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Summary

More and more cities try to encourage residents to cycle more. Therefore, govern-
ments are developing comprehensive bike maps to facilitate bicycle trip planning and,
as a result, increase the popularity of cycling in general (Pucher and Buehler, 2008).
However, research on the topic of bike maps is rare and the versatility of possible
features shown on a bike map makes these visually more complex than others. It
is critical to understand how maps are perceived and understood to improve their
overall design and e�ciency (Castner and Eastman, 1984).

The purpose of this thesis is understand how base maps and the display of various
cycling related features a↵ect the visual complexity of bike maps. Di↵erent met-
rics (GMLMT, Subband Entropy, Edge Density, Feature Congestion, and Distinct
Object-Type Counts) are applied on bike maps to measure visual map complexity.
Following that, an eye-tracking experiment with 35 participants is carried out. Five
di↵erent everyday tasks have to be solved on bike maps with four complexity levels.
The experiment aims to find out how base maps and cycling related features influ-
ence the e↵ectiveness of a map.

The findings suggest that adding more detail to base maps and displaying more
cycling related features on a map resulted in a visually more complex bike map.
Size, shape, and color were found to have the biggest influence on the applied met-
rics. The eye-tracking study discovered that the display of cycling related features
can a↵ect the time needed for successful task completion. To deepen the gained
understanding, further research should in more detail investigate how base maps in-
fluence bike maps e�ciency. To gain maximal learning from such studies, large and
representative test groups should be examined in a fully randomized manner.
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1 Introduction

“Zurich invites you to cycle” (City of Zurich, 2013). More and more cities try to
promote bicycling. There are various advantages to encouraging individuals to cycle
more. Cycling causes no noise or pollution and utilizes significantly fewer resources
than any other mode of transportation currently available. The energy required for
cycling is provided by the traveler, resulting in additional health benefits for the
traveler. Cycling also takes up a fraction of the road space required by cars and
is significantly less expensive than a private car or public transportation. To sum-
marize, cycling is the most environmentally, socially, and economically sustainable
means of transportation (Pucher and Buehler, 2008). As a result, it is not surprising
that cities want to promote cycling. Zurich, for instance, aims to highly increase the
number of cyclists across all sections of society while also ensuring that they feel and
are safe (City of Zurich, 2013). Di↵erent aspects can help promote bicycling, such as
direct routes, the presence of bicycle facilities, road safety, and others (Rybarczyk,
2014). Zurich wants to invest in infrastructure. For more experienced cyclists, a
rapid main cycling network should be established. Easy routes will be constructed
for less experienced cyclists that are largely separated from the rest of the tra�c
(City of Zurich, 2013). Additionally to infrastructure projects, cities publish bike
maps to promote cycling. Features that may be important to cyclists are highlighted
on these cycling maps. The amount of features that may be seen on a map varies
greatly. In some cases, all streets are documented, while in others, only the major
routes are represented.

Cyclists are not a homogeneous group. They have di↵erences in terms of abili-
ties, destinations, and consequently di↵erent needs. While some use their bicycles
to work, others prefer to ride in their leisure time (Wessel and Widener, 2015). Un-
like automobile drivers, not all routes are suitable for all types of cyclists. Dill and
McNeil (2016) therefore divided cyclists into categories, ranging from experienced
to inexperienced cyclists. Di↵erent types of cyclists may be interested in di↵erent
aspects of a bike map. Aspects of features of a bike map might be the availability of
bicycle lanes, paved or unpaved streets, one-way streets, dangerous crossings, height
di↵erences, bicycle stations, or pumping stations. This versatility of possible features
makes bike maps more visually complex than other maps.

It may be possible to improve the overall design and e↵ectiveness of bike maps if
it is possible to understand how they are perceived and understood. This train of
thought was already described by Castner and Eastman (1984) and applies to the
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overall scope of map complexity. Since the early 1970s, the field of map complexity
has gotten more attention. Nonetheless, research on this topic is still ongoing because
no definitive answer has yet been found (Castner and Eastman, 1984). This thesis
examines the visual complexity of bike maps, specifically how they are perceived and
how they can be improved. This is accomplished by examining base maps and the
features displayed on bike maps.

1.1 Objective of the Thesis

The goal of this thesis is to contribute to the field of visual map complexity. Various
methods, such as eye-tracking or pixel-based quantification tools, have been adapted
and tested up to this point. However, comparing real-life data from map readers
with pixel-based quantification tools has only happened a few times. Furthermore,
almost no research has been conducted in the field of bike maps. As bike maps
have not been designed according to any particular scheme, they have a wide range
of appearances. This is undoubtedly an area where progress can be made. Aside
from that, all research on map complexity contributes to making this field more
understandable and, as a result, provides more user-friendly and e�cient maps.

1.2 Research Questions

In this thesis, the following two research questions will be addressed. These research
questions will be answered with the experiment that will be conducted.

1a) How visually complex are di↵erent bicycle base maps?

1b) How does visual complexity of base maps a↵ect e�ciency of bike maps?

2a) How does the display of di↵erent cycling related features a↵ect the visual com-
plexity of bike maps?

2b) How does the display of di↵erent cycling related features a↵ect e�ciency of
bike maps?

Research questions 1a and 1b focus on the visual complexity of base maps, whereas
2a and 2b are concerned with the cycling related features provided on bike maps.
Research questions 1a and 2a, as well as 1b and 2b are related. 1a and 2a focus
on how visually complex di↵erent components of bike maps are. To answer those
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two questions the base maps used in the eye-tracking experiment will be quantified
using various prevalent metrics. 1b and 2b focus on the aspect of e�ciency. In this
context, e�ciency refers to the speed with which a task is completed successfully
(Çöltekin et al., 2017). The data from the eye-tracking experiment will be used to
answer these two research objectives.

For every research question a hypothesis has been formulated:

1a) More detailed base maps are visually more complex.

1b) Bike maps with visually complex base maps are less e�cient.

2a) More displayed cycling related features are visually more complex.

2b) Bike maps with more displayed cycling related features are less e�cient.
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2 Background

2.1 Bike Maps

2.1.1 Biking as Mode of Transport

In many countries, biking is not a viable alternative when moving to a given destina-
tion because it is neither safe nor appealing. In many western countries bicycling is
a marginal mode of transport, utilized rather as leisure activity than for daily travel
needs. Furthermore, the socioeconomic distribution of cyclists is uneven; men and
young people cycle more frequently. However, this is not the case in every country.
In the Netherlands, Germany, and Denmark cycling is ten times more popular than
in the UK and the USA, and there is no gender di↵erence when it comes to cycling.
People were served in those countries by making their cities people-friendly rather
than car-friendly (Pucher and Buehler, 2008).

When cycling is encouraged, there are numerous advantages. Cyclists produce no
noise or pollution, and they utilize significantly fewer nonrenewable resources than
any other means of transportation. The energy required is provided by the cyclists
themselves. This has a positive impact on one’s health. Cycling and health have
a positive correlation, according to studies. As cardiorespiratory fitness improves,
all-cause morbidity and disease risks decrease (Oja et al., 2011). When compared
to cars, cycling requires far less room for use and parking. Overall, riding is less
expensive than driving a car or taking public transportation. They are less expen-
sive for both the individual and the public infrastructure. According to Pucher and
Buehler (2008), ”it is hard to beat cycling when it comes to environmental, social
and economic sustainability”.

Because of the aforementioned advantages, research was conducted to see what el-
ements contribute to increased cycling. Some elements, such as trip distance, to-
pography, and warmer weather, are impossible or di�cult to adjust. Nevertheless,
elements such as configured roads, and the presence of bicycle facilities can be im-
proved (Rybarczyk, 2014). Cities in the Netherlands, Denmark, and Germany are
attempting to promote cycling on a variety of levels, including access to bicycles, cy-
cle trip planning, public awareness campaigns, and citizen participation. On the level
of bicycle trip planning, most cities have created comprehensive bike maps (Pucher
and Buehler, 2008).
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2.1.2 Research on Bike Maps

Overall, research on the topic of bike maps is still limited. Nonetheless, there are
certain research papers in this section that are worth discussing.

Wessel and Widener (2015) criticize that bike maps produced by city governments to
promote cycling, rely on an ideal ”typical cyclist”. However, there is no such thing
as a typical cyclist. Cycling is done for a variety of purposes. People cycle in their
leisure time, but some cyclists also want to go somewhere in their daily life. There is
a four-category typology for cyclists provided by Dill and McNeil (2016): The Strong
and Fearless, The Enthused and Confident, The Interested but Concerned, and The
No Way No How. Strong and Fearless take part of their identification from riding
and would ride whatever the roadway conditions are. The Enthused and Confident
do ride on roads with cars, but they would prefer their own, separated facilities and
are thus keen on improved infrastructure. Interested but Concerned people would
like to ride but hesitate to do so, as they are afraid. The No Way No How, do not
cycle for various reasons including topography, inability, or a lack of interest. For
the population of Portland the inhabitants were categorized based on this topology.
Less than 1% are in the Strong and Fearless group. 7% of the people are Enthused
and Confident, 59% are Interested but Concerned. The last group, the Now Way No
How are about 33% (Dill and McNeil, 2016). Such a categorization is not available
for other cities. However, this classification approach backs up the claim of Wessel
and Widener (2015) that cyclists are not a homogeneous group.

Wessel and Widener (2015) attempted to design a map for the city of Cincinnati
from a cyclist’s perspective. They called the situation in which cars overtake cyclists
a ”fearful friction”. This friction is a↵ected by several factors, including speed, ele-
vation, the width of a street, availability of bicycle lanes, and car-free roads. When
cars drive rapidly the ”fearful friction” gets higher for the cyclists, especially when
the speed di↵erence is large. When the road is hilly, this is especially true, as cars
drive faster than cyclists. The width of a street is a variable, as more than one lane
is available, which generates space between the passing and the passed. For cyclists,
on the one hand bicycle lanes can create a sense of security. On the other hand, they
can result in faster and closer passing. Car-free routes are the best way to anticipate
this friction.

The implementation of the cyclist’s perspective can be seen on the Cinncinati Bike
Map (Figure 1). The roadways should be presented in such a way that cyclists can
see the possibility of ”friction”. Included is the speed indicated by colors, the width
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of streets, bike lanes, and elevation. Also included is additional useful information
such as tra�c signals, water, and bicycle shops. This approach on a bike map is
new, although in practice some issues arose, as Wessel and Widener (2015) stated.
Many map readers did not examine the legend and just guessed the meaning of the
streets’ colors. As a result, because the map is not intuitive, the interpretation was
frequently inaccurate. For example, some thought that the color scheme reflects a
good or bad scale (Wessel and Widener, 2015).

Cartographic Perspectives, Number 81, 2015 Rethinking the Urban Bike Map for the 21st Century – Wessel | 15 

!e legend (Figure 6) will help to guide the reader through 
the sections that follow where we will discuss in detail the 
various contents of the map.

S T R E E TS  A N D  PAT H S

The presentation of streets should tell the cyclist about 
the nature of potential “friction” as we’ve termed it: the 
speed and proximity of cars passing from behind. Since 
the presence of cars is the initial concern, car-free paths 
and bike lanes should appear distinct from streets and 
paths that allow cars. Bike lanes were highlighted with 
bold black lines parallel to the street (Figure 7). Trails 
were shown with a vivid green and a high-contrast black 
border. On streets where some car-traffic is assumed to 
be present, color and line width were used to indicate the 
speed and proximity of cars, respectively. Speed, indicat-
ed by the color of lines, ranges from blue for the slowest 
(<=25 miles/hour) to red for the fastest (>=40 miles/hour). 
We used the o"cial, posted speed limit as the measure of 
speed; other, perhaps more empirical measures of tra"c 

speed might have served better, but were unavailable. !e 
possible distance between the cyclist and the passing car 
was indicated by the width of the lines. !ere are several 
measures one could use for this as well, but we went with 
the number of full lanes per direction of travel. A two-
lane one-way street therefore is rendered twice as wide as a 
two-lane two-way street. !e presumption implicit in this 
approach is that the width of the lane itself is unimportant 
because the cyclist is occupying a full lane. !is may not 
actually be the best assumption in some situations, as we 
will discuss later.

The map also shows the possible connections between 
paths: both where they connect, and where they do not, 
since this is often di#erent for bikes and for cars. For ex-
ample, some long suburban streets may connect to each 
other by a small foot path. Or a whole branch of streets 
may only connect to a limited access highway at one end; 
such streets would be dead ends as far as any cyclist is con-
cerned. We wanted to emphasize streets and paths which 
do let bikes through and deemphasize streets and paths 
which are e#ectively dead-ends. Fortunately, since data 
from OSM are implicitly topological, this was fairly easy 
to do. We used OSM2pgSQL to create a graph of streets 
and paths which are traversable by bicycles or pedestri-
ans. Beside all ordinary streets, we included public stairs, 
pedestrian streets, bicycle-paths, and open-access service 
roads like alleys and some cemetery paths. We did not in-
clude highways and limited access trunk roads. We then 
used a PHP/SQL implementation of Tarjan’s algorithm 
to decompose the complete graph into a set of distinct bi-
connected subgraphs. !e largest of these subgraphs was 
what we might call the main street network, and the rest 
were connected to that by at most one edge. In simpler 

Figure 6. The legend of the Cincinnati Bike Map.

Figure 7. A bike path (green) along the river meets a street with a 
bike lane (dark border).

Figure 8. A variety of streets.

Figure 1: Legend and Map Extract of the Cincinnati Bike Map (Wessel and Widener,
2015)

2.1.3 Existing Bike Maps

Because there has been little research on bike maps to date, there are no clear rules
on how to design bike maps. Nonetheless, di↵erent bike maps are available all over
the world. The Copenhagenize Index is the only index that has been designed to
analyze the bicycle-friendliness of cities throughout the world. The index contains 13
parameters, including cycling facilities, bicycle-sharing programs, and gender split.
Every parameter is ranked from zero to four points, and each city can receive up to 12
bonus points, for a total of 64 points (Zayed, 2016). In 2019 the top five of the index
were Copenhagen, Amsterdam, Utrecht, Antwerp, and Strasbourg (Copenhagenize
Design Company, 2019). This index will be utilized later in this thesis to conduct a
systematic search for existing bike maps.
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2.2 Map Complexity

Cartographers are interested in the process of map-reading since the early 1970s
(Montello, 2002). Their ultimate hope was to learn how their maps were perceived
and understood to improve the overall design and e↵ectiveness of maps (Castner and
Eastman, 1984). MacEachren (1982) assumed, that map complexity and map e↵ec-
tiveness are negatively correlated, i.e. if a map is more complex, the reader needs
more skills to read the map (MacEachren, 1982). This assumption has also been sup-
ported by more recent studies. Harrie and Stigmar (2007), for example, claimed that
map complexity can a↵ect readability. As there is agreement that map complexity
influences the e↵ectiveness of maps, there has not been a conclusive answer to how
maps are perceived and understood. As a result, research on the topic of map com-
plexity continues. Even the term “complexity” itself can be defined in a variety of
ways, as academics from di↵erent fields use the term di↵erently (Schnur et al., 2018).

In Cartography and GIScience map complexity has been researched from di↵erent
perspectives. All in all, two categories have emerged: visual (or graphic) and intel-
lectual complexity. According to Ciolkosz-Styk and Styk (2011), the two complexity
aspects visual complexity and intellectual complexity, correspond to two fundamental
aspects of a map: syntactic and semantic. Visual complexity is concerned with the
display’s content, what we perceive, and how the visualized information is processed.
The two types of map complexity will be described in the following sections.

2.2.1 Intellectual Map Complexity

Intellectual complexity refers to the subject (or phenomena) represented in the map
(Fairbairn, 2006). Intellectual complexity is determined by the amount of presented
information, the type of its presentation, processing level, classification method,
and the number of classes (Ciolkosz-Styk and Styk, 2011). Because di↵erent map
users have varying abilities and knowledge with which they decode map language
information, measuring intellectual complexity is exceedingly challenging (Ciolkosz-
Styk and Styk, 2011).

