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Abstract 
Continental margins are the primary location of organic carbon (OC) burial in the ocean, and 

extensive efforts have been made to quantify and map the distribution of OC in continental margins 
worldwide. However, these global estimates do not account for the high geomorphological 
heterogeneity in continental margins, such as the influence of submarine canyons as sites of 
preferential OC deposition.  

This thesis compares the accuracy of geostatistical external drift kriging with different machine 
learning approaches to predict surficial sediment OC content in the extensively studied Nazaré 
Canyon (Central Portuguese margin) and its adjacent continental margin. Random forests using 
explicitly spatial covariates performed slightly better (RMSE=0.527 wt. %) than classical random 
forests (RMSE=0.534 wt. %) and predict the spatial distribution of OC substantially better than 
external drift kriging (RMSE=0.705 wt. %). Distance to the canyon axis and surface rugosity are 
amongst the most important predictors of OC content in the canyon margin system and challenge 
thus factors known to affect the distribution of the latter in surficial sediment.  

 The Nazaré Canyon contains 46% more OC per unit area (151 g·m-2) in comparison to its adjacent 
continental margin (103 g·m-2), proving that canyons are important sites of OC deposition due to their 
capacity of funnelling large quantities of sediment and OC towards the deep sea. Considering that 
submarine canyons incise all continental margins, occupying 10% of their global area, and that the 
present findings suggest substantially higher carbon contents within those features, they should be 
accounted for in global estimates of OC deposition in continental margins worldwide.  
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1 Introduction 
1.1  The continental margin and carbon storage 

Sedimentary rocks host the largest proportion (~ 90%) of organic carbon (OC) globally (Hedges & 
Keil, 1995). If successfully buried, marine surface sediment organic carbon can escape into the long-
term carbon cycle and remain there over geological timescales, sequestering carbon away from the 
atmosphere (Atwood et al., 2020). Marine sediments play therefore a key role as climate regulators. 

Although continental margins occupy only 10-20% of the global ocean floor by area, they store up 
to 90% of the OC being preserved in marine sediments (Hedges & Keil, 1995), and thus are recognized 
as significant stockholders of carbon in the marine realm (Bianchi et al., 2018) and are the primary 
location of OC burial in the ocean (Ausín et al., 2021). However, this storage is increasingly threatened 
due to changing climate, coastal development, mining, hydrocarbon exploration (Cordes et al., 2016) 
and commercial fishing methods that involve deep-sea bottom-trawling (Sala et al., 2021). 

In order to guide informed ocean management decisions, e.g. defining Marine Protected Areas 
(MPA), precise OC stocks need to be presented to policy makers (Atwood et al., 2020; Diesing et al., 
2021; Smeaton, 2021). As continental margins comprise a multitude of different settings (Avelar et 
al., 2017) their ability to accumulate and bury OC has to be assessed taking into account this diversity. 
The IPCC (IPCC Working Group 1 et al., 2013) still uses spatially non-explicit estimates for sedimentary 
carbon reservoirs, based on a simple multiplication of the global extent of open ocean and continental 
margins multiplied by a respective mean OC content (Emerson & Hedges, 1988). This binary view 
needs to be replaced by a more nuanced integration of a heterogeneous continental margin into 
calculations of carbon reservoirs. 

Submarine canyons are a prime example for the geomorphological heterogeneity of the seafloor 
and are widespread features, present on the majority of the continental margins. Over 9000 large 
canyons cover over 10% of global continental margin area (Harris et al., 2014) displaying a steep and 
complex topography (Harris & Whiteway, 2011), resulting in diverse current patterns (Xu, 2011) and 
providing a multitude of habitats (de Leo et al., 2014). Despite their roles as "keystone 
structures"(Vetter et al., 2010) and the main pathway for sediment transport from the shelf to the 
deep sea, submarine canyons have not yet been recognized as hotspots for the remineralization or 
sequestration of OC. Over the last few years, research has focused on sediment transport mechanisms 
(Allin et al., 2016; Arzola et al., 2008; Puig et al., 2014) and the influence of bottom trawling (Paradis 
et al., 2017; Payo-Payo et al., 2017), benthic habitat composition (Appah et al., 2020; Huvenne et al., 
2012), and the geochemistry of seafloor sediments (García et al., 2008; Kiriakoulakis et al., 2011; 
Oliveira et al., 2011). But precise techniques to spatially interpolate sedimentary OC in these highly 
heterogeneous environments have not been employed yet.  

 
The deposition and subsequent preservation of organic carbon (in particulate form (POC)) in marine 

sediments is governed by a multitude of factors. Marine POC stems from different sources and 
encounters obstacles before and during its gravitational settling to the sea floor. We can distinguish 
between allochthonous POC, organic carbon derived from the remains of marine primary producers 
(algae) and allochthonous POC, matter of terrestrial origin (e.g. vascular plant detritus, black carbon 
or fossil OC from the erosion of meta-sediments) (Kandasamy & Nath, 2016; Kharbush et al., 2020). 
Although marine OC production (around 50,000 Tg C yr-1) largely surpasses the input from land to the 
ocean (around 740 Tg C yr-1), burial efficiencies of the latter are much higher: 14% of all riverine TOC 
and 10% of aeolian POC are eventually buried compared to 0.8% and 0.03% for OC derived from 
coastal ocean and open ocean primary productivity, respectively (Kandasamy & Nath, 2016). As POC 
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is adsorbed to sediment particles, it follows the path the sediment takes. Once deposited as bottom-
sediment, it can be further transported by bioturbation or laterally moved upon resuspension of the 
sediment in the water column (LaRowe et al., 2020). Therefore, factors such as nepheloid layers, 
strong bottom water currents or mass wasting events, move deposited sediment and can locally 
increase or decrease carbon content. Various other post-depositional processes can affect the 
content of total organic carbon (TOC, in this thesis referring to the particulate fraction only) in surficial 
sediments. For example, decomposition of organic constituents occurs mostly in bioturbated 
sediments below oxygenated waters (Wakeham & Canuel, 2006). 

 
1.2  Ways to predict and assess the spatial distribution of TOC 

The prediction of a variable of interest (TOC in the present case) at unsampled locations based on 
sparse ground truth data can be tackled in different ways. Early interpolators such as Thiessen 
Polygons (Thiessen, 1911) and triangulation based on Delaunay (1934) take into account only one or  
three ground truth points, respectively, for predicting a value and showcase a more or less 
pronounced step-like appearance. The extension and combination of the former two, the natural 
neighbour interpolant (Sibson, 1981), can bypass the emergence of abrupt changes within the 
prediction surface but produces strongly biased results where the data is noisy (Webster & Oliver, 
2008). The inverse distance weighting (IDW) method (Shepard, 1968) obeys the popular and only 
years later formulated law of Waldo Tobler first law of geography stating “everything is related to 
everything else, but near things are more related than distant things” (Tobler, 1970). All these 
interpolators are local, meaning they calculate the predicted value from neighbourhoods, smaller in 
extent than the full study area. Global interpolators on the other hand use the entire study area 
spanning dataset. Trend surface analysis (Krumbein, 1959), a global interpolation technique in that it 
uses the full study area spanning dataset, is based on polynomial regression of the x and y coordinates 
of the ground truth locations. The resulting regression equation acts then as the interpolator. As the 
spatial variation of a variable is often complex, a polynomial of high order would be needed to account 
for it and this would result in highly unstable matrix equations. Additionally, the autocorrelated 
structure of the trend residuals violates one assumption of linear regression models, namely the 
independence of errors (Poole & O’Farrell, 1971).  

All of the above-mentioned spatial interpolation techniques are deterministic, which means that 
they assume the variation in a variable is determined by physical causes. But processes that influence 
the variation of an environmental variable often vary in a strongly non-linear and chaotic ways. The 
value of a variable at a location can be seen as the outcome of a random process (i.e., each value is 
drawn at random from a probability distribution), therefore the spatial variation should be considered 
as random (Matheron, 1965). Linear kriging, the workhorse of geostatistics, offers a solution to 
account for the randomness within the variance. It uses the spatial autocorrelation of measurements 
(near things being more similar than distant things) to its advantage by stratifying the environment to 
calculate predicted values as weighted linear sums. It can be seen as a sophisticated version of IDW 
and differs from the later in that its weights are based on the degree of spatial correlation, based on 
a semivariogram, and not on spearation distance between measurements (Sekulić et al., 2020). In the 
case of kriging, a model is fitted to the semivariogram, displaying the semivariance with increasing lag 
distance between sampled points. A covariance matrix based on the estimated variogram is then used 
to calculate the weights which will be plugged into the kriging predictor. To ensure unbiased 
estimates, the weights are constrained to sum up to 1 (for the most common kriging procedures like 
ordinary kriging and its extensions). Additionally, each predicted location has an associated variance 
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which allows for a measure of uncertainty, e.g. the standard error, a local validity check that is not 
given for the other methods.  

The kriging predictor, also named BLUP (best linear unbiased predictor), can only live up to its full 
potential when the target variable is normally distributed. Non-normal data can be transformed for 
the sake of kriging but if the data exhibits non-gaussianity and has been generated by highly non-
linear processes, the estimation can be a challenging task.  

Recently, machine learning approaches, e.g., k nearest neighbours (kNN, (Altman, 1992)) and 
random forests (Breiman, 2001), have become increasingly popular for the spatial prediction of 
continuous and discrete variables (e.g. classification of land use and cover LUC) and are often used 
instead of or in combination with geostatistics (Kopczewska, 2022). They are not underpinned by rigid 
statistical assumptions (Erdogan Erten et al., 2022), showcase higher flexibility when it comes to 
incorporating and combining covariates of different types, and can maneuver complex non-linear 
relationships (Fouedjio & Klump, 2019).  

Although they make no assumption about the underlying spatial distribution of the variable, random 
forests still assume the data to be i.i.d. (independent and identically distributed, which means spatial 
autocorrelation is ignored) which is often unrealistic, even more so when there is an uneven sampling 
density. Another limitation lies in the fact that uncertainty quantification, e.g. the kriging variance in 
geostatistics, is not given for most machine learning approaches (including the classic random forest 
approach) and the algorithms do not reproduce data at the sampled locations (Erdogan Erten et al., 
2022). Lately, attempts have been made to render the random forest framework more suitable for 
spatial applications, i.e., by acknowledging spatial autocorrelation. Authors have been adding spatial 
covariates like distance buffers (Hengl et al., 2018) and the values of and distances to nearest 
neighbours (Sekulić et al., 2020). Furthermore, a spatial validation procedure of the models has been 
implemented inter alia by Ploton et. al (2020) and Meyer et al. (2018). The debate about the suitability 
of machine learning models and spatial validation techniques within the spatial realm is ongoing (Chen 
et al., 2019; Fouedjio & Klump, 2019; Meyer & Pebesma, 2022; Wadoux et al., 2021). 
 
