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Abstract 

This study focuses on the automatic classification of tree species using a three-dimensional 

convolutional neural network (CNN) based on field-sampled ground reference data, a LiDAR point 

cloud and AVIRIS-NG airborne hyperspectral remote sensing imagery with 2 m spatial resolution 

acquired on 14 June 2021. I created a tree species map for my 10.4 km2 study area which is located 

in the Jurapark Aargau, a Swiss regional park of national interest. I collected ground reference data 

for six major tree species present in the study area (Quercus robur, Fagus sylvatica, Fraxinus 

excelsior, Pinus sylvestris, Tilia platyphyllos, total n = 331). To match the sampled ground reference 

to the AVIRIS-NG 425 band hyperspectral imagery, I delineated individual tree crowns (ITCs) from 

a canopy height model (CHM) based on LiDAR point cloud data. After matching the ground 

reference data to the hyperspectral imagery, I split the extracted image patches to training, 

validation, and testing subsets. The amount of training, validation and testing data was increased by 

applying image augmentation through rotating, flipping, and changing the brightness of the original 

input data. The classifier is a CNN trained on the first 32 principal components (PC’s) extracted 

from AVIRIS-NG data. The CNN uses image patches of 5 × 5 pixels and consists of two 

convolutional layers and two fully connected layers. The latter of which is responsible for the final 

classification using the softmax activation function. The results show that the CNN classifier 

outperforms comparable conventional classification methods. The CNN model is able to predict the 

correct tree species with an overall accuracy of 70% and an average F1-score of 0.67. A random 

forest classifier reached an overall accuracy of 67% and an average F1-score of 0.61 while a 

support-vector machine classified the tree species with an overall accuracy of 66% and an average 

F1-score of 0.62. This work highlights that CNNs based on imaging spectroscopy data can produce 

highly accurate high resolution tree species distribution maps based on a relatively small set of 

training data thanks to the high dimensionality of hyperspectral images and the ability of CNNs to 

utilize spatial and spectral features of the data. These maps provide valuable input for modelling 

the distributions of other plant and animal species and ecosystem services. In addition, this work 

illustrates the importance of direct collaboration with environmental practitioners to ensure user 

needs are met. This aspect will be evaluated further in future work by assessing how these products 

are used by environmental practitioners and as input for modelling purposes. 
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1 Introduction 

1.1 Background 

Globally among all ecosystem types, forests are of high relative importance for the mitigation of 

climate change and play a crucial role in biodiversity conservation [1]. Thus, the development of 

cost and time efficient methods for extracting information about forest ecosystems is needed and 

can be of great value for forest practitioners. Forest ecologists, land managers, and commercial 

enterprises could make use of accurate tree species composition assessments to study biodiversity 

patterns, estimate timber stocks, or improve estimates of forest fire risks [2]. In recent years a lot of 

literature has been published on the use of remote sensing data for forest applications. This 

development is facilitated through improvements in operational remote sensing and field sensors 

which need new classification tools to bridge the gap between data-rich remote sensing imagery 

and the need for high-resolution information about forests [2]. Due to their high spectral resolution 

hyperspectral imagery provides valuable information for tree species classification. Hyperspectral 

data cover a continuous spectral range with hundreds of narrow bands ranging from the visible and 

near-infrared (VNIR) wavelength region (400–1100 nm), up to the shortwave infrared area (SWIR) 

at 1100–2500 nm [3]. Specific vegetation characteristics can be related to spectral features in the 

data and are thus vital for the discrimination and classification of tree [4]. Recent studies using 

hyperspectral data for tree species classification tasks are for example Fassnacht et al. [5] or 

Dalponte et al. [6]. However, most studies on the topic of tree species classification utilize LiDAR 

(Light Detection and Ranging) data in addition  to hyperspectral imagery (e.g., [3], [4], [7]–[11]). 

LiDAR data is a great complementary data source to multispectral or hyperspectral imagery (HSI) 

as it provides information on the vertical structure of forests and can thus be useful for the 

description and delineation of forest characteristics related to height [4]. In tree species 

classification studies, LiDAR point clouds are predominantly used to derive a canopy height model 

(CHM) which automated algorithms use as an input to delineate individual tree crown (ITC) 

polygons (e.g., [7], [8]). ITC delineation is crucial in matching the sampled ground reference data 

to the AVIRIS-NG (Airborne Visible InfraRed Imaging Spectrometer - Next Generation) HSI to 

extract the needed data for training and validating the classification model. The outcome of the 

classification approach depends directly on the selected classification method. Machine learning 

(ML) methods like support-vector machines (SVMs), random forests (RFs), and artificial or 

convolutional neural networks (ANNs & CNNs) have been especially popular for tree species 

discrimination from remote sensing imagery [3]. Of those, Fassnacht et al. [12] identified support-

vector machines (SVMs) as the most common method for tasks of this type. 
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In this work a CNN will be implemented for the tree species classification task at hand to contribute 

to the currently ongoing ValPar.CH project. This project aims at quantifying the ecological 

infrastructure of multiple Swiss parks of national interest and its value to nature, society, and 

economy (valpar.ch). One of the inspected sites is the Jurapark Aargau (JPA), a regional park of 

national importance located between Brugg, Laufenfeld, Rheinfelden, and Aarau (jurapark-

aargau.ch). The JPA is also one of two ValPar.CH sites which have been part of this summer’s ESA 

CHIME (Copernicus Hyperspectral Imaging Mission for the Environment) campaign to collect data 

for various targets across Europe with the AVIRIS-NG (Airborne Visible InfraRed Imaging 

Spectrometer - Next Generation) sensor owned by NASA (National Aeronautics and Space 

Administration) and operated by the JPL (Jet Propulsion Laboratory). The hyperspectral imagery 

on which the tree species classification task will be conducted in this work was acquired over the 

JPA on June 14, 2021. Creating such a tree species classification map of the main tree species 

present in the JPA has been defined as the overall aim of this work together with representatives of 

the JPA. As Fassnacht et al. (2016) state, such direct collaboration with environmental practitioners 

is a way to ensure that research efforts match the needs of the user. The needed ground reference 

data was acquired over the course of September 2021 accumulating to a total of 331 trees of which 

the exact position and their species was captured. I collected Ground reference data sampled across 

my study area which is a spatial subset of the JPA with a small part of it being located outside the 

geographic extent of the JPA. 