2.2.2 Visual Map Complexity

Even if the map images are adequately chosen and the objects are legible, users may
still struggle to understand the map’s content if the amount of information shown on
the map is excessive (Li and Huang, 2002). Visual complexity is determined by the
degree of extensiveness, generalization, and visual variable order (Ciolkosz-Styk and
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Styk, 2011). Cartographers have more control over the visual than the intellectual
component of the map, as the map is easier to influence than map readers.

Barvir and Vozenilek (2020) define visual complexity of a map as the fullness of
a map. The density of labels, map symbols and their properties (e.g., form, size,
fill), and spatial distribution all influence the fullness (Barvir and Vit, 2021).

Since measuring intellectual complexity is di�cult, di↵erent studies have developed
criteria to determine the graphic map load. The di↵erent ways of quantifying visual
map complexity will be examined later in this thesis. Alongside the development of
metrics, user experiments using eye-tracking became an experimental approach to
estimating map complexity (Barvir and Vit, 2021).

2.3 Visual Perception

In the following section the process behind vision and the human eye will be ex-
plained. This is necessary to understand and draw conclusion from the collected
eye-tracking data.

2.3.1 Eye Movements

Ware (2019) compares the human eye to a camera. The eye ”contains a variable
focus lens, an aperture (the pupil), and a sensor array (the retina)” (Ware, 2019).
The lens focuses an inverted image onto the photoreceptors of the retina. Two kinds
of photoreceptors are found in the retina: cones and rods. Humans have up to 6.5
million cones and up to 125 million rods. Cones can respond to both chromatic and
achromatic light, but rods can only respond to achromatic light. Cones and rods are
not distributed evenly across the retina. The fovea is dominated by cones, while the
periphery is dominated by rods. The fovea is the part of the eye that has the highest
amount of detail, which means that vision is sharpest and best for fine-detail vision
here. Only in this section visual attractions can be identified by their outline and
color (Mangold, 2013 & Hubel, 1995).

The eye needs its eye muscles to position themselves, to ensure that the visual at-
traction gets into the fovea. If necessary, humans rotate their heads or body to focus
on an object. The eyes are in constant movement. The eyes reposition on a new
extract in the field of view three to five times every second. Movement is required
not only to concentrate on information but also to preserve visual perception. In a
study always the same extract has been presented to people. After a while, people’s
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perceptions deteriorated, and they turned into a grey region (Mangold, 2013). Ac-
cording to research, there are eight main types of eye movements, which are classified
into movements for stabilization, search, and micromovements (Joos et al., 2017).
Here, the four most important movements will be covered: saccades, smooth pursuit
movements, vergence movements, and vestibulo-ocular movements (Purves et al.,
2001).

Saccades are rapid movements of the eyes that change the point of fixation abruptly.
They range in their amplitude from small to big. Examples of small movements can
be when someone reads a book. Big saccades are done when a person gazes around
a landscape. When a person focuses on a target for a saccade, it takes about 200 ms
before the eye movement begins. This delay is because the position of the target with
respect to the fovea has to be computed and is called saddic suppression. During
this time the eye muscles have to work so that the eyes can be moved at the correct
distance and appropriate direction (Purves et al., 2001 & Young and Sheena, 1975).

When the eyes try to maintain a moving stimulus on the fovea, they make smooth
pursuit movement. This movement is under voluntary control, as the observer can
choose to follow a moving object or not. It is nearly impossible to make this move-
ment smoothly when there is no moving target. Instead, most people do a saccade
(Purves et al., 2001).

When each eye has an object at a di↵erent distance from the observer, vergence mo-
tions are made. Other eye movements have the two eyes move in the same direction
(conjugate eye movements). Vergence movements are disconjugate eye movements.
When people look at a closeup target that is near to them, their eyes are drawn
together. When they look at something in the distance the eyes diverge (Purves
et al., 2001).

Vestibulo-ocular movements are made to stabilize the eyes in relation to the external
world. An example would be if a person moves their head. The vestibulo-ocular
movements prevent the visual images from ”slipping”. When we look at something
and move our head from side to side, our eyes begin to adjust to the movement of
our head. As a result, the fixated object stays in the same place in the retina (Purves
et al., 2001).

Although it seems contradicting fixations are also classified as eye movements. Fixa-
tion takes place when the eye movement stabilizes the retina on a stationary object.
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During the fixation event, the eyes do not remain entirely motionless; instead, there
are few eye movements. Fixation takes between 200 and 400 milliseconds, and infor-
mation might be received throughout this time. Fixations and saccades are used to
evaluate maps. It is possible to determine where map readers glance at the map and
whether they can locate useful information (Ware, 2019). Eye-tracking is a technique
that allows researchers to see where a person’s eyes are at any given time, as well as
the sequences in which their eyes move from one spot to another. Eye-tracking can
thus aid in the understanding of visual and display-based information processing, as
well as the aspects that influence map usability and readability (Jacob and Karn,
2003).

2.3.2 Visual Attention

There has not been a precise definition of what attention is until now. However,
there is evidence that the visual system can focus on a sensory attribute while ignor-
ing the others as noise when it comes to visual attention. On this subject, a large
number of studies have already been done. The so-called guiding attributes should
be highlighted in this section. Wolfe and Horowitz (2004) divided attributes into five
categories: undoubted attributes, probable attributes, possible attributes, doubt-
ful cases, and probable non-attributes. Table 1 shows the undoubted and probable
guiding attributes. Undoubted attributes are backed up by large amounts of con-
vincing data. Probable attributes would need some more data to clear still existing
ambiguities.

Undoubted Attributes Probable Attributes
Color Luminance onset
Motion Luminance polarity
Orientation Vernier o↵set
Size Stereoscopic depth and tilt

Pictorial depth cues
Shape
Line termination
Closure
Topological status
Curvature

Table 1: Undoubted and Probable Attribute that Might Guide the Deployment of
Attention (Wolfe and Horowitz, 2004)
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2.4 Eye-Tracking

In the following section, di↵erent existing eye-tracking techniques will be shown.
Following that, other metrics that can be monitored using eye-tracking will be in-
troduced. This section concludes with di↵erent studies on map complexity with
eye-tracking that already have been conducted.

2.4.1 Techniques

Eye-Tracking technology was pioneered over a century ago (Jacob and Karn, 2003).
Since many di↵erent approaches have been used. The electro-oculographic technique
was one of the initial attempts. To assess potential variations, skin electrodes were
placed around the eye (Young and Sheena, 1975). A more detailed description and
other techniques were discussed by Young and Sheena (1975), Barea et al. (2002),
and Jacob and Karn (2003).

In the research for this thesis, the so-called corneal-reflection technique is used. The
trackers in this method are made up of a regular desktop PC with an infrared camera
positioned beneath the monitor. The participants are shown so-called stimuli on the
screen. Infrared determines the features of the eyes needed to track them in conjunc-
tion with image processing software. The camera’s infrared light is focused on the
eye to create a bright reflection that makes them simpler to track. The light entering
the retina makes the pupil appear as s bright disc and also the corneal reflection
appears as a small glint (Jacob and Karn, 2003). The larger white circle in Figure 2
represents the pupil, while the smaller white circle represents the corneal reflection.
The software needs to be able to define the center of the pupil and the location of
the corneal reflection. Then, using trigonometric calculations, the point-of-regard
can be computed.

Figure 2: Corneal Reflection Position According to Point of Regard (Jacob 2003)
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2.4.2 Metrics

After having discussed the general information about eye movements and di↵erent
measurement techniques, the most frequent eye-tracking metrics will be summa-
rized. The most used eye-tracking measurements are fixation, saccades, and scan
paths. Di↵erent metrics can deviate from these measurements. In the appendix, a
list of fixation-derived metrics is attached. For completeness have a look at Jacob
and Karn (2003).

Fixation occurs when the retina of the eyes is stabilized on a stationary move-
ment. Fixations and saccades are therefore readily distinguished. Fixation time
is sometimes referred to as saccadic reaction time or intersaccadic interval. Fixation
duration is the time between the beginning and the end of a saccade. Although
fixation normally lasts from 200 ms to 400 ms, some research has found that short
fixations of 50 and 100 milliseconds exist. However, information can not be processed
by the viewer, when the fixation duration is too short (Joos et al., 2017). In general
fixation duration tend to be much longer, for reading around 225 milliseconds, 275
milliseconds for visual search activities, and 300 milliseconds for picture perception.
Furthermore, there appears to be a correlation between the fixation period and the
task’s di�culty, or required precision (Joos et al., 2017). Eye movement metrics that
can be deviated from fixations are listed in the appendix.

During saccades no encoding takes place. Nevertheless, backtracking eye movements
can act as a measure of processing di�culty (Jacob and Karn, 2003). In the appendix,
metrics derived from saccades are listed.

Scan paths describe a complete sequence of saccade-fixation-saccade. When looking
at a scan path of a search path, the optimal scan path would be a straight line to
the desired target, with a short fixation on the target (Goldberg and Kotval, 1999 &
Jacob and Karn, 2003). Again, the table for scan path-derived metrics can be found
in the appendix.

Furthermore, blink rate and pupil size can be considered metrics, as they correspond
to cognitive activity. A lower blink rate can suggest a higher workload, while a higher
blink rate could indicate exhaustion. Larger pupils could also be a result of a higher
cognitive workload. Blink rate and pupil size, on the other hand, could be caused
by a variety of di↵erent things. As a result, they are employed less frequently in
eye-tracking studies (Jacob and Karn, 2003).

12



2.4.3 Visual Map Complexity and Eye-Tracking

Eye-tracking has been used in a variety of fields of study. One method for estimat-
ing map complexity that arose was user studies using eye-tracking (Barvir and Vit,
2021). Mapmakers were curious as to when and where specific symbols, elements, or
zones of a map are fixated. They aimed to find solutions to map design challenges
(Castner and Eastman, 1984). In the beginning, it was di�cult to interpret the
data coming from the eye-movement experiment. The distinction between whether
responses are due to the test-map design or the respondents’ ability is particularly
di�cult. However, it became evident that eye-gazing is a highly selective and pur-
poseful activity. It was discovered that a majority of eye fixation occurs in areas
where the information load is high, or it contains unpredictable or unusual details
(Mackworth and Morandi, 1967).

Castner and Eastman (1984) distinguish between spontaneous looking and task-
specific viewing. When there is no task, spontaneous looking, also known as free
examination, occurs. When the eyes must solve a visual challenge, task-specific
viewing occurs. When seeing a task-specific display, people tend to be significantly
more focused on certain features of the display. Also, more peripheral vision takes
place, as possible fixation sites are spotted and quickly assessed to see if it matches
the viewing goal (Castner and Eastman, 1984).

Eye-Tracking has been employed in reference and thematic maps. Three studies
will be shown in the following sections to provide an overview of how eye-tracking
and its metrics might be employed in a geographic setting.

Çöltekin et al. (2017) compared two legends of a soil-landscape map. The first legend
listed the categories in alphabetical order, while the second legend listed them by
perceptual grouping. Twenty people took part in the testing, and 90% of them said
they were comfortable with maps. The transitions between the legend and the map,
areas of interest (AOI), and a qualitative examination of the motions were all used
to study eye movements. According to the findings, persons with strong map inter-
pretation skills made fewer transitions between the legend and the map. In addition,
Çöltekin et al., 2017 used density heat maps to conduct a qualitative examination
between the high- and no-ability groups.

Keil et al. (2020) investigated the impact of visual map complexity on the attentional
processing of landmarks using reference maps. The study included 57 students of the
Ruhr University Bochum. Fixation counts and overall fixation length were calculated
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using AOIs placed on several landmark pictograms. They sought to see if landmark
representations near the depicted path were more likely to be fixed.

Liao et al. (2019) measured the influence of map label density on the perceived visual
complexity of maps. Their study included 40 people conducting a visual search. A
target name was shown on the screen and after five seconds it disappeared and the
participants had to find the target. The shown stimuli had varying label densities.
The eye-tracking experiment showed a positive correlation between the label-density
and response time.

2.5 Approaches to Quantify Map Complexity

There have been several approaches to finding a suitable computation for visual
map complexity up until now. In this thesis, complexity quantification will be used
to estimate the visual complexity of the stimuli shown to the participants. The
used metrics are Graphic Map Load Measurement, Subband Entropy, Edge Density,
Feature Congestion, and distinct object-type counts. This chapter will provide the
study’s measures as well as some additional approaches.

2.5.1 Pixel-Based Quantification

Graphic Map Load Measurement Tool (GMLMT)

There have been numerous approaches for calculating a map-load value to assume
the complexity of a map. None of these, however, have been commonly used. There-
fore, Barvir and Vit (2021) wanted to develop a simple and freely available tool.
From this intention, the Graphic Map Load Measurement Tool (GMLMT) has been
created.

The goal was to build the GMLMT around an edge detection approach, as prior
research had shown that this method had a lot of promise. They chose the open-
source software The GIMP Development Team (2019) (GNU Image Manipulation
Program) as their application. Various edge detection filters are included in this
software. They implemented all of the filters in their code and tested them on 26
distinct map extracts, both reference, and thematic maps. As potential filters, they
used Sobel, Prewitt, Gradient, Di↵erential, Laplace, and Neon. As a result, for the
GMLMT the Sobel operator was chosen, as this filter outperformed the others. The
Sobel operator’s principle of operation will not be discussed in this context. For a
better understanding see Vairalkar and Nimbhorkar (2012).
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The GMLMT was created to function with any picture, but it is essential to en-
sure that the image has a resolution of 100 DPI in order to compare the images on
an equal footing. Figure 3 shows the di↵erent steps the GMLMT performs. First,
the Sobel operator is applied to the map extract. The image is then transformed to
monochrome. In the next step of the GMLMT script, the histogram is utilized to
calculate the average pixel value of the monochromatic image. For easier compre-
hension, the range of 0 to 255 is converted into percentage values between 0% and
100%. The map-load level is then calculated as the average of the map’s current
structures. The computed gets saved into a text file, in addition, the image is given
a grid indicating which parts of the image have a higher load (bright tones) and
which have a lower load (dark tones) for visualization purposes. The map-load for
this example was 12.8%, but without comparing this value is worthless unless it is
compared to other maps.

(a) normal (b) applied sobel operator

(c) monochromatic (d) Output

Figure 3: Application of the GMLMT on a Map Extract
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Edge Density

The Edge Density quantification, like the GMLMT, is based on edge detection. Oliva
et al. (2004) was the first to introduce this method. To obtain the Edge Density mea-
sure for visual clutter, Rosenholtz et al. (2007) applied MATLAB (2019)’s Canny
edge detector. Again, the edge detector’s technological functionality will not be ex-
amined in detail. See Ding and Goshtasby (2000) for a better understanding.

There are various parameters that can be changed in this detector. The low and
high thresholds, which can be modified manually, are the most significant. Weak
edges are only kept by the Canny edge detector if they are related to strong edges.
Figure 4 shows how the Canny edge detector, which is similar to the Sobel operator,
is used.

Figure 4: Canny’s Edge Detector on a Map Extract

A pixel density measurement is required to produce the Edge Density metric. The
histogram in the Gimp software (The GIMP Development Team (2019)) was em-
ployed in this specific scenario. For the example map extract shown in Figure 4,
5.3% of the pixels are edge pixels.

16



Subband Entropy

Subband Entropy is based on the notion that as a picture becomes more crowded,
the number of bits required for subband image coding will increase. Rather than
clutter density, this metric assesses spatial uniformity. In the first stage, wavelets
are employed to approximate the image content. To approximate a complex image, a
higher diversity of wavelet coe�cients is required. Thus, Subband Entropy measures
how hard it is to encode the information that is present in the image. Various
so-called subbands of the image, such as brightness, chrominance, color, and edge
orientation, are taken into account to do so Speed et al., 2017. For the calculation of
this entropy, Rosenholtz et al. (2007) provides a MATLAB (2019) code. The value
of the Subband Entropy for the map extract shown in Figures 3 and 4 was 3.0489.

