixels of the validation plots in the respective density 

maps and calculated R2 and RMSE. 
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Figure 17: Overview of monitoring, training, and validation plots. The monitoring plot (blue) near the Khonin us ranger 
station is for orientation. The larger validation plot (orange) is close to the training area (red) and has a similar soil 

background. The smaller validation plot (yellow) is located about 5 km southeast and has a different soil background. 

 

3.1.4 Oases prediction 

Until now, saxaul forests and vegetation were used interchangeably. This assumption was made 

for the training and validation areas within the monitoring plot because, with a very few 

exceptions, the rangers' records contain exclusively saxaul trees. However, the assumption is 

not valid on a larger scale because numerous vegetation communities are present in the GGB 

SPA.  

In two oasis complexes, Takhi us and Khonin us (Figure 18), I tested whether saxaul trees were 

distinguishable from other vegetation for 2019 to 2021. The rationale was to incorporate 

temporal changes in VIs as a proxy for phenology. I assumed that, on a theoretical level, a 

distinction should be possible because phenology is species-specific and can be influenced by 

physiological conditions (Iversen et al., 2009). I used the nominal vegetation map by von 

Wehrden and Gungalag (2003) as a reference. 

For the classification of the oasis complexes, I used the unsupervised K-means clustering 

algorithm and several S-2 derived variables as input. First, FVC was calculated using LSMA 

with the combination of algorithm-extracted and simulated endmembers from the yearly S-2 
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median composites. The optional pre-processing steps were not applied to avoid data gaps that 

make clustering impossible, since a single missing value in the time series causes a missing 

output. The spectra were scaled as described in chapter 3.1.2. Only the pixels for which the 

estimated FVC was > 0 were considered any further. Second, MSAVI was calculated for each 

monthly median composite from April-October. Third, the yearly maximum, mean, and 

standard deviation were calculated for MSAVI.  

A separate clustering model was created for each of the two oasis complexes. The number of 

output classes corresponded to the number of distinct vegetation communities present in the 

oasis complexes according to von Wehrden and Gungalag (2003) (8 and 10 for Takhi us and 

Khonin us, respectively). For both Takhi us and Khonin us, the algorithm calculated the class 

centroids from 5’000 randomly sampled pixels separately before classifying the remaining 

image pixels of each region.  

For each of the six comparisons (two areas and three years), a confusion matrix was calculated 

based on a stratified sample with 1000 samples for each vegetation community present in the 

oasis complex. I defined a best-fit indicator since it was unclear which cluster belonged to 

which vegetation class. The best-fit indicator corresponds to the maximum percent of pixels in 

a cluster that belongs to the same class and therefore provides information on how closely a 

pixel cluster belongs to a vegetation class. 

 

Figure 18: Location of Takhi us and Khonin us oases. The dashed red line represents the boundaries of the Great Gobi B 
Strictly Protected Area. The monitoring plot (red line) is included for orientation. 

3.2 Land cover and vegetation community mapping 

In this second practical part, vegetation community mapping for the whole area of the GGB 

SPA was conducted similarly to Chuluunkhuyag et al. (2021) for 2019 and 2020, but with S-1 
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and S-2 data (Figure 19). The objectives were to determine the importance of the individual 

variables and the influence of additional predictor variables on the performance of a Random 

Forest model.  

In the first practical part, the vegetation density from S-2 could be determined with LSMA. 

However, no vegetation communities could be distinguished from each other by unsupervised 

clustering (cf. chapter 4.1.4). These findings increased the importance of such a vegetation 

community mapping. 

 

Figure 19: Processing workflow of land cover and vegetation community mapping. Blue boxes represent data, and grey 
boxes represent steps with optional comments in white boxes 

3.2.1 Input labels 

The training data was the same as used by Chuluunkhuyag et al. (2021) (n = 629). Each sample 

had two labels: land cover and vegetation community (Table 4).  

In the case of land cover, it was checked whether the extraction of the desert areas was possible 

as a first approximation to the habitat area of saxaul. A distinction was made between desert 
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and non-desert. All samples classified as desert in the dataset of Chuluunkhuyag et al. (2021) 

were considered as such. 

In the case of the vegetation communities, it was examined whether these desert areas could 

be divided into classes dominated by two separate vegetation communities, desert 1 and desert 

2. The division of the desert samples into the two classes was based on Table 4. Saxaul was 

included in desert 2. 

The recoding of labels was necessary because some communities had too few samples to split 

them appropriately into training and testing sets. 

Table 4: Classification of the vegetation plots (here: relevés) used for land cover and vegetation community mapping. 
Copied from Chuluunkhuyag et al. (2021). The area percentages refer to the map created by Chuluunkhuyag et al. (2021). 

Most of the Dzungarian Gobi is covered by steppe and desert. 

 

3.2.2 Input features 

Initially, the variables of the reference mapping were used. Subsequently, these were 

supplemented with SAR bands as well as temporal and textural variables. Furthermore, 

variable combinations without SAR and/or without correlated variables were created. Groups 

of correlated variables were determined using the correlation matrix for 2019, with one variable 

from each correlated group retained at subjective discretion. For 2020, the same variables were 

removed. S-1 and S-2 bands, which were included in groups of correlated variables, were not 

removed. 
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For the optical data, the annual S-2 median images were used without the optimal pre-

processing steps. Temporal variables were calculated from the monthly composites and textural 

variables from the annual median blue band. For the SAR data I used the annual S-1 median 

images and for the DEM-derived variables the NASA SRTM DEM. 

3.2.3 Model architecture 

The same model architecture was used as in the reference mapping; a Random Forest classifier 

with 500 trees. I assumed that the square root of the number of input variables was used for the 

number of variables per split. All other parameters were set to default. 

Approximately 70% of the samples were used for the training of the model, corresponding to 

256 and 183 for non-desert and desert and 256, 50, and 128 for non-desert, desert 1, and desert 

2. A 5-fold random subsampling was performed to minimize the influence of the training 

sample selection. 

3.2.4 Validation and mapping 

The following accuracy metrics were calculated for each run: overall accuracy, producer’s 

accuracy (PA), user’s accuracy (UA), and Kappa value. The mean decrease in impurity (also 

called mean decrease Gini, MDG) was used as a measure of feature importance. 

For both labels, the averaged metrics over the two years were used to determine the best 

performing combination of variables. These combinations were used to create the land cover 

and vegetation community maps of the GGB SPA for 2019 and 2020. 
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4 Results 

4.1 Saxaul density estimation 

4.1.1 Machine learning models 

Usability assessment of field data 

Forest inventory 2020 

 

Figure 20: Relationship between vegetation indices and fractional vegetation cover of forest inventory plots. The orange 
lines represent the linear regression model fit. There is no discernible correlation between vegetation indices and fractional 

vegetation cover. 

No strong correlation between VIs and FVC observable for the 5’924 plots included in the 

dataset could be observed. Figure 20 shows the relationship between FVC and VIs, using NDVI 

and the Modified Soil Adjusted Vegetation Index (MSAVI) as examples. 

 

Figure 21: Fractional vegetation cover of forest inventory plots and model estimates. The range lines represent the linear 
regression model fit. There is no strong correlation between the fractional vegetation cover of the forest inventory plots and 

the fractional vegetation cover estimated by the Random Forest (left) and the 1-D Convolutional Neural Network model 
(right). 

Neither RF-R nor 1D-CNN could predict the plot’s FVC based on their spectral signatures with 

satisfactory accuracy (Figure 21). In the case of the model predictions, R2 was higher and 

RMSE was lower compared to the FVC-VI relationships. The RF-R performed slightly better 

than the 1D-CNN. 

I decided to not use the data any further due to the weak relationship between FVC and VIs 

and the low accuracy of the model predictions. 
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GGB SPA ranger records 

 

Figure 22: Usability assessment of Great Gobi B Strictly Protected Area ranger plots. Histograms of MSAVI values of the 
records and random points sampled in the SkySat-4 image (upper left), histogram of point density of S-2 cells overlapping 
the transects (upper right), boxplots of MSAVI values per point density bin of S-2 cells sampled in the aggregated SkySat-4 

and S-2 images (lower left and lower left, respectively). The colour gradient in the bottom plots is for orientation only. 

The expected distributions of the index values were a left-skewed distribution for the ranger 

records and a normal distribution for the random locations. In the present case, the distributions 

did overlap to a large extent and could not be clearly distinguished from each other. No robust 

relationship between record point density and index values could be observed for the S-2 cells 

overlapping the transects (Figure 22). 

Because the pre-defined conditions were not met, I did not further use the dataset for the saxaul 

density estimation. 

Visual assessment of saxaul density maps 

All generated saxaul density maps (K-means, RF-C, RF-R, LSMA) looked plausible and 

strongly resembled each other (Figure 24). They depicted the scattered occurrence of saxaul 

trees and were consistent with the close-range camera images and the subjective visual 

interpretation of the SkySat-4 image. 

Small differences were present between the discrete maps. The density estimate of the K-means 

clustering was less restrictive than the one of the RF-C. Larger differences were present 

between the continuous maps, generated with RF-R and LSMA. In the case of LSMA, it was 
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apparent that the saxaul endmember was contaminated by the signal of the soil background. 

The endmember spectra could only insufficiently explain the composition of the image pixels. 

Without ASC being activated, the majority of the summed-up endmember fractions were lower 

than 1 (Figure 23).  

Not all maps were equally suitable for further use. The results of K-means and RF-C were 

discrete, and those of RF-R and LSMA were continuous. Only the latter maps could provide 

the vegetated fraction of each pixel. Hence, I continued to work with the two continuous maps, 

even though the saxaul density map of the LSMA was severely affected by the soil background.  

  

Figure 23: Linear spectral mixture analysis of the SkySat-4 image. Used endmember signatures (left) and summed-up 
endmember fractions of SkySat-4 linear spectral mixture analysis without active abundance sum-to-one constraint (right). 
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Figure 24: Saxaul density maps generated with the SkySat-4 image. The maps were generated with the following methods: 
unsupervised clustering (upper left), Random Forest classification (upper right), Random Forest regression and LSMA. 