1.2 Research Context 

Classification algorithms traditionally used in Remote Sensing can be grouped in two big 

categories: unsupervised and supervised. Unsupervised classifiers use remotely sensed data and 

divide it into a number of statistical clusters in multi- or hyperspectral space. This means that these 

methods do not require information (i.e. labeled data) on the study area prior to the classification 

[13]. Supervised classifiers on the other hand do need prior information on the ground cover of the 

study area. Such information could be labeled data samples indicating the ground cover at certain 

points within the study area. Spectral signatures of sampled data are used to train the classifier 

which later will be utilized to predict over the whole area of interest (AOI) to generate a final 

classification image [14]. 

In early studies of tree classification using RS data the most widely classifiers were unsupervised 

clustering methods such as K-means or ISODATA and supervised methods such as maximum 

likelihood classifiers (MLC) [12]. Facilitated by improvements in computational capacity in 

hardware and software after 1995, non-parametric decision tree based classifiers and neural 

networks emerged as supervised alternatives to the common algorithms [12]. Since then, such 

machine learning (ML) classifiers have become a major-focus in the remote sensing literature [15]. 

Maxwell et al. [15] describe ML algorithms as being able to model complex data signatures based 
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on a variety of input data without making assumptions about the data distribution (i.e., non-

parametric: data does not need to be normally distributed). 

While ML methods are still being widely used, a sub-discipline of ML is emerging. Deep learning 

(DL) methods such as convolutional neural networks (CNNs) have already shown great potential 

in RS classification with various software packages being made available to implement these 

algorithms [15]. In DL, classifiers aim at learning data representations from an image input while 

ML methods search for useful representations of the data within a space of possibilities using 

guidance from a feedback signal [16]. In the case of a tree species classification task, the feedback 

signal is the fraction of correctly classified samples in a validation set that are not used for model 

training. For remote sensing tasks, DL classifiers are often framed within the field of artificial neural 

networks (ANNs) [17]. The concept of ANNs is inspired by the neural connections in the human 

brain and the pulses that travel through it to transmit information [18]. The ‘deep’ in deep learning 

refers to the depth of a model which is the number of hidden layers an ANN consists of. Each hidden 

layer is composed by a set of “neurons”, that apply weights over the input data and whose responses 

are filtered, determining the “neural activations” which will be forwarded to the next hidden layer 

[18].  

The hierarchical nature of such DL architectures allows to extract high-level, hierarchical, and 

abstract features [19]. More specifically, at early stages in the learning process general features are 

extracted with the final layers being able to learn pieces of knowledge that are more related to the 

application at hand [18]. In other words, ANNs are a mathematical framework for learning 

representations from data with the extracted patterns getting more and more complex with each 

hidden layer. 

 

 

FIGURE 1.1. Conceptual visualization of a CNN [18]. 

 

In this thesis, I used a convolutional neural network (CNN) for the tree species classification. The 

structural unit of CNNs are the convolutional layers composed of several convolutional kernels 
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which are used to compute different feature maps [18], [20]. A feature map highlights a certain 

aspect like a shape or a pattern of the input image. As visualized in FIGURE 1.1, in a CNN the 

convolutional layers are usually followed by a number of fully-connected layers which take all 

neurons in the previous layers and connect them to every single neuron of the current layer to 

generate global semantic information, i.e. combining the extracted information to output class 

probabilities for each input [20]. When using hyperspectral imagery (HSI), the strength of CNNs is 

their ability to integrate spectral features with spatial-contextual information in a very efficient way 

[18]. Also, CNNs offer a lot of flexibility regarding the dimensionality of the single layers and their 

ability to make strong assumptions about the input images [21]. According to Gu et al. [20], these 

factors have turned CNNs into one of the most successful and popular NN models, making them 

the current state-of-the-art in DL and extremely popular for HSI data classification [18] including 

tree species discrimination [2], [3], [22]–[24]. 

1.3 Research Objectives 

The aim of this thesis is to create a pixel-level classification map of the main tree species for our 

study area within the Jurapark Aargau (JPA). The idea is to exploit the capability of high resolution 

AVIRIS-NG hyperspectral imagery to discriminate tree species with a CNN and the aid of LiDAR 

data. The created product should be of such quality that it could be used as input for species 

distribution and ecosystem service modelling. These tasks which important for the ValPar.ch 

project aiming at assessing the ecological infrastructure within the park. In addition, I am also 

aiming to add to the literature and describe how DL methods and especially CNNs can further 

improve our ability to extract information from remotely sensed data. More formally, the defined 

research objectives of this thesis are: 

 

1. Creating a tree species distribution map of the main tree species present in my study area 

within the JPA that can be used as an input for species distribution and ecosystem service 

modelling. 

2. Adding to the understanding of how deep learning can improve our ability to extract 

information from remotely sensed data. 