Feature Congestion

Feature Congestion by Rosenholtz et al. (2007) is a measure for display clutter.
Clutter is defined as ”...the state in which excess items, or their representation or
organization, lead to a degradation of performance at some task” (Rosenholtz et al.,
2005). When more and more items are added to a map, there is less space to add
new items. This state can be described as Feature Congestion. There are already too
many colors, sizes, and shapes that make up a crowded area. The implementation
of this measure is done in four steps. First, three scales of local feature (co)variance
are computed. Second, this is done across the scale. Third, the clutter is combined
across di↵erent feature types. As a final step, this is pooled over the space, so that
there is one measure output for the entire image. Every step is explained in detail
in the according paper by Rosenholtz et al. (2005). Alongside a feature congestion
value, a visual image is given as output when running the corresponding MATLAB
(2019) code (Figure 5). The feature congestion value for the map in Figure 5 was
4.4513.
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Figure 5: Feature Congestion Clutter on a Map Extract

Further Pixel-Based Quantification Approaches

Fairbairn (2006) developed graphical metrics using various measures. The majority
of the measurements were made with Fragstats, a program that allows the calculation
of various landscape characteristics. Ecologists use Fragstats to study environmental
patterns and variety in general. This software can calculate patch-size standard
deviation, contrast weighted edge density, double log fractal dimension, landscape
shape index, Simpson’s and Shannon’s Index, and others. Fairbairn (2006) also used
other general variables for map quantification like file size or compression.

2.5.2 Non-Pixel-Based Quantification

In this section, approaches to quantify map complexity that are not pixel-based will
be assessed. In the following, di↵erent object-type count metrics will be discussed.
Some argue that object-type counts are rather for intellectual than visual map com-
plexity. Nevertheless, they are taken into account, as the boundary between visual
and intellectual map complexity is fluent.
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Di↵erent Object-Type Count Metrics

Some approaches for quantifying map complexity aim to count the number of ob-
jects on the map. However, determining what an object is, is not straight forward.
I.e., it is unclear if a road as a whole or certain segment of it count as an object.
Harrie and Stigmar (2007) describe di↵erent measurements for evaluating map com-
plexities, such as number of objects, number of points in the objects, object line
length, object length, the spatial distribution of objects, and spatial distribution of
points. These measures were implemented by using Java and further open-source
packages (Harrie and Stigmar (2007)). As they only performed these metrics on dif-
ferent generalization levels of buildings, the findings of this study will not be further
examined.

Distinct Object-Type Counts

The distinct object-type count was introduced by Schnur et al. (2010). This calcula-
tion is based on the notion that complexity might be a↵ected not only by the total
number of individual items on a map but also by the number of categories on the
map. The expectation is that an increasing number of distinct map symbols increases
human working memory more than the number of times a symbol is used (Schnur
et al., 2018). This hypothesis relies on research stating that visual working memory
can only store three objects at a time and objects with multiple features are stored
as single combined objects (Schnur et al., 2010). When applying the object-type
counts every object on a map is counted manually. Objects must be distinguishable
based on three of Bertin’s visual variables shape, size, and color. Object counts
can be divided into several categories. A completed object count with its according
categorization can be seen in Figure 6.

curved label and a straight label are counted as one
object type given that they are otherwise identical. This
leads to a count of the total number of distinct object
types the eye must process when viewing the map. This
approach has rarely been used in the literature, and we
believe the implementation we describe here is unique.

For validation and further testing, we employed an
additional method of measuring visual complexity. In
this study, we chose to focus on clutter, which is
defined by Rosenholtz et al. (2007) as “the state in
which excess items, or their representation or organi-
zation, lead to a degradation of performance at some
task” (Rosenholtz et al., 2007, p. 3). In order to mea-
sure clutter for complex images that do not necessarily
have distinct objects, Rosenholtz et al. (2007) intro-
duced a statistical measure of object saliency, which
they report correlates well with performance in visual
search tasks (the more salient the object, the faster the
user performs).

In this paper, we measure clutter for all nine of our
maps using two algorithms developed by Rosenholtz
et al. (2007). Rosenholtz et al.’s (2007) feature conges-
tion (FC) algorithm maps all the objects in an image
into 3D attribute space using the variables color, orien-
tation, and luminance contrast, where the term lumi-
nance refers to the brightness of an image. The output
of the algorithm is the volume of the covariance ellip-
soid encompassing the mapped points, relative to the
maximum possible feature space volume. The FC
therefore quantifies the spread of colors, orientations,
and luminance variations present in the image, which
represents the visual congestion of the image. This
gives a sense of how easy it would be to place a new
object into the image and still have it stand out to the
viewer from amongst the other objects already present
(Rosenholtz et al., 2007). Rosenholtz et al. (2007) also
suggest a subband entropy (SE) algorithm, which seeks
to represent the organization of objects in a scene using
image encoding efficiency as a proxy. A standard RGB

image is decoded into luminance and chrominance
subbands (CIELab), with luminance representing the
brightness component of the image and chrominance
representing the color component of the image. The
subbands represent wavelet decompositions of varying
spatial frequencies in these brightness and color image
components. The number of bits required to encode
each subband is measured and summed to calculate the
SE, based on the assumption that more bits are
required to represent a higher-fidelity wavelet trans-
form, reflecting the inherent redundancy in the image.
This measure therefore attempts to capture whether
similar objects are spatially grouped together or
repeated in an image. The MATLAB code for these
algorithms is freely available1 and was not altered in
any way for this study.

3.3. Methods for quantifying perceived complexity

To assess perceived complexity, we conducted an
online user survey. We consider an online survey
most appropriate for this study as it allows us to
reach a relatively large and diverse group of partici-
pants. Also, since we are testing online maps, an online
experiment may be most similar to how these maps are
actually used. We designed the survey to focus on
purely visual complexity and minimize the contribu-
tion of intellectual complexity. Therefore, we avoided
assigning specific tasks and asked participants to sim-
ply consider the visual complexity of what they see.

3.3.1. Participants
A total of 130 participants responded to the survey (49
females, 81 males, average age 32.7). Five participants
(3.8%) reported having imperfect color vision and were
therefore excluded from the analysis. Participants were
from 22 different countries and about half (48.4%) of
them reported being familiar with Zürich. 43.0% of
them had academic training or were professionally

Figure 3. Distinct object types for maps at LOD5, which generally represents the scale with the greatest number of object types.
Map snippets from images in Figure 2.

CARTOGRAPHY AND GEOGRAPHIC INFORMATION SCIENCE 243

Figure 6: Distinct Object Types for a Google Maps Extract (Schnur et al., 2018)
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3 Methods

3.1 Experimental Design

3.1.1 Participants

As there is no such thing as a typical cyclist, bike maps should be useful for ev-
eryone, from Strong and Fearless cyclists to those with No Way No How. Thus,
there are no restrictions on who can take part in the experiment. The maps were
examined with Color Oracle and the participants were asked if they are color-blind
in the questionnaire (for Color Oracle visit Jenny, 2020). For the recruitment of the
participants, people from the personal surroundings were invited. All in all, data
from 35 participants was collected.

3.1.2 Variables

Research questions 1a and 1b relate to base maps, whereas 2a and 2b focus on cycling
related features. Before conducting the empirical research the included variables and
the experimental design are clearly defined.

In the experimental method, statements are made about what circumstances cause
a change in behavior. Variables can be used to describe the manipulation and mea-
surements. In the next subsections, the thesis’ defined variables are listed.

Independent Variable

Independent variables are not influenced by the behavior of participants. This vari-
able is controlled by the experimenter (Martin, 2008). The visual map complexity
of the base maps and the cycling related attributes are the independent variables
in this study. There will be two levels of complexity for both (see Figure 7 for an
example). Furthermore, the various tasks might be viewed as independent variables.
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Figure 7: Two Levels of Complexity for Base Maps (left) and Cycling Related Fea-
tures (right)

Dependent Variable

When an experiment is conducted, the participants’ behavior is measured concern-
ing the various independent factors. The measured behavior is called the dependent
variable, as this variable is dependent on what the participant does. In this case, the
dependent variable is eye-tracking data and its di↵erent metrics that can be derived.
In this thesis, time to first fixation, fixation count, heat maps, and task length are
the dependent variables.

Hypotheses are formulated before conducting an experiment. Hypotheses are state-
ments concerning the expected relationship between the dependent and independent
variables (Martin, 2008).

Control Variable

Independent variables are changed on purpose and dependent variables are mea-
sured, however, also other factors influence the experiment. Controlling them is one
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method to deal with them. Then they become control variables. Examples of con-
trol variables are characteristics of the room the experiment is conducted in (Martin,
2008). Thus, the setup in the room and its condition (for example temperature,
lightning condition) will stay the same for all participants during this experiment.
Later in this chapter, the specifics of the setup will be introduced. Age, gender, and
prior familiarity with bike maps, and maps in general are also control variables in
this investigation. This data will be obtained using a questionnaire.

The questionnaire contains socio-demographic questions, such as age, gender, and
field of work. Questions about (bike) map familiarity, di↵erent map providers, and
how often maps are used. Also, a binary question of whether the participant is
attested color-blind is included.

Factorial Design

The number of variables plays a role in deciding which experimental design to utilize.
For this study, a factorial design was adopted. The design for this thesis includes two
variables, each with two levels. This corresponds to a two-by-two factorial design
with four cells (Martin, 2008). Figure 8 shows a combination of the complexities
shown in Figure 7. The four cells will be abbreviated with BM1CRF1, BM1CRF2,
BM2CRF1, and BM2CRF2. BM relates to the base map, while CRF relates to
cycling related feature. The numerals 1 and 2 represent the degree of di�culty. For
example, BM1CRF2 represents a map with low complexity in terms of the base map
(BM = 1) and high complexity in terms of cycling related features (CRF = 2).

The factorial experiment allows the study of the interaction of di↵erent variables.
Interactions can appear when the participant’s behavior on one independent variable
is dependent on the level of a second variable. This method is appropriate when the
base map and features on the map are viewed as two separate map contents (Martin,
2008).

One drawback of the factorial design is that the investigated factors can quickly
add up, resulting in a large matrix with numerous cells. As a result, the experiment
will take more time and e↵ort to complete. This is not a problem in this thesis
because the matrix only has four cells. When it comes to analyzing the results, there
is a second disadvantage or possibility. Often an analysis of variance (ANOVA) is
used for the statistical procedure. A normal distribution is required for the analysis
of variance to work. If the obtained data is not normally distributed, this analysis
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Figure 8: Example of a 2x2 Factorial Design

is irrelevant (Martin, 2008). More details of the statistical method for analyzing the
eye-tracking data will follow later in this chapter.

3.2 Materials

There is no general agreement on the best way to design bike maps. Therefore, cre-
ating the stimuli that are shown in the experiment is not trivial. The Copenhagenize
Index was utilized to gain an idea of how bike maps are most commonly designed.
The top twenty cities in the world in terms of bicycle friendliness are listed in this
index (Copenhagenize Design Company, 2019). For the stimuli design, bike maps for
those cities are searched manually on the internet. Twelve of the top twenty cities
o↵er bike maps that are suitable for this thesis. Some cities are relying on interactive
online maps, which are certainly useful but cannot be included in this analysis. The
next stage was to look at what is displayed and how it is displayed for base maps
and cycling related elements. The findings of this search will be taken into account
when the stimuli are designed. It is crucial to note, however, that not all observable
elements can be included in the map because the map must be coherent.
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Quantification Measurements

When creating the stimulus, the quantification metrics were crucial, as the mea-
sured complexity of the four stimuli should di↵er. The best-case scenario would be
if BM1CRF1 was less complex than BM2CRF2 and BM1CRF2 and BM2CRF1 were
in between having the same complexity. Therefore, the complexity of the stimuli was
frequently measured during the design process to identify a balanced set of stimuli
that fit this aim.

The GMLMT was mostly utilized to calculate complexity during the design phase
because it was established most recently and considers other, older metrics (Barvir
and Vit, 2021). Nevertheless, also Feature Congestion and Subband Entropy was
measured from time to time. These three, as well as other metrics, will be applied
to the stimulus in the result section.

3.2.1 Stimuli

Rather than coming up with a fictional map, a real city is picked so the map has
a context. Various requirements must be met before choosing a city. The city
should have enough bicycle infrastructure. Because maps of various complexities
will be constructed, there must be su�cient features that can be depicted on the
map. Additionally, the city should be unknown to the participants. Participants
who are familiar with the city depicted in the experiment may have an advantage.
Following considerable research, the decision was made to decide on Nashville, which
meets all of the previously specified criteria. Most of the attendees are probably
unfamiliar with Nashville. The city of Nashville has enough infrastructure allowing
the creation of more complicated maps. There is also a cycling map that can be
taken and customized for its di↵erent purposes (see Figure 9).

The Nashville bike map is imported into A�nity Designer (see Serif Ltd, 2022), where
the stimuli set is developed. The map extract has to be reduced, as the participants
have to be able to see everything clearly on the computer screen without having to
move closer, which would interfere with the eye-tracking device. The design of the
base map, as well as cycling related characteristics, will be covered in the following
sections.
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Figure 9: Extract of the Nashville Bike Map (Informing Design, Inc, 2015)

Base Map

The gathered maps show a wide range of di↵erent base maps. Every map includes
some elements, such as water bodies, streets, and parks. Other features are not
always depicted on maps. Roughly, the base maps can be classified into three com-
plexities (see Figure 10 for examples). The least complex (see Figure 10a) only
contains streets, railways, parks, water bodies, and the corresponding labels. Figure
10b depicts a higher complexity, with additional information and varied colors. In
the example of Bogota (see Figure 10c), the bike infrastructure seems to have been
drawn over an existing map, which is a common practice. In the group with the
highest complexity, even the structure of the buildings is represented.
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(a) Antwerpen (Slim naar
Antwerpen, 2019)

(b) Bogota (Instituto Dis-
trital de Turismo, 2015)

(c) Strasbourg (Vélohop,
2020)

Figure 10: Example of Maps with Di↵erent Base Maps Complexities

For the implementation in the experiment, a low-complexity base map and a high-
complexity base map were chosen. The following features were chosen for the low-
complexity base map (BM1):

• street

• highway

• park

• water body

• street label

• park label

A normal, intuitive depiction is chosen for the style of the features. Water bodies
are blue, whereas parks are green. Highways are also shown in blue to di↵erentiate
them from the bicycle infrastructure. Because street and park labels are represented
in di↵erent colors, they are mentioned individually. Figure 11 shows BM1.

26



Figure 11: Base Map with Low Complexity (BM1)

The higher base map complexity displays the same features as the low complexity
map, but the following features have been added as well.

• Hospital • Building

Note that alongside the two new features, the number of labels has been raised.
The hospitals are blueish, whereas the buildings are grizzly. For the buildings data
from OpenStreetMap was added to the map (OpenStreetMap contributors, 2022).
Again, it is important to mention that features that are relevant for cyclists should be
represented, but also a big enough increase in visual complexity has to be provided.
The base map with the higher complexity is visible in Figure 12.

27



Figure 12: Base Map with High Complexity (BM2)

Cycling Related Features

Looking at cycling related features on di↵erent maps, it is striking that there are
many distinct features that may be displayed on a map. The most common were
undoubtedly cycle tracks, bicycle lanes, shared lanes, bicycle stations, pedestrian ar-
eas, and repair shops. Some maps included bicycle paths that were either proposed
or under development. The analysis shows that circumstances change from city to
city, particularly when looking at bike maps from multiple continents. The majority
of bicycle tracks, lanes, and roadways are colored. Bicycle lanes are often depicted
dashed on bike maps, as they are frequently found in reality. Bicycle stations are
often represented by a bicycle beneath a roof, and repair shops by pliers.