Reddish color in the SkySat-4 False Color Infrared image corresponds to vegetation (center from top to bottom). 
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Determination of predictor variables 

Table 5 shows the different variable combinations. It should be noted that the O-combinations 

were identical for both models, RF-RF and RF-LSMA. This was not the case for the R-

combinations (Table 6).  

Table 5: Overview of composition and naming of variable combinations for machine learning models. The variables included 
in the groups (cf. Table 2) were used as input features for Random Forest regression models for saxaul density estimation. 

The most important variables were determined using mean decrease Gini. 

Combination of variable groups Number of features Combination ID 

• S-2 bands 10 O10 

• S-2 bands 

• S-1 bands and indices 

13 O13 

• S-2 bands 

• S-1 bands and indices 

• S-2 indices 

27 O27 

• S-2 bands 

• S-1 bands and indices 

• S-2 indices 

• Textural and temporal variables 

40 O40 

• 13 most important variables 13 R13 

• 7 most important variables 7 R7 
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Table 6: Variables included in R13 and R7 combinations of the RF-RF and RF-LSMA models. The composition of the 
combinations was not identical because different training samples and input labels were used. 

Combination Elements 

RF-RF R13 Greenness, NDVI, RVI, MSAVI, Blue, DVI, NGBDI, GNDVI, NDVI Std., 

EVI, Red, MSAVI Std., Brightness 

RF-RF R7 Greenness, NDVI, RVI, Blue, NGBDI, NDVI Std., MSAVI 

RF-LSMA R13 Greenness, GNDVI, NDVI, Blue, RVI, NGBDI, MSAVI, DVI, Sum 

Average, Green, Brightness Std., EVI, Red 

RF-LSMA R7 Greenness, GNDVI, NDVI, Blue, NGBDI, RVI, MSAVI 

 

 

Figure 25: RF-RF and RF-LSMA model performances with different training set size. The coefficient of determination (left) 
and the root mean square error (right) were positively related to the number of variables in a combination (cf. Table 5). The 

size of the training set compared to the testing set was of secondary importance. 

Figure 25 shows the averaged model performance metrics obtained with 3-fold random 

subsampling. First, it was noticeable that the labels had a greater influence on the performance 

than the size of the training set. The RF-LSMA labels had a higher correlation coefficient and 

a slightly higher error than the RF-RF labels. The size of the training set only caused small 

differences for the RF-RF labels. 

The performance metrics improved with an increasing number of variables. Accordingly, the 

reduction of the number of variables led to worse results. However, the results for R13 were 

better than for O13. I concluded that the R13 combinations with a train/test split of 50/50 

represented the best trade-off between performance and complexity for both methods. 

Figure 26 shows the estimated saxaul density of both models for the extent of the SkySat-4 

image.  
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Figure 26: Estimated saxaul density of machine learning models. The RF-RF (left) and RF-LSMA models (right) were trained 
within the training plot (red line) and estimated the saxaul density for the extent of the SkySat-4 image. Light grey artefacts 

in the northeast represent masked clouds. 

4.1.2 Linear spectral mixture analysis of Sentinel-2 imagery 

Algorithm-extracted and simulated endmember spectra 

The sets of algorithm-extracted endmembers were similar. PPI, N-FINDR, and VCA had in 

common that the reflectance for all endmembers and all spectral bands was > 0. Three MVC-

NMF-extracted endmembers included negative reflectance values. No endmember exhibited 

the characteristic properties of a vegetation signature, such as peaks in the green and NIR 

regions. The spectral signatures of the algorithm-extracted endmembers can be found in 

Supplementary materials C. 

The simulated endmembers corresponded to typical vegetation signatures. In the combined 

endmember set, no negative reflectance values were included, as the MVC-NMF endmembers 

1, 2, and 4 were sorted out for not corresponding to typical soil signatures. Figure 27 shows the 

simulated endmembers before scaling and the combined endmember set after scaling. 
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Figure 27: Spectral signatures of simulated endmembers and combined endmember set. The endmembers simulated with 
PROSPECT-4 corresponded to typical vegetation signatures with peaks in the visible green and near infrared part of the 
electromagnetic spectrum (top). For the combined endmember set, algorithm-extracted soil endmembers were added 
(bottom). For scaling, each spectrum was divided by the total energy in the spectrum to convert it to a unit vector with 

length = 1.   

Abundance maps 

As previously mentioned, none of the algorithm-extracted endmembers exhibited a vegetation-

like spectral signature. Hence, I decided not to use the endmember sets with only algorithm-

extracted endmembers any further.  

Figure 28 shows the results of the LSMA with the combined endmember. The summed-up 

fraction of the simulated endmembers showed good agreement with the SkySat-4 image (cf. 

Figure 24). For most pixels, the sum of the endmember fractions without active ASC was close 

to 1. I decided to only validate the result of the combined endmember set. 
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Figure 28: Linear spectral mixture analysis of Sentinel-2 image with combined endmember set. The saxaul density was 
expressed through the summed-up abundance of the saxaul endmembers (top). The summed-up endmember fractions of 

Sentinel-2 linear spectral mixture analysis without active abundance sum-to-one constraint were close to 1 (bottom). 

4.1.3 Validation 

The validated methods included the two machine learning models (RF-RF and RF-LSMA) and 

the summed-up fraction of simulated endmembers (hereafter referred to as S2-LSMA). Table 

7 shows the calculated metrics, R2 and RMSE, for the two validation plots. 

In the case of the larger validation plot located south of the training plot, the calculated metrics 

were of the same order of magnitude for all three methods. RF-RF led to the best results, 

followed by RF-LSMA and S2-LSMA. 

In the case of the smaller validation plot located 5 km southeast of the training plot, the 

differences were substantial. S2-LSMA performed best, the metrics were similar to those of 

the larger validation plot. The results of the other two methods showed no agreement with the 

validation data.  

I decided to proceed with S2-LSMA because the results were more spatially consistent.  
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Table 7: Validation results of the compared saxaul density estimates. The calculated metrics were of the same order of 
magnitude for all three estimates for the larger validation plot close to the training plot (top). Only the S-2 LSMA estimate 

showed an agreement with the smaller validation plot located about 5 km southeast of the training plot (bottom). 

Validation plot large RF-RF RF-LSMA S-2 LSMA 

R2 0.34 0.26 0.29 

RMSE 0.07 0.11 0.10 

 

Validation plot small RF-RF RF-LSMA S-2 LSMA 

R2 0.03 0.07 0.25 

RMSE 0.25 0.25 0.04 

 

4.1.4 Oases prediction 

Table 8 shows the confusion matrices for Takhi us and Khonin us for 2021. For 2019 and 2020, 

see Supplementary materials D. 

Generated clusters could only be assigned to two plant communities: juniper shrubs and salt 

meadows. No cluster could be assigned to the saxaul community (Tables 9 and 10). In all 

clusters for which a larger proportion was classified as saxaul, the proportions were also the 

same or higher for other communities (e.g., Takhi us 2021 clusters 1 and 4; Khonin us 2021 

cluster 8 and 10).  
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Table 8: Assignment of vegetation community IDs. The vegetation communities present in Takhi us and Khonin us of von 
Wehrden and Gungalag (2003) were assigned numerical IDs due to space limitations, which were used in the following 

tables. 

ID Vegetation community 

2 Juniper shrubs 

3 Stipa gobica - Anabasis brevifolia 

4 Stipa glareosa - Anabasis brevifolia 

5 Caragana leucophloea 

6 Stipa glareosa - Allium mongolicum 

7 Reaumuria songorica - Anabasis brevifolia 

9 Haloxylon ammodendron 

10 Achnatherum 

11 Nitraria sibirica 

12 Salt meadows 

 

Table 9: Confusion matrix of Takhi us 2021. The rows correspond to the vegetation community IDs found in the oasis (cf. 
Table 8). The columns correspond to the K-means clusters. 1’000 points were sampled per vegetation community. The best 

fit indicator indicates the largest proportion of a cluster that corresponded to a single ID. 

↓ ID Clusters → 

 

1 2 3 4 5 6 7 8 

2 0 0 21 0 625 0 354 0 

4 274 10 0 35 0 4 0 677 

5 173 325 1 473 0 6 0 22 

6 227 7 34 43 6 77 107 499 

9 313 196 6 325 0 37 0 123 

10 217 131 8 112 0 97 0 435 

11 498 14 0 158 0 23 0 307 

12 10 208 528 41 34 0 178 1 

Best Fit [%] 29.09 36.48 88.29 39.85 93.98 39.75 55.40 32.80 
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Table 10: Confusion matrix of Khonin us 2021. The rows correspond to the vegetation community IDs found in the oasis (cf. 
Table 8). The columns correspond to the K-means clusters. 1’000 points were sampled per vegetation community. The best 

fit indicator indicates the largest proportion of a cluster that corresponded to a single ID. 

↓ ID Clusters → 1 2 3 4 5 6 7 8 9 10 

2 16 210 0 0 772 0 2 0 0 0 

3 4 0 18 279 0 61 105 190 137 206 

4 0 0 2 163 0 56 0 409 23 347 

5 1 0 447 1 0 460 1 8 0 82 

6 0 0 3 456 0 22 2 325 55 137 

7 0 5 76 18 0 524 11 83 11 272 

9 0 0 44 162 0 170 9 288 64 263 

10 0 0 3 437 0 15 9 318 133 85 

11 2 0 3 403 0 35 3 397 65 92 

12 311 86 21 50 25 22 422 28 11 24 

Best Fit [%] 93.11 69.77 72.45 23.16 96.86 38.39 74.82 19.99 27.45 23.01 

4.2 Land cover and vegetation community mapping 

In the following, the results for the two mappings are presented separately. An alphabetical 

overview of the features used per combination including variable importance can be found in 

Supplementary materials E; the correlation matrices for 2019 before and after the removal of 

features can be found in Supplementary materials F. The removed correlated variables were 

the following: sum average, dissimilarity, brightness, greenness std., brightness std., and NDVI 

std. 