 

How and if these objectives are met is presented in the remainder of this work which is divided into 

five main chapters. In chapter 2 the study area is introduced, a summary of the data sources follows 

in chapter 3. The methods used in this thesis are presented and explained in chapter 4. Chapter 5 

presents the obtained results which are being discussed in chapter 6. Finally, the thesis is rounded 

off with a summary, the main takeaways, and an outline of potential further research in chapter 7. 
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2 Study Area 

My study area lies in the southern part of the JPA just north of Aarau. The JPA is a regional park 

of national importance located between Aarau, Brugg, Laufenfeld, and Rheinfelden spanning over 

the cantons of Aargau and Solothurn (jurapark-aargau.ch). The topography of the JPA is 

characterized by the hilly Table Jurassic landscapes. The JPA has a total size of 299 km2 with 

roughly half of it being covered by forest as stated on the park’s website [25]. The study area has a 

size of 10.4 km2 and consists of multiple forest areas that are not connected to each other. As can 

be seen in FIGURE 2.1, a small part in the southeast of the study area is outside of the geographic 

extent of the JPA. 

 

 

FIGURE 2.1. a) Map of Switzerland highlighting the extent of inset map b) in light blue. b) Extent 

and location of the JPA highlighted in green. c) Study area highlighted in RGB with semi-transparent 

background ESA Sentinel-2 remote sensing imagery from July 23rd, 2021. 

 

The Canton of Aargau keeps and publishes information about the cantons forest areas online [26]. 

The according plant sociological map of the study area shows that the spatially most prominent 
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forest communities are different sorts of beech forests with the largest part being classified as lime-

beech forests. One part of the study area in the south is a larger oak forest reserve. Other types of 

forest communities present are oak-pine forests, linden-maple forests, and alder-ash forests. 

Together with a representative of the JPA the main tree species present in the study area were 

defined. These are the species that will be classified and for which field data has been sampled. The 

species included are Common oak (Quercus robur), beech (Fagus sylvatica), ash (Fraxinus 

excelsior), European Red pine (Pinus sylvestris), and Largeleaf linden (Tilia platyphyllos). 
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3 Data 

3.1 Hyperspectral Imagery 

 

In summer 2021 the ESA (European Space Agency) CHIME (Copernicus Hyperspectral Imaging 

Mission for the Environment) & SGB (Surface Biology and Geology) Mission took place. This 

mission is part of calibration and validation (Cal/Val) activities for ESA’s and NASA’s upcoming 

CHIME (Copernicus Hyperspectral Imaging Mission for the Environment) and SBG (Surface 

Biology and Geology) satellites respectively. The goal of these satellite missions is to provide 

imaging spectroscopy data at global coverage at regular intervals of time with high spatial resolution 

[27]. Such Cal/Val missions aim at determining the quality and integrity of the data provided by the 

spectrometers which are to be deployed on the currently being developed satellites [27]. The 

summer 2021 Cal/Val mission was a joint effort between ESA, NASA (National Aeronautics and 

Space Administration), JPL (Jet Propulsion Laboratory), and the University of Zurich (UZH). The 

sensor of choice was the Airborne Visible InfraRed Imaging Spectrometer - Next Generation 

(AVIRIS-NG) (FIGURE 3.1) which is owned by NASA and operated by the Jet Propulsion 

Laboratory (JPL). This sensor is a pushbroom spectral mapping system with high signal-to-noise 

ratio (SNR), designed for high performance spectroscopy [28]. 

 

 

FIGURE 3.1. The AVIRIS-NG spectrometer developed by NASA/JPL (left) and its airborne platform 

being used; the “Super King Air” research aircraft (right) [29]. 

 

The western part of the JPA was one of the target areas of the 2021 ESA CHIME & SBG mission. 

Data collection took place on Monday June 14, 2021, under clear sky conditions. The data was 
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collected across a total of ten flight strips of which nine are being used and cover the study area as 

shown in FIGURE 3.2. 

The hyperspectral imagery (HSI) consists of a total of 425 spectral bands in the wavelength range 

of 380–2510 nm with a spectral sampling interval of 5 nm. The spatial resolution of the data ranges 

from 1.9–2.1 m depending on flight strip. 

 

FIGURE 3.2. AVIRIS-NG data strips overlaying the perimeters of the JPA and my study area 

(Background: OpenStreetMap [30]). 

 

Due to its high spectral resolution AVIRIS-NG HSI has been a popular data source in vegetation 

discrimination studies (e.g. [2], [19], [31], [32]). Ahmad et al. [33] demonstrated that it can be 

highly recommended to use AVIRIS-NG data for characterizing, quantifying, modelling, and 

mapping vegetation. Potential uncertainties in the data could come from natural and irreducible 

measurement noise or calibration uncertainties arising from systematic optical and electronic 

imperfections in the instrument [28]. 
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3.2 LiDAR Data 

The LiDAR data being used in this work are a subset of the swissSURFACE3D product of the 

Federal Office of Topography, Swisstopo [34]. swissSURFACE3D is a LiDAR point cloud 

describing the surface of Switzerland with all its natural and artificial elements. The LiDAR data 

was being acquired in different stages using an airborne sensor with the goal of finalizing the 

product until the end of 2023 [34]. The data being used for this project was acquired in 2020. The 

product is freely accessible for everyone [35] and delivers the x-, y-, and z-coordinate for each 

measured point in the CH1903+/LV95 (EPSG:2056) coordinate reference system. FIGURE 3.3 

shows a 100 m × 100 m height normalized subset of the LiDAR point cloud. 

 

 

FIGURE 3.3. A 100 m × 100 m height normalized subset of the LiDAR point cloud acquired over a 

part woodruff-beech part maple-ash forest located in the easternmost part of the study area. 

 

The positional accuracy of the product is reported to be ± 20 cm horizontally and ± 10 cm vertically 

[34]. In terms of point density the minimum requirement are five points/m2 and the average is 

between 15 and 20 points/m2 [34]. However, the mean point density for my study area, is about 31 

points/m2. FIGURE 4.3 shows the spatial distribution of said point density. The point density is 

higher in certain regions which indicate the areas where the flight strips overlap. 
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3.3 Ground Reference Data 

In October 2021, approximately three months after imagery acquisition, ground reference data was 

collected. I collected coordinate information of mature trees from each target species, to be 

subsequently matched to the HSI to train and evaluate the classification model. Sampling was 

conducted with a Trimble R7 GNSS (Global Navigation Satellite System) as depicted in FIGURE 

3.4.  