1.3  Research goals and related questions 

The goals of this thesis are to build a spatially highly resolved model of sedimentary organic carbon 
content of a submarine canyon and its adjacent continental margin and to produce a cartographic 
representation that emphasizes the potential carbon storage capacity of submarine canyons.  

The following research questions will be answered within this framework: 
1. How accurately do different geostatistical and machine learning interpolation techniques 

predict surficial sediment TOC?  
2. How influential are different predictor variables in explaining local changes in TOC content 

within surface sediments of submarine canyons? 
3. How does geomorphological heterogeneity affect the spatial distribution of surficial 

sediment TOC content? 
4. How much TOC is sequestered in surficial sediments of the Nazaré submarine canyon in 

comparison to its adjacent continental margin? 
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2 Related work 
Numerous studies to predict and map sedimentary organic carbon contents within the marine realm 

have been conducted. These studies predict TOC from global to local scales and differ not only in the 
chosen prediction approaches but also in the resulting spatial resolution of the predicted surfaces.  

Published estimates of global surficial sediment organic carbon stocks vary a lot: they range from 
87 for the top 5 cm  (Lee et al., 2019) to 3117 Pg for the top 1 m (Atwood et al., 2020). These 
differences can not be explained solely by the fact that different reference depths were considered, 
which underlines the importance of developing adequate methods which can better constrain stocks 
of TOC (Diesing et al., 2021). 

Early attempts by Romankevič et al. (1984) and Premuzic et al. (1982) mapped surficial sediment 
TOC on a global scale but without spatially explicit estimates. They used average TOC contents for 
bigger sub areas of the world’s ocean (basins and continental margins), thus the resulting maps from 
these large-scale interpolations offer only a low-resolved overview. Distinct patterns within the 
continental margins are not extractable, but they still capture lower TOC contents in basins (< 0.5 wt. 
%) and higher contents (> 0.5 wt. %) along the continental margins (Seiter et al., 2004). Some type of 
kriging has been used to predict TOC in the South Atlantic Ocean (Mollenhauer et al., 2004), the 
Eastern Arabian shelf (Acharya & Panigrahi, 2016) and for the Global Ocean (Seiter et al., 2004). 
Surficial sediment TOC has been constrained in the Gulf of Mexico with isopletes (Escobar-Briones & 
García-Villalobos, 2009) and Neto et al. (2016) took advantage of a confirmed relationship between 
TOC content of marine sediments and seismic peak amplitude, laterally extrapolating between closely 
spaced seismic profiles.  

The use of spatially exhaustive explanatory variables (e.g., satellite data) to predict TOC contents, 
whose sampling is more time-consuming and expensive has been gaining ground within studies 
aiming to predict carbon contents in marine sediments. Lee et al. (2019) used kNN to gain insight into 
the distribution of seafloor TOC globally, while Atwood et al. (2020) utilized random forest to tackle 
the same task. Limited to local extents, Markus Diesing and colleagues have predicted organic carbon 
contents of the North-West European continental shelf (Diesing et al., 2017) and the North Sea and 
Skagerrak Strait (Diesing et al., 2021) using random forests, and quantile regression forests (QRF), 
respectively. QRF (Meinshausen, 2006) is an extension of random forests, allowing to derive 
uncertainty estimates.  

Studies focusing on the prediction of continental margin TOC are rare, and those that focus on the 
distribution of organic carbon within canyons even more so. The only published study that explicitly 
mapped the distribution of sedimentary TOC within a submarine canyon environment is from Baudin 
et al. (2017). They used the deterministic natural neighbour interpolant to derive surface TOC values 
for the Congo deep-sea fan which is fed by the Congo submarine canyon.  

Machine learning and/or geostatistical approaches have not yet been used to derive TOC contents 
within a submarine canyon, although an abundance of auxiliary variables are at our disposal, ready to 
be used as predictors in machine learning or in kriging approaches that implement the use of 
covariates other than the geographical coordinates (e.g. kriging with external drift (Delhomme, 1979)) 
to model a trend in the response variable. 

An accurate spatial model for submarine canyons and its adjacent margin would not only help to 
constrain carbon budgets on continental margins more precisely, but would ultimately help constrain 
global budgets as well, which is of uppermost importance in present times.  

 



 9 

3 Case study: The Nazaré submarine canyon 
The Nazaré Canyon (Figure 3.1) is one of three Central Portuguese submarine canyons on the 

Western Iberian continental margin. The 210 km long feature dissects the margin in an east-west 
direction from -50 m down to the Iberian abyssal plain at almost -5000 m.  Arzola et al. 2008 showed 
that upper (proximal) sections of the canyon are governed more by erosive processes, whereas lower 
(distal) sections more by depositional ones. The steep topography in the proximal canyon section 
results in an instability that can provoke intra-canyon landslides and rock avalanches. During 
earthquakes, slope failures on the shelf break and around the canyon head release impressive 
volumes of sediments that get flushed through the canyon and are deposited predominantly in the 
lower canyon section and up to the abyssal plains.  

As major pathways for land derived sediment (and therefore also organic carbon) to the deep ocean, 
the Nazaré Canyon receives material via different transport mechanisms. In summer there is 
resuspension of northern mid shelf sediments by internal wave activity and subsequent lateral 
transport towards the canyon by upwelling currents. Along-shelf transport of eroded sea cliff and 
beach material to the north and south of the canyon happens all year round. In winter, under 
downwelling conditions, fine fluvial sediment from rivers to the south of the canyon can reach its 
head. During winter floods, the nearest fluvial source, the Mondego River, can also input sediment to 
the shelf (Arzola et al., 2008).  

Higher organic carbon contents are associated with fine sediment, as observed in the Nazaré Canyon 
by Oliveira et al. (2007). Sediments of the Nazaré Canyon have consistently higher organic carbon 
content than the ones from the close slope (Kiriakoulakis et al., 2011; Masson et al., 2010; Oliveira et 
al., 2007) and the canyon itself is a preferential site for the accumulation of fine-grained sediments 
(Schmidt et al., 2001). There is also an indication that tributaries and the canyon head (around -300 
m) are permanent depocenters (areas of maximum deposition, (Oliveira et al., 2007)). 

The first attempt to constrain TOC accumulation and subsequent burial in the Nazaré Canyon 
(Masson et al., 2010) was based on an oversimplifying approach, dividing the canyon into four zones 
of distinct sedimentation rates and mean TOC content based on canyon morphology. This subdivision 
of space may hinder though derivation of accurate TOC stocks. Using the richness of site-related 
sediment cores as well as backscatter data, this thesis seeks to  constrain carbon accumulation along 
this morphologically complex canyon (Lastras et al., 2009), building upon recent studies and modelling 
this heterogeneous environment while circumnavigating sample scarcity (Atwood et al., 2020; Diesing 
et al., 2021, 2017, 2014; Jerosch, 2013; Mitchell et al., 2021).  
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Figure 3.1  O
verview

 of the study site: Isobaths w
ith corresponding depths [m

] (w
hite solid lines). 
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4 Materials and Methods 
4.1 Data acquisition and processing 
4.1.1 Surficial sediment organic carbon 

Data of marine sedimentary total organic carbon content [wt. %] for the chosen study area 
(delimited by the extent of the greatest common area of the available covariates) was queried from 
the MOSAIC database (van der Voort et al., 2021) or has been manually extracted from scientific 
publications. 

 
The available stations (Figure 4.1) stem from 16 sampling campaigns (within the period of 1997 to 

2011) and have been incorporated into at least 16 scientific publications. Most cores had been 
retrieved during meteorological spring and autumn (Figure 4.2) and using different sampling devices 
(Table 1). Figure 4.3 shows that there is no clear dependence of the sampling method on the sediment 
content at different depths, except higher contents for the top 0.5 cm with the multi corer. 

 
Table 1 Sampling devices used for core retrieval of study samples 

sampling method # of cores 

grab corer 157 

multi corer 75 

box corer 23 

push corer 6 

piston corer 1 

gravity corer 1 

Figure 4.1 Sediment core locations. Red dots represent stations where sediment cores for surface sediment organic 
carbon were retrieved.  
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Figure 4.3 TOC content with depth for different sampling methods 
 

Figure 4.2 Month of core retrieval 
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In view of the fact that upper and lower sample section depth attributes were sometimes missing, 
virtual upper and lower sample section depths were derived by adding or subtracting, respectively 
the magnitude of the average sampling interval at a location to/from the local average sample depth.  

A custom algorithm derived two datasets ( 
Table 4.2): one branch preselected all samples having a lower sample section depth <= 2 cm 

(h2sel2algo2), the other branch preselected samples with an average sample section depth of <= 2 
(h2sel1algo2) cm. Where multiple samples at a certain station remained after preselection, the TOC 
content of that station was calculated based on a weighted mean: The TOC value (respectively 
average TOC value, if replicates present) of a sample within the top 2 cm was multiplied with its 
respective sample section magnitude (in cm) which resulted in a weighted mean for each station. The 
top 2 cm as delineation for surficial was a practical decision, based on a preliminary inspection of the 
lower sample depths (of all of the samples after adding virtual section limits where needed):  most 
samples where within within a maximum lower sample section depth of 2 cm (Figure 4.4). For a 
description of the algorithm refer to  

Table 4.2 or see code in appendix A.1. 
 
 

Table 4.2 Description of algorithms for the derived datasets 

derived dataset name Description 

h2sel1algo2 Algorithm selects all samples with average sample section 
depths ≦ 2 cm, and calculated weighted averages for the 
TOC content. 	

h2sel2algo2 Algorithm selects all samples with lower sample section 
depths ≦ 2 cm, and calculates weighted averages for the 
TOC content after computation of virtual section depths 
where lower and upper sample section depths were 
missing. 

 
 

 

Figure 4.4 Histogram of lower sample section 
depths after adding virtual sample section 
limits 



 14 

4.1.2 Predictor variables 
Building upon chapter 3, factors potentially influencing the TOC content in surficial sediments in the 

study environment can be preselected: bathymetric depth and derivatives (slope, curvature, aspect, 
roughness of the surface, etc.) distance to coast (also taking into account some measure of deviation 
based on surface currents), distance to different rivers, distance to the canyon, distance along the 
canyon axis, primary productivity (and related: chlorophyll a) and speed of bottom currents. From 
general non-canyon-specific literature, it is known that bottom water temperature (Diesing et al., 
2017) and bottom water oxygen concentration (Paropkari et al., 1992) can play into the preservation 
of sedimentary organic carbon. Only a selection of covariates, already suggesting some control on the 
TOC content in surficial sediment, will be included in the thesis. The 25 potential covariates were in 
raster form, for an overview refer to Table 4.3.  

