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Abstract 

Forests contribute substantially to ecosystem functions and services making their ecological 

quality valuable. Due to climate change, monitoring diversity is becoming increasingly 

important to record a possible decline. High functional diversity has been related to a decreasing 

vulnerability to disturbances like diseases, storms and insect attacks. Remote sensing and 

especially LiDAR are promising methods to assess functional traits and diversity in forests and 

have been linked to plant diversity and ecosystem functioning. However, large-scale and 

multitemporal analyses using LiDAR datasets are just at the beginning. This thesis aims to 

assess functional forest traits and diversity metrics out of ALS data and to compare them 

between the years 2014 and 2019. Three morphological traits, namely canopy height, foliage 

height diversity and plant area index were estimated for the entire forest area of the canton 

Aargau under defoliated conditions. Then, functional richness and divergence were computed 

out of the traits. For three subregions of the canton, occlusion in the lower canopy was computed 

to assess if traits and diversity metrics are influenced. More complex derivations of ALS point 

clouds, e.g. plant area index, richness or divergence, were found to be more sensitive to external 

influences like different sensor and flight settings and occluded fractions of the canopy volume. 

Various spatial patterns of the derived traits and diversity metrics were mapped, e.g. a decrease 

or smaller increase in steep and high altitude regions. Richness values showed a very large 

global increase of 123%, which cannot solely be attributed to biotic changes, but is rather 

caused by the sensitivity to sensor-related factors. The results demonstrate how the 

development of robust methods for trait and diversity estimations is important. The 

incorporation of sensor and flight parameters into the estimation methods is crucial for 

improved performance in multitemporal analyses using ALS point clouds.  
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1 Introduction 

Forests do not only fulfill important ecosystem services, protective and utility functions but 

also make a significant contribution to biodiversity as they form a relevant part of the biosphere. 

Approximately one third of Switzerland is forested and more than 60% of the species found in 

the country live in this ecosystem (Geiger et al., 2012). Due to climate change and human 

activity, biodiversity is declining globally which could diminish said ecosystem services 

(Zheng et al., 2021). Its decline is gradual, thus is hardly noticed by society (Geiger et al., 2012).  

Although a positive trend in the ecological quality of forests has been observed in recent 

decades, there are deficits in Swiss forest biodiversity. For example, the under-representation 

of diverse structures, too little old and dead wood lead to a decrease in rare and endangered 

light- and heat-loving species (Geiger et al., 2012). For this reason, it is important to monitor 

and control biodiversity parameters. 

At least three primary attributes of ecosystems have been recognized to constitute the 

biodiversity of an area: composition, structure and function (McElhinny et al., 2005; Noss, 

1990). Compositional and structural features had been the main part of biodiversity inventories. 

But with the emergence of function biogeography, functional features are studied increasingly 

today (e.g. Helfenstein et al., 2022; Schneider et al., 2017; Zheng et al., 2021). Plant functional 

traits and diversity have been demonstrated to show a positive relationship between plant 

diversity and ecosystem functioning (Schneider et al., 2017). Functional diversity measures the 

range and distribution of what organisms do in communities and ecosystems and hence 

recognizes the complementarity and redundancy of species that co-occur. Thus it is assumed to 

better predict ecosystem productivity and vulnerability compared to species diversity (Schleuter 

et al., 2010). 

High functional diversity has been linked to high productivity of plant communities, 

enhanced tree growth and ecosystem stability. Furthermore, areas with high diversity showed 

increased responsiveness to dynamic environmental conditions and were less vulnerable to 

insect attacks, diseases, fire, and storms (Schneider et al., 2017). 

Functional diversity can be retrieved from different sets of functional traits that can be 

morphological, physiological or phenological (Helfenstein et al., 2022; Homolová et al., 2013). 

In this thesis we use morphological traits to derive the diversity metrics, therefore 

morphological functional diversity – i.e. functional richness and divergence – are referred to as 

functional diversity. Morphological traits are linked to the availability of light and other factors 
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such as the growth rate of individual trees, the productivity of the ecosystem and also the 

specific habitat for canopy-dwelling organisms (Ishii et al., 2004; Moles et al., 2009; Zheng et 

al., 2021). 

Many trait-based studies exist in forested ecosystems but these studies are usually ignoring 

variation in tree functional traits within species as they assess trait variation and functional 

diversity using the combined information of species abundances and their mean traits. 

Therefore, mapping traits and diversity continuously can fill existing data gaps. Recent 

improvements in remote sensing methods allow assessing morphological functional traits 

directly providing a continuous map of functional diversity over a larger area (Homolová et al., 

2013; Schneider et al., 2017). Especially light detection and ranging (LiDAR) with airborne 

laser scanning (ALS) systems are considered promising in assessing forest canopy structure 

variables, i.e. canopy height or plant area index (Kükenbrink et al., 2017). 

Large-scale ALS acquisitions are getting more common in central Europe (Bornand, 2020, 

p. 3). This opens up the possibility of making multitemporal analyses of forest structure. The 

main objective of this Master's thesis is to map functional traits and diversity to the large area 

of the entire canton of Aargau and to compare two points in time - 2014 and 2019. The 

functional diversity mapping approach used in this thesis was introduced by Schneider et al. 

(Schneider et al., 2017). Morphological traits are estimated out of a LiDAR dataset that describe 

the canopy architecture (horizontally and vertically) and the light availability which gives 

important evidence of competitive light use and ecosystem productivity (Schneider et al., 2017). 

Out of these traits, functional diversity metrics can be calculated. The results show the 

possibilities and limitations of the functional diversity mapping approach by Schneider et al. 

(Schneider et al., 2017) at a larger scale and in a multitemporal analysis. 

Occlusion has been identified as a source of uncertainty in LiDAR measurements and change 

detection analyses. Dense canopy tops can prevent the laser pulse from reaching lower layers 

in forests in ALS measurements (Korpela et al., 2012; Kükenbrink et al., 2017). The occlusion 

mapping approach introduced by Kükenbrink et al. (2017) uses a voxel traversal algorithm 

(Amanatides and Woo, 1987) to trace ALS laser pulses through a predefined voxel grid. The 

resulting occlusion map will be used as an explanatory variable for detected changes in the 

functional diversity and trait maps. 
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With the help of the LiDAR data, the aim is to record whether and how structural changes 

have taken place in the protected forest areas in the canton of Aargau. A fraction (6% as of 

2015) of the total forest area is protected where natural processes have priority and no 

management is carried out to promote forest biodiversity (Kanton Aargau: Departement Bau 

Verkehr und Umwelt, 2021; Wittwer, 2016). We thus also want to compare the forested areas 

in the natural forest reserves to the unprotected forest areas. 

 

The following research questions are used to guide our objectives: 

1. What are the possibilities and limitations of functional diversity mapping when applied 

over a large area and over two points in time?  

2. Further, does this approach allow: 

a. to observe structural change in forests of the canton Aargau between 2014 and 

2019? 

b. to observe differences in forest structures between protected and unprotected 

forest areas and to detect trends within these 5 years?  

3. What is the potential of using occlusion mapping in a multitemporal analysis of 

functional traits and diversity? 

We expect the functional diversity mapping to be well applicable to the area of the canton 

Aargau. A possible limitation of the approach could be that the neighborhood used for 

calculating functional richness and divergence must be kept at a smaller scale due to the 

computational expenses of the large area. Also, the different sensors and flight geometries of 

the LiDAR acquisitions could lead to difficulties in the comparison of the measured 

morphological traits between both years. 

We expect minor changes to be visible between 2014 and 2019. Since the forest will not 

renew itself completely within 5 years and there will only be a correspondingly large increase 

in woody material, we do not expect the changes to be too large as we are focusing on 

morphological traits. The largest changes are expected to come from logging or storm damage. 
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The nature reserves were established in places where a forest was identified as being 

particularly worthy of protection. Therefore, we expect slightly higher diversity metrics in the 

protected forest areas. 

Especially in areas with high occlusion, differences between 2014 and 2019 not being 

explainable by other variables – e.g. topographic variables like slope, aspect, etc. – are expected. 

Therefore, we predict the occlusion maps to help in explaining differences between 2014 and 

2019.  
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2 Material and Methods 

2.1 Study area 

The study area includes the entire canton of Aargau. It is located in the north of Switzerland 

and has a total area of 1403 km2. This makes it the tenth-largest canton in Switzerland. 

 

Figure 2.1: Overview of the study area (right) and where it is located in Switzerland (left).The forest 

reserves are indicated with light red polygons and the unprotected forest areas appear in a light green 

color (geodata source: swisstopo, 2022a). The locations of the three subregions, Laegern (a), Unterwald 

(b), and Frickberg (c), are marked with grey rectangles. 

Approximately 500 km2 is forest, which makes up about 35% of the canton's area. Most of 

the forests (63%) are pure or mixed deciduous forests. The predominant tree species are beech 

(a) 

(b) 

(c) 
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with 32% and spruce with 26% of the forest stand (Kanton Aargau: Departement Bau Verkehr 

und Umwelt, 2018). 

Most of the forests in Aargau belong to the biogeographical region of Aargauer Mittelland. 

These forests are somewhat less rich in deciduous trees than the forests belonging to the 

Aargauer Jura region. The forests of the Aargauer Mittelland are slightly less elevated and 

slightly less steep than the forests in the Aargauer Jura. 

A survey by the National Forest Inventory (NFI) defined the ecologically most valuable 

forest areas. Since 1996, these areas have been protected to promote forest biodiversity 

(Wittwer, 2016). In the canton of Aargau, 40 natural forest reserves have been designated. 

These are large-scale forest areas (at least 20 hectares) in which no timber harvesting or forest 

management is allowed. Natural processes have priority, and no measures of any kind are 

carried out (Kanton Aargau: Departement Bau Verkehr und Umwelt, 2021).  

As of 2015, around 6% of the forest area belongs to a forest reserve and is subject to a 

contractually agreed renunciation of use. The protected forests are richer in deciduous trees and, 

concerning the current stocking, also closer to nature than the unprotected forests. The most 

important key figures are listed in the table. (Kanton Aargau: Departement Bau Verkehr und 

Umwelt, 2018) 

 

Table 2.1: Overview of the forested area of the canton Aargau. 

  Forest area 

[ha]  

Percentage of 

total forest in 

Aargau 

Percentage of 

deciduous dominated 

forest area in Aargau 

Biogeographical region Aargauer Jura 8’342 17 % 61 % 

 Aargauer 

Mittelland 

40’728 83 % 73 % 

Forest reserves and 

unprotected forest 

Forest reserve 2’9441 6 %1 65 % 

 Unprotected 

forest 

46’1251 94 %1 39 % 

Public and private 

forest 

Public forest 38’415 78 % 61 % 

 Private forest 10’655 22 % 72 % 

 

  

 

1 As of 2015 
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To be able to identify and discuss small-scale changes, three subregions were selected (see 

Figure 2.1). The subregions are the forest of Laegern, the forest in the southeast of the canton 

called Unterwald, and the forest of Frickberg. These three study areas were chosen because they 

are diverse in their attributes and spread over the canton Aargau. Every study area contains 

protected and unprotected forest areas and two of them, Laegern and Unterwald, are close to a 

NFI plot. Table 2.2 depicts the site locations and portrays the main attributes of the test areas. 

 

Table 2.2: Overview of the main attributes of the subregion sites Laegern, Unterwald, and Frickberg. 

 Laegern Unterwald Frickberg 

Altitude [m.a.s.l.] ~450-910 ~550 ~480-800 

Topographic characteristic steep hill flat hill 

Forest type mainly deciduous 

and mixed forest 

mainly coniferous mainly deciduous 

Area [m2] 4’390’923 4’582’052 1’621’979 

2.2 Data 

2.2.1 Airborne laser scanning data 

For the years 2014 and 2019, three ALS datasets containing the entire area of the canton 

were available and provided by the Canton Aargau, Departement Bau, Verkehr und Umwelt, 

Abteilung Wald. The data was acquired in 2014 under leaf-off (defoliated) and leaf-on (foliated) 

conditions. The leaf-off data were collected from 18.03.2014 - 04.04.2014 with an LMS-Q680i 

RIEGL scanner. The leaf-on data was acquired from 19.06.2014-25.07.2014 with the same 

scanner. In 2019, only leaf-off data was collected from 23.03.2019 – 21.04.2019 with an LMS-

VQ780i RIEGL scanner. All aerial surveys in 2014 and 2019 were carried out by Milan 

Geoservice GmbH (Kamenz, Germany). 
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Table 2.3: Summary of the specifications for all ALS data acquisitions in the canton of Aargau in 2014 

and 2019. 

 

2014 2019 

ALS parameter Leaf-off Leaf-on Leaf-off 

Acquisition date February/March 2014 June/July 2014 March/April 2019 

ALS sensor LMS-Q680i LMS-VQ780i 

Operating platform Airplane 

Area of coverage [km2] ~1400 

Mean operating altitude 

above ground [m] 

600 700 1250 

Scanning method Rotating polygon mirror 

Pulse detection method Full-waveform processing 

Scan angle [°] ±15 ±15 ±30 

Mean point density [pts/m2] 16 30 30.8 

Pulse footprint [cm] 30 35 31 

Pulse repetition frequency 

[kHz] 

300 1000 

Beam divergence [mrad] 0.5 0.25 

Laser wavelength [nm] NIR 
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2.2.1.1 Preprocessing 

The raw full-waveform data was processed involving the following steps and were executed 

by Milan Geoservice GmbH (2020, 2014): 

• Extraction of discrete laser returns into a local coordinate system using the software 

RiAnalyze (RIEGL) 

• Transformation of the point cloud into the Swiss Cartesian coordinate system 

o 2014 data: CH-1903 (LV03) 

o 2019 data: CH-1903+ (LV95) 

• Flight strip adjustment 

• Filtering using the software TerraScan (TerraSolid) and classification of the point 

cloud into ground and vegetation 

• Creation of a digital terrain model (DTM) with 0.5m resolution using the software 

TerraScan (TerraSolid) 

• Due to the large amount of data, the LiDAR data and the DTM were divided into 

1000 x 1000 m tiles. 

The finished data were provided as LAS files containing a three-dimensional point cloud 

with planimetric coordinates, ellipsoidal heights, terrain-corrected heights, echo type, and 

intensity values. The DTM is provided in the GeoTIFF format. 

2.2.2 Other data 

The forest mixture proportion map containing the percentage coverage of broadleaved and 

coniferous trees is provided by the national forest inventory NFI (Waser and Ginzler, 2021), 

last updated on 6 April 2018. The mix rate is modeled using remote sensing methods and has a 

10 m resolution.  

The forest polygons were provided by Aargauisches Geografisches Informationssystem 

(AGIS), Departement Bau, Verkehr und Umwelt, Abteilung Wald. We used the data from 1 

September 2019 for this project (AGIS, 2019). 

Other general geodata like the borders of the canton as well as all rivers and lakes of the 

canton Aargau were provided by swisstopo (2022a), last updated 1 January 2015. 
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2.2.2.1 Topographic variables 

All topographic variables, i.e. slope, altitude, and aspect were calculated using the digital 

terrain model provided by the LiDAR acquisition of 2019. Slope and aspect were computed 

using the terra package for R (Hijmans, 2022; R Core Team, 2022) (terrain() function) 

according to Horn (1981). Both variables are calculated using 8 neighboring cells with a 2 m 

resolution and output a theoretical range of 0-360° (aspect) and 0-90° (slope). 

2.2.3 Forest mask 

As the LiDAR data is very large, it was important to clip the LiDAR point clouds to the 

forest extent before processing to reduce computational power and processing time. Two forest 

masks were used for this project. A fine mask was created to clip the LiDAR data before 

calculating the functional diversity metrics and all forest traits. A very coarse mask was used to 

clip the ALS data before the voxel traversal algorithm. The LAS files were clipped using the 

software LAStools (Isenburg, 2021). The generation of these masks is outlined in detail in the 

following two subsections. 

2.2.3.1 Mask for functional diversity metrics 

Additionally to the reduction of computational power and time, to calculate functional 

richness and divergence, the forest boundary must be well defined as both metrics use 

neighborhood operations. Morphological richness is especially sensitive to outliers, therefore 

all non-forest pixels needed to be excluded by assigning the value NaN. 

To achieve this, the data containing “Waldareale” forest polygons was obtained from the 

canton of Aargau. It is a derivative of the static forest boundary converted to polygons. We used 

the updated forest polygons from 1 September 2019 for both LiDAR datasets to use the same 

forest extent and have comparable results. 
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2.2.3.2 Mask for Voxel Traversal Algorithm 

To reduce the computational effort for the Voxel Traversal Algorithm, the ALS dataset of 

the entire Canton was clipped by a forest mask. It was created in QGIS (QGIS.org, 2022) using 

the vector dataset of the forest area “Waldareale”. It is the same dataset as above. 

The Voxel Traversal Algorithm traces the laser pulse until it hits the ground. To ensure that 

the algorithm can use the entire pulse as input, the dataset has to include a buffer that is large 

enough to cushion all pulses of larger scan angles. There is the possibility that a pulse is sent 

out outside of the forest and still hits the ground inside the forest (see Figure 2.2). For this 

reason, we chose a buffer of 20 meters around the forest to ensure that the complete pulse is 

included in the input dataset. 

 

Figure 2.2: Possible ALS geometry at forest borders. 
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2.3 Functional traits and diversity metrics 

2.3.1 Functional traits 

It is crucial to choose appropriate traits to calculate functional diversity metrics. These traits 

should not be too highly correlated to each other and represent different facets of forest 

properties (Zheng et al., 2021). To assess functional richness and divergence, three 

morphological forest traits were chosen. We used the same morphological traits as Schneider 

et al. (Schneider et al., 2017) which are canopy height (CH), foliage height diversity (FHD), 

and plant area index (PAI).  

These three morphological traits are relevant for plant ecosystem function and can be 

assessed with airborne remote sensing methods (Homolová et al., 2013; Schneider et al., 2017, 

2014). Our selected morphological traits relate to the three primary components of variation in 

canopy space: canopy height, vertical layering and openness (Fahey et al., 2019). These 

structural axes have been linked to ecosystem functioning and are commonly used to 

differentiate between vegetation types. They have also been used to characterize the structural 

diversity of the canopy (Coops et al., 2016; Zheng et al., 2021). Figure 2.3 represents the 

conceptual model of the canopy structure introduced by Fahey et al. (2019). 

 
Figure 2.3: Conceptual model of the canopy structure space illustrating (a) the global spectrum and (b) 

the temperate forest structure spectrum  (illustration by Fahey et al. (2019)). 
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2.3.1.1 Canopy height 

Plant height has been shown to possess a central role in plant ecological strategy, as it 

determines how well a plant can compete for light which affects the carbon gain strategy of a 

species (Moles et al., 2009; Stahl et al., 2014). Furthermore, CH has been related to various 

species' abundances (Coops et al., 2016).   

CH is one of the most common derivatives of ALS data because it is easy to measure and 

shows high accuracy with less bias compared to field-based measurements (Coops et al., 2016). 

With these advantages and its high relevance for ecosystem functioning, CH is an important 

trait for structural diversity. It represents the first axis of the canopy structure spectrum by Fahey 

et al. (2019). We calculated it as the vertical distance between the highest laser return 

representing the canopy top and the corresponding ground defined by the DTM. CH was 

derived from the LiDAR point cloud data on a grid with a 2 m resolution. 