Table 11 shows the variable combinations used for the testing. 

Table 11: Variable combinations used for the land cover and vegetation community mapping. The variable combinations 
were assigned IDs due to space limitations, which were used in the following tables. An overview of all variables included in 

the combinations can be found in Supplementary materials E. 

ID Comment 

Original Same as in Chuluunkhuyag et al. (2021) 

All All available variables 

All - SAR S-1 variables removed 

All – Corr Selected correlated variables removed 

 
All – Both S-1 and selected correlated variables removed 
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4.2.1 Land cover 

Accuracy metrics 

The results of the different combinations showed only marginal differences (Table 12). The 

combination without some of the correlated variables led to the best metrics averaged over both 

years. 

The differences between the years were greater than between the combinations. However, no 

pattern was recognizable. Depending on the combination, the metrics for 2019 were higher 

(e.g., initial combination) or they differed depending on the metric (all other combinations). 

The metrics for non-desert were slightly better than for desert. 

Table 12: Accuracy metrics of land cover mapping. For all combinations (cf. Table 11), the accuracy metrics for 2019 and 
2020 and the average value over both years are listed. 

Metric Original All All – SAR All – Corr All - Both 

 
2019     2020       Mean 2019     2020       Mean 2019     2020       Mean 2019     2020       Mean 2019     2020       Mean 

Overall 

accuracy 

0.80 0.77 0.78 0.79 0.78 0.78 0.79 0.79 0.79 0.80 0.79 0.80 0.79 0.80 0.79 

UA  

Non-Desert 

0.84 0.81 0.82 0.82 0.83 0.83 0.83 0.84 0.83 0.83 0.84 0.84 0.82 0.84 0.83 

UA  

Desert 

0.75 0.72 0.73 0.74 0.72 0.73 0.75 0.73 0.74 0.76 0.74 0.75 0.74 0.74 0.74 

PA  

Non-Desert 

0.81 0.78 0.80 0.81 0.78 0.80 0.81 0.79 0.80 0.83 0.79 0.81 0.81 0.80 0.80 

PA  

Desert 

0.79 0.74 0.76 0.75 0.79 0.77 0.77 0.79 0.78 0.76 0.80 0.78 0.76 0.80 0.78 

Kappa 0.59 0.52 0.56 0.56 0.56 0.56 0.58 0.58 0.58 0.59 0.58 0.58 0.56 0.59 0.58 

Feature importance 

Figure 29 shows the ranked feature importance of the different variable combinations averaged 

over all runs. 
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Elevation was the most important variable for all combinations followed by the temporal 

change of the MSAVI and wetness (if included). For the combinations including additional 

variables, temporal and textural variables were among the most important. The two SAR bands, 

on the other hand, played a subordinate role. 
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Figure 29: Variable importance of all variable combinations for land cover mapping. The combination IDs are listed in Table 
11. The feature importance was expressed through the mean decrease Gini. The colors correspond to variable groups. 
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Yearly maps 

The variable combination without some of the correlated variables was used to produce yearly 

land cover maps for the GGB SPA (Figure 30). The two maps showed a high degree of 

agreement. Regional differences were observable throughout the area but were particularly 

evident in the easternmost part of the GGB SPA. 

The area shares of desert for 2019 and 2020 were 10’116 and 10’564 km2, respectively. This 

corresponds to 56.24 and 58.73% of the total area of the GGB SPA. 

 

 

Figure 30: Land cover maps of the Great Gobi B Strictly Protected Area. The red line represents the boundaries of the Great 
Gobi B Strictly Protected Area. The maps for 2019 (top) and 2020 (bottom) show the spatial distribution of desert estimated 

with a Random Forest classifier. 

4.2.2 Vegetation communities 

Accuracy metrics 

For the vegetation community mapping, the differences in accuracy metrics were considerably 

greater by combination and year (Table 13). The combination without some of the correlated 

variables led to the best metrics averaged over both years. However, several metrics were 

higher for all combinations with additional variables than for the initial combination (overall 

accuracy, kappa value, UA and PA of desert 1, and PA of desert 2). 

Again, the largest differences were observed between the two years. For example, the 

difference in UA of desert 1 for the original combination was 0.29. 
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The metrics for non-desert were by far the highest in most cases. In addition, there were 

considerable differences between low and mediocre accuracy metrics for desert 1 and desert 2. 

Table 13: Accuracy metrics of vegetation community mapping. For all combinations (cf. Table 11), the accuracy metrics for 
2019 and 2020 and the average value over both years are listed. 

Metric Original All All – SAR All – Corr All - Both 

 
2019     2020       Mean 2019     2020       Mean 2019     2020       Mean 2019     2020       Mean 2019     2020       Mean 

Overall 

accuracy 

0.69 0.70 0.69 0.73 0.71 0.72 0.73 0.70 0.72 0.73 0.71 0.72 0.72 0.71 0.72 

UA  

Non-

Desert 

0.75 0.77 0.76 0.79 0.78 0.78 0.79 0.79 0.79 0.79 0.78 0.79 0.80 0.79 0.79 

UA 

Desert 1 

0.23 0.52 0.38 0.65 0.50 0.57 0.49 0.38 0.44 0.54 0.52 0.53 0.46 0.50 0.48 

UA 

Desert 2 

0.62 0.60 0.61 0.65 0.61 0.63 0.66 0.61 0.63 0.65 0.63 0.64 0.65 0.62 0.63 

PA  

Non-

Desert 

0.85 0.83 0.84 0.85 0.83 0.84 0.86 0.82 0.84 0.85 0.83 0.84 0.85 0.83 0.84 

PA  

Desert 1 

0.06 0.12 0.09 0.21 0.12 0.16 0.19 0.13 0.16 0.19 0.11 0.15 0.19 0.12 0.16 

PA  

Desert 2 

0.66 0.68 0.67 0.73 0.72 0.73 0.71 0.72 0.72 0.73 0.76 0.74 0.72 0.74 0.73 

Kappa 0.42 0.44 0.43 0.50 0.46 0.48 0.50 0.46 0.48 0.50 0.47 0.49 0.49 0.47 0.48 

Feature importance 

Figure 31 shows the ranked feature importance of the different variable combinations averaged 

over all runs. 

Again, elevation was the most important variable for all combinations followed by the temporal 

change of the MSAVI and wetness (if included). The temporal variables were among the most 

important for the combinations including additional variables. The textural and SAR variables 

provided added value to the model in roughly equal proportions 
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Figure 31: Variable importance of all variable combinations for vegetation community mapping. The combination IDs are 
listed in Table 11. The feature importance was expressed through the mean decrease Gini. The colors correspond to variable 

groups. 
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Yearly maps 

Again, the variable combination without some of the correlated variables was used to produce 

yearly vegetation community maps for the GGB SPA (Figure 32).  

For non-desert and desert 1, larger differences between the maps were noticeable in the east of 

the GGB SPA. For desert 2, which includes saxaul, no significant differences were observed. 

The area shares of desert 1 for 2019 and 2020 were 434 and 669 km2, respectively. This 

corresponds to 2.41 and 3.72% of the total area of the GGB SPA. The area shares of desert 2 

were 8’141 and 8’323 km2 or 45.26 and 46.27%, respectively. 

 

 

Figure 32: Vegetation community maps of the Great Gobi B Strictly Protected Area. The red line represents the boundaries 
of the Great Gobi B Strictly Protected Area. The maps for 2019 (top) and 2020 (bottom) show the spatial distribution of 

desert vegetation communities estimated with a Random Forest classifier. 
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5 Discussion 

This chapter is divided into four parts. The first part deals with the field and satellite data, i.e., 

how the data availability had an impact on the workflows and to what extent the (pre-

)processing might have influenced the results. In the second and third parts, I reflect and 

evaluate the methods and results of the two practical parts of the thesis. The fourth part outlines 

possible solutions to the difficulties encountered in connection with possible future data 

acquisition and field work. 

5.1 Field data and satellite data 

5.1.1 Data availability 

Forest inventory 2020 

The rejection of the forest inventory is unfortunate, as the dataset covers a large area of the 

GGB SPA and would have been valuable for our project due to its high information content. 

The reason for not meeting the usability criteria is not known to us, I can only make 

assumptions. First, information could have been lost in the (pre-)processing of the S-2 data. 

Second, VIs should be interpreted with caution, as they are based on assumptions about 

illumination effects and influenced by the viewing geometry (Damm et al., 2015; Verrelst et 

al., 2008). However, the positive correlation between VIs and FVC is usually strong (Coppin 

et al., 2004). Therefore, I would have expected at least a moderate correlation. Third, 

misinterpretation of the data cannot be fully excluded. The project reports are written in 

Mongolian, and despite the availability of machine translations and the great commitment of 

Batsukh Jamiyandorj, the content of the project reports remains mostly unclear to us. 

Unfortunately, it was not possible to establish fruitful communication with the data collectors. 

Nevertheless, such forest inventories could be a useful data source for saxaul research if they 

are made available and misinterpretation of the data can be excluded. 

GGB SPA ranger records 

The field survey of the GGB SPA rangers was the most valuable source of field data. I suspect 

that the spatial inaccuracy of the GPS devices was responsible for not finding a relationship 

between the records and the SkySat-4 image pixels. However, the close-range camera pictures 

allowed detailed insight into the composition of the surface and played a key role in the visual 
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image interpretation. However, this method of obtaining field data is only suitable for smaller 

areas with a land cover that is not too heterogeneous. 

SkySat-4 

The spectral differences between the individual scenes in the SkySat-4 image led to a further 

spatial limitation when testing and validating the methods. Outside of the training and 

validation plots, it was difficult to clearly distinguish vegetation from the surroundings. This 

had a particular impact on the spatial validity of the methods for saxaul density estimation (cf. 

chapter 5.2). 