 
4.1.2.a Bathymetric depth and derivatives 

The high-resolved bathymetry raster (200m x 200m) made available by the Hydrographic Institute 
of Portugal is the same one used in the study by Masson et al. (2011). Slope and mean curvature were 
calculated using the surface parameter functions in the Spatial Analyst Toolbox within ArcGIS Pro. 
Statistical aspect and rugosity were derived using functions of the Benthic Terrain modeler toolbox 
(BTM) in ArcMap. Finally, the topographic wetness index (TWI) was computed using the SAGA Module 
Wetness Index within QGIS.  

The values of the statistical aspect were transformed using the sine (eastness) and cosine 
(northness) respectively, to prevent the problem of directions like 359° and 1° being in proximity in 
the physical world, but remote value-wise. Therefore a trained machine learning model will perform 
better if the values of north and south, respectively east and west are on divergent scales (-1,+1). 
4.1.2.b Distance covariates 

Distance to river mouths (see Figure 4.5) and to shoreline was computed with the distance 
accumulation algorithm that is implemented in ArcGIS Pro. The rivers were extracted as GeoJSON files 
from OpenStreetMap using the web-based data mining tool Overpass Turbo (overpass-turbo.eu).  

The shoreline shapefile for the distance to coast calculation, was downloaded from the World 
Vector Shorelines (WVS) database which is incorporated in the Global Self-consistent, Hierarchical, 
High-resolution Geography Database (GSHHG) (Wessel & Smith, 2017).  

For the computation of the distance to coast, taking into account the direction of the surface ocean 
currents, a horizontal factor based on a surface current direction raster (see 4.1.2.c), was defined for 
the surface accumulation function. 
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In order to obtain reliable distances, all vector data the distances were calculated to, was 

reprojected to a custom projected coordinate system, obeying the constraint of equidistance and 
being optimized for the study region (appendix A.2). 

The distances to and along the canyon axis were derived with the locate features along route tool 
within ArcGIS Pro. The canyon axis (or thalweg), acting as the route, was extracted from the 
bathymetry raster, using an algorithm that was initially developed to extract glacier basins in order to 
obtain glacier mass balances from digital elevation models. The underlying concept has been 
described by Bolch et al. (2010) and Kienholz et al. (2013) and has been refined and improved by 
Philipp Rastner as documented in Falaschi et al. (2017). In order to use this approach with the 
bathymetry, all depth values were inverted (negative values were made positive, i.e. valleys turned 
into ridges) and the algorithm derived contiguous polygons which could then be subsequently cleaned 
manually in a desktop GIS to obtain a single thalweg (Figure 4.6). The use of the generic flow direction 
and the flow accumulation functions in ArcGIS did not produce a satisfactory result, i.e. one the 
thalweg could have been extracted from.  

Figure 4.5 Mouth of rivers (blue drops) along the Central Portuguese continental margin 
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Figure 4.6 Drainage basins (white multipolygon geometry) and the manually extracted thalweg (red polyline) 

 
4.1.2.c Satellite products 

Surface ocean (top 0.5 meters) Chlorophyll a and surface ocean net primary productivity as well as 
bottom water oxygen content were obtained from the Atlantic-Iberian Biscay Irish-Ocean 
BioGeoChemistry NON ASSIMILATIVE Hindcast for the time period between 15.2.93 to the 15.2.2019. 
The data consisted of monthly averages, which were then averaged again over the chosen time period 
to obtain a single mean value. Missing raster cells at the coast were interpolated using the raster 
calculator and focal statistics, taking the mean over a circular neighbourhood. As in coastal areas, the 
gradient of the values of interest are much bigger than further apart in the open ocean, the 
interpolation procedure was repeated several times, taking a radius of only one cell each time to 
prevent smoothing out the values.  

Surface (top 5 meters, Figure 4.7) and bottom currents (Figure 4.8), as well bottom potential 
temperature were taken from the monthly averaged Global Ocean Physics Reanalysis. Data were 
averaged over the time period of 1993 to 2016. The net current was calculated on the basis of the 
eastward and northward current component that were given in this dataset, 

Bottom values were always taken as the value at the lowest depth layer, that was not being labelled 
as NA. 
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Figure 4.7 Surface current direction (blue arrows) 

 
 

 
Figure 4.8 Bottom current direction (red arrows) and the relative magnitude of the current (size of arrows) 
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Table 4.3 Data used as predictor variables in random forest and as coefficients of the linear trend model for kriging with external drift 

Covariate Spatial 
resolution  

Data source # of 
covariates 

Distance to river mouths: 
Arnoia, Douro, Lis, 
Mondego, Tornada, Vouga 

20 m openstreetmap.org 6 

Distance to mainland coast 
- Euclidian 
- Euclidian 

normalized by 
bathymetric depth 

- cost-based on 
surface current 
direction 

20 m Full (f) resolution boundaries between land and 
ocean (L1) from World Vector Shorelines (WVS) 
database within Global Self-consistent, Hierarchical, 
High-resolution Geography Database (GSHHG), 
accessed through 
https://www.ngdc.noaa.gov/mgg/shorelines/ 
 
https://resources.marine.copernicus.eu/product-
detail/GLOBAL_MULTIYEAR_PHY_001_030/DATA-
ACCESS 

3 

Distance along and to 
canyon axis 

200 m Canyon thalweg derived with a glacier basin 
algorithm used on inverted bathymetric depth values 
(based on an approach by (Falaschi et al., 2017)) 

2 

Bathymetric depth and 
derivatives 

- Slope [°] (+ 
normalized by sine 
and cosine of 
statistical aspect) 

- Sine and cosine of 
statistical aspect 

- Mean curvature [°] 
- Rugosity 

(VRM=Vector 
Ruggedness 
Measure) [0,1] 

- Topographic 
wetness index TWI 
[the higher, the 
wetter] 

200 m Bathymetry raster from the Hydrographic Institute of 
Portugal (IHP) 

7 

- Surface ocean net 
primary productivity 
(NPP) in amount of 
carbon [mg·m-3·d-1] 

- surface ocean 
chlorophyll a [mg·m-3] 

- bottom oxygen content 
[mmoles O2·m-3] 

0.083° 
(~7km at 
39° N) 

Atlantic-Iberian Biscay Irish-Ocean BioGeoChemistry 
non assimilative Hindcast 
(cmems_mod_ibi_bgc_my_0.083deg-3D_P1M-m at 
https://resources.marine.copernicus.eu/product-
detail/IBI_MULTIYEAR_BGC_005_003/INFORMATION) 

2 

bottom 
- current speed [m·s-

1] 
- potential 

temperature 

0.083° Global Ocean Physics Reanalysis 
(GLOBAL_MULTIYEAR_PHY_001_030 at 
https://resources.marine.copernicus.eu/product-
detail/GLOBAL_MULTIYEAR_PHY_001_030/DATA-
ACCESS) 

3 
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4.2 Spatial interpolation procedures 
Prediction for all the interpolation procedures was performed on a 200 m x 200 m prediction grid 

(based on the bathymetry raster). The grid nodes correspond to the cell centers of the bathymetry 
imagery raster cells and were then for mapping purposes transformed to SpatialPixels (a raster 
equivalent within the spatial “sp” objects in R). For generation of random numbers, the seed was 
always set to 42. 

 
4.2.1 Kriging with external drift 

Geostatistics considers the value of a variable of interest at a certain location (the signal S) as the 
sum of a realization of a stationary autocorrelated random process Z (with zero mean) and the 
constant mean μ of the latter. The variance of the random process can be modelled using a variogram. 

 
!(#!) = & + ((#!) 

 
As surficial sedimentary TOC (Figure 5.3 and section 5.1) shows a trend (tendentially higher TOC 

values within the canyon and lower ones on the shelf) and not a random patchy distribution, we 
cannot assume that the mean of the spatial random process is constant (which would suggest a 
stationary process), but changing. Therefore the mean can be portrayed as a deterministic trend 
component μ(xi). As there are covariates dk at our disposition we can use those to model this trend 
externally (not based on the response) in a linear regression model. The following model for 
geostatistical data with a non-stationary mean is assumed (Diggle & Ribeiro, 2007; Nussbaum et al., 
2014; Papritz, 2021): 

)(#!) = !(#!) + *! = &(#!) + ((#!) + *! =+,"(#!)-"
"

+ ((#!) +	*!  

ε is the unresolved iid error, which encompasses for instance measurement errors. 
The aim is to have minimum-variance estimates of the trend, unbiased estimates of the residual 

variogram and finally a known variance for the sum of the trend and the random variation at sites 
without ground truth. To this end Stein (1999) suggested the use of the empirical best linear unbiased 
predictor (E-BLUP, a kriging predictor) and a variogram estimated simultaneously with the regression 
model parameters by residual/restricted maximum likelihood (REML). REML estimates the variance 
components of the spatial model after having adjusted by ordinary least squares the part of the model 
containing the fixed (non-stochastic/random) effects (the drift, trend) (Montero et al., 2012). 

The residuals of the linear regression model are used to derive the variogram which describes the 
spatial variation and provides the weights for the kriging interpolator. The predicted value at a given 
point is then a weighted average of the fitted random function neighboring this point and in the end 
the trend can be added back to the predictions to get the signal. 

First a linear regression model containing all covariates was fitted, and visual analysis of a scatterplot 
matrix was used to exclude covariates showcasing skewed, narrow or outlier-heavy distributions, 
indicating they could act as leverage points. Stepwise forward and backward variable selection (based 
on the Aike Information Criterion AIC or the Bayesian information criterion BIC), as well as exhaustive 
search selected covariates for the external drift. Analysis of variance (ANOVA, not taking spatial 
autocorrelation into account) was used to compare candidate models for the external drift and Wald 
tests (taking spatial autocorrelation into account) and the AIC served to compare the candidate 
models.  
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Initial values for the variogram model parameters (e.g., range and nugget) were based on the 
inspection of the sample variogram of the linear regression residuals and then fitted simultaneously 
with the linear model for the external drift, using a gaussian (non-robust) REML estimation.  

Simultaneous estimation of the drift coefficients and the variogram parameters of the spatial 
random process was achieved with the R package georob (Papritz, 2020). The function georob outputs 
a spatial linear model which contains the coefficients of the drift and the variogram object needed for 
prediction (predict.georob).The accuracy of the spatial linear model is assessed by 10-fold cross-
validation using cv.georob. 