The decision on which features to display and what term to use is based on the
Nashville bike map. The selection of the exact terms are negligible for the tasks.
Here are the features that were used for the lower complexity of cycling related
features:
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• Bicycle Rack

• Physically Protected Bicycle Lane

• Bicycle Lane

• Bicycle Route

• Non-cycling Road

The bicycle racks are a monochrome symbol. All bicycle lanes are red, however, dots
represent bicycle lanes and smaller lines represent physically protected bicycle lanes.
Non-cycling roads are grey. Figure 13 depicts the low complexity of the cycling
related features layer (CRF1).

Figure 13: Cycling Related Features with Low Complexity (CRF1)

The second complexity level of cycling related features comprises more features. To
begin with, there are more symbols on the map overall. Second, the bicycle paths
have been further separated into two categories. Third, there are designated ”easy-
riding zones” (see Figure 14). For the increased complexity, below is the whole list
of cycling related features. The features from the lower complexity are present in
the higher complexity level as well:
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• Pumping Station

• Railway Crossing

• Bicycle Sign

• Bicycle Rental

• Main Bicycle Route

• O↵-Street Bicycle Route

• Easy-Riding Zone

Figure 14: Cycling Related Features with High Complexity (CRF2)
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Combination of the Layers

The combinations of the layers to the four stimuli used in the experiment are shown
in Figure 15 to 18.

Figure 15: BM1CRF1
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Figure 16: BM1CRF2

Figure 17: BM2CRF1
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Figure 18: BM2CRF2

3.2.2 Task Design

Five tasks must be completed in the experiment. Tasks 1 to 4 are entirely within-
subject, meaning that all the participants see the same stimuli. Between-subject
design is used in Task 5. Meaning that a variable is manipulated among the partic-
ipants. In this particular case, participants see BM1CRF1 or BM2CRF2. All of the
tasks are related to biking. A white slide with a cross in the middle is displayed after
each stimulus shown in the experiment. Before the following activity begins, the
participants should gaze at that cross to ensure that their eyes are aligned neutrally.
All tasks will be covered in the following sections.

Task 1

The first assignment involves the you-are-here (YAH) symbol, which is one of the
most crucial aspects of a reference map. Those YAH maps are traditionally in situ
since they represent the area in which they are located (Montello, 2010). Nowadays,
YAH maps are also available on digital devices, such as cell phones with GPS (Klippel
et al., 2006). Eight maps are shown in the first challenge, two for each factorial design
cell. Participants must look for the symbol and then click on it when they have found
it. The symbols are strewn around the map at random. But, two conditions are taken
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into account. First, the symbols should not be placed too close to the edge of the
map. In reality, if the YAH symbol is right on the edge of a map, the extract would
be made bigger. As a result, it would have been counterintuitive to the participants.
Second, symbols that are in the river are moved for obvious reasons. A grid has been
placed over the map for the random distribution. The x-axis ranges from 0 to 90,
and the y-axis ranges from 0 to 50. Random numbers between 3 and 87 and 3 and
57 were picked to account for the edge problem. Random.org was used to generate
these random values (Haahr, n.d.).

Task 2

The second assignment requires participants to look for and count bicycle racks.
When they have finished counting, they can proceed by clicking anywhere on the
screen, where a scale appears. This task resembles the act of looking for a parking
spot for the bicycle. The distribution of bicycle racks follows the same procedure
as for the YAH symbols in task one. In total, four maps are displayed with bicycle
rack locations constantly changing. The original plan was to always show seven
bicycle racks per map. However, the pilot run has shown, that always displaying
the same number is too conspicuous. Therefore, two times six and two times seven
bicycle racks are displayed in this task. Due to the need for randomization, the
bicycle racks are not distributed as they are in reality. Furthermore, depending on
the distribution, the visual map complexity changes. This aspect was tested before
utilizing the stimulus.

Task 3

In task one and two, the emphasis was on symbols. The third assignment, which
serves as a complement to the first two, focuses on areas and labels. This is partic-
ularly interesting since not only does the symbol density change inside the di↵erent
cells of the factorial design, but so does the amount of areas. In the third task, partic-
ipants have to search for a specific park. The name of this particular park appears at
the top of each map. After finding the park, the participant can proceed by clicking
on it. For this task there are four maps that are shown to the participant. However,
this task’s design is a little more di�cult. The park names must also be randomized;
otherwise, there may be a learning e↵ect if the park names remain the same. As a
result, the names of ten labelled parks always changed. Furthermore, variation was
introduced, which means that four distinct maps were created for each cell, but only
one was shown to the participant. This time-consuming method ensured that the
task would be random.
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Task 4

A starting and ending point is displayed on the map in task 4. A legend detailing
the various bicycle infrastructure displayed on the map is also available. Participants
must find the quickest route between the two spots. They should follow the fastest
route by hovering over it with the mouse once they have found it. The routes picked
were not the most important aspect of this endeavor. Rather, the eye-movements
are of interest for later investigation. This task is also performed on the four di↵er-
ent cells, thus on four maps with varying degrees of complexity. The starting and
endpoint were not assigned randomly. Rather, two routes with almost equal distance
and complexity were chosen. The starting and ending points for both routes were
altered. In other words, point A became point B and vice versa. This has not been
realized in either of the pilot runs. BM1CRF1 and BM2CRF2 had the same but
introverted route, as well as BM1CRF2 and BM2CRF1.

Task 5

The last task is the only one designed as a between-subject experiment. Some par-
ticipants are shown a BM1CRF1 map, while others are confronted with a BM2CRF2
map. This task does not include the remaining cells in the matrix (BM1CRF2 &
BM2CRF1). The sample size of the experiment must be larger if four maps are
shown in the between-subject design. As a result, the two images with the greatest
visual complexity di↵erence are displayed.

The objective of this task is to estimate the percentage of roadways with cycling
infrastructure. Again, the legend with the bicycle infrastructure is available for the
participants. When the participants are ready to enter their estimation, they can
proceed by clicking the button. Then, a scale from 0 to 100% is displayed, where the
estimated value can be clicked.

GIMP is used to calculate the ratio between streets with and without bicycle in-
frastructure. To count the pixels of bicycle streets and normal streets, all streets
were shrunk to the same width. The histogram is then used to calculate the ratio.

Dry Run

A dry run was conducted with each participant to ensure that everything was clear
to them and that they were familiar with the calibration process. The same five
tasks that were just introduced must be completed in the dry run. In the dry run,
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participants are simply given one task per map to complete. Furthermore, the map
shown in the dry run was only a small extract of a fictional map.

3.3 Procedure

All the sessions followed the same procedure. To ensure that all participants had the
same circumstances, a protocol was created and the experiment was always led by
the same person. All to ensure a consistent procedure. The protocol listed the sev-
eral phases, as well as what to say, do, and an estimation of how long each step takes.

The protocol for the experiment is given in this section (see Figure 19). The en-
tire experiment took roughly 20 minutes to complete. Half-hour intervals were set
up to ensure that there was enough time for preparation and post-processing, as well
as some bu↵er.

In order to conduct an experiment, some preparations had to be made. This included
sanitizing all surfaces, printing the consent form, and turning on the computer. Then
creating a new participant in Tobii Studio and opening the questionnaire in Google
Chrome.

In the next phase, the participant entered the room. A do not disturb sign in front
of the lab ensured that no one entered the room during the experiment.

The participant got seated to sign the consent form. To expedite the procedure,
each participant received a consent form in advance. There was adequate time for
the participant to read the permission form in-person if necessary (see appendix for
the consent form).

In the next phase, the introduction to the study and the eye-tracking took place.
The participant was informed that she/he would see di↵erent bike maps on the com-
puter screen and was required to complete various tasks. The eye-movements made
while doing these tasks were recorded. Also mentioned were the slides with the white
crosses on them. These were displayed after each map to make sure the eyes remained
focused on the computer’s center. Task 3 was already mentioned in advance because
the pilot runs revealed that hovering over the path with the mouse can be deceiving.
Instead of hovering, the pilots clicked on the screen. Finally, the participant was
informed that a dry run and a main run were held.
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Then, the calibration was explained. The calibration for the dry run was slightly
shorter than for the main run. It was crucial to make sure the participant was prop-
erly positioned in front of the screen. She/He was also told to ensure not to move too
much, as the eye-tracker does not handle movement well. Overall, they must be sit-
ting comfortably, as they may sink lower into the seat during the experiment. After
explaining how the calibration works, the calibration could be started. Depending
on the accuracy, the participant could proceed or had to repeat the calibration. For
this experiment, a maximal acceptable data loss of 10% was chosen. This threshold
was found to work well in the pilot run and other previous runs.

It was important to keep an eye on the participant throughout the dry run to en-
sure that everything worked properly. Following the dry run, the participant got
the opportunity to ask any questions she/he may have had. They got told that the
procedure of the main run is the same. The experiment began with a calibration,
followed by the experiment. The tasks remained the same, but the amount of maps
displayed and the number of subtasks changed.

Only the questionnaire remained after the participant completed the tasks. LimeSur-
vey was set up in a browser tab so that the participant could jump right to the
questions.

The participant was thanked for participating in the study and given a chocolate
bar. The data was backed up and the consent form was scanned and submitted once
the participant had left the room. The procedure then repeated itself, beginning
with the preparation phase for the next participant.
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Figure 19: Procedure of the Experiment

Setup

The experiment took place at the University of Zurich’s Irchel Campus in the Ge-
ographic Information Visualization and Analysis (GIVA) group’s Eye-Movement
Recording Lab (EML). This lab has no windows to maintain consistent lighting
conditions, so the pupil size of the participants is constant.

The test was carried out on a Dalco PC running Windows 7 Enterprise (SP 1).
This computer is powered by an Intel Core i5 760 processor (2.80 GHz, 8 MB cache,
16GB RAM). A 23-inch Estecom screen displays the stimuli. This display has a 1920
x 1080 resolution, a 5 millisecond reaction time, and a 16:9 image aspect ratio. To be
able to display the stimuli on this display, the resolution must be reduced accordingly.
The participant’s workspace is similar to a typical o�ce desk (see Figure 20). The
setup included a wheel mouse, a regular QWERTZ keyboard, speakers, and a web-
cam. To ensure that the participants stay in place, the chair provided is not movable.

The binocular Tobii TX300 eye tracker was employed, which has a data rate of
300Hz and a 0.4 degree precision. The required software is Tobii Studio running on
version 1.181.

The same Dalco PC is utilized for the questionnaire, using Google Chrome running
a Lime Survey questionnaire.
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Figure 20: Setup of the Participant’s Workplace
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4 Results

This chapter will give an overview of the study’s findings. Starting with the created
stimuli shown in the experiment and their corresponding complexity quantifications.
Then, the participant’s background and knowledge are presented. In the next step,
the results of every task of the experiment will be presented.

4.1 Measured Map Complexity

During the design process, the quantification measurements were of importance.
As the four stimuli should be a well-balanced set of complexities. The measured
complexity of the stimuli will be displayed in this section. It was necessary to modify
the maps for some tasks. The modified maps were also quantified to see if they have
an impact on the complexity.

4.1.1 Stimuli

Pixel-Based Quantification

The calculated GMLMT, Features Congestion, Subband Entropy, and Edge Density
for all four layers are shown in Table 2. It can be observed that for every measure
BM1 < BM2, while CRF1 < CRF2. Furthermore, base map layers are more complex
than cycling related feature layers (BM1 > CRF1, and BM2 > CRF2). The initial
goal was to have similar BM1 and CRF1, as well as BM2 and CRF2 values. However,
having unbalanced sets was inevitable, as base maps have a per se higher complexity.
To match the base maps’ complexities, a high amount of cycling related features
would have to be added to the map, which would lead to an unrealistic result.

Layer GMLMT Feature Congestion Subband Entropy Edge Density
BM1 10.7% 3.95 3.86 3.8%
BM2 15.5% 4.98 4.29 6.1%
CRF1 8.4% 3.98 3.38 3.1%
CRF2 11.0% 4.680 3.53 4.0%

Table 2: Quantification of Layers

The quantification for all four stimuli is shown in Table 3. For every measure,
BM1CRF1 > BM1CRF2 & BM2CRF1 > BM2CRF2. As a result, the overall goal of
balancing was achieved. BM1CRF1 has always the smallest complexity, BM2CRF2
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the highest, and the others are somewhere in between. The goal was for BM1CRF2
and BM2CRF1 to be as similar as possible. Again, this was not possible because
base maps have a higher complexity than cycling related features. BM1CRF2 is
more complex than BM2CRF1 according to GMLMT, Feature Congestion, and Edge
Density. Only for Subband Entropy, BM1CRF2 was smaller than BM2CRF1. It is
no surprise that Subband Entropy has distinct values, given this metric takes a
di↵erent methodology than the other. It is the only measure that is not based on
edge detection, instead, it considers the di�culty of encoding an image or a map.
Another essential aspect was to make sure that the spacing between BM1CRF1
and BM1CRF2 & BM2CRF1 is more or less equal to BM1CRF2 & BM2CRF1 and
BM2CRF2. This aspect was likewise fulfilled. GMLMT, for example, measures
a spacing of 4.2% and 3.8%. Again, the spacing has some acceptable variation.
Acceptable is not meant scientifically, rather, it is objectively acceptable after having
attempted various approaches to get a balanced set.

Stimuli GMLMT Feature Congestion Subband Entropy Edge Density
BM1CRF1 16.5% 5.71 4.31 6.7%
BM1CRF2 20.7% 6.66 4.44 8.8%
BM2CRF1 20.1% 6.25 4.55 7.1%
BM2CRF2 23.9% 7.06 4.61 9.2%

Table 3: Quantification of Stimuli

BM1CRF1 and BM2CRF2 are shown in Figure 21. As previously stated, bright
cells and high values indicate a high level of complexity. It can be observed that
BM2CRF2 is more complex, as it has a brighter grid than BM1CRF1. The distri-
bution of the brightness of the grids is comparable between the two stimuli. The
center of both stimuli is the most complex, while the upper-right section is the least
complicated.
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(a) BM1CRF1 (b) BM2CRF2

Figure 21: Outputs of the GMLMT

Not Pixel-Based Quantification

The distinct object-type count was also applied for the produced stimuli. This
method is based on the notion that the number of various categories on a map
influences complexity as well as the overall number of individual elements on the
map. Figure 22 shows the distinct object-count per complexity, subdivided into la-
bels, roads, land use, and hydrology. In all complexities, the 12 distinct objects of
BM1CRF1, are visible. BM1CRF2 has 19 objects. BM2CRF1 contains 14 objects,
while BM2CRF2 has the highest object-count with 21. This set is uneven from the
standpoint of object-count. BM1CRF1 is still the least complex and BM2CRF2 is
the most complex map. But, BM1CRF2 and BM2CRF1 have big di↵erences. To
achieve a balanced set of measures, an imbalanced object-count metric was unavoid-
able. The only way around this would be to create a fictitious map.
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Figure 22: Distinct Object-Count for every Stimuli

4.1.2 Modified Stimuli

Some of the stimuli have to be altered for the tasks. The task-specific stimuli were
also quantified to ensure that the di↵erent metrics did not change too significantly.
Table 4 shows the measures split by task. The numbers .1, .2, and .3 refer to the stim-
uli used in the experiment. In Task 1, for example, eight di↵erent stimuli were shown.

Only the placement of the YAH symbol changes in Task 1, therefore the measures
nearly show no change. For GMLMT the subtasks with the same stimuli always have
the same value (Task1.1 = Task1.2, Task1.3 = Task1.4, and so on). There are very
few changes in Feature Congestion and Subband Entropy. The stimulus set is still
balanced on all measures.