5.1.2 (Pre-)processing 

The influence of the individual (pre-)processing steps on the results cannot be quantified within 

the scope of this thesis, as this would require sensitivity analyses. Even with only two sensors, 

the pre-processing consists of several steps with multiple possibilities for modification and 

optimisation. Some issues with potentially significant impact on the results are discussed 

below. 

Sentinel-1 

As outlined in chapter 2.5.1, several complex steps are necessary to obtain an S-1 ARD product. 

This can be a challenging task, especially in the case of large data sets due to the spatial extent 

and/or the length of the study period (Wagner et al., 2021). Thanks to the workflow 

implemented in the GEE, S-1 data become easier to use for projects such as ours while allowing 

some flexibility in terms of parametrisation. However, this also means that the user must decide 

on suitable parameter values and the data is processed on demand. Regarding the parameters, 

I relied exclusively on literature, although alternative parametrisation would have been 

possible. A method for determining the optimal speckle filter and window size would be useful 

to prevent the loss of image information. Figure 33 shows the different VH backscatter 

coefficient time series for vegetated and non-vegetated pixels inside the monitoring plot. I 

interpret the fact that the S-1 data show some correlation with land cover as an indication of 

the basic adequacy of pre-processing. Processing on demand implies that the memory limit of 

the GEE must not be exceeded, and intermediate products must be exported. This can lead to 

memory bottlenecks. For this reason, the yearly products for the area of almost 18’000 km2 

were calculated from the monthly medians. However, finer subdivision of the data would allow 

other workflows, such as iterative calculation of yearly products of spatial subsets. 
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Figure 33: Time series of Sentinel-1 backscatter coefficients of saxaul and non-saxaul areas in VV and VH polarisation. Lines 
represent the mean of 50 points per category, the bands represent the mean +/- 1 standard deviation. The sampling points 

were selected by visual interpretation of the SkySat-4 image. 

One of the major discussion points in the academic literature regarding S-1 data and the GEE 

is the terrain normalisation. Its application is a prerequisite for the comparability of SAR 

backscatter over larger regions, especially in the case of uneven terrain (Waser et al., 2021). 

The Committee on Earth Observation Satellites (CEOS) recommends the use of the pixel-area-

based gamma nought introduced by Small (2011) (CEOS, 2019). The angular-based slope 

correction implemented in the GEE workflow of Mullissa et al. (2021) is not as accurate as 

gamma nought, but computing gamma nought is not possible without the state orbit vectors, 

which are not available in the GEE assets (Vollrath et al., 2020). However, other cloud-based 

S-1 ARD products, such as the S-1 backscatter datacube (Wagner et al., 2021), also use sigma 

nought instead of gamma nought due to the computational complexity of the latter. This makes 

clear that cloud-based environments create a variety of new opportunities to analyze large 

amounts of S-1 data, but local processing on a smaller scale may have advantages depending 

on the application. Markert et al. (2020) pre-processed S-1 data locally including radiometric 

terrain normalisation and found that it is better suited for surface water mapping than the S-1 

data available in the GEE. 

In the present thesis, the appropriateness of the choice of parameters and the angular-based 

slope corrected product was assumed. First, because of the correlation in Figure 33, and second, 

because the pre-processing workflow by Mullissa et al. (2021) was also used in other studies 

(Kacic et al., 2021; Verhelst et al., 2021). In addition, local pre-processing and uploading of 

293 S-1 images would have been disproportionate. 
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Sentinel-2 

Several pre-processing steps of the S-2 data were functions implemented by Nguyen et al. 

(2020) and debugged by the student if needed. However, the correctness of the used functions 

cannot be guaranteed. For example, numerous coefficients are used for the BRDF correction 

whose correct implementation has not been fully verified by our side. 

The TCT certainly had an impact on the validity of our results. The coefficients used were 

calculated for at-sensor reflectance and not for surface reflectance (Shi and Xu, 2019). In the 

case of S-2 data, the atmospheric correction as implemented in Sen2Cor performs the 

transformation from at-sensor reflectance to surface reflectance (Müller-Wilm, 2017). 

Consequently, the coefficients cannot be easily adjusted for surface reflectance, which means 

that the TCT variables calculated in this thesis were flawed and all statements depending on 

them should be interpreted with caution. 

SkySat-4 

The mean reflectance of the SkySat-4 pixels included in the S-2 pixels was used to harmonize 

the spatial resolution of SkySat-4 and S-2. Reducing the spatial resolution in this way is not 

new. Claverie et al. (2018) calculated the mean to reduce the spatial resolution of S-2 data from 

10 to 30 m (from 9 to 1 cell). In this thesis, the spatial resolution of SkySat-4 was reduced from 

50 cm to 10 m (from 400 to 1 cell), which corresponds to an increase of more than 44 times. 

Such harmonisation leads to identical pixel size, but not necessarily to comparable data (Figure 

34). 

First, the smoothness of the images differed. One reason could be that different algorithms 

were used for the atmospheric correction, which estimate the influence of path radiance and 

adjacency radiation, influencing the calculated surface reflectance value (Richter and 

Schläpfer, 2017). 

Second, the aggregated SkySat-4 and S-2 images were spatially misregistered. Spatial 

misregistration can lead to large errors, even if the misregistration is in the sub-pixel range 

(Townshend et al., 1992). Accordingly, the labels based on the SkySat-4 image with reduced 

resolution used as input for the machine learning models (RF-RF and RF-LSMA) arguably 

exhibited spatial misregistration in the sub-pixel range. 
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Figure 34: Comparison of aggregated SkySat-4 and Sentinel-2 data. The difference in smoothness between aggregated 
SkySat-4 and S-2 data was calculated as the standard deviation of the red band in a 3 x 3 window (top). Positive values 

indicate a lower smoothness of the aggregated SkySat-4 image. The latitudinal (middle) and longitudinal displacement of 
the SkySat-4 image compared to the S-2 image (bottom) was determined using the displacement()-function in the Google 

Earth Engine. 

5.2 Saxaul density estimation 

In the following, issues regarding the first practical part of the work are addressed. These 

include the selection of methods, problematic aspects of data processing, intermediate steps 

which were not taken into account, and a statement about the usefulness of the generated 

product. 

5.2.1 Image classification methods 

Remote sensing offers a variety of methods for image classification, which can be divided into 

pixel-based, sub-pixel-based, and object-based (Li et al., 2014). For obvious reasons, the 
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number of methods that can be tested for a specific application is limited. I worked exclusively 

with pixel and sub-pixel-based methods, e.g., Random Forest regression and LSMA, 

respectively. These two groups of methods are particularly well suited if the target of interest 

is smaller than the pixel size (Praticò et al., 2021). This is clearly the case for sparse saxaul 

forests.  

Theoretically, it would also have been possible to use object-based methods to shift the focus 

away from the individual trees to the forests. Object-based methods have been successfully 

applied to cropland mapping with S-2 data (Belgiu and Csillik, 2018). However, the distinction 

between cropland and surroundings is easier than between sparse saxaul forests and non-

forested areas. I decided against using object-based methods because the distinction between 

forest and non-forested areas would have been more arbitrary than the identification of 

individual trees in the SkySat-4 image. 

5.2.2 Machine learning models 

Model selection 

The estimation of the saxaul density outside the training area was performed with a RF 

regressor. RF belongs to the non-parametric methods, which do not need normally distributed 

input variables and are among the most used methods for image classification in the GEE 

(Belgiu and Drăgu, 2016; Tamiminia et al., 2020). In multisource remote sensing, parametric 

methods are less accurate and not recommended (Gislason et al., 2006; Sarzynski et al., 2020). 

RF and Support Vector Machine (SVM), also a non-parametric method, perform well with 

high-dimensional input data (Zafari et al., 2019). However, SVM is sensitive to kernel design 

and performs better if the input variables are standardised (Luor, 2015; Zafari et al., 2019). RF, 

on the other hand, copes well with a high number of features, multicollinearity, and noise, and 

is not as susceptible to overfitting (Belgiu and Drăgu, 2016; Zafari et al., 2019). Moreover, the 

parametrisation of a RF model is less complicated than the tuning of an SVM kernel. For two 

important parameters, the number of trees and the number of variables per tree, good 

experience has been made with 500 trees and the square root of the number of input variables 

(Chuluunkhuyag et al., 2021; Gislason et al., 2006). 

Deep learning methods might lead to better results in land cover classification, but the high 

demand for training data can be problematic (Song et al., 2019; Yuan et al., 2020). In the 

present thesis, I estimated the chances of success in developing a well-functioning deep 
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learning model to estimate saxaul density as low because the amount of available training data 

was limited. As of today, deep learning methods are not implemented in the GEE. Pre-trained 

models can be imported from the Google Cloud Platform (GCP) (Arruda et al., 2021). 

However, the GCP is not always free of charge. 

The focus on RF was ultimately a question of feasibility, complexity, and comprehensibility of 

the model's mode of operation. 

Selection and derivation of predictor variables 

Regarding the textural variables, the findings of other studies on GLCM metrics and kernel 

size were used (Pandit et al., 2020; Verde et al., 2020; Zheng et al., 2017). However, these 

studies do not refer to a desert ecosystem. A sensitivity analysis could help to determine the 

most appropriate metrics and kernels. If the kernel is too small, the texture will not be captured 

and if the kernel is too large, different textures will be mixed. The optimal kernel size could be 

approximated by spatial autocorrelation (Haralick et al., 1973). 

The incorrect calculation of the TCT variables (cf. chapter 5.1.2) also affected the temporal 

variables. This influence of this calculation error is difficult to quantify, but I assume a 

considerable error as brightness and greenness were among the most important variables in 

both models, RF-RF and RF-LSMA. 

It is therefore possible that the combinations of predictor variables contained erroneous 

variables and/or important variables were not considered. 

