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Abstract 
 

 

 

Mental health research became increasingly relevant in recent years. It is estimated that one 
in twenty adults worldwide suffers from depression. Social stigma often prevents people from 
seeking help, leading to high dark figures in psychological statistics. A growing number of 
studies show that the physical and societal environment play an important role for mental well-
being. More specifically, the neighbourhood in which people live can significantly affect their 
mental health outcomes, by exposing them to certain risk factors, or by featuring tranquillizing 
characteristics. Big data approaches using social media like Twitter have emerged to a highly 
promising new research method to analyse psychological characteristics and mental health in 
society. Geolocated social media data enable the analysis of spatial patterns of sentiments, 
which can be used as proxies for mental well-being. 

This work set out to investigate if Twitter data can be used to detect associations between 
neighbourhood environmental characteristics and sentiments expressed in tweets on a user-
level, by performing a regression analysis. Initially, roughly 12.5 million tweets from Swiss 
users were considered. The Twitter data used in this thesis were beforehand analysed with 
Botometer, the M3-method and a DBSCAN-approach. This enabled to control for bots, 
organisations, gender, and age, as well as using the presumed homeplace locations of the 
analysed users to define their neighbourhood area. Using the NLP-systems EMOTIVE, 
Stresscapes and LIWC, rates in positive and negative emotions, and stress were assigned to 
the users, representing the response variables. The physical and societal neighbourhood 
characteristics were represented by available greenspace, exposure to traffic noise, and socio-
economic position, which posed the explanatory variables of the regression model. High 
resolution spatial data for the extent of Switzerland were used to calculate the neighbourhood 
variables within a 500 m buffer around the homeplace for each user. Using ArcGIS Pro 
Modelbuilder and Python, a workflow was implemented to account for distance decay. 
Additionally, data from the Swiss federal office of statistics were used to control for urban-rural 
differences.  

Out of the 70’333 available users, 733 were used in the final regression analysis, after 
proceeding through a careful selection process. On average, 236 tweets per user defined their 
sentiment rates. Significant negative associations were found between traffic noise and 
positive emotions. Although accounting for numerous influencing factors and controlling for 
bias, the pursued approach shows several limitations, where insufficient sample size may be 
one of the most prominent. Nevertheless, promoting further research in assessing the impact 
of environmental characteristics on mental well-being using geolocated tweets could provide 
valuable new insights. 
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Zusammenfassung 
 

 

 

Die Forschung zur psychischen Gesundheit hat in den letzten Jahren zunehmend an 
Bedeutung gewonnen. Schätzungen zufolge leidet einer von zwanzig Erwachsenen weltweit 
an einer Depression. Die soziale Stigmatisierung hält die Menschen oft davon ab, Hilfe zu 
suchen, was zu einer hohen Dunkelziffer in psychologischen Statistiken führt. Eine wachsende 
Zahl von Studien zeigt, dass das physische und gesellschaftliche Umfeld eine wichtige Rolle 
für das psychische Wohlbefinden spielt. Insbesondere die Nachbarschaft, in der die Menschen 
leben, kann sich erheblich auf ihre psychische Gesundheit auswirken, indem sie sie 
bestimmten Risikofaktoren aussetzt oder beruhigende Eigenschaften aufweist. Big-Data-
Ansätze, die soziale Medien wie Twitter nutzen, haben sich zu einer vielversprechenden neuen 
Forschungsmethode entwickelt, um psychologische Merkmale und die psychische Gesundheit 
in der Gesellschaft zu analysieren. Geolokalisierte Social-Media-Daten ermöglichen die 
Analyse räumlicher Stimmungsmuster, die als Indikatoren für das psychische Wohlbefinden 
verwendet werden können. 

In dieser Arbeit wurde untersucht, ob Twitter-Daten verwendet werden können, um 
Assoziationen zwischen Umgebungsmerkmalen und den in Tweets ausgedrückten 
Stimmungen auf Nutzerebene zu erkennen, indem eine Regressionsanalyse durchgeführt 
wurde. Zunächst wurden etwa 12,5 Millionen Tweets von Schweizer Nutzern berücksichtigt. 
Die in dieser Arbeit verwendeten Twitter-Daten wurden zuvor mit Botometer, der M3-Methode 
und einem DBSCAN-Ansatz analysiert. Dies ermöglichte die Kontrolle für Bots, 
Organisationen, Geschlecht und Alter, sowie die Verwendung der vermuteten Wohnorte der 
analysierten Nutzer, um ihre Nachbarschaft zu definieren. Mit Hilfe der NLP-Systeme 
EMOTIVE, Stresscapes und LIWC wurden den Nutzern Werte für positive und negative 
Emotionen und Stress zugeordnet, die die Antwortvariablen darstellen. Die physischen und 
gesellschaftlichen Merkmale der Nachbarschaft wurden durch verfügbare Grünflächen, die 
Belastung durch Verkehrslärm und die sozioökonomische Position dargestellt, die die 
erklärenden Variablen des Regressionsmodells darstellten. Schweizweite, hochaufgelöste 
räumliche Daten wurden verwendet, um die Nachbarschaftsvariablen innerhalb eines Puffers 
von 500 m um den Wohnort für jeden Nutzer zu berechnen. Mit Hilfe von ArcGIS Pro 
Modelbuilder und Python wurde ein Workflow implementiert, um den Entfernungsabfall zu 
berücksichtigen. Zusätzlich wurden Daten des Schweizerischen Bundesamtes für Statistik 
verwendet, um die Unterschiede zwischen Stadt und Land zu berücksichtigen. 

Von den 70'333 verfügbaren Nutzern wurden nach einem sorgfältigen Auswahlverfahren 733 
in die endgültige Regressionsanalyse aufgenommen. Im Durchschnitt definierten 236 Tweets 
pro Nutzer ihre Stimmungswerte. Es wurde ein signifikanter negativer Zusammenhang 
zwischen Verkehrslärm und positiven Emotionen festgestellt. Trotz der Berücksichtigung 
zahlreicher Einflussfaktoren und der Kontrolle von Verzerrungen weist der verfolgte Ansatz 
mehrere Einschränkungen auf, von denen die unzureichende Stichprobengröße eine der 
wichtigsten sein dürfte. Nichtsdestotrotz könnte die Förderung weiterer Forschung zur 
Bewertung der Auswirkungen von Umweltmerkmalen auf das psychische Wohlbefinden unter 
Verwendung von geografisch verorteten Tweets wertvolle neue Erkenntnisse liefern.
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Chapter 1 | Introduction 
 

 

 

The World Health Organization (WHO) estimates that globally, 5% of adults suffer from 
depression. It is a major contributor of the overall global burden of disease and is a leading 
cause of disability worldwide. Although effective treatments are known, far too many people 
receive no treatment, because there is a lack of resources or a lack of trained health-care 
providers. However, one of the most important barriers to effective care is social stigma 
associated with mental disorders, which leads to a high number of unreported cases (Evans-
Lacko et al., 2018). Also, the assessment of community-level psychological characteristics 
remains a great challenge to this day. Traditional approaches using phone surveys and 
household visits are costly and are limited by their spatial and temporal precision (Auchincloss 
et al., 2012). 

However, in the last decade, there has been a renewed focus on the links between the 
psychological characteristics of people and the characteristics of the places in which they live. 
This field, known as geographical psychology, aims to understand psychological phenomena 
on the basis of their spatial distribution and their interactions with features of the environment 
(Chen et al., 2020). Health geography, a closely related field and subdiscipline of human 
geography, studies the role of place, location and geography in health, well-being and disease 
(Dummer, 2008). Research has shown that the place where people live significantly affects 
their health outcomes (Tunstall et al., 2004). Within health geography, spatial epidemiology 
describes and analyses geographical differences in diseases in terms of different risk factors. 
Those include demographic, socio-economic and environmental characteristics, as well as 
genetic predispositions and behavioural risk factors. The research field traditionally focusing 
on disease outbreaks like yellow fever and cholera in the 1800s (Elliott & Wartenberg, 2004), 
continued to evolve and brought new specialised subfields such as digital spatial epidemiology, 
using big data approaches to study (mental) health outcomes in space. 

Big Data methodology using social media has great potential to contribute to mental health 
research and should therefore be strongly promoted to further investigate the emerging and 
evolving mechanisms of geographic differences in psychological phenomena and health 
outcomes (Chen et al. 2020). The rapid growth in the number of social media users worldwide 
generates an immense quantity of data. This data can be studied and analysed, offering new 
opportunities to detect and track patterns of social phenomena, such as public health concerns. 
The information contained in these social media data may include spatial information in the 
form of coordinates, which allows to apply advanced spatial analysis to detect geographical 
trends in human behaviour and public health concerns and is now increasingly used in mental 
health research (Naslund et al., 2019). 

 

 

 

 

 

 



2 
 

1.1 Motivation and Goal 
 
 
Over the last decade, a growing number of research studies have shown that social media 
holds great potential for mental health research (Dredze, 2012; Naslund et al., 2019; Gruebner 
et al., 2017). In health geography, digital spatial epidemiology has emerged to a highly 
promising research field, successfully linking emotions expressed in social media data with 
health outcomes (Eichstaedt et al., 2015; Jashinsky et al., 2014). However, so far, the spatial 
granularity of these studies has mostly been very coarse, meaning that trends in health 
outcomes and mental well-being were only found on high spatial aggregation levels. This 
raises the question, if patterns and associations between space and indicators of mental health 
found in social media, can also be recognised in lower-scale geographies such as urban 
districts or even in neighbourhoods.  
 
Therefore, the broader aim of the study is the assessment whether social media data like 
Twitter tweets can be used to detect associations between spatial phenomena at a 
neighbourhood scale and mental well-being on a user-level. The study area is restricted to the 
political boundary of Switzerland. In Subsection 2.2, similar studies using Twitter data are 
introduced which were conducted in the form of macro- to meso-level analyses, operating on 
the geographic scale of, for example, states or counties. However, in this thesis the goal is to 
conduct an ecological analysis on a smaller spatial unit, namely the neighbourhood, making it 
a meso- to micro-level analysis. A further distinct difference between the approach in this thesis 
and studies conducted so far, is the aggregation of tweets onto the user, instead of aggregating 
single tweets onto administrative boundaries. In this way, it is tried to associate the mental 
well-being of a user with the characteristics of the neighbourhood in which the user lives. As a 
measure for mental well-being, different variables are used, which were added to the Twitter 
datasets using natural language processing algorithms (NLP) categorizing single tweets into 
emotions and stress-levels. The applied NLP-algorithms are described in Subsection 2.3.  
 
Research in geographical psychology and digital spatial epidemiology using social media could 
reveal spatial patterns of society in mental health and mental well-being. It would provide new 
insights in the general mental state of the population related to the environment and bypass 
the distortion caused by unrecorded cases of mental illness due to social stigma. 
Consequently, preventive measures could be taken to combat the environmental problems 
having negative influences on mental health outcomes.   

 

1.2 Structure 
 

Chapter 2 introduces the theoretical background around the state of research, and crucial 
concepts. In Chapter 3 the research gaps to be filled are addressed and the research 
objectives of the thesis are introduced. The data used in this study is introduced in Chapter 4, 
along with its spatial and non-spatial structure, as well as its source. Chapter 5 describes the 
methodological approach for the accomplishment of the research objectives in detail. In 
Chapter 6 the results of the research objectives are presented and illustrated using tables and 
visualisations. The discussion around the results and their underlying methodology is opened 
in Chapter 7. The outcome of the thesis is critically analysed and interpreted, pointing out the 
strengths and weaknesses of the applied methods. And finally, in Chapter 8, the findings of 
the thesis are concluded and potential improvements for future work is proposed.  
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Chapter 2 | Theoretical Background 
 

 

 

The theoretical background about the research context of this study, as well as overviews on 
crucial concepts and applied algorithms are introduced in this chapter. First, the socio-
ecological model, the concept and definitions of neighbourhood, and crucial environmental 
factors on mental health are introduced. Then, the role of social media in mental health 
research at the example of related studies is described, and an overview of Twitter is given. 
And finally, different important methods and algorithms applied on the Twitter data used in this 
thesis are briefly explained. 

 

2.1 Socio-Ecological Model 
 

In order to embed the influence of both societal and physical neighbourhood characteristics on 
(mental) health into a theoretical perspective, in the following, the socio-ecological model 
(SEM) is introduced. The American psychologist Urie Bronfenbrenner introduced the socio-
ecological model for the first time in the 1970s as a conceptual model to understand human 
development. In the 1980s it formalized as a theory and was illustrated by nesting circles which 
place the individual human being in the centre surrounded by multiple influential systems 
(Kilanowski 2017). Today, countless variations and re-interpretations of the model exist, 
however the basic idea has remained the same: The microsystem which is closest to the 
individual, includes the interactions and relationships of the immediate surroundings, and has 
therefore the strongest influence. The microsystem is embedded in multiple other systems 
which are all enclosed by the most outer system, usually referred to as macrosystem. The 
macrosystem has the least influence on the individual, and includes attitudes and ideologies 
of a culture, or in adapted models also physical factors such as weather and topography 
(Bornstein and Davis 2014). 
Caesar et al. (2020) introduce an adapted SEM for health behaviour, which is illustrated in 
Figure 1.  

Figure 1: Socio-ecological model for health behaviour (Caesar et al, 2020). 
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In this model, the influencing factors on the neighbourhood scale, such as socio-economic 
characteristics, and physical and social environments are placed in the third and fourth system 
between the interpersonal system and the public policy system. This SEM enables a better 
understanding of how strong the influence of the neighbourhood may be on the individual, 
when put in relation to the intrapersonal or interpersonal factors.   

2.2  Neighbourhood 

As already emphasized, literature shows that neighbourhood characteristics are crucial for 
(mental) health outcomes (Cutrona et al., 2006; Goldsmith et al., 1998). Also, time spent at 
home represents in average 70% of the time budget, which is why public health research lays 
focus on environmental exposure factors at home and in the immediately surrounding 
neighbourhood (Tenailleau et al., 2014). However, this raises the question, how the term 
neighbourhood is usually defined in terms of spatial extent. 

In context of cities in the United States, the spatial extent of a neighbourhood is often defined 
as the area of census tracts (O’Campo et al., 2015). However, this simple approach is limited 
by the fact that administrative partitions do not capture the actual activity spaces of citizens 
very accurately. Martí et al. (2021) introduce more “meaningful neighbourhood boundaries” by 
using Google Places data as a source of information on urban activity patterns. Panczak et al. 
(2012) used buildings and road network data to define overlapping neighbourhood areas in 
Switzerland.  

These more sophisticated approaches are however quite complex, require advanced know-
how, and their implementation is very time consuming. Simpler commonly used approaches 
include buffer techniques to represent the immediate living neighbourhoods of the studied 
subjects and are used as approximations for the “walking neighbourhood” where most of the 
daily needs are met (Tenailleau et al., 2015). For example, Tenailleau et al. (2014) assessed 
residential exposure to urban noise by defining the local living neighbourhoods using 50 to 400 
meters buffers around homeplaces. Standard “walking neighbourhood” definitions are also 
found to be as large as 1-kilometre buffers or 1-mile buffers, which is around 1.6 kilometres 
(Smith et al., 2010).  

2.3 Environmental Factors on Mental Health 

It is increasingly recognized that mental health is not only affected by personal characteristics, 
but also by environmental exposures, which can either contribute to a worsening or to the 
improvement of a mental condition (Helbich, 2018). O’Campo et al. (2015) stated that hundreds 
of cross-sectional and more recently longitudinal studies have linked neighbourhood area 
characteristics, both physical and social, to a range of health behaviours and outcomes such 
as distress, anxiety, and depression. With growing urbanization, the number of people exposed 
to risk factors originating from the urban social (e.g., poverty) or physical environment (e.g., 
traffic noise) is ever increasing. The exposure to these risk factors leads to increased stress, 
which is negatively associated with mental health outcomes (Gruebner et al., 2017).  

In the following subsections, the importance of greenspace, traffic noise and socio-economic 
position on mental health is described. These three factors build the main components in the 
analysis of this thesis. 
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2.3.1 Greenspace 
 

The benefits of greenspace for humans living in cities or settlements is widely discussed in 
literature. There seems to be broad agreement on the positive impacts of accessible green-
space for human health and well-being especially in or near cities and settlements (Taylor & 
Hochuli, 2017; Beyer et al., 2014). The trend in increasing numbers of people suffering from 
depressive disorders, may be related to increased urbanisation, with more than 77% of people 
in the world’s more developed regions now residing in urban areas, and to reduced access to 
“natural” spaces which aid stress reduction. Epidemiological studies find that individuals living 
in the greenest urban areas tend to have better mental health than those in the least green 
areas (Alcock et al., 2014). 

James et al. (2015) further express the importance of not only the existence of greenspace, 
but also the closeness to inhabitants, framing it as “neighbourhood greenness”, really 
emphasizing the notion of easy access and proximity. The value of proximity to greenspace 
becomes evident when considering the fact that real estate prices are highest near 
greenspaces (Camargo, 2016). 

 

2.3.2 Traffic Noise 
 

A great and growing environmental problem in residential areas is noise from transport. 
Findings from a large body of studies show that traffic noise causes non-auditory stress effects 
such as changes in the physiological systems, various cognitive deficits (e.g., poor sustained 
attention, memory/concentration problems), sleep disturbances, and emotional/motivational 
effects (Gidlöf-Gunnarsson and Öhrström, 2007). In a more recent study, exposure to road 
traffic noise above 65 decibel was associated with changes in blood pressure and 
cardiovascular biochemistry, which is an indicator for increased stress (Kupcikova et al., 2021). 

 

2.3.3 Socio-Economic Position 
 

It is widely recognised that poorer individual socio-economic circumstances are generally 
associated with less favourable (mental-) health outcomes (Panczak et al., 2012). At a 
community level, low socio-economic position (SEP) may lead to greater concerns about 
neighbourhood safety and decrease the amount of physical activity in the community, which 
has consequent impacts on mental health (Macintyre et al., 2018). Mann et al. (2022) used 
multilevel modelling to analyse data collected from 7866 participants aged 40 to 65 years in 
Brisbane, who participated in a study called HABITAT (How Areas in Brisbane Influence health 
and AcTivity). They concluded that both individual-level SEP and neighbourhood disadvantage 
are associated with mental well-being. Moreover, in a study based on a sample of 1010 adults 
with diabetes, knowing that persons with diabetes have higher rates of depression, the impact 
of neighbourhood SEP on the severity of the depression was investigated. The researchers 
found that lower neighbourhood SEP was significantly associated with poorer (mental-) health 
outcomes (Gary-Webb et al., 2011).  
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2.4 Social Media in Psychology and Mental Health Research 
 

Social media data have been used extensively in marketing for quantifying specific personality 
traits and dimensions as for example the ‘Big 5’ (openness to experience, conscientiousness, 
extraversion, agreeableness, neuroticism) from Facebook data (Schwartz et al., 2014). Social 
media has established itself as a very powerful data source in politics and business and is now 
also increasingly used for large scale health monitoring, as well as for mental health research. 
The analysis of social media is particularly promising in the mental health domain, since users 
of Twitter, Facebook, etc., provide raw and unfiltered insights to their thoughts, behaviours, 
and feelings by posting often very intimate messages, which may be indicative of emotional 
well-being (Conway & O’Connor, 2016). 

There have been multiple studies in the US performing spatial analyses using Twitter data on 
county or on state level. Eichstaedt et al. (2015) for example used 148 million geolocated 
tweets across 1’347 counties to predict heart disease mortality, based on emotions derived 
with natural language processing and machine learning. It was found that negative emotions 
in tweets were highly correlated with heart disease mortality figures, even more highly 
correlated than official socio-economic, demographic, and health statistics (Eichstaedt et al., 
2015). Jashinsky et al. (2014) used Twitter data, some of them geolocated, to track suicide 
risk factors in the US at state level. The suicidal tweets per state were compared against 
national data of actual suicide rates from the Centres for Disease Control and Prevention, 
observing a strong correlation. 

Furthermore, sentiment analysis using geolocated Twitter data has been conducted in the 
context of disasters. One example is the study carried out by Gruebner et al. (2018), where 
roughly 1 million geolocated tweets that were analysed with an advanced sentiment analysis 
algorithm called EMOTIVE (see Subsection 2.7.1), have been used to calculate discomfort 
rates for 2137 New York City census tracts, before, during, and after Superstorm Sandy. 
Discomfort was defined as the combination of different negative emotions. They found 
increased discomfort after the storm as compared to during the storm, with prominent spatial 
clusters in Staten Island. In another similar study, also in the context of a traumatic event, a 
spatial analysis of emotions was performed by Gruebner et al. (2016) using geolocated tweets 
in Paris during the terrorist attacks in November 2015. They found spatial clusters of tweets 
expressing sadness in the area of the attacks. Moreover, Edry et al. (2021) developed a web-
based geovisualization tool as a proof-of-concept analysis, for the spatio-temporal surveillance 
of negative emotions and stress found in Tweets in New York City before and during the 
COVID-19 pandemic. They identified hotspots of stress in the census tracts of Manhattan and 
Brooklyn, appearing after the lockdown in April 2020.  

The mentioned studies demonstrate various examples of how social media, especially Twitter, 
has been used in mental health research so far. In Chapter 3, research gaps to be filled are 
pointed out, which lead to the research objectives this thesis attempts to cover.  
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2.5 Twitter 
 

Twitter is an American social media service where users can share information in a real-time 
news feed by posting brief messages known as “tweets” about their experiences and thoughts 
(Maclean et al., 2013). The widely used free social networking tool, founded in 2006, allows 
people to write tweets of a maximum length of 280 characters, after doubling the former limit 
of 140 characters in November 2017 (Gligori et al., 2020). The tweets may include images, 
videos, links to web pages and similar online material. In health research using big data 
approaches, Twitter is one of the most frequently used social media services, because it is a 
publicly available resource that can be widely used for research purposes (Jordan et al., 2018; 
Sinnenberg et al., 2017). 

 

2.5.1 Twitter Popularity in Switzerland Compared to the World 
 

The top 10 leading countries based on number of Twitter users are listed in Table 1 (Statista, 
2022). In January 2021, in Switzerland around 746’000 (world: 353.1 million) Twitter accounts 
existed, which was around 9.9% (world: 5.8%) of the total population aged 13 and older, of 
which 22.4% (world: 31.5%) were reported to be female users and 77.6% (world: 68.5%) to be 
male (Datareportal, 2021a; 2021b). 

 

Table 1: Top 10 leading countries based on number of Twitter users. 