 

 

FIGURE 3.4. Trimble R7 GNSS used for the collection of ground reference data. 

 

The GPS positions were acquired with the Real Time Kinematic (RTK) method. The principle of 

this method is that the controlling unit of the GNSS system connects via mobile internet with a 

reference station which is part of a continuous operating reference station network. This allows the 

setup of data links between the network server and the GNSS receiver to deliver the differential 

corrections needed to acquire high precision GPS positions [36]. However, due to a reliable internet 

connection not always being available some positions had to be acquired using the static 

measurement principle. In total the position of 331 single trees was collected (TABLE 3.1). There 

does not seem to be a clear consensus in literature on how many ground reference data points are 

needed for work of this nature. In studies the number of used data points ranges from 3.5 trees/km2 

as in Dalponte et a. [7] to around 1000 trees/km2 as in Matsuki et el. [9] and Wu & Zhang [11]. The 

reference data density used in this thesis (34.8 trees/km2) is comparable to Fricker et al. [2] who 

used about 34 trees/km2. In addition to acquiring the x-, y-, and z-coordinate of the trees, I 
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determined their species. I only sampled top-of-canopy (TOC) trees, i.e., trees with crowns visible 

from above which can be later identified in the HSI.  

 

TABLE 3.1. Common and scientific name and the number of sampled trees used in this thesis. 

 

Species Number 

Common Oak (Quercus robur) 59 

Beech (Fagus sylvatica) 89 

Ash (Fraxinus excelsior) 73 

European Red pine (Pinus sylvestris) 61 

Largeleaf Linden (Tilia platyphyllos) 49 

 331 

 

 

FIGURE 3.5. Study area and location of sampled ground reference data. Each data point represents a 

single tree. RGB background from ESA Sentinel-2 remote sensing imagery from July 23rd, 2021. 
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The goal was to have the measured tree positions distributed equally across the study area and across 

the different species. Both aims were not met optimally as can be seen in FIGURE 3.5. Due to the 

mostly hilly landscape of the study area reaching measurable trees further away from the paths was 

close to impossible. Additionally, not all areas of the study area were equally as accessible due to 

the available paths. Concerning distribution across tree species, the visually assessed relative 

abundance of the species influenced the number of measured trees per class. Most forest areas 

accessed were beech- and ash-dominant. 

The mean horizontal positional accuracy of the sampled ground reference data is 0.546 m. This 

accuracy should fall into an acceptable range for the task at hand. Fricker et al. [2] discarded trees 

with a positional accuracy of over 1 m in their tree species classification study. The positional 

accuracy in the individual tree species mapping from Engler et al. [37] was reported to be at ± 2m 

and Dalponte et al. [4] worked with a final uncertainty of the horizontal position of sample points 

of 1.70 m. To minimize the potential negative effect of the horizontal positional uncertainty the 

position of the tree was, if possible, measured directly under the crown and not at the stem. In 

addition, I only sampled mature trees with a crown diameter greater than approximately five meters 

to ensure that the measured data points are positioned under the respective tree crown even in the 

case of a larger positional error. This is important to later be able to match the data point to the 

correct crown in the aerial imagery. To further increase matching accuracy, I preferably sampled 

trees standing alone, if that was not possible, trees surrounded by the same species. This strategy 

should minimize the risk of later extracting pixels with mixed spectral signatures. 
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4 Methods 

4.1 Workflow 

FIGURE 4.1 illustrates the overall workflow of this thesis. This chapter explains in detail how each 

step contributes to the overall objective of creating a tree species classification map for my study 

area in the JPA. In section 4.2 it is shown how the HSI were prepared for later use with the most 

important step being the spatial co-registration of individual flight strips. The following section, 

4.3, describes the process of preparing the labeled data as input for training, validating, and testing 

the classification network. In section 4.3 it is shown how to delineate ITCs from the LiDAR point 

cloud and how these were matched to the ground reference data. Further, computational methods 

are presented to illustrate how the sample data can be transformed to fit data formats needed for the 

CNN. Sections 4.4 and 4.5 demonstrate how the CNN is defined, trained, and evaluated with a 

proper accuracy assessment. 

 

 

FIGURE 4.1. Workflow overview showing how different analytical methods and various software are 

used to process each data source to serve as input for the classifying algorithm – a CNN 
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4.2 Preprocessing Hyperspectral Imagery 

The AVIRIS-NG HSI data used in this thesis was distributed in the ENVI [38] data format. It 

consists of a simple “flat binary file” and an associated ASCII header file containing important 

information on the nature of the imagery data [39]. This format allows the data to be stored in a 

rotated grid, meaning that the pixels are not aligned in north-south. That specification enables the 

observations to be stored according to the direction of the flight path and thus preserve the original 

values. The data used was rotated by 48 degrees. A positive rotation angle refers to the pixels being 

rotated to the east [40]. The imagery was georeferenced in the WGS84/UTM zone 32N (EPSG: 

32632) coordinate reference system (CRS). To reduce the storage space required by the raw 

AVIRIS-NG reflectance data, all flight strips were clipped with a bounding box polygon of the 

study area which first had to be converted from the CH1903+/LV95 CRS. After clipping, the HSI 

was transformed to the CH1903+/LV95 CRS, as all other data sources used in this work were 

georeferenced in the Swiss CRS. All these operations were conducted in ENVI [38].  

 

 

FIGURE 4.2. AVIRIS-NG imagery and SWISSIMAGE orthophoto before (left) and after (right) 

image co-registration. 