Determination of feature importance 

The mean decrease in impurity (MDG) was used to determine the most important variables for 

reducing dimensionality. Behnamian et al. (2019) have shown that MDG scores are not 

accurate for correlated variables. In our groups of predictor variables, multicollinearity was 

present. Therefore, it would have been more accurate to reduce the multicollinearity within the 

input data by dropping correlated variables before calculating MDG scores. This could have 

led to a different selection of variables and correspondingly different results. 

Spatial issues 

Two problems caused by the spatial nature of geographic data need to be addressed. First, 

statements about the accuracy of the two RF regressor models, RF-RF and RF-LSMA, are valid 
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only for the surroundings of the training area. The models learn the relationship between FVC 

and the spectral information using training data, which should cover all present land cover 

classes. In a region with a different soil background, the regressor is not familiar with the 

relationship between the spectral information and FVC. Therefore, the model does not produce 

reliable estimates. Accordingly, the results of the two RF regressor models for the more distant 

validation plot were poor. 

Second, spatial autocorrelation (SAC) may have had an impact on the validity of our results. 

The concept of SAC can be expressed as follows: I invoke the first law of geography: 

everything is related to everything else, but near things are more related than distant things 

(Tobler, 1970). In other words, spatially adjacent data points are not independent of each other, 

which violates basic assumptions of many statistical models (Ploton et al., 2020). SAC was not 

considered in the training and validation stages of the RF regressor models, which could have 

led to a significant overestimation of their predictive power (ibid.). Based on tests conducted 

after the completion of the practical part of this thesis was completed, I assume that the 

performance of the two models was indeed overestimated. Further details in Supplementary 

materials G. 

5.2.3 Linear spectral mixture analysis of Sentinel-2 imagery 

Endmember variability 

Algorithm-extracted endmembers have in common that they are site-dependent. They are 

calculated by an algorithm that approximates the endmember spectra based on the number of 

endmembers to be found and the spectra present in the given image – if the image input 

changes, the result also changes. Therefore, the soil endmembers extracted with MVC-NMF 

are not per se valid for the whole GGB SPA. In addition to the spatial variability, there is also 

a temporal variability of vegetation endmembers, each of whose spectral signature represents 

a specific phenological stage (Somers et al., 2011). 

Furthermore, endmembers are sensor-specific. The available number of spectral bands 

determines the maximum possible number of endmembers. In the present thesis, NWHFC was 

used to determine the number of available endmembers in the S-2 image, resulting in nine 

endmembers. It is likely that the actual number of endmembers present in the image was much 

higher, but their identification was not possible. For more precise results, more spectral bands 

would be necessary, e.g., by using hyperspectral data. 
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The appropriateness of the algorithm-extracted endmembers as input for LSMA is therefore 

limited to the extent of the SkySat-4 image, the time of acquisition, and S-2 data. A LSMA for 

the whole GGB SPA using these endmembers could result in unreliable estimates. 

RTM parametrisation 

The simulated endmembers are not site-dependent since they are not generated from the image 

data. Instead, they depend on the parametrisation of the RTM.  

As illustrated in Figure 35, the proportions of the three saxaul endmembers differed 

considerably. Within the framework of this thesis, only three parameter combinations were 

tried out (Table 14). No statement can be made about their appropriateness since the 

parametrisation was experimental and may not correspond to the real situation in the field. For 

example, the leaf structure parameter (N) refers to the number of homogeneous layers of a leaf 

(Jacquemoud and Baret, 1990), but saxaul leaves are mostly degenerated and hardly dominate 

the tree’s spectral signature. In addition, simulated vegetation endmembers may only be 

representative of a specific phenological stage (Schiefer et al., 2021) since parameters such as 

Cab and Cw are subject to seasonal variation. 

The biggest influence on the appropriateness of the simulated spectra was probably an error in 

the implementation. As was discovered afterward, the custom S-2 sensor with a 10-band 

configuration was wrongly set-up within the ARTMO toolbox by the student. Instead of B8A 

(RE4), B9 (water vapour) was used for the simulations. The influence on the result cannot be 

estimated at this point since the simulation with subsequent LSMA and validation was not 

repeated shortly before the submission deadline. 
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Figure 35: Relative proportions of the three simulated endmembers in the total detected saxaul fraction. The simulated 
endmembers correspond to the PROSPECT-4 simulated endmembers used for linear spectral mixture analysis of Sentinel-2 

data. The total detected saxaul fraction corresponds to the summed-up abundance of these endmembers with active 
abundance sum-to-one constraint. 

Table 14: Traits of the simulated endmembers used for saxaul density estimation. Of five endmembers simulated with 
PROSPECT-4, three were randomly selected for the linear spectral mixture analysis of Sentinel-2 data. Their respective 

endmember fractions are shown in Figure 35. 

Simulated endmember N [-] Cw [cm3 cm-2] Cm [g cm-2] Cab [µg cm-2] 

Simulation 2 3.4767 0.0576 0.0274 19.7696 

Simulation 3 3.1171 0.0604 0.0245 14.084 

Simulation 4 3.6111 0.0713 0.0184 11.8166 

Linear mixture assumption 

The assumption of linearity is not valid for fine materials with internal reflection like vegetation 

and soil in desert ecosystems (Ray and Murray, 1996; Winter, 2004). In cases where this 

condition of linear mixing is violated, Artificial Neural Networks (ANNs) can be used 

(Lillesand et al., 2015). However, ANNs are not available in the GEE (Tamiminia et al., 2020) 

and no further testing was done at this point. 

5.2.4 Validation 

Two factors are believed to have affected the results of the validation. The first was the method 

by which the validation data were generated. RF regression was used because labeling pixels 

as vegetated/non-vegetated seemed to us to be less subjective than determining endmembers 

in SkySat-4 image regions for which close-range camera images were not available. Therefore, 
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it is possible that the relationship between RF-RF estimate and validation was overestimated. 

Validation data generated with LSMA and a contaminated vegetation endmember (cf. chapter 

4.1.1) would likely have benefited the RF-LSMA. 

The second was that the SAC may have biased the model results (cf. chapter 5.2.2). The 

validation was partially repeated taking SAC into account after completion of the practical part 

of this thesis. I assume that the statistical metrics were influenced by SAC, but the assessment 

of the methods would have remained the same. Further details in Supplementary materials G. 

5.2.5 Oases prediction 

The reference map can be considered relatively accurate for the areas around the oasis 

complexes (Kaczensky, 2022, personal communication). It is a nominal map; each pixel is 

assigned to a vegetation class without information about the vegetation density. Saxaul forests 

cover a large area that; presumably non-vegetated areas were also assigned to this class, which 

could have influenced the comparison between vegetation classes and clusters. 

Since it was not known which cluster belonged to which community, a different type of 

assignment had to be found. The introduced best-fit indicator is simplistic, but the focus was 

on coarse correlations. I conclude from the results that no isolation of saxaul trees is possible 

with FVC and MSAVI(-derived) variables. The phenology could be a reason why saxaul could 

not be isolated. A single data point per month may not have provided the level of detail needed 

to distinguish plant species. 

5.2.6 Product evaluation 

The results show that an estimation of FVC with medium-resolution satellite data is possible. 

This is an important finding since spatial resolution plays an important role in the extraction of 

vegetation in arid ecosystems due to the possible dominance of the soil background (Ji et al., 

2020). The LSMA of S-2 data with an endmember set consisting of algorithm-extracted soil 

endmembers and RTM-simulated saxaul endmembers produced the best results. 

The proposed method does not rely on field data because the endmembers are calculated from 

the image or simulated with an RTM. Therefore, the soil endmembers have greater spatial 

validity than if they were defined manually. However, the ideal parametrisation of the RTM 

for the detection of saxaul remains largely unknown. The physiological, spatial, and temporal 

variation could not be adequately accounted for in this thesis. Furthermore, a wrong band was 

used for the RTM simulations (B9 instead of B8A, cf. chapter 5.2.3). 
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The distinction of plant species with a clustering approach and estimated FVC and MSAVI-

derived variables as input was not possible. 

5.3 Land cover and vegetation community mapping 

5.3.1 Multicollinearity 

This input data for the RF classifier were highly subject to multicollinearity. Removing selected 

correlated variables improved the model performance to a certain degree. However, the original 

S-1 and S-2 bands were kept. Accordingly, groups of highly correlated variables remained (cf. 

Supplementary materials F). Tests have shown that the same classification accuracy could be 

achieved with only the ten most important variables based on the MDG scores (results not 

shown). The same limitations on the accuracy of MDG scores in the case of correlated variables 

apply as in chapter 5.2.2. 

5.3.2 Plausibility of results 

Based on visual assessment, the resulting maps seem to be plausible. The spatial extent of 

desert in the land cover maps as well as desert 1 and 2 in the vegetation community maps are 

roughly consistent with the map of Chuluunkhuyag et al. (2021). In case of the vegetation 

community mapping, the three most important variables of the initial combination were 

identical to those of the reference mapping (Figure 36). However, comparisons of feature 

importance should be interpreted with caution. The GEE returns the mean decrease in impurity 

(also called mean decrease Gini, MDG), whereas Chuluunkhuyag et al. (2021) reported the 

mean decrease accuracy (MDA). Absolute values of feature importance also depend on the 

number of variables.  

Furthermore, the maps are similar for each of the two years, which is consistent with our 

expectations since the land cover and dominant vegetation communities generally change over 

larger time scales (Figure 37). The differences between the estimated area shares in 2019 and 

2020 could be due to the respective amounts of precipitation (Kaczensky, 2022, personal 

communication).  
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Figure 36: Variable importance of Random Forest model of Chuluunkhuyag et al. (2021). Taken from Chuluunkhuyag et al. 
(2021). The variable importance is expressed through the mean decrease accuracy. 