 
4.2.2 Forest-based regression 

Random Forests (RF) is a supervised learning algorithm that provides ensemble predictions of many 
individual decision trees (on their own being weak learners) to boost the overall predictive accuracy. 
Each CART (Classification and Regression Trees, (Breiman et al., 2017)) is made up of nodes, branches 
and terminal leaves which represent the prediction value. The best set of hyperparameters of a 
random forest is found during tuning, where for different combinations of the former, different 
forests are grown and then used to predict the value of interest of a hold-out subset of the data used 
for training. The hyperparameters achieving best values w.r.t. to a certain accuracy metric (e.g., RMSE) 
are then used for the training of the final model. When training an individual tree, an optimal covariate 
(or feature) and a threshold value for splitting are obtained at each node in a way that minimizes the 
variance. This variance minimization is achieved by bagging (bootstrap aggregating, (Breiman, 1996)) 
which additionally avoids overfitting to a certain extent: Each tree is grown from a subsample of the 
full training data, drawn at random and with replacement. The final prediction value is then an 
average of the predicted values of all decision trees in the forest. The relative importance of the 
variables within the forest can be accessed and offers the advantage of a possible investigation of 
predictor-response relationships and which factors might drive a spatial process, e.g., the controls on 
organic carbon content in marine sediment.  

Tuning of the model hyperparameters and unbiased accuracy assessment involved k-fold cross-
validation. Aiming to achieve a subdivision of the samples into different folds which well represents 
the full dataset and to always include some of the less prevalent canyon samples (84 vs 180 outside), 
the data was split into different folds based on a stratification factor (canyon, outside). The factorial 
attribute canyon was assigned to each data point when taken inside the canyon, outside if on the 
shelf, rise, slope or in the abyss outside of the canyon. As the georeferencing is often inaccurate, this 
step has not been based on the actual reported coordinates within a source paper but on the 
description of the sample site if available or using the reported water depth.  
 
4.2.2.a Classic random forest 

The classic random forest model was implemented with the ranger package (Wright & Ziegler, 2017) 
in R (2021).  

The conventional function tuneRanger in the tuneRanger package only allows for tuning the 
hyperparameters mtry, min.node.size and sample.fraction (Table 4.4), therefore the final model was 
tuned based on 5-fold flat cross-validation using an adjusted code excerpt 
(https://github.com/AleksandarSekulic/RFSI/blob/d778c2c7b65cb86177e097d565dc54e5db696705
/prcp_catalonia/4_prcp_case_study_catalonia_RK.R#L1223, lines 1223-1283) from Aleksandar 
Sekulić in combination with the function ranger of the ranger package. The full dataset was used to 
train the final model in accordance with the modelling approach promoted by the creators of H2O 
(H2O.Ai. (2020) H2o: R Interface for H2O., n.d.; H2O.Ai Docs: Cross-Validation, 2022). 
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To obtain an unbiased estimate of the model accuracy, nested (Pejović et al., 2018) 5x5 cross-
validation with a stratification (canyon, outside) (de Gruijter et al., 2015) for the outer fold was 
performed using the full dataset using random grid search (Bhat et al., 2018) based on 60 
hyperparameter combinations (Bergstra & Bengio, 2012) drawn from the tuning grid. The nested 
cross-validation was implemented with the function nestcv.train from the nestedcv R package (Lewis 
et al., 2022), the only package offering this type of validation for a ranger-type random forest model.   

One non-spatial random forest was also created based on a subselection of all the covariates. 
Misleading variables, which could lead to over-fitting, can be removed with forward feature selection 
(FFS, ffs function in R package CAST) priorly to model-building and in view to the chosen validation 
strategy (Meyer et al., 2018). Meyer and colleagues used  spatial cross-validation strategies, e.g. 
leave-location-out (LLO), which are targeted at spatio-temporal data and would be in our case (no 
temporal dimension used in data) reduced to leave-one-out (LOO) cross validation, which is 
computationally demanding and was not implemented in the frame of this project. The approach of 
preventing overfitting is still interesting and therefore FFS was used with stratified k-fold cross-
validation, the validation strategy applied during tuning of the non-spatial forest.  

 
Table 4.4 Hyperparameters for nested and flat cross-validation of the non-spatial random forest models 

hyperparameter definition 
values for ranger 
tuning grid 

values for RFSI tuning 
grid 

mtry number of variables to possibly split at in 
each node 

2 to maximum 
number of covariates 
used 

2 to maximum 
number of covariates 
used 

num.trees number of trees to be trained 500 250 

sample.fraction  fraction of observations to sample (1 for 
sampling with replacement and 0.632 for 
sampling without replacement) 
 

1 sequential values 
between 0.65 to 1 in 
steps of 0.05 

min.node.size minimal node size 2, 4, 6, 8 2, 4, 6, 8 

splitrule criterion the split at each node is based 
on (variance: minimizes variance in the 
estimated responses) 

variance variance 

n.obs number of nearest neighbors to consider 
in rfsi algorithm 

 2, 3, 4, 5, 6 

 
4.2.2.b Spatial random forest 

The spatial random forest was implemented with random forest spatial interpolation (RFSI, (Sekulić 
et al., 2020)) which is part of R package meteo (Kilibarda et al., 2014). No approach that had explicitly 
included geographical context into machine learning (e.g. with distance buffers or geographical 
coordinates as covariates) had used the values of neighbouring locations as covariates. RFSI uses the 
values and the distances at n nearest (2D Euclidian distance) neighbours as features in the model and 
adds with that the basic ingredient of kriging and the majority of the deterministic interpolation 
methods to machine learning.  

Stratified tuning was performed using the function tune.rfsi within meteo. All other steps and 
strategies used are identical to the non-spatial model, except the variable selection with FFS, which 
was only done for the non-spatial version, as rfsi is not a listed model 
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(http://topepo.github.io/caret/available-models.html) within the caret (Kuhn, 2008) package, being 
used in CAST::ffs. The nested cross-validation for an estimate of the unbiased model accuracy was 
obtained with the cv.rfsi function. RFSI calls the ranger function, is therefore identical to the classic 
RF approach except for its additional covariates. 
 
4.3 Model evaluation 

The model accuracy is evaluated upon the RMSE from the nested (for the random forest models) 
respectively flat (for the spatial linear model) cross-validation. Nested cross-validation offers the 
advantage that the entire dataset can be used for the modelling and no initial test dataset needs to 
be kept aside for independent validation at the end of the modelling procedure. Meyer et al. (2018) 
suggest a validation strategy, taking into account the spatiality of the data, whereas Wadoux et al. 
(2021) reject this and are in favour of random validation strategies. Here a stratification factor 
(canyon, outside) adds the spatial touch to the validation of the random forest models. 

Sekulić et al. (Sekulić et al., 2020) additionally suggest a nested cross-validation structure (Pejović et 
al., 2018) while Wainer and Cawley (2021) see the nesting as “overzealous” for most practical 
applications.  

The mapping accuracy was derived based on the differences between predicted values and ground 
truth samples. Due to the limited number of samples throughout the study area, an initial test/train 
split of the full dataset, with a final model derived with the training dataset and an independent 
validation using the model to predict the test dataset, was not performed, therefore we rely for the 
predictive accuracy on the fully nested cross-validation. 

 
4.4 Carbon stock of a submarine canyon 

The sedimentary carbon stock for the top 2 cm of the Nazare Canyon has been calculated by 
summation of the carbon stocks of all bathymetry raster cells (n) within the canyon. Each individual 
total cell stock (Smeaton et al., 2021) had been calculated by multiplying the planimetric area A of the 
cell of the bathymetry (cm2) with the depth of the horizon h (2 cm), the mean dry bulk density (dbd) 
of the stations (0.61 g cm-3) within the canyon and the predicted TOC content in weight percent at 
each station. The planimetric area of the canyon, i.e. taking into account the slope of the surface at 
each raster cell of the bathymetry, was obtained dividing the surface area (200 m by 200 m) by the 
cosine of the slope in radians. The reference area for the canyon was taken as the polygon from the 
Seafloor Geomorphic Features Map based on a publication of Harris et. al (2014) and summed up to 
a planimetric surface area of 3155 km2 (vs 3079 km2 surface area).  
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To allow for a better comparison of the canyon and its adjacent continental margin, the respective 

summed up surface areas of the canyon and the continental margin (full study area minus canyon 
area) were divided by their respective total organic carbon stock to obtain mean carbon stocks. 
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5 Results 
5.1 Spatiotemporal variations of total organic carbon 

Figure 5.1 and Table 5 show that the two derived datasets are hardly differing, therefore the choice 
fell upon the slightly bigger dataset h2sel1algo2.  

 
Table 5 Datasets derived by using different algorithm pre-settings 

Dataset TOC [wt. %] # samples 

 mean median range  

h2sel1algo2 1.0034	 0.8023 [0.0400, 3.9892] 264 

h2sel2algo2 1.0049 0.8045 [0.0400, 3.9892] 263 

 
 

 
 
The spatial distribution of the derived weighted mean surficial sediment organic carbon shows a 

tendency towards higher values within the canyon and its tributaries and lower values outside of the 
canyon (Figure 5.3). The two settings have their own distinct skewed and bi-modal frequency 
distributions (Figure 5.2). 

 

Figure 5.1 Density distributions of TOC content 
for the two derived datasets  
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Figure 5.2 Histogram of TOC contents in h2sel1algo2, colored with respect to the location of the data 

 

 
Figure 5.3 Spatial distribution of calculated TOC contents in the dataset h2sel1algo2 

Based on reported sediment accumulation rates (SAR) of 0.004-1.453 cm·yr-1, the top 2 cm 
integrates sediment that has accumulated within years to centuries. The slightly differing ranges of 
TOC from year to year (Figure 5.4) relfect the spatial varioation of TOC and are not a temporal signal. 

 

 
Figure 5.4 Raw (original dataset) TOC content for samples with average section depth of 2 cm 
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5.2 Modelling and prediction of surficial sediment total organic carbon 
Each prediciton approach will be discussed separately, but for better comparison, illustrating figures 

and accuracy metrics have been arranged side by side. 
 

Table 6 Model performances and predicted TOC content 

model 
final model for prediction 

 model accuracy 

 predicted TOC [wt. %] mapping accuracy 
 

RMSE [wt. %] MAE [wt. %] R2 

ranger, 
all 
features 

range: 0.120-2.832 
mean: 0.849 

rmse: 0.365 
mae: 0.229 
r2: 0.738 
 
 

0.534 
 

0.355 0.440 

ranger 
+ FFS 

0.105-2.876 
mean: 
0.932 
 

r2: 0.619 
rmse: 0.440 
mae: 0.307 
 

0.569 0.403 0.363 

RFSI 0.135-2.521 
mean: 0.895 

rmse: 0.369 
mae: 0.241 
r2: 0.732 
 

0.527 0.358 0.453 

external 
drift 
kriging 

full study area: 
1.723×10-7 - 21.645 
 
mean full study area: 
1.235 
 
canyon: 1.33×10-5 -
0.14 
 
 

rmse: 1.797 
mae: 1.141 
r2: -5.358 

0.705   

  
5.2.1 Kriging with external drift 

As kriging performs best with a normally distributed variable, TOC values were initially transformed 
using a box-cox transformation of scaled power, which reduced the skewness coefficient from 1.06 
to 0.06. As the value of H	(a parameter ensuring that the transformed value is strictly positive) could 
not be estimated from the data, the log-transform was used instead. This transform still reduced the 
skewness, with a coefficient of -0.73, but performed worse in doing so than the power transform. 
Fitting was performed at all steps using gaussian (non-robust) REML. 

