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Abstract 

Evapotranspiration (ET) is a major component in global cycles such as the carbon, energy and 

hydrological cycle. Accurately estimating the spatiotemporal behavior of ET is of ever-increasing 

relevance for water resource management and especially in matters of plant use efficiency. While 

point measurements of ET allow for a high temporal resolution, they are spatially restricted. 

Spaceborne remote sensing techniques offer to perform cost-effective data acquisition in both spatial 

and temporal resolution. Current approaches of using satellite-based information, however, only 

allow for an estimation of potential rather than actual ET. Hence, attempts are being made to move 

away from models based on indices such as plant greenness to instead exploiting direct 

biophysiological processes. Sun-induced fluorescence (SIF) is a variable, which is measurable from 

space, and has been proposed to be a promising variable to bridge this gap from potential to actual 

ET. In this thesis, we examine the applicability of SIF for filling this gap by building and comparing 

several models to incorporate SIF into the Penman-Monteith (PM) based FAO reference crop ET 

model. We therefore calculated multiple linear regression models between SIF and corresponding 

parameters from the PM equation. Using best-fit linear regression parameters, we re-scaled the SIF 

values to the range of the replaced parameter in the equation. While our models were able to represent 

a reasonable seasonal cycle, they were not able to improve ET estimates on a reliable level. This 

might be due to the models being based on linear regression, which we assume to not accurately 

reproduce the complex relationships between meteorological and plant physiological parameters. 

Future studies should therefore focus on finding better-suited regression models. Also, we 

recommend future research to incorporate land-cover information in the model to allow adjustments 

for plant-specific parameters. 
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1. Introduction 

Evapotranspiration (ET) is the process by which water is transferred from the Earth’s surface to the 

atmosphere through evaporation of water from the surface and the transpiration of water from plants. 

Transpiration accounts for about 61% (± 15% standard deviation) in terrestrial ET (Schlesinger and 

Jasechko, 2014). Evapotranspiration is not only an important factor in the global carbon and energy 

cycle (Sellers et al., 1997), but furthermore, plays a crucial role in the global water cycle and is a key 

factor in determining the amount of water available for agricultural, industrial, and domestic use. 

Accurate estimation of ET is crucial to a more detailed understanding of plant water use efficiency 

and carbon cycling (Fisher et al., 2017; Shan et al., 2021). 

On a local scale, it is possible to make precise ET measurements using eddy covariance (EC) towers, 

which consist of several different sensors that measure, for example, flows of gas, solar radiation or 

also temperature and precipitation, as well as wind speeds (Pastorello et al., 2020). While these EC 

systems provide us with continuous, high-resolution data over time, these values are only 

representative of a relatively small footprint (400m – 1km depending e.g., on wind speed and 

direction) and may not accurately represent a whole ecosystem being studied, which is typically not 

homogenous (Barcza et al., 2009). However, if we are interested in large-scale measurements, it 

becomes difficult to extrapolate measurements from a single EC tower or to interpolate measurements 

from multiple towers. To avoid this problem, it is worthwhile to resort to satellite-based 

measurements. Remote sensing is considered a powerful tool for estimating ET, as it generally allows 

for the measurement of large areas over time using spaceborne imagery (Lillesand, Kiefer and 

Chipman, 2015). By combining satellite imagery with meteorological data and land cover data, it is 

possible to model ET on the surface (Anderson et al., 2011; Leng et al., 2017). Such models are 

important because they provide a means to accurately estimate ET over large areas and can be used 

to monitor and predict changes in ET over time. In recent years, there has been an increasing demand 

for accurate and reliable ET models to support water resource management and decision-making on 

a political scale (Hassanzadeh et al., 2014). This is especially true in arid and semi-arid regions, where 

water is a scarce resource and accurate ET estimation is critical for managing water resources and 

mitigating the impacts of drought (Yassen, Nam and Hong, 2020). However, despite the importance 

of such ET models, there are still many challenges and limitations to their development and use, 

including the complexity of the ET process, the need for accurate and reliable input data, and the need 

of robust validation and testing of the models (Amatya et al., 2016).  

Two of the commonly used calculation methods to estimate ET on a global scale include variations 

of the Priestley-Taylor (PT) (Priestley and Taylor, 1972) and the Penman-Monteith (PM) (Penman, 

1948; Monteith, 1965) approach. While the PM-method takes into account the combined effects of 

radiation, humidity, temperature and wind on the energy balance at the surface, the PT-method is a 

simpler method estimating ET based on the net radiation and the difference between the atmospheric 

and soil vapor pressure. While the PT-approach is easier to implement, requiring fewer input data, 
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the PM-approach is generally considered to be the more accurate method for calculating ET 

(Ngongondo et al., 2013). Therefore, the PM-method is recommended for use in circumstances, 

where data availability and computational resources are given (Utset et al., 2004). To calculate ET in 

a globally applicable method, the Food and Agriculture Organization (FAO) of the United Nations 

provides a standardized model to calculate reference ET using the PM-equation, which is 

internationally recognized as the standard method (Allen et al., 2006; Tanny, 2022). This complex 

equation consists of many input parameters, such as the net radiation at the crop surface, soil heat 

flux, daily air temperature at 2m height, saturation vapor pressure, actual vapor pressure, saturation 

vapor pressure deficit, slope of vapor pressure curve and the psychrometric constant, most of which 

are still associated with large uncertainties (Allen et al., 1998; Zotarelli et al., 2010; Talebmorad et 

al., 2020). 

 

While current state-of-the art models can only estimate the potential ET using different vegetation 

indices, intensive research has been done in recent years on how to get closer to an estimate of the 

actual ET (Damm, Roethlin and Fritsche, 2018). Potential evapotranspiration is a measure of the 

amount of water that could be lost from an environment through evaporation and transpiration (water 

loss through plants) in a given area over a certain period of time, under specific weather conditions. 

It is a theoretical value that represents the maximum amount of water that could be lost from a given 

area, if there were no limiting factors, such as drought or water availability. Actual evapotranspiration, 

however, is the amount of water that is actually lost through evaporation and transpiration in a given 

area over a certain period of time. It is the measurable amount of water that is lost though ET, thereby 

taking into account all the limiting factors that affect water availability, such as drought, water 

availability, and other environmental conditions (Potential Evapotranspiration | Did You Know? | 

National Centers for Environmental Information (NCEI), 2022). 