 

Figure 37: Adapted land cover and vegetation community map of Chuluunkhuyag et al. (2021). The map shows the spatial 
distribution of land cover classes and dominant vegetation communities in the Dzungarian Gobi and was created with a 

Random Forest classifier and the vegetation plots described in chapter 2.4.2. 
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5.3.3 Product evaluation 

Detailed knowledge about the distribution of dominant vegetation communities in the GGB 

SPA is a valuable complement to the vegetation density estimate, as the latter does not allow 

distinction of individual species. In addition, the part of the GGB SPA relevant for saxaul 

research could be extracted, reducing data volume and processing time.  

In our case, the deserted areas were of particular interest. In the case of land cover mapping, 

UA and PA of 0.75 and 0.78 were achieved with the best variable combination. In the case of 

vegetation community mapping, the accuracy metrics were only 0.53 and 0.15 for desert 1, but 

0.64 and 0.74 for desert 2 (including saxaul). I rate the model performance as satisfactory. 

Unfortunately, I do not know of any metrics for the mapping of Chuluunkhuyag et al. (2021). 

Thus, a direct comparison of model performances was not possible.  

Temporal and textural variables increased the classification accuracy whereas the S-1 variables 

played a subordinate role in vegetation community mapping and were not relevant to land cover 

mapping. Determination of the exact added value of these variable groups would require a strict 

reduction of multicollinearity in order not to affect the MDG scores. 

5.4 Future possibilities 

5.4.1 Field survey design 

For a small-scale distinction of plant species, corresponding field data are required. The survey 

design with transects in the monitoring plot was not successful, presumably because the 

accuracy of the GPS devices was too low.  

I propose a different approach. First, the extent of the GGB SPA is reduced to areas of interest 

or selected land cover classes, e.g., oases complexes or deserts. Subsequently, either drone 

flights take place (planned for 2022), or high-resolution satellite imagery is ordered. The field 

survey takes place after receiving the remote sensing data and is dedicated to labeling the 

vegetation identified in the remote sensing data. This could prevent a spatial mismatch of 

remote sensing and field data. 

Areas with homogeneous vegetation composition are particularly suitable and can be used as 

labels for medium-resolution satellite imagery. This approach would allow for creating time 

series of spectral signatures for different plant species. Ideally, several areas per species would 

be available to account for variability adequately. 
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5.4.2 Addressing endmember variability 

The challenges of spectral, spatial, and temporal variation of endmembers in LSMA were 

discussed in chapter 5.2.3.  

The Multiple Endmember Spectral Mixture Analysis (MESMA) could help address these 

challenges (Somers et al., 2011). With MESMA, groups of endmembers are formed that are 

assigned to the same target. In an iterative process, the highest match between endmember and 

spectrum is found. MESMA has been used successfully for monitoring shrub vegetation 

(Lippitt et al., 2018). Defining multiple endmembers per target would allow accounting for 

phenological and physiological variability. However, MESMA is not currently implemented 

in the GEE. The added value of MESMA for saxaul mapping could be determined by testing 

MESMA outside the GEE.  

5.4.3 RTM inversion 

In this thesis, vegetation spectra were simulated with an RTM using plant traits from the 

literature. With sufficient availability of field data, the RTM parametrisation could be tuned to 

the local conditions, e.g., with hybrid inversion. 

First, a larger number of vegetation spectra is simulated, e.g., 1’000. Second, a machine 

learning regression algorithm (MLRA) is trained with the simulated spectra, learning the 

relationship between plant traits and spectra (Verrelst et al., 2019). Third, the MRLA is used 

to determine the plant traits of the field data. This opens up two new possibilities. First, saxaul-

specific vegetation spectra can be simulated, which could be used as endmembers for MESMA. 

Second, the calculation of additional variables such as biomass becomes possible. 

Gaussian Processes regression (GPR) is one of the most accurate regression methods for hybrid 

inversion (Verrelst et al., 2015, 2013). GPR is not currently implemented in the GEE but Pipia 

et al. (2021) have shown that it is possible to run a pre-trained GPR model in GEE. Until the 

development of GPR models in GEE eventually becomes possible the proposed RTM inversion 

for the GGB SPA could be tested locally.   

5.4.4 Sentinel-1 data 

There are two types of S-1 data: the Single-look Complex (SLC) product providing amplitude 

and phase information, and the Ground Range Detected (GRD) product providing intensity 

(ESA, 2012). Only the GRD product is available in the GEE. 
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The phase information of the S-1 SLC product can be used for coherence change detection 

(CCD), through which subtle changes in the Earth's surface become detectable, even at the sub-

pixel level (Ullmann et al., 2019). The volume scattering of vegetation canopies reduces 

coherence (Ouaadi et al., 2020) - a fact that could be used for detecting vegetation in the GGB 

SPA. For testing purposes, S-1 SLC data could be processed locally and uploaded to the GEE.  
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6 Conclusion 

Summary 

This methodological exploratory thesis aimed to find a method to accurately estimate the 

density of saxaul forest with Sentinel-1 and Sentinel-2 data. The density estimates of the 

following methods were compared: two Random Forest regression models, which differed in 

the origin of the labels and were trained with different variable types, and LSMA of Sentinel-

2 data with a combination of algorithm-extracted and RTM-simulated endmembers. 

Subsequently, an attempt was made to distinguish plant species in two oases complexes using 

estimated density and additional variables. I estimated the possible spatial distribution of saxaul 

forests by classifying the Great Gobi B Strictly Protected Area (GGB SPA) according to 

dominant vegetation community. For training purposes, different groups of variables were used 

to determine their influence on the model accuracy. 

Answers to research questions 

1) How can the saxaul density be estimated most accurately on the pixel level? 

The most spatially consistent estimation of vegetation density for two validation plots near the 

Khonin us ranger station was achieved with LSMA of Sentinel-2 data, for which a combination 

of algorithm-extracted soil and RTM-simulated vegetation endmembers was used (R2 = 0.29 

and 0.25, RMSE = 10 and 4% for the larger and smaller validation plot, respectively). The soil 

endmembers corresponded to selected spectra identified as endmembers using MVC-NMF. 

The vegetation endmembers were simulated with PROSPECT-4. The input parameters were 

determined using literature and the TRY Plant Trait Database. In the case of one of the Random 

Forest regressor models, the accuracy was higher for the larger validation plot close to the 

training plot (R2 = 0.34, RMSE = 7%). However, its applicability was limited to the immediate 

vicinity of the training plot. If the soil background changed, as in the case of the smaller 

validation plot, the model did not produce reliable estimates (R2 = 0.03, RMSE = 25%). 

Experimental tests in two oasis complexes showed that the distinction of plant species with the 

estimated density and MSAVI(-derived) variables was not possible. Therefore, the proposed 

method allows the determination of vegetation density for the analyzed area near the Khonin 

us ranger station, but not the determination of saxaul forest density. 
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2) How accurately can the vegetation community distribution be mapped using moderate-

resolution satellite remote sensing data? 

I tested different combinations of variable groups to replicate the vegetation community 

mapping of Chuluunkhuyag et al. (2021) with annual composites of Sentinel-2 data for 2019 

and 2020. For the vegetation community containing saxaul, PA and UA were 0.74 and 0.64, 

respectively (average values over both years). The spatial extent of saxaul forests in the GGB 

SPA was estimated at 8'141 and 8'323 km2 for 2019 and 2020, respectively. A statistical 

comparison with the mapping of Chuluunkhuyag et al. (2021) was not possible, as no accuracy 

metrics were available. However, according to visual assessment, the obtained maps are 

consistent with the reference mapping. 

The most important variables for mapping the possible spatial distribution of saxaul forests 

included elevation and temporal variables, followed by textural and SAR variables. This would 

indicate an added value of combining Sentinel-1 and Sentinel-2 data. However, these results 

should be interpreted with caution, as the input data were subject to multicollinearity. 

Recommendations for future research 

For further development of the products, the generation of additional field data is necessary. I 

suggest that for areas of interest drone flights take place or high-resolution satellite imagery is 

ordered. Subsequently, the vegetation on the images would be identified by a field survey. 

Ideally, endmembers could be isolated for Multiple Endmember Spectral Mixture Analysis 

(MESMA) to account for endmember variability. An attempt could also be made to determine 

the plant traits of saxaul using the hybrid inversion of PROSPECT-4. Based on this, the 

calculation of additional products such as biomass would be conceivable. 
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Supplementary materials A: Comparison of cloud removal 

algorithms 

I randomly selected 20 S-2 images regardless of their cloudy pixel percentage between April 

and October 2020 to compare the performance of two methods for cloud removal: Sen2Cor 

and s2cloudless.  

In the case of Sen2Cor, I worked with the SCL bit mask. Only vegetation, bare soil, water, and 

snow were kept. Snow was not masked out because this option does not exist in s2cloudless 

and would have influenced the comparison. 

S2cloudless is a machine-learning single-scene cloud detector based on the Light Gradient 

Boosting Machine (LightGBM) algorithm (Zupanc, 2017). The minimum of the bimodal 

distribution of cloud probability is described as a reasonable threshold (Braaten et al., 2020). 

To determine a meaningful threshold to be applied to multiple images, 20 additional images 

were randomly selected, but with a cloudy pixel percentage between 60 and 80% to avoid 

cloud-free and heavily clouded images. Despite this condition, two images were cloud-free. 

The average optimal threshold was 49.94%, the median 51% (Table 15).  

I set the cloud probability threshold to 51%, the near-infrared reflectance threshold 

(NIR_DRK_THRESH) to 0.1, and the maximum distance to search for clouds 

(CLD_PRJ_DIST) to 5 km to compare the performance with Sen2Cor.  

Table 16 shows the results of the performance comparison. 

