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Personal Motivation 

In summer 2019, right before I started my Master’s degree, I travelled along the Danube: I cycled to 

its source in Donaueschingen, and I marvelled at this beautiful little river. I saw the Danube again in 

Bratislava, and I regretted not coming by boat from Vienna. A few days later, I stood at the shore of 

the Danube in Budapest and tried to relate this − by my standards − giant river to the small Danube 

that I had seen in southern Germany. From that moment on, one question did not get out of my head 

anymore: How much water is in this river? I was lucky: In Budapest, the water level and discharge 

of the Danube are recorded, and the data are publicly available. Thus, I was able to satisfy my curi-

osity. For many rivers in the world, the question about the past, present and future discharge is not 

posed out of curiosity but because it is relevant for decision-making regarding flood protection and 

water resources management (Buytaert et al., 2014). However, for many rivers in the world, there is 

no data that can be used to answer these important questions.  

Already during my Bachelor studies, I participated as a citizen scientist in the CrowdWater project. 

The easy way of contributing to science by collecting data that can help to provide a remedy to the 

lack of data fascinated me. This fascination grew even more when I started to work as an assistant in 

the CrowdWater project in late 2019. With a deeper insight to the project, I realised that citizen sci-

ence has the potential to help answer the burning question about the discharge in a river in places 

where there is no data available otherwise. Thus, I decided to explore the value of the data collected 

in this citizen science project for hydrological model calibration in my Master’s thesis. The overarch-

ing goal of this thesis was to test low-cost approaches using citizen science data and other data types 

for a reliable model calibration that can be applied in regions that lack an official hydrological meas-

urement network. 
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1 Summary 

In this thesis, the semi-distributed bucket-type hydrological model HBV was calibrated based on wa-

ter level class data obtained by citizen scientists of the CrowdWater project and a limited number of 

discharge measurements distributed over the hydrological year. The value of these data types was 

investigated for eleven catchments in Switzerland and Austria. The results showed that accurate water 

level class observations are informative for hydrological model calibration, especially if they are 

combined with at least one discharge measurement per year. Furthermore, it was tested if the use of 

a rough estimate of the mean discharge in a catchment in addition to the citizen science data and the 

discharge measurements improves the model performance. The additional information about the 

mean discharge volume led to an increased model performance, especially compared to the situation 

in which only citizen science data was used to calibrate the model and thus any information about the 

discharge volume was missing. However, also if a few discharge measurements were available, some 

additional constraint by using an estimate of the mean discharge improved the model performances. 

An estimate of the mean discharge thus increases the value of both citizen science data and a limited 

number of discharge measurements and is of greater value than additional discharge measurements. 

Thereby, it is better to use a broader interval for the estimate of the mean discharge in a catchment 

than to use a very precise estimate to not fine-tune the model to the mean discharge. It was tested if 

water level measurements instead of water level class observations lead to increased model perfor-

mances to represent the situation in which citizens could precisely measure the water level instead of 

making an estimation of a water level class. In general, this led to higher model performances. How-

ever, in catchments already having citizen science data of a high quality, the impact of precise meas-

urements as a replacement for the water level classes observed was very limited. Thus, the easier 

approach of collecting water level class data instead of precise water levels is sufficient to calibrate a 

model reliably. Water level class data collected in the CrowdWater app can be improved by many 

citizen scientists playing the CrowdWater game. When the water level class data originating from the 

CrowdWater app were replaced with water level data of a higher resolution resulting from the Crowd-

Water game, the model performance could be improved. This was not the case if information got lost 

in the CrowdWater game, i.e., if the data-quality was deteriorated in the CrowdWater game, thus 

some double-checking of the data-quality may be required even after the control process in the 

CrowdWater game. Based on these findings, a data collection approach including water level class 

observations of a high quality as well as a few discharge measurements per year and an estimate of 

the mean discharge can be suggested for catchments in which hydrological data is missing otherwise. 

This thesis showed that water level class data collected by citizen scientists combined with other 

limited information about the discharge in a stream have a value for the calibration of a hydrological 

model in regions where no other data are available for this important task. 
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2 Introduction 

2.1 Relevance of and challenges in hydrological modelling 

The hydrological sciences face data scarcity (Beven, 2012). Measurements of important variables 

such as discharge and water level are expensive, and even though technology has improved in the last 

decades, costs for maintenance, storage and quality control remain high or are too high compared to 

the funding pressure that many institutions face. Thus, poorer countries often cannot afford to build 

an extensive measurement network and richer countries rather tend to discontinue measurement time 

series than to expand the measurement network (Hannah et al., 2011; Mishra & Coulibaly, 2009; Ruhi 

et al., 2018; Sivapalan, 2003). Remote areas that are more difficult to access are often very poorly 

gauged (Getirana et al., 2009). Especially in countries where hydrological data is completely missing, 

the hydrological conditions are often unfavourable, thus, data that could be used for forecasting could 

make a huge difference for the development of adaption or prevention strategies (Hrachowitz et al., 

2013; Walker et al., 2016; Weeser et al., 2021). 

Hydrological models are used for different purposes: Extreme events such as droughts and floods that 

need to be expected in a certain catchment can be modelled such that protection measures can be 

taken as a preparation (Brunner et al., 2021; Davids et al., 2017; Engeland et al., 2004). Also on a 

shorter timescale, the forecasting of floods is a crucial element in hydrological modelling. Based on 

the weather forecast, it is possible to calculate the amount of water to be expected in a stream using a 

hydrological model. With these calculations, it is possible to decide if for example people need to be 

evacuated or if other short-term measures need to be taken to avoid fatalities and damage (Addor et 

al., 2011). Similarly, by forecasting droughts or low flows, hydrological models help to decide on the 

management strategies of water resources (Fung et al., 2020). This is crucial, especially in locations 

where water scarcity is a major problem. The number of locations where this is the case is growing 

due to increasing population and climate change (Kundzewicz, 1997). 

Furthermore, hydrological models can be used to model the impacts of climate change and changes 

in land use and thus allow to act by implementing adaption and prevention measures (Dwarakish & 

Ganasri, 2015). They are used in planning of hydropower plants to calculate the expected energy 

supply as well as the infrastructure required for the hydropower plant to be effective (Fasipe et al., 

2021; de Oliveira Serrão et al., 2021). To ensure the cooling of nuclear power plants that usually 

relies on a sufficient water supply, hydrological models are used too (Kirkwood, 1982). Furthermore, 

decision making in the industry and the agriculture can be supported by hydrological models 

(Haberlandt, 2010). Hydrological modelling is also used when it comes to the distribution of water 

resources among several stakeholders (Savic et al., 2009). 

On top of all these purposes, hydrological models are also an important tool in science. They allow 

to express a hydrological system, or the understanding of that hydrological system by the hydrologist, 

in the form of mathematical expressions. Thus, hydrological models help to draw proofs of concept 

and provide the hydrologist with a formal tool to describe her or his hydrological system of interest 

(Solomatine & Wagener, 2011). Hydrological models help to understand hydrological systems better 

and allow to improve our knowledge about hydrological processes. This improved knowledge is im-

portant to be able to support the decision-making process in many different areas, as described above. 

To make use of a hydrological model, some form of calibration of the hydrological model is required. 

Calibration means that the parameters used in the formulae that make up the hydrological model are 

adjusted such that the model can simulate the hydrological behaviour of the modelled catchment, i.e., 

such that the simulated discharge fits the observed discharge (Bergström, 1991; Perrin et al., 2007). 
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In the optimal case, a long time series of several years of discharge data is available with which the 

hydrological model can be calibrated. If that is not possible, the availability of at least some discharge 

data can also be helpful to calibrate the model (see for example Brath et al., 2004; Perrin et al., 2007; 

Pool et al., 2017). Using the calibrated model and meteorological or climatological data, the model 

can then be used to model the discharge in time periods for which no hydrological data is available 

(Bergström, 1992). 

However, as mentioned earlier, the availability of hydrological data is limited. Therefore, hydrologists 

are always confronted with a lack of data: Usually, there are no long time series of discharge meas-

urements or other hydrological variables available, and thus it remains difficult to calibrate a hydro-

logical model (Perrin et al., 2007; Pool et al., 2017). In many cases, there is even no data at all avail-

able and it is not possible to calibrate a model in order to predict discharge. In the hydrological decade 

starting in 2003, the Predictions in Ungauged Basins (PUB) initiative tried to explore alternative pre-

diction methods in order to ease this obstacle (Sivapalan, 2003). Even though many successes could 

be reached in this initiative, the prediction of water resources in ungauged catchments is still a major 

challenge in hydrology (Hrachowitz et al., 2013). One approach that is often used is the regionaliza-

tion of parameters, i.e., the expansion in space rather than in time (Seibert, 1999). In regionalization 

approaches, parameters calibrated for one catchment are transferred to other catchments based on 

spatial proximity and similar catchment characteristics (Merz & Blöschl, 2005). 

Aside regionalization, modelling attempts have been made in catchments in which some data is avail-

able but has gaps, consists of only a short time series of measurements, or is attached with a large 

uncertainty. These data can still be valuable for hydrological modelling, especially if wet hydrological 

conditions are covered by the available data points (as for example found by Kim & Kaluarachchi, 

2009; Melsen et al., 2014; Perrin et al., 2007; Seibert & Beven, 2009; Sun et al., 2017). Especially 

conceptual models such as the HBV model (see section 4.5) can deal with missing input data as their 

parameters do not represent one quantifiable physical property of a catchment. In return, these models 

demand more calibration efforts based on the data that is available (Bergström, 1991). 

2.2 Citizen science as a data source for hydrological modelling 

As some data is required to calibrate a model, less traditional ways of getting hydrological information 

and especially information about the amount of water in a stream are becoming more popular with a 

good reason. Aside for example the extraction of hydrological data from satellite imagery (Elmi et 

al., 2015), citizen science is another of these less traditional ways to gather hydrological data: Even 

if there are no measurement devices available in some region, oftentimes there are people who can 

collect hydrological data. New technologies and especially the internet offer easy tools to make the 

data available quickly and bring many different sources such as the smartphones of different people 

together (Davids et al., 2017; Lowry & Fienen, 2013; Silvertown, 2009; Starkey et al., 2017). Citizen 

science approaches (see section 3.1.2) can therefore be used to generate data where official measure-

ment networks are deficient or not existent (Buytaert et al., 2014). Data collected in collaboration 

with the public are usually of low cost (Assumpção et al., 2018) and have shown to be useful for 

hydrological modelling (for examples, see Etter et al., 2020b; Mazzoleni et al., 2017; Starkey et al., 

2017; Weeser et al., 2019). Therefore, citizen science is a promising method to help reducing the lack 

of data in the hydrological sciences. 

This thesis sought to further investigate on the value of hydrological citizen science data, more spe-

cifically water level class data collected by citizen scientists in the CrowdWater project (see section 

3.2). In contrary to discharge estimates by untrained citizen scientists (Etter et al., 2018), water level 

class observations provide a valuable data base for otherwise ungauged catchments (Etter et al., 
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2020b) as they are way more accurate than discharge estimates (Strobl et al., 2020a). In addition to 

the use of these water level class data, other data that could be obtained with a limited effort by trained 

personnel (that could potentially consist of citizen scientists, as it was shown for discharge measure-

ments by Davids et al. (2019)) was used to calibrate a hydrological model. While there is usually no 

reference data available when citizen science is used as a data source to answer a research question 

(Aceves-Bueno et al., 2017), official discharge measurement time series as a reference were used here 

to be able to judge the model performances obtained with the aforementioned model calibrations. The 

resulting insights in the reliability of the model calibrations allowed to suggest low-cost approaches 

for data collection by citizen scientists in regions where official hydrological data is missing. 

2.3 Research questions and hypotheses 

Following the overarching goal of providing low-cost approaches for reliable model calibrations, this 

thesis had the goal to calibrate a semi-distributed bucket-type model with limited data from different 

sources. To do so, a limited number of discharge measurements and water level class data obtained 

by citizen scientists in the CrowdWater project were used. Furthermore, it was investigated if using 

an estimate of the mean discharge, water levels instead of water level classes and citizen science data 

that has been checked by many citizen scientists in the CrowdWater game (see section 3.2.2) for the 

model calibration improves the model performance. More specifically, the thesis sought to answer 

the following main research question and three sub-questions: 

Does the calibration of a hydrological model based on citizen science data and a limited number of 

discharge measurements lead to a reliable simulation of discharge? 

1. Does an additional estimate of the mean discharge improve the model performance? 

2. Do water level data instead of water level class data improve the model performance? 

3. Does citizen-based quality control of the citizen science data improve the model perfor-

mance? 

To answer the main research question, eleven study catchments were selected (see section 4.1). These 

catchments were assumed to be (almost) ungauged. In reality, there was discharge data with an hourly 

resolution available for these catchments. These discharge data time series were used to extract the 

limited number of discharge measurements, and to determine the performance of the model calibra-

tion by comparison of the simulated and observed discharge. The citizen science data were the water 

level class data collected by citizen scientists of the CrowdWater project (see section 3.2). The num-

ber of observations and the quality of these differed for each catchment (see section 4.4).  

For each study catchment, a combination of a limited number (0, 1, 3, 6, 12) of regular discharge 

measurements per hydrological year and a certain percentage (0%, 25%, 50%, 75%, 100%) of the 

available citizen science data were combined. This resulted in 24 different data availability sets (or 

scenarios) that were used to calibrate the model. Each of the 24 different data availability scenarios 

resulted in calibrated model parameter sets and corresponding model performances that were used to 

judge the value of the data used for calibration. 

One can in general expect more reliable model performances when using more water level class data 

(Etter et al., 2020b) and when using more discharge measurements (Pool et al., 2017; Seibert & 

Beven, 2009) for the calibration of the model. Thus, the expectation was that there would be an im-

provement in model performance if more citizen science data and a larger number of discharge meas-

urements are used for model calibration. The impact of the citizen science data on the model perfor-

mance was expected to depend on the number of available observations, as well as on the accuracy 
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of the observations in terms of the correlation between the water level class data and the actual meas-

urements. 

For the first sub-question, it was assumed that an estimate of the mean discharge is available addi-

tionally. The water level class data from CrowdWater contained no information about the discharge 

volume. Thus, additional knowledge of the mean discharge was assumed to improve the model per-

formance when mainly citizen science data was used for model calibrations. In similar studies, the 

model calibration with water level data could be improved by adding some volume information as an 

additional constraint (Seibert & Vis, 2016, Weeser et al., 2019). 

To answer sub-question 2, the citizen science data was assumed to be perfectly correlated with the 

discharge in the stream. Instead of water level classes, exact water level measurements were thus used 

for the model calibration. This represented the situation when citizen scientists read the exact water 

level from a staff gauge installed in the stream and record this value instead of a water level class and 

without any errors. The impact of perfectly correlated citizen science observations on model perfor-

mance was expected to be larger for catchments for which there was a low correlation between the 

water level class data submitted by citizen scientists and the measured discharge than for catchments 

for which the correlation of the water level class data and the measured discharge was already high. 

However, because the resolution of the perfectly correlated citizen science data was higher than the 

resolution of the water level classes, an improve in the model performance was also expected for the 

catchments that already had a high correlation. 

It is not realistic that perfectly correlated water level observations are obtained with a citizen science 

approach. However, some of the errors contained in water level class observations can be filtered out 

by careful data quality control. Therefore, for sub-question 3, instead of using the water level class 

data submitted by a single citizen scientist, quality-controlled citizen science data was used for the 

calibration. The quality-control was done by (other) citizen scientists in the CrowdWater game (see 

section 3.2.2). Thanks to the “wisdom of the crowd” (Surowiecki, 2004), this should lead to an im-

provement in the accuracy and resolution of the data after enough players estimated the water level 

classes on the pictures uploaded in the CrowdWater app (Strobl et al., 2019). 

As data from the CrowdWater game was not available for all study catchments, the use of quality-

controlled data from the CrowdWater game was limited to four catchments. In these four catchments, 

at least one quarter of the water level class observations available was already checked by enough 

citizen scientists in the CrowdWater game. Analogous to the hypothesis for sub-question 2, an im-

provement of the model performance for all catchments was expected because the data points from 

the CrowdWater game were assumed to be higher resolved and more accurate than the data points 

from the CrowdWater app. However, the improvement of the model performance was expected to be 

especially pronounced for catchments for which there was a poor correlation between the original 

citizen science data and the discharge measurements, as the potential room for improvement was 

assumed to be large in these cases. 
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3 Background 

3.1 Literature review 

3.1.1 Hydrological modelling with limited calibration data 

3.1.1.1 Model calibration with a limited number of discharge measurements 

Regionalization is a common approach to model the ungauged catchment. However, a traditional 

regionalization approach without any hydrological information about the target catchment comes with 

uncertainties. A limited number of discharge measurements can help to overcome this issue by con-

straining the parametrization found by regionalization with data that actually describes the behaviour 

of the target catchment (Drogue & Plasse, 2014; Pool et al., 2019; Viviroli & Seibert, 2015). A study 

covering more than 600 catchments in France showed that as little as ten discharge measurements 

over a period of ten years close more than half of the performance gap between a parametrization 

obtained by a traditional regionalization approach and the calibration of a model against a complete 

discharge time series measured in the catchment of interest (Rojas-Serna et al., 2016). 

However, the alternative to a regionalization approach is to directly calibrate a hydrological model 

based on a limited number of discharge measurements or a comparably short calibration period. This 

is reasonable since the information content of a complete discharge time series may be partly redun-

dant as a catchment reacts similarly to similar conditions (Juston et al., 2009). The approach seems 

to have potential to perform better than traditional regionalization: Rojas-Serna et al. (2006) found 

that a model calibration based on thirty measurements at random days during a period of three to five 

years outperforms the traditional regionalization. 

Several other researchers have investigated on the value of a limited number of discharge measure-

ments: Eng & Milly (2007) were able to characterise base flow recession by considering two to twenty 

discharge measurements per year under low flow conditions. Thereby, a higher number of measure-

ments led to a shrinking error (Eng & Milly, 2007). Perrin et al. (2007) found that the use of 350 

random discharge measurements spanning different hydrological conditions during a period of 39 

years for model calibration was enough to reach a plateau of parameter variability and model perfor-

mance, thus additional information did not provide any added value. They concluded that especially 

for simple models, little data from different conditions is already enough to get stable and robust 

parameter sets (Perrin et al., 2007). The importance of sampling during different hydrological condi-

tions, especially during high flow conditions, to be able to simulate the hydrograph accurately was 

also highlighted by Seibert & Beven (2009) as well as by Pool et al. (2017). 

Seibert & Beven (2009) found that a plateau in model performance was reached when 32 observations 

per year over a 10-year period were used. They showed that less than four observations per year can 

act disinformatively if the selection of sampling days is poor. In those cases, parametrizing the model 

randomly led to better results than constraining the parametrization with these observations. They 

furthermore found that even though an intelligent sampling strategy is more challenging than just 

random or regular sampling, model performance can be increased by applying such a strategy (Seibert 

& Beven, 2009). In a recent study by Pool & Seibert (2021), two to six discharge measurements per 

hydrological year were shown to be informative in most cases, especially if taken during high flow 

conditions. However, as already mentioned by Seibert & Beven (2009), the authors also state that too 

few discharge observations may also act disinformatively in some cases (Pool & Seibert, 2021). 

Different sampling strategies of varying complexity have been investigated by Pool et al. (2017). 

They investigated the value of different sets of twelve discharge measurements per year that resulted 
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from the different sampling strategies. As mentioned earlier, they found that sampling during high 

flow conditions improved the simulation of the hydrograph. On contrary, the flow duration curve 

could best be simulated when the sampling took place during medium and low flow conditions. Little 

performance differences were obtained among strategies that contain discharge measurements from 

a variety of hydrological conditions (Pool et al., 2017). 

Tada & Beven (2012) investigated the value of coherent measurement days during a 10-year period, 

whereby these data started on a random day and had a length of four to 512 days. They found that a 

longer observation period resulted in better model performance and that at least 32 to 64 days of 

observations are required to avoid timing errors in the simulated hydrograph (Tada & Beven, 2012). 

The finding of Seibert & Beven (2009) that the ensemble mean built from the top-performing 1% of 

all parameter sets considered outperformed the best parameter set was confirmed for all cases with 

observation periods shorter than 16 days by Tada & Beven (2012). 

Also Melsen et al. (2014) were able to show that five months of data are sufficient to reliably calibrate 

a model. Thereby, periods with a lot of precipitation were valuable to simulate high flows while mod-

elling the recession was more successful when a period with low evapotranspiration was used (Melsen 

et al., 2014). This is in line with the findings of Pool et al. (2017) that were described before. However, 

the authors highlight that longer time series are still valuable since they decrease the effect of short-

term disinformation that may be contained in a limited observation period. Based on that, they note 

that in regions were data quality may be more of an issue than in Switzerland where they conducted 

their study, it could be valuable to consider longer observation periods for calibration to avoid large 

uncertainties (Melsen et al., 2014). 

Further work using short calibration periods was done by Brath et al. (2004) using a distributed model. 

They found that a stable parametrization could be reached with an observation period of three months 

(Brath et al., 2004). Short periods of data availability were also shown to be valuable for physically 

based models: In a study by Sun et al. (2017), already one month of observations from wet catchments 

led to similar performances as three years of observations. For drier and headwater catchments, a total 

of six months was required to reach these performances (Sun et al., 2017). 

Seibert & McDonnell (2015) compared the value of a continuous discharge time series of three 

months and the value of ten flexibly chosen observations during high flow events and found that the 

latter was almost as large as the first. The value of the flexibly chosen observations decreased if fewer 

observations were made or if they were not done during high flow events but for example each week. 

Furthermore, they found that a continuous sampling during one event was more valuable than making 

single observations within a fixed time interval (Seibert & McDonnell, 2015). The advantages of 

event-based sampling compared to a sampling strategy at fixed points in time or randomly was also 

shown by Juston et al. (2009), Singh & Bárdossy (2012) as well as Correa et al. (2016). However, a 

different study showed that also randomly sampled data can be valuable as long as at least one third 

of the data is obtained during high flow conditions (Kim & Kaluarachchi, 2009). 

3.1.1.2 Model calibration with water level data 

Discharge measurements are more expensive and challenging than measuring the water level in a 

stream. Therefore, in continuous discharge time series, it is often the water level that is measured and 

then converted to discharge via a rating curve. As rating curves are interpolations between several 

point measurements that come with uncertainties themselves, they are subject to uncertainty (Le Coz 

et al., 2014; McMillan et al., 2010). Seibert & Vis (2016) thus tested a model calibration using water 

level data only. Water level data contains all information on the discharge dynamics but lacks any 
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information about the discharge volume. Especially in wet catchments, the approach led to a good 

simulation of discharge time series. Additional knowledge of the annual discharge volume led to an 

improvement in model performance, whereby especially catchments that did not perform well when 

only water level data was available profited from this volume information (Seibert & Vis, 2016). 