 

Studies had been conducted, trying to measure the PM parameters more accurately and with higher 

spatiotemporal resolution using remote sensing (Zhang, Kimball and Running, 2016). Research has 

also been conducted to further improve estimates of parameters, that cannot be measured directly 

using remote sensing approaches, such as e.g. stomatal resistance (rs) (Niyogi et al., 1997). As rs is a 

biological factor (Lei et al., 2018) that responds to any factor influencing the leaf water potential, 

such as changes in humidity, soil moisture and plant water transport, this parameter of the PM-

equation is especially difficult to assess and uncertainties are introduced to the estimation of ET 

(Buckley, 2019). While the FAO standard model for reference ET suggests a specific value for rs from 

a single leaf of 100ms-1 under well-watered conditions, and a value of 70 ms-1 for the (bulk) surface 

resistance (Allen et al., 1998), Shan et al. (2021) have tried to estimate rs using a novel proxy for 

photosynthetic activity, which is sun-induced fluorescence (SIF). While the FAO reference approach 

is only able to calculate potential ET rather than actual ET, the use of SIF in the estimation of ET 
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promises to move us nearer to estimates of actual ET (Lu et al., 2018; Zhou et al., 2022). However, 

the complexity of the process and the many factors that all interact makes implementing SIF in ET 

estimation particularly difficult (Damm et al., 2018). While SIF may contribute to an improved 

understanding of the ET process, too little is known about the complex processes within vegetation 

and assumptions still need to be made (Jarvis and Davies, 1998; Li et al., 2020). 

In this thesis, we will explore the importance of ET models in remote sensing, the challenges and 

limitations of developing and using these models, and the potential avenues for improving their 

accuracy and reliability. We will investigate the feasibility of using satellite-based SIF measurements 

to improve global transpiration modeling and assess challenges and limitations of current approaches 

to estimate ET. We will develop and test new methods for integrating satellite-based SIF 

measurements into an ET model and evaluate the potential benefits of these methods. The results of 

this research will provide valuable insights into the potential of SIF measurements for improving 

global transpiration modeling. This work has the potential to enhance our understanding of the 

hydrological cycle and to improve the accuracy of climate predictions. 
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2. Data and Methods 

2.1 Data 

2.1.1 Study Site 

The study area extends from 30° N to 75° N, and -15° E to 45° E (WGS 84) and encompasses the 

continent of Europe, as well as the northernmost part of Africa. The research site covers land cover 

classes ranging from artificial surfaces, over agricultural areas, forests and wetlands to the Sahara 

Desert (Eurostat, 2021). The ecological zones of the study site range from polar, boreal, to temperate 

and subtropical (Bohn, Hettwer and Gollub, 2005). This highly diverse and dynamic environment 

makes the study site highly suitable for testing ET models. Several specific locations in different 

biomes were selected to allow a more precise time-series analysis of the different models over various 

land cover classes and at different latitudes. 

 
Figure 1 ET-map for the 01.04.2018 calculated using the FAO crop reference ET model (see chapter 2.2.2), showing marked 

locations for more detailed timeseries analysis; base map created using the Python SciTools’s Cartopy 0.18.0 (Elson et al., 

2020) 

Table 1 Specific sites and their coordinates for in-depth analysis (from north to south) 

Location  Latitude Longitude 

Finland Site  69.800 27.640 

Sweden Site  64.605 18.362 

France Site  49.838 2.639 

Switzerland Site  47.478 8.364 

Portugal Site  38.610 -8.116 

Italy Site  37.697 13.984 

Spain Site  37.000 -2.439 
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In order to better understand the validity of the generated ET time series and to accurately identify 

correspondingly typical vegetation cycles, a more detailed description of the selected sites is provided 

here. The here presented land cover information was retrieved from the European Commission’s 

Coordination of Information on the Environment (CORINE) Land Cover inventory CLC2018 

(Büttner et al., 2017). 

The sites differ not only in longitude and latitude, but also substantially in land surface cover. The 

Finland site is located in the Kaldoaiavi Wilderness Area, the largest wilderness area in Finland, 

covered mainly by grasslands and small shrubs. Further south in Swedish Lapland, we find clustered 

boreal coniferous forest among larger grassland areas. Both Nordic sites contain streams, rivers and 

smaller lakes. The French site is located west of Amiens in the midst of an agricultural landscape of 

northern France. The Swiss site is located on the Laegern hill ridge northwest of Zurich, which is 

covered by a managed mixed deciduous forest and occasional spruce and fir trees. The site in Portugal, 

located east of Lisbon, includes hardwood forest as well as mixed species forests and agricultural land 

(Bento-Gonçalves et al., 2018). The Italian site is located in the center of the island of Sicily in the 

metropolitan region of Palermo and is characterized by intensive agriculture. The southernmost site 

is located in Spain in the Tabernas Desert, which is covered in parts by shrub- and grassland.  

 

2.1.2 Working Environment 

All processing and computing of the necessary data was done in the form of a Python code in the 

Jupyter Notebook Environment (Kluyver et al., 2016). The code is mainly based on the Xarray 

package (Hoyer and Hamman, 2017) and Matplotlib v3.4.3 (Caswell et al., 2021). Scikit-learn 1.0.2 

(Elson et al., 2020) and Statsmodmodels 0.12.2 (Seabold and Perktold, 2010) were used for the 

statistical analysis of the models and for creating linear regression models between data sets. For 

access to the code used, please refer to the author of this work. 

 

2.1.3 Meteorological/Structural Property Data 

All meteorological and structural property data used was obtained from the Copernicus Climate Data 

Store. The “ERA5-Land hourly data set from 1981 to present” was used (Muñoz Sabater, 2019). 

ERA5-Land corresponds to a reanalysis dataset that combines hourly model data and observed values 

on a global scale. The data set has a spatial resolution of 0.1° x 0.1° with a native resolution of 9 km. 

The basis of the ERA5-Land dataset is the Tiled ECMWF Scheme for Surface Exchanges over Land 

incorporating land surface hydrology (H-TESSEL) (ECMWF, 2018). To keep the amount of data to 

a manageable size, hourly data were downloaded only at 12:00, 13:00, and 14:00 for the whole 

timespan that SIF-Data (see chapter 2.1.3 in this work) was available (01 April 2018 to 31 July 2021). 