Bicycle racks are displayed in Task 2. Six (in Task2.2, Task2.3) or seven (in Task2.1,
Task2.4) bicycle racks change their location on the map. As a result, the GMLMT
varies from the original value. In BM1CRF1, BM1CRF2, and BM2CRF1 the com-
plexity decreased slightly, as for BM2CRF2 the complexity increased. The bicycle
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Complexity Task GMLMT Feature Congestion Subband Entropy
BM1CRF1 Task1.1 16.6% 5.71 4.29
BM1CRF1 Task1.2 16.6% 5.72 4.28
BM1CRF2 Task1.3 20.7% 6.67 4.43
BM1CRF2 Task1.4 20.7% 6.67 4.433
BM2CRF1 Task1.5 20.1% 6.25 4.52
BM2CRF1 Task1.6 20.1% 6.26 4.52
BM2CRF2 Task1.7 20.7% 7.07 4.61
BM2CRF2 Task1.8 20.7% 7.07 4.61
BM1CRF1 Task2.1 16.0% 5.62 4.29
BM1CRF2 Task2.2 20.6% 6.69 4.46
BM2CRF1 Task2.3 20.0% 6.37 4.56
BM2CRF2 Task2.4 24.6% 7.24 4.59
BM1CRF1 Task3.1 16.2% 5.64 4.34
BM1CRF2 Task3.5 20.3% 6.59 4.47
BM2CRF1 Task3.10 19.7% 6.17 4.58
BM2CRF2 Task3.13 23.5% 7.00 4.65
BM1CRF1 Task4.1 16.7% 5.99 4.24
BM1CRF2 Task4.2 20.8% 6.86 4.42
BM2CRF1 Task4.3 20.3% 6.51 4.48
BM2CRF2 Task4.4 24.0% 7.23 4.59
BM1CRF1 Task5.1 17.8% 6.19 4.24
BM2CRF2 Task5.2 24.9% 7.50 4.56

Table 4: Quantification of Task Stimuli

racks were placed on the map at random. As a result, the numbers fluctuate depend-
ing on where the bicycle racks are placed. However, the stimuli are still well-balanced.

Task 3 includes 16 di↵erent stimuli, however, only four were shown to each par-
ticipant. Table 4 contains four examples, one for each level of complexity. In this
task, the names of the parks were assigned at random. The names vary in length
and complexity, but this has little e↵ect on the total complexity score.

Task 4 requires the participant to find the quickest path. A and B points were
included in the map, which has an impact on the map’s complexity. However, as
only two symbols change, the di�culty has only changed marginally.
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In Task 5, the stimuli shown to the participant contains the task description. As a
result, the measurements for task 5 are slightly higher.

4.2 Participants’ Background

Initially, 44 people signed up to take part in the eye-tracking experiment. While
attempting to calibrate the system in four experiments, issues arose. Tobii Pro Lab
was unable to detect the eyes. Only now and then do the eyes appear for a short
amount of time. The project had to be stopped after several attempts. No data
were obtained for these four participants, hence no data is included in the results
section. After completing 35 successful experiments, the eye-tracking device failed,
and no more experiments were possible. As a result, this study includes data from
35 people.

4.2.1 Socio-Economic Background

The 35 participants had an average age of 25 years, with a standard deviation of 2.3
years. The age range was 21 to 34 years old. 11 participants were female and 24
were male. None of these participants indicated color-blindness.

The majority of the participants are geography students (67%), as they were in-
dividually invited to participate in the experiment. Only a small percentage of the
participants had other backgrounds (8% teaching, 25% other).

4.2.2 Familiarity with Maps and Bicycles Usage

To find out the prerequisite the participants had with maps and cycling, they were
asked about their familiarity in the questionnaire. Figure 23 - 25 show the plotted
likert scale, for the familiarity questions. Figure 23 and 24 have the same levels
(maps, bike maps, and bicycles).

First, the participants were asked about their familiarity with maps in general, bike
maps, and cycling, then they were asked how often they use them. It is no surprise
they are almost congruent. The participants have a high level of familiarity with
maps and frequently utilize them. The same appears for cycling. The participants
are familiar with cycling and also use them often. Compared to the inhabitants of
Portland, it can be said that the familiarity of the present sample with cycling is
higher. The categorization of the inhabitants by Dill and McNeil (2016) was created
with di↵erent criteria. However, the sample might use bicycles more often than the
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average population. This could be due to the relatively young age of the participants.
The intersection between maps and cycling are bike maps. However, it is remarkable
that this criterion has the lowest familiarity and utilization.

The familiarity with various types of maps can be seen in Figure 25. The famil-
iarity of the sample with Google Maps is by far the highest. Everyone is at least
somewhat familiar, while most are even moderately or extremely familiar. The famil-
iarity with paper maps is lower than with Google Maps, but still, there are not many
people being not familiar with paper maps. OpenStreetMap has the third-highest
familiarity. This might be explained by the participants’ background, as many of
them work or study in the field of geography. The sample is least familiar with Bing
Maps and Apple Maps.

cycling

bike maps

maps in general

no
t fa

milia
r

slig
htl

y f
am

ilia
r

so
mew

ha
t fa

milia
r

mod
era

tel
y f

am
ilia

r

ex
tre

mely
 fa

milia
r

Figure 23: Distribution of participants’ familiarity with maps in general, bike maps,
and cycling
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Figure 24: Distribution of how often participants use maps, bike maps, and bicycles
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Figure 25: Distribution of participants’ familiarity with di↵erent sorts maps
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4.3 Eye-Tracking

In this section the results of the eye-tracking experiment will be discussed. Before,
the essential eye-tracking features and needed statistics will be shortly introduced.

Replay Recordings

Tobii Pro Lab allows you to playback any recording. The stimuli, as well as the
place where the eyes are focused, can be re-watched in real-time. The replay speed
can be changed, and a timeline zoom range can be used to browse specific points of
interest (Tobi Pro, 2021). This tool helps comprehend what happened during the
experiment. For instance, if the experiment’s executor wishes to know if particular
AOIs were missed or if the AOI box was just too small. This tool came in handy for
determining the size of the AOIs.

Heat Maps

Heat maps are usually generated on top of a stimulus. Heat maps do aggregate the
duration or numbers of all fixations at the same location. Heat maps are visualized
using several colors, the most frequent of which are red for high or extended fixations
and green for low fixations, with varying degrees in between. Heat maps can be
made for a single person, but they can also be used to visually summarize the eye
movements of multiple participants intuitively (Tobi Pro, 2021).

Areas of Interest

Based on a region of interest in the stimuli, AOIs can provide statistical information
for additional studies. Drawing the AOI is a crucial step. The participants may miss
the AOIs if they are drawn too small. If they are drawn too large, they may be struck
without the participant even realizing it. Furthermore, there is no set size for AOIs
because it is dependent on the size of the object of interest. Before conducting the
experiment the size of the AOIs was modified several times to find the appropriate
size. For example, to complete the first task of the experiment, each participant
must be able to locate a symbol, which necessitates a hit of the AOI. When drawing
the AOIs, it was assured that when the items of interest are the same size, so are
the AOIs.
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Statistics

The exported metrics from Tobii Pro Lab are loaded into R for data processing and
statistical analysis. For data management, statistical tests, and plot creation and
styling, the packages agricolae, ggrdiges psych, tidyverse, and yarr are utilized.

The goal is to utilize analysis of variance to analyze the variance in the gathered
data. Within-subject (repeated measures) and between-subjects ANOVA tests are
available (separate groups). Before conducting ANOVA, tests for normal distribu-
tion and homoscedasticity have to be conducted.

To check for normal distribution, the Shapiro-Wilk test is utilized (Royston, 1995 &
Martin, 2008). Data is additionally examined on a log-normal distribution as time
is not normally distributed. Another criterion for performing ANOVA is that the
groups’ variances are equal. To verify the data for homoscedasticity, Levene’s test
is executed. If ANOVA reveals significant di↵erences, Tukey’s honestly significant
di↵erence (HSD) test is used to determine where di↵erences within the groups exist
(Hervé and Williams, 2010). When the data is not (log-)normally distributed, a non-
parametric test was used. The Mann-Whitney U test, also known as the Wilcoxon
rank sum test, is used for this purpose (Weiner and Craighead, 2009). The data used
in this test is not log-transformed.

4.3.1 Task 1: Locate the YAH Symbol

Task 1 required participants to locate a YAH symbol on the map. All in all, eight
maps were shown to the participants. For Task 1 the time to first fixation (TTFF)
per subtask and per stimuli are measured.

Time to First Fixation per Subtask

The TTFF for each subtask is shown in Figure 26. It is possible to observe di↵erences
not only between but also within the stimuli. The biggest di↵erence within the stimuli
can be seen in tasks 1.3 and 1.4. Possible reasons will be discussed in the discussion
chapter. Furthermore, it is striking that the stimuli BM2CRF1 (Task 1.7 and Task
1.8) have the biggest boxes and whiskers with the overall highest time values.
In the next step, the gathered data will be statistically analyzed. As the intention
was to perform an analysis of variance, the data must be normally distributed and
fulfill homoscedasticity. The data was neither normally distributed nor log-normally
distributed (see appendix for test results). As the prerequisite of normal was not
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Figure 26: Time to First Fixation per Subtask

met, the Mann-Whitney U test was used. Figure 27 shows a matrix for the pairwise
test. Many paired tests are significant. Stimuli BM2CRF1 and BM2CRF2 are not
significantly di↵erent within them. Furthermore, Task 1.1 and Task 1.4 are also not
significant.
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Figure 27: Matrix for Mann-Whitney U Test per Subtask

Time to First Fixation per Stimuli

The data is aggregated to check between the di↵erent stimuli after having checked
the individual tasks. Figure 28 shows the TTTFF per stimuli. In the aggregated
boxplot, BM1CRF1 and BM1CRF2 have fairly similar boxes and medians, however,
BM2CRF1 has lower time values and BM2CRF2 has higher values.

Again, the requirement of normal-distribution for ANOVA was not met, and thus
the Mann-Whitney U test was performed. The matrix for the paired test is shown
in Figure 29. The boxplot shows that BM1CRF1 and BM1CRF2 are quite similar
and that they are the only two stimuli that are not significant. It is crucial to
note, however, that BM2CRF1 is significantly smaller than BM1CRF1, which was
unexpected.
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Figure 28: Time to First Fixation per Stimuli
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Figure 29: Matrix for Mann-Whitney U Test per Stimuli

4.3.2 Task 2: Count Bicycle Racks

Task 2 required participants to count all bicycle racks on the map. There were four
maps in total, one for each stimulus. Seven bicycle racks are depicted in BM1CRF1
and BM2CRF2, whereas six bicycle racks are depicted in BM2CRF1 and BM1CRF2.
Average time to new fixation, duration of task completion, fixation count, and accu-
racy will be statistically examined in the following sections.

Average Time to New Fixation

The average time to first fixation is shown in Figure 30. For example, the first bicycle
rack in BM1CRF1 gets fixated the earliest on average, whereas participants took the
longest to fixate on the first bicycle rack in stimuli BM1CRF1. There is no data for
bicycle rack seven for stimuli BM1CRF2 and BM2CRF1, as only six were displayed.
This is why the lines stop at bicycle rack number six. All in all, it can be stated
that for BM1CRF1 it took participants the shortest to fixate on the bicycle racks,
followed by BM2CRF1, BM2CRF2, and BM1CRF2. However, for the fixation on the
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fifth and sixth bicycle racks, it took the participants a little less time for BM2CRF1
than BM1CRF1.
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Figure 30: Average Time to First Fixation per Bicycle Rack

Figure 31 shows the average time needed to a new fixation on a bicycle rack. As a re-
sult, the previously described trend of Figure 30 remains unchanged. For BM1CRF1
participants took the least amount of time to find a new bicycle rack, while for
BM1CRF2 they took the most time to find a new one.

An analysis of variance was again the goal. The data is not normally distributed,
although it does follow a log-normal pattern (see appendix for Shapiro-Wilk test
results). Therefore, Levene’s Test for Equality of Variances can be performed. The
test reveals a p-value of 0.77, indicating that the homogeneity of variance assumption
is met. ANOVA reveals that there are significant di↵erences between some stimuli
(p-value = <2e-16). The Tukey HSD shows that BM1CRF1 and BM2CRF1 are not
significantly di↵erent, just like BM1CRF2 and BM2CRF2. All of the other combina-
tions are significant. The appendix contains all values and results (for Shapiro-Wilk,
Levene’s Test, ANOVA, and Tukey HSD).
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Figure 31: Average Time to New Fixation

Duration of Task Completion

After examining the time to first fixation for task 2, the duration of task completion
is investigated. Figure 32 shows the boxplot for the time needed for task completion.
The plot seems similar to Figure 31. This seems understandable, as people finish
tasks faster when they are faster at spotting the symbols.

As both Shapiro-Wilk tests reveal a lack of normal distribution, the Mann-Whitney
U test is used. The matrix for this test can be found in the appendix. BM1CRF1 and
BM2CRF1 were significantly di↵erent from BM1CRF2 and BM2CRF2. BM1CRF1
and BM2CRF1, like BM1CRF2 and BM2CRF2, were not significant.
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Figure 32: Time Needed for Task Completion

Fixation Count

Next, the number of count fixation will be analyzed. Meaning, how often do the
participants look on average on a bicycle rack, before moving on. Figure 33 shows
the mean fixation count for the four stimuli.

The tests for normal and log-normal distributions are in the appendix, as neither
test show normal distribution, the Mann-Whitney U test is applied. The results of
the test were the same as the duration for task completion (see appendix for the
matrix).
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Figure 33: Fixation Count

Accuracy

Initially, the plan for task 2 was to set a time limit of 15 seconds to complete this
assignment to provide some pressure. Then, the idea altered to not impose a time
limit because there is none in reality. Rather, all participants should be able to find
all bicycle racks. Nonetheless, not all participants in the experiment were able to
identify all bicycle racks, necessitating this section on accuracy.

Figure 34 shows the distribution of counted objects per stimuli. The correct an-
swer for BM1CRF1 was seven bicycle racks, while the correct answers for BM1CRF2
and BM2CRF1 were six bicycle racks. For every stimulus, the majority counted the
objects correctly. For BM1CRF1 all the participants counted gave the correct answer
(100%). The second greatest accuracy has BM2CRF1 (94%), followed by BM1CRF2
(91%) and the lowest accuracy of counted bicycle racks has BM2CRF2 (74%).
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Figure 34: Counted Objects per Stimuli

4.3.3 Task 3: Locate a Park

The goal of task 3 was to locate a park marked on the map. In Task 3 the aim was
to search for a park represented on the map. For randomization the names of the
parks changed for every subtask, however, the location of the parks did not change.
A learning e↵ect can not be excluded. The outcomes of this task should be handled
with caution. The amount of parks that have been focused on in Task 3 is dependent
on when the searched park was detected. In Figure 35 a gaze plot for Task 3 can be
seen. The park searched park was detected after looking at two other parks. The
average time to new fixation and duration of task completion will be examined in
the following sections.
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Figure 35: Gaze Plot Example

Average Time to New Fixation

As previously stated, the participants could complete the task without looking at
every park. Figure 36 shows the average time to fixation for the first, second, third,
and subsequent parks. Only five parks are shown on the x-axis because higher values
have fewer samples. There is no clear result in the graph. The average time appears
to be the longest for BM1CRF1. For the other stimuli, it is di�cult to see a pattern,
as they intersect before four parks.
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Figure 36: Average Time to First Fixation

In Figure 37 the average time to new fixation is shown. Again, for BM1CRF2 par-
ticipants had the longest to focus on new objects. This is the same observation as
can be drawn from Figure 36. It is important to keep in mind that with rising park
numbers, fewer observations are taken. As a result, parks one, two, and three have
more entries in Figure 37, than parks six, seven, eight, and nine.