2.3.1.2 Foliage height diversity 

FHD functions as a metric of variation and the number of canopy layers, representing the 

canopy vertical complexity, which forms the second axis of the canopy structure model (Fahey 

et al., 2019; Schneider et al., 2017). It is a trait most often used to describe stand structure 

through its vertical complexity (McElhinny et al., 2005; Tanabe et al., 2001). FHD has been 

related to biomass growth, biodiversity and habitat suitability (Seidel et al., 2016). It has been 

the first where a quantitative relationship was found between a structural element and a measure 

of faunal diversity (McElhinny et al., 2005): MacArthur and MacArthur (1961) reported a 

positive relationship between bird species diversity and FHD. 

FHD was calculated using the Shannon-Wiener index as follows: 

𝐹𝐻𝐷 =  − ∑ 𝑝𝑖 ⋅ 𝑙𝑜𝑔𝑒 𝑝𝑖,

𝑖

 (1) 

where pi is the proportion of the foliage and stems lying in the ith layer. We used a 1 m 

vertical interval and excluded the lowest 3 m (NFI definition of minimal forest height) to 

separate the understory from the canopy. FHD was mapped on a 2 x 2 m grid. 

Because FHD relates to how different the layers are in density and how many layers exist, it 

is expected to have some correlation to CH. CH defines the maximum layers possible with 

respect to the vertical interval. 
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McElhinny et al. (2005) denote FHD as a metric with a certain ambiguity, as no standard 

method has been established and the chosen layer thickness has often been arbitrary. In this 

thesis, we compare two datasets with each other, therefore our traits are used in a relative 

manner that mitigates said problem. A different vertical resolution only changes the magnitude 

of observed change (see Appendix Figure A.1), which also has been found by Leiterer et al. A 

1 m vertical resolution was also used in studies by Seidel et al. (2016) and Tanabe et al. (2001). 

2.3.1.3 Plant area index 

When describing canopy structural characteristics, the plant area index (PAI) is an important 

morphological trait. Chen et al. (1991) defined PAI of a stand as “half the total area of leaves 

and woody materials per unit ground area”. In forests, PAI is retrieved rather than the leaf area 

index (LAI) due to the existence of woody structures (Liu et al., 2021) and corresponds to the 

term effective leaf area index (LAIe) (Solberg et al., 2009). LAI, a much-studied variable, is 

considered an important climate and biodiversity variable, as it influences photosynthesis, 

transpiration and rain interception (Bojinski et al., 2014; Liu et al., 2021; Skidmore et al., 2015). 

Estimating the LAI or PAI respectively has been a challenge. Passive sensors have problems 

distinguishing influences from ground vegetation, shading and saturation at high LAI values, 

especially in coniferous forests (Solberg et al., 2009). Synthetic aperture radar (SAR) shows 

different problems, such as variable moisture conditions and rugged terrain that influence the 

trait estimation (Solberg et al., 2009). ALS was found as an alternative to said methods based 

on the Beer-Lambert law which showed promising results for PAI estimation compared with 

ground-based methods (Arnqvist et al., 2020).  

Different approaches to computing the PAI are available, all of them having some 

advantages and disadvantages. Because we compare two LiDAR datasets with each other being 

recorded with different sensors, a robust method in PAI estimation is needed. Otherwise, a 

comparison cannot be conducted. Three approaches have been tested for our two datasets, 

where all methods are based on the Beer-Lambert law of light extinction. 
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1. Ray-tracing approach (RTA) by Kükenbrink et al. (Kükenbrink et al., 2015), 

implemented in MATLAB (2021) 

2. First returns ratio approach (FR) without ray-tracing by de Almeida et al. (2019), 

implemented in the leafR (de Almeida et al., 2022) package in R  

3. Scaled returns ratio (SR) approach by Arnqvist et al. (2020), implemented in 

MATLAB and Python (Python Software Foundation, 2021) 

1. Ray-tracing approach (RT) 

Kükenbrink et al. (Kükenbrink et al., 2015) use a voxel-based PAI estimation, where the 

scene is divided into a three-dimensional voxel grid. Each laser pulse is traced through the voxel 

grid, using a voxel traversal algorithm (the same as in Chapter 2.4). The number of pulses 

traversing the voxel with a laser return (Nhit) and without (Nmiss) was recorded. By using the Nhit 

and Nmiss, the penetration rate of the laser pulse through the voxel can be estimated and using 

the Beer-Lambert law of light extinction, the PAI can be estimated: 

𝑃𝐴𝐼 =  −
1

𝑘
 ⋅  𝑙𝑛 (

𝑁𝑚𝑖𝑠𝑠

𝑁𝑚𝑖𝑠𝑠 + 𝑁ℎ𝑖𝑡
) , (2) 

where k is the extinction coefficient defined by:  

𝑘 =
𝐺(𝜃, 𝜃𝐿)

𝑐𝑜𝑠 𝜃
  (3) 

 

The leaf normal angle (𝜃𝐿)  and the incidence angle (𝜃) of the pulse are affecting the 

projection of foliage area (G). 

2. First returns ratio approach (FR) 

De Almeida et al. (2019) used a similar approach but worked under the assumption that all 

pulses are vertically incident. With this, no computationally expensive voxel traversal algorithm 

was needed, as the passage of the laser pulses was tracked solely within the voxel columns. PAI 

is computed as follows: 

𝑃𝐴𝐼 =  ∑ 𝑃𝐴𝐷, (4) 

where PAD (plant area density) is the vertical distribution of plant elements in the ith canopy 

layer applying the MacArthur-Horn equation: 
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𝑃𝐴𝐷𝑖 =  𝑙𝑛 (
𝑝𝑢𝑙𝑠𝑒𝑠. 𝑖𝑛𝑖

𝑝𝑢𝑙𝑠𝑒𝑠. 𝑜𝑢𝑡𝑖
) ⋅  

1

𝐷𝑧
 ⋅  

1

𝑘
 (5) 

Dz is the vertical resolution of the canopy layer, pulses.ini are the number of pulses entering 

the voxel and pulses.outi are the number of pulses passing through the voxel. Here, only first 

returns can be considered because the MacArthur–Horn approach works under the assumption 

that each pulse represents an independent canopy probe. Therefore, the number of emitted 

pulses has to be equal to the number of reflections. This leads to disregarding a large part of the 

dataset. Furthermore, it is expected to have a high site-to-site variability due to the method 

being sensitive to the ratio of the lidar footprint and the mean gap size in the canopy (Arnqvist 

et al., 2020). 

3. Scaled returns ratio approach (SR) 

Arnqvist et al. (2020) proposed an approach combining two methods. The first one is an 

improved method first introduced by de Almeida et al. (2019). They tried their FR approach on 

a dataset using all returns not only the first returns in their supplementary material, which 

enables to use the entire dataset. On the other hand, this approach has the disadvantage that it 

has a poor theoretical background and needs further improvement. Arnqvist et al. (2020) 

modified the approach by using the scan angle in their computation. 

The second approach is the method by Hopkinson and Chasmer (2009) which incorporates 

intensity values. The method presumes that the intensity values depend on the vegetation 

density from a vertical forest section and that the albedo for ground and vegetation is equal 

(Arnqvist et al., 2020). The main advantage is that it uses all returns and avoids many of the FR 

drawbacks. Its disadvantage is the assumption that the albedo for ground and vegetation is 

identical which is most problematic in not-so-dense forests. 

By combining the two methods above, it is possible to combine their respective strengths 

and mitigate many of their problems. It estimates PAI values by the following four steps. First, 

it identifies all returns and scales them according to their intensities. The mathematical 

expression of the individual beam scaling is as follows: 

𝑟𝑠 =
𝐼𝑖𝑟

∑ 𝐼𝑖𝑟

𝑁𝑟
𝑖𝑟=1

 , (6) 

where rs is the rescaled intensity of the irth return of the pulse, where the original intensity 

is 𝐼𝑖𝑟
. The scaling factor is the sum of all intensities between the first and the maximal return 
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number (NR) of the pulse. After the intensities are scaled, the approach estimates the ratio of 

incoming and outgoing radiation in a second step: 

∑ 𝑅𝑖
𝑘
𝑖=1

∑ 𝑅𝑖
𝑘+1
𝑖=1

=
∑ 𝑟𝑠𝑖

𝑘
𝑖=1

∑ 𝑟𝑠𝑖

𝑘+1
𝑖=1

 , (7) 

where R is the radiation reflected at height z. Thirdly, it calculates PAD using the following 

equation: 

𝑃𝐴𝐷∆𝑧 = −
𝑐𝑜𝑠 𝜃1

𝜇
 𝑙𝑛 (

∑ 𝑅𝑖
𝑘
𝑖=1

∑ 𝑅𝑖
𝑘+1
𝑖=1

) , (8) 

where θ1 is the pulse-specific scanning angle of incoming radiation and µ is the extinction 

coefficient with a default of µ = 0.5, as a spherical distribution of the reflecting vegetation 

surfaces is assumed. The PAI is then calculated using Eq. (4) in the last step. 

Due to this weighting, the SR method is either equivalent to the FR method or the Hopkinson 

and Chasmer (2009) method when there is a first return only dataset or only one pulse over the 

binning area is available, respectively. 

Suitability for our ALS data 

The RT showed promising results when tested on the ALS datasets of 2014 and 2019. We 

used a 2 x 2 m resolution with 0.5 m vertical binning. The main drawback of the approach is 

the long computational time of the voxel traversal algorithm. 

The FR has the advantage of being faster which is important because we need to compute 

the PAI for a large study area. However, using only the first returns and maximal scan angle of 

5° for both years made the disadvantage of the FR method visible: The filtering of our point 

cloud resulted in large gaps without laser returns in the study area because we did not have 

enough pulses to cover the entire study area after filtering. For this reason, the FR method 

cannot be used with our datasets. 

Because of the large amount of processing time of the RT approach and the FR approach 

being unsuitable for our datasets, we decided to use the SR approach. It considers many of the 

standard recorded attributes of ALS data (Arnqvist et al., 2020): position (x, y, z), intensity (I), 

return number (ir), number of returns per pulse (NR), ground classification, scanning angle (θ1) 

and is thus less affected by the different sensors. 
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µ can be adapted to fit the PAI to improve the estimation of the area of interest. We left it on 

default because no reliable ground estimates were available for 2014 and 2019 and we are 

focusing on differences between the two points in time. PAD is calculated for 0.5 m height 

intervals on a 2 x 2 m grid, where the resulting PAI matches the resolution of the other two 

calculated traits, i.e. CH and FHD. 

2.3.1.4 Functional trait post-processing 

The three morphological traits are clipped to the exact forest borders. Additionally, the upper 

and lower extremes were removed to keep only the 1st and 99th percentile as shown in the 

histograms. Lastly, the traits needed to be linearly rescaled to values between 0 and 1 to be used 

as input for the functional richness and divergence algorithm. 

2.3.1.4.1 Temporal normalization 

Despite having relatively robust methods for determining the morphological traits, a 

systematic bias between 2014 and 2019 FHD and PAI is detected. Since FHD and PAI are 

dependent on pulse density and sensor instrument, a normalization between the two recording 

times had to be carried out to ensure that the traits and the resulting diversity metrics are 

comparable. CH being the simplest and most accurate trait was not affected and no temporal 

normalization had to be done. A simpler and a more complex approach for the temporal 

normalization were tested and are described in the following sections.  

We changed the morphological traits of 2014, not 2019, because a larger uncertainty of these 

values is expected due to lower pulse density and flight strip overlaps. Our first and simpler 

approach assumes the global mean of each trait not to change between 2014 and 2019. This 

allows us to still observe local changes in trait distribution but has the drawback that global 

change is not observable anymore. A correction factor f was calculated for each trait which was 

then used to normalize: 

𝑇14𝑐𝑜𝑟𝑟 = 𝑇14𝑜𝑟𝑖𝑔 ∗ 𝑓𝜇 ,             𝑓𝜇 =  𝑇𝜇19𝑜𝑟𝑖𝑔 𝑇𝜇14𝑜𝑟𝑖𝑔⁄  (9) 

where 𝑇14𝑜𝑟𝑖𝑔 is the value of the uncorrected trait 2014, 𝑓μ is the mean correction factor and 

𝑇14𝑐𝑜𝑟𝑟 is the normalized trait used for further computation of the functional diversity metrics. 

𝑇μ19𝑜𝑟𝑖𝑔 is the mean of the uncorrected trait 2019 and 𝑇μ14𝑜𝑟𝑖𝑔 the mean of 2014. 
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A more complex approach was also tested. On the ground of the Swissgrid switching 

substation known as Star of Laufenburg (see Appendix Figure A.14), many masts, lines, etc. 

that have a tree-like structure are observable. They were used as persistent scatterers since these 

pylons did not change in the 5 years between the recording dates. We estimated two correction 

factors to achieve almost identical boxplots of the trait in the area. Then they can be used to 

normalize the trait maps of the entire canton. The following equation was applied: 

𝑇14𝑐𝑜𝑟𝑟 = 𝑇14𝑜𝑟𝑖𝑔 ∗ 𝑓 + 𝑖 , (10) 

where f and i are the correction factors estimated from the trait values at the Swissgrid 

station. This method has the advantage that a global mean change of the trait is allowed and 

compared to the first method not only corrects the mean of the trait but also its dispersion. 

Unfortunately, the corrected FHD and PAI trait values are not satisfactory, because they 

showed impossible values in far away regions in the study area, indicating that the estimated f 

and i factors are not applicable over the entire area of the canton Aargau. More persistent 

scatterers distributed over the entire study area might help to improve the correction factor 

estimate. This would need to be subject of further studies.  

We tried to improve the temporal normalization outcome of the global mean method by 

using Eq. (10) also on the global mean, but the results still are less promising than with Eq. (9) 

based on visual inspection of histograms, boxplots, and difference maps. 

2.3.2 Functional diversity 

For the detection of the effects biodiversity has on ecosystem functioning and services, 

functional diversity has been recognized as an effective diversity measure that allows the 

observation of ecosystem functioning using remotely sensed data (Helfenstein et al., 2022, p. 

2). Functional diversity is defined as the diversity of traits where they are used to describe the 

diversity of species niches in trait space (Ahmed et al., 2018, p. 487). The functional diversity 

indices can use one functional trait (one-dimensional) or multiple functional traits (multi-

dimensional/multivariate) as input. It is recommended to prefer multivariate indices, thus they 

are used more often. As we used the approach by Schneider et al. (2017), a set of three traits 

were selected and a multidimensional space is created in which each point represents a species, 

individual or pixel where each coordinate corresponds to a measured trait. (Ahmed et al., 2018; 

Schleuter et al., 2010) 
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Figure 2.4: Two aspects of functional diversity in a three-dimensional trait space based on 

morphological forest traits (canopy height, foliage height diversity and plant area index). The shaded 

volumes refer to (a) functional richness and (b) functional divergence of a circular area with a radius 

of 120 m. (illustration by Schneider et al. (2017)) 

Different multivariate functional diversity indices represent different aspects of trait 

distributions and can be used as a subsidiary (Zheng et al., 2021). The two chosen indices are 

functional richness and functional divergence. Schneider et al. (2017) also computed functional 

evenness, which is not considered in this thesis because functional divergence and evenness 

both describe adequately how the samples are spread within the community niche (Helfenstein 

et al., 2022). The more complex metric could not be examined because of the long computation 

times for the large study area. 

Functional richness measures the community niche extent using the convex hull of the 

occupied functional space (Figure 2.4, a). Its disadvantage may be a strong influence by outliers. 

Functional divergence measures the community niche density which describes how sample 

points are spread with respect to the center of gravity (Figure 2.4, b) (Helfenstein et al., 2022; 

Schneider et al., 2017; Villéger et al., 2008). Divergence is calculated based on Villéger et al. 

(2008): 

 

∆|𝑑| = ∑
1

𝑆
⋅ |𝑑𝐺𝑖 − 𝑑𝐺̅̅̅̅ |,

𝑆

𝑖=1

 (11) 

 

𝐹𝐷𝑖𝑣 =  
𝑑𝐺̅̅ ̅̅

∆|𝑑|  + 𝑑𝐺̅̅ ̅̅  
 (12) 
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It is calculated using the number of pixels S mapped in the functional space where dGi is the 

Euclidean distance between the ith pixel and the center of gravity (dG). For example, FDiv = 1 

would mean that all pixels lie on a sphere around the center of gravity. Lower values of 

functional diversity are achieved if the pixels lie dispersed in the trait space. An example of the 

behavior of functional richness and divergence is depicted in Figure 2.5. 

(a) Functional Richness (FRic) 

 

(b) Functional Divergence (FDiv) 

 

 

Figure 2.5: Concepts of functional diversity in a two-dimensional trait space illustrating differences 

(low/high) between (a) functional richness and (b) functional divergence. (adapted from Carmona et al. 

(2016)) 
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2.4 Occlusion mapping 

When working with ALS data, especially when estimating complex forest traits, a major 

source of uncertainty has been found in the view obstruction of dense canopy tops (Korpela et 

al., 2012; Kükenbrink et al., 2017). This results in the laser pulse not reaching lower parts of 

the canopy leading to an incomplete dataset. The occluded part of the forest canopy is not 

evident when analyzing the point cloud. To assess the occurring occlusion, Kükenbrink et al. 

(2017) developed a method to calculate the occlusion of an ALS dataset, which is used in this 

thesis. 

Each laser pulse is traced to reconstruct its path via ray-tracing. For this ray-tracing, a voxel 

traversal algorithm introduced by Amanatides and Woo (1987) is used. It is a computationally 

inexpensive way to trace the laser pulse through a partitioned 3D space. 

Space is divided into voxels which are rectangular cubes. Then, each laser pulse is traced 

through this voxel grid. A pulse is represented as a vector: 

�⃗� = 𝑝0⃗⃗⃗⃗⃗ + 𝑡𝑑⃗⃗⃗⃗⃗ , (13) 

where the distance along the vector �⃗⃗⃗�  to reach the point �⃗⃗⃗� is defined by t. The voxel traversal 

algorithm has two stages, the initialization, and the incremental traversal phase. During the 

initialization phase, the voxel where the laser pulse first intersects the voxel grid is identified 

and its x, y, and z indices are stored. The stepping in x-, y-, and z-direction (1 or -1) is defined 

by the ray crossing the voxel boundaries according to the signs of the x, y, and z components 

of �⃗⃗⃗�. In the incremental traversal phase, the value of t at the crossing of the voxel border is 

determined for each of the three dimensions. The minimum value defines how far the ray can 

travel without leaving the voxel. Lastly, also for all dimensions, the length (units of t)  the ray 

must travel to reach the width of the voxel is determined. A more detailed explanation of the 

voxel traversal algorithm can be found in Amanatides and Woo (1987). The pulse diameter is 

assumed to be infinitesimally small to simplify the process. The implications of this assumption 

are considered to lead to only a small overestimation of the occlusion (Kükenbrink et al., 2017). 