The downloaded parameters and their corresponding units can be seen in table 1. The hourly data 

from 12:00 to 14:00 were needed to calculate values for 13:30, corresponding to the time of the day 

of the available SIF-data. 
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Table 2 Data downloaded from the Copernicus CDS ERA5-Land hourly dataset from 1981 to present 

Variable Unit 

10m u-component of wind (eastward) ms-1 

10m v-component of wind (northward) ms-1 

2m temperature K 

2m dewpoint temperature K 

Leaf area index, high vegetation m2m-2 

Leaf area index, low vegetation m2m-2 

Surface net solar radiation Jm-2 

Surface pressure Pa 

Total evaporation m of water equivalent 

 

The eastward component of wind (u-component) and the northward component of wind (v-

component) were combined to calculate the speed and direction of the horizontal wind at a height of 

10m. The dewpoint temperature was used as a measure of the humidity in the air. The leaf area index 

(LAI) for low and high vegetation was needed to calculate the overall LAI over the whole vegetation. 

 

2.1.4 Satellite Based Sun-Induced Chlorophyll Fluorescence 

For this work, global SIF data from the TROPOspheric Monitoring Instrument (TROPOMI), the 

sensor of the Sentinel-5 Precursor Earth observation satellite, was used. This data was made available 

to the public via National Aeronautics and Space Administration’s Jet Propulsion Laboratory (NASA 

JPL) (NASA, 2020). TROPOMI is able to measure the SIF signal in the approximate spectral range 

of 650-850 nm. Here, a global TROPOMI SIF data set at the wavelength 740 nm was used (for a 

more detailed description of the data see (Guanter et al., 2021)). The data has a spatial resolution of 

0.05° and is publicly available as a 16-day composite between 01.04.2018 and 31.07.2021 (Caltech 

TROPOMI SIF Data, 2021). The composite was created using the mean values of measurements 

during the 16-day interval. Negative SIF values were neglected for calculations, especially since they 

may originate from instrument noise or the retrieval assumption of a known shape of the fluorescence 

spectrum over vegetation, which is not applicable to non-vegetated areas (Wang et al., 2021) and 

therefore set to voids. 

 

2.2 Methods 

2.2.1 Data Harmonization 

In order to be able to compute the ERA5 data with the TROPOMI data, both data sets were reprojected 

to the same global coordinate system (WGS 84). After creating a subset of the global SIF data set 

with the same geographical extent as the ERA5 data (see 2.1.1 in this work), SIF data was aggregated 

to the same spatial resolution (0.1°) using the mean value of the original pixels. In addition, to match 
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the time of day of the SIF-measurements, values for 13:30 were calculated using the ERA5 data. 

Since radiation values of the ERA5 reanalysis are accumulated over the entire day, hourly values 

were calculated first and then the average was calculated between 13:00 and 14:00. Also, for the 

remaining variables, the average value was calculated between 13:00 and 14:00. The only exception 

was the wind components: To assure, that positive and negative values (in vector geometry plane) did 

not cancel each other out and/or would result in an underestimation of wind speed, only the wind 

components for 14:00 were considered. From all the ERA5 data variables 16-day composites were 

created matching the timesteps of the TROPOMI SIF data using the mean value over a 16-day 

interval. 

 

2.2.2 Calculating ET for a Reference Model 

The work presented here is based on the FAO standard model for calculating ET (Allen et al., 1998), 

which in turn is based on the PM equation: 

 

𝐸𝑇0 =
𝛥∗(𝑅𝑛−𝐺)+𝜌𝑎∗𝐶𝑝∗

(𝑒𝑠−𝑒𝑎)

𝑟𝑎

𝛥+𝛾∗(1+
𝑟𝑠
𝑟𝑎

)
 (2.1) 

 

𝐸𝑇0: Evapotranspiration [mm d-1] 

Rn : Net radiation at the crop surface [MJ m-2 d-1] 

G: Soil heat flux density [MJ m-2 d-1] 

ρa: Mean air density at constant pressure [kg m-3] 

Cp: Specific heat of air [MJ kg-1 °C-1] 

ra: Aerodynamic resistance [s m-2] 

rs: Stomatal resistance [s m-2] 

u2: Wind speed at 2m height [m s-2] 

es: Saturation vapor pressure [kPa] 

ea: Actual vapor pressure [kPa] 

es - ea: Saturation vapor pressure deficit [kPa] 

Δ : Slope of vapor pressure curve [kPa °C-1] 

γ: Psychrometric constant [kPa °C-1] 

 

Most of the variables in equation (2.1) needed to be estimated using further calculations. The 

reference model in this paper is based on the FAO guidebook (Allen et al., 1998) and uses the 

provided values for the reference crop ET estimation therein. This simplification does not consider 

the predominant vegetation type but assumes a uniform crop height across the study site and time. 

With the data described in chapter 2.1.2 and the proposed values from the FAO guidebook, the 

following variables were calculated: 
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Table 3 Variables calculated using ERA5-Land meteorological/structural data 

Relative Humidity [%] 

Ground Heat Flux [MJ m-2  h-1] 

Vapor Pressure of Saturated Air [kPa] 

Actual Vapor Pressure [kPa] 

Vapor Pressure Deficit [kPa] 

Psychrometric Constant [kPa °C-1] 

Slope of Vapor Pressure Curve [kPa °C-1] 

Wind Speed at 2m Height [m s-1] 

Aerodynamic Resistance [s m-1] 

Surface Resistance [s m-1] 

 

 

The relative humidity (RH) [%] at 13:30 was calculated using the relationship between the 2m 

temperature and the 2m dewpoint temperature: 

 

𝑅𝐻 = 100 ∗ 𝑒
𝑐∗𝑏∗(𝑇𝑑−𝑇)

(𝑐+𝑇)∗(𝑐+𝑇𝑑)  (2.2) 

 

Where Td is the 2m dewpoint temperature [°C], T is the 2m temperature [°C] and c is 243.04 and b 

corresponds to the value 17.625 (Alduchov and Eskridge, 1996). 

 

The ground heat flux (G) [MJ m-2 h-1] was approximated as 10% of the crop surface net radiation 

during daylight periods (Rn) [MJ m-2 h-1]. 