Similar findings were made by Jian et al. (2017): The calibration using water level data only was 

good regarding the correlation but could be improved in terms of volumes when a few discharge 

measurements were available additionally (Jian et al., 2017). In their study about the value of water 

level time series and a limited number of discharge observations, Pool & Seibert (2021) found that 

the combination of both data types led to more reliable model calibrations than if water levels or a 

few discharge measurements only were used to calibrate the model (Pool & Seibert, 2021). 

3.1.2 Citizen science data for hydrological modelling 

3.1.2.1 Citizen science in hydrology 

The Oxford English Dictionary defines citizen science as “scientific work undertaken by members of 

the general public, often in collaboration with or under the direction of professional scientists and 

scientific institutions” (OED, 2021). In a shorter way, citizen science can be defined as “the partici-

pation of the general public (i.e., non-scientists) in the generation of new scientific knowledge” 

(Buytaert et al., 2014: 1). The term “citizen science” may cause problems, for example since citizen-

ship is usually (as for example in the case of the CrowdWater project) not a condition for contributing 

to citizen science, and since the actual involvement of the public may vary strongly between different 

citizen science projects. Still, it was used here to describe the collaboration of scientists and volunteers 

in a common project. For a detailed discourse on the terminology in citizen science, the reader is 

referred to the review and synthesis paper by Eitzel et al. (2017). 

In hydrology, citizen science has already been used for several purposes. In their review paper, 

Buytaert et al. (2014) give examples in which the data scarcity in hydrology was tackled with the help 

of citizen science. Thereby, citizen scientists obtained data about precipitation, discharge, water qual-

ity, soil moisture, vegetation dynamics and water use (Buytaert et al., 2014). Even though the data 

obtained like this may differ in type and quality from traditional hydrological data, new opportunities 

open with the help of citizen scientists. Thus, citizen science is a promising method not only in hy-

drological modelling, but in environmental science in general. This is especially true since many 

projects or research questions require large datasets with a high spatial resolution over large regions 

(Silvertown, 2009). In the literature review presented here, the focus was on hydrological data ob-

tained by citizen scientists that can be used for hydrological modelling. Especially the recognition of 

the value of water level data for model calibration (see section 3.1.1.2) is of interest for citizen science 

approaches in hydrological modelling since water level data can more easily be obtained by untrained 

citizen scientists than discharge data (Strobl et al., 2020a). 

3.1.2.2 Model calibration with data from the CrowdWater project 

Within the CrowdWater project, the value of hydrological data obtained by citizen scientists for hy-

drological model calibration has been investigated in different studies. One study showed that dis-

charge estimates by untrained people are not a feasible data source: Etter et al. (2018) built a synthetic 

data set of discharge estimates based on the errors in such estimates obtained in surveys with untrained 

people along streams. They used these data to calibrate the HBV model and found that the discharge 

estimates are not accurate enough to be used in hydrological model calibration if the error contained 

in the data cannot be reduced. However, with a reduced error thanks to training or filtering of the data 

(which could be simulated with corresponding changes in the synthetic data set), discharge estimates 

were found to be valuable for hydrological model calibration. Thereby, more observations and a more 
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even distribution of the observations over the year led to better model performances. Especially in 

catchments that showed a seasonal variable discharge behaviour, the model performance could be 

increased when data from different discharge conditions (i.e., different seasons) were available 

compared to the situation when the observations were more clustered (Etter et al., 2018). 

Already earlier, van Meerveld et al. (2017) showed that not only water level measurements but also 

water level class observations are of value for the calibration of a hydrological model, even if only 

two water level classes with a boundary at high flow conditions are used. Especially for drier catch-

ments, the use of up to five water level classes led to an improvement of the model performance. 

However, for these drier catchments, the calibration against discharge data instead of water level 

classes was found to be clearly advantageous, whereby the difference when comparing the value of 

those two data types was rather small for wet catchments (van Meerveld et al., 2017). In this study, 

daily information about the water level in a stream was used, thus not directly data that can be ex-

pected from citizen scientists 

In a subsequent study by Etter et al. (2020b), the authors used a synthetic data set of water level class 

data in irregular intervals and investigated the value of these data for the calibration of the HBV 

model. The data set was built based on water level class estimates by people comparing the water 

level in a stream to a picture including the virtual staff gauge used in the CrowdWater project (see 

section 3.2.1). For the majority of the water level class estimates, the deviation of the correct water 

level class was one water level class at most (Strobl et al., 2020a) and the authors found that these 

errors had a clearly smaller effect on the model calibration than the errors in the discharge estimates 

described above. The main finding of the study was that the availability of one water level class 

observation per week over one year is enough to improve the model performance compared to the 

situation without any data. Furthermore, if at least four water level classes were used, the number of 

water level classes did not have an influence on the model performance. Another important finding 

was that the replacement of the water level class observations with water level measurements of the 

same temporal resolution resulted in similar model performances, i.e., the lower resolution of the 

water level classes was found to be less important than the temporal resolution with which the obser-

vations were made (Etter et al., 2020b). 

3.1.2.3 Other citizen science approaches for hydrological model calibration 

The value of high-resolution water level read from a physical staff gauge for hydrological model 

calibration has been investigated by Weeser et al. (2018, 2019). In a citizen science project in western 

Kenya, they asked untrained people to record the water level of a stream in a headwater catchment 

by sending a text message to the research team (Weeser et al., 2018). They found a very high accuracy 

of the observations by citizen scientists when compared to the water level recorded by a radar. Still, 

the calibration of the model on the water level observations led to a drop in model performance com-

pared to the calibration of the model on discharge data. Part of this drop could be explained by the 

missing volume information in the water level data. To reduce this drop in model performance, a 

water balance filter was applied: Each parameter set had to match the simplified water balance calcu-

lated from the difference of the observed precipitation and the actual evapotranspiration to be consid-

ered relevant. The use of this filter led to a strong increase in model performance, especially since 

parameter sets that resulted in an overestimation of the discharge volume could be removed this way. 

However, due to the added uncertainties that come with the application of the water balance filter, the 

authors recommended using a wide range for the filter. There was no evidence found that the irregu-

larity of the data resulted in a worse model calibration than this would have been the case for regular 

observations (Weeser et al., 2019). 
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The method used by Weeser et al. (2018, 2019) is based on the Social.Water technology (Fienen & 

Lowry, 2012), invented as a part of the Crowdhydrology project. Crowdhydrology is a long-lasting 

hydrological citizen science project in the United States of America. It started with nine locations at 

which citizen scientists can read the water level from a ruler installed in a stream and send their 

observation via text message to the research team (Lowry & Fienen, 2013). During the 2010s, the 

observation network was expanded to a national network (Lowry et al., 2019). The data obtained in 

the Crowdhydrology project revealed a high quality (Lowry & Fienen, 2013) and was shown to be 

useful for hydrological model calibration, even though the majority of observations were made during 

low flow and medium flow conditions while only few citizen scientists contributed observations dur-

ing rain events (Avellaneda et al., 2020; Lowry & Fienen, 2013). 

The missing water level observations during and shortly after rain events and the irregularity of the 

data were found to be obstacles for the calibration of a hydrological model in a study by Luffman & 

Connors (2022). They investigated the value of water level observations in a flashy catchment in 

Tennessee: The observations made by citizen scientists were insufficient for a reliable model calibra-

tion in this case. The main reason for this could be found in the irregularity of the data. In the study 

catchment, precipitation events in the preceding 15 minutes have the largest influence on the amount 

of discharge. However, observations by citizen scientists were mainly received during the day and in 

sunny weather conditions. Thus, the authors found that an increased amount of observations during 

all weather conditions would be required to obtain a reliable model calibration for this flashy catch-

ment (Luffman & Connors, 2022). The finding that synthetic citizen science data, i.e., observations 

with a low frequency, may be less feasible for flashy catchments than for less flashy catchments was 

also made in a study about the value of such data for the calculation of basic discharge statistics 

(Davids et al., 2017). 

To overcome potential difficulties that arise when only one type of data is used for the calibration of 

a hydrological model, several authors such as Avellaneda et al. (2020) or Seibert & McDonnell (2015) 

highlighted the importance of using different types of data for the calibration of hydrological models. 

In a study by Starkey et al. (2017) for example, trained participants were asked to observe rainfall 

amounts, the water level in a stream as well as floods if they occurred. The authors found that these 

observations were only valuable in their case if they were combined with traditional data, i.e., if the 

citizen science observations were used to fill gaps and characterise the catchment of interest on a local 

scale. Furthermore, similar as Seibert & McDonnell (2015) who included soft data in their modelling 

framework, this study also highlighted the value of combining quantitative data with qualitative 

knowledge (Starkey et al., 2017). A similar conclusion was also drawn by Le Coz et al. (2016), who 

summarised three hydrological citizen science projects in Argentina, France and New Zealand: The 

authors recommended combining data obtained explicitly for such a project with similar information 

(e.g., videos and photos from high flow events) that is available from other sources such as social 

media (Le Coz et al., 2016). 

Walker et al. (2016) showed that observations of rainfall, discharge and groundwater levels by citizen 

scientists are valuable to reduce uncertainties in traditional data. Mazzoleni et al. (2017) stressed that 

new data types such as citizen science observations should be used to compensate for the lack in 

traditional hydrological data, even though these may be irregular in their temporal resolution and 

variable in their accuracy. Other than Etter et al. (2020b), these authors found that the temporal vari-

ability in the observation intervals has a smaller influence than the accuracy of the data (Mazzoleni 

et al., 2017). Just as Juston et al. (2009) described the redundancy of traditional discharge measure-

ment time series, these authors found that additional observations of citizen scientists become redun-

dant at some point, but that it is difficult to define the amount of data that is required in a specific 

situation in advance (Mazzoleni et al., 2017).  
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3.2 The CrowdWater project 

The CrowdWater project (www.crowdwater.ch) is a hydrological citizen science project at the Uni-

versity of Zurich that has been running since 2016. In the CrowdWater project, citizen scientists col-

lect hydrological data all around the world and help to check and improve the data quality of parts of 

the data in an online game. Furthermore, CrowdWater aims to explore the value of hydrological data 

that can be obtained by citizen scientists. The overarching goal of CrowdWater is to develop a tool 

for the collection and control of hydrological data by citizen scientists, whereby these data can be 

used for hydrological modelling purposes. The methodology developed in the CrowdWater project 

should be applicable in data-scarce and remote regions and provide a low-cost opportunity to improve 

hydrological forecasts, water management and decision-making (see also the project descriptions on 

the homepage of the Swiss National Science Foundation: www.p3.snf.ch/Project-163008 for the first 

phase of the project and www.p3.snf.ch/Project-192125 for the second phase of the project). The 

CrowdWater project is supported by the Swiss National Science Foundation. 

The CrowdWater app (Seibert et al., 2019), developed in collaboration with the SPOTTERON GmbH 

in Vienna (www.spotteron.net), serves as a tool for the collection of hydrological observations by 

citizen scientists since February 2017. Using the CrowdWater app, citizen scientists can observe hy-

drological variables in several categories: 

− Water levels of streams can be read from virtual staff gauges (see section 3.2.1) as well as 

from physically installed staff gauges. 

− The flow state of temporary (i.e., intermittent) streams can be assessed qualitatively. 

− The soil moisture of any unsealed surface can be assessed qualitatively. 

− General information about water bodies, including information about the observed water 

quality, can be entered. 

− The pollution of waterbodies with macroplastics can be recorded. 

For all these categories, no measurement devices are required to do an observation. Thus, the ap-

proach is arbitrarily scalable. Observation stations, so called “CrowdWater spots”, at which observa-

tions in one of these categories are conducted can be started everywhere in the world. Anyone having 

the CrowdWater app installed on a smartphone or using the web-version of the CrowdWater app 

(www.spotteron.com/crowdwater) can start new and update all available CrowdWater spots.  

This thesis focuses on the observation of stream levels using virtual staff gauges. This category was 

the main focus of the first PhD students in the CrowdWater project (Etter, 2020; Strobl, 2020). Before 

the CrowdWater app was available, the collection of water level data using virtual staff gauges had 

already started at so called “pen and paper” stations (Etter et al., 2020a). At these pen and paper 

stations, the virtual staff gauge is shown on a printed picture of the stream and citizen scientists can 

add an observation by filling in a form. Here, data from the app as well as data from these pen and 

paper stations are used (see section 4.4).  

Since the launch of the CrowdWater app, a total of more than 33’000 observations was collected in 

68 different countries and at almost 6000 individual CrowdWater spots. In the virtual staff gauge 

category, more than 13’000 observations were collected at more than 1600 CrowdWater spots. At 

153 of these spots, 10 and more updates were made (all numbers from April 2022). 

http://www.crowdwater.ch/
https://p3.snf.ch/Project-163008
https://p3.snf.ch/Project-192125
http://www.spotteron.net/
http://www.spotteron.com/crowdwater
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3.2.1 The virtual staff gauge 

The so called “virtual staff gauge” builds the centrepiece of the 

water level class observations in the CrowdWater project. A vir-

tual staff gauge is a virtual sticker containing ten water level clas-

ses (Figure 1). Depending on the flow conditions at the time of 

setting up a new CrowdWater spot, the green (low flow), the yel-

low (medium flow) or the red (high flow) sticker should be cho-

sen. This sticker is then virtually glued onto the photo of the 

stream at the time of the first observation. Thereby, the wavy line 

at the water level class zero should be adjusted to the horizontal 

line formed by the water surface when the photo is taken perpen-

dicular to the stream. Each time the spot gets updated, the current 

water level is compared to the virtual staff gauge on the reference 

picture and the corresponding water level class is determined. In 

an optimal reference picture, some reference object (such as a 

stone or a bridge pillar) is visible in the background. This makes 

the determination of the current water level class easier (Seibert 

et al., 2019).  

The left side of Figure 2 shows an example of a virtual staff gauge that has been “installed” at the 

Ova dal Fuorn in Zernez in July 2017. The picture on the right side shows the same location in Sep-

tember 2021. In the left part of this picture, some reddish parts of the rock are visible which are not 

visible on the picture with the virtual staff gauge. These rocks can be used as a reference to determine 

the water level class of the stream. They show that the water level on the picture on the right side is 

lower than on the picture on the left side. This resulted in a water level class estimate of -1. 

Several of these water level class observations at the same CrowdWater spot result in a time series of 

relative water level classes. The absolute water levels are site specific and cannot be determined from 

the observations using the virtual staff gauge (Seibert et al., 2019). However, relative values are 

enough to model the discharge behaviour in a stream (van Meerveld et al., 2017; Seibert & Vis, 2016). 

The dynamics of the water level can be recorded well using the virtual staff gauge (Figure 3). 

Figure 1: The three virtual staff gauges 

used in the CrowdWater project (de-

pending on the flow conditions at the 

time of starting a new CrowdWater 

spot). Design by Spotteron Citizen Sci-

ence GmbH. 

Figure 2: CrowdWater spot at the Ova dal Fuorn in Zernez. Left side: original image with the virtual staff gauge (Simon 

Meili-Etter, 25.07.17); right side: update for which the water level class -1 was estimated (Mirjam Scheller, 14.09.21). 
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The virtual staff gauge ensures that water levels can be observed at each stream. A new observation 

site can be set up quickly and easily, there is no maintenance of the station required and the approach 

can be applied all over the world (Seibert et al., 2019; Strobl et al., 2020a). Even though the vertical 

resolution of the virtual staff gauge is limited and the time step between the observations is irregular, 

it was shown that water level class data can be useful for hydrological model calibration (Etter et al., 

2020b; van Meerveld et al., 2017). Furthermore, while the direct estimation of discharge by untrained 

citizen scientists is inaccurate (Strobl et al., 2020a) and useless for hydrological model calibration 

(Etter et al., 2018), the water level class observations using the virtual staff gauge show a high accu-

racy, especially for streams in which the location of the virtual staff gauge is relatively close to the 

shore from which the observation is conducted (e.g., if the opposite shore is not too far away or if 

some bridge pillar or rock in the stream is used) (Strobl et al., 2020a). 

3.2.2 The CrowdWater game 

To control and if necessary improve the quality of the water level class data uploaded to the Crowd-

Water app, the CrowdWater game (Strobl et al., 2019) is part of the CrowdWater project. In the 

CrowdWater game, citizen scientists are asked to determine the water level class on a picture com-

pared to the corresponding picture containing the virtual staff gauge. The CrowdWater game is played 

online (www.cwgame.spotteron.net) and can be joined independently from contributing data to the 

CrowdWater app. There is a championship in the CrowdWater game each month, consisting of 28 

rounds that last for one day each. In each round, a player compares twelve pictures and decides on 

the water level class on the picture without the virtual staff gauge (Figure 4). Players can collect points 

by playing the CrowdWater game and win prizes in each championship. For more details on the 

gamification aspects of the CrowdWater game, the reader is referred to Strobl et al. (2019). 

The “wisdom of the crowd” (Surowiecki, 2004) generally leads to an improvement of the quality of 

the water level class data in the CrowdWater game. This could be shown earlier in the project by 

Figure 3: Example time series of relative water level classes. Top: Picture with the virtual staff gauge at the Salzach in 

Salzburg (by Elisabeth Strobl) and update pictures from February 2020 (by Karin Ebermann). Bottom: All water level 

class values observed at this CrowdWater spot between October 2019 and September 2020. The observations shown on 

the pictures are indicated in red. Note that the tick marks mark the beginning of the month.  

http://www.cwgame.spotteron.net/
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considering all picture pairs with at least 15 votes from the game. The value resulting from the 

trimmed mean (10% on each side) of all votes for this picture pair was usually better in accuracy and 

resolution compared to the original value entered by a citizen scientist in the app. The threshold of 15 

votes was shown to be reasonable as the resulting value was stable then and did not change signifi-

cantly anymore when more votes were added (Strobl et al., 2019). 

With the CrowdWater game, unusable contributions (e.g., spots in which the virtual staff gauge is not 

inserted correctly or update pictures from a different site) can be filtered out using a report function 

(Strobl et al., 2019). Furthermore, the CrowdWater game can serve as a training opportunity for new 

citizen scientists in the CrowdWater project, before they start using the app: Citizen scientists that 

play the CrowdWater game make less errors when inserting the virtual staff gauge in the app for the 

first time (Strobl et al., 2020b). 

Most pictures uploaded in the virtual staff gauge category of the CrowdWater app were not part of 

the CrowdWater game yet: Compared to the citizen scientists that upload observations to the app, the 

number of CrowdWater game players is relatively small. From the 11’650 pictures that could poten-

tially be part of the CrowdWater game, only just below 3000 pictures have reached at least 15 votes 

(until May 2022).  

Figure 4: Screenshot from the CrowdWater game. The original image with the virtual staff gauge is shown next to an image 

of the same spot at a later point in time. The player chooses the water level class on the number bar shown on the bottom 

of the screenshot. Example from the spot at the Koenigsseeache. Both pictures by Elisabeth Strobl. 
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4 Methods 

4.1 Study catchments 

The study catchments used for investigating on the research questions were chosen according to two 

criteria: 

− Availability of at least hourly discharge data from an official measurement station. Further-

more, availability of meteorological data such as precipitation and temperature measure-

ments. 

− Availability of citizen science data from a CrowdWater spot relatively close to the official 

measurement station. 

According to these two criteria, nine catchments in Switzerland and two catchments in Austria were 

chosen as study catchments. Three of these catchments are subcatchments of a larger study catchment: 

The Koenigsseeache is a subcatchment of the Salzach, the Alp is a subcatchment of the Sihl and the 

Kleine Emme serves as a research catchment twice, whereas the measurement station in Werthenstein 

is located about 15 km upstream from the measurement station in Emmen (Figure 5). 

 

Table 1 gives an overview of the properties of the eleven catchments: 

− The catchment areas and the elevation ranges were extracted from the Hydrological Atlas of 

Switzerland for the Swiss catchments. For the Austrian catchments, the catchment areas were 

provided by the Hydrological Service Salzburg and the elevation ranges were extracted from 

the EU-DEM provided by the Copernicus Land Monitoring Service at the European Envi-

ronment Agency. 

Figure 5: Map showing the locations of the eleven study catchments in Switzerland and Austria. Data sources: Swisstopo 

(outline of Switzerland and Liechtenstein), GADM (outline of Austria), Hydrological Atlas of Switzerland (Swiss catch-

ments), Open Data Austria (Austrian catchments). 
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− Mean annual temperature, precipitation and mean discharge values were calculated from the 

meteorological time series used for modelling in each catchment. For a detailed explanation 

on the sources of these data, see section 4.2. 

− The distances between the CrowdWater spots and the corresponding official discharge meas-

urement stations represent the beeline and were calculated using the coordinates stored in the 

CrowdWater app and given by the authorities, respectively. 

Table 1: Main characteristics of all study catchments, sorted by the number of citizen science data points available. 

Catchment Area 

[km2] 

Elevation 

range 

[m a. s. l.] 

Mean annual 

temperature 

[°C] 

Mean annual 

precipitation 

[mm] 

Mean dis-

charge 

[m3/s] 

Distance 

to sta-

tion [m] 

Koenigsseeache, 

Niederalm 

429 495-2642 6.2 1075 12.4 1690 

Salzach, Salzburg 4394 421-3395 5.1 1500 181 3830 

Kempt, Fehraltdorf 22.5 489-932 9.7 1167 0.4 630 

Urtene, 

Kernenried 

73.9 487-896 9.8 1052 0.8 5290 

Alp, Einsiedeln 46.7 660-1783 6.9 1535 2.0 2590 

Kleine Emme, 

Werthenstein 

311 525-2290 7.2 1313 10.3 20 

Ova dal Fuorn, 

Zernez 

55.3 1666-3114 0.2 749 1.0 280 

Kleine Emme, 

Emmen 

478 425-2290 7.8 1284 14.3 70 

Wigger, Zofingen 366 419-1393 9.5 1075 4.9 0 

Sellenbodenbach, 

Neuenkirch 

10.4 510-832 10.2 1064 0.2 30 

Sihl, Zurich 343 402-2223 7.6 1480 6.8 200 

The four catchments printed in bold and italics are the catchments for which the third sub-question 

(citizen science data checked in the CrowdWater game) was answered additionally to the other three 

research questions. Wherever the catchments are listed in this thesis, they are sorted according to the 

number of available citizen science data points, i.e., as in Table 1. The number of citizen science data 

points per catchment are given in Table 2. More details on the citizen science data in general are given 

in section 4.4. 

All study catchments can be found in the humid region of Central Europe. However, the altitudes 

where the catchments are located at vary among the catchments and so do the temperatures and pre-

cipitation amounts (see Table 1 and Figure 6). The Ova dal Fuorn catchment, which shows the highest 

mean elevation, is located in the dry region of the Engadine and thus does not have precipitation 

amounts as high as it could be expected from the elevation alone. 