For each voxel, the number of hits (Nhit), the number of misses (Nmiss), and the number of 

occluded (Nocc) rays are recorded. If a traversed voxel has a laser return inside, Nhit is increased 

by 1, if it has no return inside, Nmiss is increased. If a voxel is traversed after the pulse’s last 

return, Nocc is increased. If the pulses reach the voxel grid border or the terrain (defined by the 

DTM), the voxel traversal algorithm is stopped. 
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After all pulses are traced through the voxel grid, a voxel classification is established. 

Possible classes are observed voxels that have a laser return inside, empty voxels which do not 

have a return inside, occluded voxels, which are hidden from the sensor, and unobserved voxels, 

which are unobserved by the laser sensor and are never traversed by the voxel traversal. The 

classification is depicted in Table 2.4. 

 

Table 2.4: Classification of voxel cells after Kükenbrink et al. (2015) and Bienert et al. (2010). 

  Number of  

 Returns (Nhit) Penetrations (Nmiss) Occlusions (Nocc) 

Observed >0 ≥0 ≥0 

Empty =0 >0 ≥0 

Occluded =0 =0 >0 

Unobserved =0 =0 =0 

 

Occluded voxels would have been traversed by the pulses, but all energy has already been 

reflected due to interactions with the forest canopy. Unobserved voxels can occur at the border 

of the flight swath or when the pulse density is too low.  

We chose a voxel size of 0.5 m due to the fact the ALS dataset is recorded under leaf-off 

conditions. With a larger voxel size, it would not be possible to observe a big part of the 

occlusion in our dataset. As the last step, the occlusion 3D map was processed to represent the 

fraction of occluded canopy volume over the surface area (2 x 2 m grid) that matched the trait 

and functional diversity maps. 

Initially, the entire canton Aargau was supposed to be mapped. It became clear that the 

computational expense to ray-trace 1403 km2 is immense although the ray-tracing algorithm 

used is relatively economical. The large area combined with a relatively small grid made it very 

hard to follow through. We parallelized the process using the ScienceCluster by S3IT where 

each tile covering an area of 1 km2 was submitted in a separate job. Unfortunately, many tiles 

did not run smoothly, and it was not possible to debug all of them. Thus, occlusion maps are 

only computed for the three subregions Laegern, Unterwald, and Frickberg.   
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2.5 Comparison of trait and diversity maps 

In the first step, the trait and diversity maps are grouped by different aspects, slopes, forest 

mix rates, and altitudes and displayed in a set of boxplots. The forest reserves and the 

unprotected forest areas are contrasted with each other to detect differing trait and diversity 

distributions. Also, both recording years are compared to each other. The tables below depict 

the classification of the topographic and forest variables. The classified maps can be found in 

Appendix Figure A.10. 

 

 

Table 2.5: Aspect classification. Table 2.6: Forest mix rate classification after 

Brändli et al. (2020). 

Value Description Aspect [°] 

1 North 315-44 

2 East 45-134 

3 South 135-224 

4 West 225-314 
 

Value Description Deciduous tree mix rate [%] 

1 pure coniferous 0-10 

2 mixed coniferous 11-50 

3 mixed deciduous 51-90 

4 pure deciduous 91-100 
 

 

Table 2.7: Slope classification after KA5 

(Sponagel, 2005). 

 

Table 2.8: Altitude classification. A vertical bin 

height of approximately 100 m is chosen, resulting in 

6 altitudinal belts from 255-910 m.a.s.l. 

Value Description slope [°] 

1 flattish <2 

2 weakly inclined 2-<5 

3 medium inclined 5-<10 

4 heavily inclined 10-<20 

5 steep >20 

 

 

 Value altitude [m.a.s.l.] 

1 255-350 

2 351-450 

3 451-550 

4 551-650 

5 651-750 

6 751-910 
 

Table 2.9: Occlusion classification. Table 2.10: Occlusion change classification. 

Value Description Occluded canopy 

volume [%] 

1 no occlusion <5 

2 low occlusion 5-<25 

3 medium occlusion 25-<50 

4 heavy occlusion >50 

 

 

Value Description Value Occlusion 

map 2019- 2014 

1 no occlusion change -0.05-<0.05 

2 low occlusion change -0.25-<0.05 & 

0.05-<0.25 

3 medium occlusion 

change 

-0.5-<0.25 & 0.25-

<0.5 

4 large occlusion change < -0.5 & > 0.5 
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2.5.1 Analysis of variance 

To test whether the trait and diversity metrics can be explained by the topographic and forest 

variables, and above all, if occlusion influences the outcomes of traits and diversity metrics, we 

conducted an analysis of variance with a type-I sum of squares, like Schneider et al. (2017) and 

followed their workflow. Due to high computational expenses and not having the occlusion 

map for the entire canton, not the entire area of the canton Aargau could be investigated. The 

test areas are the region of Laegern, the region in the southeast of the canton Unterwald, and 

the region of Frickberg. 

We aggregated the data to a 30 m x 30 m grid using the mean. This is the size we used to 

compute the diversity metrics, where the moving window had a radius of 30 m. We had the 

traits, CH, FHD, and PAI and the diversity metrics, richness and divergence, and the associated 

change maps as the dependent variables which are all continuous. The independent variables 

were altitude, slope, forest mix rate, occlusion, and point density as continuous variables and 

aspect as the only categorical variable like Schneider et al. (2017). We used the aspect 

classification from Table 2.5 but reduced the categories such that only northern, southern, and 

other slopes remained. In the aggregation process, a simple majority was used for the variable 

aspect. 

Because we work with spatial data, we had to cope with spatial autocorrelation. A spatial 

simultaneous autoregressive error model estimation was used to fit a generalized linear model 

(Chun and Griffith, 2013; Schneider et al., 2017). We used the function errorsarlm of the 

spatialreg package in R (Bivand and Piras, 2015). It has the form: 

𝑦 = 𝑋𝛽 + 𝑢,      𝑢 =  𝜆𝑊𝑢 +  𝜀 , (14) 

where y is the vector of the dependent variable, X a matrix of the independent variables, 𝛽 is 

the parameter vector of regression coefficients, 𝜆 is the spatial error parameter, W is a fixed 

spatial weights matrix and 𝜀 is the error of the regression model. 

We investigated if the traits and diversity metrics can be explained by altitude, slope, aspect, 

forest mix rate, occlusion, and point density. As a next step, we explored if the mapped change 

of the traits can be explained by occlusion and point density. To explain the change of richness 

and divergence, we also used the change maps of the individual traits as explanatory variables, 

additionally to occlusion and point density, to see if certain traits have a larger influence on 

FRic and FDiv than others. In Table 2.11, the used regression equations are depicted. 
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Table 2.11: Equations used in the generalized linear model. 

CH2014 ~ altitude + slope + aspect + forest_mix + occlusion2014 + pt_density2014 

Traits and diversity 

metrics 2014 

FHD2014 ~ altitude + slope + aspect + forest_mix + occlusion2014 + pt_density2014 

PAI2014 ~ altitude + slope + aspect + forest_mix + occlusion2014 + pt_density2014 

FRic2014 ~ altitude + slope + aspect + forest_mix + occlusion2014 + pt_density2014 

FDiv2014 ~ altitude + slope + aspect + forest_mix + occlusion2014 + pt_density2014 

CH2019 ~ altitude + slope + aspect + forest_mix + occlusion2019 + pt_density2019 

Traits and diversity 

metrics 2019 

FHD2019 ~ altitude + slope + aspect + forest_mix + occlusion2019 + pt_density2019 

PAI2019 ~ altitude + slope + aspect + forest_mix + occlusion2019 + pt_density2019 

FRic2019 ~ altitude + slope + aspect + forest_mix + occlusion2019 + pt_density2019 

FDiv2019 ~ altitude + slope + aspect + forest_mix + occlusion2019 + pt_density2019 

CH_diff ~ occlusion_diff + pt_density_diff 

Trait change FHD_diff ~ occlusion_diff + pt_density_diff 

PAI_diff ~ occlusion_diff + pt_density_diff 

FRic_diff ~ CH_diff + FHD_diff + PAI_diff + occlusion_diff + pt_density_diff 
Diversity change 

FDiv_diff ~ CH_diff + FHD_diff + PAI_diff + occlusion_diff + pt_density_diff 
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3 Results 

3.1 General traits and diversity metrics  

Three morphological traits were computed for the entire forested study area of the canton 

Aargau. We estimated CH, FHD, and PAI using the leaf-off ALS point clouds recorded in 

March/April 2014 and February/March 2019. The traits were mapped on a 2 x 2 m grid. 

All maps are available at https://drive.switch.ch/index.php/s/SpW9PPUFv0SW8qD.  

3.1.1 Functional traits 

The average normalized CH ± standard deviation (values between 0 and 1, where 0 is the 

lowest canopy height (2014: CHmin = 0.21 m, 2019: CHmin = 0.04 m) and 1 is the maximum 

canopy height (2014: CHmax = 42.35 m, 2019: CHmax = 43.20 m)) was 0.49±0.23 and 0.47±0.24 

in 2014 and 2019 respectively. FHD showed a mean of 0.56±0.18 and 0.56±0.25, PAI 

0.28±0.14 and 0.28±0.17. Global statistics of all traits before normalization are visible in 

Appendix Table A.1. The CH and FHD mean values of protected forest areas are slightly higher 

compared to unprotected forest areas. PAI mean values are similar in 2014 and 2019 (see Table 

3.1).  

 

Table 3.1: Global statistics of functional traits for nature reserves (NR) and unprotected forest areas 

(UF) 2014 and 2019 after normalization. 

 
 CH  FHD PAI 

   2014 2019 2014 2019 2014 2019 

Mean value 
NR 0.5 0.49 0.57 0.58 0.28 0.27 

UF 0.49 0.47 0.56 0.56 0.28 0.28 

 

  

https://drive.switch.ch/index.php/s/SpW9PPUFv0SW8qD


 

28 

 

The resulting histograms of all traits after normalization from 2014 and 2019 are depicted in 

Figure 3.1. While CH had similar distribution and maxima in 2014 and 2019, FHD and PAI 

showed differences between both years. In 2014, FHD had its maximum at ~0.8 and PAI at 

~0.45. In 2019, FHD peaked at ~0.75 and PAI at ~0.3 and their dispersion was wider. 

  
Figure 3.1: Morphological trait histograms of 2014 (left) and 2019 (right) after normalization. 

3.1.2 Functional diversity metrics 

In 2014 and 2019, functional richness values showed a mean and standard deviation of 

0.09±0.04 and 0.19±0.09, respectively, and were thus much larger than in 2014. Functional 

divergence showed more constant values for both years, their mean and standard deviation 

values were 0.69±0.02 and 0.7±0.03. Divergence had the same mean values in nature reserves 

and unprotected forest areas, but functional richness revealed higher means in both years in the 

unprotected forest (see Table 3.2). 

 

Table 3.2: Global statistics of functional diversity metrics for nature reserves (NR) and unprotected 

forest areas (UF) 2014 and 2019. 

  
 

Minimal value Mean value Maximal value 

  NR UF NR UF NR UF 

FRic  

2014 0.00 0.00 0.08 0.09 0.36 0.44 

2019 0.00 0.00 0.17 0.20 0.56 0.65 

FDiv  

2014 0.51 0.48 0.69 0.69 0.91 1.00 

2019 0.53 0.51 0.70 0.70 0.87 0.92 
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3.1.3 Correlations between traits and diversity metrics 

  

Figure 3.2: Correlation matrix of functional traits with scatterplots (lower panel) and histograms 

(diagonal panel). Correlation coefficients (upper panel) are scaled according to significance  

(*** = significance level 0.001). 

All traits were significantly positively correlated (see Figure 3.2). In 2014, CH and FHD 

were correlated with r = 0.56, in 2019 with r = 0.73. The correlation between CH and FHD was 

relatively high, as expected, and in 2019 it was even a bit higher than in 2014. CH and PAI 

were correlated with r = 0.16 and r = 0.39 in 2014 and 2019, respectively. Therefore, they 

showed a weak to medium correlation in both years. CH and PAI had the largest difference in 

correlation between both study years, where the correlation was much stronger in 2019 than in 

2014. FHD and PAI correlated with r = 0.50 in 2014 and r = 0.53 in 2019 and thus were 

displaying the least increase in correlation. 

FRic and FDiv showed only weak correlations between each other (2014: r = -0.02, 2019: r 

= 0.2) and the functional traits. In 2019, the correlations were stronger between the traits and 

FRic and FDiv. PAI and FRic correlated the most in 2019 (r = 0.43), while in 2014 their 

correlation was much weaker (r = 0.1). PAI and FDiv did have a much lower correlation in 

2014 (r = 0.1) compared to 2019 (r = 0.43).  
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3.2 Spatial patterns 

3.2.1 Functional traits 

In Figure 3.3, the three morphological traits are mapped as a red, green, and blue color 

composite with our normalized traits (similar to the mapping in Schneider et al. (2017)). Red 

areas are defined as CH > FHD, CH > PAI, green areas show trait values of FHD > CH and 

FHD > PAI, and blue areas as PAI > CH, PAI > FHD.  

  
Figure 3.3: RGB composites of the morphological traits of 2014 (left) and 2019 (right) in the entire 

study area. Higher resolution images can be found in the Appendix in Figure A.2 and Figure A.3. 

Throughout the canton, green to yellow colors were dominant (see Figure 3.3). They indicate 

high vertical layering, medium to high canopy height, and fairly low density. In the southwest, 

around the area of Vordemwald, a leaning towards the blue and reddish colors was observable. 

These colors imply high PAI values with low to medium canopy height and rather low vertical 

layering. In the southwestern part of the canton, conifer trees were much more common or even 

dominated the forested areas. In the north-western part of Jurapark, more yellow patches were 

prominent which are representing medium to high canopy and vertical layering with relatively 

low density. These general observations were similar in 2014 and 2019, except for blueish-

green hues: When comparing the RGB composites of both study years, blueish regions from 

2014, especially at the Laegern ridge, appeared in a greener hue in 2019 which means that high 

PAI values have become less prominent whereas FHD showed higher values compared to CH 

and PAI. Otherwise, the RGB composites were fairly similar in both years. 
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In Figure 3.4, CH mapped over the entire canton is depicted in 2014 and 2019. The 

corresponding difference map is visible in Figure 3.5. Canopy height values showed high and 

low patterns distributed all over the canton. CH generally showed relatively small local changes 

and pixels showing a slight increase can be observed all over the canton. FHD and PAI maps 

can be found in Appendix Figure A.4 to Figure A.7. FHD displayed relatively homogenous 

values in 2014 and also in 2019. FHD values were more dispersed in 2019. Highest FHD was 

observed around Kettenjura, southern Aargau, and eastern Aargau but was still relatively 

homogenous across the canton. Variation and change in FHD values can be better observed at 

smaller scales and are discussed in the following sections. Higher PAI values were estimated 

in the southern canton, where more coniferous trees are located. At the Tafeljura, in the northern 

part of Jurapark, a decrease in PAI was observed while the change on the Kettenjura is much 

smaller. A slight increase was detected in the southern part of Aargau where NaN-value-pixels 

were found much more than in other areas. These are pixels where the algorithm could not 

estimate a PAI value resulting in a NaN (not a number) pixel. In the northeastern part of the 

canton, a striping pattern is visible showing more NaN-values. 

In the subsequent section, the three subregions are used to observe spatial patterns on smaller 

scales of the ALS-derived functional traits and diversity metrics. The functional trait maps of 

the subregions are investigated and the computed functional diversity maps are examined. 
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Figure 3.4: Canopy height maps of the canton Aargau of 2014 (top) and 2019 (bottom). 
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Figure 3.5: Difference map of canopy height between the years 2014 and 2019. Red pixels indicate 

higher values in 2014, blue pixels show higher values in 2019. 

  



 

34 

 

At Laegern, the canopy height distribution was similar in both years. The largest trees were 

found on the northern slopes and below the ridge on the southern side with tree heights of >35 

m. The biggest change was observed in the lower northern part of Laegern, where larger forest 

patches showed a strong decrease in canopy height. A slight increase in CH was visible 

throughout the subregion. FHD values showed more dispersion and higher values in 2019 

compared to 2014, as mentioned under Chapter 3.1.1. But now, when examining the subregions, 

a more pronounced decrease towards the Laegern ridge was observed. A strong decrease in 

vertical layering appeared mostly in the same areas as the CH decrease. There was almost no 

increase in the steep regions along the ridge. On the northern slope, a slight striping effect in 

the north-south direction and slightly higher FHD values were noticeable. As with FHD, PAI 

values were moderately higher in 2019. The most increase was visible on the southern slopes, 

where the density in 2019 was larger than on the northern slopes. Again, the same patches of 

decreasing values were visible as with CH and FHD. Higher PAI values appeared mainly in the 

southeastern part, where more coniferous trees were growing. 

In the Unterwald subregion, the highest trees appeared in the western part with some smaller 

patches of large trees in the center and the southeast. A decrease was visible all over Unterwald 

with some large patches in the southeastern part. FHD values were again in a medium range 

and the 2019 decrease corresponds well with CH reduction. PAI 2014 showed a slight striping 

in the center of Unterwald which is discussed under Chapter 4.3. Higher values in PAI appeared 

in 2019 but there were also large areas with a density decrease, especially in the western part 

of Unterwald. PAI showed many NaN-values in Unterwald.  

In the subregion Frickberg, as in Laegern and Unterwald, tree heights were fairly similar in 

both years, with some patches showing a large decrease in CH. The largest trees were found in 

the northeastern and southern slopes where low trees were prominent on top of Frickberg. 

Generally, CH was very diverse. Patches with low FHD values corresponded to also very low 

canopy height, but FHD values appeared very uniform in a medium range, again with a slight 

increase in 2019. The patches with the largest decrease of FHD corresponded again with areas 

of CH decrease. PAI values were highest where coniferous trees were located. As opposed to 

Laegern, there was almost no density increase between 2014 and 2019. PAI values decreased 

most notably on the upper slopes facing south and in the same areas where CH and FHD 

decreased between the two recording dates. 
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Figure 3.6: Functional traits of Laegern in 2014 (left), 2019 (middle), and their change map (right). 

CH is in the top row, FHD in the middle row, and PAI in the bottom row. In the right column, red 

pixels indicate higher values in 2014, blue pixels show higher values in 2019. 
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Figure 3.7: Functional traits of Unterwald in 2014 (left), 2019 (middle), and their change map 

(right). CH is in the top row, FHD in the middle row, and PAI in the bottom row. In the right 

column, red pixels indicate higher values in 2014, blue pixels show higher values in 2019. 
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Figure 3.8: Functional traits of Frickbeg in 2014 (left), 2019 (middle), and their change map (right). 

CH is in the top row, FHD in the middle row, and PAI in the bottom row. In the right column, red 

pixels indicate higher values in 2014, blue pixels show higher values in 2019. 
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3.2.2 Functional diversity metrics 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9: Functional richness maps of the canton Aargau of 2014 (top) and 2019 (bottom). 
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Functional richness showed strong patterns across the study area (see Figure 3.9). The 

highest values of 2014 and 2019 were observed along the southern and eastern borders of the 

canton. High richness values in the southern part of the canton showed up at the same places 

where a high abundance of conifer trees was present. The lowest richness was found in the 

Jurapark, especially along the Kettenjura. There, the difference map showed also the strongest 

decrease (see Figure 3.10). A decrease in FRic values was observed mostly along the southern 

slopes of the Jura and on top of the mountains. It was highly noticeable that FRic showed much 

lower values in 2014 than in 2019, where the mean increased by around 123 %. 