 

Also, the transformation of the imagery to the Swiss CRS was needed to be able to co-register the 

data to a valid reference as offsets between the flight strips and compared to SWISSIMAGE were 

visible. SWISSIMAGE is the digital orthophoto mosaic of Switzerland provided by Swisstopo [41]. 

As geographical reference I used the SWISSIMAGE level 3 product with a pixel size of 0.1 m and 

a horizontal positional accuracy of 0.1 m. This most recent SWISSIMAGE product was acquired 

from 2017 to 2019 and published in 2020 [41]. I sampled the orthophoto down to a spatial resolution 

of 1 m to reduce the storage size of the product and ensure faster computation. Upon visual analysis, 

the offset between the flight strips was determined to be less than half a pixel, i.e., < 1 m. However, 

the visible offset to the reference image was larger. FIGURE 4.2 illustrates this offset between the 

SWISSIMAGE and the AVIRIS-NG HSI before (left) and after (right) image co-registration 

AVIRIS-NG HSI 

SWISSIMAGE 
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conducted in ENVI version 5.6 [38] with the automated image registration workflow. The idea of 

image registration is to automatically align two images such that the corresponding pixels represent 

the same objects. This is done by locating and matching so-called tie points that correspond to the 

same feature in both images [42]. I defined tie points manually by identifying matching, non-

movable features like road crossings or house edges in both images. The tie points were optimized 

until the Root Mean Square Error (RMSE) of the location of all tie points was smaller than half an 

AVIRIS-NG pixel, i.e., < 1 m. This is in accordance with the Positional Accuracy Standards for 

Digital Geospatial Data [43] defined by the American Society for Photogrammetry and Remote 

Sensing (ASPRS) in their Positional Accuracy Standards for Digital Geospatial Data stating that at 

a pixel size of 2 m the orthoimage RMSE in x- and y-direction must not be larger than one pixel. 

4.3 CNN Input Data Preparation 

4.3.1 CHM Computation 

I used the LiDAR point cloud to compute a Canopy Height Model (CHM) which served as input 

for a delineation algorithm to identify Individual Tree Crowns (ITCs). The LiDAR data was 

processed in R version 4.0.4 [44] with the lidR package providing tools for the analysis of Airborne 

Laser Scanning (ALS) data [45], [46]. To compute a CHM from the point cloud, the data had to 

first be height normalized. For this a classified point cloud like the swissSURFACE3D product as 

first the height of all points classified as ground is set to zero to subsequently, interpolate the ground 

returns [47].  After height normalization the elevation of each point (i.e. the z-coordinate) is replaced 

with its height above the interpolated ground surface [47]. The new point cloud was used to generate 

a canopy height model which is a digital surface characterizing the vegetation height across the 

landscape [48]. The pixel size of the resulting raster was selected to be 0.5 m. The pixel size is a 

key parameter in CHM creation, especially for accurate derivation of individual tree attributes [49] 

such as ITCs. Pouliot et al. [50] suggest that the crown diameter to pixel size ratio has to be 

appropriate for defining crown shape [47]. I used a CHM pixel size of 0.5 m which seemed to be 

sufficient for accurately defining tree crown shape in the imagery with 2 m grid spacing. The point 

cloud used in this thesis has an average point density of ~31 points/m2 which should be sufficient 

for generating a 0.5 m CHM, as other studies successfully have used datasets with lower or 

comparable point densities for similar tasks. The LiDAR data used by Ballanti et al. (4–8 points/m2) 

[51], Mäyrä et al. (10.2 points/m2) [3], and Versace et al. (21.5 points/m2) [52] all had lower point 

densities for their CHM of 0.5 m pixel size. FIGURE 4.3 illustrates the spatial distribution of point 

density which is highest where the flight strips of the ALS acquisition overlap. 

For CHM generation two main categories of algorithms exist: (1) point-to-raster algorithms and (2) 

triangulation algorithms. Point-to-raster algorithms are more simplistic. They utilize a grid of a 

certain resolution and attribute the height of the highest pixel to each cell [45]. Point-to-raster 
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algorithms have been widely used in literature for example by Popescu [48], Dalponte & Coomes 

[53], Hyypä [54] and Hunter et al. [55]. A potential disadvantage of these algorithms however is 

that the resulting CHM can contain some empty pixels which have to be filled in post-processing 

using interpolation [45]. 

 

 

FIGURE 4.3. LiDAR point density of the study area. Pixels with zero LiDAR points are colored in 

red. 

 

Empty pixels, or so-called ‘pits’ can appear whenever a laser beam is able to penetrate the tree 

crown deeply before it generates the first return [41]. These ‘pits’ can be avoided with more 

complex triangulation-based algorithms to interpolate first returns [40]. 
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FIGURE 4.4. Comparison of three 100 × 100 m CHMs created from the same data with three different 

methods. Left: point-to-raster algorithm (1 m pixel size). Middle: Basic triangulation with rasterization 

of first returns (0.5 m pixel size). Right: Khosravipour et al. ‘pit-free’ algorithm (0.5 m pixel size). 

The forest subset is the same as described in FIGURE 3.3. 

 

I used the ‘pit-free’ algorithm from Khosravipour et al. [47] which is implemented in the lidR 

package. This method uses a set of Delaunay triangulations applied sequentially using points with 

heights above a set of specified thresholds [45]. Khosravipour et al. [47] examined the suitability 

of their ‘pit-free’ CHM for single tree detection and report that it significantly outperforms 

conventionally computed CHMs. FIGURE 4.4. shows the comparison between three different 

methods for CHM computation, one of which is the used ‘pit-free’ algorithm. 