The different conditions of the study catchments lead to different discharge regimes that are well 

reflected in the mean discharge behaviour averaged over the years of interest (Figure 7). The nival 

discharge regime (snow dominated) can be found in the Koenigsseeache, the Salzach and the Ova dal 

Fuorn. The Alp, the Kleine Emme (both stations) and the Sihl show a mixed signal of rain and snow-

melt in their discharge behaviour and are thus catchments with a nivo-pluvial discharge regime. The 

pluvial discharge regime (rain dominated) can be found in the Kempt, the Urtene, the Wigger and the 

Sellenbodenbach. The flow duration curves indicate how often a certain discharge is equalled or ex-

ceeded. Here, the flow duration curves for all study catchments over the eight years of interest are 

given normalized and in logarithmic representation, thus they indicate how often a certain discharge 

in relation to the median discharge in a catchment is equalled or exceeded (Figure 8). 
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Figure 6: Overview of the meteorological conditions during the years used for validation (top row) and calibration (bottom row) for all catchments. Each stripe represents one month (Oct 2013 at the 

top left, Sep 2017 at the top right, Oct 2017 at the bottom left, Sep 2021 at the bottom right). The number after the catchment name is the mean elevation of the catchment in meters above sea level. 
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 Hydrological year 

Figure 7: Average discharge for each hour of the year for each study catchment (calculated for the eight hydrological years of the validation and calibration period). The discharge regime type is 

given in brackets below the catchment name. Note that the y-axis differs for each catchment. The tick marks on the x-axes mark the beginning of the month. 
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 Percentage of time discharge equalled or exceeded 

Figure 8: Flow duration curves of all study catchments, with flow normalized by the median flow (i.e., the median flow has a value of 1). The maximum and the minimum normalized flows during the 

eight years of interest are written below the catchment name. Note that the y-axis is logarithmic. 
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For all study catchments, the Richards-Baker Flashiness Index (𝐼𝑅𝐵) was calculated using the formula 

𝐼𝑅𝐵 =
∑ |𝑞𝑖 − 𝑞𝑖−1|𝑛

𝑖=1

∑ 𝑞𝑖
𝑛
𝑖=1

 (1) 

given on page 506 in Baker et al. (2004). Thereby, daily discharge values for the eight hydrological 

years ranging from 1 October 2013 to 30 September 2021 were used for calculation. According to the 

authors, the index has a low interannual variability and measures the oscillation of the discharge in a 

stream compared to the total discharge in the same stream (Baker et al., 2004). In the formula given 

above, 𝑞𝑖 is the discharge on a certain day, whereas 𝑞𝑖−1 is the discharge on the day before. Thus, the 

index reflects the changes in discharge from one day to another in relation to the total discharge over 

the period of interest (here, eight years). Streams with a flashy discharge behaviour, thus fast and 

frequent changes in their discharge during rain events, show a higher value of this index. A low value 

results for streams in which the discharge does not change very quickly and very often but the dis-

charge behaviour is more stable. 

Furthermore, the Baseflow Index (BFI) was calculated according to the procedure given in Gustard 

et al. (1992) on the pages 21 to 23. Again, daily discharge values from the eight hydrological years 

of interest were used to do so. As recommended, the BFI was calculated for the whole period of 

interest and not averaged from yearly BFI calculations (Gustard et al., 1992). The BFI gives the ratio 

between the area under the baseflow line and the area under the hydrograph. Thus, a BFI close to 1 

represents the situation in which the hydrograph does not deviate strongly from the baseflow line. On 

the other hand, a small value of the BFI represents the situation in which the baseflow line and the 

hydrograph differ strongly, thus, the catchment shows a rather flashy behaviour. 

The values of the two indices for each study catchment are given in appendix 10.1. Note that the two 

indices are negatively correlated, as a flashy catchment results in a high 𝐼𝑅𝐵 and a low BFI and vice-

versa (Figure 9). 

 

  

Figure 9: Richards-Baker flashiness index and baseflow index of all study 

catchments. 
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4.2 Meteorological data 

The time series of precipitation and temperature as well as the values used to account for evaporation 

should represent the average conditions in the catchment and are used as input data when simulating 

the catchment discharge in a hydrological model. When using gridded data for these variables, no 

decision on the interpolation method needs to be made since the data is already interpolated using the 

best standards. Thus, wherever possible, gridded data and not station data was used to calculate the 

time series with an hourly granularity for precipitation and temperature as well as the evaporation 

values for the study catchments. 

4.2.1 Precipitation 

In Switzerland as well as in Austria, a gridded data set with hourly granularity containing the best 

precipitation estimates over the whole area of the country is available. The data set CombiPrecip by 

MeteoSwiss (Sideris et al., 2014) was used to determine hourly areal precipitation sums for the study 

catchments in Switzerland. CombiPrecip is a grid data set with a resolution of 1 km2 per pixel con-

taining hourly precipitation data for Switzerland since 2005. The precipitation values are calculated 

from rain gauge and radar backscatter data (Sideris et al., 2014).  

For the Austrian study catchments, the grid data set INCA by the ZAMG was used. The spatial reso-

lution of INCA is also 1 km2 per pixel and the data set and corresponding system is developed for 

nowcasting of weather conditions, especially in mountainous terrain (Haiden et al., 2011), where the 

Koenigsseeache and the Salzach are located. 

The areal precipitation sums calculated from the gridded data sets were directly used in the precipi-

tation time series of the study catchments, covering the time from 1 October 2013 to 30 September 

2021. The mean elevation of the catchment was assigned to the time series as measurement elevation. 

4.2.2 Temperature 

The gridded temperature data available from MeteoSwiss has a daily granularity. Thus, a combination 

of the gridded data and hourly station data was used to obtain hourly temperature data for all catch-

ments. The station data was downloaded from IDAWEB, a data portal of MeteoSwiss. The following 

workflow conducted for each study catchment led to the hourly temperature time series: 

1. Using Thiessen polygons for all temperature measurement stations in Switzerland, the relevant 

temperature measurement stations for each catchment were determined.  

2. All relevant temperature measurement stations within and around the catchment were assigned a 

weight according to the proportion of catchment area located within the Thiessen polygon of the 

temperature measurement station. Temperature measurement stations for which the proportional 

area was smaller than 3% of the catchment area were excluded. The small parts of the catchment 

area corresponding to these temperature measurement stations were distributed among the remain-

ing temperature measurement stations, thus these weights slightly increased. The resulting stations 

per catchment as well as their weights are listed in appendix 10.2. 

3. The measured hourly temperature time series of the stations were shifted according to the differ-

ence between the mean elevation of the catchment and the elevation of the temperature measure-

ment stations with a lapse rate of -0.6°C per 100 m (Bergström, 1992). 

4. A time series with an hourly granularity was calculated as the weighted average of the shifted 

temperature time series. Whenever single values were missing in one time series, the weight of 

this station was equally distributed on the other stations to calculate a value for the time step. For 

the special case with only one temperature measurement station, see the explanation below. 
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5. Using the gridded temperature data, the daily average temperature over the whole catchment was 

determined. 

6. The hourly temperature values were shifted such that the average temperature for the whole day 

was in accordance with the daily average temperature determined in step 5. 

For the Ova dal Fuorn in Zernez, only the temperature measurement station in Buffalora (BUF) was 

determined to be relevant. The measurement time series of this station contained a lack of data of 53 

hours in July 2015. This lack was filled with the data measured at this station 95 hours earlier to reach 

a realistic and smooth temperature fluctuation for the missing time steps. 

At the stations in Sattel (SAG) and Fluehli (FLU), the measurements started later than on 1 October 

2013 (22 October 2013 at SAG and 19 March 2015 at FLU). Thus, the time series needed to be 

extrapolated for these stations. To do so, the spatially closest temperature measurement stations (Ein-

siedeln (EIN) for SAG and Schuepfheim (SPF) for FLU) were used: The mean difference in temper-

ature between the two stations was calculated using all time steps for which data was available from 

both stations. These mean differences in temperature were used to shift the measurements at the sta-

tions with the full time series such that they could be used as extrapolated temperature time series for 

the stations SAG and FLU. 

For the Austrian catchments, gridded data was available and was used to calculate the hourly mean 

annual temperature. As for precipitation, the INCA dataset by the ZAMG was used to do so. The mean 

catchment elevation was assigned to the resulting temperature time series for all study catchments. 

4.2.3 Evaporation 

Evaporation data can be put into the HBV model by indicating one value per month, one value per 

day of the year or one value per modelled time step. In this thesis, the second option was used. 

For the Swiss catchments, it was assumed that the potential evaporation 𝐸𝑝𝑜𝑡  [𝑚𝑚 𝑑−1] follows a 

sinus curve with its minimum on 21 December of each year. The minimum was set to 0.5 mm per 

day for all catchments based on the data about actual evaporation in the Hydrological Atlas of Swit-

zerland (Menzel et al., 1999). Furthermore, the Hydrological Atlas of Switzerland contains values of 

the net radiation 𝑅𝑛 [𝑊 𝑚−2] in each square kilometre in Switzerland for the years 1983 to 1994 

(Z’graggen & Ohmura, 2000). The average of all the net radiation data points within each catchment 

was taken to be the net radiation value for the catchment. To get from net radiation to potential evap-

oration, the formula below (Z’graggen & Ohmura, 2000) was used: 

𝐸𝑝𝑜𝑡 =
𝑅𝑛 ∙ 8.64 ∙ 104 𝑠 𝑑⁄

2.256 ∙ 106 𝐽 𝑘𝑔⁄
 (2) 

The sinus curve assumed in the beginning was then scaled, such that the potential evaporation 

matched the total value calculated from the net radiation over the whole year. This resulted in 365 

daily evaporation values for each study catchment. 

For the Austrian catchments, the evaporation values of the WINFORE data set (Haslinger & Bartsch, 

2016) were used to obtain an evaporation average for each day of the year in both catchments. This 

data set contains information for each square kilometre in Austria from 1961 to today. To be as con-

sistent with the Swiss catchments as possible, the years 1983 to 1994 were used to calculate the av-

erage evaporation values for the Austrian catchments, too. 
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The HBV model corrects the evaporation values by comparing the input temperature data with a long 

term mean of the temperature. According to the years used to calculate evaporation, the years 1984 

to 1993 were used to obtain long term means for all days of the year. February 29 in leap years was 

skipped, such that 365 values resulted. For the Swiss catchments, daily grid data from MeteoSwiss 

was used to do so. For the Austrian catchments, the mean temperature values were estimated as the 

average of the minimal and maximal daily temperature which is contained in the SPARTACUS data 

set (Hiebl & Frei, 2016). 

4.3 Discharge data 

As “ground truth” for the model, a time series with hourly discharge measurements at the station of 

interest was required for each study catchment. For all catchments except for the Kempt and the 

Urtene, hourly mean values were ordered directly by the authorities: The remaining seven Swiss dis-

charge measurement stations are maintained by the confederation (FOEN). The Austrian discharge 

data was made available by the hydrographic service Salzburg. For the Kempt and the Urtene, the 

discharge measurement stations are maintained by the cantonal authorities of Zurich (AWEL) and 

Berne (AWA), respectively. For these catchments, the hourly mean discharge values were calculated 

from measurement time series with a (partly irregular) interval of up to 10 minutes.  

For the simulations, measurements from recent years were used. Therefore, some of the data had not 

been validated by the authorities yet. For most catchments, this was the case for the data from the 

years 2019-2021. However, the measurements done by the authorities were the best approximation 

available, so these data were used as if they had already been validated. See appendix 10.3 for more 

details on the source of the discharge time series and the amount of unvalidated data per catchment. 

4.4 Citizen science data 

All citizen science data originate from the CrowdWater project (see section 3.2). The water level class 

data are collected based on a photo in which a virtual staff gauge is inserted (Figure 10). The virtual 

staff gauges have different sizes relative to the sizes of the streams. A larger staff gauge makes it 

easier to choose the correct water level class, while a smaller staff gauge allows to collect data with 

a higher resolution. This and the observation quality leads to different Spearman rank correlations 

between the water level class estimates (citizen science data) and the actual discharge. The total num-

ber of observations and the correlations are given in Table 2 which is colour-coded according to the 

value of correlation (blue referring to the highest correlations, followed by yellow, orange, and red). 

Table 2: Number of CrowdWater observations and Spearman rank correlation between water level classes and discharge 

measurements for all study catchments. Colour-coded according to the value of correlation. 

Catchment Total number of observations Spearman rank correlation 

Koenigsseeache, Niederalm 1113 0.964 

Salzach, Salzburg 632 0.964 

Kempt, Fehraltdorf 395 0.907 

Urtene, Kernenried 380 0.678 

Alp, Einsiedeln 293 0.727 

Kleine Emme, Werthenstein 139 0.568 

Ova dal Fuorn, Zernez 74 0.470 

Kleine Emme, Emmen 69 0.303 

Wigger, Zofingen 51 0.699 

Sellenbodenbach, Neuenkirch 49 0.113 

Sihl, Zurich 41 0.217 
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Figure 10: First photo of each spot, showing the virtual staff gauge as it is used for the water level estimation at this spot. The date of acquisition and the acquiring CrowdWater user are given with 

each photo. Some of the images were uploaded to the CrowdWater app in a different format and were cropped due to the limited space available.
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4.4.1 App data and pen and paper data 

All eleven spots exist as virtual observation stations, i.e., observations can be added using the Crowd-

Water app. The links to the CrowdWater spots on the interactive map by Spotteron can be found in 

appendix 10.4. At the Alp, at both stations at the Kleine Emme, at the Ova dal Fuorn, at the Wigger, 

at the Sellenbodenbach and at the Sihl, there were letterboxes and boards installed additionally, so 

that observations could also be made using a form that has been designed by Barbara Strobl and 

Simon Meili-Etter (see appendix 10.5). In the app, it is only possible to choose one water level class 

(integer number). On the forms, citizen scientists sometimes indicated a number in between two clas-

ses, for example 0.5. These estimates in between classes were accepted and used as they were, since 

they represented the best estimate of the water level class at that point in time. 

All data collected using the CrowdWater app and the forms at the pen and paper stations were com-

piled to one time series per catchment. The total number of observations and thus the temporal reso-

lution of these time series varied heavily among the catchments (Figure 11 and Table 2). As it is in 

the nature of citizen science data, the observations were not made in regular time steps.  

Figure 11: Distribution of the citizen science data collected using the app or the form at the pen and paper stations for each 

catchment during the calibration period. Note that the tick marks on the x-axis mark the beginning of the calendar years 

2018-2021 and the small additional tick marks within the drawing area of the plot mark the beginning of the hydrological 

years. 
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The station at the Ova dal Fuorn is hardly accessible in winter. Therefore, the station was only in-

stalled during the summer months of the years 2017 and 2019. At the Sihl and at the Alp, the pen and 

paper stations were removed earlier than the other pen and paper stations. Therefore, the time series 

ended early at the Sihl. At the Alp, a citizen scientist continued the time series using the CrowdWater 

app. For the other catchments in which the data was collected using the CrowdWater app 

(Koenigsseeache, Salzach, Kempt and Urtene), it was also mainly one citizen scientist per station that 

collected all data. At the remaining (pen and paper) stations, the form was filled in by different people. 

The timestamp of each citizen science observation was rounded to one hour, such that each observa-

tion could be linked to the discharge measurement at that point in time. This was required to calculate 

the Spearman rank correlation between the discharge time series and the water level classes (see Table 

2) as well as for the calibration of the model using these data (see section 4.7). If there were two 

observations at the same point in time, the average water level class was used as observed water level 

class. Thus, aside the estimates in between two classes on the forms, this is a second reason why not 

only integer numbers were obtained in the water level class time series (Figure 12). 

The Spearman rank correlation of the water level class observations (Table 2) as well as the distribu-

tion of the water level classes in dependence of the actual discharge measurements (Figure 12), dif-

fered among the catchments. Etter et al. (2020a) found that the observations in the app that were 

mainly done by one citizen scientist were of a higher quality (as the perception bias was consistent) 

than the observations that were done by many different people using the forms. Furthermore, they 

found that observations were made during a variety of flow conditions, especially if one person felt 

somewhat responsible for a station, as it was the case for the app-dominated study catchments in this 

thesis. These findings were also reflected in the data points available for the eleven study catchments. 

Another difference among the study catchments was the different range of water level classes and 

discharge conditions that was covered by the citizen science data: This has a lot to do with the size of 

the virtual staff gauge (Figure 10) as well as with the variation that can be observed in the different 

streams. The ranges of the x-axes in Figure 12 represent the ranges of the discharge conditions during 

which a citizen scientist made a water level observation. As a comparison, the mean discharge calcu-

lated over the eight years of interest, as well as the maximal and minimal discharge value during this 

period are given in the same unit in Table 3. 

Table 3: Mean, maximum and minimum discharge for each study catchment for the eight years used for calibration and 

validation (October 2013 to September 2021). 

Catchment Mean discharge 

[mm/h]  

Maximum discharge 

[mm/h] 

Minimum discharge 

[mm/h] 

Koenigsseeache, Niederalm 1.04·10-1 3.02 9.24·10-4 

Salzach, Salzburg 1.48·10-1 1.40 5.00·10-3 

Kempt, Fehraltdorf 6.18·10-2 2.67 6.83·10-3 

Urtene, Kernenried 3.99·10-2 5.96·10-1 6.87·10-3 

Alp, Einsiedeln 1.58·10-1 10.06 8.71·10-3 

Kleine Emme, Werthenstein 1.19·10-1 3.15 8.66·10-3 

Ova dal Fuorn, Zernez 6.79·10-2 7.04·10-1 1.89·10-2 

Kleine Emme, Emmen 1.08·10-1 2.41 1.51·10-4 

Wigger, Zofingen 4.81·10-2 1.08 7.91·10-3 

Sellenbodenbach, Neuenkirch 7.22·10-2 11.06 0 

Sihl, Zurich 7.14·10-2 2.45 2.19·10-2 
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Figure 12: Water level class observations by citizen scientists plotted against the measured discharge at the same time for each study catchment. Note that the scales of the x- and the y-axes (i.e., the 

range of discharge conditions and water level classes covered) differ for each catchment. 
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4.4.2 Quality-controlled water level classes from the CrowdWater game 

For four catchments, namely the Koenigsseeache, Salzach, Urtene and Alp, the last sub-question was 

answered using data from the CrowdWater game. For each data point collected in the app at one of 

these stations, the number of votes in the CrowdWater game on 1 April 2022 was checked. If this 

number was at least 15, the data point was considered as classified (Strobl et al., 2019). The original 

water level class was then replaced with the trimmed mean (10% on each side) of the water level class 

votes in the CrowdWater game. If there were fewer than 15 votes for a data point, the original value 

from the app was left unchanged. This resulted in a modified water level class time series for these 

four catchments (Figure 13). Note that the calibration period was shortened by one year (see section 

4.6.2) for the approach using game data, therefore only the data points that were obtained before the 

end of September 2020 are shown in the plots. 
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Figure 13: Values from the CrowdWater app that were not classified in the game yet and classified values with higher 

resolution for all four catchments for which quality-controlled data was available. Note that the scale on the y-axis differs 

for the two rows. Note that the tick marks on the x-axis mark the beginning of the calendar years 2018-2020 and the small 

tick marks within the drawing areas of the plots mark the beginning of the corresponding hydrological year. 

The amount of data points that could be replaced with the value resulting from the game differed for 

the four catchments. At the Koenigsseeache 443 out of 861 observations (51%) were classified, at the 

Salzach, 209 out of 501 observations (42%) were classified, at the Urtene, 113 out of 257 observations 

(44%) were classified and at the Alp, 82 out of 261 observations (31%) were classified. Note that for 

none of the catchments the amount of classified data points was below 25%. This is important as the 

data was used in four steps: If only 25% of the available citizen science data was used to calibrate the 

model, classified data only (i.e., only red data points) were used. If only 50% of the available citizen 

science data was used to calibrate the model, the data set still mainly consisted of classified data and 

was filled up (in all catchments except the Koenigsseeache) with unclassified data. For the cases in 

which 75% and 100% of the citizen science data was used, all classified data was included and then 

supplemented with unclassified citizen science data. 
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For each partition of citizen science data, the Spearman rank correlation between the discharge meas-

urements and the data from the app and the game, respectively, was calculated (Figure 14). Dark blue 

symbols represent the values for the water level classes collected with the app, light blue symbols 

represent the values if this data was (partially) replaced by values from the game. The water level 

class data collected with the app at the Koenigsseeache and the Salzach showed a high Spearman rank 

correlation with the measured discharge in these streams. The replacement of 443 and 209 data points 

respectively with values resulting from the game did not have a large influence on the Spearman rank 

correlation between the citizen science data and the discharge time series for these two catchments. 

If not the full data set but only a part of it (25%, 50% or 75%) was considered and thus a higher 

percentage of the data was replaced with checked data from the game, this still did not have any 

influence on the Spearman rank correlation in these two catchments. That was different at the Urtene, 

where a clear drop of the Spearman rank correlation could be observed. This drop was even stronger 

if not the full data set was used but only a part of it (and thus a larger percentage of data was already 

modified in the game). Note that in the plot corresponding to the Urtene in Figure 13, it is visible that 

most values are set to 0 or close to 0 when they are changed in the game, while there is a larger 

variation of water level classes where the data is still original app data. The opposite case could be 

observed at the Alp: There, the game had the expected influence. This means that in general, higher 

Spearman rank correlation values were reached if a higher percentage of the considered data set con-

sisted of classified values.  

Note that the Kempt could not be included in this part because there were no data points that were 

classified by at least 15 votes in the CrowdWater game. The other six catchments were excluded 

because a major part of the data collected at these spots was pen and paper data and therefore not 

included in the CrowdWater game. Furthermore, note that the pen and paper data collected at the Alp 

in Einsiedeln was excluded from this part to have similar conditions at the Alp as in the other three 

catchments. 

Figure 14: Spearman rank correlation between the citizen science data and the discharge data measured by the authorities. 

For each set of citizen science data (25%, 50%, 75% and 100% of all available observations), the value of the correlation 

is shown if only water level class data from the app is considered and if as many data points as possible were replaced with 

the trimmed mean values from the game. 
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4.5 The HBV model 

4.5.1 Model description 

For all simulations done in this thesis, the HBV model was used. The HBV model is named after the 

Hydrologiska Byråns Vattenavdelning unit at the Swedish Meteorological and Hydrological Institute. 

The model is semi-distributed, meaning that several vegetation and elevation zones can be defined 

for each catchment. Furthermore, the model is conceptual, meaning that its processes are transparent 

while the requirements for the input data are relatively low (Seibert & Vis, 2012). 