 
Figure 3.10: Classified difference map of functional richness. It is classified using its mean (μFRic = 

0.110). Values within one standard deviation of the observed change in occlusion are beige, within two 

standard deviations are light red/blue up to four which are dark red/blue. Red pixels indicate higher 

values in 2014, blue pixels show higher values in 2019 compared to the mean. 
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Functional divergence was distributed relatively equally over the entire study area, where 

high and low values were visible across the entire canton (see Appendix Figure A.8 and Figure 

A.9). Increasing divergence was found mostly in the southern part of the canton, while a 

decrease was visible mostly in the region of Jura. The largest decrease was found in the northern 

and center parts of the Fricktal. 

In Figure 3.11, the computed diversity maps of the three subregions are depicted. At Laegern, 

the lowest richness pixels were located on the ridge and the northern slope. The highest richness 

values appeared on the southern slope in areas where coniferous trees were dominating. 

Furthermore, very high richness values were observed in the southeast of the large clearing. 

Comparing 2014 and 2019, these were also the regions with the highest increase in richness. 

Divergence values were more diverse and showed more local patterns. Low values occurred all 

across the region but were most prominent south below the ridge next to the clearing. There, 

high trees (>35 m) were common. The largest decrease in divergence happened north and south 

along the ridge. Otherwise, the negative change was relatively small but more prominent than 

the positive change. The strongest increase was visible in the southeast of the clearing, at the 

same location as the increase in richness. 

In Unterwald, high richness values occurred mostly in three relatively large patches in both 

years. The biggest one in the center of the forest was where high canopy values were measured. 

The other two were more in the south of Unterwald. In these three areas, the increase in richness 

in 2019 was more pronounced than in the rest of Unterwald. Areas with decreasing richness 

were also observed as patches with decreasing values of CH, FHD, and PAI (see Figure 3.7). 

As in Laegern, divergence values were fluctuating much more in small areas. Larger patches of 

high values corresponded to the high richness patches. There has not been a large change over 

big forest patches between 2014 and 2019. As opposed to Laegern, an increase in divergence 

was more prominent. 

In Frickberg, high richness areas were located on similar sites in both years, in the north-east 

edge of the forest and the steep areas facing south. In these regions, richness increased the most. 

Richness decreased only in a small area which is also visible in the change maps of CH, FHD, 

and PAI (see Figure 3.8). Divergence patterns were again small-scaled. Compared to Laegern, 

divergence decreased much more. There were only small areas with increasing divergence. 

They were located around patches of losses of CH, FHD, and PAI.  
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Figure 3.11: Functional richness and divergence maps of the three subregions Laegern (top), Unterwald 

(middle), and Frickberg (bottom) of 2014 (left), 2019 (middle), and their change maps (right). In the 

right column, the classified difference maps of all areas are visible. They are classified using their mean 

(Laegern: LμFRic = 0.117, LμFDiv = 0.002, Unterwald: LμFRic = 0.140, LμFDiv = 0.011, Frickberg: LμFRic 

= 0.060, LμFDiv = -0.008). Values within one standard deviation of the observed change in occlusion are 

beige, within two standard deviations are light red/blue up to four which are dark red/blue. Red pixels 

indicate higher values in 2014, blue pixels show higher values in 2019 compared to the mean.  
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Summarizing this subchapter, canopy height generally increased slightly over the study 

region. FHD values were more uniform and did not show as distinctive patterns as CH. PAI had 

its highest values in regions with evergreen conifers growing. Patches of strong decrease of the 

functional traits were found in the same places. 

Looking at functional diversity metrics, richness showed higher values in regions with a 

higher fraction of coniferous trees. Also, in such areas, the observed increase was largest. 

Conversely, regions with low richness values experienced the largest decrease. Divergence 

patterns were small-scale and must be examined in smaller areas (like we did for the three 

subregions). The largest small-scaled divergence increases were found around patches where 

the functional traits showed a strong decrease. Still, bigger patterns of divergence change were 

observed in Jura, where the values decreased, and in southern Aargau, where more increasing 

divergence values were visible. 
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3.3 Topographic and forest parameters 

Functional traits and diversity metrics were compared graphically using boxplots. Various 

classes of topographic and forest parameters were used to compare different characteristics of 

the study area. The classification can be found in Table 2.5 to Table 2.10. The boxplots were 

split to show differences between the years and protected and unprotected forest areas. 

Additionally, a type one ANOVA was conducted for each subregion. 

3.3.1 Functional traits 

The functional trait boxplots are depicted in Figure 3.12 which show the trait values in 

different topographic and forest classes. CH was lowest in altitudes below 450 m.a.s.l. 

Unprotected and protected areas showed similar heights in all classes. A slight decrease was 

observable, especially in lower areas. Tree height did not seem to change depending on aspect, 

but the steeper the ground was, the higher the canopy got. This was very similar in protected 

and unprotected forest areas. Pixels with coniferous trees showed higher canopy height values 

and smaller ranges, which fit the observation described by Davison et al. (2020).  

Exact differences in FHD were harder to observe. Generally, the range of FHD in 2019 was 

larger in all classes and more bottom outliers were visible than for CH. Protected and 

unprotected areas were fairly similar but there were still some trends visible in the plots: FHD 

was mostly increasing in 2019 in higher altitudes. Furthermore, as with CH, FHD increases 

with the slope in both years and steeper pixels had slightly more vertical layering in 2019 than 

in 2014.  

The interquartile range of the PAI values was located on the lower end of the observed values 

which means that they were distributed in a right skew except for coniferous areas, where the 

distribution was more centered. In almost all classes, there were still some outliers in high 

values after normalization. Protected and unprotected areas below 650 m.a.s.l. had lower 

medians in 2019 while in higher regions the medians were similar in both years. In aspect and 

slope classes, the boxplots were very similar for protected and unprotected forest areas: 2019 

PAI medians were lower than in 2014. PAI slightly increased with steeper slopes, but no clear 

differences were observable between the aspect classes. Forest mix classes showed a change in 

distribution the more deciduous the pixels were. The interquartile range was decreasing in both 

years and contained lower values indicating a larger skew of the distribution.  
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Figure 3.12: Trait boxplots of different topographic and forest classes. 



 

44 

 

In Figure 3.13, the changes (map 2019 – map 2014) are categorized and plotted using the 

same classes as before. Nature reserves and unprotected forest areas are plotted next to each 

other to provide insight into possible different behavior. The boxplots were generally very 

similar but observed differences are described in the following section. The interquartile range 

of canopy height differences in high altitudes was smaller in nature reserves than in unprotected 

forest areas. FHD increased more in higher altitudes. Also, there were fewer outliers in these 

altitudes in CH, FHD, and PAI. Furthermore, FHD seemed to increase more in steeper areas 

and forests with a higher fraction of deciduous trees. Below ~350 m.a.s.l., PAI decreased while 

the plant area index in unprotected forest areas showed almost no differences depending on 

height classes above this altitude. A very slight decrease in PAI was observable in nature 

reserves in higher regions. The traits did not show too many other clear patterns in other classes. 

CH change FHD change PAI change 

   

   

Figure 3.13: Trait change boxplots of different topographic and forest classes.  
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3.3.2 Functional diversity 

Functional richness values of 2019 were much higher than in 2014, as already commented 

on in chapter 3.2. Interquartile ranges between the two years did not overlap. Nevertheless, 

there were some trends visible: In nature reserves, richness values were highest between ~ 350-

550 m.a.s.l. It was not as clear in unprotected areas, but pixels lying below 350 m.a.s.l. showed 

a lower median in both years. Unprotected forests showed much higher richness than protected 

forests in higher altitude regions (>450 m.a.s.l.). In unprotected regions, richness stayed 

relatively constant with increasing altitude while the estimated values decreased substantially 

in nature reserves. This trend was visible in both recording years. Richness medians of all forest 

areas were highest on east-facing slopes and lowest on south-facing slopes. Furthermore, 

weakly to medium inclined surfaces showed the highest richness while flat areas had lower 

values. Steep slopes were observed to have the lowest values. In deciduous forests, functional 

richness was relatively low, while coniferous forests presented high richness values. These 

trends were similar in both years and protected and unprotected areas, respectively. 

Unprotected forest areas showed a larger increase in richness in all classes than in nature 

reserves. Apart from this general observation, the largest increase was visible above ~350 

m.a.s.l. where it was almost constant at 0.1. Richness in nature reserves increased most between 

~350 – 550 m.a.s.l. Southern slopes had the smallest increase in protected areas, while 

unprotected forest showed a similar increase in all orientations. No trend was visible depending 

on the slope classes, but FRic increase was larger with an increase of coniferous trees. 

Functional divergence did not vary as much as richness in the different classes. Protected 

areas seemed to be much more sensitive at higher altitudes. Especially in 2019, divergence 

decreased in altitudes above ~650 m.a.s.l. Apart from that, divergence appeared to have slightly 

higher medians and interquartile ranges in 2019 in all classes except pure deciduous forests. 

Change in divergence was much less pronounced than in richness. FDiv increased more in 

lower altitudes. In nature reserves, FDiv decreased above ~550 m.a.s.l. and it increased 

generally more in flat areas and coniferous forests. Differences between protected and 

unprotected areas were minor. 

Generally, all traits showed the least increase or even the most decrease in low-altitude areas. 

Furthermore, they were sensitive to steep slopes, especially CH and FHD.
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Figure 3.14: Functional richness (left) and divergence (right) boxplots of different topographic and forest classes. Corresponding change boxplots are found next to 

the diversity boxplots of the individual years and are colored in purple and red hues. 
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3.4 Occlusion mapping 

We mapped the fraction of canopy volume occluded from the sensor to address possible 

changes caused by not seeing parts of the canopy using the approach by Kükenbrink et al. 

(2017). First, a ray-tracing of all laser pulses using the Voxel Traversal Algorithm by 

Amanatides and Woo (1987) was conducted. The output consisted of a 3D voxel grid containing 

the classification information (observed, empty, unobserved, occluded voxels). To match the 

2D grid of the trait and functional diversity maps, the fraction of occluded canopy volume on a 

ground area of 2 x 2 m was computed. In Figure 3.15, the resulting occlusion maps are depicted. 

 

 

  
 

Figure 3.15: Occlusion maps of Laegern (top), Unterwald (middle) and Frickberg (bottom). The maps 

of the two recording years are in the left (2014) and middle (2019) columns. The values describe the 

fraction of occluded canopy volume on a 2 x 2 m pixel. 0 means that no canopy volume is occluded, 1 

means that the total canopy volume is occluded. In the right column, the difference maps of all areas 

are depicted. 

At Laegern in 2014, visible flight strips were located especially on the northern slopes. 

There, higher occlusion values were observed. Other high occlusion values were located on the 

southern slope, mostly where more coniferous trees growed. These two observations were 

apparent in the difference map of Laegern. Where no flight strip overlap existed in 2014, 

occlusion decreased, while more occlusion was observed along the southern slope in 2019.
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Figure 3.16: CH (left), FHD (middle) and PAI (right) boxplots of the three subregions Laegern, Unterwald and Frickberg. On top, boxplots show the trait values 

in the occlusion classes for 2014 and 2019. On the bottom, the change map boxplots show the behavior of the traits in different occlusion change classes. 

 

Laegern Unterwald Frickberg 
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In Unterwald, a decrease in occlusion was occurring at a similar scale as an increase. 

Unterwald being dominated by coniferous trees did not show as clear patterns as Laegern, but 

a slight striping of decreasing occlusion was observed. Frickberg also displayed heavy 

occlusion in areas with more conifers being present. Occlusion mostly decreased in 2019 

compared to 2014. 

Generally, occlusion mostly decreased between 2014 and 2019, except for larger patches in 

Unterwald and the southern slope of Laegern. 

In Figure 3.16, the boxplots of the trait values are shown. CH median values increased 

slightly with higher occlusion at Laegern and Unterwald. In Frickberg, this trend was not 

visible. FHD boxplots did not show different characteristics that could indicate a trend 

depending on larger occlusion. The boxplots of all subregions varied slightly, but no obvious 

connection to occlusion was observable. For PAI values, the boxplots showed a clear trend with 

increasing occlusion. In all three subregions, PAI medians and interquartile ranges increased 

substantially with a larger fraction of the canopy being occluded. 

Determining occlusion changes, i.e. difference in occlusion in 2014 and 2019 at the same 

place is necessary to detect areas that might contain a greater uncertainty in the observation. 

For example, in places where the occlusion had changed considerably, it can be assumed that 

part of the lower canopy was recorded very differently in the two years, either due to the 

viewing geometry variation or due to physical changes in the forest. For example, a large 

occlusion change means that in 2014, occlusion was high and in 2019, occlusion was low or 

vice-versa. 

At Frickberg, the change in canopy height increased with increasing occlusion change. In 

the other subregions, the medians decreased with larger occlusion change. FHD showed the 

same trends, but PAI displayed a median increase with heavier occlusion change at Laegern 

and a decrease of PAI medians at Unterwald and Frickberg. At Laegern and Unterwald, the 

interquartile ranges increased considerably with heavier occlusion change. This was seen in 

Frickberg, too, but the trend was not as pronounced. 
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Figure 3.17: Functional richness (left) and diversity (right) boxplots of the three subregions Laegern, 

Unterwald, and Frickberg. On top, boxplots are plotted occlusion classes for 2014 and 2019. On the 

bottom, the change map boxplots show the behavior of the traits in different occlusion classes. 

Richness increased very slightly with increasing occlusion at Laegern and Unterwald in both 

years. Frickberg did not show the same trend, it displayed almost constant richness values in 

all occlusion classes. This was different when examining the FRic change map: When a larger 

occlusion change was present, richness increased more in Frickberg. The same trend was true 

for Laegern and Unterwald. 

Functional divergence did not react as strongly as richness to occlusion. The values stayed 

much more constant, even in heavily occluded areas. But there was still a slight increase in 

FDiv medians observable when occlusion got heavier in Unterwald. 

At Laegern and Unterwald, divergence increased more in areas where the amount of 

occlusion changed strongly. This trend was the opposite at Frickberg. But all subregions 

showed an increase in their interquartile ranges with increasing occlusion change. 

Summarizing, occlusion maps showed a dependency on point density. In 2014, where no 

flight strips overlapped, higher occlusion values were detected in certain regions. All functional 

traits seemed to be sensitive to occlusion, especially PAI which increased considerably in 

heavily occluded areas. Furthermore, the change maps showed that the traits became less 

Laegern Unterwald Frickberg 
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reliable with increasing occlusion, since the interquartile ranges increased strongly and the trait 

differences, i.e. the increases and decreases, differed vigorously depending on the subregion at 

high occlusion change. Functional diversity metrics seemed not to be as sensitive to occlusion. 

For richness and diversity values, only a moderate increase was noticeable. Also, diversity 

metrics changed only slightly depending on the occlusion change class, except for Frickberg, 

where larger changes were observable. 

3.5 Statistical analysis of the computed metrics 

We conducted an analysis of variance with a type-I sum of squares to see if the above-

explored effects of the topographic, forest, and occlusion variables were significantly 

influencing functional traits and diversity metrics. The amount of variance explained by these 

variables is depicted in Figure 3.18. The detailed ANOVA type-I results of all subregions can 

be found in Appendix Table A.2 to Table A.4. 

3.5.1 Functional traits 

Canopy height 

For CH, Altitude was significant for Laegern and Frickberg based on the generalized model 

and ANOVA of both years and explained 3-4% of the variance in Laegern and 1-1.5% in 

Frickberg. All exact values can be seen in Table 3.3, where significance is highlighted in bold 

font. Aspect was only found significant in Laegern for both years but explained less than 1% 

of the variance. Slope was significant in Laegern for 2014 and 2019, and in Unterwald only in 

2019, explaining 2-2.5% of the variance. Forest mix rate was significant in Unterwald. 

Occlusion was significant for CH in 2019 in Laegern and Unterwald but explained only <0.5% 

and <2% of the variance in these two subregions. Point density was significant for Laegern and 

Frickberg in 2014, where it explained <2%, and all subregions in 2019, explaining 17-27% of 

the variance. The r2 for 2014 of the generalized linear model was 0.03-0.07 and for 2019 0.24-

0.34 for the different subregions. 

When looking at the variables that could explain the change of CH between 2014 and 2019, 

changing occlusion was not significant for canopy height change and point density change was 

only significant in Unterwald (3.8% of the variance explained). The r2 for the CH change model 

was very low (Laegern: 0.0002, Unterwald: 0.03, Frickberg: 0.002). 
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Table 3.3: Percentages of explained variances by the ANOVA of all tested models in the three 

subregions. Significant variable values are printed in bold, and non-significant values are grayed out. 

Dependent 

variable 

Independent 

variables 

Laegern Unterwald Frickberg 

2014 2019 2014 2019 2014 2019 

CH Altitude 3.37 0.89 1.40 2.89 1.15 0.71 
 Slope 2.05 0.02 1.73 3.96 0.36 0.38 
 Aspect 0.36 0.01 0.02 1.31 0.00 0.34 
 Forest mix 0.05 0.01 2.24 2.62 0.02 0.07 
 Occlusion 0.00 0.27 0.66 4.50 0.02 0.42 
 Point density 1.20 14.20 0.76 22.16 1.68 12.12 
 Residual 92.96 84.61 93.18 62.56 96.76 85.94 

CH change Occlusion difference 0.18 1.32 0.57 
 Point density difference 0.03 3.77 0.07 
 Residual 99.78 94.91 99.35 

FHD Altitude 2.93 3.95 0.55 1.08 0.12 1.51 
 Slope 3.39 2.19 14.65 2.07 5.17 0.22 
 Aspect 0.06 0.55 1.32 0.09 1.03 0.02 
 Forest mix 6.21 0.01 13.41 1.93 14.62 0.07 
 Occlusion 18.49 8.90 19.45 1.61 13.61 0.00 
 Point density 19.61 18.63 7.52 17.02 14.20 26.92 
 Residual 49.31 65.77 43.11 76.20 51.24 71.26 

FHD change Occlusion difference 0.60 0.00 0.14 
 Point density difference 32.66 34.77 22.87 
 Residual 66.74 65.22 76.99 

PAI Altitude 1.09 0.34 0.12 1.01 0.82 0.00 
 Slope 0.00 2.33 9.53 0.69 2.77 5.22 
 Aspect 0.10 3.39 1.65 0.87 0.01 0.14 
 Forest mix 0.63 0.34 1.09 23.19 0.32 24.30 
 Occlusion 4.83 52.61 7.84 38.66 0.19 19.12 
 Point density 37.13 9.01 26.97 5.90 37.65 15.40 
 Residual 56.22 31.98 52.80 29.67 58.26 35.83 

PAI change Occlusion difference 43.89 1.48 0.94 
 Point density difference 12.95 13.54 4.66 
 Residual 43.16 84.99 94.40 

FRic Altitude 0.29 0.68 0.03 0.35 0.27 0.96 
 Slope 0.01 0.42 0.17 0.50 1.08 0.05 
 Aspect 0.01 0.04 0.57 0.06 0.26 0.45 
 Forest mix 0.50 2.02 1.48 2.30 0.02 0.07 
 Occlusion 0.27 0.77 0.02 0.01 2.23 0.82 
 Point density 0.13 0.73 0.28 0.00 2.04 0.42 
 Residual 98.78 95.34 97.45 96.78 94.11 97.23 

FRic change CH difference 11.70 13.75 11.74 
 FHD difference 0.77 0.09 0.64 
 PAI difference 9.62 4.88 3.73 
 Occlusion difference 0.29 2.46 2.14 
 Point density difference 0.22 0.10 0.15 
 Residual 77.39 78.72 81.59 

FDiv Altitude 6.67 0.29 2.42 0.03 2.08 0.27 
 Slope 0.01 0.01 0.23 0.17 0.19 1.08 
 Aspect 0.21 0.01 1.38 0.57 0.01 0.26 
 Forest mix 1.18 0.50 4.21 1.48 5.30 0.02 
 Occlusion 6.30 0.27 0.63 0.02 4.40 2.23 
 Point density 0.29 0.13 0.28 0.28 1.45 2.04 
 Residual 85.35 98.78 90.84 97.45 86.56 94.11 

FDiv change CH difference 0.00 2.07 0.10 
 FHD difference 0.07 1.22 0.20 
 PAI difference 3.08 0.71 0.46 
 Occlusion difference 0.92 0.40 0.24 
 Point density difference 0.00 2.49 1.45 
 Residual 95.93 93.11 97.56 
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Foliage height diversity 

For FHD, altitude was significant for all years and subregions except for Unterwald in 2019 

and explained ~1% of the variance in Laegern, <3% in Unterwald, and <1% in Frickberg. Slope 

and aspect were significant only in Unterwald. Slope explained ~4% and ~9.5% of the variance 

in 2014 and 2019, respectively, and aspect ~1.3% in both study years in Unterwald. Forest mix 

was significant in Laegern only in 2019 explaining ~1% of the variance, but it was also 

significant for both study years in Unterwald and explained ~2 %. Point density was significant 

for all subregions and years and explained 12-37% of the variance, but occlusion only for 

Unterwald in both study years (4.5 and 7.8% explained) and Laegern 2019 explaining 4.8%. 