4.3.2 ITC Delineation 

I used the CHM as input for the delineation of ITCs. This was also done in R version 4.0.4 [44] 

with the lidR package [45], [46]. As Dalponte et al. [8] state, ITC delineation is extremely useful 

for ecological purposes surrounding trees as it allows researchers to analyze the forest in its primary 

element, the tree. Similar to CHM algorithms, ITC algorithms can also be split into two categories: 

(1) the ones using a CHM as input and (2) the ones operating on the whole point cloud [45]. Here, 

I used the algorithm from Dalponte & Coomes [53] which uses a CHM as input. Other authors using 

this algorithm for forest related research are Ying et al. [56], Versace et al. [52], Mauri [57], 

Torresan et al. [58], and Aben et al. [59]. This algorithm is an adapted version from the one Hyyppä 

et al. [60] defined which came out among the best in a benchmarking study by Eysn et al. [61]. The 

approach first applies a smoothing filter on the CHM to reduce the local maxima which are 

afterwards located using a circular moving window. Each local maximum serves as an ‘initial 

region’ around which a tree crown can be located. Neighboring pixels are added to the region if 

their vertical distance to the local maximum is less than some user-defined fraction of the local 

maximum height, less than some user-defined maximum difference. The algorithm iterates this 

process for all neighboring cells included in the region until no more pixels can be added. To finalize 

the ITC delineation, a 2D convex hull is applied to each region and the height of the first return 
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within an ITC is extracted to report the height of the resulting ITC shapefiles [53]. Dalponte & 

Coomes incorporated this method into their R package itcSegment [62] but it is also included in 

lidR which is how I applied it. The difference between the two implementations is that in lidR the 

algorithm is written in C++ making it hundreds to millions times faster than the original version in 

itcSegment [46]. Another difference between the two implementations is that in itcSegment a 2D 

convex hull algorithm is applied to each initial growing region while in lidR the user can decide 

between a convex, concave, or bounding box algorithm to delineate the crown shapes. I opted for a 

concave hull algorithm as it can more precisely capture the geometric boundary of  a dataset than a 

complex hull; this was also recognized by Park & Oh [63] who defined the hull algorithm 

implemented in itcSegment. Following Mauri [57], I buffered the CHM which was clipped to the 

study area by 10 m to preserve the shape of the trees exceeding the study area boundaries. 

With a total of four adaptable parameters, the Dalponte & Coomes ITC algorithm offers a lot of 

flexibility for the user to achieve the best possible results for the given circumstances (e.g., data 

source, CHM resolution). After testing parameter combinations from Versace et al. [52], Mauri 

[57], Torresan et al. [58], and Aben et al. [59] I decided upon visual analysis to use the default 

parameters as shown and explained in TABLE 4.1. The resulting ITC polygons are shown in 

FIGURE 4.5 for a small subset of the study area. 

 

TABLE 4.1. Parameter values used as input into the ITC delineation algorithm from Dalponte & 

Coomes [53] implemented in the lidR R package. Descriptions from the package’s documentation 

from Roussel & Auty [46]. 

Parameter Value Description 

th_tree 2 Threshold [m] below which a pixel cannot be a tree. 

th_seed 0.45 A pixel is added to a growing region if its height is greater than 

the tree height multiplied by this value. 

th_cr 0.55 A pixel is added to a region if its height is greater than the current 

mean height of the growing region multiplied by this value. 

max_cr 10 Maximum value of the crown diameter of a detected tree in pixels. 
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FIGURE 4.5. A 100 × 100 m subset of the CHM showing delineated ITCs using the Dalponte & 

Coomes [53] algorithm implemented in lidR. The forest subset is the same as described in FIGURE 

3.3. 

4.3.3 Field Data Matching 

After delineating ITCs for the whole study area, I matched the sampled ground reference data (i.e., 

GPS points) to the tree crown polygons. This was done manually by visual interpretation in QGIS 

version 3.18 [64]. If an ITC polygon contained a field measured data point, the ITC was assigned a 

label according to the tree species the data point represents. However, some data points had to be 

discarded as they could not be clearly assigned to an ITC. This was the case when the data point 

was either on the border of an ITC or not included in a polygon at all. But still, points showing that 

behavior were not automatically discarded as I examined each case individually. To better identify 

the single trees, I used the CHM in addition to the AVIRIS-NG imagery (FIGURE 4.6). That means 

that to some points more than one ITC could be matched. Also, all selected ITCs smaller than 12 

m2 were discarded. That equals the area of three pixels in the imagery and of 48 pixels in the CHM. 

This was done to increase the chance of having ‘pure-pixels’ that only represent the crown of one 

tree. Fassnacht et al. [12] suggest that to ensure at least one ‘pure-pixel’ one should only include 
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ITCs of at least 3 × 3 pixels. When a tree crown is described by a square at least the size of 3 × 3 

pixels, at least on pixel (i.e., the center pixel) is ‘pure’ meaning it only includes spectral information 

on the tree crown and not on any surroundings. But with this method I would have to discard to 

many tree crowns, as crowns are diverse in shape and not always cover 3 × 3 pixels. I the end I 

matched a total of 325 ITC polygons to the 331 sampled GPS points.  

 

 

FIGURE 4.6. Small subset of the RGB image of the AVIRIS-NG data and the computed CHM used 

to match the ground reference data points to the delineated ITCs. The forest subset is the same as 

described in FIGURE 3.3.  

   

For further analysis I split all ITCs into training, validation, and testing. I randomly assigned 20% 

of all ITCs per species  to the test set (n = 66) and 20% of the remaining ITCs per species to the 

validation set (n = 52). All other 207 ITCs were used for training. The validation set will be used to 

optimize the model and the test data to assess the accuracy of the final model. 