In comparison to other hydrological models, the HBV model is of a rather simple structure. The com-

plexity of the model was held low in order to not formulate a too complex model just because the 

increasing computer capacity allows to do so (Bergström, 1992). While developing the model and 

increasing its complexity, changes were only accepted when they led to a significant improvement of 

the model performance. This does further explain the simplicity of the HBV model (Bergström, 1991). 

More on the history of the HBV model can be found in the retrospective paper by Seibert & Bergström 

(2022). Most parameters used in the HBV model cannot directly be related to some physical proper-

ties of a catchment, thus they can vary heavily for different catchments (Bergström, 1992). As the 

HBV model is working on a catchment scale, the parameters represent an average value for the whole 

catchment and should be interpreted as an index representation and not as the true representation of 

some physically measurable value (Bergström, 1991).  

In this thesis, the version HBV light (Seibert & Vis, 2012) was used. In this version, it is possible to 

run simulations with different than daily time steps and several subcatchments (Seibert & Vis, 2012). 

However, since citizen science data is only available at the catchment outlets and thus the application 

of subcatchments is not possible, only the first of these improvements was used in this thesis. Fur-

thermore, following the approach of assessing a good model performance without much knowledge 

about a catchment and its discharge characteristics, only elevation zones were defined for each catch-

ment (as they can rather easily be determined using remote sensing data), but no vegetation zones. 

Therefore, the dis-

tinguishing between 

different vegetation 

zones is not men-

tioned in the descrip-

tions of the model 

equations below. 

The next four para-

graphs give an over-

view about the dif-

ferent routines the 

model consists of 

and introduces the 

abbreviations for the 

parameters. These 

abbreviations and 

the four routines are 

also given in the 

schematic sketch in 

Figure 15. Note that 

the parameters used 

Figure 15: Sketch of the HBV model. Adapted from a drawing by Petra Seibert, available in 

Seibert & Vis (2012). Parameters shown in light red were fixed to a certain value, parameters 

shown in dark red were used for calibration. 
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for calibration in this thesis are printed in dark red while the parameters that were fixed are printed in 

light red. However, this can be different in other applications of the HBV model. The following de-

scription is a summary of the information given in the help section of the HBV model, whereby the 

units of the parameters are given according to the hourly time step used in this thesis instead of the 

daily time step that serves as default. Moreover, only the parameters used for the simulations in this 

thesis are described here. More detailed descriptions of the model routines and the influence of the 

different parameters can be found in the help section of the HBV model or in other publications (e.g., 

Bergström, 1995; Lindström et al., 1997; Seibert, 1999; Seibert & Vis, 2012). 

4.5.1.1 Snow routine 

The snow routine takes the precipitation and temperature data as input and results in the calculation 

of the snowpack and the snowmelt. The calculations of the snow routine are carried out for each 

elevation zone separately, whereby the temperature data is corrected with TCALT [°C/100m] and 

the precipitation data with PCALT [%/100m].  

If the temperature is below the threshold temperature TT [°C], the precipitation is modelled to be 

accumulated as snow. In this case, the precipitation amount is multiplied by a snowfall correction 

factor SFCF [-]. As soon as the temperature rises above TT again, snowmelt starts. For the calculation 

of the amount of snow melted, the degree-Δt-factor CFMAX [mm °C-1 h-1] is multiplied with the 

temperature difference between the measured temperature and TT. The meltwater is retained in the 

snowpack until the amount of meltwater stored in the snowpack gets larger than the water holding 

capacity, defined as a certain portion CWH [-] of the snow water equivalent. If there is meltwater 

stored in the snowpack when temperatures fall below TT again, this meltwater refreezes again. This 

process is modelled as a product of the difference between TT and the temperature, CFMAX and a 

refreezing coefficient CFR [-]. Furthermore, the parameter SP [-] can be used to lower CFMAX in 

winter.  

4.5.1.2 Soil moisture routine 

In the soil moisture routine, the precipitation falling as rain, the snowmelt calculated in the snow 

routine, and the potential evaporation serve as input data based on which the soil moisture, the ground-

water recharge and the actual evaporation are calculated. The calculations of the soil moisture routine 

are done individually for each elevation zone. 

The water entering the soil from rain or snowmelt is distributed into groundwater recharge and addi-

tional water for the soil box. The proportion of the entering water that ends up as groundwater flux is 

depending on the ratio between the amount of water already in the soil box and the maximal water 

content the soil box can hold FC [mm], as well as on the shaping parameter β [-], which is used as an 

exponent. The remainder of the entering water is stored in the soil box. 

The soil box is exposed to evaporation. To obtain the potential evaporation at a given time step, the 

long-term mean values of potential evaporation are corrected by the deviation of the temperature at 

this time step from the long-term mean and a correction factor CET [°C-1]. If the soil moisture is 

higher than a certain proportion LP [-] of FC, the actual evaporation is assumed to be equal to the 

potential evaporation. If the soil moisture is lower than this, the actual evaporation is linearly reduced 

and thus depends on how dry the soil is. 
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4.5.1.3 Response function 

In the response function, the groundwater levels in an upper and a lower groundwater box as well as 

the resulting discharge are calculated under the use of the potential evaporation and the groundwater 

recharge coming from the soil moisture routine. 

For the lower groundwater box, a simple linear storage model is assumed. In each time step, a certain 

portion K2 [h-1] of the amount of water stored in the lower groundwater box contributes to discharge. 

In the upper groundwater box, the outflow is non-linear: Depending on which of the following water 

amounts is smaller, either the whole content of the groundwater box contributes to discharge or only 

a portion, calculated as a product of K1 [h-1] and the water content to the power of (1+α [-]). 

The percolation of water from the upper to the lower groundwater box is regulated by PERC [mm/h], 

whereby this parameter gives the maximum value of percolation that is possible. The discharge out-

flowing from the lower groundwater box can never exceed PERC and the maximum storage content 

of the lower groundwater box is given by the ratio of PERC and K2. 

4.5.1.4 Routing routine 

In the routing routine, the delay between the generation of discharge in the catchment and the water 

reaching the catchment outlet is considered. To model this delay, the discharge generated in one time 

step is distributed over the following few time steps, whereby the last time step affected is determined 

by MAXBAS [h]. The generated discharge of time step 1 is distributed to time steps 1 to MAXBAS 

following an equilateral triangular weighing function. 

4.6 Model settings 

4.6.1 Catchment settings 

As the discharge and water level class data were available at one point per catchment, the catchments 

were not partitioned into subcatchments. One can expect that the parameter variability would not be 

too large anyways between different subcatchments, as it is the case for most applications of the HBV 

model (Bergström, 1992).  

The catchments were partitioned in several elevation zones, each covering a band of 100 to 200 meters 

in altitude. To determine the elevation zones, the elevation data provided by the Hydrological Atlas 

of Switzerland was used for the Swiss catchments. For the Austrian catchments, the elevation zones 

were determined from the EU-DEM provided by the Copernicus Land Monitoring Service at the 

European Environment Agency. The elevation zones were kept regular wherever possible. Especially 

the upper and lower elevation zones sometimes covered larger elevation ranges, because very small 

elevation zones were merged and there is a limit of 20 elevation zones in HBV. The elevation zones 

used for all study catchments can be found in appendix 10.5. The measurement elevation for temper-

ature and precipitation was set to the mean elevation of each catchment since gridded data was used 

to determine these timeseries (see section 4.2).  

The catchments were not partitioned into vegetation zones. Lake properties were neglected since the 

only lake contained in one of the study catchments made up for only 3% of the catchment area (Sihlsee 

in the Sihl catchment). Thus, all study catchments were treated as if they did not contain any lakes. 
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4.6.2 Calibration, validation, and warm-up period 

The choice of the hydrological years (duration in Switzerland from 1 October to 30 September) used 

for the calibration period was made according to the availability of citizen science data (see 4.4) at 

the time of writing this thesis. Thus, the calibration period covered the four years from 1 October 

2017 to 30 September 2021. The independent validation period covered the four preceding hydrolog-

ical years, namely the time from 1 October 2013 to 30 September 2017. A calibration period of four 

years is comparably short. However, in a case where continuous data was used for the calibration of 

the HBV model, a longer calibration period than two years did not improve the model performance 

significantly (Harlin, 1991). Thus, one can expect that the limited length of the calibration period was 

sufficient also in this case. 

The meteorological data of the two hydrological years between 1 October 2015 and 30 September 

2017 served as a warm-up period for the model. For the calibration period, this was the natural warm-

up period, i.e., the period that really preceded the one used for calibration. The meteorological data 

of the two years have also been used as warm-up period before the validation period because the 

measurement time series at several temperature measurement stations started later than on 1 October 

2011 and thus the calculation of the temperature time series would have been inconsistent. 

It takes a while until at least 15 citizen scientists playing the CrowdWater game rate an observation 

made in the CrowdWater app. Thus, the modified water level class estimates resulting from the 

CrowdWater game were mainly available for data points in the beginning of the calibration period. 

To increase the percentage of quality-controlled citizen science data in the corresponding approach, 

the calibration period was chosen to be one year shorter, i.e., ranged from 1 October 2017 to 30 

September 2020. The validation period however was the same as for the other approaches, i.e., ranged 

from 1 October 2013 to 30 September 2017. 

4.6.3 Parameter ranges 

Table 4 shows the parameter ranges and fixed pa-

rameter values used to calibrate the model in this 

thesis. For fourteen parameters, a range was defined, 

the other five parameters were fixed. The 

0.6°C/100m is a common used value for the temper-

ature change with altitude (TCALT) (e.g., 

Bergström, 1992) and can be measured rather easily. 

The change in precipitation with altitude (PCALT) 

was fixed at 5%/100m in accordance with the value 

used in the EXAR project (Kauzlaric et al., 2021). 

To keep the number of variable parameters low, the 

rather unsensitive parameters CWH and CFR were 

fixed at their default values. Furthermore, since no 

seasonal variability in CFMAX was expected, the 

value of SP was fixed at 0. 

The parameter ranges for TT, SFCF, CFMAX, FC, 

β, CET, LP and PERC were chosen according to 

Seibert & Vis (2012). Thereby, the ranges were ad-

justed such that they fitted the hourly time step used in this thesis and rounded to a close number. The 

same was done for MAXBAS too, whereby the upper limit of the parameter range was set to the 

maximal value that is allowed for MAXBAS in HBV (100 hours). 

Table 4: Parameter ranges and fixed parameter values, 

respectively. 

Parameter Unit Range/Value 

TCALT °C/100m 0.6 

PCALT %/100m 5 

TT °C [-3; 2.5] 

SFCF - [0.4; 1.6] 

CFMAX mm °C-1 h-1 [0.001; 0.5] 

CWH - 0.1 

CFR - 0.05 

SP - 0 

FC mm [50; 550] 

β - [1; 6] 

CET °C-1 [0; 0.3] 

LP - [0.3; 1] 

K2 h-1 [10-7; 0.05] 

K1 h-1 [10-5; 0.1] 

α - [0; 1] 

PERC mm/h [0; 0.125] 

MAXBAS h [1; 100] 
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For the parameters K1 and K2, the choice of the parameter range was also based on the choice made 

by Seibert & Vis (2012) as well as Etter et al. (2018). However, these ranges were slightly enlarged 

in order to be on the safe side and to not exclude slightly larger or smaller parameter values than 

would be in the range used by these authors. For the non-linearity parameter α, all values from 0 up 

to 1 were allowed, since no improvement was expected as soon as α+1 reaches values larger than 2. 

4.6.4 Model calibration methods 

For all parameters described above, parameter values were estimated during the model calibration 

process. The calibration of a model describes the process of adjusting parameters to reach a suffi-

ciently high similarity between simulated and observed discharge in a catchment (Solomatine & 

Wagener, 2011). Here, each model calibration resulted in 100 “best” parameter sets. This number was 

chosen to account for the fact that there is not one optimal parameter set: In hydrological modelling, 

we face the concept of equifinality, describing the situation that different parameter sets lead to sim-

ilarly good results (Beven, 2012). Even though those 100 parameter sets were the best that could be 

found as a result of the model calibration process applied, there may be other parameter sets in the 

parameter space that would lead to even better model performances. Therefore, the parameter sets 

can be called “best” in quotation marks only. 

4.6.4.1 Objective functions 

To judge the similarity between the input data and the simulated discharge during the calibration 

process and to rate the model performance, objective functions are used in hydrological modelling. 

In this thesis, the NPE (Non-Parametric Efficiency) introduced by Pool et al. (2018) was used when-

ever possible. Additionally, Spearman’s Rank Correlation Coefficient (Spearman, 1904), also called 

Spearman rank correlation, was used for those cases where the NPE was not applicable (namely the 

cases in which water level class data only were used for the calibration of the model).  

The NPE is an objective function developed to improve hydrological model calibrations and is a 

modification of the widely used KGE (Kling-Gupta-Efficiency) introduced by Gupta et al. (2009). 

When calculating the KGE, one assumes that the data does not contain any outliers, as well as that it 

is linear and normal. However, this is never the case for discharge data that is usually right skewed, 

since high flow events are rare (Pool et al., 2018). To avoid this discrepancy between data require-

ments and data properties, the NPE is based on the normalized flow-duration curve (FDC), describing 

how often a certain magnitude of discharge values is reached (Vogel & Fennessey, 1995), the Spear-

man rank correlation and the mean discharge (Pool et al., 2018). As mentioned before, the Spearman 

rank correlation served as an alternative objective function when the input data consisted of water 

level classes only. The Spearman rank correlation does not make any statement about the fit of the 

observed and simulated discharge volume, but only about the dynamics of the hydrograph. As there 

is no volume information contained in the water level class data, this objective function is an option 

that still allows calibration against such input data, as done by Etter et al. (2020b). 

The NPE as well as the Spearman rank correlation are included as objective functions in the HBV 

model. The external calculations required to evaluate the model performances were done using a 

script available from Pool et al. (2018), or the function included in the base package of R, respectively. 

The calculations can be formulated as follows, with 𝑛 as the length of the time series, 𝑄𝑠𝑖𝑚 as the 

simulated discharge time series and 𝑄𝑜𝑏𝑠 as the observed discharge time series: 
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𝛼 = 1 −
1

2
∑ |𝑅𝐹𝐷𝐶,𝑠𝑖𝑚,𝑖 − 𝑅𝐹𝐷𝐶,𝑜𝑏𝑠,𝑖|𝑛

𝑖=1 , with 𝑅𝐹𝐷𝐶,𝑥,𝑖 =
𝑄𝑥,𝑖|𝑖=|{𝑄𝑥,𝑗|𝑄𝑥,𝑗<𝑄𝑥,𝑖}|+1

𝑄𝑥̅̅ ̅̅ ∙𝑛
 (3) 

𝛽 =
𝑄𝑠𝑖𝑚

𝑄𝑜𝑏𝑠

⁄  (4) 

For the Spearman rank correlation, the rank 𝑅(𝑄𝑥,𝑖) with 𝑥 ∈ {𝑠𝑖𝑚, 𝑜𝑏𝑠} of each datapoint is used to 

calculate the coefficient (Spearman, 1904): 

𝑟𝑆 =
∑ (𝑅(𝑄𝑠𝑖𝑚,𝑖) − 𝑅(𝑄𝑠𝑖𝑚)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)(𝑅(𝑄𝑜𝑏𝑠,𝑖) − 𝑄𝑜𝑏𝑠

̅̅ ̅̅ ̅̅ )𝑛
𝑖=1

√∑ (𝑅(𝑄𝑠𝑖𝑚,𝑖) − 𝑄𝑠𝑖𝑚
̅̅ ̅̅ ̅̅ )

2
∙ ∑ (𝑅(𝑄𝑜𝑏𝑠,𝑖) − 𝑄𝑜𝑏𝑠

̅̅ ̅̅ ̅̅ )
2𝑛

𝑖=1
𝑛
𝑖=1

 
(5) 

The final objective function 𝑅𝑁𝑃𝐸 (or NPE) is calculated based on these three components: 

𝑅𝑁𝑃𝐸 = 1 − √(𝛼 − 1)2 + (𝛽 − 1)2 + (𝑟𝑆 − 1)2 (6) 

For a perfect match between simulated and observed discharge, the NPE as well as the Spearman rank 

correlation have the value 1. 

To implement an estimation of the mean discharge (see section 4.8.1), the volume error was used. 

The volume error 𝑉𝑒𝑟𝑟 is implemented as an objective function in HBV and is defined as  

𝑉𝑒𝑟𝑟 = 1 −
|∑ 𝑄𝑜𝑏𝑠,𝑖 − 𝑄𝑠𝑖𝑚,𝑖

𝑛
𝑖=1 |

∑ 𝑄𝑜𝑏𝑠,𝑖
𝑛
𝑖=1

 (7) 

This means that a perfect fit between the simulated and the observed discharge results in a volume 

error of 1. However, for a perfect fit, there is no error in volume resulting, thus the error itself is 0. 

Therefore, what was used as volume error here is only the ratio in equation (7), so the deviation of 

the simulated discharge volume from the observed discharge volume. The closer the simulated dis-

charge fits with the observed discharge, the closer to 0 the volume error. 

4.6.4.2 Monte Carlo simulation 

The model calibration method mainly used in this thesis was the Monte Carlo simulation. With a 

Monte Carlo simulation, the parameter space is sampled as thoroughly as possible in order to find the 

parameter sets that lead to good model performances. Thereby, the parameter sets are built randomly, 

i.e., for each parameter, a random value within its range is chosen and combined with random values 

of all the other parameters (Harrison, 2009). Here, one million parameter sets were sampled from the 

multidimensional parameter space. The resulting model performances of all these parameter sets were 

evaluated regarding the Spearman rank correlation or the NPE of the simulated discharge with the 

input data in order to find out which parameter sets performed well and should further be used. 
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4.6.4.3 GAP simulation 

A genetic algorithm was used to calibrate the model with the full discharge time series, i.e., to find 

the upper benchmark (see section 4.6.5.2). The algorithm is included in the HBV model and was 

introduced by Seibert (2000). A genetic algorithm simulates an evolution of parameter sets. The al-

gorithm starts with a certain number of parameter sets that are all evaluated regarding one or several 

objective function(s). Parameter sets leading to a good model performance are more likely to further 

evolve than parameter sets leading to a bad model performance. In each step, a new generation of 

parameter sets is built by combining the parameter sets from the preceding generation. Thereby, each 

parameter can either be taken from one of the “parental” parameter sets, a mutation between the two 

values from the parental parameter sets or a random value. Since well-performing parameter sets have 

higher chances to evolve, the resulting parameter sets should all lead to a rather good model perfor-

mance after a sufficient number of iterations (Seibert, 2000). The NPE was used as an objective func-

tion in the GAP calibration to find the parameter sets that served as an upper benchmark. 

4.6.5 Evaluation 

4.6.5.1 Model validation 

The calibrated model was used to simulate the discharge of each catchment during the calibration 

period and the model performance was evaluated using the observed discharge from this period. To 

test for the stability of the parameter sets, the discharge of an independent validation period was 

additionally simulated with the parameter sets found in the calibration process and compared to the 

observed discharge of this period (see 4.6.2). On one hand, the purpose of that was to see if the model 

parameters are valuable for forecasting approaches or other extensions of discharge time series. On 

the other hand, overparameterization can be identified if the model performance is much lower for 

the validation period compared to the model performance in the period used for calibration 

(Bergström, 1991). 

4.6.5.2 Upper and lower benchmark 

From the value of an objective function alone, it is not possible to make a statement about the value 

of the data used to calibrate the model. For such a statement, the model performance reached should 

be compared to the maximal expectations (upper benchmark) and the minimal expectations (lower 

benchmark) of the model performance in a catchment. Using benchmarks for comparison avoids the 

issue that the model performances may differ strongly between different catchments. Thereby, the 

benchmark is a simulated time series obtained by using a different approach (Schaefli & Gupta, 2007; 

Seibert, 2001; Seibert et al., 2018). 

An upper and a lower benchmark were used to assess the model performances that resulted from the 

different scenarios (see section 4.7) in each catchment. In many common objective functions, the 

observed discharge implicitly serves as an upper benchmark. Since the focus here was on the value 

of the data compared to an optimal data availability, the upper benchmark was chosen to be the sim-

ulation resulting from the calibration with the full time series of discharge data. Therefore, for the 

upper benchmark, 100 GAP calibrations with 100 parameter sets and 5000 runs each were done in 

order to optimize the value of the NPE. For the resulting 100 parameter sets, the corresponding sim-

ulated hydrographs were calculated. These 100 hydrographs were then weighed equally to form an 

ensemble mean hydrograph of which the NPE value served as the upper benchmark. 

To find the lower benchmark, 1000 parameter sets were chosen randomly from the parameter space, 

and their corresponding hydrographs were calculated. Analogous to the calculations for the upper 

benchmark, the ensemble mean hydrograph was then calculated using equal weights. Since there was 
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nothing known about the quality of any of these hydrographs, all the 1000 hydrographs were used for 

the ensemble mean of which the NPE served as a lower benchmark then. 

The relative performance 𝑅𝑁𝑃𝐸,𝑥,𝑟𝑒𝑙 of a scenario 𝑥 was then set in relation to the benchmarks: 

𝑅𝑁𝑃𝐸,𝑥,𝑟𝑒𝑙 =
𝑅𝑁𝑃𝐸,𝑥 − 𝑅𝑁𝑃𝐸,𝑙.𝑏.

𝑅𝑁𝑃𝐸,𝑢.𝑏. − 𝑅𝑁𝑃𝐸,𝑙.𝑏.
 (8) 

Note that the span between the performances of the upper and the lower benchmark thus had a large 

influence on the relative model performance as it defined the space available for improvement when 

using some data instead of no data at all or the complete measurement time series. 

The upper and the lower benchmark were calculated twice for each study catchment: Once for the 

calibration period and once for the validation period. This accounted for the fact that the two periods 

may vary in difficulty to model. The separate benchmarks assure that the model performance in the 

two different periods can be assessed in accordance with the properties of each period. 

4.7 Definition of scenarios 

To determine the value of having different amounts of data available, 24 scenarios of data availability 

were defined by combining a certain amount of citizen science data with a certain number of discharge 

measurements per year (Table 5). 

Regarding the citizen science data, five options were taken into account: Having no citizen science 

data at all and having 25%, 50%, 75% and 100% of the observations done by citizen scientists avail-

able (whereby the absolute number of observations differed among the catchments). The number of 

observations was not standardized to the same number in each catchment since the scenarios were 

meant to depict reality: It is not possible to motivate the same number of people to make the same 

number of observations at each observation spot. Citizen scientists collect data in their own rhythm, 

and it is part of a citizen science project to make use of these irregular data, even though this means 

a loss of comparability among different sites. For the scenarios using 25%, 50% and 75% of the 

citizen science data, the data points were chosen randomly out of the set of available data points. 