Country 
Number of Users 

[Million] 
Percentage of 

Population 
United States 76.9 ~ 23% 
Japan 58.95 ~ 47% 
India 23.6 ~ 1.7% 
Brazil 19.05 ~ 9% 
Indonesia 18.45 ~ 6.7% 
United Kingdom 18.4 ~ 27% 
Turkey 16.1 ~ 19% 
Saudi Arabia 14.1 ~ 40% 
Mexico 13.9 ~ 10.7% 
Thailand 11.45 ~ 16% 

 

 

2.5.2 Botometer 
 

Botometer (formerly BotOrNot) is a popular bot detection tool for Twitter tweets. Bots or social 
bots are inauthentic social media accounts which are partially controlled by algorithms. A social 
bot, also known as sybil account, automatically produces content and interacts with humans 
on social media (Davis et al., 2016). Bots are used for orchestrated spreading of 
misinformation, large-scale opinion manipulation, as well as adding confusion to online 
debates (Ferrara et al., 2016; Subrahmanian et al., 2016; Broniatowski et al., 2018). Efficient 
and reliable bot detection methods are crucial to estimate the proportion of automated 
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inauthentic accounts and their influence on social media (Yang et al., 2020). Botometer 
calculates a score for Twitter accounts, where low scores indicate a low likelihood of being a 
social bot, and high scores indicate a high likelihood of being a social bot. The score is 
calculated using over a thousand features to characterize the account’s profile, friends, social 
network structure, temporal activity patterns, language, and sentiment. The features are used 
by multiple machine learning models to finally compute the bot scores, which range from 0 to 
100 percent (Yang et al., 2020). 

 

2.6 M3-Method 
 

The M3-method is a multimodal deep neural system operating on social media accounts to 
infer probabilities, whether the user is male or female, whether the user belongs to defined age 
categories, and whether the user is an organisational account. M3 stands for multimodal, 
multilingual, and multi-attribute abilities. It operates on 32 different languages, and uses social 
media profile image, username, “screen name” and biography to infer the described variables. 
The M3-method was applied onto the Twitter data used in this thesis (see Subsection 4.1.2) 
(Wang et al., 2019). 

 

2.7 Natural Language Processing 
 

Natural Language Processing (NLP) dates back to the 1950s and can be viewed as the 
intersection of artificial intelligence and linguistics, with the aim to make computers understand 
the statements or words written in human languages (Nadkarni et al., 2011; Khatter et al., 
2017). In the following subsections, three NLP-systems are introduced which were applied on 
the Twitter data used in this thesis. 

 

2.7.1 EMOTIVE 
 

EMOTIVE (Extracting the Meaning Of Terse Information in a Visualization of Emotion) is an 
ontology-based NLP-system, which can detect 8 different emotions in social media messages. 
The emotions include Anger, Confusion, Disgust, Fear, Happiness, Sadness, Shame, and 
Surprise. EMOTIVE was developed as a reaction on existing systems only distinguishing 
between positive and negative emotions. The ontology on which the system is built, was 
constructed by performing an in-depth study of language containing emotional expressions. 
This was done by an English language and literature PhD level research associate during a 
three-month time-period, where around 600 MB of cleaned tweets were analysed. The 
ontology does not only contain single words, but also multi-word phrases (Sykora et al., 2013).  
 

2.7.2 Stresscapes 
 

Stresscapes is an ontology-based system that automatically captures, measures and monitors 
expressions of stress on various text-based social media massages. It was developed to 
combat the rise of chronic stress-related diseases, by enabling a better understanding of the 
causes behind the stress social media users experience, as well as the spatial patterns where 
stress occurs. The underlying ontology model consists of over 1530 terms, of which 1100 are 
multi word phrases, such as “stressed out”, or “under pressure”. It was built with the help of a 
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researcher with experience in discourse analysis and linguistics, which combed through 
thousands of social media messages of ‘stressful’ events (Elayan et al., 2020). 

 

2.7.3 LIWC 
 

LIWC (Linguistic Inquiry and Word Count) is an NLP software similar to EMOTIVE and 
Stresscapes, which was however not designed specifically for the analysis of social media 
messages, but rather for the analysis of different text genres, such as emails, speeches, or 
transcribed everyday language for psychological research (Golder & Macy, 2011). The output 
is in the form of dozens of different linguistic categories, all of them reporting the percentage 
of words which fell into that specific category (Cohn et al., 2004). As an example, the two 
categories or variables used in this thesis are posemo and negemo, indicating the percentage 
of words in the text associated with positive or negative emotions respectively.  

 

2.8 Cluster Analysis with DBSCAN 
 

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) is a spatial data 
clustering algorithm, which searches for data points having dense neighbourhood, grouping 
them together as clusters. It is one of the most frequently used and most cited clustering 
algorithms in scholarly literature (Shinde & Sankhe 2017). In studies with Twitter data, 
DBSCAN has been widely used for cluster detection, due to its high suitability for user-level 
analysis with large datasets (Phillips et al., 2019). Three inputs are required when applying the 
DBSCAN algorithm on geolocated tweets: The minimum number of points required to form a 
cluster, the search radius (maximum distance from one point to the closest neighbour), and 
the geolocated tweets. DBSCAN was applied onto the Twitter data used in this thesis, to 
identify the presumed homeplace location of certain users (see Subsection 4.1.2).  
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Chapter 3 | Research Gaps and Objectives 
 

 

 

This chapter points out the research gaps concerning mental health research based on Twitter 
data using sentiment analysis. Moreover, the general research question and the more specific 
research objectives pursued in this thesis are presented. 

 

3.1 Research Gaps 
 

As described in Section 2.1, Twitter data has been widely used on macro-level analysis 
aggregating single geolocated tweets onto large administrative units as states or counties in 
the United States (Eichstaedt et al., 2015; Jashinsky et al., 2014). Twitter has also been used 
on smaller spatial aggregation units as census tracts in New York City, also using single 
geolocated tweets (Edry et al., 2021). Furthermore, spatial analysis using geolocated tweets 
has been applied in the context of traumatic events, detecting spatial clusters of discomfort or 
negative emotions at specific locations (Gruebner et al., 2016; Gruebner et al., 2018).  

However, what seems to remain mostly unstudied, is the potential impact of everyday physical 
and societal environmental characteristics on sentiments expressed in tweets at a neighbour-
hood scale. Also, most studies using Twitter data in a spatial context so far have been 
operating with single geolocated tweets, whilst user-level analysis has been less explored. 
Thus, ecological studies using Twitter data on user-level need more attention in mental health 
research and would potentially provide useful new insights concerning associations between 
environmental factors and tweeting behaviour.  

 

3.2 Research Question and Objectives 
 

Based on the research gaps, the aim was to investigate possible associations between 
physical and societal environmental factors and the sentiments of Twitter users, which they 
express in their tweets. Research has provided strong evidence of neighbourhood 
characteristics directly and indirectly affecting health behaviours and outcomes (see Section 
2.2). Thus, it was decided to link neighbourhood characteristics of the presumed Twitter user’s 
homeplace to the user’s emotions- and stress-related tweets. For this purpose, the chosen 
approach was to conduct a regression analysis between the Twitter data as the outcome, and 
the environmental factors as the predictors. 

Due to their high relevance found in the literature (see Section 2.3), the following three 
neighbourhood characteristics have been chosen, which form the main explanatory variables 
of the general regression model: 

• Available Greenspace  
• Exposure to Traffic Noise  
• Socio-economic Circumstances 
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To account for bias, the following control variables are added: 

• Gender 
• Age 
• Urban/Rural Differences 

 

The answering of the following research question builds the primary aim of the thesis: 

 

To which degree are physical and socio-economic phenomena in the neighbourhood 
of a Twitter user’s homeplace, associated with the emotions found in the user’s 
Tweets? 

 

The posed research question implies three research objectives (RO): 

RO1: Select Twitter users for the analysis, based on the following criteria: 

• The homeplace location has been identified 
• A substantial number of Tweets must be available 
• The user is not a bot, or an account managed by an organisation 
• The identified homeplace location is realistic (e.g., not on a glacier) 

RO2:  Estimate the neighbourhood variables greenspace, traffic noise, and SEP for each 
Twitter user’s homeplace. 

• What is the quality and suitability of the generated variables? 
• What are the limitations, and which potential improvements could be made? 

RO3: Perform a regression analysis between neighbourhood variables as predictors and 
emotions as outcome variables. 

• Which significant associations can be found and what is their effect size?  
• How does the replacement of traffic noise during daytime with traffic noise 

during night change the models? 

 

In the next chapter, the required data for the accomplishment of the three research objectives 
is introduced. 
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Chapter 4 | Data 
 

 

 

This chapter introduces the data used in this thesis. The chapter is divided into subsections, 
each of which describes one of the applied datasets in detail. The main datasets used, were 
on the one hand Twitter tweets posted from Swiss users, and on the other hand three high 
resolution spatial datasets to describe the physical and social characteristics of the 
neighbourhoods. The first one being available greenspace, the second being traffic noise, and 
the third being socio-economic position (SEP). The spatial extent of all data is defined by the 
area of Switzerland. 

 

4.1 Twitter Data 
 

At this point it is important to mention, that the Twitter data used in this thesis was provided by 
the health geography research group of the University of Zürich. The data was used before in 
other studies collaborating with the Loughborough University, and multiple processes enriched 
the data with further variables, which are described in subsection 4.1.2. All variables presented 
in that subsection were added to the data beforehand and were not part of the author’s 
methodological processes. 

The thesis is based on Twitter data which has its origin in the following three large Twitter 
datasets: The geolocated Twitter dataset, containing 1’115’893 tweets with a geolocation 
(tweetsgeoloc), the rehydrated English Twitter dataset, containing 6’427’025 English tweets 
(tweetsenglish), and the rehydrated non-English Twitter dataset, containing 4’961’291 non-
English tweets, which have been translated into English (tweetsnon-english). In Table 2, the 
temporal extent of each of the three datasets is given. Certain tweets in the two rehydrated 
dataset tweetsenglish and tweetsnon-english may date back until 2006, however no more than 7% 
are older than from 2015 in both datasets. The concept of rehydration is briefly explained in 
the next section. 

Table 2: Temporal extent of the three Twitter datasets 

Dataset Oldest Tweet 
Most Recent 

Tweet 
Histogram of Tweets 

tweetsgeoloc 2015.01.01 2018.09.06 

 

tweetsenglish 2006.12.12 2020.09.22 

 

tweetsnon-english 2007.01.09 2020.09.22 
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4.1.1 Data Access 
 

The Twitter data was accessed through the Twitter API on the Developer Platform, which 
provides tweets on request for research purposes. There are different access levels, where 
the level “Academic Research” grants access to retrieving up to 10 million Tweets per month, 
advanced search operators, and access to full-archive search. API rehydration is a standard 
process where specific requests are programmatically sent to the Twitter API, at which Twitter 
automatically responds by providing the specific requested tweets in the form of JSON code 
(Twitter Developer Platform, 2022). The two datasets tweetsenglish and tweetsnon-english were 
rehydrated by using the user IDs of the dataset tweetsgeoloc. In this way, up to 200 of the most 
recent tweets for each user were retrieved (date of rehydration: 2020.09.22), also including 
non-geolocated tweets. 

 

4.1.2 Data Structure 
 

The Twitter data was provided in a comma-separated, tabular format (.csv file), in which a 
single row represents one single tweet. When retrieved from the Twitter API, each tweet 
features more than 60 variables, including a unique identifier of the tweet, a unique identifier 
of this tweet’s user, a username, the coordinates from where the tweet was posted (if 
geolocated), the date and time when the tweet was posted and finally, of course, the text of 
the tweet itself. 

The most relevant variables are listed in Table 3 and are based on a fictitious tweet to preserve 
user privacy. An example value for each variable is also shown to enable a better 
understanding of the different variables. 

 

Table 3: Most relevant tweet attributes with example values of a fictitious tweet 

Attribute Example Value 

id 935919123491283597123592349 
user_id 32152139490172 
user_name Nicolas Schmidheiny 
latitude 47.314178 
longitude 8.466400 
raw_geo {u'type': u'Point', u'coordinates': [8.4664, 47.314178]} 
created_at 2022-03-01 15:26:38 
text I am so happy! 
lang en 
user_total_number_of_twe
ets_ever 

27 

profile_image_url_https https://pbs.twimg.com/profile_images/<unique_code>.jpg 
 

https://pbs.twimg.com/profile_images/%3cunique
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As mentioned earlier, many new variables have already been added to the datasets within 
previous studies, which are described in the following. Using the natural language processing 
algorithm EMOTIVE, introduced in Subsection 2.7.1, 8 new variables have been added to 
categorize the tweets into basic emotions. These include the following emotions: Anger, 
Confusion, Disgust, Fear, Happiness, Sadness, Shame and Surprise. The values are of the 
data type integer and range from 0 to 9, depending on the emotion, indicating the magnitude 
of the emotion found in the tweet. Additionally, Stresscapes, introduced in Subsection 2.7.2 
was applied onto the data to represent the stress-level found in the tweets by an integer value 
ranging from 0 to 20 (stress.overall.score). An overview of the added variables including 
example values for the text “I am so happy!” is given in Table 4. From now on, for convenience, 
these 9 variables are referred to as sentiments.  

 

Table 4: The 9 sentiment-variables added through EMOTIVE and Stresscapes 

Attribute Example Value 

anger 0 
confusion 0 
disgust 0 
fear 0 
happiness 6 
sadness 0 
shame 0 
surprise 0 
stress.overall.score 0 

 

 

Moreover, the coordinates of the geolocated tweets have been used to conduct an activity 
spaces analysis using the clustering algorithm DBSCAN, introduced in Section 2.8. The tweets 
forming the detected spatio-temporal clusters have been categorized as either workplace (8 
am to 5 pm) or homeplace (5 pm to 8 am) locations, depending on the time of the day. The 
two added variables workplace and homeplace (see Table 5) take either the value 1 (tweet 
was posted at workplace / homeplace) or the value 0 (tweet is not part of a cluster). The 
minimum number of geolocated tweets to build a cluster was set at 5. The search radius was 
set at 50 meters. However, in this study only the variable homeplace is of interest. 

 

Table 5: Activity space variables added through the DBSCAN approach 

Attribute Example Value 

homeplace 1 
workplace 0 
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Furthermore, Botometer, introduced in Subsection 2.5.2 was applied onto the data to control 
for bot-like activity of Twitter accounts. The two variables cap_english and cap_universal (see 
Table 6) give a score, taking continuous values from 0 to 1 to represent the chance from 0 to 
100% if the tweet originates from an automated account. CAP stands for Complete Automation 
Probability. The variable cap_english is specific for English tweets and cap_universal is for all 
languages. In this thesis, only cap_universal was considered in the analysis and was later 
renamed to is_bot for convenience. 

 

Table 6: Variables to represent the probability of the user being a bot 

Attribute Example Value 

cap_english 0.124 
cap_universal 0.113 

 

 

Finally, the M3-Method introduced in Section 2.6 was applied on a user level, to estimate 
further variables about user demographics and whether the account is managed by an 
organization or not. User profile information including the profile image are used to estimate 
the approximate age, represented by the four variables age_less_than_inclusive_18, 
age_19_to_29, age_30_to_39 and age_over_than_inclusive_40, all of them taking values 
between 0 and 1 to represent the chance from 0 to 100% of the user falling into the 
corresponding age category. The sum of these four age category variables is always 1 = 100%. 
The two variables gender_male and gender_female also take values between 0 and 1 to 
represent the chance from 0 to 100% of the user having the respective gender and for every 
user the sum of these two variables is obviously 1 = 100%. The last M3-variable to be 
mentioned is named is_org and again takes values between 0 and 1 to represent the chance 
from 0 to 100% of the user actually being an account managed by an organization. For 
convenience, in the further course of the work the two variables age_less_than_inclusive_18 
and age_over_than_inclusive_40 have been renamed to the shorter names age_under_19 
and age_40_plus. The M3-variables are shown in Table 7. 

 

Table 7: M3-variables inferring user demographics and probability of being an organization 

Attribute Example Value 

age_less_than_inclusive_18 0.0879 
age_19_to_29 0.4690 
age_30_to_39 0.2436 
age_over_than_inclusive_40 0.1995 
gender_male 0.9983 
gender_female 0.0017 
is_org 0.1027 
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4.2 Greenspace Data 
 

The dataset used to estimate the quality and quantity of available greenspace within a 
neighbourhood, has its origin in a project that was conducted by the author and colleagues 
within the frame of the master’s course “GEO888 – GIS for Environmental Modelling” at the 
University of Zürich. In the following, the undertaken approaches to generate the dataset are 
briefly explained.  

As described in Subsection 2.3.1, the availability of greenspace is crucial for mental well-being. 
Hence, it must be defined, what availability actually means. Availability of greenspace should 
include the quantity, the quality, and the accessibility of green areas, where people can 
recreate in their leisure time. The author and colleagues combined the latter two factors into 
one single variable by creating an index for the extent of Switzerland, which takes multiple 
different spatial criteria into account. The calculation of the index is based on a multi-criteria 
analysis (MCA) approach, where various spatial input datasets in the form of vector or raster 
layers have been processed and multiplied with one another, resulting in a single greenspace 
raster dataset, covering the entire area of Switzerland with a spatial resolution of 50 meters.  

The data to compute the index were provided by the Federal Office of Topography (Swisstopo), 
the Federal Office for the Environment (BAFU), and Landsat satellite imagery from NASA. The 
following open-source datasets were mainly used: The digital elevation model SwissALTI3D 
(Swisstopo, 2018), Landsat data (Google Earth Engine, 2021) to calculate the normalized 
difference vegetation index (NDVI), a buildings dataset swissTLMRegio_Building and a 
landcover dataset swissTLMRegio_LandCover (Swisstopo 2021), road and railway noise data 
(Bundesamt für Umwelt, 2018). All input datasets were converted to raster data and rescaled 
to a cell size of 50 meters. 

To determine the spatial coverage and the quality of greenspace, the NDVI, landcover types, 
road and railway noise, as well as the distance to water bodies were used. Areas with a NDVI 
lower than a certain threshold were considered as non-green areas and were therefore 
excluded. Landcover types such as forests and dry grasslands were given additional weight 
due to their recreational value and their ecological importance. The same applies to areas 
belonging to the Federal inventory of landscape and natural monument (BLN). Areas affected 
by road and railway noise above 65 dB were excluded, and areas affected by only low or even 
no noise pollution were given additional weight. Green areas next to lakes and rivers until a 
maximum distance of 200 meters were also given additional weight, since water bodies, also 
referred to as blue spaces, are seen as having a positive impact on the recreational value of 
greenspace (Wheeler et al., 2015).  

For the examination of the accessibility two factors were considered: Firstly, the slope of the 
terrain was used to analyse whether certain green areas are too steep for people to 
comfortably walk on them. A steepness of 30 degrees was used as a threshold to exclude too 
steep and therefore inaccessible areas. Additionally, to account for elder people and the fact 
that less steep terrain is considered more convenient for recreational activities, more weight 
was given to less steep or even flat terrain. Secondly, areas further away than 1000 meters 
from the next building were excluded, as they were considered as outside of walking distance 
from the closest residents. Furthermore, areas closer to buildings were given more weight. A 
visualization of the dataset can be seen in Figure 2.  

A more detailed description of the methodological approaches and used data to develop the 
greenspace index can be found in the Appendix A.1. 
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Figure 2: Visualization of the greenspace dataset showing greener and less green areas in Switzerland, indicating the quality of greenspace. 
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4.3 Traffic Noise Data 
 

As emphasised in Subsection 2.3.2, exposure to excessive and chronic noise from traffic is 
one of the most important environmental problems for physical and mental health. To estimate 
the exposure to traffic noise within a neighbourhood, four high resolution datasets provided by 
the BAFU were used. Road noise during daytime, which is defined from 6 a.m. to 10 p.m., and 
road noise during night, which is defined from 10 p.m. to 6 p.m., as well as railway noise during 
daytime and during night. The datasets are freely available as raster data in the GeoTIFF 
format and are the product of a noise monitoring system and database called SonBase which 
was developed by BAFU in 2009 and was updated in 2015 (BAFU, 2018). The cell size of 
these nationwide raster datasets is 10 meters. For the calculations of the road noise, 68’000 
kilometres of the entire Swiss road network were used, and for the railway noise, roughly 4’000 
kilometres of the railway network were considered. For the purpose of the analysis of this 
thesis, the two daytime noise datasets were combined to one single dataset, representing 
traffic noise during the day, and the same also applies for the two night-noise datasets. This 
pre-processing step is explained in more detail in Section 5.2.2 of the next chapter. The 
daytime traffic noise dataset is illustrated in Figure 3. 

 

4.4 Socio-economic Position Data 
 

The data for socio-economic position (SEP) used in this work was kindly provided by the 
Institute of Social- and Prevention-Medicine (Institut für Sozial- und Präventivmedizin) of the 
University of Bern.  

Panczak et al. (2012) developed an index for socio-economic position in Switzerland, at a 
neighbourhood scale called Swiss-SEP. They used Census 2000 data of all 2.95 million 
residential households in Switzerland, which were spatially referenced by using the geographic 
coordinates of 1.27 million residential buildings. The 1.27 million overlapping neighbourhood 
areas were defined based on a road network connectivity approach. Each Neighbourhood is 
centred on a residential building and consists of about 50 of the nearest households. (Panczak 
et al. 2012) The Swiss-SEP was conceptualised as a combination of the following four 
domains: income, education, occupation, and housing conditions. Each of them was 
represented by one variable, which was calculated with data aggregated on a neighbourhood 
level. Median rent in Swiss Francs per square meter of the 50 nearest rented flats was used 
to approximate household income. For the education variable, the ratio of households 
inhabited by a person with primary education or less was used. Occupation was similarly 
represented by the ratio of households headed by a person in a manual or unskilled profession. 
Finally, for the housing conditions variable, the mean number of inhabitants per room was 
used. 

The data was provided as CSV file with coordinates of the neighbourhood centroids. It is 
updated regularly (last update: June 2021) and now contains 1’527’173 observations. Figure 
4 shows a visualization of the dataset, where the single neighbourhoods are shown as spatial 
point data. 
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Figure 3: Visualization of daytime traffic noise in Switzerland. 