4.3.4 Image Patch Extraction 

After matching the sampled GPS points to the HSI, the data must be processed to a form that can 

be utilized by the classifying model. The CNN requires image-like multidimensional input 

containing spectral as well as spatial information for each pixel [65], [66]. The idea is to extract 

square patches of a certain size from the imagery around the matched and labeled ITCs. The 

conceptual design of the image patch extraction in depicted in FIGURE 4.7. The size of the patches 

affect how much of the image the CNN can “see” when making a prediction [2]. First, each vector 

dataset containing the matched ITCs gets rasterized to a label raster where each pixel representing 

an ITC gets labeled according to the tree species and all other pixels are assigned a no-data value. 
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This label raster is afterwards used for extracting the image patches from the imagery. I extracted a 

5 × 5 patch around each labeled pixel resulting in a total of 4,515 image patches for all trees. This 

was done for each flight strip individually as I did not create a hyperspectral mosaic to preserve the 

original reflectance values which would have been altered in the areas where the flight strips 

overlap. While all patches where in the same CRS (CH1903+/LV95) the pixel sizes vary between 

1.9 and 2.1 m according to the flight strip. Patches being extracted from ITCs near the edges which 

contain no-data values were discarded. 

 

 

FIGURE 4.7. Conceptual workflow of image patch extraction. a) Polygon of a tree crown delineated 

from the LiDAR point cloud. b) Rasterized ITC shown in blue with the white grid illustration the 

extent of the image patch extracted around the upper-left pixel of the rasterized ITC. c) Four example 

image patches extracted from this crown. The upper-left patch is the one extracted around the example 

pixel in b). 

 

I chose a patch size of 5 × 5 to give the CNN enough spatial context for learning how to predict the 

center pixel of each patch. However, just as reported by Mäyrä et al. [3], the patch size did not have 

a major impact on classification accuracies. Also, using 5 × 5 patches instead of 7 × 7 patches 

lowered the computation times substantially. Utilizing and learning spatial-spectral characteristics 

instead of spectral information alone is a big advantage of deep learning methods compared to more 

traditional machine learning concepts like SVM and RF which are heavily dependent on hand-

crafted features [3]. 

After patch extraction I dropped noisy bands at the beginning and end of the spectrum and water 

absorption bands, as described in Wang et al. in [67] and [68]. Bands 1–7, 187–217, 281–330, and 

408–425 were dropped. The remaining 319 bands were used for all subsequent analyses and covered 

the spectral regions 412.13–1303.67, 1463.95–1774.49, and 2029.93–2410.59 nm. I extracted the 

spectra of all labeled pixels (i.e., of all center pixels of the image patches) to visualize the average 

spectra per tree species in FIGURE 4.8. Due to large overlaps of the standard deviations of the 

average per-species reflectance these are not illustrated here. In the appendix the average 

reflectances with the standard deviations are illustrated for reach species individually. Patch 

extraction was done in Python with the NumPy [69] and Rasterio [70] libraries. 
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FIGURE 4.8. Average reflectances per target tree species after dropping noisy and water absorption 

bands. 

 

4.3.5 Dimensionality Reduction 

Due to its narrowband nature, it is possible to model, predict and map biophysical as well as 

biochemical components of vegetation with hyperspectral imagery like AVIRIS-NG [33].  

However, for classification the high dimensionality of such data can pose a problem due to the 

Hughes phenomenon [51]. According to Hughes [71] increasing the number of spectral bands 

requires an exponential increase in the number of training samples for training a classification 

model. Thus, classification accuracies can be significantly reduced. The assumption is that more 

bands in the HSI may cause information redundancy due to neighboring bands being highly 

correlated [72]. Therefore, to address band collinearity and maximize the between-group variance 

(as desired in classification tasks) I applied dimensionality reduction [31], [73]. In classifying tasks 

dimensionality reduction techniques can simultaneously improve accuracies as well as 

computational efficiency [31]. I applied one of the most common and simple methods of 

dimensionality reduction for HSI classification which is to extract spectral features with a principal 

component analysis (PCA) [18], [74]–[76]. PCA for dimensionality reduction of HSI for species 
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discrimination was also applied in Fricker et al. [2], Mäyrä et al. [3], Patel et al. [19], and Prospere 

et al. [76]. 

 PCA is a multivariate statistical method that transforms the original data into a set of orthogonal 

variables (principal components, PCs) by finding a projection matrix that maximizes the data 

variance in the reduced subspace [77], [78]. The first PC accounts for the maximum proportion of 

the variance, and subsequent components for the next highest proportion of the variance [77], [79]. 

I applied the PCA transformation in Python using the Scikit-learn module which integrates a wide 

range of state-of-the-art machine learning algorithms [80]. To apply a PCA transformation in Scikit-

learn a user-defined number of components first get fit to the original data. Afterwards the learned 

transformation is applied to new data to transform it to lower-order dimensionality [81]. I first fit 

32 PCA components to all patch center pixels of all species (n = 4,515) to subsequently apply the 

transformation to all complete image patches. This means that the transformation is only based on 

vegetated pixels containing spectral information on spectrally “pure” pixels that only contain 

information on one of the five species. Thus, in the dimensionality reduced data the variation 

between the different tree species should be increased. 

4.3.6 Data Augmentation 

One drawback of such classification tasks collection of ground reference data which is complicated, 

time consuming, and expensive [3], [18]. State-of-the-art RGB image recognition models have been 

pretrained with the ImageNet dataset [82] containing around 1.3 million annotated samples across 

1,000 classes [3]. My training dataset however only consists of 2,830 labeled image patches and 

five classes. Having too few training samples can lead to the model overfitting and not being able 

to classify new data correctly [16]. That is why I applied data augmentation, a common practice to 

increase the number of training samples utilized in most studies applying CNNs to image data (e.g., 

[2], [3], [24], [83]–[85]). The basic idea of data augmentation is to generate additional training data 

from existing training samples via several operations that yield believable-looking images [81]. The 

goal is that the model will not see the same picture twice as this helps the model generalize better 

as it is exposed to more aspects of the data [16]. I applied image augmentation in two steps. 