Shapiro-Wilk reveals a normal distribution for all averaged time to new fixation.
Levene’s test has a p-value of 0.313, allowing an ANOVA to be performed. The
analysis of variance depicts no significant di↵erences within the four stimuli.
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Figure 37: Average Time to New Fixation

Duration of Task Completion

Figure 38 shows the time needed for the completion of the task. It can be ob-
served that all stimuli have similar values. This observation is also highlighted when
applying statistics. The Mann-Whitney U test was used since the data was not (log-
)normally distributed. The test reveals that there are no significant di↵erences in
the time needed for task completion. The appendix contains all the tests that were
undertaken.
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Figure 38: Time Needed for Task Completion

4.3.4 Task 4: Search for a Route

In task 4, participants must find the quickest route between points A and B. For
stimuli BM1CRF1 and BM2CRF2 A and B had the same position but were inverted.
BM1CRF2 and BM2CRF1 were treated in the same way. The duration of task
completion and the time to the first fixation will be analyzed and shown in the
following heat maps.

Heat Maps

Figure 39 and 40 show the absolute count heat maps for Task 4. In all stimuli,
the legend was fixated often. The frequency with which the tale was fixed will be
compared later in this chapter. Some di↵erences are illustrated in Figure 39. In
stimuli BM1CRF1 more participants looked at a route that followed the euclidian
shortest path, whereas in BM2CRF2 more people decided on a route following a
street in the east. In Figure 40 stimuli BM2CRF1, more participants focused on a
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route in the south, whereas in BM1CRF2, a section of the most fixated route was
further north.

Figure 39: Heat Maps for BM1CRF1 (left) and BM2CRF2 (right)

Figure 40: Heat Maps for BM1CRF2 (left) and BM2CRF1 (right)

Time to First Fixation

Figure 41 shows the time to first fixation per symbol. It is important to mention,
that it is random on which symbol the participants fixate initially on. Therefore,
looking first at point B was interpreted as a fixation on point A and vice versa. This
procedure ensured that symbol A has a lower value than symbol B. It can be said
that the time to the first fixation on point A is quite similar within the stimuli. It
seems that like in task 1 BM1CRF1 and BM2CRF1, the maps with a low amount of
symbols, have lower values than BM1CRF2 and BM2CRF2. The same appears to
be true for symbol B. This was also statistically verified.
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First fixations on symbol A and B show no (log-)normal distribution. Therefore,
the Mann-Whitney U test is applied to both datasets. For the start symbol, no
significance was found. For the second symbol, significance could be found. Table 5
shows the calculated values for the Mann-Whitney U test.
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Figure 41: Time to First Fixation per Symbol

BM1CRF1 BM1CRF2 BM2CRF1 BM2CRF2
BM1CRF1 - - - -
BM1CRF2 0.0087 - - -
BM2CRF1 0.0018 2e-07 - -
BM2CRF2 0.8549 0.0251 0.0006 -

Table 5: Mann-Whitney U Test for TTFF for the Second Symbol
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Duration of Task Completion

As the final analysis step for task 4, the duration for task completion was investigated.
Figure 42 shows the task duration per stimuli. It was expected that the participants
would take the least amount of time to complete BM1CRF1, but instead, BM2CRF1
took them the least amount of time followed by BM1CRF2.

BM1CRF1

BM1CRF2

BM2CRF1

BM2CRF2

5 10 15 20 25 30 35 40 45 50 55 60 65 70
Time [s]

Figure 42: Duration for Task Completion

Table 6 shows the Mann-Whitney U test, as the obtained data is not (log-) normally
distributed. BM1CRF1 is significantly di↵erent from BM2CRF1 and BM2CRF2.
BM2CRF2 di↵ers from the other three stimuli.

BM1CRF1 BM1CRF2 BM2CRF1 BM2CRF2
BM1CRF1 - - - -
BM1CRF2 0.530 - - -
BM2CRF1 0.0258 0.0622 - -
BM2CRF2 0.0258 0.0056 8.8e-06 -

Table 6: Mann-Whitney U Test for Duration of Task Completion
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4.3.5 Task 5: Estimate Bicycle Infrastructure

Task 5 was designed as a between-subject design. Half of the sample had to assess
BM1CRF1, while the other half were asked to give an estimation on BM2CRF2. The
stimulus shown to the individual was randomized to achieve this. Due to technical
di�culties, always the identical stimulus was shown to the participants. Luckily,
this issue was discovered after conducting the experiment with 19 participants. After
that, only the second stimulus was shown to the participants. In total, 19 participants
have seen BM1CRF1 and 16 looked at BM2CRF2. Figure 43 shows the aggregated
heat maps for absolute fixation count on both stimuli. The task description was
on the top of both stimuli, hence this location had a high fixation count. In the
following, the duration of task completion and accuracy of the estimations will be
investigated.

(a) BM2CRF2 (b) BM2CRF2

Figure 43: Heat Maps of Fixation Count

Duration of Task Completion

Figure 44 displays the duration for the task completion, meaning in this case, how
long did the participants look at the shown map, before entering their estimation. It
is visible that for BM1CRF1 the participants needed a shorter amount of time. This
perception can be validated after doing statistical tests, as they di↵er significantly
(see appendix for results).
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Figure 44: Duration of Task Completion

Accuracy of the Estimations

Figure 45 shows the estimation of task 5. The red line represents the correct value
of 27.6%. Participants’ estimates for BM1CRF1 are generally greater, with a wider
range. Aside from the plot, the values were evaluated using the accurate value of
27.6%, as a parameter to formulate the null hypothesis. The Wilcoxon-Test was
applied to accomplish this (see Table 7). The estimation based on BM1CRF1 di↵ers
significantly from the correct answer (p-value = 0.03). However, the estimation based
on BM2CRF2 do not di↵er (p-value = 0.45). It is interesting to see, that when the
participants see BM1CRF1, they make decisions faster but estimate worse.
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Figure 45: Estimations on Bicycle Infrastructure

BM1CRF1 BM2CRF2
V 149 0.03078

p-value 53 0.4516

Table 7: Wilcoxon Test
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5 Discussion

5.1 Interpretation of the Results

This section interprets the findings to answer the research questions and test the
hypotheses that have been proposed. The first subsection will address research ques-
tions 1a and 2a about the visual complexity of bike maps. The e↵ects of the visual
complexity on bike map e�ciency will be examined in the second subsection. This
corresponds to research questions 1b and 2b.

5.1.1 Visual Complexity of Bike Maps

Base Maps

The following research question and hypothesis address the visual complexity of base
maps:

1a) How visually complex are di↵erent bicycle base maps?

H1a) More detailed base maps are visually more complex.

After a quantitative analysis of the experiment’s base maps, it can be concluded
that the detail of base maps and visual complexity is positively correlated. For all
measurements, GMLMT, Feature Congestion, and Edge Density, the measured com-
plexity was higher for the more detailed base map.

This conclusion is intriguing because only two items are added to the more de-
tailed base map: hospitals and buildings. It is reasonable to conclude that size of
the added element is an important factor. The measurements are highly sensitive
when elements have a lot of edges. Buildings, for example, have a lot of edges and
are distributed all over the map, which adds to the visual complexity.

Another factor to consider is contrast. When an element’s color is drastically di↵er-
ent from its surroundings, it creates a greater edge. This can be observed when the
layers are combined. The complexity measure of BM1CRF1 is lower than the sum
of BM1 and CRF1. BM1 and CRF1 are depicted on a white background, resulting
in sharp edges. Some edges get weaker when they are merged to form BM1CRF1,
as the transitions become less sharp. This was also detected during the development
of BM1. The complexity of the building’s layer decreases as transparency is increased.
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Detail may be interpreted in two di↵erent ways. First, when more categories are
depicted on a map, it becomes more detailed. Second, the level of detail (LOD) has
also an e↵ect. In this context, examples are the number of streets or labels that are
displayed. The level of detail also has an impact on visual complexity. It is, however,
dependent on the size and color of the inserted elements. Adding a few extra labels
or small streets, for example, has a minor impact on the estimated map complexity.

The findings of the complexity measurements contradict the distinct-object count
in certain ways. As the metrics emphasize major di↵erences, BM2 includes only two
additional categories (hospitals and buildings) than BM1. Comparing distinct-object
count to quantification measures could be argued to be fairly pointless. The display
of one or more objects from a category does not a↵ect the distinct-object count, but
it does a↵ect the measurements. This is correct in this case. Distinct-object counts
make greater sense when the e�ciency of map users is taken into account.

Overall, the hypothesis for 1a) can be accepted. A more detailed base map leads
to a visually more complicated cycling map for any quantification method, whether
pixel-based or not.

Cycling Related Features

The following research question and hypothesis address visual complexity of cycling
related features:

2a) How does the display of di↵erent cycling related features a↵ect the visual com-
plexity of bike maps?

H2a) More displayed cycling related features are visually more complex.

The quantitative analysis of cycling-related elements reveals that showing more
cycling-related features increases visual complexity. Likewise, for base maps, all
applied quantification measurements reveal a higher level of complexity. For Sub-
band Entropy, the slightest di↵erence can be seen. Compared to GMLMT, and Edge
Density, this metric has a di↵erent methodology, as it takes the di�culty of encoding
a map into account.

Compared to base maps, more categories are added to CRF2. Pumping stations,
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railway crossings, bicycle signs, bicycle rentals, and easy riding zones are depicted
for the higher complexity of cycling related features. Also, bicycle routes have been
further dived into main bicycle routes and o↵-street bicycle routes. In total, there
are six more di↵erent objects on CRF2 than on CRF1. In this context, adding more
cycling-related elements has a smaller e↵ect than adding basic map categories, ac-
cording to the complexity assessments. This can not be said for all stimuli, but it is
the case for the ones used in the experiment.

The easy-riding zone is the feature that covers the most ground. Easy-riding zones
are not always depicted on bike maps. However, for example, pedestrian areas are
frequently displayed. Pedestrian areas and easy-riding zones both have the charac-
teristic of being widely distributed, resulting in a bigger impact on complexity than
other features. Zones have a smaller impact than buildings regarding visual complex-
ity, as zones have fewer edges. In some cases, the depiction of zones can minimize
complexity, when it is represented with a color leading to less contrast and thus less
strong edges on the maps. But, poor contrast caused map users to perceive this zone
worse. It would be interesting to conduct further research and experimentation to
see how di↵erent colors a↵ect complexity. Likewise for buildings, picking the color
can influence measured map complexity.

The hypothesis for 2a) can be accepted. The more cycling-related features that
are displayed, the more visually complicated they are. When the cycling-related
characteristics are integrated with the base map, however, it’s vital to remember
that zones might minimize visual complexity.

5.1.2 Impacts of Visual Complexity on Bike Map E�ciency

Accepting hypotheses for 1a and 2a allows the usage of the prepared stimuli in the
experiment. The eye-tracking experiment was done to learn more about the impact
of visual complexity on bike map e�ciency. The following are the impact-related
study questions and hypotheses:

1b) How does visual complexity of base maps a↵ect e�ciency of bike maps?

H1b) Bike maps with visually complex base maps are less e�cient.

2b) How does the display of di↵erent cycling related features a↵ect e�ciency of
bike maps?
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H2b) Bike maps with more displayed cycling related features are less e�cient.

The base maps and cycling-related features were always depicted simultaneously
in the experiment to create a realistic map. As a result, analyzing BM and CRF
separately can be di�cult. When the four stimuli are shown together, the e↵ects
of BM and CRF on e�ciency can still be seen, as each complexity layer appears
twice. For example, BM1CRF1 and BM1CRF2 have the same base map complexity.
Comparing those two layers, it is still possible to conclude about the influence of
base map complexity on e�ciency.

Task 1: Locate the YAH Symbol

For task 1, the participants were expected to find the YAH sign in the stimuli
BM1CRF1 first, then BM2CRF1, BM1CRF2, and BM2CRF2. According to the
hypotheses, more complex bike maps are less e�cient. Furthermore, CRF1 contains
fewer symbols than BM1CRF2, thus the participant seeking the symbol may be less
distracted.

The position of the symbols had an impact on the outcomes. In some cases, two
subtasks performed on the same stimuli show significant di↵erences. This is true
for two stimuli (Task 1.1 with Task 1.2, as well as Task 1.3 and Task 1.4). When
looking at the stimuli (all of which are included in the appendix) it is striking that
symbols towards the middle of the maps are noticed faster than those nearer to the
maps’ borders. This is independent of the map’s complexity. To avoid this problem,
complete randomization of the symbol’s placement would be needed.

In the next step, the subtasks were summed up to enable comparison between the
stimuli. It is interesting to see that overall participants took the least amount of time
to locate the symbol BM2CRF1, followed by BM1CRF2, BM1CRF1, and BM2CRF2.
The position of the symbols could potentially be a reason why BM2CRF1 has lower
values than BM1CRF1. For BM2CRF1, the symbols were again closer located to
the center. In both BM1CRF1 and BM2CRF2, the symbols were about the same
distance from the center. The symbols in BM2CRF2 are located in areas where
map information is rather low. According to Mackworth and Morandi (1967) there
is fewer fixation in places where the information load is low. As a result, the high
values for stimuli BM2CRF2 can also be explained by the position of the symbols.
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As previously stated, complete randomization of this task is required to generate
non-biased results. The location appears to have more of an impact on the outcome,
than the map complexity. This is also something map designers should bear in mind
while creating maps. Selecting an extract with the YAH symbol in the center of the
map can help users avoid searching for a long time.

Task 2: Count Bicycle Racks

The expectations for the second task were the same as the first. Given the continued
emphasis on symbols, less e�cient performance for the second level of cycling-related
features complexity was expected.

For this task, the outcomes are more in line with the expectations. Maps with
fewer cycling related feature complexity have lower values and are thus more e�-
cient than those with more cycling related features. This holds true for both the
average time to new fixation and the duration it takes to complete a task. These
results are bolstered by the statistical tests performed. In terms of average time to
first fixation per bicycle rack it can be observed that for bicycle racks five and six,
BM2CRF1 has lower values than BM1CRF. This seems to be rather random and
no explanation was found. It is also worth noting that BM2CRF2 was more e�-
cient than BM1CRF2. The distribution of bicycle racks could be again the reason,
although nothing unusual can be found.

Another aspect to consider for this task is the correctness of the values entered
by the participants. The accuracy matches predictions, with BM1CRF1 having the
highest accuracy, followed by BM2CRF1, BM1CRF2, and BM2CRF2. One probable
explanation is that as the map becomes more complicated and more symbols are
depicted on the map, the map reader becomes more confused and struggles to locate
all the bicycle racks. The fact that BM2CRF2 has by far the lowest accuracy rate
is intriguing. This aspect demonstrates that also the design of the base map might
have an impact on e�ciency, as the participants were only partially successful in
completing the task.

Task 3: Locate a Park

Task 3 was designed to have an antipole of tasks 1 and 2. In those tasks, CRF and
symbols were of interest. As a result, task 3 should take into account the various
levels of base map complexities. This task was not well-constructed enough. The par-
ticipants recognized where the parks are on the map after the first subtask, and there
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was a learning e↵ect as only the names of the parks, not their locations, changed.
Rather, the participants’ ability to read park names quickly was the focus in the end.

This e↵ect is mirrored in the task’s outcomes. There were no significant changes
in the average time to new fixation and the time required to complete the activity.
Looking at the created boxplot some trends can be seen, however, discussing them
in detail would be rather inappropriate.

Task 4: Search for a Route

In previous assignments, a symbol or a park had to be found. In task 4 the com-
bination of base maps and cycling related features should be both addressed. The
assumption for this task is that symbols of less complex maps are detected faster
and the time needed for task completion is shorter.