 

The vapor pressure of saturated air (es) [kPa] was approximated using the 2m temperature: 

 

𝑒𝑠 = 𝑒0(𝑇) →  𝑒0(𝑇) = 0.6108 ∗ 𝑒
17.27∗𝑇

𝑇+273.3 (2.3) 

 

For the calculation of the actual vapor pressure (ea) [kPa], we used the relationship between the RH 

and es: 

 

𝑒𝑎 = 𝑒𝑠 ∗
𝑅𝐻

100
 (2.4) 

 

Vapor pressure deficit (VPD) [kPa] was calculated as the difference between es and ea. 
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The psychrometric constant (γ) [kPa°C-1] was calculated using the specific heat of the air (Cp) 

[1.013*10-3 MJ°C-1kg-1], the atmospheric pressure (P) [kPa], the ratio of molecular weight of water 

vapor/dry air (ε = 0.622) [-] and the latent heat of vaporization (λ) [2.45 MJkg-1]: 

 

𝛾 =
𝐶𝑝∗𝑃

𝜀∗𝜆
=

1.013∗10−3∗𝑃

0.622∗2.45
= 0.6647 ∗ 10−3 ∗ 𝑃 (2.5) 

 

The slope of the vapor pressure curve (Δ) was calculated using T [°C]: 

 

𝛥 =
4098∗[0.6108∗𝑒

(
17.27∗𝑇
𝑇+237.3

)
]

(𝑇+237.3)2  (2.6) 

 

As we needed the wind speed at 2m height (u2), but ERA5-Land provided us with values for 10m 

height (u, v [ms-1]), we calculated the wind speed/direction at 10m (equation 2.7) and translated the 

value down to a height of 2m (equation 2.8): 

 

𝑢10 = √(𝑢2𝑣2) (2.7) 

 

𝑢2 = 𝑢10 ∗
4.87

ln(678−5.42)
 (2.8) 

 

Aerodynamic resistance (ra) [sm-1] was calculated based on the height of wind measurements (zm) 

[m], the height of humidity measurements (zh) [m], the zero displacement height (d) [m], the 

roughness length governing momentum transfer (zom) [m], the roughness length governing transfer of 

heat and vapor (zoh) [m], the Karman’s constant (k) [-] and the wind speed at 2m height (u2) [ms-1]: 

 

𝑟𝑎 =
ln(

𝑧𝑚−𝑑

𝑧𝑜𝑚
)∗ln

𝑧ℎ−𝑑

𝑧𝑜ℎ

𝑘2∗𝑢𝑧
 (2.9) 

 

As the FAO reference crop ET model assumes a universal crop height (hc) of 0.12m, the parameters 

d, zom and zoh were calculated using the formulas 2.10 to 2.12: 

 

𝑑 =
2

3
∗ ℎ𝑐 (2.10) 

 

𝑧𝑜𝑚 = 0.123 ∗ ℎ𝑐 (2.11) 

 

𝑧𝑜ℎ = 0.1 ∗ 𝑧𝑜𝑚 (2.12) 

 

The surface resistance (rs) [sm-1] was calculated from the stomatal resistance of a well-illuminated 

leaf (rl) [100 sm-1] and the active LAI (LAIactive) [m2m-2], which was approximated as 50% of the total 

LAI: 
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𝑟𝑠 =
𝑟𝑙

𝐿𝐴𝐼𝑎𝑐𝑡𝑖𝑣𝑒
 (2.13) 

 

Using these values in the PM-equation proposed by the FAO, ET values were calculated over the 

whole timespan with a 16-day temporal resolution. The FAO reference crop ET model was then 

compared and evaluated with the ERA5-Land total evaporation data, which act here as a validation 

dataset. In a next step, individual variables of the reference PM equation were replaced by TROPOMI-

SIF values. 

 

2.2.3 Introducing Sun-Induced Chlorophyll Fluorescence to the Reference Model 

A computationally efficient approach was chosen for the integration of SIF values into the FAO 

reference crop ET PM-equation in order not to exceed the computational and temporal limits of this 

master’s thesis. A linear regression model was fitted between the SIF values and one of the variables 

contained in the PM equation at a time. The linear regression equation was then used to stretch the 

SIF values to an appropriate range of values to replace the initial variable in the equation. Utilized 

were linear models between: 

 
Table 4 Built linear models to replace the variables by SIF values 

Nr. Linear regression model Coefficient m Intercept q 

1. SIF & ET 0.6895 0.1778 

2. SIF & Rn 0.3934 0.1305 

3. SIF & LAI 0.1415 0.0525 

4. SIF & LAIactive 0.2830 0.0525 

5. SIF & rs -0.0018 0.7614 

6. SIF & rs*VPD0.5 -0.0008 0.6936 

 

Lu et al (2018) examined in their study, whether SIF values can be used to accurately estimate T. 

They found that SIF has a generally positive linear correlation with T. Only under stress situations 

does SIF show a non-linearity with T. As T is the main component of terrestrial ET (Schlesinger and 

Jasechko, 2014), we investigated whether ET can be directly approximated by SIF using a linear 

relation. 

As radiation is the main driving source of SIF and Rn is highly correlated with SIF (Ma et al., 2022), 

we further replaced Rn with linearly stretched SIF values. 

While the existing FAO approach allows estimating potential ET only, based on the greenness of 

plants, we tried to replace the biological drivers such as LAI and rs by SIF to move closer to an 

estimation of actual ET (Damm, Roethlin and Fritsche, 2018). 

Shan et al. (2021) have also shown a high correlation between SIF and canopy conductance*VPD0.5 

in their study, which is why we finally created a model in which SIF values were stretched to the 
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range of rs*VPD0.5 using a linear regression function, and then a new rs was calculated and inserted 

into the PM equation. 

The linear regression models (equation 2.14) were used to scale each of the SIF values to an adequate 

range of values to substitute for the variable being replaced: 

 

𝑆𝐼𝐹 = 𝑚 ∗ 𝑥 + 𝑞 (2.14) 

 

Where x is the variable to be replaced in the PM equation, m is the linear regression coefficient and 

q is the linear regression intercept. 
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3. Results 

The FAO reference model showed on average higher values compared to the validation data of ERA5. 