The r2 for 2014 were 0.15, 0.37 and 0.14 for Laegern, Unterwald and Frickberg. In 2019, they 

were higher with 0.44, 0.47, and 0.42 in the respective subregions. Examining the analysis of 

the difference map, occlusion change was significant only for FHD change in Laegern with <1 

%, while point density change was significant in all subregions with 22-34% explained 

variance. The change model had r2 of 0.33, 0.34 and 0.23 in Laegern, Unterwald and Frickberg.  

Plant area index 

Altitude was significant for PAI in Laegern in both study years and in Unterwald only in 

2019. In Laegern, it explained 2.9 and 0.3% of the variance in 2014 and 2019, respectively, 

while it explained in Unterwald ~1% in 2019. Slope and forest mix rate were significant in all 

subregions and years. Slope explained in Laegern 2-3.5%, in Unterwald 14.7 and 0.7% in 2014 

and 2019, and ~5.2% of the variance in Frickberg in both years. Forest mix rate explained most 

variance in Unterwald and Frickberg in 2019 with 23.2 and 24.3%, respectively. In 2014, it 

explained 13.4% and 14.6% of the variance in Unterwald and Frickberg while it explained in 

Laegern only 0.3% and 6.2% in 2014 and 2019. Aspect was significant in Laegern in 2019 

explaining ~3.5%, in Unterwald in both years explaining 0.5-1.5% and in Frickberg in 2014 

explaining ~1% of the variance. Occlusion and point density were significant for 2014 and 2019 

in all subregions. Occlusion explained 13-19% in 2014, and 19-50% in 2019 while point density 

explained 7-19% of the variance in 2014 and 5.9-15% in 2019. In 2014, the r2 of Laegern, 

Unterwald, and Frickberg were 0.51, 0.57, and 0.49 and for 2019 they were 0.68, 0.70, and 

0.64, in the respective subregions. For the PAI change between the study years, occlusion 

change was significant for the different PAI values in Laegern and Frickberg and point density 

change was significant in all subregions. Occlusion and point density change explained 0.9 and 

4.7%, respectively, of the PAI change variance. The r2 of the PAI change model of Laegern, 

Unterwald and Frickberg were 0.57, 0.14 and 0.05, respectively.
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Figure 3.18: Variance explained by the different topographic, forest, occlusion, and flight setting variables. Not all models use all variables. For example, the 

topographic and forest variables cannot be used in the explanation of the trait and diversity change. See Table 2.11.
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3.5.2 Functional diversity 

Richness 

For FRic, altitude was significant in all subregions in 2019 and explains 2-7% of the 

variance. Slope was only significant in Frickberg in 2014 explaining ~1%, while aspect was 

never found significant. Forest mix rate was significant in Laegern in 2014 and in all subregions 

in 2019 and explained ~1%, 4.2%, and 5.3% of the variance in Laegern, Unterwald, and 

Frickberg, respectively. Occlusion was significant in Frickberg in 2014 and 2019 (explained 2-

45% of the variance) and Laegern in 2019 (6.3% explained), while point density was significant 

in Frickberg in both study years explaining ~1.5-2% of the observed variance. The r2 of the 

generalized 2014 linear models were 0.01, 0.03, and 0.06 and in 2019 they were 0.15, 0.09, and 

0.13 in Laegern, Unterwald, and Frickberg. For the change in richness between 2014 and 2019, 

occlusion change was significant in all subregions (0.3-2.5% explained), while point density 

was not. The changes in CH and PAI differences were significant for all subregions, but FHD 

change was only significant in Laegern. CH change explained most of the variance of richness 

change (11.7-13.8%), PAI change explained 3.7-9.6% and FHD explained 0.8%. The r2 of the 

change models in Laegern, Unterwald and Frickberg were 0.23, 0.21, and 0.18. 

Divergence 

Altitude was significant for FDiv in Laegern and Frickberg in 2014 and explained <1% in 

both subregions. Slope was significant in Laegern 2014 and Frickberg 2019 and explained 

<0.5% in both subregions. Aspect was not significant for FDiv. Forest mix rate was significant 

in Laegern and Unterwald in 2014 explaining 2% -2.5% and Laegern in 2019 where only 0.5% 

of the variance was explained. Occlusion was significant in Frickberg in both years (0.8 and 

2.2% of variance explained) and in Laegern in 2014 (0.8% explained). Point density was 

significant in Laegern in 2014 and also in Frickberg in 2019 explaining 0.7 and 2% of the 

variance, respectively. The models of 2014 showed r2 values of 0.05, 0.03 0.03 and in 2019 

0.01, 0.03, 0.06 for Laegern, Unterwald and Frickberg. The model for the FDiv change showed 

that occlusion change was only significant in Laegern (explained variance: 0.9%) while point 

density change was significant for Unterwald and Frickberg, explaining 2.5% and 1.5% of the 

variance. Only PAI difference in Laegern and CH difference in Unterwald were significant for 

FDiv change, explaining 3.1% and 2.1% of the variance. In the subregions Laegern, Unterwald, 

and Frickberg, the change models had r2 of 0.01, 0.07, and 0.02, respectively.  
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4 Discussion 

In this thesis, we evaluate the possibilities and limitations of applying morphological 

diversity mapping to a large area in a multitemporal analysis. First, we will discuss general 

implications of different sensors and flight settings and the available leaf-off data on change 

detection using functional diversity mapping. Also, the potential of the used methods is 

examined (Chapter 4.1). Second, the detected patterns and changes in the study area are going 

to be discussed and linked to the general effects examined before. (Chapter 4.2). Last, the 

possibilities of occlusion mapping in such a multitemporal analysis will be explored (Chapter 

4.3). 

4.1 Functional diversity mapping in a multitemporal analysis 

4.1.1 General sensor and flight setting effects on trait estimation methods 

In this thesis, we compared trait and diversity estimations using ALS data of two different 

sensors with varying flight parameters. A commercial laser sensor has a relatively short typical 

life cycle of fewer than 4 years which leads to subsequent ALS data inventories usually recorded 

with different instruments (Ørka et al., 2010). It has been shown in numerous studies how 

differences in sensors and flight settings such as flying altitude, beam divergence, scan angle, 

pulse repetition frequency, and footprint size influence derived height and density parameters 

(Morsdorf et al., 2008; Næsset, 2009; Ørka et al., 2010; Solberg et al., 2009). 

Higher flying altitude has been related to a reduction of the peak pulse power concentration 

where the laser pulse hits the surface. This leads to decreased backscatter intensities which have 

implications for the datasets (Hopkinson, 2007). The high flying altitude (1250 m) in 2019 

compared to 2014 (600 m) can partially be compensated for with the smaller beam divergence 

(0.25 mrad in 2019 compared to 0.5 mrad in 2014) but it still results in lower backscatter 

intensities. Therefore, some intermediate echoes have probably not been recorded due to their 

backscatter intensity being below the noise level (Korpela et al., 2012). A reduction in the peak 

pulse power concentration is also expected in the 2019 ALS dataset due to the higher pulse 

repetition frequency (1000 kHz compared to 300 kHz in 2014). This intensity reduction is 

associated with increased canopy penetration because the reduced power of the laser pulse 

needs to travel further into the canopy until the backscatter intensity is high enough for the 

sensor to record a first return. The effect has been recognized especially for tall vegetation with 
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canopy gaps (Hopkinson, 2007). We analyzed leaf-off datasets, meaning that the observed 

canopy is mostly open because the Aargau forest is dominated by mixed and deciduous trees 

(Kanton Aargau: Departement Bau Verkehr und Umwelt, 2018). A normalization of the ALS 

data, especially for the intensities could improve the accuracy of the derived traits and diversity 

metrics (Hopkinson, 2007).  

The effects of sensor and flight parameters on the individual methods are discussed in the 

following subsections. 

4.1.2 Methods for functional trait retrieval 

When conducting a multitemporal analysis, it is crucial to choose appropriate traits and to 

use robust methods for the determination of them. In this thesis, we chose canopy height to 

represent the first structural axis and foliage height diversity and plant area index as 

representatives of the second and third structural axes, namely vertical layering and openness 

of the three primary components of variation in canopy space (Fahey et al., 2019). Different 

functional traits could be representative of the three axes and may thus be used for diversity 

mapping. The thesis aimed to use the approach introduced by Schneider et al. (2017), which is 

why we chose CH, FHD, and PAI. They have been used and validated in Schneider et al. (2017) 

and show high relevancy for plant ecosystem function. 

Canopy height is the most robust of the three chosen traits (Coops et al., 2016). FHD and 

PAI are much more sensitive to sensor and flight settings. Furthermore, PAI estimates are hard 

to validate due to a lack of accurate reference values, as ground-based estimates also carry 

uncertainty (Arnqvist et al., 2020). Various algorithms for PAI estimation were developed in 

the past years, but out of the three that were tested in this thesis, only one was suitable for our 

data. All the other methods require datasets with either scan angles close to nadir or first return 

only data. These conditions can oftentimes not be met using ALS data of forest inventory, as 

small scan angles would need an immense effort when large areas are recorded. Therefore, 

increasing flying altitude and swath width helps with cost reduction because a larger area can 

be covered by one flight line (Næsset, 2009). Considering only first returns would have led to 

gaps in our dataset, especially on steeper hills where flight strip overlap is low or even non-

existent. The used method circumvents these problems, but it showed some rectangular patterns 

in 2014 when the algorithm was first used (see Appendix Figure A.16). We tried numerous 

approaches to remove these artifacts, like filtering points, thinning the point cloud 

(homogenization of the dataset), and investigating the various parameters that could explain 
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them. After investigating the problem, it was solved by swapping the number of returns with 

the return number variable in the algorithm. It is possible that an error happened during the 

preprocessing step of the ALS data. Unfortunately, it is not possible to track down the source 

of this permutation. We validated the resulting PAI values on the Star of Laufenburg (see 

Appendix Figure A.15) Therefore, we continued with the PAI values that have no artifacts 

anymore. 

The determination of the parameters used in the method is also a possible cause for 

uncertainty. The used SR method is sensitive to grid size in heterogeneous forests (Arnqvist et 

al., 2020). Therefore, the used 2 x 2 m grid might not have been appropriate in all areas of the 

canton and might have led to uncertainties. Unfortunately, it was not possible to give exact 

numbers for such uncertainties. 

There are visible differences between 2014 and 2019 that entail the need to normalize PAI 

between the two study years. The reasons for the differences are complex and cannot be 

explained conclusively. One possible cause might be that the approach is associated with being 

sensitive to ground albedo (Arnqvist et al., 2020). Having leaf-off datasets, more ground is 

visible and could therefore contribute to a certain deviation in PAI values between the two 

recording years. Furthermore, PAI is a complex metric that is sensitive to different point 

densities, flight altitudes, scan angles, and other parameters (Morsdorf et al., 2008, 2006). 

Although scan angle is accounted for, there are still other parameters that can influence the 

result.  

For example, the determination of the scaling factor (see Eq. (6)) using the summed-up 

intensity values of each pulse could pose some problems. In ALS datasets, losses due to below-

the-noise-level backscattering have been observed to decrease the recorded intensities up to 10-

15% in understory vegetation (Korpela et al., 2012). For our scaling factor estimation, this 

means that not the entire backscattering intensities are used to assign the weights. Due to the 

leaf-off conditions, weak intensity backscatter can be expected, especially for intermediate 

returns. This could contribute to uncertainties in PAI results. Although the 2019 dataset might 

seem to be more reliable due to higher and more continuous point densities, PAI estimates may 

not be accurate because of the decreased peak pulse power concentration discussed above. Such 

uncertainties in the methods could also be a possible cause of the larger correlation between the 

trait and diversity metrics observed in 2019 (see Figure 3.2). 

Differences between FHD maps in 2014 and 2019 are much less pronounced than for PAI 

values, indicating that the FHD algorithm is less sensitive to different sensor and flight 
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configurations. As with PAI, FHD needs some input parameter definition. We chose a 1 m 

binning width and excluded the lowest 3 m to distinguish between understory and canopy 

vegetation. When absolute FHD values are needed, i.e. if no temporal comparison is performed, 

the binning width would have to be chosen carefully and deliberately. However, our sensitivity 

analysis of FHD binning width has shown that change can always be mapped at smaller as well 

as larger bin widths (see Appendix Figure A.1). The magnitude of the change decreases with 

increasing bin width without differing the description of the vertical structure significantly 

(Leiterer et al., 2015). 

We chose a simple mean normalization to account for the differences in FHD and PAI values 

between 2014 and 2019. Thus, a global constancy of the traits across the entire study region 

was assumed resulting in only locally observable change, which is a drawback to our approach. 

Therefore, caution must be exercised when interpreting the change maps of FHD and PAI 

values. It can be observed that there was a change, but the exact zero point, i.e. the exact values 

where there was no change between the two study years, is difficult to determine. A better way 

would have been to use ground-measured data to adapt FHD and PAI estimations. 

Unfortunately, there was no ground truth data available for the two recording dates. But, 

especially for PAI estimations, ground-based methods are also related to uncertainties, which 

have often been raised in the discussion sections of previous work: Sky exposure level and 

difficulties regarding the reproduction of the footprint can influence ground-measured PAI 

values (de Almeida et al., 2019; Morsdorf et al., 2006; Solberg et al., 2009; Vincent et al., 2017). 

A large study region like ours has very diverse inherent characteristics that might influence 

the results. The chosen parameters might be suited for a certain region of our study area, but 

may not be appropriate in a different one that might show a different kind of vegetation 

community. Like McElhinny et al. (2005) discussed structural complexity metrics to be a 

relative concept, depending on the characteristics of the study site. 

4.1.3 Considerations about the seasonal influence 

To conduct a multitemporal analysis, data acquired at a similar time of the year is needed to 

have all datasets either under leaf-on or leaf-off conditions. Unfortunately, leaf-on data was 

only available for the year 2014, not 2019. Canton Aargau being dominated by broadleaved 

tree species implied that we were only able to analyze woody material in a large part of the 

study area. Therefore, short-term changes in leave composition due to disturbances before the 

ALS acquisitions are not influencing the analysis. Additionally, density and layering of the 
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lower canopy can be observed better, which would have been occluded in a summer ALS 

dataset. It has been recognized that leaf-off datasets are the next best alternative after combined 

leaf-on and leaf-off data for such analyses because it enables a detailed characterization of the 

lower canopy layers (Davison et al., 2020).  

FHD and PAI measurements are generally expected to be lower in winter than in summer in 

broadleaved dominated forests. Arnqvist et al. (2020) found in their study larger differences 

between estimated leaf-off PAI values and ground-measured PAI compared to leaf-on PAI 

estimations. In this thesis, no absolute values of the functional traits were analyzed. Therefore, 

the observed differences between leaf-off PAI estimated by the SR method and in the study of 

Arnqvist et al. (2020) do not impair this thesis, apart from the possible inaccuracy of the 

measured PAI values already discussed. 

It is important to note that in 2014, the recording dates are in February/March, and in 2019, 

the ALS recording took place in March/April. Out of the 164 recorded flight lines of 2019, 57 

were recorded between 19. and 21. April 2019. Forests started to green from mid-April and by 

the end of the month, green birch leaves appeared up to altitudes of 1000 m.a.s.l. 

(MeteoSchweiz, 2020a). In 2014, the data acquisition took place before the greening of the 

forests, which was in mid-April, too (MeteoSchweiz, 2015). Thus, a certain influence can be 

expected, for example, higher PAI values in low-altitude regions. But such an effect is not 

visible in the boxplots (see Figure 3.12). A moderate increase in trait values is observable in 

the change boxplots in most topographic and forest classes which could be explained partially 

by greener forests (see Figure 3.13). But there must be also other reasons because the effect of 

greener forests in 2019 would most certainly be visible in the forest mix classes, which is not 

the case in our data. PAI values, which we would expect to react the most to greener forests, 

were not increasing in low-altitude areas. On the contrary, the values even decreased below 350 

m.a.s.l..  A possible reason for that could be the discussed sensitivity of PAI to flight and sensor 

parameters or the conducted temporal normalization not being appropriate in these regions. 

The effect of occlusion is supposed to be lower than under leaf-on conditions. At Laegern, 

Kükenbrink et al. (2017) found that only 1.5% of the total canopy volume was occluded under 

leaf-off conditions, while under leaf-on conditions, 25% of the canopy volume was occluded. 

To account for the decreased occlusion volume, we decided to use voxels with a side length of 

0.5 m and aggregated the results into a 2 x 2 m grid. This allowed us to estimate even small 

occlusion volumes that would have been missed with a voxel side length of 2 m.  
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4.2 Change detection in the forests of the canton Aargau 

In the following subsections, the observed patterns and changes that are trait and diversity 

metric specific will be discussed in detail. We have shown that we can map changes in 

functional trait values using ALS data. The observed differences between 2014 and 2019 vary 

by trait. Generally, the most distinctive change is visible as a strong decrease in all traits and 

diversity metrics in small areas. These are regions that were probably either logged or damaged 

by a storm. Unfortunately, the canton Aargau does not provide GIS data containing forest 

management interference, thus we cannot conclusively answer if the observed disturbances 

originate from anthropogenic or natural causes.  