20 Figure 4: Visualization of the Swiss-SEP in Switzerland. 



21 

4.5 Urban/Rural Typology Data 

To account for urban-rural differences in the definition of greenspace, and potentially also for 
the tweeting behaviour of users, urban/rural typology data on a communal aggregation level 
from BFS was used (Bundesamt für Statistik, 2022). The freely available dataset published in 
2012, divides the Swiss communes into the three categories urban (Städtisch), intermediate 
(Intermediär), and rural (Ländlich). The categorisation is derived from a further subdivided 
classification, where the communes are classified depending on population density, total 
population, and accessibility criteria. However, for the scope of this thesis, a division of the 
data into the three mentioned classes is sufficient. a more fine-grained classification is not of 
interest because it would result in fewer data points in each class and hence decrease 
statistical significance. The data is available as CSV file. Figure 5 shows a choropleth map 
with the Swiss communes coloured depending on their topology category.  

Figure 5: Choropleth map showing urban-/rural-typology of the Swiss communes. 
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Chapter 5 | Methodology 

In this chapter, the methodological processes applied in the thesis are elaborated. The overall 
procedure is basically structured in four main steps: Pre-processing of the input data (Section 
5.2), the selection of users based on specific criteria (Section 5.3), calculating the 
neighbourhood variables (Section 5.4), and finally the regression analysis (Section 5.5). These 
four main processes each contain further sub-processes which are described in detail in the 
corresponding subsections. 

5.1 Software and Scripting 

The exploration, processing, analysis, and visualisation of the data was done using different 
software and scripting languages including R, Python, ArcGIS Pro and QGIS. R was the mainly 
used software. It was used for Twitter data exploration and processing, merging different 
datasets, as well as statistical analysis of the final dataset and visualization of the results. 
ArcGIS Pro was used to process the data of the neighbourhood variables and the modelling 
of the distance decay workflow. Python was used for time efficient parallel execution of ArcGIS 
processing tools. Finally, QGIS was used for the visual exploration of geolocated tweets and 
Twitter user homeplace locations, due to its high rendering and drawing performance of 
geodata, and for the exporting of the maps in high resolution.  

5.2 Data Processing 

The following subsections describe the processing steps carried out to prepare the data used 
in the regression analysis. First, the processing of the Twitter datasets is explained in detail. 
Then, the processing of the traffic noise datasets, and the SEP dataset is described, and finally, 
the processing steps for the urban-/rural-typology dataset are explained. The greenspace 
dataset introduced in Section 4.2 did not need further changes, which is why it is not mentioned 
in this Section. 

5.2.1 Twitter Datasets 

As described in Section 4.1, the Twitter data analysed in this thesis was provided in three large 
datasets. Each of them needed separate pre-processing before merging them to one single 
Twitter dataset. As there were multiple processing steps, the different steps are  

Clipping to AOI 

Starting with tweetsgeoloc, featuring 106 variables, of which the greater part is not of interest for 
the purpose of the analysis, only the relevant ones were selected in order to significantly 
reduce file size. This step decreased memory usage and enabled shorter computing time for 
all following processing steps. The retained variables are exactly those described in 
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Subsection 4.1.2, but without the M3-variables shown in Table 7, because they were not 
relevant for the processing steps executed on this dataset. After exporting the dataset as 
shapefile (.shp) using the R function st_write(), a first explorative visualization of the spatial 
distribution of the geolocated tweets was carried out in QGIS. It instantly revealed that some 
data points were lying outside the border of Switzerland. Therefore, the dataset had to be 
clipped onto the area of Switzerland. As the coordinates of Twitter data are provided in the 
standard WGS84 projection, they first had to be converted to the Swiss LV95 projection, to 
match the projection of all the other spatial datasets using the R function spTransform(). Of the 
previous 1’115’893 data points, only 2207 were excluded after clipping to the area of interest 
using the R function st_intersection(), which is only about 0.2%. The spatial distribution of the 
tweets in tweetsgeoloc within Switzerland are visualized in a map in Figure 7. 

Grouping by User 

Because the analysis is carried out on a user level and not on the single tweet level, the data 
had to be grouped by user. The emotion variables and the stress variable can take integer 
values from 0 to around 20, depending on the variable, to reflect the magnitude of the tweet’s 
sentiment. This certainly offers an information gain for the single tweet, but when grouping the 
tweets to the user level, complications arise. Summing up 10 tweets, each having the value 1 
for the emotion Sadness is not the same as having only 1 tweet with the value 10 for the same 
emotion. Because this problem is not trivial to solve, and there is a lot of room for subjective 
decisions on how to capture sentiment magnitude, it was decided to create 9 new variables, 1 
for each emotion and 1 for stress, which simply take the values 0 and 1. 0 if the respective 
sentiment is not present in the tweet, and 1 for all the other possible values, that is, if the 
sentiment is greater than 0. When looking at the number of occurring sentiments in the entire 
tweetsgeoloc dataset, shown in Figure 6, it is evident that Happiness is by far the most frequent 
sentiment, followed by Stress and Sadness. All the other sentiments tend to be expressed less 
often by Twitter users, when posting a tweet. Because the ratio of tweets expressing any 
sentiment in general is quite low, that is around 6 to 7%, it was decided to combine the 6 
negatively afflicted emotions (Sadness, Anger, Fear, Confusion, Disgust, and Shame) into a 
new variable emo_neg_01, to enhance statistical power. This variable takes the value 1 if at 
least 1 of the 6 emotions is present, and 0 otherwise. The same was done including all 8 
emotions into a variable emo_01, to assess if the tweet shows any emotional content.  

Next, the data was prepared to be grouped by user, again creating a new variable for every 
sentiment variable counting the number of tweets showing the respective sentiment. 
Furthermore, since the coordinates of the single tweets lose their meaning when grouping the 

Figure 6: Barplot showing number of tweets expressing a sentiment in the dataset tweetsgeoloc 
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data, the latitude and longitude variables of certain users’ detected homeplace locations had 
to be extracted and added to the corresponding users.  

Merging the Three Datasets 

After grouping the tweets of the tweetsenglish and tweetsnon-english datasets in the exact same 
manner as for the tweetsgeoloc dataset, the datasets were merged by user_id using the R 
function merge(). The merged dataset (usersall) features 70’333 users. After merging, the 
counts of every variable for each user had to be summed up. By dividing the summed-up 
variables through the number of total tweets for each user, the rate of the different sentiment 
occurrences was calculated and saved as new variables (see Table 8). The Example values 
in the table are real values of an anonymous user. For example, a value of 0.00885 for the 
variable rat_anger means that in 0.885 % of this user’s tweets the emotion Anger was found. 

Table 8: New variables showing the rate of tweets of a user expressing this sentiment 

Attribute Example Value 

rate_anger 0.00885 
rate_confu 0.00000 
rate_disgu 0.00442 
rate_fear 0.00442 
rate_happy 0.00885 
rate_sad 0.02212 
rate_shame 0.00000 
rate_surpr 0.01327 
rate_emo 0.05310 
rate_neg 0.03540 
rate_stress 0.07522 

Having aggregated the data onto the user level, user specific variables from Botometer and 
the M3-method were extracted from the tweetsgeoloc dataset and added to the usersall dataset, 
again merging by the user_id.  

Filtering Users with Detected Homeplace 

Out of the 70’333 users in the dataset usersall, for 1213 users a homeplace was detected by 
the DBSCAN clustering algorithm applied in a previous study. These users were selected and 
saved as a new dataset usershome. The variables longitude and latitude were used to create 
point geometries with the R function st_as_sf() and the dataset was exported as shapefile 
using the R function st_write().  



 
Figure 7: Visualization of the spatial distribution of geolocated tweets in Switzerland between 2015 and 2018. 
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Preparing Data for LIWC 

The idea to apply LIWC (see Subsection 2.7.3) onto the Twitter data only came to mind during 
an already advanced stage of the analysis. Therefore, in contrast to the other algorithms 
applied on the Twitter data used in this thesis, LIWC was not yet applied. For this reason, the 
datasets first had to be fed to the LIWC tool. Before feeding the Twitter data into LIWC, it had 
to be rearranged in a specific way. From the three datasets tweetsgeoloc, tweetsenglish, and 
tweetsnon-english, only the variables user_id, id, and text were selected. Afterwards, the three 
datasets were combined to one large dataset, containing all 12’504’209 single tweet texts with 
their corresponding id and user_id, using the R function rbind(). Given that tweet tweetsenglish 
and tweetsnon-english were rehydrated from tweetsgeoloc, they may contain some number of tweets 
from the latter one. These potential duplicates were removed by using the R function 
duplicated(). After that, the variable id was also removed. As LIWC is designed for large text 
sizes and thus only provides usable results for texts consisting of at least a few hundred words, 
all tweet texts have been concatenated to one single text for each user using the R function 
paste0(). In this way, instead of having certain texts containing only a single word (e.g., 
“bored”), on average the texts to be analysed by LIWC now featured about 500 words. After 
analysing the data with LIWC, the output featured dozens of statistical variables like word 
count, a performance value etc, of which only the variables posemo and negemo were of 
interest for the scope of this thesis. These two variables were then added to the usersall dataset 
(see Table 9). A value of 2.60 for posemo means that 2.6 % of the words in all the tweets of a 
user were considered as being emotionally positive, while a value of 1.09 for negemo means 
that 1.09 % of the words were considered as being emotionally negative. 

Table 9: LIWC variables posemo (positive emotions) and negemo (negative emotions) 

Attribute Example Value 

posemo 2.60 
negemo 1.09 

5.2.2 Traffic Noise Datasets 

As described in Section 4.3, four high resolution raster datasets were used to estimate traffic 
noise in the neighbourhoods. Because the difference between the perception of road noise 
and railway noise is irrelevant for the purpose of the analysis, the datasets were combined to 
a general traffic noise dataset. However, the difference in noise between daytime and night 
was of interest, hence it was decided not to combine the daytime with the night datasets. First, 
the two datasets for daytime noise were combined. The same procedure was then applied for 
the night noise datasets.  

Using the geoprocessing tool Cell Statistics in ArcGIS, the layers were combined by using 
Maximum as the overlay statistic. The tool compares the values of both layers for each cell 
and picks the higher noise value. This simple approach was chosen since noise does not stack 
up linearly and because the highest noise value was deemed to be relevant. In a next step, 
using the Resample tool in ArcGIS, the combined raster dataset was resampled from a 10 
meters resolution to a 50 meters resolution for three reasons: A cell size of 10 meters is a 
unnecessarily high resolution and would most probably not improve the quality of the analysis. 



27 

The resampling from 10 m to 50 m drastically reduces file size which consequentially reduces 
computing time for subsequent processing. Since the greenspace dataset introduced in 
Section 4.2 has a 50 m resolution, the resolutions of both datasets were matched, and the 
raster grids were made congruent by snapping them together. Because the emitted traffic noise 
follows the road and railway networks and only expands a few hundred meters from the 
network axis, large areas remain unaffected from traffic noise, especially in the alpine regions. 
Cells covering these areas have the value NoData and had to be converted to 0, using the tool 
Raster Calculator in ArcGIS to be included in the following calculations. Consequentially, the 
value of 0 was also assigned to the cells outside the border of Switzerland, which had to be 
undone again by clipping the dataset onto the area of Switzerland using the ArcGIS tool Clip.  

5.2.3 Socio-economic Position Dataset 

As already mentioned in Section 4.4, the dataset for socio-economic position was provided as 
a large CSV file featuring 1’527’173 observations and 17 variables. The 17 variables include 
X- and Y-coordinates in the LV03 projection, which had to be transformed into LV95 using the
R function spTransform(). Then, the point geometries were created using the R function
st_as_sf() and the dataset was exported as shapefile using the R function st_write(). In a next
step, the dataset was loaded into ArcGIS Pro in order to convert the shapefile into a raster file
with a cell size of 50 meters using the tool Point to Raster. As value field, the SEP index value
(variable ssep3) was chosen and as cell assignment type Mean was chosen. The grid was
snapped to the greenspace raster, making it congruent to the other two neighbourhood variable
datasets.

5.2.4 Urban-/Rural-Typology Dataset 

The urban-/rural-typology dataset from the year 2012 provided by BFS is available as CSV file, 
as already described in Section 4.5. It features 2255 rows, one for each commune, and only 
the three variables ID (official BFS number of the commune), Name (name of the commune), 
and Kategorien (typology category). In Switzerland, certain communes tend to merge from 
year to year, typically for administrative or political reasons. Usually, rather remote communes 
with a low population unite to one single commune. According to BFS on January 1st 2022, the 
number of existing communes was 2148.  

Since the dataset does not include any variable containing the geometry of the commune 
boundary, it had to be added in a further step. Because the author could not find a dataset 
containing the geometries of the 2012 communes, it was decided to take a more up-to-date 
shapefile from the year 2021. After joining the two datasets in ArcGIS Pro by ID and BFS 
number respectively, some polygon features did not take any typology category, because 
certain BFS numbers do not exist any longer. The typology category values were then 
manually added by visually comparing the dataset with the interactive web map displayed on 
the Statatlas website of BFS (Bundesamt für Statistik, 2022). 
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5.3 Selection Criteria for Users 

Having already selected the users with a presumed homeplace location and created a dataset 
usershome containing these, the remaining steps regarding RO1 (see Section 3.2) were carried 
out next and are described in the following.  

Assuming that the sentiments of Twitter users expressed in their tweets depend on the 
neighbourhood characteristics to a certain degree, three criteria must be fulfilled to obtain a 
meaningful result in the regression analysis: First, The Twitter user must be a real person, 
rather than an automated account (bot) or an account managed by an organisation. Second, 
the presumed homeplace location of the user must be realistic, meaning that a location on a 
glacier, on a lake or in a sports stadium, for obvious reasons, most likely is not the user’s real 
homeplace. Third, the number of tweets of a user must have a substantial size to ensure 
statistical power (Biau et al., 2008). 

The first criterion was met by excluding users which exceed a defined threshold for the 
Botometer variable cap_universal and the M3-variable is_org (introduced in Subsection 4.1.2). 
As a recap: Both variables hold continuous values between 0 and 1, reflecting the probability 
of the user being an automated account or an organization respectively. When choosing the 
thresholds, two things had to be considered: On the one hand, it was of interest to minimize 
false positives (Banerjee et al., 2009) by setting the threshold value as low as possible. On the 
other hand, keeping the sample size as large as possible was crucial to ensure statistical 
power, and setting the threshold too low would result in excluding too many users. Having this 
in mind and carefully inspecting the distributions, a Threshold value of 0.5 was defined for the 
bot variable, excluding 17 users with a value above. As for the organisations variable is_org, 
a threshold of 0.9 was chosen, excluding 224 users with a value above. 

For the second criterion, it was first necessary to approximate the spatial coverage of 
residential areas in Switzerland. To simply use a dataset containing all building footprints would 
be very unprecise, as uninhabited buildings and facilities such as industrial areas, recreational 
areas, sports facilities, and event halls should not be included. Instead, the SEP data (see 
Section 4.4) was used as a point feature dataset, containing very precise locations of roughly 
1.5 million Swiss households. Using the ArcGIS tool Buffer, a buffer of 200 meters around the 
point locations was created, to represent the residential areas in Switzerland. Although 200 
meters may be considered as quite generous, it seemed reasonable to choose a radius of this 
size for the following reasons: The point locations of the households tend to be centred in the 
middle of the building footprints, and certain buildings may have a relatively large extent. 
Additionally, the uncertainty of the Twitter user’s homeplace location is not exactly known, and 
by choosing a too small buffer radius, there would be a risk to randomly exclude certain users. 

To verify the plausibility of the above-described approach, a second approach was carried out. 
A dataset of the statistics of population and households (STATPOP) of the year 2020, provided 
by the BFS was used. It is freely available as a CSV file and was first converted into a shapefile. 
The dataset divides the area of Switzerland into hectare-sized cells, each cell containing 
statistics about demographics like total population (which is equal to population density, given 
that every cell has the same area of one hectare), and population per age category. These 
precise statistics are irrelevant in this matter, however, all cells having a population greater 
than 0 show that the respective area is inhabited. Because the spatial division of the country 
through the grid lines is entirely arbitrary, it may often occur that a building is split into two cells, 
or that a building is located directly at the border of a cell. For this reason, a buffer of 100 
meters was computed around the cells, extending the spatial coverage of residential area in 
such a way, that slightly shifted homeplace locations of certain Twitter users are still included. 
This approach resulted in a very similar number of realistic homeplace locations, namely 1020 
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of the 1213 users in the usershome dataset, versus 1023 in the above approach using the SEP 
data. Hence, 193 users showed unrealistic homeplace locations and were therefore excluded 
(see Figure 8).  

As for the third criterion, being the minimum number of tweets of a user, the threshold was set 
at 100 tweets after inspecting the histogram. This seemed to be a substantial number of tweets 
to be analysed, whilst not excluding too many users. Applying this threshold, 85 users were 
excluded. 

As these criteria overlap, an excluded user may belong to more than one exclusion criterion. 
In addition to these three criteria, some more users had to be removed from the dataset, due 
to missing values for the M3-variables. In summary, of the 1213 users 733 fulfil all criteria and 
build the final dataset usersregression to be analysed in the regression models.  



 
Figure 8: Visualization of realistic and unrealistic presumed homeplace locations of users in the usershome dataset. 
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5.4  Estimating Neighbourhood Variables 

Having extracted the homeplace locations of users with a presumed homeplace, as a next 
step, the neighbourhood areas had to be defined. Because no assumptions about the 
movement pattern of the users can be made, the area around their homeplace where they 
potentially spend their time must be equal among all users analysed. Perhaps the most 
simplistic and trivial way to represent the neighbourhood around a point location, is to draw a 
circle with a specific radius, as seen in other studies (see Section 2.2). Choosing the same 
radius for every point location, instead of defining neighbourhoods individually based on e.g., 
road networks, ensures that the different neighbourhoods have a constant area. 

As mentioned in Section 2.2, in ecological studies it is common practice to define the “walking 
neighbourhood” as the area within a 1 kilometre or 1 mile distance around the homeplace 
location (Smith et al., 2010). Assuming an average walking speed of 5 kilometres per hour 
(Murtagh et al., 2021), a walking distance of 5 minutes would be equal to a metric distance of 
about 417 meters, and 834 meters for a 10-minute walking distance respectively. To choose a 
bit more convenient values, a radius of 500 meters and 1000 meters seemed adequate. It was 
decided to estimate the neighbourhood variables with both radius sizes, since both seemed 
equally plausible. 

After having defined the spatial extent of a neighbourhood, a further assumption had to be 
made concerning the time spent in different locations within the neighbourhood. Since this 
analysis tries to quantify the impact of the physical and social environment on a user’s tweeting 
behaviour, the closeness and the time exposed to a certain spatial phenomenon is crucial. For 
example, being exposed to the noise of a construction site for half an hour a day, will not affect 
the stress level of a person as much, as being exposed to the same noise throughout the entire 
day. Likewise, being exposed to that noise from a distance of, for example, 200 meters will not 
affect the stress level as much, as being located directly next to the construction site. 

Obviously, the time spent at different locations is not equally distributed within the neighbour-
hood area. It is trivial to assume that on average, a person spends more time at the homeplace 
location than in any other random location within the neighbourhood. The resident will most 
probably also spend more time directly around the homeplace location, say within a range of 
50 meters, for example to dispose of the green waste and the garbage bags, than at any 
location 500 meters away. Therefore, it is evident, that some form of weighting is needed to 
more accurately represent the impact of social and physical characteristics in a neighbourhood 
on the sentiments of a Twitter user, expressed in the user’s tweets.Since a weighting tailored 
to each individual neighbourhood would by far be too complex to implement, some form of 
Inverse Distance Weighting (IDW) seemed reasonable. This would give the neighbourhood 
variables the most weight exactly at the homeplace location, and the least weight at the 
perimeter of the neighbourhood area. This effect is also known as Distance Decay (Yin et al., 
2019). How this IDW was implemented, is elaborated in Subsection 5.4.1. 

The neighbourhood variable traffic noise was estimated once for daytime noise (noise_day), 
using the aforementioned buffer radii, and once for noise during the night (noise_night), using 
a buffer of 100 meters. The choice for the much smaller radius for night noise was made with 
the consideration, that the person is sleeping during the night and therefore not mobile. 
Nevertheless, instead of simply taking the traffic noise at the exact homeplace location as a 
point sample seemed too prone to error, because of the uncertainty of the estimated 
homeplace location’s accuracy. Moreover, no distance decay was applied to calculate 
noise_night due to the assumption of the person having a fixed location during the time period 
assigned to this variable, being from 10 pm to 6 am. 
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5.4.1 Modelling Distance Decay 

There are different functions to model distance decay, including exponential, logistic, gaussian, 
and linear, of which all would arguably be suitable in this case (Bauer & Groneberg, 2016; de 
Vries et al., 2009). Because the implementation of the exponential, logistic, and the gaussian 
distance decay is considerably more complex, whilst presumably not gaining much better fitting 
results, it was decided to choose a linear approach. In the following, the implementation of the 
distance decay approach using ArcGIS Pro and Python is described in detail. Note that it was 
carried out for all 1213 users of the usersall dataset, and not only for the 733 users of the 
usersregression dataset. This enabled the possibility to later include more than 733 users from 
usershome, in case the author should have retrospectively adjusted the exclusion criteria and 
thresholds. 

Workflow ArcGIS Pro 

First, buffers of 500 meters and 1000 meters were created around the 1213 homeplace 
locations, using the tool Buffer in ArcGIS, generating the dataset Neighbourhoods. Next, the 
tool Split Raster was used once for each of the three neighbourhood variable raster datasets 
as input raster, once with the 500 meters buffer layer and once with the 1000 meters buffer 
layer as the split method. The resulting 1213 rasters (Neighbourhood Variable Raster) were 
stored in the same folder, that is, for each combination (e.g. greenspace – 500 m) one separate 
folder. These rasters would now each contain all the cells within the defined neighbourhoods, 
each cell holding a value for one of the three examined neighbourhood characteristics 
greenspace, traffic noise, and socio-economic position. In a next step, these cell values 
needed to be weighted according to the chosen linear IDW. For the weighting process, a model 
was created in the ArcGIS Modelbuilder, which sequentially performs a number of calculations 
for each of the 1213 neighbourhood rasters as input data. The processing steps designed in 
the model, shown in Figure 9, were applied on all three neighbourhood variables for both 500 
meters and 1000 meters radius.  

In the following, each processing step is described in detail and the interim processing outputs 
are illustrated with figures. 

Figure 9: Workflow in the ArcGIS Pro Modelbuilder to implement distance decay. The blue 
elements are the inputs, the yellow elements are the processing tools, the green elements are the 

interim processing outputs. The final output is the Weighted Neighbourhood Variable Raster. 
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Step 1 - Select: The dataset Neighbourhoods was used as input data to select the 
neighbourhood area of a specific user via unique FID as the Area of Interest (AOI) for all the 
following steps and was saved as output Neighbourhood AOI (see Figure 10). 