While the ERA5 total evaporation data showed a mean value of 0.14 mm h-1 over the whole timespan, 

the FAO reference approach provided a mean ET value of 0.54 mm h-1. To compensate for this bias, 

all values of the reference model, as well as those of the derived SIF models, were divided by a factor 

of four to approximate the ERA5-Total evaporation validation data. 

In some cases, the models still showed excessive values even after bias correction. The values for the 

SIF-ET model and the SIF-Rn model were particularly high. After bias correction, for the SIF-ET 

model we still obtained maximum values of up to 2.03 mm h-1 with an average of 0.22 mm h-1 and for 

the SIF-Rn model maximum values of up to 1.76 mm h-1 with an average of 0.24 mm h-1. 

Statistics summarized in table 5 indicate the FAO reference model, after bias-correction, to be in a 

similar range of values as the ERA5 total evaporation data. The two models in which the LAI 

respectively LAIactive was replaced by SIF show the same characteristic values. The models in which 

we approximated rs by SIF are also in an acceptable range of values, but underestimate ET by about 

0.02 mm h-1 for the SIF-rs model and 0.05 mm h-1 for the SIF-rs*VPD0.5 model. 

 

Missing values in individual models are due to negative and/or not available SIF values, which were 

excluded in the calculations. Furthermore, with the calculation method used, we obtained strongly 

negative values for rs due to a negative regression coefficient for the SIF-rs and SIF-rs*VPD05 models. 

These were also replaced by voids. Therefore, the SIF-rs and SIF-Rs*VPD0.5 models showed missing 

values in large parts of northern and central Europe. 

 
Table 5 Characteristic ET values [mm h-1] for the different models after bias-correction 

Model Min Max Mean Median 

ERA5 Validation -0.0602 0.6931 0.1413 0.1133 

Reference 0.0000 0.5607 0.1361 0.1254 

SIF-ET 0.0000 2.0289 0.2173 0.1562 

SIF-Rn -0.0577 1.7550 0.2356 0.1568 

SIF-LAI 0.0000 0.5461 0.1655 0.1658 

SIF-LAIactive 0.0000 0.5461 0.1655 0.1658 

SIF-rs 0.0004 0.5540 0.1197 0.1005 

SIF-rs*VPD0.5 0.0000 0.5541 0.0959 0.0676 
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3.1 Timeseries Comparison Across Different Sites/Landcover Classes 

In all models, we recognize a typical course of the phenological cycle, in which the growth phase 

begins in spring, maximum activity is reached in summer, and vegetation activity declines during 

autumn (Khaliq, Peroni and Chiaberge, 2018). 

Even after bias-correction, the models differ strongly from each other. Particularly striking are those 

models in which SIF values were used directly as a proxy for ET and Rn, respectively. Fewer outliers 

were achieved, when SIF values were used for less weighted components of the PM equation (i.e. 

LAIactive and rs). In figure 2 only the models are shown, which have no or only few gaps. A complete 

compilation of the calculated models can be found in the appendix. Due to the calculation method 

used, large gaps were found especially in the northern regions, where we partly had no SIF data, or 

found negative values which were neglected for further calculations. Furthermore, for the SIF-rs and 

SIF-rs*VPD0.5 models we discarded strongly negative values also in large parts of central Europe, 

which is why they were excluded from the time-series analysis. 

 
Figure 2 Subplots of the ERA5 validation, the FAO reference crop and the SIF-based models over the whole timespan from 

01.04.2018 to 30.07.2021 in a 16d-interval. A) ERA5 total evaporation, B) FAO reference crop ET model, C) SIF-ET model, 

D) SIF-Rn model, E) SIF-LAIactive model 
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Figure 2 shows the timeseries of ET values based on the different modelling algorithms and the 

validation dataset for different sites and landcover classes. The two topmost plots indicate the ET 

timeseries as found in the validation and reference data set. Subplot 2A) shows the timeseries at 

corresponding sites based on the ERA5-total evaporation data. This plot will indicate the validation 

data. Generally, it indicates highest values in densely vegetated areas such as forest and agricultural 

fields (up to 0.6 mmh-1). Lowest ET values are found in sites located in Scandinavia. In subplot 2B) 

the ET values are displayed, when using the FAO reference crop ET model. The timeseries is used as 

a reference model to inspect deviations resulting from the insertion of the SIF values. Highest ET 

values (up to 0.5mmh-1) are found in Spain (desert) and Portugal (mixed species forest and agricultural 

fields). Nordic countries (Finland with grassland and shrubs, Sweden with coniferous forest and 

grassland) indicate lowest values reaching a max. ET of around 0.2 mmh-1. In both the validation and 

the reference model the season of Scandinavian countries are shorter (length of growing season (LGS) 

around 180 days) and later in season (start in late April), when compared to sites in lower altitudes 

(LGS around 270 days and start of season in February-March). 

Figure 2 also contains three of the resulting timeseries of the computed SIF-based approaches 

performed in this thesis, namely the SIF-approaches based on C) ET, D) Rn and E) LAIactive. The 

model based on ET and Rn feature similar characteristics, including ET values of up to 1.0 and 1.2 

mmh-1, respectively, for the locations in both France and Sicily (both sites dominated by agricultural 

landcover). Both these locations further show a clear peak in ET values at the start of season with 

Sicily being earlier in season than France. Both timeseries feature large gaps in the dataset over 

Sweden, Finland and Spain. Overall, the lowest ET Values are found in the study site situated in the 

desert in Spain with max. ET values of 0.1 mmh-1 in both models. The approach based on SIF for 

LAIactive  (figure 2E)) results in SIF values across all test sites between 0 to below 0.5 mmh-1. All sites 

follow a similar trend using this approach, with highest values found in the site in Portugal and lowest 

in the area of Finland. Also, in this timeseries large data gaps are included especially for sites in high 

latitudes. These missing values are due to negative and/or not available SIF values, which were 

excluded in the calculations. Negative SIF-Values after stretching the values according to chapter 

2.2.3 were also discarded. 

When comparing the validation data (figure 2A) with the results from the FAO reference approach 

(figure2B), the reference model indicates a smoother annual course and thus shows fewer peaks than 

the ERA5 total evaporation data. Discrepancies between the reference and the SIF based models (ET 

and Rn) are found for one in the test site in the Spanish desert. Where the ET values for the reference 

model are ranging to up to 0.5mmh-1. A difference in trend can further be found between the reference 

and the two SIF-based approaches for those areas, where the SIF-based approaches indicate a peak 

of season. 