The performance was similar but differed by cloud cover type. In the EO Browser 

(https://apps.sentinel-hub.com/eo-browser/), the type of cloud cover was determined visually 

for all images during the period April to October 2020. In 27 cases cumulus clouds were 

dominant, in 50 cases the coverage was mixed. Therefore, our final decision was in favor of 

Sen2Cor. 
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Table 15: Determination of s2cloudless threshold. 20 Sentinel-2 images with a cloudy pixel percentage between 60 and 80% 
were analyzed. The optimal threshold for s2cloudless was assumed to correspond to the absolute low of the bimodal 

distribution of the image pixel’s cloud probability. 

Image ID Cloudy pixel 

percentage 

Clouds present? Absolute low of 

bimodal 

distribution 

20200405T045651_20200405T045718_T46TCR 76.22 yes 38 

20200412T044701_20200412T045530_T46TCQ 76.21 yes 54 

20200427T044659_20200427T044735_T46TCR 79.36 no 
 

20200427T044659_20200427T044735_T46TDQ 69.73 no 
 

20200509T043711_20200509T044259_T46TFR 69.59 yes 64 

20200512T044701_20200512T045536_T46TDR 73.64 yes 85 

20200512T044701_20200512T045536_T46TER 69.40 yes 36 

20200529T043711_20200529T043707_T46TDR 61.08 yes 40 

20200621T044711_20200621T045324_T46TER 76.45 yes 45 

20200713T043659_20200713T043702_T46TDQ 63.64 yes 51 

20200713T043659_20200713T043702_T46TER 63.23 yes 52 

20200815T044709_20200815T044920_T45TYL 70.99 yes 51 

20200815T044709_20200815T044920_T46TCR 78.75 yes 48 

20200827T043711_20200827T044502_T46TDQ 68.40 yes 51 

20200902T045701_20200902T050522_T46TCR 79.20 yes 53 

20200916T043711_20200916T044458_T46TDQ 61.45 yes 36 

20200929T044711_20200929T045454_T46TER 78.02 yes 58 

20201009T044711_20201009T044713_T46TDR 75.25 yes 45 

20201009T044711_20201009T045556_T45TYL 63.26 yes 28 

20201012T045731_20201012T045732_T45TYL 61.61 yes 64 
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Table 16: Overview of the performances of Sen2Cor and s2cloudless. 20 Sentinel-2 images without cloud pixel percentage 
restrictions were analyzed. The best performer (1 = Sen2Cor, 2 = s2cloudless, 3 = draw) was determined by visual 

assessment. The threshold for s2cloudless was set to 51%. 

Image ID Cloudy pixel percentage Best performer Cloud type 

20200623T043709_20200623T043703_T46TDQ 0.69 
  

20200420T045649_20200420T045651_T46TCQ 7.78 1 Mixed cloud cover 

20200514T043659_20200514T043659_T46TDR 6.00 3 Cumulus 

20200509T043711_20200509T044259_T46TDR 76.38 3 Mixed cloud cover 

20200924T044659_20200924T045505_T46TCQ 0.26 
  

20200723T043659_20200723T043734_T46TER 89.43 1 Mixed cloud cover 

20200402T044701_20200402T045415_T46TCQ 84.45 
  

20200724T045701_20200724T050437_T46TCQ 60.94 1 Mixed cloud cover 

20201004T044709_20201004T044703_T46TCQ 0.07 
  

20200726T044659_20200726T044734_T45TYL 0.57 2 Cumulus 

20200623T043709_20200623T043703_T46TFR 5.93 2 Cumulus 

20200731T044711_20200731T045436_T46TCQ 2.57 2 Cumulus 

20200507T044659_20200507T044657_T46TCR 2.70 2 Cumulus 

20200623T043709_20200623T043703_T46TEQ 0.69 
  

20200629T045659_20200629T045659_T46TCR 2.27 
  

20200810T044711_20200810T045542_T46TEQ 10.17 1 Mixed cloud cover 

20200723T043659_20200723T043734_T46TEQ 86.48 3 Almost entirely cloudy 

20200417T044659_20200417T045549_T46TEQ 97.04 2 Almost entirely cloudy 

20200805T044709_20200805T044703_T46TDR 17.78 2 Cumulus 

20200420T045649_20200420T045651_T46TDR 24.45 1 Mixed cloud cover 

  



 

75 
 

Supplementary materials B: Parameter settings and model 

architectures of usability assessment of field data 

Table 17: Parametrisation of the Random Forest model used for forest inventory usability assessment. I used the Random 
Forest regressor implemented in the Scikit-learn python library. 

Parameter Value 

N_estimators 1000 

min_samples_split 10 

min_samples_leaf 10 

max_features ‘sqrt’ (square root of number of input features) 

max_depth 20 

bootstrap True 

 

Table 18: Architecture of the 1-D Convolutional Neural Network model used for forest inventory usability assessment. I used 
a sequential model implemented in the Keras python library running on top of TensorFlow. 

1D-CNN architecture 

model = Sequential() 

model.add(Conv1D(32, 2, activation="relu", input_shape=(10, 1))) 

model.add(MaxPooling1D(pool_size=2)) 

model.add(Flatten()) 

model.add(Dense(64, activation="relu")) 

model.add(Dense(1)) 

model.compile(loss="mse", optimizer="adam") 
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Supplementary materials C: Algorithm-extracted endmember 

signatures 

The pixel purity index (PPI), after dimensionality reduction and noise whitening, determines 

the most extreme pixels when projecting the data onto random unit vectors (Boardman et al., 

1995). With N-finder (N-FINDR), the endmembers spectra are assumed to represent the 

simplex, a convex geometric body enveloping the n-dimensional feature space (Winter, 1999). 

In an iterative process, each pixel is sampled as each possible endmember until the volume of 

the simplex is maximised (Winter, 2004). With vertex component analysis (VCA), the 

endmembers are vertices of this simplex, and each endmember corresponds to the extreme of 

a projection of the data (Nascimento and Dias, 2005). For each endmember, the data are 

reprojected perpendicular to the previously spanned subspace until the defined number of 

endmembers is found. Minimum volume constrained non-negative matrix factorisation (MVC-

NMF) combines the most accurate approximation of endmembers with minimisation of 

simplex volume (Miao and Qi, 2007). NMF forms non-negative vectors that approximate the 

input data with a cost function. If all pixels are mixtures, then the endmembers do not 

correspond to the vertices of the simplex but must lie outside. The MVC keeps the volume of 

the simplex as small as possible, which makes the algorithm applicable to a larger number of 

endmembers and less susceptible to noise. 
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Figure 38: Algorithm-extracted endmember signatures. I used built-in and custom functions to extract the endmembers of 
the Sentinel-2 image in MATLAB 2021a with the following methods: pixel purity index, N-Finder, vertex component analysis, 
and minimum volume constrained non-negative matrix factorisation (from top to bottom). The number of endmembers to 

be extracted was previously determined using the Noise-Whitened Harsanyi-Farrand-Chang method. 
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Supplementary materials D: Confusion matrices for 2019 and 

2020 

Table 19: Confusion matrix of Takhi us 2019. The rows correspond to the vegetation community IDs found in the oasis (cf. 
Table 8). The columns correspond to the K-means clusters. 1’000 points were sampled per vegetation community. The best 

fit indicator indicates the largest proportion of a cluster that corresponded to a single ID. 

↓ ID Clusters → 

 

1 2 3 4 5 6 7 8 

2 18 712 0 1 1 268 0 0 

4 0 0 900 1 2 0 87 10 

5 0 0 144 57 8 0 520 271 

6 36 12 556 6 11 133 218 28 

9 0 0 141 131 9 0 376 343 

10 0 0 455 120 6 0 275 144 

11 0 0 427 12 0 0 423 138 

12 390 44 2 16 380 118 10 40 

Best Fit [%] 87.84 92.71 34.29 38.08 91.13 51.64 27.24 35.22 

 

 

Table 20: Confusion matrix of Takhi us 2020. The rows correspond to the vegetation community IDs found in the oasis (cf. 
Table 8). The columns correspond to the K-means clusters. 1’000 points were sampled per vegetation community. The best 

fit indicator indicates the largest proportion of a cluster that corresponded to a single ID. 

↓ ID Clusters → 

 

1 2 3 4 5 6 7 8 

2 724 0 0 265 11 0 0 0 

4 0 122 5 0 0 9 793 71 

5 0 187 462 0 7 0 31 313 

6 5 125 7 71 22 167 560 43 

9 0 245 269 0 6 39 171 270 

10 0 154 114 0 5 246 383 98 

11 0 179 52 0 0 73 417 279 

12 37 3 191 185 529 2 2 51 

Best Fit [%] 94.52 24.14 42.00 50.86 91.21 45.90 33.64 27.82 
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Table 21: Confusion matrix of Khonin us 2019. The rows correspond to the vegetation community IDs found in the oasis (cf. 
Table 8). The columns correspond to the K-means clusters. 1’000 points were sampled per vegetation community. The best 

fit indicator indicates the largest proportion of a cluster that corresponded to a single ID. 

↓ ID Clusters → 1 2 3 4 5 6 7 8 9 10 

2 0 0 1 0 0 6 102 0 0 891 

3 124 6 0 302 233 0 0 272 63 0 

4 144 0 0 303 259 0 0 250 44 0 

5 82 356 1 1 36 3 0 3 518 0 

6 102 5 2 338 145 0 0 390 18 0 

7 347 85 12 59 136 8 3 23 327 0 

9 186 75 8 253 207 0 0 90 181 0 

10 82 8 1 398 120 0 0 362 29 0 

11 53 0 0 411 113 0 0 401 22 0 

12 16 58 372 4 20 322 122 20 30 36 

Best Fit [%] 30.55 60.03 93.70 19.86 20.41 94.99 53.74 22.14 42.05 96.12 

 

Table 22: Confusion matrix of Khonin us 2020. The rows correspond to the vegetation community IDs found in the oasis (cf. 
Table 8). The columns correspond to the K-means clusters. 1’000 points were sampled per vegetation community. The best 

fit indicator indicates the largest proportion of a cluster that corresponded to a single ID. 