4.2.1 Patterns and changes in trait estimations 

To see smaller scaled variations of the functional trait composition, having a closer look into 

the morphological trait distribution in the three subregions is important (see Figure 4.1). 

Blueish-green regions show high PAI values, low to medium vertical layering, and low to 

medium canopy height. They are most prominent on the flat areas on top of Frickberg, in the 

eastern part of Unterwald, and the west and on the ridge of Laegern where the steep slope leads 

towards the distinctive ridge. There, the tree height decreases to a shrub-type forest (Schneider 

et al., 2017). Conifer trees are oftentimes present in these areas at Frickberg and Unterwald. 

2014 

 

2019 

 
Figure 4.1: RGB composite of the morphological traits of 2014 (left) and 2019 (right) in the three 

subregions Laegern (a), Unterwald (b), and Frickberg (c). 

Pink hues can be found close to these areas, especially on top of Frickberg and on the 

southern slope of Laegern. Such regions are characterized by high canopy height, little canopy 

layering, and medium to high canopy density. These areas are found where coniferous trees are 

most prominent. Having a leaf-off condition, evergreen conifers show high PAI values because 

(c) 

(a) 

(b) (c) 

(a) 

(b) 
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they did not shed their foliage. Yellow patches appear mainly at the steeper slopes of Laegern 

and Frickberg facing in a northern or north-western direction. In these regions, high trees that 

also have high vertical layering but low density are mostly beech trees according to community 

data. 

The observed shift from more blueish to greener hues in 2019 can be explained by the 

broader dispersion of FHD values and the lower peak of PAI values that year (see histograms 

in Figure 3.1). Therefore, the change might be mostly due to a slightly different distribution in 

the trait estimates and not because of a real change in forest structure. Canopy height displays 

similar distribution and values in both recording years, meaning that it does not influence the 

trait composition as much as FHD and PAI which are much more sensitive traits. 

4.2.1.1 Canopy height 

Very high and low CH values were observed in the entire study region, which means that all 

over the canton, patches of large and small trees were observed. CH generally shows relatively 

small local changes, except for many small patches with a strong decrease that were probably 

caused by trees being cut down by management or damaged by a storm. This is reasonable 

because in Switzerland, large clear-cuttings are generally avoided (Oehri, 2018). 

A slight increase in canopy height all over the canton and subregions can be explained by 

the natural growth of the trees. This increase is visible in the change maps (Figure 3.5 - Figure 

3.8) and boxplots (Figure 3.12) but not in the overall mean change (see Appendix Table A.1) 

which means that the effect cancels itself out over the entire study area. CH increase with 

steeper slopes visible in Figure 3.12 could come from problems concerning the derivation of 

canopy height out of the ALS point clouds. Slope has also been found to be significant in half 

of the models. In the height normalization process of the point cloud, before the estimation of 

tree height, a bias will occur in steep areas. Due to this normalization, a systematic 

overestimation of tree height is expected (Khosravipour et al., 2015).  

The topographic variables used in the models for the ANOVA are not found to be significant 

in all subregions. The models all have relatively low r2 values, indicating that the models do 

not describe CH and CH change sufficiently. Therefore, we can assume that the studied 

independent variables have only a small influence on CH.  

The decrease in CH in low altitudes is harder to explain. There might be more impact of 

wind causing more trees to fall in storms. This hypothesis is hard to verify because local 

windthrows are not mapped. Only maps showing damage from bigger storms like Vivian (1990) 
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or Lothar (1999) are available today. In unprotected forest areas, this decrease could be 

explained by management cuttings. Low altitude areas are easy to access and it would thus be 

more probable that management disturbances were higher in such regions. There is less CH 

increase in high-altitude protected forest areas than in unprotected forests. There, many nature 

reserves are located in more remote and inaccessible regions, i.e. on steep or cliffy slopes. 

Especially older forest reserves were located in such remote areas so that the more productive 

regions did not need to be excluded from management. Such decisions are caused by the 

requirement to protect a defined fraction of the forested area. In these inaccessible forest areas, 

soil depth, water availability, and other factors may be not as beneficial for tree growth, which 

could explain the smaller CH increase in nature reserves. 

4.2.1.2 Foliage height diversity 

Foliage height diversity shows relatively homogenous values all across the canton, 

especially in 2014. The 2019 values have a wider value dispersion and also show some more 

pronounced features. We do not expect this change in dispersion to be caused solely by 

topographic or other natural factors and thus being real morphological change, but also coming 

from different viewing geometries, point densities, and scan angles, meaning it to be sensor-

related change. FHD is a much more sensitive trait than CH that could respond to such sensor 

and flight settings, thus it cannot be excluded that they have an impact on FHD results. The 

higher point density in 2019 might lead to a better differentiation in FHD values as more data 

points are available. Also, because the recording dates were generally later in spring than 2014, 

there might have been already some greening in the forest which could also explain the 

differences in distribution. Because we stratified in 1 m vertical slabs, 2014 point density may 

be on the lower end of suitable point densities to capture vertical layering. Especially in areas 

with no flight strip overlap, point density might be too low resulting in an increase in random 

undersampling of the vertical structure (Leiterer et al., 2015). At Laegern, there is a very slight 

striping effect visible. This increase corresponds to low-density areas caused by no overlapping 

flight strips. This may indicate that low point densities lead to an underestimation of FHD 

values at the Laegern. FHD changes with altitude and slope steepness, maybe because of similar 

normalization problems discussed above in Chapter 4.2.1.1. This observation is supported by 

the significant influence of altitude in five out of the six studied models and of slope in half of 

the models. The change in FHD values seems to be similar in protected and unprotected forest 

areas across all studied topographic and forest classes.  
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4.2.1.3 Plant area index 

PAI values show a slight increase in the southern part of the canton and generally decreasing 

values in the northern part of the Jura.  

Especially in 2019, many gaps (NaN-values) can be observed in the maps. The reason is that 

the algorithm needs at least one ground classified point in a raster cell to be able to compute the 

PAI. In dense forest areas with high PAI, the ground is oftentimes occluded and no ground 

point is available. In such cases, the algorithm assigns NaN to this raster cell. This has 

implications for our results. First, pixel gaps in our dataset are almost always at high-density 

areas indicating that the highest values in our study area were not estimated. Therefore, we can 

expect a systematic underestimation of PAI values. This in turn has implications for the 

temporal normalization process. Since the mean value is probably not quite correct, because 

especially high values are not present, the normalization factor is also not precise and the 

assumption that there was no global change can thus not be fully fulfilled. However, as has 

already been discussed, this is a somewhat tricky assumption anyway, since it is entirely 

possible that there was a global increase or decrease over the 5 years.  

Slope and forest mix rate have been found to be significant for PAI in all models of the 

subregions. We did not find different PAI values depending on slope by the examination of the 

boxplots. This could either be due to the aggregation process of the boxplots or that the three 

subregions do not fully represent the behavior of the PAI values across the entire canton. High 

PAI values in coniferous forests are reasonable because of our leaf-off condition in the used 

winter ALS dataset. Evergreen trees have naturally a higher density than leafless trees (Davison 

et al., 2020).  

The decrease of PAI in low altitudes is consistent with the observed low values of CH and 

FHD at the same altitudes. Because nature reserves show the same behavior, it cannot be solely 

due to management. It is possible that in unprotected areas the decrease may come from 

loggings. The exact causes would need to be examined further. Increasing PAI values could be 

caused by higher point densities in 2019 and higher flying altitudes resulting in lower accuracy 

in the weighting process of the intensities, as discussed above (see Chapter 4.1.2).  

Most differences between protected and unprotected areas are minor and we thus cannot 

conclude that PAI values differ significantly depending on protection. The only difference 

between these two forest area groups is that except for pure coniferous forests, PAI values 

decreased slightly more in nature forest reserves than in unprotected forests. 
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4.2.2 Temporal differences in functional diversity metrics 

It is very unlikely that the large increase in richness of almost 123% can be entirely attributed 

to the natural diversification of the Aargau forests. The observed period spans only 5 years and 

since we can only observe woody material except for needles, the size change in richness is 

most certainly not too large. It is very probable that besides biotic and abiotic factors also factors 

concerning the methods led to this increase. 

Although the mean has increased sharply, the same patterns can be seen in both years. It can 

therefore be assumed that this metric is reliable but needs some kind of normalization, which 

would be subject to further research. The trait values were much more dispersed in 2019 (see 

Figure 3.1) that could cause FRic, being highly susceptible to outliers, to show these high values 

in 2019. The classification of the change map corrects for this large difference because the mean 

± one standard deviation is used as the “no-change” pixels. Of course, this visualization has to 

be interpreted with care, because it may well be that a global change to the positive or negative 

has taken place during this period. But it still enables the reader to find certain patterns that can 

be interpreted. 

The impact of different radii used for the computation of diversity metrics has been 

investigated and discussed in prior work (Helfenstein et al., 2022; Schneider et al., 2017). The 

very small local patterns of divergence values in our study area might be caused by the radius 

used for the computation of the diversity metric. We chose a neighborhood of 30 m to be 

included in the diversity metric (richness and divergence) estimation due to computational 

effort. When using a larger neighborhood, divergence is expected to show bigger areas of 

changing values (Schneider et al., 2017).   

High diversity values in southern Aargau can be explained by the higher occurrence of 

evergreen coniferous needle trees due to the absence of foliage in deciduous trees. It would be 

interesting to explore if the diversity difference between southern and north-western Aargau 

was smaller under leaf-on conditions, which would be subject to further studies. Low diversity, 

especially richness values at high, steep, and/or southern facing slopes can be explained by 

unfavorable soil and topographic conditions that only allow certain plants to exist. These stress 

factors can lower water availability and soil depth and thus limit resource availability which 

limits the range of the biotope space (Schneider et al., 2017). A less pronounced increase or 

even a decrease in the diversity metrics observed in these areas can also be attributed to the 

factors mentioned above. A more restricted community niche can lead to a less stable system 

that could respond even more to abiotic stress factors like water scarcity. 
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2015, 2017, and 2018 were among the five warmest years since measurement start in 1864 

(MeteoSchweiz, 2020b; Sturm et al., 2022). Looking at the aridity indices (ETa/ETp) published 

by BAFU (Bundesamt für Umwelt) from the years before the 2014 data acquisitions, most years 

provided enough water for the plants. The period between both recording dates is characterized 

by the very hot and dry years 2015 and 2018. The aridity index displays the rate of actual 

evapotranspiration (ETa) divided by the potential evapotranspiration (ETp) during the growing 

season (April-August). In 2015, 2017, and 2018, especially in the chalky soils of Jura, water 

availability was severely limited. This puts trees under a lot of stress. If the ETa/ETp-rate is too 

low, which was the case in these years and regions, plants close their stomata for parts of the 

day leading to a decrease in photosynthesis and gas exchange that results in weakened plants 

and resilience (Remund and Augustin, 2015). This extreme drought stress could cause a low 

increase or even decrease in functional richness and divergence values in Jura. 

Unprotected forests show generally higher diversity values. This is particularly pronounced 

in functional richness, but also divergence tends to behave in this way. These forests display 

much higher richness in higher altitudes than nature reserves which might also be due to the 

chosen forest areas that got protected (see Chapter 4.2.1.1).  Diversity has been linked to 

management and forest development (Schneider et al., 2017). Therefore, higher diversity values 

in unprotected forest areas may be due to management rejuvenating forest patches and thus 

increasing the community niche extent. This can be small-scale variability of the morphological 

traits which did not necessarily show in the boxplots of the individual traits due to the 

aggregation process involved in boxplot creation. Because richness and divergence compute 

the total community niche extent and density, this small-scale variability of the traits may be 

depicted in the diversity metric values. 

Although we have found decreases or simply smaller increases in the protected areas 

compared to the unprotected areas, one has to be careful with conclusions. It cannot be 

decisively stated that the computed higher structural diversity leads to higher species diversity, 

as this has been proven and disproven in many studies (Tanabe et al., 2001). It is possible that 

the chosen diversity metrics do not fully portray species richness or species diversity in our 

study region. But still, the observed tendencies could give indications that the discussed areas 

might be under more stress leading to the noted changes. 
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4.2.3 Comparison with other functional diversity mapping results 

Our used approach introduced was first tested on the Laegern by Schneider et al. (2017). 

Therefore, we can compare our results with theirs. They did not map diversity metrics at a 30 

m radius, which is why our resulting maps (radius 30 m) are compared to theirs with a radius 

of 60 m. Only a small part of our Laegern subregion overlaps with theirs and the comparison is 

visible in Figure A.17. There, the RGB composites, FRic, and FDiv maps are depicted. 

The means and standard deviations of CH and FHD were very similar, only PAI had a much 

higher mean than in our study, which makes sense because we estimated PAI under leaf-off 

conditions. Furthermore, the already discussed difficulties of PAI estimations can lead to 

deviations. Correlations between the traits are different, but this may be because we examined 

the entire canton and Schneider et al. (2017) only looked at Laegern. 

The spatial patterns of the RGB composites do match, especially with our 2014 dataset. Most 

obvious are the higher fraction of blue hues in the results of Schneider et al. (2017), which 

represent areas with high density and comparable low CH and vertical diversity. Again, this is 

reasonable because they examined Laegern in the foliated state while we looked at data under 

defoliated conditions. 

The found functional richness and divergence patterns are also similar but are harder to 

compare due to the different radii in the two studies. Especially the local changes in divergence 

can hardly be compared between the two studies. But still, in both studies, it is found that 

richness changes with topography. For example, areas around the ridge showed lower diversity 

values. 

Schneider et al. (2017) conducted the same ANOVA but used slightly different models. They 

additionally used curvature, soil type, soil depth, soil rocks, and radiation as independent 

variables. But they did not use the forest mix rate, occlusion, and point density as independent 

variables. Therefore, the results are different but general observations can be compared. For 

example, the general magnitude of the CH variance explained by altitude has a similar range 

(<5% in both studies). The largest difference can be observed in the variance explained by 

diversity metrics. The large impact found by Schneider et al. (2017) of altitude has not been 

found in our Laegern dataset. In their study, they found that altitude and slope explained 

together more than 15% of the variance of functional richness, but in our study, these variables 

explained only <10% of the respective variance. Possible reasons might be the different radii 

or the designed models. 



 

68 

 

Concluding, the results are comparable but not the same, which was expected due to the 

different recording dates (different years and foliage states), different computation methods of 

PAI estimates, and different radii used for the diversity metrics. 

4.3 Occlusion mapping 

Lastly, we will discuss the influence of occlusion on our results. We used the approach by 

Kükenbrink et al. (2017) to map occlusion occurring in the ALS acquisitions of 2014 and 2019. 

Due to the computational expense and problems using the ScienceCluster, only the three 

subregions Laegern, Unterwald, and Frickberg have been mapped.  

All regions without flight strip overlap are visible as striping in a mostly north-south 

direction in the occlusion maps (see Figure 3.15). Especially at Laegern, the areas without flight 

strip overlap show increased occlusion values. They occur mostly around the ridge where the 

increase in altitude is large. The flight direction of the airplane was almost north-south or vice-

versa. The 2014 ALS data was particularly vulnerable because the flight strip overlap was 

smaller than in 2019, resulting in more areas only being covered by one flight strip. In 2014, 

most of the canton was covered by two flight strips, while in 2019 most of the area was recorded 

by three or even four flight strips (see Figure 4.2). Kükenbrink et al. (2017) found that the 

fraction of observed canopy volume increases significantly when more flight strips cover the 

ground. Furthermore, a higher point density is favorable for a better observation of the canopy 

fraction, which we also see in our study (Kükenbrink et al., 2017). In 2019, the mean point 

density in the three subregions Laegern, Unterwald, and Frickberg is 67% higher than in 2014. 

Therefore in 2019, point density and the number of flight strips covering the study area are 

advantageous for a higher fraction of observed canopy volume and thus lead to less occlusion. 

This corresponds with the findings of Kükenbrink et al. (2017). 
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Figure 4.2: Fraction of the amount of flight strip overlap in the canton Aargau during both ALS 

campaigns. In 2014 (left), more than 4/5 of the study area was recorded by two flight strips, in 2019 

(right), more than 2/3 of the area was recorded by 3 flight strips. 

High occlusion value patterns mostly coincide with higher fractions of evergreen conifers 

present that occlude more of the lower canopy volume than leafless broadleaf trees. This has 

also been found by Kükenbrink et al. (2017). Appendix Figure A.18 shows an example of this 

occluding effect of evergreen conifer trees in the Frickberg region.  

The observed decrease in occlusion is either due to higher point density in the areas of 2019 

or different viewing angles in both campaigns. In Unterwald, decreasing and increasing pixels 

are oftentimes mixed and do not form a somewhat connected change patch, as can be observed 

in other subregions (for example northern Laegern). This could indicate change caused by 

different flight paths and thus different viewing geometries.  

Canopy height and FHD derivations do not seem to be very sensitive to occlusion. Even in 

Unterwald, where the highest occlusion is observed of all subregions, CH and FHD values are 

relatively robust. The only effect visible, mostly in Unterwald and Laegern, is a slightly 

decreasing CH with less occlusion. Generally, more noise is inherent to canopy height 

estimations under leaf-off conditions compared to leaf-on conditions (Davison et al., 2020). 

Thus, very open parts of the canopy might cause first returns not to record the absolute top of 

the trees because small branches could cause backscatter intensities below the noise level. This 

could lead to a minimal underestimation of trees with a very open crown that might explain part 

of the lower CH values in low occluded areas (Davison et al., 2020). In the ANOVA, occlusion 

is not found to be significant for CH estimates. But as the model has such a low r2, the 

parametrization seems not to be representative and therefore has to be interpreted with care. 

We expected FHD to be sensitive to occlusion because bottom canopy layers would not have 

been recorded where heavy occlusion is present. In such areas, the vertical structure would not 
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be known and FHD estimates would be unreliable. The ANOVA results support this hypothesis, 

as occlusion is significant Unterwald in both years and even explains ~20% of the variance in 

2019. Furthermore, point density is also found significant, which is linked to occlusion. Areas 

with low point densities are also more prone to higher occlusion (Kükenbrink et al., 2017). In 

the boxplots, FHD does not display a dependence on occlusion. A possible explanation might 

be that due to the aggregation process inherent to boxplots, the effect was absorbed and thus 

small-scale variability might not be shown in the boxplots.  

Out of the three traits, PAI values show the largest differences with increasing occlusion. 

High PAI values in heavily occluded areas make sense as the leaf and branch density in such 

areas must be very high to cause large parts of the canopy to be occluded. This finding is 

supported by the results of the ANOVA, where occlusion and point density explained together 

27 to 38% of the PAI variance in 2014. In 2019, the effect is even stronger. Occlusion and point 

density explained in Frickberg 35%, in Unterwald 45%, and in Laegern 62% of the variance. 

The models of 2019 showed also relatively high r2, indicating a good fit of the model variables. 