The heat maps reveal that the stimuli’s legends are more or less fixated equally
often. It would be feasible to discuss the various routes taken by the participants
based on the heat maps. When comparing BM1CRF1 with BM2CRF2, map com-
plexity appears to have an e↵ect, as other routes have been partially fixed. Because
the impact of complexity on route choice is not considered part of e�ciency, it is not
covered here.

Time to first fixation of symbols was already investigated in task 1. Many sig-
nificant di↵erences could be detected in this task. In the instance of task 4, this
was not the case. The fixation of the first symbol showed no significant di↵erences.
However, a pattern can be seen. The values of BM1CRF1 are lower than those of
BM2CRF2, while the values of BM2CRF1 are lower than those of BM1CRF2. Task
1 revealed that finding a symbol takes longer when the amount of cycling related
features displayed is greater. For the second symbol, significant di↵erences could be
found. Only BM1CRF1 and BM2CRF2 showed no significant di↵erences. It is hard
to pinpoint a plausible cause for this case; perhaps further testing should be run on
this task to determine if this is an outlier or not. All in all, the same pattern could
be observed for the detection of the first symbol. There is a trend that stimuli con-
taining CRF1 symbols are identified faster than stimuli containing the second level
of cycling related features.

The previous trend can be noticed again for the duration of task completion. When
providing stimuli with a low level of visual complexity, it took less time to decide on a

74



route. However, the location of the stimuli may have influenced the time needed. For
this task, the symbols have been inverted. For stimuli BM1CRF1 and BM1CRF2,
the route is from top to bottom and from left to right, respectively. It is plausible
that if the route is from the bottom to the upper part of the map (BM2CRF2) or
from left to right (BM2CRF1) the participants require more time, as this is less in-
tuitive. Hence, the intuition of the participants may have increased the trend. More
tests are needed to evaluate the impact of the route’s direction.

Overall, task 4 has shown a trend that presenting more cycling related features
is less e�cient. However, the design of the task also influences the outcomes. More
testing with di↵erent starting and ending positions on the map is required.

Task 5: Estimate Bicycle Infrastructure

The assumption for this work was that the time required to complete the task would
be less for the less complex stimulus BM1CRF1 because estimating is easier when
only a few elements are depicted on the map.

This assumption proved to be correct. The participants required much less time
to give an estimate for BM1CRF1. When the map is less complex, it takes less time
to understand and acquire an overview.

Surprisingly, the estimation accuracy for BM2CRF2 was higher. The following could
be a hypothesis for this case. People tend to overestimate the proportion of streets
with bicycle facilities to other streets. For BM2CRF2, the contrasts of cycling re-
lated features to the base map are weaker and the bicycle infrastructure is, therefore,
harder to detect. As a result, the bicycle infrastructure is detected worse for more
complex stimuli, and the estimation is lower. For verification, this hypothesis would
need to be tested further.

This task has two possible constraints. First, the task was rather challenging, it
is probable that not all participants truly comprehended it. Second, the sample
size is quite limited, with 19 participants looking at BM1CRF1 and 16 looking at
BM2CRF2.

It can be concluded that giving an estimate for a less complex map takes less
time. However, complexity did not have the expected e↵ect on estimating accuracy.
Rather, the design could have an impact on precision.
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Summary

For research questions 1b) and 2b), the formulated hypotheses cannot be accepted.
An influence of map complexity on e�ciency could only be found partially, but
often just as an observed trend. The experiments on base maps do not reveal any
noticeable tendencies. This may be because the experiments lacked tasks that were
appropriate for this aim. Task 3 was planned to assess the impact of base map
complexity. However, the data reveals that this task was not well built. the learning
e↵ect was too large to yield useful results. Hence, no di↵erences between BM1 and
BM2 were found. The complexity of cycling related features had a greater influence
on e�ciency. For the search of the YAH symbol (Task 1) and the counting of the
bicycle racks (Task 2) significance could be found. However, the task design also
had an impact on the outcomes. The significance of CRF1 being more e�cient
than CRF2 could not be confirmed in tasks 4 and 5. For both tasks, participants
were faster when the cycling related features are displayed as less complex, however,
better accuracy was not achieved, and therefore, and so better e�ciency was not
met. Hence, hypothesis 2b) could not be accepted.

5.2 Potential Biases and Limitations of the Study

Potential biases and limitations of the study can be found in the experimental design,
the measuring instrument, the participants, and the sample size.

5.2.1 Experimental Design

The experiment is primarily set up as a within-subject design. A between-subject
design is used in only one out of five tasks. When utilizing a within-subject design,
the most significant concern is the participants’ learning e↵ect (Martin, 2008). Par-
ticipants may be able to learn from the maps, and as a consequence, it is feasible
that they perform better after seeing the stimuli numerous times. To reduce this
e↵ect the stimuli within a task are shown in random order. It would have been even
better to randomize the stimuli even across tasks. However, this would lead to major
confusion for the participants, having to solve alternating tasks. Overall, it does not
appear that the learning e↵ect is a substantial issue. In tasks 1 and 2, the symbols
always change their location. In task 3 the names of the parks change, but the park
areas remain the same. In this case, the learning e↵ect is certainly an issue. In task
4 the symbols A and B appear on the map for the first time, thus, there is also no
learning e↵ect. It could be that the participants already know some streets that are
displayed on the map, but the streets were not of importance until this point, as
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the previous tasks focused on di↵erent aspects. Therefore, it is rather unlikely that
participants can remember the alignment of the streets.

The fact that the symbols are always put on the same area for all participants
in tasks 1, 2, and 4 is a study restriction. Some positions on the map are more likely
to get focused on early. A YAH symbol in the center of the stimuli, for example,
is likely to be recognized faster than one on the map’s edge. This is especially true
because a calibration cross is displayed between tasks, causing participants to fixate
on the center of the screen. Another randomization should take place here, with each
participant’s symbols being placed in a distinct location. This would have taken too
long for this thesis because Tobii Pro does not allow you to move symbols arbitrarily,
and importing various stimuli with di↵erent symbol locations takes too long. Fur-
thermore, there are some locations on a map where a YAH symbol is meaningless.
If the symbol is put on a body of water, for example.

5.2.2 Measuring Instrument

The Tobii TX300 eye-tracker delivers reliable results, measuring the dependent vari-
ables of the experiment. The replay recording function described in 3.4.1 Eye-
Tracking Features can be used to verify this. 65cm is the ideal distance between
the eyes and the tracking equipment. Participants do not keep this exact distance
during the whole experiment. This leads to some inaccuracies. To counterbalance
this, the AOIs are drawn slightly larger. It is critical to find a balance while designing
AOIs, as too small AOIs may not be hit, and too large AOIs may be overly sensitive,
measuring strikes that were not on the actual AOI.

The experiment was carried out in an eye laboratory. The setup resembles a work-
place setup. This is probably not the most common place, where people look at bike
maps. However, if the experiment is conducted outdoors, more variables can not be
controlled, such as sunlight, temperature, and other factors.

5.2.3 Participants and Sample Size

The sample of the experiment is rather unbalanced. A minority of the participants
are female (11 female and 24 male). They were between the ages of 21 and 34. Be-
cause the majority of the participants had a geography background, they declared
themselves to be moderately to extremely familiar with maps in general. In addi-
tion, the familiarity and frequency with which participants ride bicycles appear to be
higher compared to the data of the city of Portland (Dill and McNeil, 2016). Overall,
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the participants had a di↵erent background than the broader public. Furthermore,
the sample size of N = 35 results in data that was often not normally distributed.
Instead of ANOVA, other non-parametric tests had to be conducted.

Sample size and background might seem unfavorable, however, the sample size was
above average when compared to other studies (Jacob and Karn, 2003). Experiments
involving people with a background in geography are also rather popular for practical
reasons (see Çöltekin et al., 2017, Keil et al., 2020, and Liao et al., 2019).

5.3 Possible Enhancement and Further Need for Research

It would be fascinating to do further testing and experimentation to measure the
visual complexity of bike maps. Especially, how di↵erent colors can influence the
measured complexity. Combining the measurements then again with eye-tracking to
find out how the map reader’s perception is influenced would make up for interesting
further research.

Another facet of future study that should be considered is the background of the
subjects. In this experiment, but also in other studies, having students or other
people with a geographical background is the norm. This can influence the outcome
of a study. In this particular case, it is unclear what advantages a background in
geography could provide when searching for symbols, parks, choosing routes, and
estimating bicycle infrastructure. Experimenting with a more unbiased sample size
should be implemented in future research.

The number of static maps has decreased in recent years. Interactive maps are
becoming increasingly popular. In this study, a static map has been used for prac-
tical reasons, as implementing an interactive map in an experiment is tricky. The
experiment has also been conducted in a closed room, to minimize uncontrolled vari-
ables. Bike maps used outdoors and maybe on a smaller smartphone screen are more
realistic. Thus, putting interactive maps to the test outside would be beneficial.
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6 Conclusion

This paper combines the topic of visual map complexity with bike maps. In the
past, di↵erent pixel-based complexity metrics have arisen, and also eye-tracking has
become an important tool for assessing map complexity (MacEachren, 1982, Barvir
and Vit, 2021). Meanwhile, more and more bike maps are being created to make cy-
cling more appealing to the general public. As there are no design guidelines on how
to design a bike map, very di↵erent approaches have resulted (Pucher and Buehler,
2008). Wessel and Widener (2015) came up with an attempt to design a perfect bike
map suitable for all di↵erent kinds of cyclists.

To find out how the design of a bike map influences its complexity, four di↵erent
bike maps for the city of Cincinnati were created and analyzed. In a factorial design,
two layers of base maps and two levels of cycling-related features were combined.
GMLMT, Feature Congestion, Subband Entropy, Edge Density, and distinct object
counts were used to measure the bike maps’ complexity. The measurements showed
that more detail in base maps and the depiction of more cycling related features have
a positive correlation with map complexity. The size, shape, and color of the ele-
ments are considered to have the most impact on complexity measurements. When
the element is large and has various boundaries, it adds more edges to the map,
increasing its complexity. The color contrast with the surroundings is of importance,
as it can contribute to the creation of strong or weak edges. In this particular case,
cycling related features had a smaller impact on visual complexity, as the symbols
were small in size and number.

The e↵ects of visual complexity on e�ciency were explored in addition to measuring
the visual complexity of bike maps on a technical level. For this purpose, an eye-
tracking experiment with 35 participants was done. Five tasks that were similar to
those faced by cyclists on a daily basis had to be completed. The stimuli assessed in
the previous step were shown to the participants for this purpose.

No e↵ect of map complexity on e�ciency could be found for the base maps. The
task constructed to investigate the base map did not work as expected, as there was
a big learning e↵ect. In task 2, count bicycle racks, an influence of the base maps
on the estimation accuracy could be found. All in all, a definitive answer to this
research question can not be given.

For the complexity of cycling related features, influence on e�ciency was discov-
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ered. Significant variations between the two levels of cycling related features could
be noticed in two tasks. When the participants searched for the YAH symbol on the
map and when they had to count depicted bicycle racks. However, those two tasks
were not fully randomized, thus, the location of the symbols is likely to also have an
influence on the participants’ performance. For the other tasks none of the stimuli
showed a significantly better e�ciency. Rather, recurring trends could be observed
that complexity has an impact on the map’s e�ciency.

Not only Zurich, but more and more cities invite their inhabitants to cycle more.
To do so, an increasing amount of bike maps are being published. However, the map
design of the maps varies greatly. This thesis shows that a wisely designed bike map
can influence e�ciency and potentially bring even more people onto their bicycles.
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Glossary

Notation Description
ANOVA Analysis of Variance
AOI Area of Interest
BM Base Map
CRF Cycling Related Features
DPI Dots per Inch
EML Eyemovement Recording Lab
GIVA Geographic Information Visualization and Analysis
GMLMT Graphic Map Load Measurement Tool
HSD Honestly Significant Di↵erence
LOD Level of Detail
TTFF Time to First Fixation
YAH You Are Here
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Appendix

A Metrics

Eye-Movement Metric What it Measures

Number of
fixation overall

More overall fixations indicate less e�cient
search (perhaps due to sub-optimal layout of the
interface).

Fixations per area
of interest

More fixations on a particular area indicate that it
is more noticeable, or more important, to the
viewer than other areas.

Fixation duration
A longer fixation duration indicates di�culty in
extracting information, or it means that the object
is more engaging in some way.

Gaze

Gaze is usually the sum of all fixation durations
within a prescribed area. It is best used to compare
attention distributed between targets. It can also be
used as a measure of anticipation in situation
awareness if longer gazes fall on an area of
interest before a possible event occurring.

Fixation spatial density
Fixations concentrated in a small area indicate
focussed and e�cient searching. Evenly spread
fixations reflect widespread and ine�cient search.

Repeat fixations
Higher numbers of fixations o↵-target after the
target has been fixated indicate that it lacks
meaningfulness or visibility.

Time to first
fixation on-target

If a low proportion of participants is fixating an
area that is important to the task, it may need to be
highlighted or moved.

Percentage of
participants
fixating an area
of interest

If a low proportion of participants is fixation an
area that is important to the task, it may need to be
highleted or moved.

On-target (all
target fixations)

Fixations on-target divided by total number of
fixations. A lower ratio indicates lower search e�ciency.

Fixation-derived metrics and possible interpretation (Jacob & Karn 2003)

88



Eye-Movement Metric What it Measures
Number of saccades More saccades indicate more searching.

Saccade amplitude
Larger saccades indicate more meaningful
cues, as attention is drawn from a distance.

Saccades
revealing marked
directional shifts

Any accade larger than 90 degrees from the
saccade that preceded it shows a rapid change
in direction. This could mean that the user’s
have changed or the interface layout does not
match the user’s expectations.

Saccades-derived metrics and possible interpretation (Jacob and Karn, 2003)

Eye-Movement Metric What it Measures

Scanpath duration
A longer-lasting scanpath indicates less e�cient
scanning.

Scanpath length
A longer scanphat indicates less e�cient
searching (perhaps due to a sub-optimal layout).

Spatial density Smaller spatial density indicates more direct search.
Scanpath direction This can determine a participant’s search strategy.

Saccade/fixation
ratio

This compares time spent searching (saccades) to
time spent processing (fixating). A higher ratio
indicates more processing or less searching.

Scanpath-derived metrics and possible interpretation (Jacob & Karn 2003)
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E Declaration of Consent

English

 

Declaration of Consent 
 
 
Dear study participant 
 
You are invited to participate in a study conducted by Donat Büchel (+41 76 493 76 55, 
donat.buechel@uzh.ch) as part of his master’s thesis "Visual Complexity of Bike Maps" at the 
Department of Geography, University of Zurich. 
 
Purpose of the study 
The purpose of this study is to investigate how bicycle maps should be designed so they can 
be understood better by the map readers. The aims at investigating if and how changes in the 
level of detail influence the map’s effectiveness. 
 
General Information 
The main study will take place at the Institute of Geography of the University of Zurich 
(Campus Irchel) in the “Eye Movement Lab” (Y25-L9) and will last about 20 minutes. 
 
Procedure of the study 
If you decide to take part in the study, you will first be guided through a short introduction. In 
the next step, you will be asked to complete a series of tasks with maps on the computer. 
During this part, your eye movements will be recorded. This is completely harmless and 
painless for you. Finally, you will be asked to fill out a questionnaire with information about 
yourself. Response times, recorded eye movements, and the questionnaire will all be recorded 
anonymously. 
 
Voluntary participation 
Your participation in this study is voluntary. You can withdraw your consent to participate in 
this study at any time without giving reasons. You can also ask questions about the study at 
any time. 
 
Advantages for the study participant 
This study offers no direct benefits to the study participant. 
 
Confidentiality of data  
This study involves the collection of personal data. All data will be encrypted and anonymized 
by replacing your name with a code. In addition, your name will not be used in the work. All 
data collected will be kept encrypted and stored on secure media. Your data can be used in 
anonymised form for publication in the scientific community.  
 