↓ ID Clusters → 1 2 3 4 5 6 7 8 9 10 

2 0 0 98 896 0 0 0 6 0 0 

3 263 11 0 0 60 177 222 3 232 32 

4 211 24 0 0 218 106 183 0 71 187 

5 7 614 0 0 59 248 1 4 4 63 

6 198 8 0 0 79 37 398 0 128 152 

7 39 519 6 0 83 105 18 2 2 226 

9 217 131 0 0 112 120 130 1 62 227 

10 432 12 0 0 14 23 290 0 73 156 

11 271 6 0 0 23 23 372 0 67 238 

12 31 111 197 43 60 143 8 355 21 31 

Best Fit [%] 25.88 42.76 65.45 95.42 30.79 25.25 24.54 95.69 35.15 18.14 
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Supplementary materials E: Feature combinations and variable 

importance of land cover and vegetation community mapping 

Table 23: Feature importance of all variable combinations for land cover mapping. For all combinations (cf. Table 11), the 
feature importance expressed through the mean decrease Gini is listed. 

Variable Original All All – SAR All – Corr All - Both 

 
2019          2020 2019          2020 2019          2020 2019          2020 2019          2020 

Aerosol 306 307 93 100 103 103 120 126 141 143 

Aspect 290 277 106 101 115 108 132 131 149 149 

Blue 298 291 93 97 102 102 118 125 129 135 

Blue_asm 
  

111 111 111 112 131 136 151 146 

Blue_contrast 
  

101 122 105 121 138 153 155 172 

Blue_corr 
  

121 120 131 131 138 149 164 170 

Blue_diss 
  

103 117 113 124 
    

Blue_ent 
  

114 111 126 129 142 130 149 153 

Blue_idm 
  

109 113 121 123 142 143 150 154 

Blue_savg 
  

96 97 103 110 
    

Blue_var 
  

102 113 115 125 132 142 156 159 

Brightness 300 325 89 94 94 99     

Brightness Std.   116 113 119 116     

Elevation 398 392 156 177 166 179 187 205 210 215 

Green 291 286 91 92 97 97 109 111 127 134 

Greenness 367 365 100 116 108 121 140 150 154 166 

Greenness Std. 
  

123 123 132 133 
    

MSAVI Std. 
  

158 145 165 150 216 193 227 207 

NDVI Std. 
  

140 134 142 139 
    

NIR 325 337 89 97 92 101 115 126 126 145 

RE1 
  

80 88 94 93 103 111 127 132 

RE2 
  

85 96 90 94 103 110 117 127 

RE3 
  

92 102 90 104 107 118 127 139 

RE4 
  

96 105 98 104 114 124 131 142 

Red 286 293 82 92 91 99 112 111 125 131 

Slope 330 303 108 114 120 123 144 144 155 160 

SWIR1 290 290 95 98 95 99 117 112 136 135 

SWIR2 300 303 99 101 102 108 125 127 142 148 

VH 
  

107 107 
  

129 132 
  

VV 
  

108 109 
  

132 139 
  

Wetness 304 304 100 98 111 110 122 123 149 152 

Wetness Std. 
  

130 126 141 135 182 165 195 181 
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Table 24: Feature importance of all variable combinations for vegetation community mapping. For all combinations (cf. 
Table 11), the feature importance expressed through the mean decrease Gini is listed. 

Variable Original All All – SAR All – Corr All - Both 

 
2019          2020 2019          2020 2019          2020 2019          2020 2019          2020 

Aerosol 436 445 147 153 156 162 175 187 206 217 

Aspect 416 408 159 163 171 173 185 196 214 226 

Blue 431 428 130 131 144 146 169 174 205 205 

Blue_asm   153 156 165 171 190 198 213 218 

Blue_contrast   155 167 167 177 192 206 213 232 

Blue_corr   169 172 185 200 208 221 242 257 

Blue_diss   161 167 164 176     

Blue_ent   150 147 165 172 187 188 213 214 

Blue_idm   154 161 157 169 183 186 206 220 

Blue_savg   150 143 150 158     

Blue_var   162 175 171 178 201 210 224 231 

Brightness 418 424 122 129 135 145     

Brightness Std.   178 172 183 179     

Elevation 557 570 223 245 232 257 287 300 301 326 

Green 425 421 128 131 141 148 161 161 181 190 

Greenness 492 498 148 160 154 174 192 204 211 225 

Greenness Std. 
  

176 188 184 190 
    

MSAVI Std. 
  

200 191 220 213 270 271 281 273 

NDVI Std. 
  

188 184 201 192 
    

NIR 466 470 130 135 142 146 171 175 193 208 

RE1 
  

128 135 127 137 154 153 182 201 

RE2 
  

130 130 137 143 155 155 182 195 

RE3 
  

125 134 139 145 156 161 177 194 

RE4 
  

133 137 141 148 170 173 186 194 

Red 433 421 123 131 139 147 167 166 193 191 

Slope 446 431 150 155 174 173 187 194 227 234 

SWIR1 433 421 139 138 141 149 163 167 201 209 

SWIR2 451 441 142 150 158 164 178 178 203 215 

VH 
  

173 176 
  

201 217 
  

VV 
  

161 175 
  

196 223 
  

Wetness 431 434 148 145 162 159 187 180 204 208 

Wetness Std. 
  

197 179 208 195 254 238 284 253 
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Supplementary materials F: Correlation matrices of input data 

for land cover and community mapping 2019  

 

Figure 39: Correlation matrix of input variables for land cover and community mapping 2019. The correlation is expressed 
through the Pearson correlation coefficient. 

 

Figure 40: Correlation matrix of input variables for land cover and community mapping 2019 after removing selected 
correlated variables. The correlation is expressed through the Pearson correlation coefficient. 
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Supplementary materials G: Spatial autocorrelation 

Training stage 

I repeated the training of the two RF regressor models using three training subsets with reduced 

SAC determined using Moran's I (Moran, 1948) (Table 25). Each subset consisted of 300 

samples with a minimum distance of 50 m between them. The same variable combinations 

were used as in the original implementation. For each model and combination, a 3-fold random 

subsampling was performed. 

The use of training subsets influenced the mean model performances (Figure 41). The best 

trade-off would no longer necessarily have been the R13 combination. The performances were 

volatile, varying considerably between the individual runs (results not shown). However, the 

metrics were generally lower than for the original implementation, which is consistent with the 

results of (Ploton et al., 2020). Therefore, I assume that the performances of RF-RF and RF-

LSMA in the original implementation were overestimated because SAC was not considered. 

Table 25: Presence of spatial autocorrelation in training sets for machine learning models. The table shows the outputs of 
the ArcGIS Spatial Autocorrelation (Global Moran's I) function for the training sets of the RF-RF and RF-LSMA models. The 

training sets included either all Sentinel-2 pixels, randomly selected 50% of the pixels, or 300 randomly selected pixels each 
with a minimum distance of 50 m between the points. 

Set Moran's 

Index 

Expected 

Index 

Variance z-score p-

value 

Confidence 

level [%] 

RF-RF All Cells 0.3895 -0.0001 0 67.8324 0 >99 

RF-RF 50% Training 0.2853 -0.0001 0 58.3566 0 >99 

RF-RF Subset 1 0.0141 -0.0033 0.0019 0.404 0.6862 <90 

RF-RF Subset 2 0.0634 -0.0033 0.0019 0.0019 0.1229 <90 

RF-RF Subset 3 0.1218 -0.0033 0.002 2.7641 0.0057 >99 

RF-LSMA All Cells 0.5762 -0.0001 0 101.0962 0 >99 

RF-LSMA 50% Training 0.4627 -0.0001 0 90.3692 0 >99 

RF-LSMA Subset 1 0.2699 -0.0033 0.0021 5.9213 0 >99 

RF-LSMA Subset 2 0.2393 -0.0033 0.002 5.422 0 >99 

RF-LSMA Subset 3 0.3586 -0.0033 0.0022 7.7544 0 >99 
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Figure 41: RF-RF and RF-LSMA model performances with different training subsets and training set size. The coefficient of 
determination corresponds to the average of three runs per model, training subset, and training set size. The combination 

IDs are listed in Table 5. The training subsets are listed in Table 25. 

Validation stage 

The validation was repeated for the larger plot with three subsets of 200 samples with a 

minimum distance of 50 m between them (Table 26). The results were different for each subset, 

which is probably due to the low number of samples. Nevertheless, the metrics for RF-RF were 

highest, followed by S2-LSMA and RF-LSMA (Table 27). This procedure was not applied to 

the smaller validation plot due to its small area. 
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Table 26: Presence of spatial autocorrelation in the larger validation plot. The table shows the outputs of the ArcGIS Spatial 
Autocorrelation (Global Moran's I) function for the validation sets of the larger validation plot. The validation sets included 

either all Sentinel-2 pixels, or 200 randomly selected pixels each with a minimum distance of 50 m between the points. 

Set Moran's 

Index 

Expected 

Index 

Variance z-score p-

value 

Confidence 

level [%] 

All Cells 0.3589 -0.0001 0.0001 45.465 0 >99 

Subset 1 0.0968 -0.005 0.0033 1.7672 0.0772 >90 

Subset 2 0.0766 -0.005 0.0037 1.3387 0.1807 <90 

Subset 3 -0.0318 -0.005 0.003 -

0.4879 

0.6256 <90 

 

Table 27: Validation results of the compared saxaul density estimates with different validation sets. The validation sets for 
the larger validation plot are listed in Table 26.  

Validation plot large RF-RF RF-LSMA S2-LSMA 

R2 All Cells 0.34 0.26 0.29 

R2 Subset 1 0.22 0.14 0.21 

R2 Subset 2 0.54 0.38 0.46 

R2 Subset 3 0.41 0.33 0.32 

RMSE All Cells 0.07 0.11 0.10 

RMSE Subset 1 0.07 0.11 0.10 

RMSE Subset 2 0.06 0.11 0.10 

RMSE Subset 3 0.06 0.11 0.09 
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