These scenarios represented the situations in which only a portion of the observations would have 

been received. For the scenarios using 100% of the citizen science data, the complete set of data points 

received from citizen scientists (see Table 2) was used. 

These five options were combined with five options containing different numbers of discharge meas-

urements per hydrological year, as listed below. Aside the situation with no discharge measurements 

at all, these options represented situations in which a responsible person (potentially a citizen scien-

tist) would have conducted discharge measurements at regular time steps: 

− 1 discharge measurement per year: 21 April, 12:00 

− 3 discharge measurements per year: 21 April / 21 August / 21 December, 12:00 

− 6 discharge measurements per year: 21st of each even month, 12:00 

− 12 discharge measurements per year: 21st of each month, 12:00 

The date for a single measurement per hydrological year, i.e., 21 April, was chosen randomly. Note 

that this date is about in the middle of the hydrological year. In the snow-dominated catchments, the 

discharge values are about to increase around this time of the year due to the snowmelt season in 
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spring (Figure 7). The additional discharge measurements were spread equally over the year. If a 

discharge measurement was used in a set of fewer discharge measurements, it was always also used 

in each set with more discharge measurements. In other words, to get more discharge measurements, 

new data points were added but none of the already available data points got replaced. The discharge 

measurements were chosen in regular intervals, even though this strategy may be less informative 

than an intelligent sampling, e.g., during high flow conditions (Seibert & Beven, 2009). Thus, it was 

assumed that nothing was known about the discharge behaviour. This way of sampling has the ad-

vantages that it can be planned easily and logistic difficulties to access the catchment during certain 

hydrological conditions can be avoided (Jian et al., 2017). 

To simulate the availability of the required discharge measurements, the corresponding data points 

were extracted from the complete discharge time series (see section 4.3), while all the other data 

points of the discharge time series were assumed to be unavailable. 

Table 5: Overview of the modelling scenarios created by combining a certain number of discharge measurements per year 

with a certain amount of citizen science data. The first number in the scenario name corresponds to the number of discharge 

measurements per year, the second to the percentage of citizen science data used. 

 Number of discharge measurements increasing  
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0-100 1-100 3-100 6-100 12-100 

0-75 1-75 3-75 6-75 12-75 

0-50 1-50 3-50 6-50 12-50 

0-25 1-25 3-25 6-25 12-25 

 1-0 3-0 6-0 12-0 

In the lower left corner of Table 5, the situation without any data, i.e., the situation of the lower 

benchmark is shown. By definition of the relative model performance (see formula (8)), the relative 

performance assigned to that field in the results section was always 0 (see section 5). 

4.7.1 Model calibration per scenario 

For each scenario using one type of data (i.e., either water level classes or discharge measurements 

but not both), one million parameter sets that were randomly sampled from the parameter space were 

evaluated. For all scenarios and all catchments, the same set of one million parameter sets was used 

to do so. For the scenarios with discharge measurements only, the NPE was used as objective func-

tion. For the scenarios with citizen science data only, the Spearman rank correlation was used as 

objective function. For each scenario, the top 100 parameter sets showing the best results regarding 

the corresponding objective function were chosen as the “best” 100 parameter sets for this scenario 

and this catchment. Note that the objective function could only be calculated using the available data 

points of the input data. 

For the inner scenarios, i.e., the scenarios using citizen science data and discharge measurements, no 

direct evaluation of the one million parameter sets was possible. The water level class data obtained 
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by citizen scientists were of ordinal scale level and did not have any unit while the discharge meas-

urements were interval-scaled and given in mm/h. It was not possible to evaluate the model on a 

combination of these two data types simultaneously. Thus, the separate evaluations done for the sce-

narios with only one data type were combined by the following procedure:  

1. Each of the one million parameter sets were ranked from 1 to 106 according to their performance 

in the scenarios using only one of the two data types (thus, eight times per catchment). 

2. For each of the 16 combinations of citizen science data and discharge measurements, the mean 

rank for each parameter set was calculated. 

3. The “best” 100 parameter sets regarding the mean rank for each combination and thus for each 

scenario with combined data types were chosen. 

For all scenarios and all catchments, the ensemble mean hydrograph resulting from the 100 hydro-

graphs simulated by the “best” parameter sets was calculated. The absolute NPE obtained like this 

was converted to a relative model performance using formula (8). This value was then used to judge 

the model performance of each scenario in each catchment and thus to judge the value of the data that 

was used to calibrate the model. 

For the scenarios using one data type only, it would have been possible to use the GAP algorithm for 

model calibration. This was done in the beginning of the investigations and resulted in slightly higher 

model performances than it was the case when the model was calibrated as described above. However, 

in order to treat all scenarios as similar as possible, this option was neglected, and all scenarios were 

investigated based on the Monte Carlo approach. The application of the GAP algorithm was not pos-

sible for the scenarios with mixed input data as the model could not process the information of both 

input data types simultaneously and make use of them in the algorithm. 

4.8 Implementation of additional knowledge 

4.8.1 Mean discharge 

In the second approach, it was assumed that an estimate of the mean discharge was available in addi-

tion to the discharge measurements and the citizen science data used in the basic approach. To simu-

late this situation, the one million parameter sets were filtered according to their resulting volume 

error before the 100 “best” parameter sets for each scenario were chosen. The narrowest filter (simu-

lating a very precise estimate of the mean annual discharge) allowed only parameter sets resulting in 

a volume error smaller than 2.5%. Furthermore, filters allowing volume errors of 5%, 10%, 20%, 

30% and 50% were applied. From this smaller number of parameter sets, 100 “best” parameter sets 

were chosen for each scenario in the same way as it was done in the basic approach using the original 

one million parameter sets (see section 4.7.1). 

4.8.2 Water levels instead of water level classes 

In the third approach, it was assumed that instead of water level classes, water level measurements 

were available. These data were assumed to not contain any errors and to have a resolution as high as 

the resolution of the discharge measurements obtained by the authorities. To simulate this situation, 

each water level class data point was replaced with the amount of discharge measured by the author-

ities at the time of the observation. Since these data should still represent water levels, none of the 

volume information contained in this value was used to calibrate the model: The ranking of the one 

million parameter sets was still done according to the resulting Spearman rank correlation when these 

data points were considered. The ranking of the parameter sets regarding the discharge measurements 

remained unchanged compared to the basic approach. 
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4.8.3 Water level classes checked by citizen scientists 

To explore if the value of the citizen science data was increased in the CrowdWater game, the model 

performances resulting from the calibration with checked and the calibration with unchecked data 

were compared directly. Since the calibration period was different for this approach (see section 

4.6.2), the basic approach did not serve as the case using the unchecked data. Instead, an alternative 

basic approach was designed separately together with the approach using data that already run through 

the CrowdWater game (i.e., the checked data). 

A data point was classified as checked when 15 or more players in the CrowdWater game voted on 

the water level class in the picture. From all votes, the trimmed mean (cutting off the highest and 

lowest 10% of voted values) was calculated and served as a checked value of the data point. Compared 

to the original value observed by a single citizen scientist, this checked value should be more accurate 

and show a higher resolution than the original, unchecked value (Strobl et al., 2019). 

As in the other approaches, the amount of citizen science data was increased in steps of 25%. For the 

approach using checked data, checked data only was used if possible and only when no more checked 

data points were available, unchecked data was used to complete the data set (cf. section 4.4.2). For 

the case using unchecked data, the same data points as in the checked case were used, but instead of 

the trimmed mean of the game votes, the original value observed by the citizen scientist was used. 

The resulting sets of (partially) checked and unchecked data points were used to rank the one million 

parameter sets as described for the water level classes in the basic approach. Again, the use of dis-

charge measurements for the ranking of the one million parameter sets remained the same as in the 

basic approach. 

4.9 Data analysis 

All data analyses were done using R. Table 6 gives an overview of the most important packages (in 

alphabetic order) that were used in addition to the base package of R. Additionally, the source and 

main purpose of the packages is given. 

Table 6: Most important R packages with source and description of their purpose. 

Package Source Purpose 

ComplexHeatmap Gu et al. (2016) 
Drawing of all heatmaps 

shown in the results 

dplyr (tidyverse) Wickham et al. (2019) Handling of data frames 

hydroGOF Zambrano-Bigiarini (2020) 
Calculation of hydrological 

goodness of fit functions 

Lubridate (tidyverse) Wickham et al. (2019) 
Handling of dates and time 

stamps 

RColorBrewer Neuwirth (2014) 
Choice of colours for most 

visualizations 

readxl (tidyverse) Wickham et al. (2019) Import of excel files 

viridis 
Garnier et al. (2021) Choice of colours for main 

heatmap 
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5 Results 

5.1 Benchmarks 

The upper benchmarks in both periods had an NPE of 0.89 on average, while the NPE values of the 

lower benchmarks were distributed between 0.34 and 0.75 (Figure 16). As described before (see sec-

tion 4.6.5.2), the benchmarks were calculated separately for the two periods. A high upper benchmark 

means that the hydrograph could be modelled well when the model was calibrated with the full dis-

charge time series. A high lower benchmark means that the hydrograph could be modelled well with-

out any knowledge about the discharge behaviour. 

In addition to the upper benchmark calibrated using the GAP approach, the results of the Monte Carlo 

calibration with the full discharge time series (the resulting model performance if the Monte Carlo 

approach would have been used to calibrate the upper benchmark) are also given in Figure 16. These 

values indicate the model performance of the ensemble mean, built by the 100 parameter sets out of 

the one million parameter sets that led to the best NPE values when compared to the full discharge 

time series. These values only serve as a comparison. They were not used for any calculations. The 

upper benchmark calibrated using the GAP approach was usually higher than the upper benchmark 

calibrated using the Monte Carlo approach. This demonstrates the strength of the GAP approach in 

finding better parameter sets in less time. 

The values of the lower benchmark and the upper benchmark calibrated using the GAP approach 

(yellow and blue dots in Figure 16) are additionally given in Table 7. The two upper and two lower 

benchmarks for the calibration and the validation period differed quite strongly for some of the catch-

ments. These comparably large differences are indicated in orange in Table 7. For the lower bench-

mark, the differences may partly be explained by some coincidence in the parameter sets used to 

calculate the ensemble mean. For the upper benchmarks of the Urtene and the Ova dal Fuorn however, 

the rather large differences may indicate that the calibration and the validation period were not equally 

easy to model, i.e., the validation period was more challenging to model than the calibration period. 

The upper benchmarks resulting from the Monte Carlo approach in these two catchments indicate the 

same. 

Table 7: Upper and lower benchmarks for all catchments, for the calibration period and the validation period. Comparably 

large differences between the calibration and the validation period are highlighted in orange. 

Catchment Lower bench-

mark, cal. p. 

Lower bench-

mark, val. p. 

Upper bench-

mark, cal. p. 

Upper bench-

mark, val. p. 

Koenigsseeache, 

Niederalm 
0.698 0.749 0.902 0.924 

Salzach, Salzburg 0.637 0.619 0.870 0.890 

Kempt, Fehraltdorf 0.648 0.659 0.921 0.932 

Urtene, Kernenried 0.553 0.515 0.888 0.768 

Alp, Einsiedeln 0.609 0.632 0.878 0.901 

Kleine Emme, 

Werthenstein 
0.649 0.671 0.905 0.923 

Ova dal Fuorn, 

Zernez 
0.534 0.339 0.947 0.882 

Kleine Emme, 

Emmen 
0.639 0.686 0.909 0.884 

Wigger, Zofingen 0.720 0.746 0.908 0.929 

Sellenbodenbach, 

Neuenkirch 
0.430 0.510 0.841 0.878 

Sihl, Zurich 0.715 0.639 0.859 0.842 
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Figure 16: Benchmarks for the calibration period (upper plot) and the validation period (lower plot). The number describes 

the difference between the upper and lower benchmark. The upper benchmarks calibrated using the Monte Carlo approach 

were not used for the calculation of the relative performance and only serve as a comparison. Note that the upper bench-

mark for the validation period is rather low for the Urtene. Note the large difference between the upper and the lower 

benchmark at the Ova dal Fuorn, especially for the validation period. 
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5.2 Basic approach 

In the basic approach, citizen science data were combined with a limited number of discharge meas-

urements in each hydrological year. No additional knowledge was used to calibrate the model. The 

resulting relative performances regarding the NPE of the ensemble mean varied strongly among the 

different catchments and different scenarios (Figure 17 for the calibration period, Figure 18 for the 

validation period). A model performance resulting in the same or a worse NPE as was reached by the 

lower benchmark is indicated in yellow. Darker fields indicate better performances. A model perfor-

mance resulting in the same or a better NPE as was reached by the upper benchmark is indicated in 

dark purple. 

Rather poor model performances were reached if citizen science data only was used for calibration 

(i.e., in the first column) in most catchments, whereby the Koenigsseeache in Niederalm was an ex-

ception with good resulting model performances in the first column. In most catchments, a clear im-

provement of the model performance was achieved as soon as at least one discharge measurement 

per year was added to the input data (i.e., from the second column and onwards) and thus the choice 

of the parameter sets was no longer only depending on a good Spearman rank correlation between the 

simulated discharge and the observed water level classes. In several catchments (e.g., at the Salzach 

in Salzburg, the Alp in Einsiedeln and the Ova dal Fuorn in Zernez), another clear improvement of 

the model performances was reached between one and more than one discharge measurements per 

year (i.e., between the second and the third column). The best model performances were usually 

reached when no citizen science data at all but only discharge measurements were used to calibrate 

the model (i.e., in the bottom row). Thus, the best results could be reached when only the NPE of the 

simulated discharge and the discharge measurements used as input data was considered to choose the 

100 parameter sets for the ensemble mean. In other words, the model tended to perform better if the 

Spearman rank correlation between the simulated discharge and the observed water level classes was 

not considered. This trend was most pronounced in catchments in which only a comparably small 

number of water level class observations which was of a rather low quality was available. The model 

performance thereby increased when the number of discharge measurements used for calibration per 

year was increased (when moving from left to right in the bottom row of each subplot).  

The expected trend of better performances when using more data of any type could only be observed 

among the scenarios using both data types for calibration (mixed scenarios), and not even for all 

catchments. The better model performances that resulted when using more data of any type could be 

observed especially in catchments with a lot of citizen science data. These catchments were also the 

catchments in which the citizen science data showed a high correlation with the discharge time series 

(Table 2). Furthermore, the trend was more pronounced in the validation period than in the calibration 

period, meaning that more input data helped to find more stable parameter sets. However, also for 

these mixed scenarios, the discharge measurements tended to have a higher value for the calibration 

of the model than the citizen science data, as there was a tendency that the model performance in-

crease was stronger when going from left to right than when going from the bottom to the top of the 

subplots. At the Kleine Emme in Emmen and at the Sellenbodenbach in Neuenkirch, adding more 

citizen science data while using three or more discharge measurements per year resulted in a decrease 

in model performance, thus the citizen science data acted disinformatively in these catchments. Note 

that these two catchments were among the catchments that showed a poor correlation between the 

water level class observations and the discharge time series (Table 2). 
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Figure 17: Relative performance of the ensemble mean for all catchments and all scenarios. Use of basic approach, results for the calibration period. The number of citizen science observations 

corresponding to 100% is given as n after the name of the catchment. 
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Figure 18: Relative performance of the ensemble mean for all catchments and all scenarios. Use of basic approach, results for the validation period. The number of citizen science observations 

corresponding to 100% is given as n after the name of the catchment.
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The exemplary hydrographs for the hydrological year 2020 (Figure 19) point out more explicitly what 

the numbers in Figure 17 imply: The observed discharge at the Koenigsseeache (top row), at the Alp 

(middle row) and at the Sihl (bottom row) are shown in blue and shaded with the 100 hydrographs 

that were chosen to form the ensemble mean based on the data availability scenario indicated in the 

title of each subplot. The relative performance given in brackets is the relative performance of the 

ensemble mean over the whole calibration period (as stated in Figure 17) and not only over the hy-

drological year 2020. For each of the catchments shown, one of the worse performing scenarios is 

plotted on the left side and one of the better performing scenarios is plotted on the right side. 

At the Koenigsseeache, the simulated hydrographs resulting from the comparably bad-performing 

scenario 1-0 matched the observed discharge well. Peak flows were simulated as peak flows, even if 

 Koenigsseeache, Niederalm 
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1-0 (rel. performance: 0.25) 

 

12-100 (rel.performance: 0.92) 

 

Alp, Einsiedeln 

0-50 (rel. performance: 0.05) 

 

12-100 (rel. performance: 0.60) 

 

Sihl, Zurich 

0-25 (rel. performance: -2.22) 

 

12-0 (rel. performance: 0.62) 

 

 October 2019 to September 2020 
 

 

Figure 19: Observed and simulated hydrographs of the Koenigsseeache, the Alp and the Sihl for the hydrological year 2020 

for one comparably bad-performing scenario (left) and one comparably well-performing scenario (right). Observed hydro-

graph shown in blue, 100 simulated hydrographs used to calculate the ensemble mean shown in grey.  
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the height of the peak was usually overestimated by some of the simulated hydrographs. Low flows 

were simulated as low flows, even though there was some overestimation of the discharge too (espe-

cially in winter). Partially regarding the peaks, but especially regarding the low flows, the simulated 

hydrographs resulting from the scenario 12-100 matched the observed hydrograph even better. At the 

Alp, scenario 0-50 led to a strong overestimation of the peak flows and quite some underestimation 

of the discharge during low flow periods. Both errors could strongly be decreased when 12 discharge 

measurements and all available citizen science data were used for calibration (i.e., in scenario 12-

100). At the Sihl, scenario 0-25 performed worse than the lower benchmark, i.e., random guessing 

led to better results than calibrating the model using 25% of the citizen science data available at this 

site. Thus, the simulated hydrographs did not match the observed hydrograph well in this scenario. 

Peak flows were overestimated, and low flows were partially simulated as high flows (especially the 

low flow period in April 2020). Quite some improvement was reached in the best-performing scenario 

12-0 at the Sihl. While peak flows were still overestimated, the model performed much better during 

low flow periods which were simulated as low flow periods by all 100 simulated hydrographs. 

When comparing the results of the calibration period to those of the validation period, the patterns of 

the relative performances (Figure 17 and Figure 18) mainly remained the same, whereby the relative 

performance values were a bit lower in the validation period, in general. As an exemplary comparison 

of two hydrographs originating from the calibration and the validation period, the hydrographs of the 

Kempt for the hydrological years 2020 and 2016 are shown in Figure 20. In addition to the observed 

hydrographs shown in blue, the 100 hydrographs used for the ensemble mean of scenario 6-100 are 

again shown in grey. 

 Kempt, Fehraltdorf; 6-100 
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Figure 20: Observed and simulated hydrographs of the Kempt for the well-performing scenario (6-100) for one year of the 

calibration period (2020) and one year of the validation period (2016). Observed hydrograph shown in blue, 100 simulated 

hydrographs building the ensemble mean shown in grey. 

For all catchments except the Ova dal Fuorn and the Urtene, the absolute values of the NPE did hardly 

differ between the calibration and the validation period (Figure 21). The parameter sets seem to be 

stable and there seems to be no fine-tuning to the input values used for model calibration. Note that 

for the Ova dal Fuorn and the Urtene, the validation period was more difficult to model with little 

input information than it was the case for the calibration period: The lower benchmark of these catch-

ments showed low performance values during the validation period. However, at the Urtene also the 

upper benchmark showed a lower performance and thus the relative performances are not too differ-

ent. At the Ova dal Fuorn, the upper benchmark remained high also for the validation period. There-

fore, considering the relative performances shown in Figure 17 and Figure 18, there was even an 

improvement for those data availability scenarios of the Ova dal Fuorn that only show a small drop 

in absolute performance when moving from the calibration to the validation period. 
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Figure 21: Difference in absolute NPE performance of the ensemble mean for all catchments and all scenarios between the validation period and the calibration period. A performance drop in the 

validation period is indicated with negative values, an increase of performance in the validation period is indicated with positive values.



Master’s Thesis  Franziska Schwarzenbach 

49 

For the calibration period, the relative model performances regarding the components of the NPE (see 

section 4.6.4.1) are additionally shown in Figure 22 (relative performance regarding α), Figure 23 

(relative performance regarding β) and Figure 24 (relative performance regarding rS). In the case of 

α and rS, the relative value compared to the benchmarks is shown directly. In the case of β, the relative 

values show the relative deviation from 1, whereby the deviation of the lower benchmark corresponds 

to a value of 0 and the deviation of the upper benchmark corresponds to a value of 1. 

There was no clear trend for the goodness of the simulation of the flow duration curve (Figure 22). 

For most catchments, there seemed to be a tendency for rather bad simulations of the flow duration 

curve if only citizen science data was used for the calibration of the model. However, this was not 

true for the Koenigsseeache, the Kleine Emme in Emmen as well as for the Sellenbodenbach. An 

interesting observation was the surprisingly bad performance regarding α at the Salzach and vice-

versa the surprisingly good performance regarding α at the Sihl. Regarding α, a clear break can be 

observed in the Alp catchment, as scenarios in which at least 25% of the available citizen science data 

and at least 3 discharge measurements per year are used for calibration were able to simulate the flow 

duration curve much better than the remaining scenarios. This break could not be compensated by β 

or rS and thus remained visible in the relative NPE performance, especially for the calibration period 

(Figure 17). 

The performance patterns were less patchy regarding the performances of the resulting ensemble 

means of the different scenarios in simulating the mean discharge (Figure 23). In general, the missing 

volume information in the scenarios using citizen science data was reflected in a rather low perfor-

mance of these scenarios regarding β. Other than that, the performances regarding the discharge vol-

ume did not differ too strongly among the different scenarios, however more discharge measurements 

per hydrological year (and thus more information about the discharge volume) tended to lead to better 

simulations of the mean discharge. 

The influence of the quality of the water level class observations was clearly reflected in the relative 

performances of the resulting ensemble means regarding the Spearman rank correlation (Figure 24). 

At the Kleine Emme in Emmen, the Sellenbodenbach and the Sihl, the resulting rS-values were poorer 

than those of the lower benchmark, at least if citizen science data (showing a low correlation with the 

discharge time series) was used to calibrate the model. On the other hand, the water level class data 

collected at the Koenigsseeache, Salzach, Kempt and Alp (showing a high correlation with the dis-

charge time series) led to similarly high or higher rS-values than this was the case for the upper bench-

mark. Thus, the use of good water level class observations to calibrate the model led to a good simu-

lation of the discharge dynamics in a stream. 