Comparing the reference model (figure 2B) with the two SIF-based models, where SIF was used 

directly as a proxy for ET or Rn, the sites in France (Amiens) and Italy (Sicily), and to a lesser extent 
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the area in Switzerland (Laegern), show significant outliers in late spring and summer. While models 

2C) and 2D) show large variation in values, model 2E) closely approximates the FAO reference model 

and thus shows less fluctuation over the course of the timeseries. 

 

3.2 FAO-Reference-Model Compared to ERA5 Total Evaporation Validation Data 

For comparison and checking for plausibility of the different models, 19 test locations were selected 

along the northern edge of the central European mainland (see figure 3). These range from Spain 

(Salamanca) to Latvia (Saldus Parish). 

 

 
Figure 3 Location of the 19 test sites in northern Central Europe; in the background: ET values calculated based on the 

FAO reference approach for the 23.08.2018 

 
Figure 4 Deviation of ERA5-Total evaporation validation data from the calculated FAO reference approach in 2020 for the 

test pin locations indicated in figure 3 

Figure 4 shows the model deviation for the selected test sites across northern Central Europe between 

the ERA5 total evaporation validation data and the calculated FAO reference approach over the 

growing season 2020. The same analysis was performed for the seasons 2018 and 2019. Largest 
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discrepancies of up to 100% are generally found in the locations of higher latitudes (sites No. 16-19). 

This indicates the reference model based on FAO to have lower ET values than the ERA5 validation 

data. Strongest negative values (down to -67%) indicating the opposite (lower values in ERA5 than 

in FAO based approach) are found in summer months (June – September) in the regions characterized 

by the lowest latitude. 

Table 6 summarizes the mean model deviation results across the three analyzed seasons. For 2018, 

we find an average deviation of the two models (ERA5 total evaporation and FAO reference model) 

of 18.00% and a median deviation of 20.63%. This implies that the validation data are about 18% 

higher than the FAO reference model data for the selected test sites. In 2019, the deviation is even 

slightly higher with an average of 29.82% as well as a median deviation of 35.08%. For 2020, the 

average deviation is 31.46% and the median deviation is 33.37%. 

 

Table 6 Deviation of ERA5 total evaporation data compared to calculated data from FAO reference model 

Year Mean Dev. [%] Median Dev. [%] 

2018 17.998 20.625 

2019 29.821 35.076 

2020 31.464 33.368 

All 26.428 29.838 

 

Thus, we see that after the bias-correction the ERA5 validation data for the selected test sites from 

April to October is on average about 26% higher than the calculated data using the FAO reference 

approach. In the further comparison, however, we are mainly interested in the quality of the different 

SIF-based models and whether they are able to show stress situations for vegetation better than the 

reference model. 

 

3.3 SIF-Based Models Statistically Compared to FAO-Reference-Model 

To investigate how well the different SIF-based models correlate with the reference approach, they 

were plotted against the reference model and a linear regression was fitted through the data (see 

Appendix for plots) resulting in a linear regression coefficient and regression intercept (see chapter 

2.2.3). In addition, the coefficient of determination (R2) and the root mean squared error (RMSE) 

were calculated. R2 gives us information about the strength of the relationship between the two data 

sets, while the RMSE describes the extent of the deviation of the data from each other. 

Table 7 shows the achieved results of the statistical evaluation of the different SIF-based models 

computed for this thesis against the FAO reference crop ET model. Highest cross-correlation values 

were found between reference and SIF-LAIactive and SIF-rs (0.911), while lowest values are found 

between reference and SIF-ET (0.15). Correspondingly, the root mean squared error is lowest for 

reference and SIF-LAIactive (0.031) and SIF-rs (0.038), and highest for the reference and SIF-ET 
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combination (0.219). With the RMSE of SIF-LAIactive being even lower than SIF-rs, this indicates SIF-

LAIactive to be the best fit. 

 
Table 7 Statistical comparison between the FAO-reference model and the ERA5 validation data and between the FAO  

reference approach and each of the calculated SIF-based models in this thesis. The linear regression coefficient and the 

regression intercept are provided to describe the slope of the linear regression line 

Reference compared to: R2 RMSE Coefficient Intercept 

Validation 0.501 0.091 0.8304 0.0377 

SIF-ET 0.150 0.188 0.8576 0.0673 

SIF-Rn 0.187 0.219 1.1069 0.0341 

SIF-LAIact 0.911 0.031 1.0000 -0.0087 

SIF-rs 0.911 0.038 0.8648 -0.0063 

SIF-rsVPD0.5 0.843 0.060 0.8300 -0.0238 

 

3.4 Plausibility Check Regarding Plant Stress Situations 

As Europe was severely affected by a combined drought and heat wave in the year 2018 (Ahmed et 

al., 2020), this year was selected to examine how our values differ from the FAO reference approach 

to the SIF-based models regarding the vegetation stress situations. In their paper, Ahmed et al. (2020) 

state that the ET values for April 2018 were close to their long-term baseline, with only some areas 

in central and eastern Europe showing higher than normal ET, which may have been caused by 

warmer spring conditions. Based on these findings, we used the month of April of our FAO reference 

approach model as a reference and calculated the deviation of our models from this data set for each 

month. 

Using the ERA5-total evaporation validation data, we can see the progression that the data should 

theoretically show over the year (figure 5). From April to May we find a general increase of ET values 

over all test sites, especially strong is the increase in the northeast of Central Europe (up to 80%). In 

June, the first values in Central Europe start to fall below the April values. This trend continues in 

July, while from August to October almost everywhere, except for sites 3, 15 and 16, the values drop 

below the April values (down to -76%). 

 

Figure 5 ERA5 total evaporation: In-season comparison of the trend between the reference month April versus the 

remaining months. From left to right for each month: Site of interest 1 -19 
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Figure 6 further indicates a deviation over the progression over the year between the FAO-based 

approach to the validation data. We can see, that for our interest sites along the northern edge of Central 

Europe, the progression over the year deviates from the validation data. On the whole, we see a similar 

pattern, but with some variations especially in the months of July, August and September. 