Step 2 - Feature to Point: The polygon feature Neighbourhood AOI was used as input data to 
create the centroid point, which de facto is the homeplace location on which the neighbourhood 
area is based on and was saved as output AOI Centroid (Homeplace) (see Figure 11). This 
step may seem unnecessarily circumstantial, as it would also be possible to select the 
homeplace location via unique FID from the usershome dataset. However, this approach added 
some convenience to the workflow, which is why the author decided to do it in this manner. 

Figure 10: Neighbourhood 
Area of Interest (AOI) with 
a radius of 1000 meters in 
Geneva.  

Figure 11: AOI 
Centroid (Homeplace) 
derived from the 
Neighbourhood AOI. 
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Step 3 - Euclidean Distance: The point feature AOI Centroid (Homeplace) is used as input to 
calculate the Euclidean distance from the point outwards, with a maximum distance equal to 
the radius of the AOI, i.e., 500 meters or 1000 meters respectively, and a cell size of 50 meters. 
The output was saved as Distance Raster (see Figure 12) and covers the AOI with cell values 
ranging from 0 in the centre to 1000 (or 500 if radius is 500 m) at the perimeter, representing 
the distance in meters from each cell centre to the homeplace location. Note that the cells are 
not perfectly symmetrical around the homeplace location, because the underlying algorithm 
aligns the raster grid with the point of origin, choosing only one of the four cells around the 
origin as the closest cell with the value 0. However, this small shift of the grid is neglectable 
and has hardly any influence on the result. 

Step 4 - Normalisation: The raster Distance Raster is used as input to calculate a normalised 
weight mask to approximate linear distance decay. The normalization of the values between 0 
and the maximum distance was calculated using the following formula: 

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡 = 1 −  
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑊𝑊𝐸𝐸𝑊𝑊𝐸𝐸𝐸𝐸 𝐷𝐷𝑊𝑊𝐷𝐷𝑡𝑡𝐸𝐸𝐸𝐸𝐸𝐸𝑊𝑊 + 1
𝑅𝑅𝐸𝐸𝐸𝐸𝑊𝑊𝐸𝐸𝐷𝐷𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ𝑏𝑏𝑏𝑏𝑜𝑜 + 40

Three numeric examples with Euclidean Distance of 0, 500, and 1000, and Radius of 1000: 

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡0 = 1 −  
0 + 1

1000 + 40 
= 1 −  

1
1040

= 1 − 0.001 = 0.999 ≈ 𝟏𝟏 

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡500 = 1 −  
500 + 1

1000 + 40 
= 1 −  

501
1040

= 1 − 0.482 = 0.518 ≈ 𝟎𝟎.𝟓𝟓 

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡1000 = 1 −  
1000 + 1

1000 + 40 
= 1 −  

1001
1040

= 1 − 0.963 = 0.037 ≈ 𝟎𝟎 

Figure 12: Distance 
Raster indicating close 
cells in black and 
distant cells in white. 
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As already mentioned above, the raster grid is shifted by half of a cell size, i.e., 25 meters in 
both X and Y axis, leading to maximum distance values of slightly above 1000 meters, 
potentially up to 1037.5 meters. Adding 40 to the neighbourhood radius prevents the resulting 
weight to take negative values. The output raster was saved as Distance Decay Mask (see 
Figure 13), and includes continuous values between 0 and 1, which serve as factors to weight 
the cell values of the three neighbourhood variables greenspace, traffic noise, and socio-
economic position.   

Step 5 - Weighting: The raster Distance Decay Mask is used as input to be multiplied with the 
Neighbourhood Variable Raster, here at the example of the greenspace raster (see Figure 14), 
which was previously clipped to the AOI. The final output of the modelled process chain is the 
Weighted Neighbourhood Variable Raster, shown in Figure 15 at the example of the weighted 
greenspace raster.  

Figure 13: Normalised 
Distance Raster taking 
continuous values be-
tween 0 and 1 (distance 
decay factor). 

Figure 14: Greenspace 
raster clipped to AOI. 
Dark green cells indicate 
areas with high green-
space quality, light green 
cells indicate areas with 
low greenspace quality. 
White cells mean there is 
no greenspace. 



36 

When comparing Figure 14 with Figure 15, it can be clearly seen how the colour saturation of 
the green cells tends to decrease towards the perimeter after the inverse distance weighting. 
The lower the colour saturation of a cell, the lower the underlying value. Hence, when 
calculating the mean value within the AOI, the outer cells have lesser influence on the result 
than the ones close to the homeplace.   

These 5 processing steps had to be applied on 1213 neighbourhoods, which is why the 
procedure had to be automated. Although the ArcGIS Pro Modelbuilder features an iteration 
functionality, it was decided to export the model as a Python script. Experience shows that 
running the process chain in ArcGIS Pro has a longer computing time and tends to be more 
error prone, than executing it as a Python script. This process is explained in the following 
subsection. 

5.4.2 Parallel Processing 

After exporting the process chain to Python, some adjustments and additions in the script had 
to be made. First, all processing steps were embedded in a for loop, iterating through all the 
different neighbourhoods. Secondly, the mean cell value of the resulting weighted raster at the 
end of each iteration was calculated and stored in an array and finally in a CSV file. This value 
was later assigned to the corresponding user living in that neighbourhood via FID. Finally, the 
script was copied, once for every neighbourhood variable (greenspace, traffic noise, and SEP), 
and once for each neighbourhood radius (500 m, and 1000 m), making 6 scripts in total. After 
adjusting some parameters and the input and output paths according to variable and radius, 
the first script was tested by running it via Command Prompt. When reading the printed 
computing time of about 1 minute per iteration, it became immediately clear that scaling it up 
to 1213 iterations would result in a computing time of almost a day. Multiplying it by the number 
of scripts would take up nearly an entire week. Since certain errors and misconceptions may 
only be detected after having executed the whole procedure, making it necessary to be 
repeated one or multiple times, doing it in this manner was not feasible. The 1213 iterations 
had to be divided into multiple equal parts and needed to be run simultaneously to reduce 

Figure 15: Weighted 
greenspace raster. Here, 
the green tones do not 
directly represent green-
space quality, but rather 
reflect the impact of the 
greenspace at that parti-
cular location on the 
resident living at the red 
dot. High quality green-
space further away may 
have less positive influ-
ence on the resident than 
close greenspace with 
moderate quality. 
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computing time. It was decided to split the input data into 8 parts, each part being processed 
by a separate Python script. This led to a computing time of 2 to 3 hours per neighbourhood 
variable and radius. After adjusting the input and output directory paths according to the script 
numbers 1 to 8, all scripts were successfully run and the resulting CSV files containing the 
mean values of the neighbourhood variables for each homeplace were joined with the 
usershome dataset by FID. In total, 7 neighbourhood variables were generated in this process. 
The variable names are green_500, green_1000, day_500, day_1000, ssep_500, ssep_1000, 
and night_100. Green_500 and green_1000 representing greenspace for a 500 m radius, and 
a 1000 m radius, day_500 and day_1000 for daytime traffic noise, ssep_500 and ssep_1000 
for SEP, and finally, night_100 for traffic noise during night. The general Python script can be 
found in the Appendix A.3.  

5.5 Regression Analysis 

Having estimated and added the neighbourhood variables greenspace, traffic noise, and SEP 
to the dataset usershome, the main preparatory steps for the regression analysis were 
completed. In this section, the last remaining steps within the data preparation phase are 
explained, an exploratory data analysis (EDA) is performed, and finally, the approach for the 
regression analysis is described. The 5 variables listed in Table 10 were introduced in 
Subsection 5.2.1 and represent the outcome variables for the regression models. For each 
outcome variable, a separate regression model was built, which is explained in detail in 
Subsection 5.5.2. 

Table 10: Variables used as the outcome variables for the regression models 

Variable Description 

rate_neg Ratio of tweets with negative emotions / total tweets 
rate_happy Ratio of tweets with the emotion happiness / total tweets 
rate_stress Ratio of tweets with stress / total tweets 
negemo Percentage of words considered as emotionally negative in all tweets 
posemo Percentage of words considered as emotionally positive in all tweets 

5.5.1 Choice of Regression Model 

After having prepared the dataset for the regression analysis, the next step was to choose the 
right type of regression model. To start, the assumptions for a multiple linear regression were 
checked. The first assumption to be met is an existing linear relationship between each 
explanatory variable and the outcome variable (Schreiber-Gregory & Bader, 2018). 

Figure 16 shows that no linear relationship was found when plotting each of the 5 outcome 
variables with each of the 7 neighbourhood variables.  
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Figure 16: Scatterplots between all 7 neighbourhood variables and the 5 outcome variables for 
the regression model. No clear linear relationship is visible. 
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Therefore, the assumptions for a multiple linear regression were not met. Instead, it was 
decided to perform a multiple logistic regression. To do so, new variables were generated, 
dividing the continuous values of the outcome variables into a binary classification with the 
values 0 and 1. These new variables were named rate_neg_01, rate_happy_01, 
rate_stress_01, negemo_01, posemo_01 and replace the continuous outcome variables for 
the logistic regression models. 

5.5.2 Multiple Logistic Regression 

The aim was to build a multiple logistic regression model for each of the 5 outcome variables, 
using the three neighbourhood variables greenspace, traffic noise, and SEP as the main 
explanatory variables. One variable representing gender, one variable for age, and one 
variable representing urban-/rural-typology were added to the regression models as control 
variables.  

Before defining the exact regression models, the different potential explanatory variables were 
tested for multicollinearity. The resulting correlation matrix is illustrated in Figure 6.10 and 
discussed in Subsection 6.13 of the next Chapter. 

The basic regression model is defined as follows: 

𝑌𝑌 =  𝛽𝛽0 +  𝛽𝛽1  ∗  𝐺𝐺𝑊𝑊𝐸𝐸𝐸𝐸𝑊𝑊𝐺𝐺 +  𝛽𝛽2  ∗  𝐴𝐴𝑊𝑊𝑊𝑊 +  𝛽𝛽3  ∗  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐸𝐸𝑇𝑇𝑊𝑊𝑇𝑇 +  𝛽𝛽4  ∗  𝐺𝐺𝐺𝐺𝑊𝑊𝑊𝑊𝐸𝐸𝐷𝐷𝑇𝑇𝐸𝐸𝐸𝐸𝑊𝑊 + 𝛽𝛽5  ∗  𝑁𝑁𝑇𝑇𝑊𝑊𝐷𝐷𝑊𝑊 
+ 𝛽𝛽6  ∗  𝑆𝑆𝐸𝐸𝑆𝑆

In addition, interaction terms between all the explanatory variables were added to the model: 

𝑌𝑌 =  𝛽𝛽0 +  𝛽𝛽1  ∗  𝐺𝐺𝑊𝑊𝐸𝐸𝐸𝐸𝑊𝑊𝐺𝐺 +  𝛽𝛽2  ∗  𝐴𝐴𝑊𝑊𝑊𝑊 +  𝛽𝛽3  ∗  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐸𝐸𝑇𝑇𝑊𝑊𝑇𝑇 +  𝛽𝛽4  ∗  𝐺𝐺𝐺𝐺𝑊𝑊𝑊𝑊𝐸𝐸𝐷𝐷𝑇𝑇𝐸𝐸𝐸𝐸𝑊𝑊 + 𝛽𝛽5  ∗  𝑁𝑁𝑇𝑇𝑊𝑊𝐷𝐷𝑊𝑊 
+ 𝛽𝛽6  ∗  𝑆𝑆𝐸𝐸𝑆𝑆 +  𝛽𝛽7  ∗  𝐺𝐺𝑊𝑊𝐸𝐸𝐸𝐸𝑊𝑊𝐺𝐺 ×  𝐴𝐴𝑊𝑊𝑊𝑊 +  𝛽𝛽8  ∗  𝐺𝐺𝑊𝑊𝐸𝐸𝐸𝐸𝑊𝑊𝐺𝐺 ×  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐸𝐸𝑇𝑇𝑊𝑊𝑇𝑇 +  𝛽𝛽9
∗  𝐺𝐺𝑊𝑊𝐸𝐸𝐸𝐸𝑊𝑊𝐺𝐺 ×  𝐺𝐺𝐺𝐺𝑊𝑊𝑊𝑊𝐸𝐸𝐷𝐷𝑇𝑇𝐸𝐸𝐸𝐸𝑊𝑊 +  𝛽𝛽10  ∗  𝐺𝐺𝑊𝑊𝐸𝐸𝐸𝐸𝑊𝑊𝐺𝐺 ×  𝑁𝑁𝑇𝑇𝑊𝑊𝐷𝐷𝑊𝑊 +  𝛽𝛽11  ∗  𝐺𝐺𝑊𝑊𝐸𝐸𝐸𝐸𝑊𝑊𝐺𝐺 ×  𝑆𝑆𝐸𝐸𝑆𝑆
+ 𝛽𝛽12  ∗  𝐴𝐴𝑊𝑊𝑊𝑊 ×  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐸𝐸𝑇𝑇𝑊𝑊𝑇𝑇 +  𝛽𝛽13  ∗  𝐴𝐴𝑊𝑊𝑊𝑊 ×  𝐺𝐺𝐺𝐺𝑊𝑊𝑊𝑊𝐸𝐸𝐷𝐷𝑇𝑇𝐸𝐸𝐸𝐸𝑊𝑊 + 𝛽𝛽14  ∗  𝐴𝐴𝑊𝑊𝑊𝑊 ×  𝑆𝑆𝐸𝐸𝑆𝑆
+ 𝛽𝛽15  ∗  𝐴𝐴𝑊𝑊𝑊𝑊 ×  𝑁𝑁𝑇𝑇𝑊𝑊𝐷𝐷𝑊𝑊 +  𝛽𝛽16  ∗  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐸𝐸𝑇𝑇𝑊𝑊𝑇𝑇 ×  𝐺𝐺𝐺𝐺𝑊𝑊𝑊𝑊𝐸𝐸𝐷𝐷𝑇𝑇𝐸𝐸𝐸𝐸𝑊𝑊 + 𝛽𝛽17
∗  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐸𝐸𝑇𝑇𝑊𝑊𝑇𝑇 ×  𝑆𝑆𝐸𝐸𝑆𝑆 +  𝛽𝛽18  ∗  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐸𝐸𝑇𝑇𝑊𝑊𝑇𝑇 ×  𝑁𝑁𝑇𝑇𝑊𝑊𝐷𝐷𝑊𝑊 +  𝛽𝛽19  ∗  𝐺𝐺𝐺𝐺𝑊𝑊𝑊𝑊𝐸𝐸𝐷𝐷𝑇𝑇𝐸𝐸𝐸𝐸𝑊𝑊 ×  𝑆𝑆𝐸𝐸𝑆𝑆 
+ 𝛽𝛽20  ∗  𝐺𝐺𝐺𝐺𝑊𝑊𝑊𝑊𝐸𝐸𝐷𝐷𝑇𝑇𝐸𝐸𝐸𝐸𝑊𝑊 ×  𝑁𝑁𝑇𝑇𝑊𝑊𝐷𝐷𝑊𝑊 +  𝛽𝛽21  ∗  𝑁𝑁𝑇𝑇𝑊𝑊𝐷𝐷𝑊𝑊 ×  𝑆𝑆𝐸𝐸𝑆𝑆 

In R, the function stepAIC() was used on the model for each outcome variable separately. In 
this manner, the optimal set of variables for each outcome variable is produced. The resulting 
regression equations are shown in the Subsections 6.3.1 and 6.3.2. 
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Chapter 6 | Results 

The results of the thesis are described and visualised in this chapter. First, the descriptive 
statistics about the analysed dataset usersregression are shown. Then, the representativeness of 
usersregression is reviewed, comparing it to usersall. And finally, the regression models for each 
outcome variable are presented and their outputs are described in detail. The results of the 
regression analysis elaborated in this chapter are all based on the neighbourhood variables 
for the 500 meters radius. From now on, the 4 neighbourhood variables green_500, day_500, 
ssep_500, and night_100 are referred to as greenspace, day_noise, sep, and night_noise. 

6.1 Characteristics of Analysed Users 

This section shows the spatial distribution of the homeplace locations of the analysed users, 
the distributions of the most relevant variables, as well as correlations between the variables. 

6.1.1 Spatial Distribution 

Figure 17 shows the spatial distribution of the homeplace locations of the 733 users analysed 
in the regression analysis (usersregression). Most of the points are concentrated in the area in and 
around the city of Geneva (~ 190 homeplaces), the city of Zürich (~ 75 homeplaces), the city 
of Basel (~ 58 homeplaces), Lausanne (~ 49 homeplaces), and Lugano (~ 30 homeplaces). 
More than a quarter of the 733 total users are therefore located in or around the city of Geneva, 
which is about two and a half times more than in and around the city of Zürich. Although there 
are single locations in rural areas and in alpine regions, the vast majority of the points is 
concentrated in the cities. An alternative visualization showing clusters with the number of 
homeplace locations within the clusters can be found in Appendix A.2. It may give a better 
overview of the actual number of points at specific locations and reveals that there is a 
disproportionally high number of homeplace locations in Davos. 

6.1.2 Distributions of Variables 

In this subsection, the distributions of the most relevant variables of usersregression are illustrated 
with histograms, which are briefly described. The following descriptive statistics for each 
variable are pointed out: mean (average value), min (lowest value), max (highest value), 
median (median value), sd (standard deviation). The red vertical line marks the mean of the 
variable.  
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Figure 17: Visualization of the spatial distribution of the analyzed users’ presumed 
homeplace locations 
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The variable n_tweets stands for the total number of tweets per user. For most of the users 
around 200 tweets were available. This is due to the rehydration process described in 
Subsection 4.1.1, where the last 200 tweets of each user have been collected. For n_tweets, 
these are the descriptive statistics: mean = 236.5, min = 100, max = 2995, median = 210, sd 
= 181.5. The min is exactly 100 because of the cut-off mentioned in Section 5.3. Because not 
only the tweets from the rehydrated datasets tweetsenglish and tweetsnon-english have been used, 
but also the ones from tweetsgeoloc, for some users there are more than 200 tweets available. 
Only for 21 users there are more than 500 tweets. The distribution is roughly bell shaped 
between 100 and 400 and shows a few far outliers on the right side. 

The variable n_emo stands for the number of tweets per user which EMOTIVE successfully 
classified into an emotion category. For n_emo, these are the descriptive statistics: mean = 
16.4, min = 0, max = 209, median = 14, sd = 14.6.  There are 12 users with 0 emotional tweets. 
16 users have more than 50 emotional tweets. The distribution is strongly skewed and shows 
a few outliers on the right side. 

The variable n_stress stands for the number of tweets per user where Stresscapes assigned 
a stress value greater than 0. In other words, n_stress counts the number of “stressed” tweets 
per user. For n_stress, these are the descriptive statistics: mean = 8.1, min = 0, max = 236, 
median = 6, sd = 11.9. The number of users showing 0 “stressed” tweets is 56. The number of 
users having more than 25 “stressed” tweets is 16. The distribution is right skewed and shows 
very few far outliers on the right side. 

Figure 18: Histograms showing the number of tweets (n_tweets), the number of emotional 
tweets (n_emo), and the number of “stressed” tweets (n_stress) of each user in the dataset 
usersregression. 

Number of Tweets: Total, Emotional, and Stressed 
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The variable is_bot stands for the probability of the user being an automated account (bot). 
For is_bot, these are the descriptive statistics: mean = 0.028, min = 0, max = 0.475, median = 
0.006, sd = 0.058. Only 3 users have a 0% probability of being a bot. The maximum is 0.475, 
because of the exclusion of users having a probability higher than 50% (see Section 5.3). The 
number of users having a probability higher than 10% of being an automated account is 55. 
The distribution is strongly right skewed and shows a few far outliers on the right side.  

The variable is_org stands for the probability of the user being an account managed by an 
organisation. For is_org, these are the descriptive statistics: mean = 0.245, min = 0, max = 
0.897, median = 0.148, sd = 0.255. The maximum probability is 0.897, because of the cut-off 
at 0.9 (see Section 5.3). A value above 50% is found in 134 users, and 53 users have a 
probability higher than 75% of being an account managed by an organisation. The distribution 
is right skewed with two small additional modi at around 0.5 and at the right end.  

The variable gender_female stands for the probability of the user being of the female gender. 
The variable gender_male has the exact same distribution, but mirror inverted, because the 
sum of the two gender variables always equals 1. Since one of the two variables is redundant, 
the variable gender_female was chosen for the analysis. For gender_female, these are the 
descriptive statistics: mean = 0.382, min = 0, max = 0.9996, median = 0.177, sd = 0.391. Only 
1 user has a value of 0. For 277 users, the probability of being of the female gender, is higher 
than 50%. The distribution is clearly bimodal, with the main mode close to 0, and the second 

Probability of User Being Bot or Organisation 

Figure 19: Histograms of probabilities of user being an automated account (is_bot) or an 
account managed by an organisation (is_org). 

Probability of User Being Female 

Figure 20: Histogram of probability of user being female. 
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mode close to 1. Between 0 and 0.25 the distribution is right skewed, between 0.25 and 0.75 
it tends to be uniformly distributed, and between 0.75 and 1 it is left skewed. 

The four age variables derived with the M3-method divide the estimated age of a user into 4 
categories: below 19 (age_under_19), 19 to 29 (age_19_to_29), 30 to 39 (age_30_to_39), and 
above 39 (age_40_plus). 

The variable age_under_19 stands for the probability of the user being Age under 19. For 
age_under_19, these are the descriptive statistics: mean = 0.148, min = 0, max = 0.994, 
median = 0.044, sd = 0.206. 7 users have the minimum probability of 0. The number of users 
with a value greater than 50% is 59, and with a value greater than 25% there are 160 users. 
The distribution is strongly right skewed. 

The variable age_19_to_29 stands for the probability of the user being of age between and 
including 19 to 29. For age_19_to_29, these are the descriptive statistics: mean = 0.196, min 
= 0, max = 0.995, median = 0.106, sd = 0.222. Only 1 user has the probability of 0. A probability 
above 50% of being in this age category is found in 77 users, and above 25% there are 219 
users. The distribution is right skewed. 

The variable age_30_to_39 stands for the probability of the user being of age between and 
including 30 to 39. For age_30_to_39, these are the descriptive statistics: mean = 0.294, min 

M3 Age Category Variables 

Figure 21: Histograms of probabilities of user belonging to the respective age categories. 
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= 0, max = 0.988, median = 0.26, sd = 0.224. 3 users have the value 0. For 141 users the 
probability of being in this age category is higher than 50% and for 377 users the probability is 
above 25%, which is roughly half of the sample size. The distribution is slightly right skewed. 