 Rugosity, which was strongly skewed, and slope over the sine and cosine of the statistical aspect, 
both narrowly distributed and outlier-heavy, were excluded from the modelling of the trend surface 
(lm1).  

An initial stepwise backward selection (based on AIC) on the linear model containing all, but the 
above removed covariates, resulted in a model (lm2) which did not significantly perform better (p-
value from ANOVA 0.65) than the model prior to stepwise selection lm1. The full model was kept and 
then subjected to brute-force (exhaustive) search, meaning that all possible subsets of covariates 
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were being evaluated. The output contained candidate models from which the best models based on 
BIC (lm4) and Malow’s Cp (lm3) were retained. An omnidirectional sample variogram was then 
calculated on the residuals from lm4 using the Mathéron estimator and varying lag distances (bigger 
lag distances with increasing distance accounted for the sparse sampling in the study area). 
Subsequently, a first spatial linear model was fitted (sp1), using only the intercept for the drift model 
(fixed effects) and an exponential variogram model. Stepwise forward feature selection (within the 
scope of the covariates of lm3) on sp1, returned an updated model (sp2), which performed better 
(based on log-likelihood and AIC) than the intercept-only model (sp1). 

The covariates for the external drift in the spatial linear model were then replaced by the ones from 
lm4 (resulted in new model sp3) and the new model subjected to stepwise backward feature 
selection. Pairwise Wald tests found sp3 to be superior to sp1 and sp2. The coefficients of the drift 
and variogram parameters of the final model (spx) were therefore based on sp3 and the exponential 
variogram model replaced by a Matérn one, which seemed to fit better the sample variogram (Figure 
5.5). The smoothness I	of the stochastic process was fixed to 1.5. For an overview of the estimated 
coefficients of the trend and the parameters of the fitted variogram model refer to Table 7. The model 
accuracy was assessed by 5-fold cross-validation (Table 6).  

The linear kriging interpolator with an external trend surface ranks last in comparison with the other 
prediction approaches with respect to both the predictive accuracy as well as the mapping accuracy 
of the model. 

 
Figure 5.5 Sample variogram (black empty circles) and different fitted variogram models.  
spx is the final chosen spatial linear model with black, solid variogram model line. 

 
  



 27 
  

Figure 5.6 Prediction surfaces of TO
C. W

hite, solid lines are contours [m
] 
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Table 7 Spatial linear model used for external drift kriging predictions 

estimates value 

regression coefficients 
of drift (fixed effects) 

intercept: -0.38 
nppv: -0.04 
slope: 0.03 
IHP: -0.0003 
tornada: -0.0001 
arnoia: 0.00009 
lis: 0.00003 
NOAA_mainland: -0.00003 
 

variogram model 
parameters 

variance: 0.35 
nugget: 0.14 
scale (range of spatial 
autocorrelation): 3279 m 

 
The range of the predicted values goes largely beyond the one of the available ground truth (0.04 

to 3.99 wt. %), with a maximum predicted TOC signal of 21.65 wt. % and a minimum value in the 
decimals (1.72 × 10-7). High TOC contents are limited to areas north of the canyon (Figure 5.6a). The 
upper right corner of the study area exhibits a pattern similar to a multiple ring buffer, with maximum 
TOC contents in the center and concentrical rings of decreasing values around it. Intermediate TOC 
values can be found around the northern parts of the foot of the continental slope (FOS).  

Zooming into the canyon (clipping kriged prediction surface to Harris’ (Harris et al., 2014) canyon 
outline, Figure 5.7) and constraining the color scale to an upper limit of 0.05 wt. % allows to distinguish 
more spatial variation by eye. Overall, predicted canyon TOC contents are higher with increasing 
distance from the canyon head and as well along the canyon flanks.  

 
Figure 5.7 External drift kriging predictions clipped to the Harris outline of the Nazaré Canyon. White, solid line is the canyon thalweg 
(axis). 

 
The model overestimates TOC content mostly where real TOC content is low (< 1wt. %), but 

underestimates without discrimination low and high TOC contents (Figure 5.8a). Predicted values 
inside the canyon are always underestimating the observed values. The residuals are spatially 
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structured with only negative values inside the canyon and its tributaries and positive values at the 
northern border of the study area (Figure 5.11a). The kriging standard error as an estimate for 
prediction uncertainty is highest at the coast south to the canyon and then decreases steadily towards 
the canyon and beyond, before increasing again towards the ring buffer like structure with the highest 
predicted TOC contents (Figure 5.9).  

  
Figure 5.8 Observed versus predicted TOC content (black crosses for locations outside the canyon, colored crosses for locations inside 
the canyon) with unity line (black, solid line). Observed TOC refers to the derived weighted average TOC contents at each station and 
not the raw measurement data.  

 

 
Figure 5.9 Standard error of the external drift kriging predictions with canyon axis (white solid line). 
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5.2.2 Classic random forest 
5.2.2.a All covariates 

The full ranger models accuracy comes second amongst all model accuracies, but the model 
obtained the best mapping accuracy (RMSE= 0.365 wt. %). The model accuracy amounts to an RMSE 
of 0.534 wt. % almost as good as the RFSI model (RMSE=0.527 wt. %). The most important feature in 
the forest is the distance to the canyon axis, followed by the distance to the mainland normalized by 
bathymetric depth and then the rugosity of the terrain. The relative importance (adding up to 100%) 
of all features in the model are shown in Figure 5.10.  

Predicted surficial sediment TOC across the study area (Figure 5.6b) is spatially variable and 
highlights clearly the  canyon. Highest contents are mapped within the latter and its tributaries. 
Intermediate values are found within a fan-shaped area, spreading from the canyon head and 
becoming larger towards the abyss. Along the slope, the mapped TOC contents seem to emphasize 
gully-like structures. Linear artefacts are present on the northern side of the canyon. 

Around 44% of the variance in TOC contents could be explained by the model (R2=0.44). Where the 
ground truth organic carbon content was low (< 1 wt. %), there was tendentially an overestimation of 
predicted values, with increasing observed values the underestimation increases as well (Figure 5.8b). 
Underestimation of high observed values are predominantly in-canyon samples, whereas 
underestimation of lower observed values, are mostly samples of the adjacent margin. Biggest 
absolute residuals are found within the canyon and smaller ones on the margin, but there is no clear 
pattern hinting at a systematic structure (Figure 5.11b). 

 
Figure 5.10 Variable importance of the predictor variables indicated by the classic random forest model, using all available covariates. 
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  Figure 5.11 Spatial distribution of residuals (predicted value m
inus observed value) 
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5.2.2.b Forward selected covariates 
Forward feature selection removed 19 of the initial 25 covariates. Rugosity and slope over the sine 

of the statistical aspect were deemed most important, the remainder of the model features equally 
dispute their rank (Figure 5.12). The model performs markedly worse (RMSE=0.569 wt.%) than the 
non-spatial random forest with all covariates. Only 36% (R2=0.363) of the variation in TOC can be 
explained by the model. High TOC content is predicted (Figure 5.6c) on the upper part of the canyon 
flanks within the middle canyon course and the tributary channels. Features along the continental 
slope (gullies and rills) as well as the shelf break are being traced by the mapped predictions. Likewise, 
ridges stand out. Low TOC predictions are found mostly along the coast, with lowest values north of 
the canyon and locally on parts of the shelf break north of the canyon, around 40 degrees latitude. 
An abrupt change from low, nearshore values to intermediate TOC values offshore results in a visual 
artefact, a linear feature discontinuously dividing space. 

The residual distribution (Figure 5.11c) is similar distribution to the one of the other ranger model, 
but with some more pronounced negative values around the canyon head, which can also be captured 
in the scatterplot (Figure 5.8c) where the spread around the 1:1 line is bigger in both canyon and 
outside points.  

 
Figure 5.12 Variable importance of the predictor variables indicated by the classic random forest model, using only covariates selected 
by forward feature selection. 
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5.2.3 Spatial random forest 
The random forest spatial interpolation performs better than the full ranger model, with a slightly 

smaller RMSE (0.527 wt. %, Table 6). 45% (R2=0.453) of the variation in measured TOC could be 
captured by the model. The most important feature is, as in the other random forest models, the 
distance to the canyon axis, closely followed by the TOC value at the nearest location. Among the 
most important covariates (Figure 5.13) figure as well distance to the shoreline normalized by depth, 
rugosity of the terrain and the TOC content of the second closest location. 

Predicted TOC values are high within the canyon, as well as in a hexagon-shaped feature reaching 
from the lower canyon course to the abyss (Figure 5.6d). Intermediate TOC values can be found north 
of the canyon at the margin of the study area and in an elongated feature on the middle shelf. Lower 
values are predominantly near the coast and at the northern shelf break. Polygon-like artefacts can 
also be found on the southern shelf next to a tributary channel of the canyon. 

Observed versus predicted TOC values (Figure 5.8d) paint a pattern similar to the one from the non-
spatial random forest model with all covariates.  

The residuals seem to be distributed randomly with positive and negative ones within the canyon 
as well as on the adjacent shelf and slope (Figure 5.11d).  

 
 

 
Figure 5.13 Variable importance of the predictor variables indicated by the spatial random forest model (RFSI), using all available 
covariates.
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5.2.4 Areas of enhanced differences 
Subtracting prediction surfaces from one another and examining the absolute differences allows for 

more immediate spatial comparison of the different random forest models. Enhanced differences 
between the two ranger models (Figure 5.14a) can be found in the middle and lower course of the 
canyon, as well as along the shelf break and to some extent where the sampling is scarce. 

Contrasts between the full ranger model and the RFSI model (Figure 5.14b) are less pronounced 
than in between the ranger models. Biggest differences are found within the canyon and in the 
hexagon-like shaped area, an artefact of the RFSI model.  

Comparing prediction surfaces of the ranger with preselected covariates and the spatial random 
forest model (Figure 5.14c), high deviations can be detected along the shelf break, ridges and gullies, 
as well as within the area delineated by the hexagon artefact. Small differences are found on parts of 
the northern, well-sampled shelf and the scarcely sampled southern one. 