While the quality of the citizen science data seemed to have a large influence on the resulting model 

performance regarding the Spearman rank correlation, the amount of citizen science data seemed to 

have a smaller influence: The increase in performance when moving from 25% of citizen science data 

to 100% of citizen science data was not very large. A bit of a larger difference between the rows 

showing the results for 25% of citizen science data and 50% of citizen science data could be observed 

at the Urtene. However, the performance increase with more citizen science data could not be ob-

served anymore when comparing the 50%-scenarios to the scenarios using 75% or 100% of the avail-

able citizen science data. This finding could be confirmed when comparing different catchments with 

each other: About the same number of citizen science data (though not necessarily distributed simi-

larly over the calibration period) was used for the 25%-scenarios at the Alp as for the 100%-scenarios 

at the Kleine Emme in Emmen. Still, the corresponding performances regarding the Spearman rank 

correlation at the Alp were way better than those at the Kleine Emme in Emmen.  
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Figure 22: Relative performance of the ensemble mean for all catchments and all scenarios, considering only α (first component of the NPE). Use of basic approach, results for the calibration period. 

The number of citizen science observations corresponding to 100% is given as n after the name of the catchment. 
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Figure 23: Relative performance of the ensemble mean for all catchments and all scenarios, considering only β (second component of the NPE). Use of basic approach, results for the calibration 

period. The number of citizen science observations corresponding to 100% is given as n after the name of the catchment. 
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Figure 24: Relative performance of the ensemble mean for all catchments and all scenarios, considering only rS (third component of the NPE). Use of basic approach, results for the calibration period. 

The number of citizen science observations corresponding to 100% is given as n after the name of the catchment.
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The one million parameter sets were ranked differently in each data availability scenario than when 

the full discharge time series was available to rank the parameter sets (Figure 25 and appendix 10.7). 

In the squares, each point represents one parameter set. In the x-direction, the parameter sets were 

plotted according to their logarithmic rank regarding the calibration against the full discharge time 

series (upper benchmark calibrated with the Monte Carlo approach). In the y-direction, the parameter 

sets were plotted according to their logarithmic rank regarding the calibration of the scenarios. The 

scenarios were sorted as in the preceding figures, whereby at the position of the lower benchmark 

(lower left corner) the upper benchmark was used to show the ideal case. The pink line is the linear 

regression line. The two red lines indicate rank 100, thus all points on the left and below the red line 

respectively were chosen as one of the top 100 parameter sets. The number of points in the lower left 
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Koenigsseeache, Niederalm 

 

Kempt, Fehraltdorf 

 

Alp, Einsiedeln 

 

Sihl, Zurich 

 

 
Parameter set rank in upper benchmark (MC) calibration (log10) 

Figure 25: Plots showing the logarithmic rank of each of the one million parameter sets in each scenario against the loga-

rithmic rank in the upper benchmark for four exemplary catchments. Each square represents one scenario. The pink line 

shows the linear regression, the number is the root mean squared error. 
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corner of each square indicates the number of parameter sets that were in the top 100 regarding the 

full discharge time series as well as regarding the corresponding scenario. The number given for each 

scenario is the root mean squared error of the position of the parameter sets to the 1:1-line. 

Scenarios resulting in a good model performance ranked the parameter sets similarly to the ranking 

of the upper benchmark and thus showed a small root mean squared error and a linear regression line 

close to the 1:1-line. This could be observed well for the good scenarios of the Koenigsseeache, 

Kempt and Alp. Scenarios resulting in a bad model performance tended to rank the parameter sets 

opposite to the ranking of the upper benchmark. This was best visible for the Sihl. Such an opposite 

ranking could also be observed for other catchments such as the Sellenbodenbach (see appendix 10.7). 

In the scenarios using citizen science data only at the Kempt, the ranking also differed strongly from 

the ranking of the upper benchmark which resulted in a bad model performance for these scenarios. 

However, since the ranking was not opposite to the one of the upper benchmark, and the ranking of 

the scenarios using discharge measurements only was similar to the one of the upper benchmark, the 

mixed scenarios still ended up with a reasonable ranking and a good model performance at the Kempt. 

The number of parameter sets that were shared in the top 100 parameter sets of two neighbouring 

scenarios differed between 0 and 90 (Figure 26 and appendix 10.8). The white fields contain the 

names of the scenarios and the coloured fields in between them contain the number of parameter sets 

that were in the top 100 for both scenarios. 

  

  

 
Figure 26: The number of the top 100 parameter sets that are shared among neighbouring scenarios, for four exemplary 

catchments. The names of the scenarios are given in the white fields, the number of shared parameter sets in the coloured 

fields, whereby a high number is indicated with a dark colour and a low number is indicated with a bright colour. The grey 

fields serve as placeholders. 
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In the examples shown here, but also in all other catchments, the top 100 parameter sets got replaced 

completely or almost completely when considering two data types instead of only one, i.e., the num-

ber of shared parameter sets between the scenarios 1-0, 3-0, 6-0, 12-0 and 1-25, 3-25, 6-25, 12-25 as 

well as between 0-25, 0-50, 0-75, 0-100 and 1-25, 1-50, 1-75, 1-100 was always very small. This 

implies that the parameter sets that got a low rank regarding the Spearman rank correlation with the 

water level class observations did usually get a high rank regarding the NPE with the discharge meas-

urements, or in other words, a rank that was too high to be among the top 100 when the mean rank 

was considered. The same was valid in the other direction, too. 

If only the mixed scenarios or only the scenarios using one type of data were considered, there was a 

trend for more shared parameter sets if more data was used, i.e., the ranking of the one million pa-

rameter sets stabilized if more data was used. This trend was visible for all catchments, no matter how 

well-performing the simulations with the different data availability scenarios were. In general, the 

number of shared parameter sets got highest when moving from left to right or from bottom to top in 

those catchments that showed good model performances. This was well visible for the Salzach (Figure 

26). In catchments in which the approach did not work that well, as for example at the Kleine Emme 

in Emmen, this increase was less pronounced, respectively, there were fewer parameter sets shared 

in general among the scenarios. The constraints given by the data available in these catchments thus 

seemed to be too weak to find well-performing parameter sets. 

Another indicator for a too weak constraint induced by the data available in catchments in which the 

approach did not work well could be found in the resulting parameter values compared to the resulting 

parameter values in the parameter sets used for the upper benchmark (Figure 27 and appendix 10.9). 

Kleine Emme, Emmen 

 
 

Figure 27: Distribution of the parameter values for the 100 parameter sets building the ensemble mean of the upper bench-

mark (calibration with the GAP approach) and the scenarios 0-100, 12-0 and 12-100 (i.e., the corners of Table 5), for the 

catchment of the Kleine Emme in Emmen. The y-axes cover the ranges that were allowed for each parameter (Table 4). 
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At the Kleine Emme in Emmen, the use of all water level class observations (0-100) acted disinforma-

tively and a set of twelve discharge measurements per hydrological year (12-0) acted informatively. 

The scenario using both these input data sets for calibration (12-100) led to a medium relative perfor-

mance, i.e., the valuable information contained in the discharge measurements did not get lost com-

pletely when combined with the citizen science data. The distribution of the parameter values obtained 

in scenario 0-100 differed quite strongly from the one of the parameter values obtained in the upper 

benchmark. This was especially strong in the soil routine. The difference was less strong for scenario 

12-0 (and partially also for scenario 12-100) which indicates that in this catchment, the information 

contained in the twelve discharge measurements was helpful to find good parameter values and the 

information (or disinformation) contained in the water level class observations was not. 

Also in most other catchments, the parameter values obtained when calibrating the model with twelve 

discharge measurements per year were more similar to those of the upper benchmark than the param-

eter values obtained when calibrating the model with all available citizen science observations (see 

appendix 10.9). At the Koenigsseeache, where scenario 0-100 reached a similar model performance 

as scenario 12-0, this difference was less pronounced. Even though parameter values can compensate 

for each other in the HBV model, more informative input data in general lead to a better constraint of 

the parameter values and thus a better model performance. 

5.3 Additional mean discharge 

Different accuracies of estimates of the mean discharge were tested as an additional constraint for the 

model. To do so, the one million parameter sets were filtered according to their resulting volume 

error. The number of parameter sets that fulfilled the conditions of each filter are given in Table 8. 

Table 8: Number of parameter sets leading to a volume error smaller than or equal to a certain percentage. 

Catchment 2.5% 5% 10% 20% 30% 50% 

Koenigsseeache, Niederalm 64’052 127’101 250’286 467’386 640’028 880’505 

Salzach, Salzburg 27’048 55’058 117’854 291’615 505’433 888’213 

Kempt, Fehraltdorf 40’779 81’587 164’592 340’257 524’399 829’653 

Urtene, Kernenried 64’435 128’067 251’787 479’091 666’424 906’490 

Alp, Einsiedeln 4’871 9’899 22’649 86’968 287’940 961’711 

Kleine Emme, Werthenstein 10’307 21’322 49’196 162’063 408’390 960’263 

Ova dal Fuorn, Zernez 42’301 84’022 167’154 329’825 482’672 760’534 

Kleine Emme, Emmen 8’903 18’430 43’742 146’999 375’778 930’507 

Wigger, Zofingen 74’725 148’985 295’843 564’317 767’224 955’032 

Sellenbodenbach, Neuenkirch 600 1291 3634 21’737 82’290 416’315 

Sihl, Zurich 71’157 141’809 277’524 515’819 698’318 908’770 

In general, the application of such a filter improved the model performance. If good results were 

already achieved without a filter, the increase in model performance was less pronounced than when 

the unfiltered results were rather bad. The impact of the different filters on the different scenarios was 

similar in the calibration period (Figure 28) as in the validation period (Figure 29). A better estimate 

of the mean annual discharge (represented by a narrower filter or in other words a stronger constraint 

on the parameter sets that were allowed to be part of the top 100 parameter sets) did not always lead 

to a better model performance: At the Alp and the Sellenbodenbach for example, the model perfor-

mances got worse when a maximal volume error of 2.5% or 5% was allowed than when using a filter 

that allowed for a deviation of 10%. On the other hand, where a very narrow filter worked well (as 

for example at the Salzach and the Sihl), the 10% filter did not lead to a decrease in model perfor-

mance either, i.e., it was not disadvantageous to use the 10% filter instead of the 2.5% or the 5% filter 

(Figure 28 and Figure 29). 



Master’s Thesis       Franziska Schwarzenbach 

57 

N
P

E
 o

f 
th

e
 e

n
s
e

m
b

le
 m

e
a

n
 

   

Filter overview 
Calibration period 

 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

 

 

 

 

    

    

 Volume error (deviation from mean discharge) allowed 

Figure 28: Impact of different volume error filters on the ensemble mean performances in all data availability scenarios and all catchments. The last column in each plot shows the model performances 

of all scenarios when no volume error filter is applied (corresponding to the basic approach). Results for the calibration period. 
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Figure 29: Impact of different volume error filters on the ensemble mean performances in all data availability scenarios and all catchments. The last column in each plot shows the model performances 

of all scenarios when no volume error filter is applied (corresponding to the basic approach). Results for the validation period
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One reason why a narrower filter led to worse model performances than a wider filter can be found 

in the distribution of the parameter sets according to the NPE and the volume error that they produced 

(Figure 30). The same plots for the remaining seven catchments can be found in appendix 10.9. For 

catchments showing a distribution like the Salzach or the Sihl, the application of a volume error filter 

excluded most parameter sets that did not perform well regarding the NPE, thus the remaining pa-

rameter sets mostly led to a high NPE value. This was less pronounced at the Ova dal Fuorn, where 

the bandwidth of NPE performances remained high as the negative correlation between the NPE and 

the volume error was less strong. In catchments such as the Alp, the application of a too narrow filter 

even excluded the best-performing parameter sets regarding the NPE, while the parameter sets that 

surpassed the filter led to a low or medium performance in terms of the NPE. 
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Alp, Einsiedeln 
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 NPE 

Figure 30: Density of the one million parameter sets when the NPE is plotted against the volume error. Results are shown 

for the calibration period and are very similar for the validation period. 
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Figure 31: Volume error of the 100 parameter sets out of the one million that led to the highest NPE values (upper bench-

mark when the Monte Carlo approach was used for calibration) for each study catchment in the calibration period (top 

plot) and in the validation period (bottom plot). The horizontal lines indicate the 20%, 10%, 5% and 2.5% filter, i.e., 

parameter sets with a volume error below that line were excluded when applying this filter. 
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Consequently, the 100 parameter sets per catchment that led to the best performances regarding the 

NPE were not necessarily the catchments with the smallest volume errors (Figure 31). In all catch-

ments except the Koenigsseeache, the median volume error of these parameter sets was above 2.5%. 

In most catchments, a considerable number of these top 100 parameter sets led to a volume error 

between 5% and 10%. A filter that allowed for a deviation larger than 10% often led to a slight de-

crease in model performance, i.e., the filters allowing for deviations of 20%, 30% or 50% did not 

constrain the model as well as the one allowing for a deviation of 10% (Figure 28 and Figure 29). 

However, even a filter that allowed for a deviation of 50% from the observed mean discharge was of 

value: The comparison with the situation without filter revealed a slight improvement or at least no 

decrease in model performance. This is surprising since a large majority of the one million parameter 

sets surpassed the 50%-filter in most catchments, thus the constraint was not very strong. 

Based on the reasoning above, the filter allowing for a 10% deviation of the mean discharge was 

chosen to represent the situation when a mean discharge estimate was used additionally to the citizen 

science data and the discharge measurements. By applying this filter, almost all scenarios in almost 

all catchments outperformed the lower benchmark, i.e., the situation without any discharge infor-

mation (Figure 33 for the calibration period and Figure 34 for the validation period). Compared to the 

situation in which no filter was applied (the basic approach, see section 5.2), the application of the 

10% filter was advantageous: For almost all scenarios and almost all catchments, the model perfor-

mance increased under the application of the filter (Figure 35 and Figure 36). The model perfor-

mances resulting for the other filters that were considered can be found in appendix 10.11. 

In most catchments, the increase in model performance was especially strong for those scenarios that 

had citizen science data only available for the calibration of the model. In scenario 0-50 at the Salzach 

for example, the parameter sets underestimating the summer discharge could be eliminated by apply-

ing the filter (Figure 32). The performances of the scenarios using citizen science data only without 

a filter often performed worse than other scenarios and thus left most room for improvement (see 

section 5.2). Additionally, the volume error was the only information about the amount of water in 

the stream when otherwise only using water level class data and thus was an important information 

in these scenarios. The improvement of the calibrations was so strong that the resulting model per-

formances in these scenarios reached values similar to those reached in other scenarios that had dis-

charge measurements that could help to constrain the model. Thus, the value of a mean discharge 

estimate is comparable to the value of several discharge measurements per hydrological year. 
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Figure 32: Observed and simulated hydrographs of the Salzach for the hydrological year 2020. Scenario 0-50 as in the 

basic approach and with an additional mean discharge filter allowing for a maximal deviation of 10% from the mean 

discharge. Observed hydrograph shown in blue, 100 simulated hydrographs building the ensemble mean shown in grey. 
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Figure 33: Relative performance of the ensemble mean for all catchments and all scenarios, when allowing a volume error of 10%. Results for the calibration period. The number of citizen science 

observations corresponding to 100% is given as n after the name of the catchment. 
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Figure 34: Relative performance of the ensemble mean for all catchments and all scenarios, when allowing a volume error of 10%. Results for the validation period. The number of citizen science 

observations corresponding to 100% is given as n after the name of the catchment.
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Figure 35: Change in the relative performance of the ensemble mean for all catchments and all scenarios when a filter allowing a volume error of 10% is applied. Results for the calibration period. 

The number of citizen science observations corresponding to 100% is given as n after the name of the catchment. 
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Figure 36: Change in the relative performance of the ensemble mean for all catchments and all scenarios when a filter allowing a volume error of 10% is applied. Results for the validation period. 

The number of citizen science observations corresponding to 100% is given as n after the name of the catchment.
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5.4 Water levels instead of water level classes 

In order to simulate the situation in which citizen scientists read the water level from a staff gauge 

with the accuracy and precision of the measurements done by the authorities, the water level class 

observations were replaced by the official water level measurements (to be precise, by discharge 

measurements that were treated as if they were water level measurements, see section 4.8.2). Other 

than in the preceding approach, the resulting relative model performances differed strongly among 

the different scenarios in most catchments (Figure 38 for the calibration period and Figure 39 for the 

validation period). Still, for most catchments and most scenarios there was an improvement in the 

model performances compared to the basic approach (Figure 40 and Figure 41). 

Catchments with a lot of citizen science data that was highly correlated with the discharge time series 

did not profit much from the even higher correlated water level data. In general, catchments tended 

to profit more from the replacement if the correlation between the water level observations and the 

discharge time series was low. However, scenarios using citizen science data only and not performing 

well in the basic approach did still not reach performances better than the lower benchmark. This was 

especially the case for the Kempt, the Kleine Emme in Emmen, the Wigger and the Sellenbodenbach. 

Meanwhile, the performances of the scenarios using both, discharge measurements and water level 

data, were strongly improved in catchments with little citizen science data. Oftentimes, the lower 

benchmark could not be outperformed with the water level class data and got clearly outperformed 

with the water level measurements. The improvement was most pronounced in scenarios that did not 

perform well in the basic approach, i.e., where there was most room for improvement. Thus, the 

replacement brought all scenarios closer together. Especially at the Kleine Emme in Werthenstein, a 

slight performance drop could be observed in scenarios that were among the better performing sce-

narios in the basic approach. This further strengthened the effect of a smaller range among all relative 

model performances in each catchment. As nothing was changed in the scenarios that did not make 

use of any citizen science data at all, also the performances of these scenarios remained unchanged. 

In the validation period, there was a performance drop when using water levels at the Ova dal Fuorn. 

As the validation period in this catchment already showed some unexpected behaviour in the basic 

approach, this drop was not considered any further. The most exceptional catchment in this approach 

was the Sihl with strong performance drops compared to the basic approach for most scenarios. The 

higher resolved water level measurements seemed to act disinformatively in this case and did not 

allow to simulate the hydrograph better than when using water level class observations (Figure 37). 
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Figure 37: Example hydrographs of the Sihl for the hydrological year 2020. Scenario 0-50 using water level classes and 

water levels. Observed hydrograph shown in blue, ensemble mean of the top 100 simulated hydrographs shown in red. 
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Figure 38: Relative performance of the ensemble mean for all catchments and all scenarios, when using water level data instead of water level class observations for the calibration of the model. 

Results for the calibration period. The number of citizen science observations corresponding to 100% is given as n after the name of the catchment.



Master’s Thesis       Franziska Schwarzenbach 

68 

P
e
rc

e
n

ta
g

e
 o

f 
c
it

iz
e
n

 s
c

ie
n

c
e
 d

a
ta

 u
s
e
d

 [
%

] 

   

Ensemble mean performance 
when using water level data 

 
Validation period 

 

 

 

 

    

    

 Number of discharge measurements per year [-] 

Figure 39: Relative performance of the ensemble mean for all catchments and all scenarios, when using water level data instead of water level class observations for the calibration of the model. 

Results for the validation period. The number of citizen science observations corresponding to 100% is given as n after the name of the catchment.
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Figure 40: Change in the relative performance of the ensemble mean for all catchments and all scenarios when using water level data instead of water level class observations for the calibration of 

the model. Results for the calibration period. The number of citizen science observations corresponding to 100% is given as n after the name of the catchment.
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Figure 41: Change in the relative performance of the ensemble mean for all catchments and all scenarios when using water level data instead of water level class observations for the calibration of 

the model. Results for the validation period. The number of citizen science observations corresponding to 100% is given as n after the name of the catchment.
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5.5 Water level class data checked by citizen scientists 

5.5.1 Adjusted benchmarks 

Figure 42: Benchmarks for the calibration period (upper plot) and the validation period (lower plot) of the catchments in 

which quality-controlled data was available. The number describes the difference between the upper and lower benchmark. 

The upper benchmarks for the Monte Carlo approach are plotted for comparison but were not used for the calculation of 

the relative performance. Note that the upper benchmark for the validation period is rather low for the Urtene. 
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The benchmarks for the calibration as well as for the validation period were calculated separately for 

this part of the thesis (Figure 42). Note that there was not much of a difference between the calibration 

and the validation period for all catchments except the Urtene: While the lower benchmark at the 

Urtene showed a rather bad performance for both periods, the upper benchmark resulted in a clearly 

worse performance during the validation period compared to the resulting model performance during 

the calibration period. This led to a larger span between the two benchmarks in the calibration period 

compared to the span in the validation period. Furthermore, note that the span between the upper and 

the lower benchmark at the Koenigsseeache is rather small for both periods, so the possible improve-

ment that could be achieved when using citizen science data and discharge measurements was limited. 

Again, the upper benchmark calibrated using the Monte Carlo approach is shown as a comparison but 

was not used for the calculations of the relative model performances. 

5.5.2 Resulting model performances 

To investigate on the value of the quality-control conducted by citizen scientists in the CrowdWater 

game, a modified basic approach (shorter calibration period, data points selected such that an amount 

as large as possible could be replaced with classified data from the game, see section 4.8.3) was 

conducted. These results were then compared to the results of the approach in which all water level 

class observations that had already been classified by at least 15 votes were replaced with the trimmed 

mean of all game votes. 

Older data points get classified earlier than newer data points. Thus, there was a tendency that for the 

scenarios with a small amount of citizen science data (where all or almost all data can be replaced 

with data from the game), more citizen science observations from the beginning than from the end of 

the observation period were used (Figure 43). At the Koenigsseeache and at the Salzach, a wide range 

of observed water level classes was already covered by the observations used for the scenarios with 

25% and 50% of the citizen science data. As already seen earlier (Figure 13), the range of water level 

classes resulting from the CrowdWater game was way smaller than the original range of water level 

classes observed with the CrowdWater app at the Urtene. Thus, in this catchment scenarios using only 

a small part of the citizen science data available had a smaller range of water level classes covered 

than scenarios using more citizen science data (and therefore more original values collected in the 

app). Aside the very highest and very lowest values observed at the Alp, a wide range of water level 

classes was also covered in the scenarios with only 25% or 50% of the citizen science data at the Alp. 

Note that in the full data set, there are observations in the water level classes between -3 to 6 available 

at the Koenigsseeache and the Salzach, but only observation in the water level classes between -1 and 

3 at the Urtene and the Alp. 