This influence can also be seen in the models explaining PAI change: Point density and 

occlusion change explained together 57% of the variance, which is also visible in our change 

maps. In Unterwald for example, the areas with increasing PAI values match the regions with 

increasing occlusion (see Figure 3.7 and Figure 3.15). Therefore, PAI is extremely sensitive to 

scene parameters like point density and occlusion. 

Occlusion influences also the diversity metrics, richness, and divergence, but much less than 

it influences PAI. This is visible in the results of the ANOVA, where <10% of the richness 

variance was explained by the variable and the r2 of the models were low (2014: r2 < 0.06, 

2019: r2 < 0.15). For the change of functional richness, occlusion change was found to be 

significant, but only explained less than 2.5 % of the variance, while the model also had a low 

r2 of less than 0.23. For the diversity change, it was even lower (r2 < 0.07). A possible reason 

could be, that the neighborhood of 30 m which was used for the computation of richness and 

divergence, decreased the occlusion and point density influence which lead to the diversity 

metrics being much more robust. But there is still uncertainty in these two metrics because they 

were calculated out of the traits that are sometimes highly susceptible to occlusion.  
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4.3.1 Geographically weighted regression 

Because our ANOVA analysis showed that only very little of the variance of FRic and FDiv 

had been explained and the r2 were very low, we also tested if a geographically weighted 

regression (GWR) could better describe the changes in the diversity metrics. The methodology 

is described in Appendix B, because this method is only an outlook. We only tested it for 

Frickberg with two models: 

1. FRic_diff ~ occlusion_diff + point density_diff 

2. FDiv_diff ~ occlusion_diff + point density_diff 

The model outputs can be found in Appendix Figure B.1 and Figure B.2Figure A.13. The 

FRic model had an r2 of 0.92 the FDiv model had a slightly lower r2 of 0.80. This also hints at 

a very large influence of occlusion and point density in richness and divergence change between 

2014 and 2019 more than what we found in our generalized linear regression and ANOVA. It 

would be needed to examine the GWR results more closely and run much more models with 

different neighborhoods to have robust results, which could be subject to further studies. But 

these preliminary results show how GWR might be more fitting to describe the relationship 

between the diversity metrics and our studied independent variables. 

The large computational effort is one of the key limitations of the occlusion mapping method 

when researching a large study area. There are possibilities to speed up the occlusion mapping 

algorithm. Especially the process of reading the ALS data in and the preparation of the grids 

used later for ray-tracing can be optimized. This would have to be researched in further studies 

and would enable occlusion mapping to be used as a tool to know uncertainties in datasets used 

for multitemporal analyses. For example, heavily occluded areas could either be excluded from 

further analyses or at least treated with great caution.  
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5 Conclusion 

In this Master’s thesis, we have shown that it is possible to map functional diversity using 

ALS data in large areas. A comparison between two points in time is possible, but certain 

constraints arise in the analysis. As ALS datasets from different years are often recorded with 

different sensors and flight settings, the influence of these parameters must be taken into 

account. It is possible to map the functional traits and derive changes from them, but depending 

on which traits are chosen, the influence of sensor and flight parameters must be expected to 

vary in quantity. We could show that simple and robust traits like canopy height form a good 

base for such a comparison. The more complex the derivation of a morphological trait, the more 

sensitive it reacts to external influences. Thus, if sensor differences are too large, one has to be 

careful in the subsequent use of such estimates. Concluding, we were able to map changes in 

trait and diversity metrics, but it is not possible to quantify the differences exactly, as 

uncertainties in the calculation of traits and diversity metrics between the two intake years, such 

as temporal normalization, lead to inaccuracies in the results. Nevertheless, patterns and general 

statements on change can be analyzed. In further research, it would be interesting to try to 

classify the influences into real and sensor-based changes and to quantify maximal sensor and 

flight attributes, such as minimal point density, that still allow accurate trait and diversity 

mapping. 

We have shown that it is very difficult to disentangle the effects of real morphological 

change and sensor-related change. We have observed that all three traits, CH, FHD, and PAI 

slightly increased in the topographic and forest classes between 2014 and 2019. We have 

observed the strongest decrease or less pronounced increase (in FRic) of diversity in high-

altitude regions, steep and southern-facing slopes. Forests in such areas seem to respond even 

more to abiotic stress factors, such as drought and heat, due to a more restricted community 

niche that supports the findings of Schneider et al. (2017). The Jura region is particularly 

affected by this, where diversity metrics showed a decrease between both study years. 

Forest nature reserves showed generally lower values in trait and diversity metrics, increased 

less, or respectively displayed a bigger decrease during the 5 years. It cannot be conclusively 

said that higher species diversity can be found in areas where higher structural diversity was 

computed. Therefore, we cannot state that natural forest reserves are generally performing 

poorer in diversity than unprotected areas. It might be that our estimated metrics do not fully 

represent species richness in our study area which might be equal to or even higher in protected 

regions, which should be subject to further studies. 
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It has been shown that occlusion has a significant effect on trait estimations. Especially PAI 

values were highly influenced by the amount of occlusion. Therefore, it is very important to 

consider occlusion effects in multitemporal analyses of ALS datasets. The major drawback of 

the used approach is the immense computational effort it requires to map a large region. The 

computational expenses must be lowered significantly to enable the integration of occlusion in 

change detection. 

It will be possible to perform accurate change detection with ALS using functional diversity 

mapping in the future, but the goal must be to include as many sensor and flight parameters in 

the calculation of the metrics as possible. Therefore, it is important to work very carefully in 

the campaigns and to put a lot of effort into the collection of these parameters. With such 

improvements, high-quality multitemporal analyses using ALS data can be conducted and help 

in monitoring diversity or biodiversity parameters continuously over large areas. 
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A Appendix – Additional figures and tables 

 

  

Figure A.1: Behavior of FHD values depending on vertical binning resolution. Results for a 150 x 150 

m coniferous forest patch (left) and deciduous forest patch (right) with center coordinates in 

CH1903+/LV95 of [2'639'572.0, 1'260'354.0] and [2'639'666.0, 1'260'114.0], respectively. Vertical 

binning widths of 1 – 10 m were computed and the value of the center pixel of the forest patch (center 

value), the mean of the patch (mean value) and the respective standard deviation (std) are plotted. 

 

Table A.1: Global statistics of the traits of the entire canton before normalization. 

   min mean±std max mean change [%]  

CH  2014 0.21 20.93±9.86 42.35 -1.96 

2019 0.04 20.52±10.50 43.2 

FHD  2014 0 1.85±0.61 2.85 -4.68 

2019 0 1.76±0.80 3.13 

PAI  2014 0.02 2.39±1.23 6.88 -6.69 

2019 0.01 2.23±1.39 7.99 

 

 

  

https://map.geo.admin.ch/?lang=de&topic=ech&bgLayer=ch.swisstopo.pixelkarte-farbe&layers=ch.swisstopo.zeitreihen,ch.bfs.gebaeude_wohnungs_register,ch.bav.haltestellen-oev,ch.swisstopo.swisstlm3d-wanderwege,ch.astra.wanderland-sperrungen_umleitungen,ch.swisstopo.swissimage-product,ch.swisstopo.swisssurface3d.metadata&layers_opacity=1,1,1,0.8,0.8,1,0.15&layers_visibility=false,false,false,false,false,true,false&layers_timestamp=18641231,,,,,2014,&E=2639666&N=1260114&zoom=10
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Figure A.2: Higher resolution RGB Composite of the functional traits 2014.  
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Figure A.3: Higher resolution RGB Composite of the functional traits 2019.  
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Figure A.4: Foliage height diversity maps of the canton Aargau of 2014 (top) and 2019 (bottom). 
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Figure A.5: Difference map of foliage height diversity between the years 2014 and 2019. Red pixels 

indicate higher values in 2014, blue pixels show higher values in 2019. 
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Figure A.6: Plant area index maps of the canton Aargau of 2014 (top) and 2019 (bottom). 
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Figure A.7: Difference map of plant area index between the years 2014 and 2019. Red pixels indicate 

higher values in 2014, blue pixels show higher values in 2019. 
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Figure A.8: Functional divergence maps of the canton Aargau of 2014 (top) and 2019 (bottom). 
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Figure A.9: Classified difference map of functional divergence. It is classified using its mean (μFDiv = 

0.017). Values within one standard deviation of the observed change in occlusion are beige, within two 

standard deviations are light red/blue up to four which are dark red/blue. Red pixels indicate higher 

values in 2014, blue pixels show higher values in 2019 compared to the mean.  
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Figure A.10: Explanatory variables forest mix rate and aspect classified under Chapter 2.5.1. 

Aspect 

Forest mix rate  

[% of deciduous trees] 
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Figure A.11: Explanatory variables altitude and slope classified under Chapter 2.5.1.  

Slope 

Altitude [m.a.s.l.] 



 

90 

 

ANOVA results in Laegern 

Table A.2: ANOVA type I results in Laegern for traits and diversity metrics explained by topographic, 

forest, and sensor variables. Stars indicate significance levels ***0.001, **0.01 and *0.05. 

Dependent variable Variable SumSq DF MeanSq F pValue r2 

CH14 Altitude 0.364 1 0.364 37.726 ***0.000 0.070 

 Slope 0.222 1 0.222 22.937 ***0.000  

 Aspect 0.039 1 0.039 4.008 *0.046  

 Forest mix 0.006 1 0.006 0.611 0.435  

 Occlusion 0.000 1 0.000 0.001 0.976  

 Point density 0.130 1 0.130 13.481 ***0.000  

  Residual 10.048 1040 0.010       

FHD14 Altitude 0.014 1 0.014 10.920 **0.001 0.154 

 Slope 0.000 1 0.000 0.239 0.625  

 Aspect 0.000 1 0.000 0.124 0.725  

 Forest mix 0.000 1 0.000 0.074 0.786  

 Occlusion 0.004 1 0.004 3.286 0.070  

 Point density 0.228 1 0.228 174.508 ***0.000  

  Residual 1.356 1040 0.001 0.154 -   

PAI14 Altitude 0.020 1 0.020 61.854 ***0.000 0.507 

 Slope 0.023 1 0.023 71.480 ***0.000  

 Aspect 0.000 1 0.000 1.256 0.263  

 Forest mix 0.041 1 0.041 131.032 ***0.000  

 Occlusion 0.123 1 0.123 389.926 ***0.000  

 Point density 0.131 1 0.131 413.637 ***0.000  

  Residual 0.329 1040 0.000   -   

CH19 Altitude 0.343 1 0.343 62.511 ***0.000 0.342 

 Slope 0.190 1 0.190 34.584 ***0.000  

 Aspect 0.048 1 0.048 8.771 **0.003  

 Forest mix 0.000 1 0.000 0.081 0.776  

 Occlusion 0.772 1 0.772 140.754 ***0.000  

 Point density 1.616 1 1.616 294.513 ***0.000  

  Residual 5.707 1040 0.005   -   

FHD19 Altitude 0.027 1 0.027 20.141 ***0.000 0.438 

 Slope 0.000 1 0.000 0.001 0.977  

 Aspect 0.002 1 0.002 1.761 0.185  

 Forest mix 0.015 1 0.015 11.631 **0.001  

 Occlusion 0.118 1 0.118 89.441 ***0.000  

 Point density 0.906 1 0.906 686.948 ***0.000  

  Residual 1.371 1040 0.001   -   

PAI19 Altitude 0.005 1 0.005 11.192 **0.001 0.680 

 Slope 0.037 1 0.037 75.822 ***0.000  

 Aspect 0.054 1 0.054 110.312 ***0.000  

 Forest mix 0.005 1 0.005 11.116 **0.001  

 Occlusion 0.831 1 0.831 1711.021 ***0.000  

 Point density 0.142 1 0.142 292.991 ***0.000  

  Residual 0.505 1040 0.000   -   

FRic14 Altitude 0.000 1 0.000 3.067 0.080 0.012 

 Slope 0.000 1 0.000 0.100 0.751  

 Aspect 0.000 1 0.000 0.153 0.696  

 Forest mix 0.001 1 0.001 5.235 *0.022  

 Occlusion 0.000 1 0.000 2.893 0.089  

 Point density 0.000 1 0.000 1.351 0.245  

  Residual 0.143 1040 0.000   -   

FDiv14 Altitude 0.001 1 0.001 7.442 **0.006 0.047 

 Slope 0.001 1 0.001 4.591 *0.032  

 Aspect 0.000 1 0.000 0.391 0.532  

 Forest mix 0.004 1 0.004 22.008 ***0.000  

 Occlusion 0.002 1 0.002 8.396 **0.004  

 Point density 0.001 1 0.001 7.996 **0.005  

  Residual 0.191 1040 0.000   -   
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FRic19 Altitude 0.055 1 0.055 81.278 ***0.000 0.147 

 Slope 0.000 1 0.000 0.148 0.701  

 Aspect 0.002 1 0.002 2.552 0.110  

 Forest mix 0.010 1 0.010 14.333 ***0.000  

 Occlusion 0.052 1 0.052 76.759 ***0.000  

 Point density 0.002 1 0.002 3.477 0.063  

  Residual 0.706 1040 0.001   -   

FDiv19 Altitude 0.000 1 0.000 3.067 0.080 0.012 

 Slope 0.000 1 0.000 0.100 0.751  

 Aspect 0.000 1 0.000 0.153 0.696  

 Forest mix 0.001 1 0.001 5.235 *0.022  

 Occlusion 0.000 1 0.000 2.893 0.089  

 Point density 0.000 1 0.000 1.351 0.245  

  Residual 0.143 1040 0.000   -   

FRic change CH difference 0.059 1 0.059 157.390 ***0.000 0.226 

 FHD difference 0.004 1 0.004 10.410 **0.001  

 PAI difference 0.048 1 0.048 129.429 ***0.000  

 Occlusion difference 0.001 1 0.001 3.933 *0.048  

 Point density difference 0.001 1 0.001 2.955 0.086  

  Residual 0.388 1041 0.000   -   

FDiv change CH difference 0.000 1 0.000 0.023 0.878 0.010 

 FHD difference 0.000 1 0.000 0.787 0.375  

 PAI difference 0.004 1 0.004 33.417 ***0.000  

 Occlusion difference 0.001 1 0.001 9.935 **0.002  

 Point density difference 0.000 1 0.000  0.919  

  Residual 0.113 1041 0.000 0.041 -   

CH change Occlusion difference 0.001 1 0.001 1.931 0.165 0.0002385  

 Point density difference 0.000 1 0.000 0.319 0.572  

  Residual 0.631 1044 0.001       

FHD change Occlusion difference 0.008 1 0.008 9.369 **0.002 0.331 

 Point density difference 0.412 1 0.412 510.913 ***0.000  

  Residual 0.842 1044 0.001       

PAI change Occlusion difference 0.690 1 0.690 1061.816 ***0.000 0.568 

 Point density difference 0.204 1 0.204 313.273 ***0.000  

  Residual 0.678 1044 0.001       
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ANOVA results in Unterwald 

Table A.3: ANOVA type I results in Unterwald for traits and diversity metrics explained by topographic, 

forest, and sensor variables. Stars indicate significance levels ***0.001, **0.01 and *0.05. 

Dependent variable Variable SumSq DF MeanSq F pValue r2 

CH14 Altitude 0.020 1 0.020 2.942 0.088 0.068 

 Slope 0.025 1 0.025 3.649 0.058  

 Aspect 0.000 1 0.000 0.034 0.853  

 Forest mix 0.032 1 0.032 4.718 *0.031  

 Occlusion 0.010 1 0.010 1.398 0.239  

 Point density 0.011 1 0.011 1.609 0.206  

  Residual 1.336 196 0.007   -   

FHD14 Altitude 0.007 1 0.007 9.065 **0.003 0.374 

 Slope 0.009 1 0.009 12.401 **0.001  

 Aspect 0.003 1 0.003 4.097 *0.044  

 Forest mix 0.006 1 0.006 8.205 **0.005  

 Occlusion 0.010 1 0.010 14.093 ***0.000  

 Point density 0.050 1 0.050 69.429 ***0.000  

  Residual 0.142 196 0.001   -   

PAI14 Altitude 0.002 1 0.002 2.485 0.117 0.569 

 Slope 0.052 1 0.052 66.617 ***0.000  

 Aspect 0.005 1 0.005 5.993 *0.015  

 Forest mix 0.048 1 0.048 60.959 ***0.000  

 Occlusion 0.069 1 0.069 88.433 ***0.000  

 Point density 0.027 1 0.027 34.168 ***0.000  

  Residual 0.154 196 0.001   -   

CH19 Altitude 0.012 1 0.012 2.774 0.097 0.238 

 Slope 0.023 1 0.023 5.315 *0.022  

 Aspect 0.001 1 0.001 0.241 0.624  

 Forest mix 0.021 1 0.021 4.957 *0.027  

 Occlusion 0.018 1 0.018 4.136 *0.043  

 Point density 0.188 1 0.188 43.781 ***0.000  

  Residual 0.844 196 0.004   -   

FHD19 Altitude 0.001 1 0.001 0.433 0.512 0.472 

 Slope 0.045 1 0.045 35.371 ***0.000  

 Aspect 0.008 1 0.008 6.132 *0.014  

 Forest mix 0.005 1 0.005 4.045 *0.046  

 Occlusion 0.037 1 0.037 29.107 ***0.000  

 Point density 0.128 1 0.128 100.102 ***0.000  

  Residual 0.251 196 0.001   -   

PAI19 Altitude 0.005 1 0.005 6.683 *0.010 0.703 

 Slope 0.004 1 0.004 4.548 *0.034  

 Aspect 0.004 1 0.004 5.747 *0.017  

 Forest mix 0.118 1 0.118 153.194 ***0.000  

 Occlusion 0.197 1 0.197 255.357 ***0.000  

 Point density 0.030 1 0.030 39.002 ***0.000  

  Residual 0.151 196 0.001   -   

FRic14 Altitude 0.000 1 0.000 0.053 0.817 0.025 

 Slope 0.000 1 0.000 0.343 0.559  

 Aspect 0.000 1 0.000 1.149 0.285  

 Forest mix 0.000 1 0.000 2.983 0.086  

 Occlusion 0.000 1 0.000 0.042 0.838  

 Point density 0.000 1 0.000 0.556 0.457  

  Residual 0.027 196 0.000   -   

FDiv14 Altitude 0.000 1 0.000 0.701 0.404 0.032 

 Slope 0.000 1 0.000 1.003 0.318  

 Aspect 0.000 1 0.000 0.121 0.728  

 Forest mix 0.001 1 0.001 4.667 *0.032  

 Occlusion 0.000 1 0.000 0.028 0.867  

 Point density 0.000 1 0.000 0.001 0.976  

  Residual 0.038 196 0.000   -   
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FRic19 Altitude 0.008 1 0.008 5.231 *0.023 0.092 

 Slope 0.001 1 0.001 0.503 0.479  

 Aspect 0.005 1 0.005 2.967 0.087  

 Forest mix 0.014 1 0.014 9.084 **0.003  

 Occlusion 0.002 1 0.002 1.364 0.244  

 Point density 0.001 1 0.001 0.604 0.438  

  Residual 0.298 196 0.002   -   

FDiv19 Altitude 0.000 1 0.000 0.053 0.817 0.025 

 Slope 0.000 1 0.000 0.343 0.559  

 Aspect 0.000 1 0.000 1.149 0.285  

 Forest mix 0.000 1 0.000 2.983 0.086  

 Occlusion 0.000 1 0.000 0.042 0.838  

 Point density 0.000 1 0.000 0.556 0.457  

  Residual 0.027 196 0.000   -   

FRic change CH difference 0.027 1 0.027 34.414 ***0.000 0.213 

 FHD difference 0.000 1 0.000 0.235 0.629  

 PAI difference 0.009 1 0.009 12.201 **0.001  

 Occlusion difference 0.005 1 0.005 6.164 *0.014  

 Point density difference 0.000 1 0.000 0.257 0.613  

  Residual 0.152 197 0.001   -   

FDiv change CH difference 0.000 1 0.000 4.371 *0.038 0.069 

 FHD difference 0.000 1 0.000 2.579 0.110  

 PAI difference 0.000 1 0.000 1.512 0.220  

 Occlusion difference 0.000 1 0.000 0.840 0.361  

 Point density difference 0.001 1 0.001 5.277 *0.023  

  Residual 0.020 197 0.000   -   

CH change Occlusion difference 0.002 1 0.002 2.782 0.097 0.041  

 Point density difference 0.004 1 0.004 7.937 **0.005  

  Residual 0.108 200 0.001     

FHD change Occlusion difference 0.000 1 0.000 0.002 0.968 0.341 

 Point density difference 0.090 1 0.090 106.630 ***0.000  

  Residual 0.170 200 0.001     

PAI change Occlusion difference 0.005 1 0.005 3.473 0.064 0.142 

 Point density difference 0.043 1 0.043 31.856 ***0.000  

  Residual 0.269 200 0.001     
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ANOVA results in Frickberg 

Table A.4: ANOVA type I results in Frickberg for traits and diversity metrics explained by topographic, 

forest, and sensor variables. Stars indicate significance levels ***0.001, **0.01 and *0.05. 