 
5.2.5 Carbon stock of the Nazaré submarine canyon 

The biggest carbon stock for the surficial 2 cm and over the slope corrected study area has been 
calculated based on the predictions of the full ranger model (0.48 Tg), which is the model with the 
second-best model accuracy. The most accurate model (RFSI) obtains a slightly smaller stock with 0.47 
Tg. The ranger model based on a forward feature selection comes closely after with a stock of 0.46 
Tg. For a breakdwon of the stock values refer to Table 8. 

 
Table 8 Top 2 cm total and mean organic carbon stocks 

 total carbon stock [Tg = 1012 g] 
mean carbon stock per unit 

area [g·m-2]  

model canyon outside total canyon outside 

ranger, all 
features 

0.48 
 

1.95 2.43 
 

153 
 
 

96 
 
 

ranger + 
FFS 

0.46 
 
 

2.21 2.67 
 
 

146 
 
 

109 
 
 

RFSI 0.47 
 
 

2.09 2.56 
 
 

151 
 
 

103 
 
 

external 
drift kriging 

0.02 
 
 

3.49 3.52 
 
 

9 
 
 

170 
 
 

 
 

  



 35 

 
  

Figure 5.14 Absolute differences betw
een the prediction surfaces of the random

 forest m
odels.  

W
hite, solid line is canyon thalw
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6 Discussion 
6.1 Predicting surficial sediment TOC in a heterogeneous setting 

Different interpolation methods to predict sedimentary organic carbon within a submarine canyon 
and the adjacent continental margin have been applied. The results revealed the potential of machine 
learning for spatial prediction in continental margin settings incised by a submarine canyon. All three 
random forest models (RMSE between 0.527 and 0.569 wt. %) performed better than kriging with 
external drift (RMSE=0.705), and the discrepancy might have been even bigger if the spatial linear 
model had been subjected to nested cross-validation as well to assess its goodness-of-fit (Pejović et 
al., 2018). Within the random forest models, random forest spatial interpolation (RFSI) performed 
best, closely followed by the classic ranger model using all the available covariates. The addition of 
spatial covariates like the distances to closest neighours and the neighbouring TOC values only slightly 
improved the model accuracy. Visually, all three RF models, show geometrical artefacts, whereby the 
most prominent one in RFSI (hexagon) seems to stem from the neighbouring points function which 
will create sharp gradients if the sampling density is low (or distances between two stations too big). 
The artefacts in the non-spatial RF approaches show a step-like structure this is mostly pronounced 
in the reduced covariates ranger model along the coast. 

The random forest which was trained on a subselection of the available covariates had the lowest 
predictive accuracy of all three forest models and low explained variance (36%), which could be due 
to irrelevant highly ranked predictor variables. The forward feature selection was applied once and 
could have perhaps selected more relevant covariates if applied many times and then using a majority 
vote to delineate the n most important features (with n being the average number of chosen 
covariates). Inspecting the density distributions of the predicted TOC contents (Figure 6.1) and the 
ground truth (serving as training data for the RF and to derive the linear regression model for the drift 
in kriging), the non-spatial RF based on forward feature selection appears to predict most frequently 
the mean, acting partially like a null model (a null model (intercept-only model) would systematicaly 
predict the mean and is thought to perform worse than any model with predictors (Ploton et al., 
2020)). This could explain its diminished performance with respect to the other RF models. 

 

 
Figure 6.1 TOC content density distributions of full study area prediction surfaces and the ground truth data. 

 
External drift kriging had the lowest predictive accuracy of all approaches and produced a visually 

very imbalanced representation of predicted TOC. Exploration of the canyon only prediction (Figure 
5.7) revealed a pattern suggesting highest TOC contents in the distal canyon. De Stigter et al. (2007) 
suggested a focused sediment deposition in the middle canyon and flushing events triggered by 
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turbidity currents and reaching the end of the canyon, occuring on centennial or longer timescales 
only (not relevant for the scope of this study), there is therefore no physical reason that could partially 
explain the kriging predictions. 

The kriging residuals are the the only ones that show a spatial structure, i.e. no random distribution. 
This spatial dependence among the residuals and the inherent non-stationarity of the regression 
coefficients could not be prevented although the variogram model was fitted based on exploration of 
the residual sample variogram (Finley, 2011). To potentially improve the kriging approach, a 
directional variogram model could be modelled. The lack of spatial structure in the RF model can be 
seen as proof that the modelling account for the spatial autocorrelation of the residuals. 

Finally, the models accuracy is based on the models ability to predict TOC for the full study area, 
which was by default set to the greatest common area of all the covariates, being constrained by the 
locally available bathymetry raster. If a smaller subarea, e.g. the extent (rectangular bounding box of 
canyon) with a small buffer would have been chosen as study area, the predictive accuracy might 
have been better as parts of scarcely sampled areas of the shelf and the abyss would have been 
excluded. 

 
6.2 Potentially important factors influencing the distribution of TOC 

In the best performing model (random forest spatial interpolation) distance to the canyon axis, TOC 
content of the two closest samples, distance to mainland normalized by depth and rugosity identified 
as key variables in predicting surficial sediment TOC. In the slightly less accurate full ranger model, 
distance to the canyon axis ranked as within the RFSI first and was then closely followed by the 
normalized distance to the mainland, rugosity and bathymetric depth. Comparing those predictors to 
ones being used in global TOC prediction attempts we can see that the distance to the coast plays a 
role as well in the study by Atwood et al.(2020), but ranks a lot lower than chlorophyll a,  which in the 
RFSI and the full ranger model has very low importance. The important role of distance to shoreline 
was also shown in a modelling study for the North-West European continental shelf (Diesing et al., 
2017) and can be explained by its role as a proxy for input of potentially organic terrestrial material. 
Rugosity ranks in all three RF models within the first 5, in the FFS ranger even on top. The importance 
of surface roughness for the presence of cold water corals in a submarine canyon has been shown for 
the Whittard canyon in the North-East Atlantic (Pearman et al., 2020) and in general (Guinan et al., 
2009). Cold water corals also reside in the Nazaré Canyon (Tyler et al., 2009) and offer a potential 
habitat to a variety of species whose remnants will also provide to the sequestration of organic carbon 
on the seafloor.  

The distance to the mainland normalized by depth ranks higher than the distance and depth 
covariates alone. As this ratio captures how quickly the bathymetric depth is increasing starting at the 
shore line (0 m) it can hint at spots where terrestrial carbon  can be potentially efficiently transported 
into depth without loosing too much during lateral transport from the shoreline.  

Of all the six rivers considered, Tornada ranks with respect to the other rivers in all RF models highest 
and has also the biggest coefficient amongst all rivers in the drift regression model used for kriging. 
The Tornada river mouth lies closest to the canyon head, is thought to be not important though for 
sediment input into the Nazaré Canyon, as the important biotite fraction in canyon sediments 
suggests input from more northern rivers like the Douro (Cascalho, 2019). The surface currents (Figure 
4.7) also suggest a net southward transport along the coast. But as correlation does not imply 
causality, the variable importance in RF does not have to be interpreted in a causal manner, as it has 
been proven that meaningless predictors (for instance photographies of faces) can predict the spatial 
distribution of an environmental property (Behrens & Viscarra Rossel, 2020). 
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Inside the RFSI model, the distance to the second closest station ranked higher in the variable 
importance than the distance to the closest station, which seems counterintuitive considering Toblers 
first law stating that nearer things are more similar than distant things. An explanation to the models 
behaviour in this heterogeneous setting could be the fact that the rfsi algorithm uses 2D Euclidian 
distance to determine n nearest neighbours of a certain point in space. If that said point is now in plan 
view only 50 meters apart from another point, but is situated on the edge of the canyon and its 
neighbouring point at the foot of a canyon wall 200 m below, there is little chance that the point 
laying below would have had an influence on the TOC content of the upper location. 

Bottom water temperature and bottom water oxygen content which are known to influence the 
content of surface sediments, are not labelled as important in any of the models. 

 
6.3 Effect of geomorphological heterogeneity on local OC distribution 

Based on the two most accurate models (RFSI and full ranger) some tendencies when it comes to 
sites of high organic carbon content could be identified. The canyon thalweg and flanks seem to be 
hotspots of preserved organic carbon, as well as the full length of the shelf break and upper slope. 
The organc carbon enriched hexagon shape in the RFSI predictions will be ignored as this seems to be 
an artefact. 

Areas of maximum TOC content in the RFSI and full ranger model (Figure 6.2) match areas of highest 
mapped sedimentation rates from Masson et al. (Figure 6.3). Masson et al. could infere though only 
a weak correlation between sediment accumulation rates and OC content of surficial sediments. This 
is surprizing as the preservation of OC «is believed to be strongly influenced by exposure time to 
oxygenated water, which should be related to sedimentation rate» (Masson (2010) after Hartnett et  
al. (1998)). If this observation here is purely coincidental would have to be tested with renewed 
sampling at these predicted hotspot locations and analysis of local sedimentation rates.  

 

 
Figure 6.2 Prediction surfces of the RFSI model (left) and the full ranger model (right) with focus box (white outline) and thalweg (white 
line). 
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Figure 6.3 OC contents of surface sediments (black points) with color-coded sedimentation rates and thalweg (pink line). Black box 
added for comparison. Adapted from Efficient burial of carbon in a submarine canyon by D.G. Masson et al., Geology, 38(9), 831–834. 

 
6.4 Organic carbon stock of a submarine canyon 

The highest in-canyon stock has been predicted with the full ranger model, while the prediction 
surface obtained with external drift kriging has a stock of only 4% of the size of the one from the 
former. Although the kriging method predicted extremely high TOC values, the total study area stock 
is only 44% bigger than the smallest total stock (from the full ranger model). 

According to the best performing model (RFSI), the Nazaré Canyon can store 0.47 Tg organic carbon 
in the top 2 cm of its surficial sediment layer. With an organic carbon density of 151 g·m-2 it stores 
47% more OC in the top 2 cm than the adjacent continental margin. The canyon surface area makes 
up around 13% of the full study area. If the increased organic carbon storage of canyon sediments is 
not accounted for, 13% of the study area would be underestimated (by over 50%) when it comes to 
its surficial organic carbon content. On a global scale, with potentially up to 10% of continental margin 
area incised by submarine canyons, this would amount to considerable deviations from the real 
stocks. 

 
6.5 Limitations 

A spatial modelling study is dependent on appropriately georeferenced ground truth data. If the 
positional error is bigger than the spatial resolution of the prediction grid, the predicted value for a 
certain location might be not representative for the prevailing spatial phenomena. This is even more 
so a problem in a heterogeneous continental margin setting where small errors  can position a sample 
either inside the canyon, e.g. on a terrace, or on its ridge. Depending on the location the sampled 
sediment might have been exposed to drastically different environments that could eventually be 
captured in corresponding covariate values if extracted at the exact position. 