The variable age_40_plus stands for the probability of the user being of age 40 or older. For 
age_40_plus, these are the descriptive statistics: mean = 0.362, min = 0, max = 0.9998, 
median = 0.298, sd = 0.306. 6 users have the value 0. The number of users having a probability 
higher than 50% of belonging to this age category is 241, which is roughly a third of the sample. 
395 users have a probability higher than 25% of belonging to this age category. The distribution 
tends to be right skewed between 0 and 0.25 and tends to be uniformly distributed between 
0.25 and 1. 

The values of the four neighbourhood variables were rescaled between 0 and 10 to make them 
more convenient, since the values have no directly interpretable meaning. Therefore, the 
maximum value of the four variables is always 10. 

The variable greenspace represents the “greenness” of the neighbourhood in which the 
homeplace location of a user is centred in. The variable combines the amount, the closeness, 
and the quality of the available greenspace within 500 meters of the homeplace location. 
Higher values mean that the neighbourhood is “greener”, lower values mean that the 
neighbourhood is less green. For greenspace, these are the descriptive statistcs: mean = 3.61, 

Neighbourhood Variables 

Figure 22: Histograms of the neighbourhood variables based on a 500 meters radius. 
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min = 0.27, max = 10, median = 3.69, sd = 1.86. The distribution is roughly symmetric around 
the mean, with a slight tendency to a bell shape. There are a few outliers on the right. 

The variable day_noise represents the exposure of the user to traffic noise during day time, 
that is, between 6 am and 10 pm, within 500 meters of the homeplace location. Higher values 
mean higher exposure to traffic noise, lower values mean less exposure.  For day_noise, these 
are the descriptive statistcs: mean = 7.98, min = 0, max = 10, median = 8.19, sd = 1.39. There 
are 8 users with the value 0. The distribution tends to be bell shaped with some far outliers on 
the left. 

The variable night_noise represents the exposure of the user to traffic noise during night, that 
is, between 10 pm and 6 am. For this variable, it is assumed that the user is sleeping and has 
therefore a fixed position. For night_noise, these are the descriptive statistcs: mean = 6.18, 
min = 0, max = 10, median = 6.2, sd = 1.49. There are 11 users with the value 0. The distribution 
has the tendency of a flattened bell shape with a few outliers on the left. 

The variable sep represents the socio-economic position of the neighbourhood in which the 
homeplace location of a user is centred in. Higher values mean that the socio-economic 
position is higher, lower values the opposite. For sep, these are the descriptive statistcs: mean 
= 5.48, min = 1.91, max = 10, median = 5.49, sd = 1.01. The distribution is bell shaped with no 
significant outliers. 

The variable typology classifies the homeplace locations of the users into the three categories 
rural, intermediate, and urban based on the dataset introduced in Section 4.5. Out of the 733 
total users, 613 fall into the category urban, 79 into the category intermediate, and 41 into the 
category rural. 

Since the users belonging to the category urban heavily outnumber the users of the other two 
categories, it was decided to produce a new binary variable named urban_01. This new 
variable assigns the value 0 to users belonging to the typology rural or intermediate, and the 
value 1 to the ones belonging to the typology urban. The variable urban_01 replaced the 
variable typology in the regression models. 

Figure 23: Barplot of number of users in each of the three urban-/rural-typology. 
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The variable rate_neg stands for the ratio between the number of tweets where EMOTIVE 
found at least 1 negative emotion, and the total number of tweets. For rate_neg, these are the 
descriptive statistics: mean = 0.024, min = 0, max = 0.161, median = 0.02, sd = 0.02. The value 
0 is found in 83 users. Only 5 users expressed negative emotions in more than 10% of their 
tweets. The distribution is right skewed with no significant outliers.  

The variable rate_happy stands for the ratio between the number of tweets where EMOTIVE 
found the emotion “happiness”, and the total number of tweets. For rate_happy, these are the 
descriptive statistics: mean = 0.039, min = 0, max = 0.481, median = 0.031, sd = 0.038. The 
value 0 is found in 34 users. 40 users expressed the emotion “happiness” in more than 10% 
of their tweets. The distribution is right skewed with only 2 significant outliers on the right. 

The variable rate_stress stands for the ratio between the number of tweets where the NLP-
algorithm Stresscapes recognized stress, and the total number of tweets. For rate_stress, 
these are the descriptive statistics: mean = 0.034, min = 0, max = 0.168, median = 0.029, sd 
= 0.027. The value 0 is found in 56 users. There are 19 users, for which in more than 10% of 
the tweets stress was recognized. The distribution is right skewed with no significant outliers. 

Outcome Variables from EMOTIVE and Stresscapes 

Figure 24: Histograms of rates of emotionally negative tweets (rate_neg), tweets expressing 
the emotion happiness (rate_happy), and tweets indicating stress (rate_stress). 
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The variable negemo stands for the percentage of words in all tweets which were associated 
with negative emotions, using the NLP-algorithm LIWC. For negemo, these are the descriptive 
statistics: mean = 1.02, min = 0, max = 3.33, median = 0.88, sd = 0.652. There are 7 users 
with the value 0. The distribution is right skewed with no outliers. 

The variable posemo stands for the percentage of words in all tweets which were associated 
with positive emotions, using the NLP-algorithm LIWC. For posemo, these are the descriptive 
statistics: mean = 3.08, min = 0, max = 13.58, median = 2.93, sd = 1.49. Only 1 user has the 
value 0. There are 9 users, for which more than 7.5% of their tweeted words were associated 
with positive emotions. The distribution has a bell shape with a few significant outliers on the 
right.  

6.1.3 Correlation Between Variables 

In this section, the correlation between the different explanatory variables, as well as between 
the different outcome variables are examined. For this purpose, two correlation matrices were 
created. One for the explanatory variables, and one for the outcome variables.  

Figure 26 shows the correlation matrix of the explanatory variables as a heatmap. The 
explanatory variables include: gender_female to represent gender, the four age categories 
age_under_19, age_19_to_29, age_30_to_39, and age_40_plus to represent age, and finally 
the four neighbourhood variables greenspace, day_noise, night_noise, and sep to represent 
the physical and social characteristics of the neighbourhood. The values in the cells are the 
Pearson correlation coefficients (PCC) between the two corresponding variables on the X- and 
on the Y-axis. The correlations can take values between -1 and 1, where -1 indicates a perfect 
negative correlation and 1 a perfect positive correlation. 

Outcome Variables from LIWC 

Figure 25: Histograms of percentage of words in all tweets for each user expressing 
negative emotions (negemo), and positive emotions (posemo). 
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In Table 11, all correlations above an absolute value of 0.2 are listed from highest to lowest 
absolute PCC. 

Table 11: Pearson correlation coefficient between explanatory variables 

Variable 1 Variable 2 
Pearson Correlation 

Coefficient 
day_noise night_noise 0.82 
age_19_to_29 age_40_plus -0.66
greenspace day_noise -0.56
age_under_19 age_40_plus -0.55
greenspace night_noise -0.45
age_under_19 age_30_to_39 -0.42
gender_female age_40_plus -0.36
age_19_to_29 age_30_to_39 -0.33
gender_female age_19_to_29 0.32
age_under_19 age_19_to_29 0.25
age_under_19 gender_female 0.23
age_30_to_39 age_40_plus -0.21

Figure 26: Correlation matrix as a heatmap showing correlations between explanatory variables 
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In Figure 27, scatterplots between the three neighbourhood variables greenspace, day_noise, 
and night_noise are illustrated to visually underline the Pearson correlation coefficients 
between the pairs.  

When inspecting the scatterplots, it can be confirmed that there is a strong positive linear 
association between day_noise and night_noise. The variables greenspace and day_noise 
tend to have a moderately strong negative linear association. Lastly, night_noise and 
greenspace show a rather weak negative linear association.  

Figure 28 shows the correlation matrix of 
the outcome variables as a heatmap. 
rate_neg shows the same PCC with 
rate_stress as with negemo, which is 
0.65. The PCC between negemo and 
rate_stress is very similar with a value of 
0.62. The variables associated with 
positive emotions, being posemo and 
rate_happy, show a PCC of 0.53. 

The Scatterplots of these 4 mentioned 
correlation pairs are shown in Figure 29. 
All 4 variable pairs show a similar 
correlation pattern, that is, a moderately 
strong positive linear association. 

Figure 27: Scatterplots of the neighbourhood variable pairs with the highest PCCs. 

Figure 28: Correlation matrix as a heatmap 
showing correlations between outcome variables 
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Figure 29: Scatterplots of pairs of outcome variables with the highest PCCs. 
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6.2 Representativeness of Subset 

In this section, the representativeness of the subset usersregression is assessed, by comparing 
the variable distributions to the distributions of the dataset usersall. The distributions are 
compared using violin plots. The red point in the violin plots marks the mean of the variable, 
and the blue point marks the median. Some plots were cut at the y-axis, to focus on the range 
where most data points lie within.  

The variable n_tweets of usersall has a lower mean than in usersregression, due to the exclusion 
of users with less than 100 tweets in usersregression. Also, the distribution of usersall is steeper 
around the mode, and the median is slightly lower. The variable n_emo has slightly higher 
mean and median values in usersregression, and roughly between the values 5 and 20, the 
distribution is more uniform. For the variable n_stress, the distributions as well as the 
differences in the distributions are very similar to the variable n_emo.  

For is_bot, the main difference in the distributions is towards 0, where usersall has a higher 
mode with a steeper slope. The variable is_org has a lower mean and a higher median in 
usersregression due to the cut off at 0.9. Further, usersregression shows a less steep slope towards 
0. When comparing the variable gender_female between both datasets, it can be observed
that the bimodal distribution is less extreme for usersregression. The mass in the two modes is
partially shifted towards the center.

Figure 30: Violin plots comparing the distributions of the number of tweets (n_tweets), number 
of emotional tweets (n_emo), and number of stressed tweets (n_stress) per user. 

Figure 31: Violin plots comparing the distributions of the probabilities of the user being an 
automated account (is_bot), an account managed by an organisation (is_org), or being female 
(gender_female). 
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The variable age_under_19 shows a slightly lower median in usersregression. In age_19_to_29, 
both mean and median have a slightly lower value in usersregression. The same applies for the 
variable age_30_to_39. Finally, in age_40_plus a both higher mean and median can be 
observed in usersregression. Allthough the distributions in the four age category variables look 
relatively similar in both datasets, generally speaking, the slope towards 0 is less steep in all 
four variables.  

Figure 32: Violin plots comparing the distributions of the probabilities of the user belonging to 
the respective age categories. 

Figure 33: Violin plots comparing the rates of emotionally negative tweets (rate_neg), 
tweets expressing the emotion happiness (rate_happy), and tweets indicating stress 

(rate_stress). 

Figure 34: Violin plots comparing the percentages of words in all 
tweets for each user expressing negative emotions (negemo), and 

positive emotions (posemo). 
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For all three outcome variables rate_neg, rate_happy, and rate_stress, the distributions 
between the two datasets look very similar. However, one difference which can be observed 
in all three variables, is the monotonous decrease between the mode and 0 in usersregression, 
while in usersall, the distribution has a turning point and increases again towards 0. The 
differences in mean and median are barely observable in all three plots. 

For the two outcome variables negemo and posemo, the differences are quite large, especially 
for negemo. The violin plots of usersall show an accumulation of values at or near 0. The 
differences in the means are also well observable. 

Additionally, a two-sample t-test to assess the difference in means of the two datasets for each 
of the compared variables was carried out. It was once tested between usersregression and 
usersall, and once between usersregression and usersfiltered. The latter one is the same dataset as 
usersall, but without users having less than 100 tweets, or a probability higher than 0.5 of being 
a bot, or a probability higher than 0.9 of being an organisational account. In short, the same 
exclusion criteria were applied as for the dataset usersregression. Table 12 shows the mean 
values of each variable for all three datasets, and the p-values for each variable, once for each 
of the two compared dataset pairs. 

The p-values for the differences in means between usersregression and usersall are all under a 
significance level of 5%, except for the variables gender_female, age_under_19, 
age_30_to_39, rate_neg, and rate_stress. When calculating the p-values for the differences in 
means between usersregression and usersfiltered, all values show a significance level below 5%, 
expect for is_bot, gender_female, age_under_19, and rate_neg. Additionally, the variable 
rate_stress has a p-value of 0.011 which is just over the significance level of 1%. 

Table 12: Mean values of the three compared datasets and p-values for difference in means. 

variable 
mean p-value

usersall usersregression usersfiltered usersall usersfiltered 
n_tweets 169.69 236.48 185.85 2.2 * 10-16 1.3 * 10-13 

n_emo 13.16 16.40 14.60 3.1 * 10-9 0.00088 
n_stress 6.07 8.14 6.82 3.0 * 10-6 0.0028 
is_bot 0.043 0.027 0.026 3.8 * 10-13 0.556 
is_org 0.281 0.245 0.214 0.00016 0.0011 

gender_female 0.366 0.381 0.373 0.294 0.535 
age_under_19 0.149 0.148 0.145 0.816 0.715 
age_19_to_29 0.217 0.195 0.229 0.0083 6.3 * 10-5 

age_30_to_39 0.308 0.294 0.325 0.088 0.00018 
age_40_plus 0.324 0.362 0.300 0.00094 7.8 * 10-8 

rate_neg 0.024 0.023 0.025 0.634 0.068 
rate_happy 0.043 0.039 0.044 0.0088 0.0021 
rate_stress 0.035 0.034 0.037 0.137 0.011 
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6.3 Regression Models 

In this section, the regression models are introduced, and the resulting outputs are described. 
For each of the five dependent variables, two regression models were produced. One with 
traffic noise during day time as an explanatory variable, and one with traffic noise during night. 

Since the R function stepAIC() was used to fit the best regression model for each dependent 
variable, the number of explanatory variables may differ among the dependent variables. 
Some explanatory variables were automatically excluded from the initial model as they did not 
contribute to an improvement of the model. Furthermore, since the four age category variables 
have the tendency to correlate with each other, as seen in Subsection 6.1.3, it was decided to 
only include the variable age_under_19 into the models. This variable, representing the 
youngest age category, tended to contribute the most to the models. 

In the Subsections 6.3.1 and 6.3.2, the equations of the five different logistic regression models 
are noted down. To improve readability, the variable names have been replaced with more 
convenient names.  Interaction terms indicating the interaction between two variables are 
noted down with a multiplication cross (✕). In the Tables 13 and 14, the regression model
outputs are listed, indicating the coefficient values with their standard errors in brackets, and 
whether the independent variables are significant. The significance of an independent variable 
is marked with one star (*) if its p-value is under 5%, two stars (**) if its p-value is under 1%, 
and three stars (***) if its p-value is under 0.1%. 

6.3.1 Regression Models with Day Noise 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝐸𝐸𝐸𝐸𝐸𝐸𝑁𝑁𝑁𝑁𝐸𝐸𝐸𝐸𝐸𝐸
=  𝛽𝛽0 +   𝛽𝛽1 ∗  𝐺𝐺𝑁𝑁𝐸𝐸𝐺𝐺𝑁𝑁𝐺𝐺 𝐹𝐹𝑁𝑁𝐸𝐸𝑁𝑁𝐹𝐹𝑁𝑁  +   𝛽𝛽2 ∗  𝐴𝐴𝑁𝑁𝑁𝑁 𝑢𝑢𝐸𝐸𝐺𝐺𝑁𝑁𝐺𝐺 19  +   𝛽𝛽3
∗  𝐸𝐸𝑇𝑇𝑇𝑇𝐸𝐸𝐹𝐹𝐸𝐸𝑁𝑁𝑇𝑇 𝑈𝑈𝐺𝐺𝑈𝑈𝑁𝑁𝐸𝐸  +   𝛽𝛽4 ∗  𝑆𝑆𝐸𝐸𝑆𝑆  +   𝛽𝛽5
∗  𝐺𝐺𝑁𝑁𝐸𝐸𝐺𝐺𝑁𝑁𝐺𝐺 𝐹𝐹𝑁𝑁𝐸𝐸𝑁𝑁𝐹𝐹𝑁𝑁 ×  𝐸𝐸𝑇𝑇𝑇𝑇𝐸𝐸𝐹𝐹𝐸𝐸𝑁𝑁𝑇𝑇 𝑈𝑈𝐺𝐺𝑈𝑈𝑁𝑁𝐸𝐸  +   𝛽𝛽6 ∗  𝐴𝐴𝑁𝑁𝑁𝑁 𝑢𝑢𝐸𝐸𝐺𝐺𝑁𝑁𝐺𝐺 19 ×  𝑆𝑆𝐸𝐸𝑆𝑆 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐻𝐻𝑁𝑁𝑇𝑇𝑇𝑇𝑁𝑁𝐸𝐸𝑁𝑁𝐸𝐸𝐸𝐸
=  𝛽𝛽0   +   𝛽𝛽1  ∗  𝐺𝐺𝑁𝑁𝐸𝐸𝐺𝐺𝑁𝑁𝐺𝐺 𝐹𝐹𝑁𝑁𝐸𝐸𝑁𝑁𝐹𝐹𝑁𝑁  +   𝛽𝛽2  ∗  𝐴𝐴𝑁𝑁𝑁𝑁 𝑢𝑢𝐸𝐸𝐺𝐺𝑁𝑁𝐺𝐺 19  +   𝛽𝛽3  
∗  𝐸𝐸𝑇𝑇𝑇𝑇𝐸𝐸𝐹𝐹𝐸𝐸𝑁𝑁𝑇𝑇 𝑈𝑈𝐺𝐺𝑈𝑈𝑁𝑁𝐸𝐸  +   𝛽𝛽4  ∗  𝐺𝐺𝐺𝐺𝑁𝑁𝑁𝑁𝐸𝐸𝐸𝐸𝑇𝑇𝑁𝑁𝐺𝐺𝑁𝑁  +   𝛽𝛽5  ∗  𝐷𝐷𝑁𝑁𝑇𝑇 𝑁𝑁𝐸𝐸𝑁𝑁𝐸𝐸𝑁𝑁  +   𝛽𝛽6  ∗  𝑆𝑆𝐸𝐸𝑆𝑆 
+ 𝛽𝛽7  ∗  𝐺𝐺𝑁𝑁𝐸𝐸𝐺𝐺𝑁𝑁𝐺𝐺 𝐹𝐹𝑁𝑁𝐸𝐸𝑁𝑁𝐹𝐹𝑁𝑁 ×  𝐴𝐴𝑁𝑁𝑁𝑁 𝑢𝑢𝐸𝐸𝐺𝐺𝑁𝑁𝐺𝐺 19  +   𝛽𝛽8
∗  𝐺𝐺𝑁𝑁𝐸𝐸𝐺𝐺𝑁𝑁𝐺𝐺 𝐹𝐹𝑁𝑁𝐸𝐸𝑁𝑁𝐹𝐹𝑁𝑁 ×  𝐸𝐸𝑇𝑇𝑇𝑇𝐸𝐸𝐹𝐹𝐸𝐸𝑁𝑁𝑇𝑇 𝑈𝑈𝐺𝐺𝑈𝑈𝑁𝑁𝐸𝐸  +   𝛽𝛽9  ∗  𝐺𝐺𝑁𝑁𝐸𝐸𝐺𝐺𝑁𝑁𝐺𝐺 𝐹𝐹𝑁𝑁𝐸𝐸𝑁𝑁𝐹𝐹𝑁𝑁 ×  𝐷𝐷𝑁𝑁𝑇𝑇 𝑁𝑁𝐸𝐸𝑁𝑁𝐸𝐸𝑁𝑁
+ 𝛽𝛽10  ∗  𝐸𝐸𝑇𝑇𝑇𝑇𝐸𝐸𝐹𝐹𝐸𝐸𝑁𝑁𝑇𝑇 𝑈𝑈𝐺𝐺𝑈𝑈𝑁𝑁𝐸𝐸 ×  𝐷𝐷𝑁𝑁𝑇𝑇 𝑁𝑁𝐸𝐸𝑁𝑁𝐸𝐸𝑁𝑁  +   𝛽𝛽11  ∗  𝐷𝐷𝑁𝑁𝑇𝑇 𝑁𝑁𝐸𝐸𝑁𝑁𝐸𝐸𝑁𝑁 ×  𝑆𝑆𝐸𝐸𝑆𝑆

𝑆𝑆𝑁𝑁𝐺𝐺𝑁𝑁𝐸𝐸𝐸𝐸𝐺𝐺𝑁𝑁𝑇𝑇𝑁𝑁𝐸𝐸 𝑆𝑆𝑁𝑁𝐺𝐺𝑁𝑁𝐸𝐸𝐸𝐸
=  𝛽𝛽0  +   𝛽𝛽1  ∗  𝐺𝐺𝑁𝑁𝐸𝐸𝐺𝐺𝑁𝑁𝐺𝐺 𝐹𝐹𝑁𝑁𝐸𝐸𝑁𝑁𝐹𝐹𝑁𝑁  +   𝛽𝛽2  ∗  𝐴𝐴𝑁𝑁𝑁𝑁 𝑢𝑢𝐸𝐸𝐺𝐺𝑁𝑁𝐺𝐺 19  +   𝛽𝛽3  
∗  𝐸𝐸𝑇𝑇𝑇𝑇𝐸𝐸𝐹𝐹𝐸𝐸𝑁𝑁𝑇𝑇 𝑈𝑈𝐺𝐺𝑈𝑈𝑁𝑁𝐸𝐸  +   𝛽𝛽4  ∗  𝐺𝐺𝑁𝑁𝐸𝐸𝐺𝐺𝑁𝑁𝐺𝐺 𝐹𝐹𝑁𝑁𝐸𝐸𝑁𝑁𝐹𝐹𝑁𝑁 ×  𝐴𝐴𝑁𝑁𝑁𝑁 𝑢𝑢𝐸𝐸𝐺𝐺𝑁𝑁𝐺𝐺 19 
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𝐿𝐿𝐸𝐸𝐿𝐿𝐿𝐿 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝐸𝐸𝐸𝐸𝐸𝐸𝑁𝑁𝑁𝑁𝐸𝐸𝐸𝐸𝐸𝐸
=  𝛽𝛽0  +   𝛽𝛽1  ∗  𝐺𝐺𝑁𝑁𝐸𝐸𝐺𝐺𝑁𝑁𝐺𝐺 𝐹𝐹𝑁𝑁𝐸𝐸𝑁𝑁𝐹𝐹𝑁𝑁  +   𝛽𝛽2  ∗  𝐴𝐴𝑁𝑁𝑁𝑁 𝑢𝑢𝐸𝐸𝐺𝐺𝑁𝑁𝐺𝐺 19  +   𝛽𝛽3  
∗  𝐸𝐸𝑇𝑇𝑇𝑇𝐸𝐸𝐹𝐹𝐸𝐸𝑁𝑁𝑇𝑇 𝑈𝑈𝐺𝐺𝑈𝑈𝑁𝑁𝐸𝐸  +   𝛽𝛽4  ∗  𝐺𝐺𝐺𝐺𝑁𝑁𝑁𝑁𝐸𝐸𝐸𝐸𝑇𝑇𝑁𝑁𝐺𝐺𝑁𝑁  +   𝛽𝛽5  ∗  𝐷𝐷𝑁𝑁𝑇𝑇 𝑁𝑁𝐸𝐸𝑁𝑁𝐸𝐸𝑁𝑁  +   𝛽𝛽6  ∗  𝑆𝑆𝐸𝐸𝑆𝑆 
+ 𝛽𝛽7  ∗  𝐴𝐴𝑁𝑁𝑁𝑁 𝑢𝑢𝐸𝐸𝐺𝐺𝑁𝑁𝐺𝐺 19 ×  𝐸𝐸𝑇𝑇𝑇𝑇𝐸𝐸𝐹𝐹𝐸𝐸𝑁𝑁𝑇𝑇 𝑈𝑈𝐺𝐺𝑈𝑈𝑁𝑁𝐸𝐸  +   𝛽𝛽8  ∗  𝐺𝐺𝐺𝐺𝑁𝑁𝑁𝑁𝐸𝐸𝐸𝐸𝑇𝑇𝑁𝑁𝐺𝐺𝑁𝑁 ×  𝐷𝐷𝑁𝑁𝑇𝑇 𝑁𝑁𝐸𝐸𝑁𝑁𝐸𝐸𝑁𝑁 