The personal data provided here will be stored for a period of 10 years due to a legal 
obligation. A local ethics committee may review the information during this period. All 
information is stored in a locked archive and on a secure server at the Department of 
Geography of the University of Zurich. 
 
Cost for the study participant 
The study does not incur any direct costs for the study participant. 
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Compensation 
There is no financial compensation for participating. 
 
Termination of participation 
Your participation in the study will be discontinued,  

- If you are unable to understand / follow instructions from the investigator. 
- If you withdraw from participation in the study. If you withdraw your participation, 

your records will be deleted. 
 
 
 
 
 
Place, Date  Signature of the participant     

 
¨ The participant has received the information contained on this form verbally upon request. 
 
 
 
 
 
 
Experimenter’s Statement: I certify that I have explained the study and the use of the study 
participant's data. I have encouraged the study participant to seek an explanation of the 
experiment and his/her rights. If there are any changes that affect the study participant during 
the course of the experiment, I will inform them immediately and ask for their consent. I 
certify that this study meets all legal obligations and complies with national rules and 
international guidelines for human experimentation. 
 
 
Place, Date Signature of the experimenter 
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German

 

Einverständniserklärung 
 
 
Sehr geehrte Studienteilnehmerin, sehr geehrter Studienteilnehmer 
 
Sie sind eingeladen, an einer Studie teilzunehmen, die von Donat Büchel (+41 76 493 76 55, 
donat.buechel@uzh.ch) im Rahmen seiner Masterarbeit „Visual Complexity of Bike Maps“ am 
Geographischen Institut der Universität Zürich durchgeführt wird. 
 
Zweck der Studie 
Der Zweck dieser Studie ist es zu untersuchen, wie Velokarten gestaltet werden müssen, damit 
die Karte von Nutzer*innen besser gelesen werden kann. Dabei wird darauf fokussiert, ob und 
wie eine Veränderung des Detailgrades der Karte die Effektivität der Karte beeinflusst. 
 
Allgemeine Information 
Die Hauptstudie findet am Geographischen Institut der Universität Zürich (Campus Irchel) im 
„Eye Movement Lab“ (Y25-L9) statt und wird ca. 20 Minuten dauern. 
 
Studienablauf 
Wenn Sie sich für eine Teilnahme an der Studie entscheiden, erfolgt als Erstes eine kurze 
Einführung. Im nächsten Schritt werden Sie gebeten, eine Serie von Aufgaben mit Karten am 
Computer zu bearbeiten. In diesem Schritt werden Ihre Augenbewegungen aufgezeichnet. 
Dies ist für Sie völlig ungefährlich und schmerzfrei. Zum Schluss werden Sie gebeten, einen 
Fragebogen mit Angaben zu Ihrer Person auszufüllen. Die Antwortzeiten, Augenbewegungen 
und der Fragenbogen werden alle anonymisiert aufgenommen. 
 
Freiwillige Teilnahme 
Ihre Teilnahme an dieser Studie ist freiwillig. Sie können Ihre Einwilligung zur Teilnahme an 
dieser Studie jederzeit ohne Angabe von Gründen widerrufen. Sie können auch jederzeit 
Fragen zur Studie stellen. 
 
Vorteile für Studienteilnehmende 
Diese Studie bietet keine direkten Vorteile für den Studienteilnehmenden. 
 
Vertraulichkeit der Daten  
Diese Studie beinhaltet die Erfassung Ihrer persönlichen Daten. Alle Daten werden durch das 
Ersetzen Ihres Namens mit einem Code verschlüsselt und anonymisiert. Darüber hinaus wird 
Ihr Name nicht in der Arbeit verwendet. Alle gesammelten Daten werden verschlüsselt 
aufbewahrt und auf sicheren Datenträgern gespeichert. Ihre Daten können in anonymisierter 
Form in der wissenschaftlichen Community publiziert werden. 
 
Die erfassten personenbezogenen Daten werden aufgrund einer gesetzlichen Verpflichtung 
für einen Zeitraum von 10 Jahren gespeichert. Eine lokale Ethikkommission kann die 
Informationen in diesem Zeitraum prüfen. Alle Informationen werden in einem 
abgeschlossenen Archivschrank sowie auf einem sicheren Server am Geographischen Institut 
der Universität Zürich gespeichert. 
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Kosten für Studienteilnehmende 
Die Studie verursacht keine direkten Kosten für den Studienteilnehmenden. 
 
Entschädigung 
Für die Teilnahme gibt es keine finanzielle Entschädigung. 
 
Abbruch der Teilnahme  
Ihre Teilnahme an der Studie wird abgebrochen,  

- wenn Sie nicht in der Lage sind, Anweisungen des Versuchsleiters zu verstehen / zu 
befolgen. 

- wenn Sie die Teilnahme an der Studie widerrufen. Sollten Sie Ihre Teilnahme 
zurückziehen, werden Ihre Aufzeichnungen gelöscht. 

 
 
 
 
 
Ort, Datum  Unterschrift Studienteilnehmer*in 
  

 
¨ Die auf diesem Formular enthaltenen Informationen hat der Teilnehmer auf Anfrage 
mündlich erhalten. 
 
 
 
 
 
 
 
Erklärung des Versuchsleiters: Ich bestätige, dass ich die Studie sowie die Verwendung der 
Daten des Studienteilnehmers erklärt habe. Ich habe den Studienteilnehmer ermutigt, sich um 
eine Erklärung des Experiments und seiner Rechte zu bemühen. Sollten sich im Laufe des 
Versuchs Änderungen ergeben, die den Studienteilnehmer betreffen, werde ich ihn 
unverzüglich informieren und um Zustimmung bitten. Ich bestätige, dass diese Studie alle 
gesetzlichen Verpflichtungen erfüllt und mit den nationalen Regeln und internationalen 
Richtlinien für Humanexperimente übereinstimmt. 
 
 
Ort, Datum Unterschrift Versuchsleiter 
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G Statistical Tables

Task 1

Task1.1 Task1.2 Task1.3 Task1.4 Task1.5 Task1.6 Task1.7 Task1.8
p-value 0.05992 0.1049 0.09026 2.975e-06 0.01213 1.089e-05 0.04065 0.01698

W-statistic 0.753958 0.754891 0.754286 0.7548 0.750893 0.76172 0.753542 0.75188

Shapiro-Wilk Test for Normal Distribution per Subtask

Task1.1 Task1.2 Task1.3 Task1.4 Task1.5 Task1.6 Task1.7 Task1.8
p-value 0.4783 0.3008 0.02295 0.03373 0.766 0.1914 0.8489 0.5971

W-statistic 0.75706 0.756402 0.752158 0.03373 0.757837 0.755322 0.758291 0.757397

Shapiro-Wilk Test for Log-Normal Distribution per Subtask

BM1CRF1 BM1CRF2 BM2CRF1 BM2CRF2
p-value 7.28e-05 2.182e-07 2.789e-08 0.001093

W-statistic 0.750559 0.82714 0.77834 0.75318

Shapiro-Wilk Test for Normal Distribution per Stimuli
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Task 2

BM1CRF1 BM1CRF2 BM2CRF1 BM2CRF2
p-value 1.082e-05 0.1201 0.01632 0.3333

W-statistic 0.78567 0.755083 0.752203 0.756556

Shapiro-Wilk Test for Normal Distribution of Average Time to New Fixation

BM1CRF1 BM1CRF2 BM2CRF1 BM2CRF2
p-value 0.0648 0.8675 0.5041 0.1265

W-statistic 0.754209 0.758358 0.757212 0.755155

Shapiro-Wilk Test for Log-Normal Distribution of Average Time to New Fixation

Df F-value Pr(>F)
group 3 0.38 0.77

136

Levene’s Test for Average Time to New Fixation (log)

Df Sum Sq Mean Sq F value Pr(>F)
as.factor(Stimuli) 3 13.41 4.469 39.16 >2e-16

Residuals 136 15.52 0.114

ANOVA for Average Time to New Fixation (log)

Stimuli Combination di↵ lwr upr p adj
BM1CRF2-BM1CRF1 0.70551135 0.4954638 0.751555891 0.0000000
BM2CRF1-BM1CRF1 0.06339211 -0.1466554 0.27343967 0.8611565
BM2CRF2-BM1CRF1 0.57957767 0.3695301 0.78962523 0.0000000
BM2CRF1-BM1CRF2 -0.64211924 -0.8521668 -0.43207168 0.0000000
BM2CRF2-BM1CRF2 -0.12593368 -0.3359812 0.08411388 0.4052588
BM2CRF2-BM2CRF1 0.51618556 0.3061380 0.72623312 0.0000000

Tukey HSD for Average Time to New Fixation (log)
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BM1CRF1 BM1CRF2 BM2CRF1 BM2CRF2
p-value 0.0002349 0.005911 0.0005169 4.095e-05

W-statistic 0.85035 0.750642 0.86508 0.81512

Shapiro-Wilk Test for Normal Distribution of Task Duration

BM1CRF1 BM1CRF2 BM2CRF1 BM2CRF2
p-value 0.03852 0.75302 0.01049 0.2005

W-statistic 0.753464 0.75862 0.751534 0.755811

Shapiro-Wilk Test for Log-Normal Distribution of Task Duration

BM1CRF1 BM1CRF2 BM2CRF1 BM2CRF2
p-value 0.005804 0.0001078 0.0004125 4.545e-05

W-statistic 0.750613 0.8351 0.86094 0.81733

Shapiro-Wilk Test for Normal Distribution of Mean Fixation Count

BM1CRF1 BM1CRF2 BM2CRF1 BM2CRF2
p-value 0.02462 0.1469 0.01672 0.1037

W-statistic 0.752813 0.755367 0.752239 0.754874

Shapiro-Wilk Test for Log-Normal Distribution of Mean Fixation Count
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Task 3

BM1CRF1 BM1CRF2 BM2CRF BM2CRF2
p-value 0.5466 0.1861 0.1503 0.2622

W-statistic 0.757351 0.755704 0.754029 0.756199

Shapiro-Wilk Test for Normal Distribution of Time to New Fixation

Df F-value Pr(>F)
group 15 1.15 0.32

123

Levene’s Test for Average Time to New Fixation

Df F-value Mean Sq F-value Pr(>F)
Num 1 0.02 0.02 0.03 0.85

Residuals 136 26.82492.15 0.67

ANOVA for Average Time to New Fixation

di↵ lwr upr p adj
BM1CRF2-BM1CRF1 0.31710837 -0.1858518 0.82006850 0.3597842
BM2CRF1-BM1CRF1 -0.14243254 -0.6490774 0.36421233 0.8843678
BM2CRF2-BM1CRF1 0.08669983 -0.4162603 0.58965995 0.75698307
BM2CRF1-BM1CRF2 -0.45954091 -0.75661858 0.04710395 0.0900422
BM2CRF2-BM1CRF2 -0.23040854 -0.7333687 0.27255158 0.6331539
BM2CRF2-BM2CRF1 0.22913237 -0.2775125 0.73577723 0.6427220

Tukey HSD for Average Time to New Fixation

BM1CRF1 BM1CRF2 BM2CRF BM2CRF2
p-value 3.644e-10 0.2164 0.1381 5.856e-05

W-statistic 0.46426 0.75592 0.755279 0.82264

Shaprio-Wilk Test for Normal Distribution of Duration of Task Completion
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BM1CRF1 BM1CRF2 BM2CRF BM2CRF2
p-value 0.0003051 0.8833 2.826e-09 0.2129

W-statistic 0.85532 0.758417 0.54324 0.755897

Shapiro-Wilk Test for Log-Normal Distribution of Duration of Task Completion

BM1CRF1 BM1CRF2 BM2CRF1
BM1CRF2 0.11 - -
BM2CRF1 0.57 0.11 -
BM2CRF2 0.41 0.41 0.11

Mann-Whitney U Test for Duration of Task Completion
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Task 4

BM1CRF1 BM1CRF2 BM2CRF BM2CRF2
p-value 1.668e-06 6.609e-05 5.839e-07 1.944e-07

W-statistic 0.72617 0.82515 0.71241 0.68148

Shapiro-Wilk Test for Normal Distribution of Time to First Fixation Symbol A

BM1CRF1 BM1CRF2 BM2CRF BM2CRF2
p-value 0.01617 0.3668 0.0481 0.01985

W-statistic 0.751804 0.756702 0.753784 0.752495

Shapiro-Wilk Test for Log-Normal Distribution of Time to First Fixation Symbol A

BM1CRF1 BM1CRF2 BM2CRF BM2CRF2
p-value 3.892e-06 1.296e-09 5.093e-09 3.426e-08

W-statistic 0.74863 0.51417 0.56443 0.62858

Shapiro-Wilk Test for Normal Distribution of Time to First Fixation Symbol B

BM1CRF1 BM1CRF2 BM2CRF BM2CRF2
p-value 0.1323 0.008392 0.4808 0.00377

W-statistic 0.754992 0.75119 0.757133 0.89923

Shapiro-Wilk Test for Log-Normal Distribution of Time to First Fixation Symbol B

BM1CRF1 BM1CRF2 BM2CRF1
BM1CRF2 0.75347876 - -
BM2CRF1 0.1730721 0.1895660 -
BM2CRF2 0.4485234 0.5930706 0.07382893

Mann-Whitney U Test for Time to First Fixation Symbol A
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BM1CRF1 BM1CRF2 BM2CRF1
BM1CRF2 0.00873 - -
BM2CRF1 0.00189 2e-07 -
BM2CRF2 0.85492 0.02507 0.00062

Mann-Whitney-U Test for Time to First Fixation Symbol B

BM1CRF1 BM1CRF2 BM2CRF BM2CRF2
p-value 0.4716 0.4524 0.3677 0.0003642

W-statistic 0.757101 0.757033 0.756706 0.85863

Shaprio-Wilk Test for Normal Distribution of Duration of Task Completion

BM1CRF1 BM1CRF2 BM2CRF BM2CRF2
p-value 0.2305 0.714 0.009843 0.5114

W-statistic 0.756011 0.757863 0.751436 0.757236

Shapiro-Wilk Test for Log-Normal Distribution of Duration of Task Completion

BM1CRF1 BM1CRF2 BM2CRF1
BM1CRF2 0.5230 - -
BM2CRF1 0.0258 0.0622 -
BM2CRF2 0.0258 0.0056 8.8e-06

Mann-Whitney U Test for Duration of Task Completion

BM1CRF1 BM1CRF2 BM2CRF BM2CRF2
p-value 2.46e-08 6.272e-07 2.476e-08 4.735e-07

W-statistic 0.6179 0.71436 0.61812 0.70666

Shapiro-Wilk Test for Fixation Count on Legend
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BM1CRF1 BM1CRF2 BM2CRF1
BM1CRF2 9.1e-06 - -
BM2CRF1 6.5e-08 0.016 -
BM2CRF2 2.7e-10 6.0e-06 0.002

Mann-Whitney U Test for Fixation Count on Legend
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Task 5

BM1CRF1 BM2CRF2
p-value 0.003438 0.1032

W-statistic 0.83178 0.750677
p-value (log) 0.355 0.75152

W-statistic (log) 0.754729 0.757528

Shapiro-Wilk Test (Log-)Normal Distribution for Time of Task Completion

Df F Pr(>F)
group 1 0.346 0.5604
33

Levene’s Test for Time of Task Completion

Df Sum Sq Mean Sq F value Pr(>F)
Stimuli 1 1.475 1.4751 7.716 0.00896

Residuals33 6.309 0.1912

ANOVA for Time of Task Completion

BM1CRF1 BM2CRF2
p-value 0.005749 0.3099

W-statistic 0.84586 0.753664
p-value (log) 0.197 0.009232

W-statistic (log) 0.753304 0.83838

Shapiro-Wilk Test for (Log-)Normal Distribution of Estimations
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H Statistical Figures

Task 2
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