The resolution of prediction grid for the RF and the external drift kriging was set to 200 m × 200 m, 
which corresponds to the resolution of the bathimetry raster. As the covariates used differ in their 
original spatial resolution (see Table 4.3), they experienced upsampling (were converted to a higher 
spatial resolution) or downsampling (conversion to a lower spatial resolution) when extracted to the 
prediction grid. The bias introduced when resampling to a lower resolution (e.g. from the distance 
accumulation rasters for the river mouths at 20 m × 20 m) is smaller than the other way round. 
Upsampling an assumption regarding the spatial evolution of a variable at finer scales, which might 
be not captured by just subdividing a grid cell into equal valued smaller ones. The interpolation of 
missing coastal raster cells in the raster data of inter alia the net primary productivity raster introduces 



 40 

bias as well as the mean over a circular neighbourhood might not reproduce a potentially strong 
gradient in the phenomenon. Aggregation did not only happen on a spatial scale but as well on a 
temporal one when averaging monthly mean values over the available time range of the processed 
satellite imagery data for certain covariates.  

Another issue is the change of support (Gelfand, 2001). The ground truth data is on point support, 
but the predicted values are then displayed as a raster (SpatialPixelsDataFrame), i.e. on areal support 
(predictions have still been made at point support but subsequently been extended to raster cells in 
order to create a gapless surface). The prediciton grid nodes where then considered as the cell centers 
of the resulting raster cells. 

For the calculation of the organic carbon stock a mean dry bulk density (0.61 g cm-3) derived from a 
5 sample locations (where this attribute was given) was used for the full study area. As this quantity 
is varying within the study area from 0.58 to 0.66, it can be assumed that the effect of this mean value 
over the whole area can be neglected. 
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7 Conclusions and Outlook 
In this study, different approaches to predict surficial sediment TOC were put to test in a highly 

heterogeneous setting. Random forest models surpassed the predictive accuracy of the geostatistical 
model (RMSE= 0.705 wt.%) by far with a RMSE of 0.527 to 0.569 wt.% and up to 45% explained 
variance. RF models therefore constitute a valid method to predict TOC contents in surface sediments 
of continental margin systems with incising submarine canyons. To determine the validity and 
robustness of the approach, additional sampling campaigns would have to be undertaken to compare 
the predicted values to the ground truth in areas where no sampling had been conducted previously.  

To better constrain the spatial limits of predictability, the concept of the area of applicability (AOA) 
by Meyer et. al. (2021) could be applied to infere how far and where the random forest models are 
able to predict, based on a given set of spatial covariates. Additionally a more informed use of the 
forward feature selection (proposed by Meyer et al. (2018)) might effectively reduce the number of 
irrelevant covariates. For this means, random forest spatial interpolation would need to be added to 
allowed models within the caret package. 

The algorithm of the best performing model (RFSI) could be extended, taking into account the 
configuration of the sampled station and accounting for abrupt landscape evolution, by calculating 
3D Euclidian distance as well as query a 3D distance matrix with the respective water depths of the 
sampled stations. This way only stations would be included as neighbours, if they were suspected to 
be influential for a location in question, meaning being closer and higher up. But, as there is potentially 
also up-canyon flow (de Stigter et al., 2011) this would have to be considered as well, by adding a 
preferential current direction through all depths based on modelled ocean currents taking into 
account bathymetry (e.g. the Regional Ocean Modeling Sytem (ROMS)). To improve the kriging model 
and obtain a real measure of how much better a forest model could predict, a directional variogram 
could be modelled to take into account any anisotropy in the spatial variation.  

Finally, to extend the findings of this study, these non-spatial and spatial (rfsi) machine learning 
approaches need to be applied to different margin canyon systems in order to see how the models 
using the same covariates would perform in another location. 

The present study showed the potential of machine learning in spatial prediction of surficial 
sediment TOC in a submarine canyon and its adjacent continental margin and potential factors 
influencing the distribution of the latter. We indentified preferential areas of higher TOC contents and 
identified the potential OC storage character of Nazaré Canyon (up to 0.48 Tg). Submarine canyons 
need therefore be accounted for in carbon stocks of continental margin systems.  
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Code  
A.1 Computation of virtual sample section depths and derivation of aggregated mean TOC content of a station 

1. library(tidyverse) 
2. setwd("~/Documents/ESS/ESSMaster/MA_Thesis/TOC_and_covariates") 
3.   
4. # load MOSAIC files 
5. locations <- read.csv("nazare_canyon_cores.csv", sep = ",", 
6.                       stringsAsFactors = FALSE) 
7. core_analyses <- read.csv("nazare_canyon_core_analyses.csv", 
8.                           sep = ",", stringsAsFactors = FALSE) 
9. sample_analyses <- read.csv("nazare_canyon_sample_analyses.csv", 
10.                             sep = ",", stringsAsFactors = FALSE) 
11. #choice of preselection mode 
12. #1: selects samples with average_cm <=h 
13. #2: selects samples by lower_cm <=h (after computation of virtual section depths) 
14.   
15. # how should toc_station value be computated 
16. #1: simple mean TOC 
17. #2: weighted mean TOC (corrected version) 
18. #3: ancient algo (nor correct I think) 
19.    
20. sel<- 2 # type 1 or 2 (selection of samples) 
21. algo <- 1 #type 1,2 or 3 
22. h <- 2 #chosen depth horizon (for "surficial") 
23.   
24. #selection of samples 
25. if(sel==1){ #algo 1 is executed: elects samples with average_cm <=h 
26.   print("selection 1")  
27.    
28.   # get subset of cores that have a TOC value and average_cm smaller than maximum surficial sediment 

depth 
29.   subset1 <- filter(sample_analyses, average_cm <=h & toc !="") 
30.    
31.   #get numnber of to be expected unique cores/stations 
32.   unique_cores <- length(unique(subset1$core_id)) 
33.    
34.   #group by sample_id 
35.   #if there is a replicate value: take the mean value of the replicates (same sample ID=same section 

depth) 
36.   subset2 <- subset1 %>%  
37.     group_by(sample_id) %>% # group by sample ID 
38.     mutate(mean_repl=case_when(n()>1~sum(toc)/n(), n()<=1~toc)) #adds new column/attribute 

"mean_repl" 
39.    
40.   #get rid of sample replicates 
41.   no_replicates <- filter(subset2, replicate == 1) 
42.    
43.   #calculate average sample increments (to derive virtual section limits later) 
44.   no_replicates1 <- no_replicates %>%  
45.     group_by(core_id) %>% # group by core ID 
46.     arrange(average_cm) %>% 
47.     mutate(space = average_cm-lag(average_cm)) %>% 
48.     mutate(total_space=sum(space, na.rm=TRUE)) 
49.    
50.   no_replicates2 <- no_replicates1 %>%  
51.     group_by(core_id) %>% # group by core ID 
52.     mutate(samples_per_core=n()) 
53.    
54.   #add new column to df with mean sampling increments 
55.   no_replicates2$mean_space=no_replicates2$total_space/no_replicates2$samples_per_core #lags differ -

1 from numbers of core 
56.   
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57.   #flag the cores/samples that had been given a virtual upper and lower section depth 
58.   no_replicates2 <- no_replicates2 %>% #  can be twice the same name 
59.     mutate(virtual_horizons =if_else(is.na(upper_cm), "virtual", "original")) 
60.   
61.   virtuals <- length(which(no_replicates2$virtual_horizons == "virtual")) 
62.    
63.   #if only average_cm given, upper and lower will be derived 
64.   no_replicates2$upper_cm = ifelse(is.na(no_replicates2$upper_cm) & (no_replicates2$average_cm -  
65.                                                                        no_replicates2$mean_space >= 

0) , 
66.                                    no_replicates2$average_cm - no_replicates2$mean_space, 
67.                                    ifelse(is.na(no_replicates2$lower_cm) & (no_replicates2$average_cm 

-  
68.                                                                               no_replicates2$mean_spa

ce < 0), 0, #this prevents negative values 
69.                                           no_replicates2$upper_cm)) 
70.    
71.   no_replicates2$lower_cm=ifelse(is.na(no_replicates2$lower_cm),  
72.                                  no_replicates2$average_cm + no_replicates2$mean_space,  
73.                                  no_replicates2$lower_cm) 
74.    
75.   #add section depth magnitude to dataframe 
76.   no_replicates2$depth_fac=no_replicates2$lower_cm-no_replicates2$upper_cm 
77.    
78.   selecao <- no_replicates2 
79.    
80. } else { 
81.   print("selection 2") # I chose algo 2 : selects samples by lower_cm <=h (after computation of 

virtual section depths) 
82.    
83.   subset1 <- filter(sample_analyses, toc!="") # samples with a non-empty TOC attribute 
84.    
85.   #get numnber of to be expected unique cores 
86.   unique_cores <- length(unique(subset1$core_id)) 
87.    
88.   #group by sample_id 
89.   #if there is a replicate value: take the mean  
90.   #value of the replicates (same sample ID=same section depth) 
91.   subset2 <- subset1 %>%  
92.     group_by(sample_id) %>% # group by sample ID 
93.     mutate(mean_repl=case_when(n()>1~sum(toc)/n(), n()<=1~toc)) 
94.    
95.   #get rid of sample replicates 
96.   no_replicates <- filter(subset2, replicate == 1) 
97.    
98.   #calculate average sample increments (to derive virtual section limits later) 
99.   no_replicates1 <- no_replicates %>% # needs to be stored in new dataframe otherwise doesn't work 

(no clue why) 
100.     group_by(core_id) %>% # group by core ID 
101.     arrange(average_cm) %>% 
102.     mutate(space = average_cm-lag(average_cm)) %>%# works 
103.     mutate(total_space=sum(space, na.rm=TRUE)) 
104.    
105.   no_replicates2 <- no_replicates1 %>%  
106.     group_by(core_id) %>% # group by core ID 
107.     mutate(samples_per_core=n()) 
108.    
109.   #add new column to df with mean space 
110.   no_replicates2$mean_space=no_replicates2$total_space/no_replicates2$samples_per_core #lags differ -

1 from numbers of core 
111.    
112.   #flag the cores/samples that had been given a virtual upper and lower section depth 
113.   no_replicates2 <- no_replicates2 %>% #  can be twice the same name 
114.     mutate(virtual_horizons =if_else(is.na(upper_cm), "virtual", "original")) 
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115.    
116.   virtuals <- length(which(no_replicates2$virtual_horizons == "virtual")) #no uf virtual limit 

samples 
117.    
118.   #if only average_cm given, upper_cm and lower_cm will be derived 
119.   no_replicates2$upper_cm = ifelse(is.na(no_replicates2$upper_cm) & (no_replicates2$average_cm -  
120.                                                                        no_replicates2$mean_space >= 