𝐿𝐿𝐸𝐸𝐿𝐿𝐿𝐿 𝑆𝑆𝐸𝐸𝐸𝐸𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝐸𝐸𝐸𝐸𝐸𝐸𝑁𝑁𝑁𝑁𝐸𝐸𝐸𝐸𝐸𝐸
=  𝛽𝛽0  +   𝛽𝛽1  ∗  𝐺𝐺𝑁𝑁𝐸𝐸𝐺𝐺𝑁𝑁𝐺𝐺 𝐹𝐹𝑁𝑁𝐸𝐸𝑁𝑁𝐹𝐹𝑁𝑁  +   𝛽𝛽2  ∗  𝐴𝐴𝑁𝑁𝑁𝑁 𝑢𝑢𝐸𝐸𝐺𝐺𝑁𝑁𝐺𝐺 19  +   𝛽𝛽3  
∗  𝐸𝐸𝑇𝑇𝑇𝑇𝐸𝐸𝐹𝐹𝐸𝐸𝑁𝑁𝑇𝑇 𝑈𝑈𝐺𝐺𝑈𝑈𝑁𝑁𝐸𝐸  +   𝛽𝛽4  ∗  𝐷𝐷𝑁𝑁𝑇𝑇 𝑁𝑁𝐸𝐸𝑁𝑁𝐸𝐸𝑁𝑁  +   𝛽𝛽5  
∗  𝐺𝐺𝑁𝑁𝐸𝐸𝐺𝐺𝑁𝑁𝐺𝐺 𝐹𝐹𝑁𝑁𝐸𝐸𝑁𝑁𝐹𝐹𝑁𝑁 ×  𝐴𝐴𝑁𝑁𝑁𝑁 𝑢𝑢𝐸𝐸𝐺𝐺𝑁𝑁𝐺𝐺 19  +   𝛽𝛽6  ∗  𝐺𝐺𝑁𝑁𝐸𝐸𝐺𝐺𝑁𝑁𝐺𝐺 𝐹𝐹𝑁𝑁𝐸𝐸𝑁𝑁𝐹𝐹𝑁𝑁 ×  𝐷𝐷𝑁𝑁𝑇𝑇 𝑁𝑁𝐸𝐸𝑁𝑁𝐸𝐸𝑁𝑁 

For the model with EMOTIVE Negative Emotions as the dependent variable, the following 
independent variables are significant: Gender Female with a coefficient of 1.022, and a 
standard error of 0.499. Age under 19 with a coefficient of 4.322, and a standard error of 2.014. 
And finally, Typology Urban with a coefficient of 0.706, and a standard error of 0.293. In other 
words, all three control variables are significant, while all three neighbourhood variables are 
not. 

For the model with EMOTIVE Happiness as the dependent variable, the following independent 
variables are significant: Typology Urban with a coefficient of 2.524, and a standard error of 
1.261. Greenspace with a coefficient of -0.142, and a standard error of 0.058. Day Noise with 
a coefficient of -0.819, and a standard error of 0.409. The interaction term Gender Female ✕
Age under 19 is very significant (**) with a coefficient of -3.154, and a standard error of 1.146. 
And finally, the interaction term Gender Female ✕ Typology Urban with a coefficient of -1.352,
and a standard error of 0.630. 

For the model with Stresscapes Stress as the dependent variable, none of the independent 
variables are significant. 

For the model with LIWC Negative Emotions as the dependent variable, only the independent 
variable Age under 19 is significant. However, the variable is very significant (**) with a 
coefficient of 2.623, and a standard error of 0.998. 

For the model with LIWC Positive Emotions as the dependent variable, the following 
independent variables are significant: Gender Female is very significant (**) with a coefficient 
of 4.750, and a standard error of 1.459. The interaction term Gender Female ✕ Age under 19
with a coefficient of -2.651, and a standard error of 1.121. And finally, the interaction term 
Gender Female ✕ Day Noise with a coefficient of -0.445, and a standard error of 0.176.
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Table 13: Regression results for models of all 5 outcome variables including daytime traffic noise 

Regression Results - Day noise 

Dependent variable: 

EMOTIVE 
Negative 
Emotions 

EMOTIVE 
Happy 

Stresscapes 
Stress 

LIWC 
Negative 
Emotions 

LIWC 
Positive 

Emotions 
(1) (2) (3) (4) (5) 

Gender Female 1.022* (0.499) -0.612 (1.475) 0.375 (0.235) -0.087 (0.198) 4.750** (1.459) 
Age under 19 4.322* (2.014) 0.225 (0.680) -0.365 (0.668) 2.623** (0.998) 0.320 (0.668) 
Typology Urban 0.706* (0.293) 2.524* (1.261) -0.054 (0.205) 0.435 (0.277) 0.134 (0.224) 
Greenspace -0.142* (0.058) -0.229 (0.271)
Day Noise -0.819* (0.409) -0.154 (0.168) -0.036 (0.074)
SEP 0.161 (0.092) -0.807 (0.494) 0.115 (0.078)
Gender Female ✕ Age under 19 -3.154** (1.146) 2.180 (1.158) -2.651* (1.121)
Gender Female ✕ Typology Urban -0.928 (0.538) -1.352* (0.630)
Age under 19 ✕ Typology Urban -1.478 (1.081)
Gender Female ✕ Day Noise 0.349 (0.198) -0.445* (0.176)
Age under 19 ✕ SEP -0.700 (0.359)
Typology Urban ✕ Day Noise -0.277 (0.166)
Greenspace ✕ Day Noise 0.044 (0.031) 
Day Noise ✕ SEP 0.116 (0.063) 
Constant -1.408* (0.592) 6.137 (3.185) -0.007 (0.211) -0.135 (1.513) -0.076 (0.573)
Observations 733 733 733 733 733 
Log Likelihood -496.007 -481.694 -494.703 -490.821 -489.045
Akaike Inf. Crit. 1,006.014 987.388 999.406 999.643 992.090
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6.3.2 Regression Models with Night Noise 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝐸𝐸𝐸𝐸𝐸𝐸𝑁𝑁𝑁𝑁𝐸𝐸𝐸𝐸𝐸𝐸
=  𝛽𝛽0   +   𝛽𝛽1  ∗  𝐺𝐺𝑁𝑁𝐸𝐸𝐺𝐺𝑁𝑁𝐺𝐺 𝐹𝐹𝑁𝑁𝐸𝐸𝑁𝑁𝐹𝐹𝑁𝑁  +   𝛽𝛽2  ∗  𝐴𝐴𝑁𝑁𝑁𝑁 𝑢𝑢𝐸𝐸𝐺𝐺𝑁𝑁𝐺𝐺 19  +   𝛽𝛽3  
∗  𝐸𝐸𝑇𝑇𝑇𝑇𝐸𝐸𝐹𝐹𝐸𝐸𝑁𝑁𝑇𝑇 𝑈𝑈𝐺𝐺𝑈𝑈𝑁𝑁𝐸𝐸  +   𝛽𝛽4  ∗  𝐺𝐺𝐺𝐺𝑁𝑁𝑁𝑁𝐸𝐸𝐸𝐸𝑇𝑇𝑁𝑁𝐺𝐺𝑁𝑁  +   𝛽𝛽5  ∗  𝑁𝑁𝑁𝑁𝑁𝑁ℎ𝑁𝑁 𝑁𝑁𝐸𝐸𝑁𝑁𝐸𝐸𝑁𝑁  +   𝛽𝛽6  ∗  𝑆𝑆𝐸𝐸𝑆𝑆 
+ 𝛽𝛽7  ∗  𝐺𝐺𝑁𝑁𝐸𝐸𝐺𝐺𝑁𝑁𝐺𝐺 𝐹𝐹𝑁𝑁𝐸𝐸𝑁𝑁𝐹𝐹𝑁𝑁 ×  𝐸𝐸𝑇𝑇𝑇𝑇𝐸𝐸𝐹𝐹𝐸𝐸𝑁𝑁𝑇𝑇 𝑈𝑈𝐺𝐺𝑈𝑈𝑁𝑁𝐸𝐸  +   𝛽𝛽8  ∗  𝐴𝐴𝑁𝑁𝑁𝑁 𝑢𝑢𝐸𝐸𝐺𝐺𝑁𝑁𝐺𝐺 19 ×  𝑆𝑆𝐸𝐸𝑆𝑆
+ 𝛽𝛽9  ∗  𝐺𝐺𝐺𝐺𝑁𝑁𝑁𝑁𝐸𝐸𝐸𝐸𝑇𝑇𝑁𝑁𝐺𝐺𝑁𝑁 ×  𝑁𝑁𝑁𝑁𝑁𝑁ℎ𝑁𝑁 𝑁𝑁𝐸𝐸𝑁𝑁𝐸𝐸𝑁𝑁 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐻𝐻𝑁𝑁𝑇𝑇𝑇𝑇𝑁𝑁𝐸𝐸𝑁𝑁𝐸𝐸𝐸𝐸
=  𝛽𝛽0  +   𝛽𝛽1  ∗  𝐺𝐺𝑁𝑁𝐸𝐸𝐺𝐺𝑁𝑁𝐺𝐺 𝐹𝐹𝑁𝑁𝐸𝐸𝑁𝑁𝐹𝐹𝑁𝑁  +   𝛽𝛽2  ∗  𝐴𝐴𝑁𝑁𝑁𝑁 𝑢𝑢𝐸𝐸𝐺𝐺𝑁𝑁𝐺𝐺 19  +   𝛽𝛽3  
∗  𝐸𝐸𝑇𝑇𝑇𝑇𝐸𝐸𝐹𝐹𝐸𝐸𝑁𝑁𝑇𝑇 𝑈𝑈𝐺𝐺𝑈𝑈𝑁𝑁𝐸𝐸  +   𝛽𝛽4  ∗  𝐺𝐺𝐺𝐺𝑁𝑁𝑁𝑁𝐸𝐸𝐸𝐸𝑇𝑇𝑁𝑁𝐺𝐺𝑁𝑁  +   𝛽𝛽5  ∗  𝑁𝑁𝑁𝑁𝑁𝑁ℎ𝑁𝑁 𝑁𝑁𝐸𝐸𝑁𝑁𝐸𝐸𝑁𝑁  +   𝛽𝛽6  ∗  𝑆𝑆𝐸𝐸𝑆𝑆 
+ 𝛽𝛽7  ∗  𝐺𝐺𝑁𝑁𝐸𝐸𝐺𝐺𝑁𝑁𝐺𝐺 𝐹𝐹𝑁𝑁𝐸𝐸𝑁𝑁𝐹𝐹𝑁𝑁 ×  𝐴𝐴𝑁𝑁𝑁𝑁 𝑢𝑢𝐸𝐸𝐺𝐺𝑁𝑁𝐺𝐺 19  +   𝛽𝛽8
∗  𝐺𝐺𝑁𝑁𝐸𝐸𝐺𝐺𝑁𝑁𝐺𝐺 𝐹𝐹𝑁𝑁𝐸𝐸𝑁𝑁𝐹𝐹𝑁𝑁 ×  𝐸𝐸𝑇𝑇𝑇𝑇𝐸𝐸𝐹𝐹𝐸𝐸𝑁𝑁𝑇𝑇 𝑈𝑈𝐺𝐺𝑈𝑈𝑁𝑁𝐸𝐸  +   𝛽𝛽9  ∗  𝐴𝐴𝑁𝑁𝑁𝑁 𝑢𝑢𝐸𝐸𝐺𝐺𝑁𝑁𝐺𝐺 19 ×  𝑆𝑆𝐸𝐸𝑆𝑆

𝑆𝑆𝑁𝑁𝐺𝐺𝑁𝑁𝐸𝐸𝐸𝐸𝐺𝐺𝑁𝑁𝑇𝑇𝑁𝑁𝐸𝐸 𝑆𝑆𝑁𝑁𝐺𝐺𝑁𝑁𝐸𝐸𝐸𝐸
=  𝛽𝛽0  +   𝛽𝛽1  ∗  𝐺𝐺𝑁𝑁𝐸𝐸𝐺𝐺𝑁𝑁𝐺𝐺 𝐹𝐹𝑁𝑁𝐸𝐸𝑁𝑁𝐹𝐹𝑁𝑁  +   𝛽𝛽2  ∗  𝐴𝐴𝑁𝑁𝑁𝑁 𝑢𝑢𝐸𝐸𝐺𝐺𝑁𝑁𝐺𝐺 19  +   𝛽𝛽3  
∗  𝐸𝐸𝑇𝑇𝑇𝑇𝐸𝐸𝐹𝐹𝐸𝐸𝑁𝑁𝑇𝑇 𝑈𝑈𝐺𝐺𝑈𝑈𝑁𝑁𝐸𝐸  +   𝛽𝛽4  ∗  𝐺𝐺𝑁𝑁𝐸𝐸𝐺𝐺𝑁𝑁𝐺𝐺 𝐹𝐹𝑁𝑁𝐸𝐸𝑁𝑁𝐹𝐹𝑁𝑁 ×  𝐴𝐴𝑁𝑁𝑁𝑁 𝑢𝑢𝐸𝐸𝐺𝐺𝑁𝑁𝐺𝐺 19 

𝐿𝐿𝐸𝐸𝐿𝐿𝐿𝐿 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝐸𝐸𝐸𝐸𝐸𝐸𝑁𝑁𝑁𝑁𝐸𝐸𝐸𝐸𝐸𝐸
=  𝛽𝛽0  +   𝛽𝛽1  ∗  𝐺𝐺𝑁𝑁𝐸𝐸𝐺𝐺𝑁𝑁𝐺𝐺 𝐹𝐹𝑁𝑁𝐸𝐸𝑁𝑁𝐹𝐹𝑁𝑁  +   𝛽𝛽2  ∗  𝐴𝐴𝑁𝑁𝑁𝑁 𝑢𝑢𝐸𝐸𝐺𝐺𝑁𝑁𝐺𝐺 19  +   𝛽𝛽3  
∗  𝐸𝐸𝑇𝑇𝑇𝑇𝐸𝐸𝐹𝐹𝐸𝐸𝑁𝑁𝑇𝑇 𝑈𝑈𝐺𝐺𝑈𝑈𝑁𝑁𝐸𝐸  +   𝛽𝛽4  ∗  𝐺𝐺𝐺𝐺𝑁𝑁𝑁𝑁𝐸𝐸𝐸𝐸𝑇𝑇𝑁𝑁𝐺𝐺𝑁𝑁  +   𝛽𝛽5  ∗  𝑁𝑁𝑁𝑁𝑁𝑁ℎ𝑁𝑁 𝑁𝑁𝐸𝐸𝑁𝑁𝐸𝐸𝑁𝑁  +   𝛽𝛽6  
∗  𝐴𝐴𝑁𝑁𝑁𝑁 𝑢𝑢𝐸𝐸𝐺𝐺𝑁𝑁𝐺𝐺 19 ×  𝑁𝑁𝑁𝑁𝑁𝑁ℎ𝑁𝑁 𝑁𝑁𝐸𝐸𝑁𝑁𝐸𝐸𝑁𝑁 

𝐿𝐿𝐸𝐸𝐿𝐿𝐿𝐿 𝑆𝑆𝐸𝐸𝐸𝐸𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝐸𝐸𝐸𝐸𝐸𝐸𝑁𝑁𝑁𝑁𝐸𝐸𝐸𝐸𝐸𝐸
=  𝛽𝛽0  +   𝛽𝛽1  ∗  𝐺𝐺𝑁𝑁𝐸𝐸𝐺𝐺𝑁𝑁𝐺𝐺 𝐹𝐹𝑁𝑁𝐸𝐸𝑁𝑁𝐹𝐹𝑁𝑁  +   𝛽𝛽2  ∗  𝐴𝐴𝑁𝑁𝑁𝑁 𝑢𝑢𝐸𝐸𝐺𝐺𝑁𝑁𝐺𝐺 19  +   𝛽𝛽3  
∗  𝐸𝐸𝑇𝑇𝑇𝑇𝐸𝐸𝐹𝐹𝐸𝐸𝑁𝑁𝑇𝑇 𝑈𝑈𝐺𝐺𝑈𝑈𝑁𝑁𝐸𝐸  +   𝛽𝛽4  ∗  𝑁𝑁𝑁𝑁𝑁𝑁ℎ𝑁𝑁 𝑁𝑁𝐸𝐸𝑁𝑁𝐸𝐸𝑁𝑁  +   𝛽𝛽5  
∗  𝐺𝐺𝑁𝑁𝐸𝐸𝐺𝐺𝑁𝑁𝐺𝐺 𝐹𝐹𝑁𝑁𝐸𝐸𝑁𝑁𝐹𝐹𝑁𝑁 ×  𝐴𝐴𝑁𝑁𝑁𝑁 𝑢𝑢𝐸𝐸𝐺𝐺𝑁𝑁𝐺𝐺 19  +   𝛽𝛽6  ∗  𝐺𝐺𝑁𝑁𝐸𝐸𝐺𝐺𝑁𝑁𝐺𝐺 𝐹𝐹𝑁𝑁𝐸𝐸𝑁𝑁𝐹𝐹𝑁𝑁 ×  𝑁𝑁𝑁𝑁𝑁𝑁ℎ𝑁𝑁 𝑁𝑁𝐸𝐸𝑁𝑁𝐸𝐸𝑁𝑁 

For the model with EMOTIVE Negative Emotions as the dependent variable, the following 
independent variables are significant: Gender Female with a coefficient of 1.060, and a 
standard error of 0.502. Age under 19 with a coefficient of 4.365, and a standard error of 2.040. 
And finally, Typology Urban is very significant (**) with a coefficient of 0.860, and a standard 
error of 0.314. Again, same as in the model using day time noise, all three control variables 
are significant, while all three neighbourhood variables are not. 

For the model with EMOTIVE Happiness as the dependent variable, the following independent 
variables are significant: Gender Female is highly significant (***) with a coefficient of 1.941, 
and a standard error of 0.562. Greenspace with a coefficient of -0.101, and a standard error of 
0.050. Night Noise is very significant (**) with a coefficient of -0.183, and a standard error of 
0.060. And finally, the interaction term Gender Female ✕ Age under 19 is very significant (**)
with a coefficient of -2.999, and a standard error of 1.145. 
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For the model with Stresscapes Stress as the dependent variable, none of the independent 
variables are significant. The model is identical with the one with Stresscapes Stress as 
dependent variable in Subsection 6.3.1. 

For the model with LIWC Negative Emotions as the dependent variable, the following two 
independent variables are significant. Firstly, Age under 19 with a coefficient of 5.250, and a 
standard error of 2.121. Secondly, Greenspace is very significant (**) with a coefficient of 
0.136, and a standard error of 0.049. 

For the model with LIWC Positive Emotions as the dependent variable, the following 
independent variables are significant: Gender Female is highly significant (***) with a 
coefficient of 3.250, and a standard error of 0.959. The interaction term Gender Female ✕ Age
under 19 with a coefficient of -2.675, and a standard error of 1.118. And finally, the interaction 
term Gender Female ✕ Night Noise with a coefficient of -0.333, and a standard error of 0.145.
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Table 14: Regression results for models of all 5 outcome variables including traffic noise during night 

Regression Results - Night noise 

Dependent variable: 

EMOTIVE 
Negative 
Emotions 

EMOTIVE 
Happy 

Stresscapes 
Stress 

LIWC 
Negative 
Emotions 

LIWC 
Positive 

Emotions 
(1) (2) (3) (4) (5) 

Gender Female 1.060* (0.502) 1.941*** (0.562) 0.375 (0.235) -0.100 (0.198) 3.250*** (0.959) 
Age under 19 4.365* (2.040) 2.935 (2.151) -0.365 (0.668) 5.250* (2.121) 0.320 (0.666) 
Typology Urban 0.860** (0.314) 0.334 (0.313) -0.054 (0.205) 0.252 (0.229) 0.026 (0.213) 
Greenspace 0.306 (0.172) -0.101* (0.050) 0.136** (0.049)
Night Noise 0.193 (0.121) -0.183** (0.060) 0.103 (0.065) -0.020 (0.069)
SEP 0.146 (0.093) 0.147 (0.095)
Gender Female ✕ Age under 19 -2.999** (1.145) 2.180 (1.158) -2.675* (1.118)
Gender Female ✕ Typology Urban -0.985 (0.541) -1.002 (0.571)
Gender Female ✕ Night Noise -0.333* (0.145)
Age under 19 ✕ Night Noise -0.598 (0.322)
Age under 19 ✕ SEP -0.711 (0.364) -0.516 (0.378)
Greenspace ✕ Night Noise -0.038 (0.026)
Constant -2.939** (1.018) 0.304 (0.747) -0.007 (0.211) -1.338* (0.539) -0.155 (0.433)

Observations 733 733 733 733 733 
Log Likelihood -493.967 -485.637 -494.703 -492.198 -490.173
Akaike Inf. Crit. 1,007.934 991.273 999.406 998.395 994.347
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6.3.3 Effect Size of Significant Neighbourhood Variables 

In the following, the effect size of the significant explanatory neighbourhood variables are 
described by reporting the odds ratios with their corresponding 95% Confidence Intervals (CI). 