In the four catchments used here, three different cases could be observed when comparing the result-

ing model performances if app data only was used with the resulting model performances if the data 

was replaced with the values from the game where possible (Figure 45 for the calibration period and 

Figure 46 for the validation period). The top row shows the relative performances when app data only 

was used, the second row shows the relative performances when some of the data was replaced with 

data from the game and the third row shows the difference between the two approaches, whereby a 

negative value indicates a better model performance when app data only was used, and a positive 

value indicates an improvement if some of the app data was replaced with game data. The bottom 

row of each subplot does not change among these two approaches. Note that the percentage of citizen 

science data used (y-axis) still represents how much of the data that was available in total has been 

used and not how much of the data has been replaced with classified data from the game.  
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Figure 43: Citizen science data from the CrowdWater app and the CrowdWater game used for the different scenarios. The 

dashed lines mark the date of the first and the last citizen science observation within the calibration period (October 2017 

to September 2020). The regular tick marks indicate the beginning of a calendar year and the small tick marks indicate the 

beginning of a hydrological year. 
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Three cases could be observed regarding the impact of the CrowdWater game on the correlation be-

tween the citizen science data and the official discharge measurements (Figure 14). These three cases 

were also represented in the resulting model performances (Figure 45 and Figure 46). At the 

Koenigsseeache and the Salzach hardly any difference between the use of app data and game data 

resulted in the correlation as well as in the model performances. At the Koenigsseeache, all relative 

performances showed high values, even though the room for improvement was rather small in this 

catchment due to a small span width between the upper and the lower benchmark (see section 5.5). 

At the Salzach, the relative performances resulted in rather low values when using less than three 

discharge measurements per year. This could not be improved by using the quality-controlled citizen 

science data from the CrowdWater game. 

At the Urtene, the correlation as well as the model performance dropped if game data instead of app 

data was used. The Urtene seems to be a CrowdWater spot at which it is easier to determine the water 

level class directly onsite than by comparing two pictures in the CrowdWater game. Thus, the value 

of the citizen science data at the Urtene decreased due to the classification of the data in the game. 

This performance drop was largest when all the citizen science data used originated from the Crowd-

Water game, i.e., when 25% of all available citizen science observations were used, as well as when 

citizen science data only and no discharge measurements were considered for calibration. 

In the Alp catchment, the contrary was the case. The replacement of the app data with the quality-

controlled game data led to an improvement in model performance. The improvement was pro-

nounced strongest in scenarios in which all the citizen science data used could be replaced with game 

data (scenarios using 25% of the citizen science data points available) and in which not too many 

discharge measurements (three or less) were available, as well as in scenarios that used citizen science 

data only for the calibration of the model. At the Alp, the correlation between the water level classes 

and the discharge measurement time series was much higher when replacing the app data by the game 

data (Figure 14). Thus, by replacing the app data by the game data, the quality of the data could be 

improved. However, note that the scenarios showing the strongest improvement were the scenarios 

leading to very low model performances when using the data from the app and thus offered most 

room for improvement when using different data. An example is scenario 0-25, where not even the 

performance of the lower benchmark could be reached when data from the app were used, and the 

lower benchmark could be outperformed by using classified data from the game (Figure 44). 
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Figure 44: Observed and simulated hydrographs of the Alp for the hydrological year 2016 for scenario 0-25 calibrated 

using data originating from the CrowdWater app (left) and the higher resolution data from the CrowdWater game. Observed 

hydrograph shown in blue, simulated ensemble mean hydrograph shown in red. 
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Figure 45: Ensemble mean model performance for four catchments (columns) and all scenarios when using observations obtained by one citizen scientist (first row) and observations checked by at 

least 15 citizen scientists (second row), and the difference between them (third row). Results for the calibration period. The first number in brackets after the catchment name refers to the number of 

checked citizen science observations, the second number refers to the total number of citizen science observations. 
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Figure 46: Ensemble mean model performance for four catchments (columns) and all scenarios when using observations obtained by one citizen scientist (first row) and observations checked by at 

least 15 citizen scientists (second row), and the difference between them (third row). Results for the validation period. The first number in brackets after the catchment name refers to the number of 

checked citizen science observations, the second number refers to the total number of citizen science observations. 
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6 Discussion 

6.1 Value of only water level class observations 

The main research question posed in the beginning of this thesis asked if the calibration of a hydro-

logical model based on citizen science data and a limited number of discharge measurements leads to 

an accurate simulation of discharge. This can be affirmed if accuracy is seen as an improvement 

compared to the situation without any information about the amount of water in a stream, i.e., the 

situation simulated by the lower benchmark in this thesis. However, discharge measurements do in 

general have more value for the overall model performance than water level observations if both data 

types are available and used. If the water level class observations are of a high-quality, they contribute 

to a good model calibration, especially for the simulation of the discharge dynamics. 

High-quality observations are required for the calibration with water level class data alone (i.e., all 

scenarios of the basic approach that do not use any discharge measurements) to be valuable for hy-

drological model calibration (such as at the Koenigsseeache in Niederalm). But even if the observa-

tions are of high quality (such as at the Salzach in Salzburg and the Kempt in Fehraltdorf), water level 

class data alone may not be sufficient to constrain the model well enough and to reach a good model 

calibration. The shape of the hydrograph can be simulated well using good water level class data (cf. 

Figure 24), but the missing information on discharge volume limit the calibration success in other 

aspects of the simulation (cf. Figure 22 and Figure 23).  

A low rank correlation between the water level class observations and the measured discharge resulted 

in a poor model calibration. Etter et al. (2020a) compared the quality of water level class observations 

collected with the CrowdWater app to those collected with the forms (see section 4.4.1). Their finding 

that observations made using the app are of a higher quality than those made using the forms is re-

flected in the model performance when these data are used for calibrating the model: Data collected 

with the app helps the model to get the shape of the hydrograph right, even if other components of 

the hydrograph are not simulated well. Data collected on the forms tended to be disinformative, even 

for the shape of the hydrograph, i.e., the Spearman rank correlation was lower in these cases than for 

the lower benchmark.  

In the Crowdhydrology project, clearly wrong observations, i.e., observations that are not in a realistic 

range of the water level, could easily be filtered out (Fienen & Lowry, 2012). Such an approach may 

also be valuable for the water level classes collected in the CrowdWater project. Thanks to the photos 

that are uploaded with the observations, experts could possibly check if the data point is indeed an 

outlier or if it is an extreme event that was captured by a citizen scientist and should therefore be used 

to calibrate the model. In a real case application, some form of control on the quality of the data 

collected by citizen scientists should definitely be applied (see also section 6.5 on the discussion of 

the value of the data from the CrowdWater game). 

Previous studies found that the value of citizen science observations is lower for flashier catchments 

(Davids et al., 2017; Luffman & Connors, 2022). This could not be confirmed here. Possible other 

factors that influence the value of water level class observations by citizen scientists for model cali-

bration could be hydrological conditions of the catchments which were not investigated here, the 

length of the time series, or the amount of citizen science data. Additional observations were shown 

to be valuable in some cases (e.g., for the Urtene in Kernenried and the Wigger in Zofingen), but do 

not necessarily lead to an increase in model performance (e.g., for the Alp in Einsiedeln and the 

Kempt in Fehraltdorf). However, it is not possible to say if many more data points would have had 

an impact because for each catchment only a certain number of water level class observations was 
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available and thus the amount could not be increased arbitrarily to find out about the value of more 

data points. 

Collectively the findings of the calibration based on only the water level class data imply that water 

level class observations are a good starting point for the collection of hydrological data in an otherwise 

ungauged catchment. If one citizen scientist regularly observes the water level of the stream based on 

a well-set virtual staff gauge, and she or he gets trained, her or his observations will be very valuable 

to correctly simulate the shape of the hydrograph. Since no clear statement about the required length 

of the time series of water level class observations can be drawn from this study, it is best to collect 

time series that are as long as possible, i.e., to start as early as possible with observing the water level 

class. A similar recommendation can be made regarding the temporal resolution of the observations. 

In general, more observations seem to be better, but no clear conclusion on the required temporal 

resolution of the observations can be drawn. However, in their study with synthetic water level class 

data, Etter et al. (2020b) found that on average one water level class observation per week for a du-

ration of one year is already informative (Etter et al., 2020b). This provides some guidance on the 

temporal resolution one should strive for, even though it may be difficult to quantify the exact amount 

of data that is required at a specific site beforehand, as already mentioned by Mazzoleni et al. (2017). 

6.2 Value of additional discharge measurements 

The findings of this study highlight the value of adding some information on the volume of discharge 

to the water level class observations in model calibration by doing a few discharge measurements 

spread over the calibration period. The resulting model performances show that a few discharge meas-

urements have a high value on their own (i.e., without the citizen science observations, cf. the corre-

sponding cells in Figure 17 and Figure 18). This result is in line with the findings of Pool et al. (2017) 

and Seibert & Beven (2009). However, these previous studies also showed that too few discharge 

measurements can be disinformative. Aside from the scenario 1-0 (i.e., one discharge measurement 

and no citizen science observations) for the Sihl, this was not observed in this study. If the quality 

and number of citizen science observations was rather low, a few discharge measurements per hydro-

logical year always led to better results than using a combination of discharge measurements and 

water level classes. The low-quality citizen science data acted disinformatively in these cases. Still, 

the recommendation to use more than one source of data if only limited information is available stated 

by Avellaneda et al. (2020); Seibert & McDonnell (2015) and Starkey et al. (2017) can be supported 

by the results of this study: If the citizen science data contain information about the discharge dynam-

ics, or in other words if the citizen science data are of a sufficiently high quality, a combination of the 

two data types is a promising method for model calibration. If the discharge measurements alone are 

not able to reach very good model performances, accurate water level observations by citizen scien-

tists can improve the calibration and lead to a better simulation of the observed hydrograph (see the 

results for the Koenigsseeache in Niederalm and the Alp in Einsiedeln, where the performances with 

discharge measurements only are lower than those with citizen science data and discharge measure-

ments). Mazzoleni et al. (2017) and Starkey et al. (2017) reached a similar conclusion. 

Because a limited number of discharge measurements taken at a regular time step are informative for 

the calibration of the model, it is recommended to take these measurements where possible. The 

measurements can be done in regular time intervals but for easily accessible sites, it may be valuable 

to make an intelligent choice of the sampling days (cf. Pool et al., 2017; Pool & Seibert, 2021; Seibert 

& Beven, 2009). To avoid the data set being dependent on experts doing the discharge measurements, 

it may be valuable to train citizen scientists in measuring discharge. The salt dilution method may be 

a suitable method to do so because citizen scientists can measure discharge quite accurately using this 

method (Davids et al., 2019) and because it is not required to go into the water to do a measurement 
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with this method (and the method is thus less dangerous than other methods). Furthermore, if citizen 

scientists are trained to do discharge measurements, the accessibility of the site is not an issue any-

more and the number of discharge measurements per hydrological year may be increased. However, 

it is not recommended that citizens just estimate the discharge instead of water level classes because 

Strobl et al. (2020a) showed that these estimates contain large errors and Etter et al. (2018) showed 

that they cannot be used to reliably calibrate a hydrological model. 

6.3 Value of estimating the mean discharge 

The different filters investigated in this study to determine the value of an estimate of the mean dis-

charge for model calibration revealed that a more accurate estimate does not necessarily mean better 

results. Allowing for a deviation of only 2.5% from the mean discharge led to worse (or not better) 

results than allowing for a deviation of 10% because the negative correlation between a high overall 

performance (here, the NPE) and the volume error is not perfect: There are parameter sets leading to 

a very high overall performance but a comparably large volume error (cf. Figure 30 and appendix 

10.10). These parameter sets cannot surpass a too narrow filter. The application of a narrow filter thus 

excludes these parameter sets from being part of the top 100 parameter sets building the ensemble 

mean, even though they would lead to a good simulation of the hydrograph. A wider filter avoids this, 

while still filtering out parameter sets with a very large volume error (that do usually also have a 

rather small overall performance). This is a positive outcome because detailed information on the 

mean discharge in a stream (as used by Seibert & Vis (2016)) is not available for a data-scarce catch-

ment. Furthermore, a measurement error of only 2.5% is unlikely to be achieved for either precipita-

tion or the discharge measurements (Davids et al., 2019; Horner et al., 2018). Thus, estimating the 

mean discharge with such a high accuracy is impossible and it does not make sense to apply a filter 

that only allows for such a small deviation. 

The value of a rough estimate of the mean discharge for model calibration was already highlighted 

by Weeser et al. (2019) for a catchment in Kenya. They applied a simple water balance filter based 

on precipitation measurements and evapotranspiration estimates based on remote sensing to further 

constrain a model that was calibrated using water levels observed by participants of their citizen sci-

ence project. To compensate for errors in their precipitation measurements and in the evapotranspi-

ration estimates derived from the MODIS data set as well as for neglected storage changes and other 

uncertainties, they allowed a deviation of 30% from their calculated water balance for a parameter set 

to be considered well enough in terms of discharge volume simulation. Their results indicated that 

better model calibrations can be achieved by applying this filter compared to calibrating the model 

based on water level data only, i.e., without any volume information (Weeser et al., 2019). The filter 

allowing for a deviation of 30% tested here (cf. Figure 28 and Figure 29 as well as appendix 10.11) 

supports this finding: The resulting model performance when using this filter is higher for a majority 

of the catchments and scenarios than when not using a filter constraining the simulated discharge 

volume. 

In summary, the sub-question if an estimate of the mean annual discharge improves the model per-

formance can clearly be answered with yes. Thereby, it can be stressed that already a rough estimation 

leads to an improvement. Thus, even if highly uncertain, a mean discharge estimate is indispensable 

to improve model calibrations based on citizen science data and a limited number of discharge meas-

urements. Such an estimation of the mean discharge could be based on regionalization (Seibert & Vis, 

2016) or some simple water balance calculations (Weeser et al., 2019). Thereby, it is recommended 

to define a comparably wide range of simulated mean discharges that are accepted and not to constrain 

the model too strongly to an uncertain mean discharge estimate.  
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6.4 Value of water levels instead of water level classes 

The use of water level data instead of water level class data had on average a smaller impact on model 

performance than the constraint on the mean discharge (see section 6.3). For catchments for which 

the water level class observations were highly correlated with the measured discharge (i.e., the quality 

of the water level class observations was very high, such as at the Koenigsseeache in Niederalm and 

the Salzach in Salzburg), the replacement of the water level class data with water levels only had a 

very limited effect on the model performance. This result is in line with the findings of van Meerveld 

et al. (2017), who found that the HBV model can be constrained similarly well when using continuous 

water level class data (five classes) and higher resolved water level data.  

However, for catchments for which the Spearman rank correlation between the citizen science data 

and the measured discharge time series was rather low (e.g., at the Kleine Emme in Emmen or the 

Sellenbodenbach in Neuenkirch), model calibrations improved by using water level data instead of 

water level class data. However, the model performance still did not reach the same level as for catch-

ments with a lot of high-quality citizen science data. Thus, it can be assumed that a larger amount of 

data (and a higher temporal resolution) is more important than very precise observations when it 

comes to water level classes. This conclusion can be drawn since the catchments with high-quality 

citizen science data are also the catchments with a lot of citizen science data. This confirms the finding 

by Etter et al. (2020b), who showed that a higher temporal resolution of water level class estimates 

has a larger impact on the model performance than a smaller error in the data (Etter et al., 2020b). 

These findings imply that if applied correctly, water level class observations based on a virtual staff 

gauge are good enough and do not need to be replaced with water level data. This is of advantage 

since the installation of physical staff gauges may be an obstacle due to cost for material and expertise 

needed for installation. The sub-question asking if model performances can be improved by using 

water levels instead of water level classes can thus be negated: Water level class data of a high accu-

racy are sufficient to constrain the model. Hence, there is no reason to assume that a physical staff 

gauge that provides the possibility to directly read the water level would have an advantage over the 

use of the virtual staff gauge, if the virtual staff gauge is set correctly (i.e., at a good location, and in 

a suitable size). In a real application, the water level class data with water levels could be realized by 

letting citizen scientists read the water level from a physical staff gauge installed in a stream. The 

Crowdhydrology project (Lowry & Fienen, 2013) as well as a citizen science project in Kenya 

(Weeser et al., 2018, 2019) have shown that data collected by citizen scientists this way are quite 

accurate but cannot assumed to be error-free either.  

The results for the Sihl catchment show that there may be catchments for which the use of water level 

class data for calibration leads to a better overall model performance than the use of water level data. 

A possible explanation could be small-scale variations in the baseflow caused by human influences, 

such as the water release from the Sihlsee. These variations are levelled out when water level class 

data are used (since the water levels still belong into the same class). The model may try to simulate 

these variations in the water levels but fails to do so because such human influences are not included 

in the model. As a result, the calibration based on water level data may result in a worse model per-

formance than the calibration based on water level class data. However, this is just one hypothesis for 

the drop in performance when using the water level data for calibration for the Sihl and requires more 

investigation. 
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6.5 Value of water level class data checked by citizen scientists 

By playing the CrowdWater game, citizen scientists can increase the value of the water level data 

collected with the CrowdWater app (Strobl et al., 2019). The influence of the use of these checked 

water level class data was only investigated for a small number of catchments in this thesis. For the 

catchment for which there was a gain in data-quality after data quality checks in the game (i.e., the 

Alp in Einsiedeln), the model performance improved. This was especially the case for the scenarios 

in which only citizen science data were used to calibrate the model, i.e., the value of the citizen science 

data for the calibration of the model was increased in the game.  

There are also cases in which the use of data from the CrowdWater game leads to a worse model 

performance than the original data from the CrowdWater app. This was the case for the Urtene and, 

to a lesser extent and only for some of the scenarios, for the Koenigsseeache. At the Koenigsseeache, 

the drop in performance may possibly be explained by the higher resolution of the data, which could 

cause the model to try to simulate small-scale variations that it cannot simulate (cf. the drop in per-

formance for the Sihl when using water level data instead of water level class data (see section 6.4)). 

At the Urtene, the drop in model performance had to be expected because of the decrease in the 

correlation between the citizen science data and the discharge (cf. Figure 14). This drop revealed a 

loss in data-quality caused by the CrowdWater game. A possible explanation could be that the citizen 

scientist collecting the data had the better overview of the water level variations than it was visible 

on the uploaded pictures. Thus, the game players were not able to determine the water level classes 

equally well as the citizen scientist who made the observations on site. 

Based on the findings of Strobl et al. (2019), one can assume that the data-quality of the CrowdWater 

data is increased when the data is running through the CrowdWater game but that this is not the case 

for about 10% of the data. The Urtene in Kernenried seems to be a location from which the data 

belongs to these 10%. However, the situation at the Alp with an increase of the data-quality may be 

considered the normal case as for 75% of the data points, the water level class value resulting from 

the game was found to be better than the water level class value uploaded to the app (Strobl et al., 

2019). These findings imply that the realistic increase in the quality of the citizen science data that 

can be reached with the CrowdWater game improves the model performance. The last sub-question 

asking for the impact of checked citizen science data can thus be affirmed; however, some additional 

checking is still recommended to avoid that data of a lower quality are used due to a drop in quality 

caused by the CrowdWater game or some other (community- or computer-) based data-quality control 

mechanism. 

6.6 Limitations of this study 

6.6.1 Study catchments and model 

This thesis focused on eleven catchments that are all located relatively close together in Central Eu-

rope. The climate is humid for all catchments. The catchments mainly differ in their area (Figure 5 

and Table 1) and discharge regimes (Figure 7). The choice of study catchments was strongly limited 

by the availability of water level class data collected in the CrowdWater project and official discharge 

data from a nearby measurement station. Therefore, the results of this thesis are limited to the value 

of data for similar catchments and cannot directly be transferred to very different catchments, e.g., in 

arid and semi-arid climates. 

All simulations were done using the HBV model. As described in section 4.5, the model fits the 

purposes of this thesis well. However, statements about the value of the different types of data for 

hydrological models must be limited to other lumped models. 
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The calibration process (described in section 0) contained a huge limitation, as it was not possible to 

calibrate against the water level class and the discharge measurements at the same time. Thus, the 

two sources of information could not be used in the calibration process simultaneously but only one 

after the other. As a result, it was also not possible to calibrate the model using the more efficient 

GAP algorithm for the different data availability scenarios and Monte Carlo simulations had to be 

used instead. By using Monte Carlo simulations, the parameter space was limited to a random choice 

of one million parameter sets that may not contain parameter sets that would lead to better results. 

Furthermore, also the selected parameter ranges (see section 4.6.3) constrain the parameter space. 

6.6.2 Data used for calibration 

Even though the same questions were asked for all catchments, the different amount and quality of 

the citizen science data available for each catchment made it difficult to find general answers on the 

value of water level class data. The water level class data used in this thesis originated from two 

different approaches: The data collected with the app and the data collected on the forms at the pen 

and paper stations. These data types were treated equally, even though they differ in quality (Etter et 

al., 2020a; Figure 12). In this study, it was possible to determine the quality of the citizen science 

data. However, if only citizen science data are available and need to be used for hydrological model 

calibration, this would not be possible.  

The limited number of discharge measurements were simulated by extracting a certain number of 

data points from the full discharge time series for each catchment. It was thus assumed that a point 

measurement of the discharge would match the discharge measured based on the stage-discharge 

relationship. However, point measurements of the discharge, as well as the calculation of the dis-

charge based on a stage-discharge relationship are subject to uncertainty. This uncertainty was ne-

glected here. 

Thanks to the discharge data available for the study catchments, the mean discharge could be calcu-

lated precisely. Starting with this mean discharge, the intervals for the filters could be set in both 

directions, e.g., the 30%-filter could allow for an over- and underestimation of 30% from the exact 

mean discharge. In a real-world application, the range of the simulated mean discharge that would 

still be accepted has to be defined without any knowledge about the actual mean discharge. Thus, the 

mean discharge filter applied may be subject to a larger uncertainty than it was the case here. 

The water level data used to simulate citizen science data that are perfectly correlated with the dis-

charge were extracted from the available discharge data. It was thus assumed that the stage-discharge 

relationship did not change during the four calibration years and that the water level measurements 

are connected to the discharge in the stream by a bijective function. However, the stage-discharge-

relationship can change with time and this effect was neglected here. 

Water level class data that has gone through the CrowdWater game was only available for four of the 

eleven study catchments. The sample size was thus very small and a general conclusion on the impact 

of the changes in the data when going through the CrowdWater game on the performance of the model 

can hardly be drawn. Even though data-quality is improved in the CrowdWater game in most cases 

(Strobl et al., 2019), the impact on the model performance when these data instead of data originating 

from the app is used to calibrate the model requires more research. 

Finally, yet importantly, the meteorological data are subject to uncertainties and may contain errors 

(e.g., due to the high spatial variation in precipitation). This is also the case for the discharge data 

obtained by the authorities. The uncertainties are even higher for the periods for which the data has 
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not been quality-controlled by the authorities yet (see appendix 10.3). However, these data were used 

as a reference because they represent the best possible estimate for these variables. While it was pos-

sible to use high resolution meteorological data for all catchments here, it is unlikely that data of such 

a high quality are available in all remote and data-scarce areas. The meteorological data that would 

be used in a real-world application may thus contain larger errors than the meteorological data used 

here, which would lead to a higher uncertainty in the simulated hydrographs. 