0) , 
121.                                    no_replicates2$average_cm - no_replicates2$mean_space, 
122.                                    ifelse(is.na(no_replicates2$lower_cm) & (no_replicates2$average_cm 

-  
123.                                                                               no_replicates2$mean_spa

ce < 0), 0, #this prevents negative values 
124.                                           no_replicates2$upper_cm)) 
125.    
126.   no_replicates2$lower_cm=ifelse(is.na(no_replicates2$lower_cm),  
127.                                  no_replicates2$average_cm + no_replicates2$mean_space,  
128.                                  no_replicates2$lower_cm) 
129.    
130.   #add section depth magnitude to dataframe 
131.   no_replicates2$depth_fac=no_replicates2$lower_cm-no_replicates2$upper_cm 
132.    
133.   # get subset of cores that have TOC attribute and have lower_cm smaller than maximum surficial 

sediment depth 
134.   selecao <- filter(no_replicates2, lower_cm <=h) 
135.    
136. } #end of sample selection loop 
137.    
138. #toc_station  
139. if (algo==1) {  
140.   print("algo1: simple mean") 
141.   # simple mean for toc_station 
142.   no_replicates3 <- selecao %>%  
143.     group_by(core_id) %>% # group by core ID 
144.     mutate(toc_station=case_when(samples_per_core==1~toc, #if there is only one sample it just takes 

its TOC value 
145.                                  samples_per_core>1~(sum(mean_repl)/samples_per_core)))  %>% # 

#otherwise weighted mean TOC value 
146.     mutate(max_toc_stat = max(toc, na.rm=TRUE)) %>% #maximum toc at one station 
147.     mutate(mean_average_cm=mean(average_cm))%>% 
148.      
149.     #control to avoid mean TOC being bigger than biggest toc values of a certain station 
150.     mutate(toc_station=case_when(toc_station > max_toc_stat~max_toc_stat, TRUE ~ toc_station)) 
151.    
152.     #check if there is no NAs in toc_station 
153.     t <- filter(no_replicates3, is.na(toc_station)) 
154.     if (length(t[t == TRUE]) > 0) { 
155.       print('NAs in toc_station!') 
156.       print(length(t)) 
157.       break 
158.     } 
159.   
160.   
161.   
162.   
163.    
164.   } else if (algo==2) { 
165.   print("algo2: weighted mean") 
166.   # weighted mean station TOC 
167.   no_replicates3 <- selecao %>%  
168.     group_by(core_id) %>% # group by core ID 
169.     mutate(toc_station=case_when(samples_per_core==1~toc, #if there is only one sample it just takes 

its TOC value 
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170.                                  samples_per_core>1~sum(mean_repl*depth_fac)/sum(depth_fac)))  %>% # 
#otherwise weighted mean TOC value 

171.     mutate(max_toc_stat = max(toc, na.rm=TRUE)) %>% #maximum toc at one station 
172.     mutate(mean_average_cm=mean(average_cm))%>% 
173.      
174.     #control to avoid mean TOC being bigger than biggest toc values of a certain station 
175.     mutate(toc_station=case_when(toc_station > max_toc_stat~max_toc_stat, TRUE ~ toc_station)) 
176.     # mutate(toc_station=case_when(toc_station > max_toc_stat~max_toc_stat, toc_station <= 

max_toc_stat~toc_station)) 
177.    
178.     #check if there is no NAs in toc_station 
179.     t <- filter(no_replicates3, is.na(toc_station)) 
180.     if (length(t[t == TRUE]) > 0) { 
181.       print('NAs in toc_station!') 
182.       print(length(t)) 
183.       break 
184.     } 
185.      
186.   } else { 
187.   print("algo3: ancient weighted mean (erroneous") 
188.   # weighted mean station TOC 
189.   no_replicates3 <- selecao %>%  
190.     group_by(core_id) %>% # group by core ID 
191.     mutate(toc_station=case_when(samples_per_core==1~toc, #if there is only one sample it just takes 

its TOC value 
192.                                  samples_per_core>1~sum(mean_repl*depth_fac)/samples_per_core))  %>% 

# #otherwise weighted mean TOC value 
193.     mutate(max_toc_stat = max(toc, na.rm=TRUE)) %>% #maximum toc at one station 
194.     mutate(mean_average_cm=mean(average_cm))%>% 
195.        
196.     #control to avoid mean TOC being bigger than biggest toc values of a certain station 
197.     mutate(toc_station=case_when(toc_station > max_toc_stat~max_toc_stat, TRUE ~ toc_station)) 
198.    
199.     #check if there is no NAs in toc_station 
200.     t <- filter(no_replicates3, is.na(toc_station)) 
201.     if (length(t[t == TRUE]) > 0) { 
202.       print('NAs in toc_station!') 
203.       print(length(t)) 
204.       break 
205.     } 
206. } #end of toc_station computation loop 
207.      
208.   
209. #only keep one per core!!/station! 
210. no_replicates4 <- no_replicates3[!duplicated(no_replicates3$core_id), ]  
211.   
212. #check if we get the to be expected amount of cores in the end 
213. if (nrow(no_replicates4)!=unique_cores) { 
214.   print('number of cores in output file differs from expected unique cores') 
215.   break 
216. } 
217.   
218. #add row id 
219. no_replicates4$ID <- seq.int(nrow(no_replicates4)) 
220.   
221. #join the dataframe with the locations dataframe for geomorph setting and sampling method 
222. no_replicates4.1 <- left_join(no_replicates4, locations, by="core_id") 
223.   
224. # # exclude columns not needed as otherwise problems with shapefile creation 
225. no_replicates5<- no_replicates4.1[, c('ID','latitude.x', 'longitude.x','depth_m', 
226.                                     'core_id','toc_station','depth_fac','mean_repl', 
227.                                     'mean_gs', 'material_analyzed_x', 'mean_average_cm', 
228.                                     'average_cm','upper_cm', 'lower_cm', 
229.                                     'virtual_horizons', 'samples_per_core','sampling_method_type',  
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230.                                     'geomorphological_site.x')] 
231. #to compare different selection methods and toc computations later 
232. stringname <- paste("h", toString(h), "_sel", toString(sel),"_",  
233.                     "algo",toString(algo), collapse = NULL, sep="") #for later when comparing 

different algo outputs 
234. x <- toString(stringname)  
235. assign(toString(x),no_replicates5) 
236. meantoc <- mean(no_replicates5$toc_station) #mean toc_station 
237. meantocstation <- paste("h", toString(h), "_sel", toString(sel),"_", "algo",toString(algo),"_",  
238.                         "avg_toc_st",sep="",  
239.                         collapse=NULL) #for later when comparing different algo outputs 
240. y <-toString(meantocstation)  
241. assign(toString(y),meantoc) 
242.   
243. #write csv file to be opened in a GIS interface 
244. write.csv(no_replicates5, 

paste0("/Users/aline_w/Dropbox/file_swap_thesis/input/cleaned_data_horizon",h,  
245.                                  "_sel", sel,"_algo", algo, "_", nrow(no_replicates4),".csv"), 

row.names=FALSE) 
246.   
247. #graphical overview stats 
248. plotty <- ggplot(no_replicates3, aes(x=toc_station)) +  
249.   geom_histogram(bins=30, aes(y=..density..), color="#e9ecef", alpha=0.6, position = 'identity') + 
250.   geom_density(alpha=.2,linetype="dashed") + 
251.   geom_vline(xintercept = mean(no_replicates3$toc_station),        # Add line for mean 
252.              col = "red", 
253.              lwd = 1) + 
254.   annotate("text",                        # Add text for mean 
255.            x =  2, 
256.            y = 2, 
257.            label = paste("Mean =", round(mean(no_replicates3$toc_station),3)), 
258.            col = "red", 
259.            size = 3) + 
260.   xlab("TOC [wt%]") + 
261.   ggtitle(paste0("Histogram and Density Plot for surficial sediment up to ", h, " cm depth"))+ 
262.   geom_vline(xintercept = median(no_replicates3$toc_station),      # Add line for median 
263.              col = "blue", 
264.              lwd = 1) + 
265.   annotate("text",                        # Add text for median 
266.            x = 2, 
267.            y = 1, 
268.            label = paste("Median =", median(no_replicates3$toc_station)), 
269.            col = "blue", 
270.            size = 3) 
271. plotty 
272.   
273. #print overview: what I've done 
274. print(paste0("hurray, data is clean!", " sample selection method ", sel, 
275.              " has aggregated ", nrow(subset), " samples into ", 
276.              nrow(no_replicates4), " unique stations. toc_station has been derived by algo ", 
277.              algo, ". ", virtuals, 
278.              " samples have computed section limits.", "mean toc_station is ",  
279.              mean(no_replicates4$toc_station), " [wt %]")) 
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A.2 Equidistant custom projected coordinate system 

1. distances_around_nazare 
2. [1] "PROJCRS[\"distances_around_nazare\",\n    BASEGEOGCRS[\"WGS 

84\",\n        DATUM[\"World Geodetic System 1984\",\n            ELLIPSOID[\"WGS 
84\",6378137,298.257223563,\n                LENGTHUNIT[\"metre\",1]],\n            ID[\"E
PSG\",6326]],\n        PRIMEM[\"Greenwich\",0,\n            ANGLEUNIT[\"Degree\",0.0174532
925199433]]],\n    CONVERSION[\"unnamed\",\n        METHOD[\"Modified Azimuthal 
Equidistant\",\n            ID[\"EPSG\",9832]],\n        PARAMETER[\"Latitude of natural 
origin\",39.6696944444445,\n            ANGLEUNIT[\"Degree\",0.0174532925199433],\n       
     ID[\"EPSG\",8801]],\n        PARAMETER[\"Longitude of natural origin\",-
10.1085833333333,\n            ANGLEUNIT[\"Degree\",0.0174532925199433],\n            ID[\
"EPSG\",8802]],\n        PARAMETER[\"False 
easting\",0,\n            LENGTHUNIT[\"metre\",1],\n            ID[\"EPSG\",8806]],\n     
   PARAMETER[\"False 
northing\",0,\n            LENGTHUNIT[\"metre\",1],\n            ID[\"EPSG\",8807]]],\n   
 CS[Cartesian,2],\n        AXIS[\"(E)\",east,\n            ORDER[1],\n            LENGTHUN
IT[\"metre\",1,\n                ID[\"EPSG\",9001]]],\n        AXIS[\"(N)\",north,\n       
     ORDER[2],\n            LENGTHUNIT[\"metre\",1,\n                ID[\"EPSG\",9001]]]]" 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  