The odds ratios were calculated by eβ, where β is the coefficient value (log-odds) of the 
predictor variable. The 95% confidence intervals were calculated by using the formula 

e(β +/- 1.96 * SE), where SE is the standard error of the coefficient β. 

Models including Day Noise 

It was found that, holding all other predictor variables constant, the odds of a user 
having an above-median rate of Happiness-tweets decreases by 13.2% (95% CI 
[0.028, 0.226]) for a one -unit increase in the predictor variable Greenspace. 

It was also found that, holding all other predictor variables constant, the odds of a 
user having an above-median rate of Happiness-tweets decreases by 55.9% (95% CI 
[0.017, 0.802]) for a one -unit increase in the predictor variable Day Noise. 

Models including Night Noise 

It was found that, holding all other predictor variables constant, the odds of a user 
having an above-median rate of “Happiness”-tweets decreases by 9.6% (95% CI 
[0.003, 0.18]) for a one-unit increase in the predictor variable Greenspace. 

Further, it was found that, holding all other predictor variables constant, the odds of a 
user having an above-median rate of “Happiness”-tweets decreases by 16.7% (95% 
CI [0.063, 0.26]) for a one-unit increase in the predictor variable Night Noise. 

Finally, it was found that, holding all other predictor variables constant, the odds of a 
user tweeting an above-median percentage of emotionally negative words increases 
by 14.6% (95% CI [0.041, 0.261]) for a one-unit increase in the predictor variable 
Greenspace. 
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Chapter 7 | Discussion 

The obtained results and the underlying data and methodological approaches are discussed 
in depth in this chapter. First, the Twitter variables are examined. Then, the generated 
neighbourhood variables are discussed. The representativeness of the subset used for the 
regression analysis is elaborated in third section. Finally, the approach and the results of the 
multiple logistic regressions is elaborated. 

7.1 Twitter Variables 

The Twitter variables of the subset usersregression are discussed in this section. The first 
subsection interprets the found results, the second subsection outlines the uncertainties and 
limitations of the variables, and the third subsection reflects the approaches and suggestions 
for improvements are made. 

7.1.1 Interpretation of Results 

In this subsection, the characteristics of the variables in the dataset usersregression are 
interpreted and discussed, which were visualised and described in Subsection 6.1.2. 

for the variable n_tweets, the mean is 236.5 and the median is 210, which means that on 
average, loosely speaking just over 200 tweets per user were available for the analysis. This 
may initially seem to be a reasonable number of tweets. However, when considering that on 
average, only around 16 tweets are found to be emotional according to EMOTIVE, and only 
around 8 show indications of stress according to Stresscapes, the situation changes. 
Obviously, this fact directly transfers to the low average values found in the outcome variables 
rate_neg, rate_happy, and rate_stress. The average ratio between tweets expressing negative 
emotions and the total number of tweets is around 2%. The emotion happy, on average, is 
found in roughly 4% of all tweets, and indications of stress, on average, are found in around 
3% of all tweets. The outcome variables negemo and posemo generated with LIWC, show 
similarly low rates in emotional content. The variable negemo shows that on average, about 
1% of all words in the tweets are associated with negative emotions. The rate of words 
associated with positive emotions is around 3% according to posemo. These low rates in 
emotionality expressed in tweets demand a high number of total tweets per user, in order to 
be sufficiently statistically meaningful. For example, if the average number of total tweets per 
user is 50, the average number of tweets expressing negative emotions would be 1. Moreover, 
the number of users having randomly 0 tweets expressing negative emotions, would most 
probably be quite high. Vice versa, users having randomly 2 tweets expressing negative 
emotions, would already have a rate twice as high as the average. This example shows, how 
the standard error would strongly influence the statistical significance. 

The distribution of the variable is_bot shows that the probability of unfavourably having 
included automated inauthentic accounts in the analysis is very small, which is also reflected 
in the low average probability of around 3%. 
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For the variable is_org, representing the probability of the account being managed by an 
organisation, the average probability is around 25%. In other words, one out of four users could 
potentially be an account managed by an organisation. This fact most likely causes a not 
negligible bias on the analysis.  

The variable gender_female, which represents the probability of the user having the female 
gender, shows a bimodal distribution, with the two modes towards 0 and 1 respectively. 
However, the mode towards 0 (most likely male) is significantly larger than the one towards 1 
(most likely female). This is also reflected in the mean value being 0.382. The mean value 
could be interpreted as the proportion of female users, which would be 38.2%. 

The four age category variables age_under_19, age_19_to_29, age_30_to_39, and 
age_40_plus, derived with the M3-method, each represent the probability of the user belonging 
to the respective age category. On average, the probability of a user being under 19 years old 
is around 15%, being 19 to 29 years old is around 20%, being 30 to 39 years old is around 
29%, and being 40 or older is around 36%. Expressed in this way, it does not seem very 
intuitive. The probabilities could however be interpreted as the proportions of users belonging 
to the respective age category. In this manner, it can be implied that the users are not evenly 
distributed among the four age categories, but the majority of the users probably belong to the 
older two categories, that is, around 2 out of 3 users.  

7.1.2 Uncertainties and Limitations 

The accuracy of the variables firstly depends on the accuracy of the analysis performed by the 
underlying Algorithms. This adds the first factor of uncertainty, which is however very difficult 
to quantify. Secondly, the variables derived with the M3-method (age categories, 
gender_female, is_org), as well as is_bot, derived with Botometer, hold probabilities rather 
than categorical values. It certainly brings some advantages; however, a probability is an 
uncertainty by its definition. 

Moreover, as introduced in Subsection 4.1.2, the NLP-algorithms EMOTIVE and Stresscapes 
not only detect tweets containing emotions or indicating stress, but they also assign an integer 
value ranging up to 20 depending on the variable. This value is a measure for the amplitude 
of the found sentiment, which could be used as a weight. A weighting of the sentiment using 
this value was however not performed, due to its non-trivial nature, when it comes to the 
aggregation of all tweets onto the user level. By choosing to do so, potentially important 
information was not included into the resulting variables, which may distort the analysis by an 
additional factor. 

A further limiting factor leading to uncertainty is the combination of the 6 emotions considered 
as negative (sadness, anger, disgust, confusion, fear, shame) into one variable to represent 
all negative emotions. The reason for this step was the fact that the frequency of the single 
negative emotions tends to be very small. In this manner, the statistical power could be 
increased compared to taking only the emotion sadness, for example. However, this 
aggregation of emotions eliminates the meaning of the single emotion. This procedure 
assumes that confusion is equally negative than sadness or any other of the 6 emotions. 
Although the resulting bias is very abstract and basically impossible to quantify, it adds a further 
factor of uncertainty to the analysis. 

Additionally, as described in the previous subsection, the average probability of a user being 
an account managed by an organisation is about 25%. This imposes further uncertainty in the 
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analysis, as there may be a reasonably high number of accounts which are falsely handled as 
if they were real persons. 

 

7.1.3 Reflections 
 

The threshold for excluding users possibly being bots above a certain probability, was set at 
50%. Choosing this threshold, the average probability of a user being an automated account 
is about 3% which seems very solid. However, the threshold could arguably be chosen even 
lower, at 25% or even 20%, to further lower the chance of falsely including bots in the analysis. 
The justification for this optional adjustment is that only few users would additionally be 
excluded. 

As for the threshold excluding users possibly being organisational accounts, it should definitely 
be set significantly lower than at 90%. However, because of the relatively small sample size of 
initially roughly 1200 users, a compromise hat to be found. By setting the threshold to 50%, for 
example, a large part of the users would be excluded, which drastically reduces the sample 
size. As a consequence, in order to set the threshold lower, a much larger initial sample size 
is required, which enables to finally keep a reasonable number of users for the analysis.  

A further improvement could possibly be done for the three outcome variables rate_neg, 
rate_happy, and rate_stress. As mentioned in the previous subsection, the magnitude of a 
sentiment was not considered when creating the outcome variables. The resulting information 
loss should probably be avoided as far as possible, by introducing a weighting approach.  

 

7.2 Neighbourhood Variables 
 

In this section, the generated neighbourhood variables are discussed. The results are 
interpreted in the first subsection, then, the numerous uncertainties and limitations are 
discussed in the second subsection. In the third subsection, ides for possible improvements 
are pointed out. 

 

7.2.1 Interpretation of Results 
 

The interpretation of the generated neighbourhood variables is generally very difficult, because 
of their abstract nature. Nevertheless, in the following the most important characteristics of the 
generated variables and their distributions are discussed and interpreted as far as possible. 

The variable greenspace represents greenspace within a neighbourhood and is certainly the 
most abstract of the neighbourhood variables. It stands for the amount, the quality, and the 
accessibility of greenspace within a radius of 500 meters around the homeplace location and 
is inversely weighted with increasing distance. It is an approach to measure whether a user 
lives in a rather “green” environment or in a less “green” environment, expressed with a 
continuous index ranging from 0 to 10. The distribution has the tendency of a uniform 
distribution roughly between 0 and 7.5. Only a few users seem to live in “very green” 
neighbourhoods, having a value over 7.5. The fact that the mass of the distribution stretches 
over the largest part of its extent (standard deviation of 1.86), tells that there seem to be large 
differences in the availability, quality, and accessibility of greenspace between the users. If the 
differences were to be very small, the potential effect of the variable on the outcome variable 
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would presumably also be smaller and less significant. The shape of the distribution means 
that no further transformation is required, which is a positive aspect of the variable. 

The variable day_noise represents the perceived traffic noise during daytime within a 
neighbourhood. More accurately, it is the average traffic noise in dB perceived in the 
neighbourhood, inversely weighted with increasing distance to the homeplace location, 
between 6 am and 10 pm. Furthermore, the values were rescaled to lie between 0 and 10. 
Obviously, the values cannot be interpreted as dB anymore, due to the underlying averaging, 
weighting and rescaling processes. Instead, values towards 0 mean that the respective user 
lives in a neighbourhood with low traffic noise exposure during daytime, whereas values 
towards 10 mean high traffic noise exposure. The histogram shows an approximately bell-
shaped distribution between 5 and 10, while there are only few values below 5. This would 
mean that the vast majority of the analysed users live in neighbourhoods with rather high traffic 
noise exposure during daytime. This may be plausible, given that the largest part of the users 
apparently live in urban communes. However, the distribution may not be optimal due to its 
high concentration of values in the upper end, leaving almost none in the lower half. 

The variable night_noise represents the perceived traffic noise during night at a homeplace 
location. The values are calculated differently as for day_noise, by simply taking the average 
traffic noise between 10 pm and 6 am, within a 100 meters radius around the homeplace 
location. The resulting values were again rescaled to lie between 0 and 10. The distribution 
has a bell-shaped tendency between 2.5 and 10. Therefore, the variable leads to the 
interpretation that the majority of the users has a moderate to rather high exposure to traffic 
noise during night. 

Finally, the variable sep represents the socio-economic position within a neighbourhood. The 
values were calculated by inversely weighting the rasterised SEP values (see Subsection 
5.2.3) with increasing distance to the homeplace location, and then taking the average. A 
rescaling of the values restricted the range between 0 and 10. As the original SEP values are 
already index values, the interpretation of the generated variable sep does not change. Values 
towards 10 mean that the neighbourhood is resided by persons with high SEP, values towards 
0 mean the opposite. The distribution has a strong tendency to a normal distribution, which 
was to be expected, since the underlying SEP data is also normally distributed. 

7.2.2 Uncertainties and Limitations 

The generated neighbourhood variables largely contribute to the whole sum of uncertainties in 
the analysis. Not only do the original datasets, on which the variables are based, contain 
uncertainties and inaccuracies, but so do the approaches to estimate the value representing a 
neighbourhood characteristic.  

The two main additional factors contributing to uncertainty, are on the one hand the definition 
of the neighbourhood extent, and on the other hand the choice of the distance decay function. 
The definition of the neighbourhood extent is equal for every homeplace location. Individually 
defining the extents depending on certain factors would by far be too elaborate for the scope 
of this thesis, although it would enable to better represent the reality. By choosing the same 
definition for every homeplace location, it is assumed that every user has the exact same 
activity space, which is obviously not true. Moreover, the linear distance decay to account for 
the fact that nearer phenomena have a stronger influence on a subject than more distant ones, 
may be the less suitable approach than, for example, an exponential distance decay.  
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The variable greenspace is based on the greenspace dataset introduced in Section 4.2. The 
dataset was produced by including a number of different factors, all of them contributing to a 
final index value, which should represent the quality as well as the accessibility of greenspace 
for the entire extent of Switzerland. The dataset has two main limitations. The first one is the 
fact that it tries to combine both quality and accessibility into one variable. This makes the 
resulting variable much harder to interpret as if the two factors were held separately. And the 
second one is the fact that it was made for both urban and rural areas, instead of just focusing 
on urban areas. The effect of available greenspace on mental health is generally studied in the 
context of urban areas, as rural areas are basically defined by the high presence of 
greenspace. Because the perception of the availability and quality of greenspace may strongly 
differ between citizens living in rural villages and those living in cities, two different in indices 
would probably be more appropriate. 

The two variables day_noise and night_noise have their origin in the datasets introduced in 
Section 4.3. These variables also have certain limitations. An important one to mention 
concerns the suitability of the data for an analysis of such a spatial scale as in this thesis. The 
BAFU, which provides the datasets, states that the data is intended for the use on a national 
or regional scale. They point out, that the data may not be very suitable for local analysis. As 
the noise values are only estimates, and not actual measurements, in some cases the local 
error may be quite large. It is discouraged to use the data to define noise exposure for single 
buildings. However, averaging noise values within a 100-meters or 500-meters radius 
respectively, is most likely less problematic. This directly leads to a further limitation, being the 
idea of averaging noise values in decibel (dB). As a linear increase in the unit decibel is not 
equal to a linear increase in noise, but a 10 dB increase means a doubling of sound volume, 
simply averaging noise levels within an area may not be a very appropriate approach. For 
example, in a raster of the dimensions 3x3 with only values of 30 dB, the average value is 30. 
Now replacing one cell value with 120 dB, which is equal to the noise emitted from a chain saw 
(Iac acoustics, 2022), the average noise value within that 3x3 raster is 40 dB, which is still 
perceived as very quiet. Of course, this is a very theoretical example and may never appear 
as such in the real world, also because the noise in one areal unit expands into other adjacent 
areal units. Still, it seems to be a factor contributing to uncertainty, which should be kept in 
mind. 

 

7.2.3 Reflections 
 

The uncertainties within the neighbourhood variables could be reduced by introducing the 
approaches discussed in this subsection. 

The neighbourhood areas could be defined in a more sophisticated way, for example by using 
street networks, rivers and buildings to approximate the natural activity space of a user living 
in that neighbourhood. A similar approach, using street networks, was used to define 
neighbourhoods for the SEP dataset, as described in Section 4.4. In doing so, the area of the 
environment having influence on a user would potentially better correspond to reality. 
Obviously, this approach requires an automation of the process, which would pose a time-
consuming challenge to implement. 

As for the neighbourhood variables, improvements especially for the estimation of the variables 
representing greenspace and traffic noise could be made. Greenspace could be defined 
differently depending on the neighbourhood being in an urban or in a rural area. Focusing on 
urban areas, layers of higher resolution could be used to better capture the microstructure of 
greenspace related features, such as single trees. Additionally, quality and accessibility of 
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greenspace could be stored separately in two different variables, which then would be added 
individually to the regression model. Regarding the representation of traffic noise, loud areas 
should probably have more weight in the calculation. This is due to the fact that the unit decibel 
seems not suitable for being averaged over larger areas with highly heterogenous noise levels, 
as explained in the previous subsection. 

7.3 Representativeness of Subset 

The representativeness of the subset usersregression is interpreted in the following two 
subsections. First the spatial distribution is briefly discussed, and then the comparison of the 
distributions of the variables between the subset and usersall is interpreted. 

7.3.1 Spatial Distribution 

Considering the fact, that Zürich is the largest city of Switzerland with a population of 
approximately 436’000 (Stadt Zürich, 2021), and Geneva is the second largest city with 
approximately 203’000 inhabitants (Bundesamt für Statistik, 2020), the spatial distribution of 
the analysed sample is quite strongly disproportionate to the population density when focusing 
on these two cities. 

However, when comparing the spatial distribution of usersregression with the spatial distribution 
of all geolocated tweets in Switzerland (tweetsgeoloc), it can be observed, that persons in 
Geneva in fact tend to tweet a lot. Overall, besides a few exceptions, the spatial distributions 
of usersregression and tweetsgeoloc are quite similar, making usersregression a satisfying sample 
concerning the spatial representativeness of Twitter users. 

7.3.2 Distributions of Variables 

In Section 6.2 the representativeness of the subset usersregression was assessed, by visually 
comparing the distributions of the variables with those of the dataset usersall. Furthermore, a t-
test was performed to assess the significance of the difference in means between the variables 
of both datasets. 

The general tendency which can be observed in the distributions of all variables, is the steeper 
slope around the mode in the dataset usersall. This shape which reminds of the stem of a wine 
glass when using a violin plot, is mainly due to the much larger sample size of usersall, which 
leads to a smaller variance. A further noticeable difference in the distributions is the wider 
“footprint” in the dataset usersall for the following variables: n_emo, n_stress, rate_neg, 
rate_happy, rate_stress. This is simply a consequence of the inclusion of users having less 
than 100 tweets, which increases the number of users having 0 tweets expressing emotions 
or stress. Obviously, also the two variables n_tweets and is_org show quite strong differences 
because of the thresholds at 100 and 0.9, excluding users below or above those values 
respectively in usersregression. However, other than that, the distributions seem to have fairly 
similar shapes. 

The results of the t-tests, assessing the difference in means for each variable, revealed that 
the means of most variables are significantly different between the two datasets. However, for 
some variables it was to be expected, on the one hand, and on the other hand it is not very 
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relevant at all. Because of the three thresholds set to exclude users depending on the number 
of tweets, probability of being a bot or an organisational account, the significantly different 
mean of variables affected by those thresholds can be explained. The most important 
variables, which are used in the regression analysis, being gender_female and age_under_19 
as control variables, do not show a significantly different mean. The outcome variables 
rate_neg and rate_stress also show a very similar mean between both datasets. The outcome 
variable rate_happy has a rather small p-value of 0.0088, which may be considered as being 
significant, depending on the choice of the significance level.  

Overall, it can be concluded that the subset usersregression is not an optimal, but arguably still a 
reasonable representation of the larger dataset usersall. 

7.4 Regression Analysis 

This final section discusses the results of the regression analysis. In the first subsection, 
associations found in the model outputs are interpreted, and the related uncertainties and 
limitations are discussed in the second subsection. In the last subsection, reflections about 
improvements are described. 

7.4.1 Interpretation of Results 

In this subsection, the significant variables in the models are interpreted and discussed. First, 
the regression results including daytime noise are elaborated, and then the regression results 
including night noise. 

Regression Results – Day Noise 

Gender Female shows significant positive associations with the outcome variables EMOTIVE 
Negative Emotions and LIWC Positive Emotions. This could be interpreted as a tendency of 
female Twitter users generally tweeting more emotional content than men. This tendency can 
be explained by the findings of Kring & Gordon (1998), who state that women are generally 
more emotionally expressive than men. Park et al. (2012) also find more positive and more 
negative emotions expressed in tweets by female Twitter users. 

Age under 19 shows significant positive associations with the outcome variables EMOTIVE 
Negative Emotions and LIWC Negative Emotions. This leads to the assumption of adolescents 
expressing generally more negative emotions in tweets than older users. Bailen et al. (2018) 
reviewed relevant literature on adolescents’ experience of four specific dimensions of emotion, 
being emotional frequency, intensity, instability, and clarity. Compared to adults, they find that 
adolescents experience greater emotional intensity, greater emotional instability, and more 
frequent high-intensity positive and negative emotions. Furthermore, it was shown that older 
adolescents, compared to younger adolescents, experience more frequent negative and less 
frequent positive emotions (Frost et al. 2015). The research department of the statistics 
platform Statista showed that in the United States in April 2018, 3% of teenagers aged 15 to 
17 used Twitter, compared to only 1% of teenagers aged 13 to 14 (Statista, 2018). Although 
no literature was found on the Twitter user demographics of adolescents in Switzerland, it can 
be assumed that the proportions are similar. This would potentially explain the positive 
associations of Age under 19 with the two outcome variables representing negative emotions. 
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Typology Urban shows significant positive associations with the outcome variables EMOTIVE 
Negative Emotions and EMOTIVE Happiness. Similarly, as in the case of the variable Gender 
Female, it suggests that Twitter users living in urban areas tend to more often express 
emotions in their tweets, than rural users. No literature was found to support this suggestion, 
however, due to a higher anonymity in cities, users may have less inhibition to publicly share 
their emotions via tweets. The lower anonymity in rural areas may lead to social stigma, when 
sharing too personal information online.  

Greenspace shows significant negative associations with the outcome variable EMOTIVE 
Happiness. This finding suggests that the higher the availability and quality of greenspace in a 
neighbourhood, the less happiness is found in the users’ tweets. Obviously, this is the opposite 
of what was to be expected, since greenspace has a great positive influence on mental well-
being, as described in Subsection 2.3.1. A possible explanation for this could be, that the users 
living in rural areas, having higher Greenspace values, generally tend to express less emotions 
in tweets. And since Greenspace has a larger effect size on EMOTIVE Happiness than on 
EMOTIVE Negative Emotions, the unexpected negative association is only found in the former 
variable. Furthermore, the effect size of the negative association is quite small.  

Same as Greenspace, Day Noise shows significant negative associations with the outcome 
variable EMOTIVE Happiness, but with a stronger effect size. It suggests that the higher the 
exposure to traffic noise during daytime in a neighbourhood, the less happiness is found in the 
users’ tweets. As described in Subsection 2.3.2, traffic noise has a negative impact on mental 
well-being, which could explain the negative association between the two variables. 

The interaction of Gender Female and Age under 19 shows significant negative associations 
with the outcome variables EMOTIVE Happiness and LIWC Positive Emotions. It suggests that 
adolescent female users tend to post less tweets with content considered as emotionally 
positive. This could partially be explained by the findings of Frost et al. (2015) who state that 
older adolescents experience less frequent positive emotions. 