 
Figure 6 FAO reference approach model: In-season comparison of the trend between the reference month April versus the 

remaining months. From left to right for each month: Site of interest 1-19 

While in the validation data we can already see a decrease in ET values for Central Europe in June, 

which has further intensified and expanded in the following months, this decrease in values compared 

to the April data in the FAO model is only visible in August, September and October. 

However, in order to check whether we can better approximate the actual seasonal trend by integrating 

SIF values into the PM equation, we compare the values of the reference model and our SIF-based 

models. 

 

 
Figure 7 SIF-ET Model: In-season comparison of the trend between the reference month April from the FAO-reference 

approach versus the season for the SIF-ET model. From left to right for each month: Site of interest 1-19 

Figure 7 shows the deviation of the ET values of the SIF-ET model compared to the month April of 

the FAO reference approach. It is striking that we find strong overestimations of the values in the 

months April to July (up to 482% in the month of May). Furthermore, we find an underestimation in 

the westernmost test sites throughout the season (up to -94%). While the FAO reference model still 

shows a predominantly positive deviation in August, the SIF-ET model already shows a large-scale 

decrease of ET values over central Europe. 
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Figure 8 SIF-Rn Model: In-season comparison of the trend between the reference month April from the FAO-reference 

approach versus the season for the SIF-Rn model. From left to right for each month: Site of interest 1-19 

The deviations between the month April of the FAO reference model to the SIF-Rn model shows a 

very similar pattern (figure 8) as the FAO reference approach to the SIF-ET model. It is remarkable 

that we find even higher deviations (up to 516%, and down to -99%). 

 

 
Figure 9 SIF-LAIactive Model: In-season comparison of the trend between the reference month April from the FAO-reference 

approach versus the season for the SIF-LAIactive model. From left to right for each month: Site of interest 1-19 

In figure 9 we compare the SIF-LAIactive model to the month April of the FAO reference model. 

Compared to the SIF-ET and SIF-Rn model, we are again closer to the course of the FAO reference 

approach. However, it is striking that we already find a negative deviation of up to -38% in the month 

of April. These underestimations in April are mainly found in eastern Central Europe. In the months 

of May, June and July we find predominantly positive deviations (of up to 83%) until in August a 

first break in the values is observed in Central Europe, which then manifests itself in September, 

especially in the eastern test sites, and in October a break in the values is recorded across all test sites 

with deviations down to -74%. 
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4. Discussion 

There are many uncertainties associated with the calculation of ET using the FAO reference crop 

approach. For one, the PM equation is very complex and requires many meteorological and 

biophysiological inputs, all of which are subject to uncertainties in measurements and/or estimations. 

In addition, this method assumes that we have a uniform land surface across the study site and time, 

namely a hypothetical crop with a height of 0.12 m and a bulk surface resistance of 70 sm-1 (Allen et 

al., 1998). These may be possible reasons why our reference model showed highly overpredicted 

values compared to the ERA5 total evaporation validation data and could explain the bias factor 

found. The ERA5 total evaporation showed to be a reliable estimation of ET when compared to the 

findings of Ahmed et al. (Ahmed et al., 2021), therefore it seemed suitable to be used as a validation 

data set. 

 

4.1 FAO Reference Crop ET Model 

While the statistical values of the FAO reference approach suggest that we achieved a reliable 

approximation to the ERA5 validation data (table 5), we notice some differences when comparing the 

time series of the two models (figure 2A/2B). For the study site in the Spanish desert, the ERA5 

validation data show a clear pattern that ET values reach their maximum (ca. 0.4 mmh-1) especially 

in spring, while hardly any ET was measured in summer (less than 0.1 mmh-1) and a peak in ET is 

seen again in autumn 2018 and 2019. In the FAO reference model, on the other hand, the Spanish 

desert, along with the Portuguese forest- and agricultural lands, has the highest values (up to about 

0.6 mmh-1) and shows a typical phenological cycle, with an increase of ET values in spring, a 

maximum in summer, a weakening in autumn to a minimum in winter. This behavior can be linked 

to the applied computational method, which assumed universal vegetation cover across the study site. 

Making the result solemnly dependent on the meteorological data. We thus recognize in the FAO 

reference model mainly the geographical location of the different sites. While in the more southern 

regions like Spain, Portugal, Italy and up to Switzerland more solar energy as well as higher 

temperatures over a longer period of time are available, the Scandinavian sites are characterized by 

much lower temperatures and the length of time where enough solar energy is provided for to lead to 

ET is far shorter (see figure 2). Therefore, we have hardly any ET from around October to March in 

these sites. 

While the statistical values of the FAO reference approach suggest that we achieved a good 

approximation to the ERA5 validation data (table 5), we notice some differences when looking at the 

time series of the two models (figure 2A/2B). For the study site in the Spanish desert, the ERA5 

validation data show a clear pattern that ET values reach their maximum (ca. 0.4 mmh-1) especially 

in spring, while hardly any ET was measured in summer (less than 0.1 mmh-1) and a peak in ET is 

seen again in autumn 2018 and 2019. In the FAO reference model, on the other hand, the Spanish 

desert, along with the Portuguese forest- and agricultural lands, has the highest values (up to about 
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0.6 mmh-1) and shows a typical phenological cycle, with an increase of ET values in spring, a 

maximum in summer, a weakening in autumn to a minimum in winter. However, this makes perfect 

sense when we consider our computational method, which assumed universal vegetation cover across 

the study site. This meant that we were really only dependent on the meteorological data. We thus 

recognize in the FAO reference model mainly the geographical location of the different sites. While 

in the more southern regions like Spain, Portugal, Italy and up to Switzerland we have more solar 

energy and higher temperatures over a longer period of time, in the Scandinavian sites we have much 

lower temperatures and only during a shorter period of time enough solar energy to run ET. Therefore, 

we have hardly any ET from around October to March. 

 

4.2 Introduction of SIF to the FAO Reference Approach 

Our SIF-ET model as well as the SIF-Rn model indicated weakest correlation to the FAO reference 

model with R2 values of 0.150 and 0.187, respectively, which indicates that even after stretching the 

SIF values to the parameter range, the usage of SIF for these parameters lead to a too diverse range 

of values. This finding displayed in table 7 implies that we tried to approximate a rather non-linear 

relationship using a linear regression. Furthermore, from this, we could deduce that Rn is heavily 

weighted in the PM equation and thus has a large impact on the final result of the model equation. If 

we replace ET directly with a linearly stretched SIF, we obtain a larger range of values and thus 

overestimate ET, indicating again, that the relationship between ET and SIF might not be linear. 