Dependent variable Variable SumSq DF MeanSq F pValue r2 

CH14 Altitude 0.047 1 0.047 5.591 *0.018 0.032 

 Slope 0.015 1 0.015 1.737 0.188  

 Aspect 0.000 1 0.000 0.000 0.988  

 Forest mix 0.001 1 0.001 0.118 0.732  

 Occlusion 0.001 1 0.001 0.103 0.748  

 Point density 0.069 1 0.069 8.159 **0.004  

  Residual 3.947 469 0.008   -   

FHD14 Altitude 0.009 1 0.009 3.900 *0.049 0.141 

 Slope 0.005 1 0.005 2.073 0.151  

 Aspect 0.004 1 0.004 1.868 0.172  

 Forest mix 0.001 1 0.001 0.408 0.523  

 Occlusion 0.005 1 0.005 2.316 0.129  

 Point density 0.146 1 0.146 66.150 ***0.000  

  Residual 1.035 469 0.002   -   

PAI14 Altitude 0.000 1 0.000 1.132 0.288 0.488 

 Slope 0.018 1 0.018 47.332 ***0.000  

 Aspect 0.004 1 0.004 9.397 **0.002  

 Forest mix 0.052 1 0.052 133.821 ***0.000  

 Occlusion 0.048 1 0.048 124.587 ***0.000  

 Point density 0.050 1 0.050 129.973 ***0.000  

  Residual 0.182 469 0.000   -   

CH19 Altitude 0.049 1 0.049 9.942 **0.002 0.287 

 Slope 0.007 1 0.007 1.429 0.232  

 Aspect 0.001 1 0.001 0.110 0.740  

 Forest mix 0.002 1 0.002 0.488 0.485  

 Occlusion 0.000 1 0.000 0.020 0.888  

 Point density 0.875 1 0.875 177.177 ***0.000  

  Residual 2.317 469 0.005   -   

FHD19 Altitude 0.008 1 0.008 6.608 **0.010 0.417 

 Slope 0.028 1 0.028 22.268 ***0.000  

 Aspect 0.000 1 0.000 0.043 0.836  

 Forest mix 0.003 1 0.003 2.566 0.110  

 Occlusion 0.002 1 0.002 1.502 0.221  

 Point density 0.381 1 0.381 303.085 ***0.000  

  Residual 0.589 469 0.001   -   

PAI19 Altitude 0.000 1 0.000 0.006 0.941 0.642 

 Slope 0.021 1 0.021 68.287 ***0.000  

 Aspect 0.001 1 0.001 1.843 0.175  

 Forest mix 0.097 1 0.097 318.031 ***0.000  

 Occlusion 0.077 1 0.077 250.209 ***0.000  

 Point density 0.062 1 0.062 201.502 ***0.000  

  Residual 0.144 469 0.000   -   

FRic14 Altitude 0.000 1 0.000 1.362 0.244 0.059 

 Slope 0.001 1 0.001 5.368 *0.021  

 Aspect 0.000 1 0.000 1.273 0.260  

 Forest mix 0.000 1 0.000 0.081 0.777  

 Occlusion 0.001 1 0.001 11.095 **0.001  

 Point density 0.001 1 0.001 10.160 **0.002  

  Residual 0.063 469 0.000   -   

FDiv14 Altitude 0.001 1 0.001 4.633 *0.032 0.028 

 Slope 0.000 1 0.000 0.248 0.619  

 Aspect 0.000 1 0.000 2.155 0.143  

 Forest mix 0.000 1 0.000 0.342 0.559  

 Occlusion 0.001 1 0.001 3.976 *0.047  

 Point density 0.000 1 0.000 2.004 0.158  

  Residual 0.086 469 0.000   -   
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FRic19 Altitude 0.004 1 0.004 11.247 **0.001 0.134 

 Slope 0.000 1 0.000 1.047 0.307  

 Aspect 0.000 1 0.000 0.061 0.805  

 Forest mix 0.010 1 0.010 28.736 ***0.000  

 Occlusion 0.009 1 0.009 23.849 ***0.000  

 Point density 0.003 1 0.003 7.856 ***0.005  

  Residual 0.168 469 0.000   -   

FDiv19 Altitude 0.000 1 0.000 1.362 0.244 0.059 

 Slope 0.001 1 0.001 5.368 *0.021  

 Aspect 0.000 1 0.000 1.273 0.260  

 Forest mix 0.000 1 0.000 0.081 0.777  

 Occlusion 0.001 1 0.001 11.095 **0.001  

 Point density 0.001 1 0.001 10.160 **0.002  

  Residual 0.063 469 0.000   -   

FRic change CH difference 0.013 1 0.013 67.633 ***0.000 0.184 

 FHD difference 0.001 1 0.001 3.703 0.055  

 PAI difference 0.004 1 0.004 21.510 ***0.000  

 Occlusion difference 0.002 1 0.002 12.339 ***0.000  

 Point density difference 0.000 1 0.000 0.838 0.360  

  Residual 0.092 470 0.000   -   

FDiv change CH difference 0.000 1 0.000 0.461 0.498 0.024 

 FHD difference 0.000 1 0.000 0.963 0.327  

 PAI difference 0.000 1 0.000 2.216 0.137  

 Occlusion difference 0.000 1 0.000 1.133 0.288  

 Point density difference 0.001 1 0.001 6.991 **0.008  

  Residual 0.060 470 0.000   -   

CH change Occlusion difference 0.001 1 0.001 2.733 0.099  0.002 

 Point density difference 0.000 1 0.000 0.342 0.559  

  Residual 0.122 473 0.000     

FHD change Occlusion difference 0.000 1 0.000 0.857 0.355 0.227 

 Point density difference 0.081 1 0.081 140.489 ***0.000  

  Residual 0.273 473 0.001     

PAI change Occlusion difference 0.002 1 0.002 4.698 *0.031 0.052 

 Point density difference 0.012 1 0.012 23.364 ***0.000  

  Residual 0.240 473 0.001     
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 CH FHD PAI 

 2014 2019 2014 2019 2014 2019 

25th percentile 12.6 12.5 0.297 0.299 0.1983 0.0543 

50th percentile 13.7 13.8 0.52 0.481 0.428 0.168 

75th percentile 15.4 15.4 0.951 1.012 0.85 0.458 

 

Figure A.12: Swissgrid switching substation known as Star of Laufenburg. Used as validation area of 

the traits because it has many masts, lines, etc. having a tree-like structure that were used as persistent 

scatterers. In the top row, the SWISSIMAGE Orthofotos (swisstopo, 2022) of 2014 (left) und 2019 (right) 

and in the bottom row, the boxplots of the three traits and their corresponding statistics are depicted 

before normalization.  
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Original code: Code return number swapped with 

number of returns 

  

  
Figure A.13: PAI boxplots of the Star of Laufenburg area before the swap of return number and number 

of return parameters (left) and after (right). 

  



 

98 

 

 

 

 

 

 

Figure A.14: Artifacts in PAI map (top) in Frickberg as an example before the parameter swap. The 

corresponding point density (number of points per 4 m2) map is on the bottom. 
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This Master’s thesis Schneider et al. (2017)  

Functional richness 

 

 

Functional divergence 

 

 

Figure A.15: Comparison of functional richness and divergence maps of the overlapping part of the two 

studies on Laegern. In the left column, the results of our study (30 m radius) are mapped and on the 

right column, the results of the study of Schneider et al. (2017) with a radius 60 m are reprinted. The 

area inside the white polygon marks the overlapping area of the thesis and the study by Schneider et al. 

(2017). The differences in the scale come mostly from the different radii (30 m vs. 60 m). 
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Figure A.16: Slice through the output of the occlusion mapping of a 1 km tile at Frickberg. 
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B Appendix – Geographically weighted regression analysis 

As an outlook, we also conducted a GWR for the subregion Frickberg, additionally to the 

linear regression and ANOVA described above. It is a method first introduced by Brunsdon and 

Fotheringham that detects if and how response and predictor variables relate to each other 

spatially. The underlying assumption is that a global regression wrongly assumes the 

relationship of the variables to be identical no matter where in the study region it is investigated. 

GWR is a method to investigate geographical variation in data relationships and generates 

varying regression coefficients that are mappable. It has been a widely used method in various 

disciplines (Comber et al., 2022). A standard GWR builds upon a linear regression but at every 

predefined geographical location, data that is falling within a moving window or kernel is used 

to calibrate the regression model. It is a reflection of Tobler’s first law of geography which 

observes that data in close proximity to each other oftentimes have similar characteristics. The 

standard GWR definition is as follows: 

𝑦𝑖 = 𝛽0(𝑢𝑖, 𝑣𝑖) + ∑ 𝛽𝑘(𝑢𝑖, 𝑣𝑖)𝑥𝑖𝑘 + 𝑒𝑖

𝑚

𝑘=1

 , (15) 

where 𝑦𝑖 is the response variable and 𝑥𝑖𝑘 the value of the predictor variable. The number of 

predictor variables is m. The spatial coordinates are defined as (𝑢𝑖 , 𝑣𝑖) of the observation i and 

the estimated coefficients at these locations is 𝛽𝑘(𝑢𝑖 , 𝑣𝑖). 𝛽0(𝑢𝑖, 𝑣𝑖) is the intercept term and 𝑒𝑖 

forms the error term. 

Thus, GWR conducts a local regression to many different locations and estimates local 

coefficients while it uses the neighboring observations and weighs them according to their 

distance to the center of the moving window. This weight is defined by the bandwidth and a 

kernel-based distance decay function (Comber et al., 2022). 

The use and determination of the bandwidth distincts different cases of GWR. The standard 

GWR uses a single bandwidth for all predictor variables assuming the relationship operates at 

the same scale for all predictor variables. In some cases, this might be unrealistic. To solve this 

problem, a multiscale GWR can be applied which estimates the bandwidth for every predictor 

variable separately (Comber et al., 2022). 

Because the GWR approach is only an outlook, we did not test many different models, which 

is usually done in a GWR analysis. This could be done in further research. 
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GWR Output of the FRic Model in Frickberg 

 

Figure B.1: Spatial variation of the local coefficient estimates from the GWR FRic model in Frickberg. 

 

 

 

   *********************************************************************** 

   *                       Package   GWmodel                             * 

   *********************************************************************** 

   Program starts at: 2022-07-27 09:49:52  

   Call: 

   gwr.basic(formula = regmodB, data = data_sp, bw = gw.mb, kernel = "bisquare",  

    adaptive = TRUE, longlat = FALSE, cv = TRUE) 

 

   Dependent (y) variable:  richness_diff 

   Independent variables:  occlusion_diff pt_dens_diff 

   Number of data points: 11017 
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   *********************************************************************** 

   *                    Results of Global Regression                     * 

   *********************************************************************** 

 

   Call: 

    lm(formula = formula, data = data) 

 

   Residuals: 

      Min        1Q    Median        3Q       Max  

-0.073575 -0.022510 -0.006286  0.015794  0.160506  

 

   Coefficients: 

                    Estimate Std. Error t value Pr(>|t|)     

   (Intercept)     0.0555791  0.0005661  98.169  < 2e-16 *** 

   occlusion_diff -0.0546976  0.0089746  -6.095 1.13e-09 *** 

   pt_dens_diff    0.0000471  0.0000306   1.539    0.124     

 

   ---Significance stars 

   Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  

   Residual standard error: 0.0319 on 11014 degrees of freedom 

   Multiple R-squared: 0.004507 

   Adjusted R-squared: 0.004326  

   F-statistic: 24.93 on 2 and 11014 DF,  p-value: 1.573e-11  

   ***Extra Diagnostic information 

   Residual sum of squares: 11.20486 

   Sigma(hat): 0.03189414 

   AIC:  -44643.57 

   AICc:  -44643.57 

   BIC:  -55594.12 

 

  



 

104 

 

 

   *********************************************************************** 

   *          Results of Geographically Weighted Regression              * 

   *********************************************************************** 

 

   *********************Model calibration information********************* 

   Kernel function: bisquare  

   Adaptive bandwidth: 78 (number of nearest neighbours) 

   Regression points: the same locations as observations are used. 

   Distance metric: Euclidean distance metric is used. 

 

   ****************Summary of GWR coefficient estimates:****************** 

                         Min.     1st Qu.      Median     3rd Qu.     Max. 

   Intercept      -1.8455e-02  3.5706e-02  5.1720e-02  7.3261e-02   0.1942 

   occlusion_diff -4.4516e+02 -9.0962e-02  7.8198e-03  1.3046e-01 142.2138 

   pt_dens_diff   -4.0477e-03 -4.1594e-04 -2.0813e-05  4.1464e-04   0.0041 

   ************************Diagnostic information************************* 

   Number of data points: 11017  

   Effective number of parameters (2trace(S) - trace(S'S)): 1252.648  

   Effective degrees of freedom (n-2trace(S) + trace(S'S)): 9764.352  

   AICc (GWR book, Fotheringham, et al. 2002, p. 61, eq 2.33): -73010.54  

   AIC (GWR book, Fotheringham, et al. 2002,GWR p. 96, eq. 4.22): -74126.56  

   BIC (GWR book, Fotheringham, et al. 2002,GWR p. 61, eq. 2.34): -77346.38  

   Residual sum of squares: 0.7087457  

   R-square value:  0.9370317  

   Adjusted R-square value:  0.9289527 
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GWR Output of the FDiv Model in Frickberg 

 

Figure B.2: Spatial variation of the local coefficient estimates from the GWR FDiv model in Frickberg. 

 

 

 

   *********************************************************************** 

   *                       Package   GWmodel                             * 

   *********************************************************************** 

   Program starts at: 2022-07-27 09:51:05  

   Call: 

   gwr.basic(formula = regmodD, data = data_sp, bw = gw.md, kernel = "bisquare",  

    adaptive = TRUE, longlat = FALSE, cv = TRUE) 

 

   Dependent (y) variable:  divergence_diff 

   Independent variables:  occlusion_diff pt_dens_diff 

   Number of data points: 11017 
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   *********************************************************************** 

   *                    Results of Global Regression                     * 

   *********************************************************************** 

 

   Call: 

    lm(formula = formula, data = data) 

 

   Residuals: 

      Min        1Q    Median        3Q       Max  

-0.075579 -0.010019  0.000442  0.010324  0.081416  

 

   Coefficients: 

                    Estimate Std. Error t value Pr(>|t|)     

   (Intercept)    -1.073e-02  2.938e-04 -36.518  < 2e-16 *** 

   occlusion_diff -1.673e-02  4.658e-03  -3.593 0.000329 *** 

   pt_dens_diff   -6.507e-05  1.588e-05  -4.097 4.22e-05 *** 

 

   ---Significance stars 

   Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  

   Residual standard error: 0.01655 on 11014 degrees of freedom 

   Multiple R-squared: 0.00207 

   Adjusted R-squared: 0.001888  

   F-statistic: 11.42 on 2 and 11014 DF,  p-value: 1.109e-05  

   ***Extra Diagnostic information 

   Residual sum of squares: 3.017941 

   Sigma(hat): 0.01655248 

   AIC:  -59095.37 

   AICc:  -59095.37 

   BIC:  -70045.91 
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   *********************************************************************** 

   *          Results of Geographically Weighted Regression              * 

   *********************************************************************** 

 

   *********************Model calibration information********************* 

   Kernel function: bisquare  

   Adaptive bandwidth: 78 (number of nearest neighbours) 

   Regression points: the same locations as observations are used. 

   Distance metric: Euclidean distance metric is used. 

 

   ****************Summary of GWR coefficient estimates:****************** 

                         Min.     1st Qu.      Median     3rd Qu.     Max. 

   Intercept      -8.8654e-02 -2.0333e-02 -1.1299e-02 -1.1397e-03   0.0556 

   occlusion_diff -3.8620e+00 -1.1574e-01 -1.2379e-02  7.2803e-02 146.6376 

   pt_dens_diff   -3.4939e-03 -4.4084e-04 -4.1222e-05  3.3534e-04   0.0025 

   ************************Diagnostic information************************* 

   Number of data points: 11017  

   Effective number of parameters (2trace(S) - trace(S'S)): 1252.648  

   Effective degrees of freedom (n-2trace(S) + trace(S'S)): 9764.352  

   AICc (GWR book, Fotheringham, et al. 2002, p. 61, eq 2.33): -76198.36  

   AIC (GWR book, Fotheringham, et al. 2002,GWR p. 96, eq. 4.22): -77314.39  

   BIC (GWR book, Fotheringham, et al. 2002,GWR p. 61, eq. 2.34): -80534.21  

   Residual sum of squares: 0.5306708  

   R-square value:  0.8245252  

   Adjusted R-square value:  0.8020116  
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C Appendix – List of abbrevations 

2D Two dimensional 

3D Three dimensional 

AGIS Aargauisches Geographisches Informationssystem 

ALS Airborne laser scanning 

ANOVA Analysis of variance 

CH Canopy height 

DTM Digital terrain model 

FDiv Functional divergence 

FHD Foliage height diversity 

FR First returns ratio approach 

FRic Functional richness 

GWR Geographically weighted regression 

LiDAR Light detection and ranging 

LAI Leaf area index 

NaN Not a number 

NFI (LFI) National forest inventory (Landesforstinventar) 

NIR Near-infrared 

NR Nature reserve 

PAD Plant area density 

PAI Plant area index 

RTA Ray-tracing approach 

SAR Synthetic aperture radar 

SR Scaled returns ratio approach 

UF Unprotected forest 
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