The interaction of Gender Female and Typology Urban shows a significant negative 
association with the outcome variable EMOTIVE Happiness. It suggests that female users 
living in urban neighbourhoods tend to tweet less Tweets containing the emotion happiness. 
This result is rather counter intuitive and difficult to interpret, as both female users and users 
living in urban neighbourhoods tend to express more emotions in their tweets, as described 
earlier. The association is therefore failed to be explained.  

Finally, the interaction of Gender Female and Day Noise shows a significant negative 
association with the outcome variable LIWC Positive Emotions. It suggests that female users, 
living in a neighbourhood with high exposure to traffic noise during daytime, tend to express 
less positive emotions in their tweets. As mentioned earlier, traffic noise has a negative impact 
on emotional well-being. Furthermore, female users tend to more frequently express emotions, 
and consequently also changes in the frequency of emotional expression become more 
strongly visible for female users. Therefore, a possible explanation could be, that additional 
impact on the reduced expression of positive emotions due to exposure to traffic noise can be 
found in female users.  

Regression Results – Night Noise 

When replacing Day Noise with Night Noise in the 5 different models, most models remain 
very similar, and most explanatory variables show very similar significant associations with the 
outcome variables. For this reason, only the most striking difference regarding significant 
associations between independent and dependent variables is described in the following: 
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Greenspace shows in addition to the significant negative association to EMOTIVE Happiness, 
a significant positive association to LIWC Negative Emotions. This additionally suggests that 
users living in “greener” neighbourhoods tend to express more negative emotions in their 
tweets. Again, this association is the opposite of what has been expected and cannot be 
explained with the same arguments as for the negative association with EMOTIVE Happiness. 
This leads to the question of what effects greenspace could have on users to make them 
express more negative emotions. One example that comes to mind, where greenspace 
potentially has a negative impact on health, is pollinosis, also known as “hay fever”. In 
Switzerland, it is estimated that one in four persons suffers from a pollen allergy, with an ever-
increasing tendency (Universitätsspital Zürich, 2022). This example shows that greenspace 
may not only have a positive influence on health and consequently on mental health. The 
combination with other unknown factors of greenspace having a negative influence on (mental) 
well-being could ultimately lead to this unexpected result. 

 

7.4.2 Uncertainties and Limitations 
 

This subsection addresses the uncertainties and limitations of the regression analysis 
approach. 

First, it must be recalled that the performance of the regression models can only be as good 
as the quality and the accuracy of the involved variables. As discussed in the Sections 7.1 and 
7.2, the variables show a considerable number of uncertainties and intransparencies which 
directly lead to uncertainties in the models. Consequently, the interpretation of certain 
significant associations between independent and dependent variables become quite 
challenging. Hence, although certain explanatory variables seem to have significant 
associations with certain outcome variables, the true reason behind the association may be a 
whole different one then assumed.  

The sentiments found in the users’ tweets, which are represented by the 5 outcome variables, 
are tried to be explained by environmental variables which are restricted to the users’ 
neighbourhood. This means that indirectly, all tweets of a user are somehow treated as if they 
were all posted within the boundaries of the defined neighbourhood, which does not 
correspond to reality. This is a clear limitation of the study, which was deliberately accepted, 
however, for two reasons. One, there were not sufficient geolocated tweets to conduct a classic 
hotspot analysis of emotions in space using spatial binning techniques or cluster analysis. Two, 
assessing the environmental variables greenspace, traffic noise and SEP for every single 
geolocated tweet location would have been much too costly, and presumably also rather 
pointless.  

 

7.4.3 Reflections 
 

After interpreting the regression analysis results and discussing the uncertainties and 
limitations of the chosen approaches, possible improvements are briefly introduced.  

The choice of a binary logistic regression model, using a median split to generate the outcome 
variables, may not be the most suitable approach. When splitting the initially continuous 
outcome variables into the binary categorization of “above median” and “below median”, a 
large part of information gets lost. The extreme values at the upper and lower range suddenly 
get the same value as the values next to the median. An alternative approach to tackle this 
problem, would be the use of an ordinal logistic regression. For this purpose, the outcome 
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variables would be split up into three to five categories, using the quantiles as thresholds. For 
example, using 5 categories, the rate in negative emotions would be classified into “very low”, 
“low”, “moderate”, “high”, and “very high”. 

A further alternative approach worth considering, which is not specifically addressing the 
regression analysis, but rather the whole study design, is to focus only on cities. This has 
already been mentioned earlier in Subsection 7.2.3. When focusing solely on urban areas, the 
typology variable would no longer be needed, reducing the total number of variables in the 
regression models. Urban and rural differences in tweeting behaviour of users would no longer 
affect the regression results. And most importantly, the neighbourhood variables, especially 
greenspace could be modelled much more accurately to better fit the definition of urban 
greenspace.  
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Chapter 8 | Conclusion 

This work is an attempt to link sentiments found in Twitter data with neighbourhood scale 
environmental characteristics. Literature suggests that sentiments expressed in social media 
may be indicative for mental well-being, which in turn is influenced by environmental factors. 
In this study, the major physical and societal influencing factors are represented by the 
availability of greenspace, exposure to traffic noise, and the socio-economic circumstances 
within a neighbourhood. Since generally only a small proportion of tweets are geolocated, the 
analysis was performed on a user-level, which allowed to also include tweets without 
coordinates. In this way, on average around 236 of the most recent tweets were used to 
characterize the user’s rate of positive and negative emotions, and stress, by applying the 
three NLP-tools EMOTIVE, Stresscapes, and LIWC. With DBSCAN, the user’s presumed 
homeplace location was identified, representing the overall spatial context to be linked to the 
sentiments expressed in the user’s tweets.  

In this thesis, the defined objectives were achieved along with secondary results providing 
useful additional insights. With regard to RO1, being the selection of users based on specific 
criteria, the following was found: Out of 70’333 users, for 1213 users a homeplace location 
was identified using DBSCAN, which is a proportion of around 1.7%. The plausibility of these 
presumed homeplace locations was then assessed using two different datasets, which both 
approximate the spatial coverage of residential area in Switzerland. It showed that out of the 
1213 users with a detected homeplace, 193 locations lied significantly outside the residential 
area. This means that at least 15.9% of the presumed homeplaces derived by the DBSCAN-
approach are unplausible. Furthermore, the exclusion of users with high probabilities of being 
a bot (threshold set at 50%) or being an organisational account (threshold set at 90%), 
revealed that in all 70’333 users, the average probability was 4.3% for being a bot and 28.1% 
for being an organisation.  

For RO2, a workflow for the automated estimation of variables representing the neighbourhood 
characteristics was modelled in ArcGIS Pro and exported to Python scripts for optimization 
and parallel processing. A linear distance weighting approach was implemented in the 
workflow, to account for the effect of distance decay, considering that closer environmental 
characteristics have more influence than distant ones.  

Moreover, concerning RO3, multiple logistic regression analysis was applied, to assess 
possible associations between sentiments on user-level as outcomes and the neighbourhood 
variables generated for RO2 as predictors, while including different control variables. The 
outcome variables indicating above- or below-median rates of positive and negative emotions, 
and stress, were created using the NLP-systems EMOTIVE, Stresscapes, and LIWC. The 
neighbourhood variables or environmental variables, taking continuous index values between 
0 and 10, representing greenspace, traffic noise, once during daytime and once during night, 
and socio-economic position (SEP). As control variables, probabilities of the user being female 
and being of age under 19, as well as urban-rural differences were added to the models. 
Significant negative associations were found between traffic noise (both daytime and night) 
and happiness from EMOTIVE. Additionally, if the user tended to be female, traffic noise (both 
daytime and night) also had significant negative associations with positive emotions from 
LIWC. Greenspace was found to be significantly negatively associated with happiness from 
EMOTIVE and significantly positively associated with negative emotions from LIWC. Although 
having a rather small effect size, the found associations of greenspace with the outcome 
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variables are the opposite of what was expected. These findings may partially be explained by 
factors like pollinosis, although the high uncertainties within the variable greenspace cannot 
be excluded as the root cause for the unexpected results. For SEP, no significant associations 
were found.  

Still, probably the most important findings of the thesis are the numerous limitations and pitfalls 
of the pursued approaches and the possible alternatives and improvements for future work, 
which can be derived from it. Thus, to conclude the thesis, suggestions for future research are 
proposed in the following. The results showed that the proportion of emotional tweets is low, 
as well as the proportion of users for which a presumed homeplace location is detected. This 
implies the necessity of a large sample size for both number of users and number of tweets 
per user. Hence, Switzerland as the study area may be less suitable, as the United States or 
Japan, for instance, where Twitter is very popular. Furthermore, focusing solely on urban areas 
would bring the advantage of an urban-specific definition of greenspace, enabling a more 
accurate modelling of the variable and its associations with emotions and stress. Still, the 
general approach of considering any of the most recent tweets of a user to calculate its rate of 
sentimental tweets, no matter the location at the time of tweeting, may be the strongest limiting 
factor. It infers the assumption, that the environmental characteristic of the neighbourhood the 
user lives in, are associated also with sentiments found in tweets which were posted whilst not 
being anywhere near home. In other words, all tweets of a user are treated as if they were 
posted within the neighbourhood. Analysing environmental factors on a neighbourhood scale 
and at a user-level may therefore not be feasible, and alternative approaches on the spatial 
unit of urban districts or census tracts and on single tweet-level should be considered.  

Overall, it can however be concluded that with further research, the spatial analysis of Twitter 
data could become a valuable method to assess the impact of environmental characteristics 
on mental well-being. It could potentially replace costly traditional surveys and would pose a 
very efficient alternative with large-scale applicability.
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Appendix 

A.1 Greenspace Dataset

As mentioned in Section 4.2, the greenspace dataset was made by the author and 5 fellow 
students (L. Asper, S. Caduff, M. Niederberger, L. Schädler, and N. Steinmann) within a 
Geography Master’s course at the University of Zürich. In this section, the used data and the 
implementation for the greenspace dataset used in this thesis are described. All processing 
was done in ArcGIS Pro. 

A.1.1 Data

Figure 35: Data used to generate the greenspace index dataset 
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A.1.2 Implementation

Excluded areas 
Excluded areas comprise rocks, glaciers, debris, lakes, water reservoirs as well as bogs. 
These were extracted from land cover data of swissTLMRegio (Select by attributes). The 
vector data of land cover and buildings were combined (Union) and then converted to a raster 
(Polygon to Raster). By using Raster Calculator, the raster values were rescaled to values of 
0 (excluded areas) or 1 (potential greenspace). 

Greenness 
To illustrate greenness, an NDVI image for Switzerland from the Landsat satellite was 
produced with Google Earth Engine. To ensure that all pixels have a usable pixel value and 
that the satellite image is not disturbed by clouds and other effects, a composite of several 
satellite images was created. Satellite images captured between April and October in the years 
2018, 2019, and 2020 were included. Since we are interested in the greenness of a pixel, 
winter months are not needed because most vegetation areas lose their leaves. All pixels 
identified as clouds by the Landsat cloud detection algorithm have been excluded. The NDVI 
was calculated for all available satellite images based on the formula below. 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =  
𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑁𝑁𝑅𝑅𝑁𝑁
𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑁𝑁𝑅𝑅𝑁𝑁

A single image was created from the NDVI composites, by assigning each pixel the highest 
NDVI value available from all pixels over the time period of 3 years. By considering multiple 
images and including the highest value, disturbances such as cloud cover or cloud shadow 
which were not detected with the default Landsat algorithm could be fixed. Landsat satellite 
captures images with a spatial resolution of 30 m, which was rescaled to 50 m so that less 
storage space is needed and the spatial resolution corresponds to the end product. NDVI 
values lower than 0.40 were excluded and the final raster was then rescaled to values from 4 
to 10. 

Landscape quality 
The landscape quality is described by various factors. At first, the closeness of greenspace to 
rivers and lakes was evaluated by merging both vector data (Union), by rasterizing the data 
(Polygon to raster), and by calculating the distance to rivers and lakes (Euclidean Distance, 
max. distance of 200 m). The resulting absolute distance (m) was then rescaled linearly to 
values between 1 (distance > 200 m) and 1.5 (at a river/lake) (Tab. 2). Noise data was first 
summarised by extracting the maximum value in dB from both noise data sets (roads and 
railways, Cell Statistics). Values higher than 65 dB were completely excluded since the 
recreational value of greenspace at high noise levels is not given. The values were then 
rescaled linearly from 1 (highest acceptable noise exposure) to 2 (no noise) using Raster 
Calculator. Lastly, landscape properties that indicate high quality were given additional weight, 
namely: forests due to their recreational value, dry grassland with its ecological importance as 
well as areas belonging to the Federal inventory of landscape and natural monument (BLN) 
and the Swiss National Park and parks of national importance. In the following, these data are 
referred to as ‘value-added objects’. All data of the value-added objects were merged (Union) 
and converted into a raster (Polygon to raster). If an area did belong to one of these ‘value 
added objects’ a value of 1.1 was given (bonus of 0.1). If an area did not belong to any of these 
objects, a value of 1 was assigned (no effect in final raster multiplication). 

Accessibility 
To calculate the walking distance, the Euclidean distance to buildings was computed (max. 
distance of 1’000 m). These distances were then rescaled to values ranging from 1 (1’000 m 
away from buildings) to 2 (close to buildings) using a function which exponentially decreases 
with increasing distance (Raster Calculator). As steep areas are not accessible to all people, 
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the slope of the surface was included into the accessibility and calculated based on the DEM 
(Slope). Slopes larger than 30° were entirely excluded. For slopes between 0 and 30°, values 
between 1 (steep) and 2 (flat) were assigned using an exponential function (Raster calculator). 

Indicator implementation 
After the data was generated following the pre-processing steps, the actual indicator 
implementation was done. The layers were multiplied without any further weighting (Raster 
Calculator). The indicator was then rescaled to values between 0 and 10 and exported to a 50 
m resolution raster resulting in a general greenspace indicator. 

A.2 Cluster Map of Usersregression

On the next page, a cluster map visualizes the spatial distributions of usersregression in such a 
manner, that the number of points in a dense spot are directly readable from the map (see 
Figure A.1). 

Figure 34: Range of values used for rescaling final raster data for the parameters closeness to rivers 
and lakes, noise exposure, walking distance and slope. 
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Figure 37: Visualisation of spatial distribution of homeplace locations as clusters. 
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A.3 Python Code for Parallel Processing

# -*- coding: utf-8 -*- 
# -------------------------------------------------------------------------
-- 
# Created on: 2021-12-15 
# -------------------------------------------------------------------------
-- 

# Set the necessary product code 
# import arcinfo 

# Import arcpy module 
import arcpy, os, time, traceback, csv, sys 
from simpledbf import Dbf5 
import numpy as np 

# Check out any necessary licenses. 
if arcpy.CheckExtension("3D") == "Available": 
    arcpy.CheckOutExtension("3D") 

if arcpy.CheckExtension("spatial") == "Available": 
    arcpy.CheckOutExtension("spatial") 

if arcpy.CheckExtension("ImageAnalyst") == "Available": 
    arcpy.CheckOutExtension("ImageAnalyst") 

if arcpy.CheckExtension("ImageExt") == "Available": 
    arcpy.CheckOutExtension("ImageExt") 

def delete_shapefile(shp_path): 
    path = shp_path[:-4] 
    endings = [".cpg", ".dbf", ".prj", ".sbn", ".sbx", ".shp", ".shp.xml", 
".shx"] 

    for ending in endings: 
        file_path = path + ending 

        if os.path.isfile(file_path): 
os.remove(file_path) 

def delete_raster(ras_path): 
    ras_files = os.listdir(ras_path) 
    endings = [".adf", "log", ".xml"] 
    for ras_file in ras_files: 
        for ending in endings: 

if ras_file.endswith(ending): 
ras_file_path = ras_path + "/" + ras_file 
os.remove(ras_file_path) 

    os.rmdir(ras_path) 

arcpy.env.overwriteOutput = True 
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sha_directory = "." 
 
# ADJUST Greenspace / Traffic_Noise / SSEP 
neighborhood_variable = "Greenspace"         
 
# ADJUST 500m or 1000m 
neighborhood_radius = "500m" 
 
# ADJUST to 540.0 for 500m neighborhood_radius and 1040.0 for 1000m 
neighborhood_radius 
raster_calc_radius = 540.0                   
 
# ADJUST 1-8 
script_number = "1"                          
 
batch_input = neighborhood_radius + "_" + script_number 
batch_process = "Processing_" + script_number 
 
base_tile_directory = "S:\\group\\m-health\\03 projects\\MSc 
Schmidheiny\\ArcGIS_Projects\\ArcGIS_Project_01\\Rasters\\" + 
neighborhood_variable + "\\" + neighborhood_radius + "\\" + batch_input + 
"\\" 
base_temp_directory = "S:\\group\\m-health\\03 projects\\MSc 
Schmidheiny\\ArcGIS_Projects\\ArcGIS_Project_01\\Rasters\\" + 
neighborhood_variable + "\\" + neighborhood_radius + "\\" + batch_process + 
"\\" 
base_tables_directory = "S:\\group\\m-health\\03 projects\\MSc 
Schmidheiny\\ArcGIS_Projects\\ArcGIS_Project_01\\Tables\\" + 
neighborhood_variable + "\\" + neighborhood_radius + "\\" 
 
homeplace_users_buffer = "S:\\group\\m-health\\03 projects\\MSc 
Schmidheiny\\ArcGIS_Projects\\ArcGIS_Project_01\\Rasters\\" + 
neighborhood_variable + "\\" + neighborhood_radius + "\\Input_" + 
script_number + "\\homeplace_users_buffer_" + neighborhood_radius + ".shp" 
 
 
files = os.listdir(base_tile_directory) 
tif_files = [file for file in files if file.endswith(".TIF")] 
 
 
# Create empty matrix to store neighborhood variable mean 
neighborhood_variable_mean = np.zeros((1213,2)) 
 
 
print(len(tif_files)) 
 
for tif_file in tif_files: 
    raw_tile_name = tif_file[:-4] 
    input_tile = base_tile_directory + "\\" + tif_file 
     
    # ADJUST DEPENDING ON NEIGHBORHOODVARIABLE AND RADIUS 
    tile_number = raw_tile_name[11:]                             
     
    # Saving Processing Results in separate folders 
    temp_folder = base_temp_directory + "\\" + raw_tile_name + "\\" 
    if not os.path.exists(temp_folder): 
        os.makedirs(temp_folder) 
 
    print("Processing tile: " + raw_tile_name) 
    start_time = time.time() 
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    while True: 
        try: 
 
            # Process: Select AOI 
            neighborhood_AOI_shp = temp_folder + "neighborhood_AOI.shp" 
            arcpy.Select_analysis(homeplace_users_buffer, 
neighborhood_AOI_shp, '"FID" =' + tile_number) 
             
             
            # Process: Feature To Point (Feature To Point) (management) 
            AOI_centroid_shp = temp_folder + "AOI_centroid.shp" 
            with arcpy.EnvManager(scratchWorkspace=r"S:\group\m-health\03 
projects\MSc 
Schmidheiny\ArcGIS_Projects\ArcGIS_Project_01\ArcGIS_Project_01.gdb", 
workspace=r"S:\group\m-health\03 projects\MSc 
Schmidheiny\ArcGIS_Projects\ArcGIS_Project_01\ArcGIS_Project_01.gdb"): 
                 arcpy.management.FeatureToPoint(in_features = 
neighborhood_AOI_shp, out_feature_class = AOI_centroid_shp, 
point_location="INSIDE") 
 
 
            # Process: Euclidean Distance (Euclidean Distance) (sa) 
            euclidean_distance_tif = temp_folder + "euclidean_distance.tif" 
            Euclidean_Distance = euclidean_distance_tif 
            with arcpy.EnvManager(extent = input_tile,  
                                  snapRaster = input_tile): 
                outEucDistance = 
arcpy.sa.EucDistance(in_source_data=AOI_centroid_shp, maximum_distance  = 
raster_calc_radius, cell_size = "50", 
out_direction_raster=euclidean_distance_tif, distance_method="PLANAR") 
                outEucDistance.save(Euclidean_Distance) 
 
 
            # Process: Extract by Mask 
            euclidean_distance_masked_tif = temp_folder + 
"euclidean_distance_masked.tif" 
            outExtractByMask = 
arcpy.sa.ExtractByMask(euclidean_distance_tif, input_tile)  
            outExtractByMask.save(euclidean_distance_masked_tif) 
 
 
            # Process: Raster Calculator (Raster Calculator) (ia) 
            euclidean_distance_norm_tif = temp_folder + 
"euclidean_distance_norm.tif" 
            Raster_Calculator = euclidean_distance_norm_tif 
            EucDistRaster = arcpy.sa.Raster(euclidean_distance_masked_tif) 
            outRasterCalc = 1.0 - ((EucDistRaster + 1.0) / 
raster_calc_radius) 
            outRasterCalc.save(Raster_Calculator) 
             
             
            # Process: Raster Calculator (2) (Raster Calculator) (ia) 
            green_500m_0_weight_tif = temp_folder + "green_500m_weight.tif" 
            Raster_Calculator_2 = green_500m_0_weight_tif 
            EucDistNormRaster = 
arcpy.sa.Raster(euclidean_distance_norm_tif) 
            InputRaster = arcpy.sa.Raster(input_tile) 
            outRasterCalc = EucDistNormRaster * InputRaster 
            outRasterCalc.save(Raster_Calculator_2) 
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            # Get input Raster properties 
            inRas = arcpy.Raster(green_500m_0_weight_tif) 
 
            # Convert Raster to numpy array 
            myarr = arcpy.RasterToNumPyArray(inRas, nodata_to_value = -999) 
             
            def nan_if(arr, value): 
                return np.where(arr == value, np.nan, arr) 
             
            arrMean = np.nanmean([nan_if(myarr, -999)]) 
 
             
            # Writing greenspace mean into matrix 
            neighborhood_variable_mean[tile_number,0] = tile_number 
            neighborhood_variable_mean[tile_number,1] = arrMean 
             
             
            np.savetxt(base_tables_directory + neighborhood_variable + "_" 
+ neighborhood_radius + "_" + script_number + "_mean_temp.csv", 
neighborhood_variable_mean, delimiter = ",")   
 
             
            break 
             
        except: 
            print("Warning: Something went wrong for tile: " + 
raw_tile_name) 
            arcpy.gp.AddError(traceback.format_exc()) 
 
    end_time = time.time() 
    print("elapsed time: ", str(end_time - start_time)) 
 
np.savetxt(base_tables_directory + neighborhood_variable + "_" + 
neighborhood_radius + "_" + script_number + "_mean_final.csv", 
neighborhood_variable_mean, delimiter = ",")  
 
print("FINISHED") 
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