6.7 Outlook 

To obtain more insight in the value of the data used in this thesis, the limitations in the calibration 

process must be addressed. This requires an objective function that takes the discharge measurements 

and the citizen science data simultaneously into account. Aside this objective function, the HBV 

model needs to be extended with a functionality that allows the use two different kinds of discharge 

information at the same time, even if these two information types cannot directly be linked to each 

other. With this extension, the aforementioned objective function could be designed easily for exam-

ple by combining the NPE and the Spearman rank correlation used here. Other ways of combining 

the two different data types to calibrate a hydrological model based on them should be investigated 

too.  

To be able to make more general statements on the value of the citizen science data, the analyses done 

here should be expanded to more catchments covering a large range in catchment characteristics and 

especially to catchments in different climate zones than the humid climate of Central Europe. As it is 

difficult to find enough motivated citizen scientists that collect data of a high quality at suitable loca-

tions, and as it takes a long time until enough data is gathered, synthetic data could be considered to 

further investigate on the value of the data (cf. Etter et al., 2020b). 

The treatment of the water level class observations in the CrowdWater game can lead to a decrease 

in data-quality. Thus, some expert checking may be required to see if the game data should be used 

for model calibration. Since manual checking of the data is laborious and may not be feasible in large 

applications, image recognition algorithms may be used for this task in the future. By doing so, the 

collaboration of citizen scientists and machine learning may provide even more valuable information 

on the amount of water in a stream (cf. Wang et al., in review). 

Initially, it was planned to also investigate on the value of the water level class data collected in the 

CrowdWater project for hydrological regionalization. However, this went beyond the scope of this 

thesis. Still, the question if water level class data collected by citizen scientists can improve region-

alization approaches would be worth another investigation. To conduct such an “informed regionali-

zation approach” (cf. Pool et al., 2019) for a catchment with no discharge information but water level 

class observations, the parametrizations originating from the donor catchments (i.e., those parameter 

sets that would be used to build an ensemble mean hydrograph in each donor catchment) could be 

used to obtain simulated hydrographs for the almost ungauged catchment. Instead of an equal 

weighting of these hydrographs to obtain an ensemble mean for the almost ungauged catchment, the 

weighting could be done according to the Spearman rank correlation between the simulated discharge 

time series and the water level class observations available. Based on the value of high-quality water 

level class data for hydrological model calibration demonstrated here, it can be assumed that also 

regionalization approaches can profit from the information content of these observations. 
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7 Conclusions 

This study examined the value of water level class observations by citizen scientists and limited other 

information for hydrological model calibration. The study found that accurate citizen science obser-

vations help to simulate the discharge dynamics in a catchment and that the simulations obtained like 

this can be improved with a few discharge measurements or an estimate of the mean discharge. Fur-

thermore, the study found that water level class data based on a well-set virtual staff gauge can be 

about as valuable as exact water level data and that a high temporal resolution of water level obser-

vations is more valuable than a high accuracy. It also found that if an improvement of the data-quality 

is achieved in a quality-control approach by citizen scientists, water level class observations can get 

even more valuable for the calibration of a hydrological model. 

Observations and measurements that do not meet the typical standards of high-quality data in terms 

of temporal resolution and precision are valuable for the calibration of a hydrological model. The 

comparably easily achievable combination of water level class observations by citizen scientists and 

a rough estimate of the mean discharge allows for a calibration that far outperforms the situation 

without any information about the amount of water in a stream. This finding highlights the value of 

citizen science in hydrology and is especially encouraging for regions where neither hydrological data 

nor the means to build and maintain a network of measurement stations is available, but discharge 

simulations are urgently needed. 

This thesis closes with a recommendation for the collection of hydrological data if only limited re-

sources are available. First, it is valuable to collect as much water level class data as possible with the 

CrowdWater app. To get high quality data, the staff gauge should be placed correctly and in an ap-

propriate size. It is furthermore beneficial if the same person adds the repeated observations to the 

app. The volume information included in a few discharge measurements can increase the value of the 

citizen science data and thus discharge measurements should be taken if possible. Furthermore, the 

mean discharge of the stream should be estimated. This can be a very rough estimate. By excluding 

simulations that do not simulate the mean discharge within a realistic range, the reliability of the 

model performance can be increased significantly. 

Water level class observations collected in the CrowdWater app by an experienced citizen scientist 

using a well-set staff gauge have a very similar value for model calibration as water level measure-

ments with the same temporal resolution. Thus, it is not necessary to install a physical staff gauge 

everywhere where water level information needs to be collected. A well-set virtual staff gauge does 

the job. However, the installation of a physical staff gauge may increase the quality of citizen science 

data collected by different people, as citizen scientists contributing for the first time may have more 

issues with a virtual than with a physical staff gauge. 

In general, data-quality of water level classes can successfully be controlled by citizen scientists, as 

it is done in the CrowdWater game. Before using the water level class data collected in the Crowd-

Water app, it is recommended to improve the quality of these data by letting at least 15 citizen scien-

tists vote on the water level class of each observation in the CrowdWater game. However, the result-

ing data should be carefully double-checked by experts to avoid a loss in data-quality. A decrease 

instead of an increase in data-quality can happen if game players have difficulties to determine the 

water level class shown on the picture. 

The combination of all these data is informative for the calibration of a hydrological model and thus 

provides a remedy to the lack of data in hydrology.  
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10 Appendix 

10.1 Flashiness and baseflow indices 

Table 9: Richards-Baker flashiness index and baseflow index for all study catchments, calculated on daily discharge values 

from the years 2013-2021. 

Catchment R-B index BFI 

Koenigsseeache, Niederalm 0.406 0.487 

Salzach, Salzburg 0.191 0.734 

Kempt, Fehraltdorf 0.474 0.478 

Urtene, Kernenried 0.253 0.734 

Alp, Einsiedeln 0.654 0.354 

Kleine Emme, Werthenstein 0.485 0.443 

Ova dal Fuorn, Zernez 0.092 0.851 

Kleine Emme, Emmen 0.475 0.457 

Wigger, Zofingen 0.310 0.626 

Sellenbodenbach, Neuenkirch 0.744 0.280 

Sihl, Zurich 0.448 0.540 

10.2 Temperature measurement stations 

Table 10: Full names and locations of the temperature measurement stations in Switzerland of which the data was used. 

Short name Place name, canton Elevation (m a.s.l.) Coordinates 

BAN Bantiger, BE 1097 46.978°N / 7.529°E 

BER Bern / Zollikofen, BE 555 46.991°N / 7.464°E 

BUF Buffalora, GR 1973 46.648°N / 10.267°E 

EGO Egolzwil, LU 523 47.179°N / 8.005°E 

EIN Einsiedeln, SZ 912 47.133°N / 8.757°E 

FLU Fluehli, LU 942 46.889°N / 8.020°E 

HOE Hoernli, ZH 1134 47.371°N / 8.942°E 

KOP Koppigen, BE 486 47.119°N / 7.605°E 

LUZ Luzern, LU 456 47.036°N / 8.301°E 

NAP Napf, BE 1406 47.005°N / 7.940°E 

PIL Pilatus, OW 2107 46.979°N / 8.252°E 

SAG Sattel, SZ 792 47.081°N / 8.637°E 

SMA Zurich / Fluntern, ZH 558 47.378°N / 8.566°E 

SPF Schuepfheim, LU 746 46.947°N / 8.012°E 

UEB Uetliberg, ZH 1016 47.351°N / 8.490°E 

WAE Waedenswil, ZH 488 47.221°N / 8.678°E 

Table 11: List of temperature stations used per study catchment in Switzerland, with weight according to percentage of area 

in Thiessen polygon. 

Catchment Temperature stations and corresponding weights 

Kempt, Fehraltdorf HOE: 0.929 / SMA: 0.071 

Urtene, Kernenried BER: 0.64 / BAN: 0.287 / KOP: 0.073 

Alp, Einsiedeln EIN: 0.506 / SAG: 0.494 

Kleine Emme, Werthenstein SPF: 0.435 / FLU: 0.399 / NAP: 0.165 

Ova dal Fuorn, Zernez BUF: 1 

Kleine Emme, Emmen SPF: 0.31 / FLU: 0.254 / PIL: 0.209 / NAP: 0.149 / LUZ: 0.079 

Wigger, Zofingen EGO: 0.749 / NAP: 0.251 

Sellenbodenbach, Neuenkirch LUZ: 1 

Sihl, Zurich EIN: 0.592 / WAE: 0.163 / SAG: 0.153 / UEB: 0.092 
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10.3 Details on discharge data 

Table 12: Detailed information on discharge data time series obtained by the Swiss and Austrian authorities. 

Catchment Official 

station 

number 

More information Data provider Validated 

until 

Koenigsseeache, 

Niederalm 

204230 not available 

 

Hydrographic Ser-

vice Salzburg 

31.12.2019 

Salzach, Salzburg 204180 salzburg.gv.at/was-

ser/hydro/#/Fliessgewäs-

ser?station=204180 

Hydrographic Ser-

vice Salzburg 

31.12.2019 

Kempt, 

Fehraltdorf 

580 zh.ch/de/umwelt-tiere/was-

ser-gewaesser/messda-

ten/abfluss-wasser-

stand.html 

Canton of Zurich 31.10.2019 

Urtene, 

Kernenried 

A042 wada.sites.be.ch/geopor-

tal/hydromn/oberflaechen-

gewaesser/stations-

blatt/A042.pdf 

Canton of Berne 31.12.2020 

Alp, Einsiedeln 2609 hydrodaten.ad-

min.ch/de/2609.html 

Swiss Federal Office 

for the Environment 

31.12.2018 

Kleine Emme, 

Werthenstein 

2487 hydrodaten.ad-

min.ch/de/2487.html 

Swiss Federal Office 

for the Environment 

31.12.2018 

Ova dal Fuorn, 

Zernez 

2304 hydrodaten.ad-

min.ch/de/2304.html 

Swiss Federal Office 

for the Environment 

31.12.2018 

Kleine Emme, 

Emmen 

2634 hydrodaten.ad-

min.ch/de/2634.html 

Swiss Federal Office 

for the Environment 

31.12.2018 

Wigger, Zofingen 2450 hydrodaten.ad-

min.ch/de/2450.html 

Swiss Federal Office 

for the Environment 

31.12.2018 

Sellenbodenbach, 

Neuenkirch 

2608 hydrodaten.ad-

min.ch/de/2608.html 

Swiss Federal Office 

for the Environment 

31.12.2018 

Sihl, Zurich 2176 hydrodaten.ad-

min.ch/de/2176.html 

Swiss Federal Office 

for the Environment 

31.12.2018 

 

10.4 Links to CrowdWater spots 

Table 13: Links to CrowdWater spots on interactive webapp by Spotteron. The number in the end of the URL refers to the 

spot number of the first observation at this site. 

Catchment Link to CrowdWater spot 

Koenigsseeache, Niederalm spotteron.com/crowdwater/spots/23445 

Salzach, Salzburg spotteron.com/crowdwater/spots/42809 

Kempt, Fehraltdorf spotteron.com/crowdwater/spots/221750 

Urtene, Kernenried spotteron.com/crowdwater/spots/35919 

Alp, Einsiedeln spotteron.com/crowdwater/spots/22659 

Kleine Emme, Werthenstein spotteron.com/crowdwater/spots/24494 

Ova dal Fuorn, Zernez spotteron.com/crowdwater/spots/20353 

Kleine Emme, Emmen spotteron.com/crowdwater/spots/24491 

Wigger, Zofingen spotteron.com/crowdwater/spots/24496 

Sellenbodenbach, Neuenkirch spotteron.com/crowdwater/spots/24493 

Sihl, Zurich spotteron.com/crowdwater/spots/17768 

https://www.salzburg.gv.at/wasser/hydro/#/Fliessgew%C3%A4sser?station=204180
https://www.salzburg.gv.at/wasser/hydro/#/Fliessgew%C3%A4sser?station=204180
https://www.salzburg.gv.at/wasser/hydro/#/Fliessgew%C3%A4sser?station=204180
https://www.zh.ch/de/umwelt-tiere/wasser-gewaesser/messdaten/abfluss-wasserstand.html
https://www.zh.ch/de/umwelt-tiere/wasser-gewaesser/messdaten/abfluss-wasserstand.html
https://www.zh.ch/de/umwelt-tiere/wasser-gewaesser/messdaten/abfluss-wasserstand.html
https://www.zh.ch/de/umwelt-tiere/wasser-gewaesser/messdaten/abfluss-wasserstand.html
https://www.wada.sites.be.ch/geoportal/hydromn/oberflaechengewaesser/stationsblatt/A042.pdf
https://www.wada.sites.be.ch/geoportal/hydromn/oberflaechengewaesser/stationsblatt/A042.pdf
https://www.wada.sites.be.ch/geoportal/hydromn/oberflaechengewaesser/stationsblatt/A042.pdf
https://www.wada.sites.be.ch/geoportal/hydromn/oberflaechengewaesser/stationsblatt/A042.pdf
https://www.hydrodaten.admin.ch/de/2609.html
https://www.hydrodaten.admin.ch/de/2609.html
https://www.hydrodaten.admin.ch/de/2487.html
https://www.hydrodaten.admin.ch/de/2487.html
https://www.hydrodaten.admin.ch/de/2304.html
https://www.hydrodaten.admin.ch/de/2304.html
https://www.hydrodaten.admin.ch/de/2634.html
https://www.hydrodaten.admin.ch/de/2634.html
https://www.hydrodaten.admin.ch/de/2450.html
https://www.hydrodaten.admin.ch/de/2450.html
https://www.hydrodaten.admin.ch/de/2608.html
https://www.hydrodaten.admin.ch/de/2608.html
https://www.hydrodaten.admin.ch/de/2176.html
https://www.hydrodaten.admin.ch/de/2176.html
https://www.spotteron.com/crowdwater/spots/23445
https://www.spotteron.com/crowdwater/spots/42809
https://www.spotteron.com/crowdwater/spots/221750
https://www.spotteron.com/crowdwater/spots/35919
https://www.spotteron.com/crowdwater/spots/22659
https://www.spotteron.com/crowdwater/spots/24494
https://www.spotteron.com/crowdwater/spots/20353
https://www.spotteron.com/crowdwater/spots/24491
https://www.spotteron.com/crowdwater/spots/24496
https://www.spotteron.com/crowdwater/spots/24493
https://www.spotteron.com/crowdwater/spots/17768
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10.5 Form used at the pen and paper stations 

Figure 47: First page of the form used at all pen and paper stations. Example from the Kleine Emme in Werthen-

stein. 
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Figure 48: Second page of the form used at all pen and paper stations. Example from the Kleine Emme in 

Werthenstein. 



Appendix  Franziska Schwarzenbach 

99 

10.6 Elevation zones 

Table 14: Elevation zones Koenigsseeache, Niederalm 

Height of the ele-

vation zone 

[m a. s. l.] 

Proportion of catch-

ment area in eleva-

tion zone 

500 0.038 

700 0.164 

900 0.15 

1100 0.128 

1300 0.106 

1500 0.094 

1700 0.09 

1900 0.082 

2100 0.094 

2300 0.043 

2500 0.01 

2700 0.001 

 

Table 15: Elevation zones Salzach, Salzburg 

Height of the ele-

vation zone 

[m a. s. l.] 

Proportion of catch-

ment area in eleva-

tion zone 

500 0.035 

700 0.086 

900 0.121 

1100 0.122 

1300 0.122 

1500 0.111 

1700 0.102 

1900 0.093 

2100 0.08 

2300 0.054 

2500 0.035 

2700 0.022 

2900 0.011 

3100 0.004 

3300 0.001 

3500 0.001 

 

Table 16: Elevation zones Kempt, Fehraltdorf 

Height of the ele-

vation zone 

[m a. s. l.] 

Proportion of catch-

ment area in eleva-

tion zone 

560 0.393 

650 0.362 

750 0.173 

860 0.072 

Table 17: Elevation zones Urtene, Kernenried 

Height of the ele-

vation zone 

[m a. s. l.] 

Proportion of catch-

ment area in eleva-

tion zone 

550 0.828 

650 0.153 

750 0.019 

 

Table 18: Elevation zones Alp, Einsiedeln 

Height of the ele-

vation zone 

[m a. s. l.] 

Proportion of catch-

ment area in eleva-

tion zone 

875 0.09 

950 0.202 

1050 0.143 

1150 0.138 

1250 0.132 

1350 0.149 

1450 0.115 

1650 0.031 

 

Table 19: Elevation zones Kleine Emme, Werthenstein 

Height of the ele-

vation zone 

[m a. s. l.] 

Proportion of catch-

ment area in eleva-

tion zone 

650 0.021 

750 0.088 

850 0.122 

950 0.141 

1050 0.127 

1150 0.094 

1250 0.082 

1350 0.078 

1450 0.067 

1550 0.058 

1650 0.05 

1750 0.033 

1850 0.021 

1950 0.011 

2140 0.007 
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Table 20: Elevation zones Ova dal Fuorn, Zernez 

Height of the ele-

vation zone 

[m a. s. l.] 

Proportion of catch-

ment area in eleva-

tion zone 

1770 0.009 

1850 0.037 

1950 0.088 

2050 0.105 

2150 0.116 

2250 0.139 

2350 0.117 

2450 0.092 

2550 0.095 

2650 0.094 

2750 0.055 

2850 0.039 

3000 0.014 

 

Table 21: Elevation zones Kleine Emme, Emmen 

Height of the ele-

vation zone 

[m a. s. l.] 

Proportion of catch-

ment area in eleva-

tion zone 

470 0.022 

550 0.039 

650 0.073 

750 0.116 

850 0.134 

950 0.127 

1050 0.105 

1150 0.078 

1250 0.068 

1350 0.059 

1450 0.051 

1550 0.042 

1650 0.036 

1750 0.024 

1850 0.014 

2050 0.012 

 

Table 22: Elevation zones Wigger, Zofingen 

Height of the ele-

vation zone 

[m a. s. l.] 

Proportion of catch-

ment area in eleva-

tion zone 

465 0.086 

550 0.278 

650 0.33 

750 0.16 

850 0.076 

950 0.043 

1050 0.017 

1250 0.01 

 

Table 23: Elevation zones Sellenbodenbach, Neuenkirch 

Height of the ele-

vation zone 

[m a. s. l.] 

Proportion of catch-

ment area in eleva-

tion zone 

550 0.624 

650 0.204 

765 0.172 

 

Table 24: Elevation zones Sihl, Zurich 

Height of the ele-

vation zone 

[m a. s. l.] 

Proportion of catch-

ment area in eleva-

tion zone 

470 0.034 

550 0.049 

650 0.082 

750 0.058 

850 0.109 

950 0.161 

1050 0.106 

1150 0.098 

1250 0.079 

1350 0.078 

1450 0.061 

1550 0.032 

1650 0.02 

1750 0.016 

1850 0.01 

2050 0.007 
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10.7 Ranking of parameter sets 
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Sellenbodenbach,  
Neuenkirch Ova dal Fuorn, Zernez 

 

Kleine Emme, Emmen 

 

Wigger, Zofingen 

 

 
Parameter set rank in upper benchmark (MC) calibration (log) 

Figure 49: Plots showing the logarithmic rank of each parameter set in each scenario against the logarithmic rank in the upper benchmark for the catchments that were not shown in the 

results. The pink line shows the linear regression, the number states the root mean squared error. The scenarios are sorted as in the heatmaps in the results section.
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10.8 Shared parameter sets 

 

Number of shared parameter sets 
among neighbouring scenarios 

 

 

  

  

  

Figure 50: Plots showing how many of the top 100 parameter sets are shared among neighbouring scenarios, for all catch-

ments that were not shown in the results. The names of the scenarios are given in the white fields, the number of shared 

parameter sets are given in the coloured fields, whereby a high number is indicated with a dark colour and a low number 

is indicated with a bright colour. The grey fields serve as placeholders.
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10.9 Distribution of parameter values 

Koenigsseeache, Niederalm Salzach, Salzburg 

  

Kempt, Fehraltdorf Urtene, Kernenried 
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Alp, Einsiedeln Kleine Emme, Werthenstein 

  

Ova dal Fuorn, Zernez Wigger, Zofingen 
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Sellenbodenbach, Neuenkirch Sihl, Zurich 

  

 

Figure 51: Distribution of the parameter values obtained in the 100 parameter sets resulting from the GAP calibration for the upper benchmark as well as in the top 100 parameter sets of the 

scenarios in the corners (0-100, 12-0 and 12-100) for all catchments except for the Kleine Emme in Emmen which was shown in the results. The y-axes cover the ranges that were allowed for 

each parameter. 
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10.10 Density plots NPE vs. volume error 
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Figure 52: Plots showing the NPE performance against the volume error of each parameter set for the catchments that were not shown in the results. Results for the calibration period. The 

horizontal lines indicate the volume error filters that were tested, i.e., all parameter sets above a horizontal line were excluded if the corresponding filter was applied.  



Appendix      Franziska Schwarzenbach 

107 

10.11 Results from other filters 

 2.5% 5% 20% 30% 50% 

Koenigsseeache, 
Niederalm 
(n=1113) 
Calibration period 
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Niederalm 
(n=1113) 
Validation period 

     

Salzach, 
Salzburg 
(n=632) 
Calibration period 

     

Salzach, 
Salzburg 
(n=632) 
Validation period 
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 2.5% 5% 20% 30% 50% 

Kempt, 
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(n=395) 
Calibration period 

     

Kempt, 
Fehraltdorf 
(n=395) 
Validation period 
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Kernenried 
(n=380) 
Calibration period 
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Alp, 
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(n=293) 
Calibration period 

     

Alp, 
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(n=293) 
Validation period 

     

Kleine Emme, 
Werthenstein 
(n=139) 
Calibration period 
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 2.5% 5% 20% 30% 50% 

Ova dal Fuorn, 
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(n=74) 
Calibration period 

     

Ova dal Fuorn, 
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(n=74) 
Validation period 
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(n=69) 
Calibration period 
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 2.5% 5% 20% 30% 50% 

Wigger, 
Zofingen 
(n=51) 
Calibration period 

     

Wigger, 
Zofingen 
(n=51) 
Validation period 

     

Sellenbodenbach, 
Neuenkirch 
(n=51) 
Calibration period 
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 2.5% 5% 20% 30% 50% 

Sihl, 
Zurich 
(n=49) 
Calibration period 

     

Sihl, 
Zurich 
(n=49) 
Validation period 

     

Figure 53: Results from filters constraining the volume error to 2.5%, 5%, 20%, 30%, 50% for all study catchments. For each catchment, the first row shows the results for the calibration 

period, while the second row shows the results for the validation period. As in the heatmaps in the results section, the number of discharge measurements per hydrological year used for 

calibration are stated on the x-axis and the percentage of citizen science data used for calibration is stated on the y-axis. 
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