Estimating ET directly from SIF resulted in a low correlation with the reference ET data, consistent 

with findings by Damm et al. (2021) who also reported the lowest agreement between measured and 

modelled transpiration by using a linear function of SIF to approximate transpiration. 

For the remaining SIF-based models, we found much higher correlations with the FAO reference 

model (an R2 of 0.911 for SIF-LAIactive as well as SIF-rs and an R2 of 0.843 for SIF-rs*VPD0.5, see 

table 7). This indicates that the replaced parameters were weighted lighter in the overall equation. 

Accordingly, despite adjusting the parameter values, we obtained a reliable representation of the FAO 

reference ET model. However, caution should be applied when interpreting the SIF-rs and SIF-

rs*VPD0.5 models (see table 4): The models also resulted in strongly negative values over large parts 

of Europe for the stretched SIF due to the negative linear regression coefficients. These were 

discharged and not further considered leading to large gaps of data throughout the entire study site. 

To examine whether our SIF-based models were better able to represent reduced ET values affected 

by heat and/or drought waves (Tsakiris and Vangelis, 2005) we compared the spatiotemporal 

deviation of our models relative to the month of April 2018 of the FAO reference model. The ERA5 

total evaporation data agreed well with the findings of Ahmed et al. (2021) and was therefore used as 

a validation dataset showing how the variations in ET values differed from April 2018 across the 

season. Already in June 2018, we noticed the first negative deviations over Central Europe, which 

means that we found a decrease in ET values compared to the month of April. These negative 
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deviations manifested and propagated further towards the west in the month of July. In August, all 

but the test sites in the far east and one test site west of the Pyrenees had ET values below those of 

April, showing well the influence of the combined heat and drought wave during the year 2018. In 

September, only the test site west of the Pyrenees showed a positive ET deviation, while the rest of 

the sites indicated strongly negative deviations (on average -42%). Finally, in October, all ET values 

were below April, with a more pronounced deviation in Eastern Europe (-70%) than in Western 

Europe (-51%). 

Compared to the course of the validation data, our model based on the FAO reference crop ET method 

showed a similar course over the whole year, but large deviations within the individual months (see 

figure 6). While we could observe the spread of the combined heat and drought wave from east to 

west already in June based on the validation data, this development is visible in the FAO reference 

approach only from August on, where we still find an increase of ET values in the west, first negative 

deviations in central Europe and only a weak increase in the east. The pattern becomes clearer in 

September, where we find a significant decrease in ET values in the East, while we still had an 

increase in the West. Then for the month of October we found a similar pattern as in the validation 

data. Higher deviation values are found in the East (67%) than in the West (38%). 

The SIF-ET model provided a wide range of deviations from the month of April of the FAO Reference 

approach (from -94% up to 482%). For April we found negative deviation from -91% in the test 

location 2 in Spain up to 331% for the test site 6 in northern France (see figure 3). In the very East, 

our model produced lower values than the FAO approach. In May, we found a negative deviation 

only in test location 2, while everywhere else an increase of about 200% on average was seen. For 

the remaining months we found a negative deviation especially in Spain, while in western France we 

still had an increase in ET values. From July onwards, the heat and drought wave slowly made itself 

noticeable in Central Europe, which then extended further east and west in the following months. 

The SIF-Rn model showed the same pattern as the SIF-ET model, except that the deviations were 

even more pronounced (from -99% to 516%). This may indicate that ET has a strong correlation with 

Rn, especially since both models showed the same pattern after SIF was introduced. This finding 

supports previously conducted studies by Heck et al. (2020) and Irmak et al. (2003). 

The SIF-LAIactive model showed a very similar course as the FAO reference model but showed an 

underestimation of the ET values already in April in Eastern Europe (see figure 9). Also, in this model 

we find first signs of a heat and drought wave only in August, which then propagated eastward in 

September and produced negative deviations across all test sites in October. 

 

4.3 Limitations of this study 

The FAO reference crop ET estimation assumes a uniform vegetation cover for the entire study site, 

an assumption which cannot hold over a continental-wide test site. As our research environment is a 

highly dynamic and diverse landscape, this approach can only give an approximation of the actual 
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values for ET. Since the ERA5 reanalysis dataset also contains modeled values, it must be assumed 

that multiple uncertainties influence this dataset. This includes, for example, an assumption of a 

constant LAI (value of 3 m2m-2) for the study site in the Spanish desert, thereby not reflecting reality. 

Despite a computationally efficient approach, the models regularly overloaded the computational 

capacity of the PC system used, therefore we had to break the models into smaller and smaller pieces 

to avoid overloading the computer. Significantly more computing power would be needed to create 

more accurate models including more detailed data. 
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5. Conclusion 

Remote sensing technologies offer a promising approach to help increasing the understanding of 

environmental variables such as ET by providing increased spatiotemporal coverage. However, the 

implementation of such data to accurately reflect the complex system of vegetation activity still faces 

substantial challenges. In this thesis, we created and assessed the applicability of several spaceborne 

SIF-based ET models. Some of the here presented SIF-based models for ET estimation on continental-

coverage come close to the values of the FAO reference crop ET models and in general feature a 

reasonable seasonal cycle across diverse landcover classes and latitudes. Weakest correlation towards 

FAO reference across the diverse landcover classes was found for the substitution of SIF for ET and 

Rn. Best results, when compared to the FAO reference, were achieved by the SIF-LAIactive model. Our 

results further indicate a high correlation between Rn and ET. Generally, we conclude that the 

assumption of a linear correlation between SIF and various parameters of the PM equation is not 

capable of improving FAO reference crop model as the link is more complex than a linear relationship 

can reflect. In order to move from estimating potential ET closer to an estimation of actual ET, we 

recommend further studies to use modeling approaches, which take into account the non-linear 

correlations between the different parameters. In addition, we recommend using a land cover 

classification as a base to incorporate various vegetation-specific parameters into the model, to 

determine the actual ET values more precisely over a large study site. 
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Appendix 

 
Figure 10 ET timeseries for all the models conducted in this thesis 
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Figure 11 Scatterplots of ET values [mmh-1]  for the FAO reference crop approach against each of the SIF-based models 
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