First I used a novel technique called MixUp proposed by Zhang et al. [86]. This technique replaces 

each image patch with a new patch which is a linear combination of two distinct patches that are of 

different species. More formally: 

 

𝑥 =  𝜆𝑥 + (1 −  𝜆)𝑥,                𝑤ℎ𝑒𝑟𝑒 𝑥 , 𝑥 𝑎𝑟𝑒 𝑖𝑚𝑎𝑔𝑒 𝑝𝑎𝑡𝑐ℎ𝑒𝑠 

𝑦 =  𝜆𝑦 + (1 −  𝜆)𝑦,                𝑤ℎ𝑒𝑟𝑒 𝑦 , 𝑦 𝑎𝑟𝑒 𝑜𝑛𝑒– ℎ𝑜𝑡 𝑙𝑎𝑏𝑒𝑙 𝑒𝑛𝑐𝑜𝑑𝑖𝑛𝑔𝑠 

 

xi and xj are randomly selected image patches from our training data with yi and yj being the 

according one-hot labels [86]. 𝑥 and 𝑦 are the image patch and the corresponding label after MixUp. 
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One-hot means that the labels are not just a single number but rather a vector the length of classes 

indicating the class with a value between zero and one. Here an oak patch would have the label [1, 

0, 0, 0, 0]. λ ∈ [0, 1] is a value randomly sampled from a Beta distribution with shape parameters α 

= 0.4 and β = 0.5. Thus, λ has a high possibility of being near zero or near one indicating weak 

mixing of the two patches, and low possibility of being near 0.5 indicating strong mixing of two 

patches. After a weak MixUp a patch which is a combination of oak and beech could have [0.85, 

0.15, 0.0, 0.0 0.0] as its corresponding label. After MixUp with a large λ, however, the dominant 

label in the one-hot vector of a patch could change. This is why the number of patches per species 

can be different after applying the MixUp image augmentation technique (TABLE 4.2). MixUp has 

been shown to improve results for image classification as well as for speech recognition and also 

adds robustness in case of corrupt labels [3], [86]. 

 

TABLE 4.2. Distribution of training patches per tree species before and after MixUp augmentation. 

 Number of training patches 

Species Before MixUp After MixUp 

Oak 581 601 

Beech 855 722 

Ash 591 615 

Pine 512 550 

Linden 291 342 

TOTAL 2830 2830 

 

 

The second part of the image augmentation includes changing the brightness, rotating, and adding 

random noise. These transformations change the appearance of each patch and ultimately increase 

the available training data significantly, i.e., applying each transformation several times resulted in 

96-folding the original training set and a total of 271,680 image patches. The number of patches per 

species before and after data augmentation is shown in TABLE 4.3. 
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TABLE 4.3. Number of labeled pixels before and after image augmentation in the training set. 

 Number of training patches 

Species Before Data 

Augmentation 

After Data 

Augmentation 

Oak 601 57,696 

Beech 722 69,312 

Ash 615 59,040 

Pine 550 52,800 

Linden 342 32,832 

TOTAL 2830 271,680 

 

4.3.7 Patch Equalization 

As can be seen in TABLE 4.3, the number of training patches per tree species is uneven, which 

happens when reference samples are biased towards dominant trees [12]. I collected the most 

sample points for beech and the least number of points for linden. While this does not indicate 

anything definite on species dominance it might represents the abundance of the most dominant 

species. To eliminate bias of the model towards more represented species, I equalized the amount 

of training data per species following Dalponte et al. [8]. From each species’ pool of training data, 

a random number of image patches was selected equal to the number of training patches of the least 

represented species. This means that for every species 32,832 image patches were randomly 

selected from the augmented training set, except for linden as for this species all of the available 

patches are used. Fassnacht et al. [5] also stated that classification accuracies can be biased by 

uneven distributions of samples per class and recommend mitigating this issue by adequately 

sampling underrepresented tree species. 

4.4 CNN Model 

4.4.1 Model Architecture 

There are several ways in which CNNs can be used for hyperspectral image classification [3]. Even 

for the specific task of tree species classification various approaches have been taken in recent 

literature. While Fricker et al. [2] tested a fully convolutional network, Mäyrä et al. [3] opted for a 
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3D-CNN. Schiefer et al. [23] made use of the U-Net architecture originally introduced for the 

segmentation of biomedical images by Ronneberger et al. [87]. The same approach was taken and 

extended by Chen et al. [24] who developed and presented a so-called ResU-Net Model. I, however, 

present a rather simple model architecture which has proven to be the best option for the task at 

hand. In the following sections the model’s architecture and the used hyperparameters are described. 

While it is almost impossible to exploit all possible model definitions, I extensively tested a number 

of CNN configurations which lead to the selection of the parameters presented. The model was 

written in Python 3.10.2 [88] and implemented using Keras, a deep learning API (application 

programming interface) [89], and the TensorFlow backend which is an open source machine 

learning framework [90]. 

The chosen CNN architecture is rather simple as can be seen in its conceptual visualization in 

FIGURE 4.9. The architecture consisting of two two-dimensional convolutional (Conv) layers, a 

flatten and a fully connected layer, performed the best under the given circumstances. 

 

 

FIGURE 4.9. Architecture of the convolutional neural network used in this study. 

 

The network was trained on patches measuring 5 × 5 pixels each consisting of 32 channels obtained 

after dimensionality reduction through PCA. The most significant components of a CNN are the 

Conv layers consisting of a collection of convolutional filters (so-called kernels). These filters are 

applied to the input data to generate the output feature map [91]. Mathematically, the kernel is a 

two-dimensional matrix, with values called kernel weights [91]. A fundamental step in DL is that 

these weights are initialized randomly and get adapted continuously during training based on a 

feedback signal. Every single one of those filters, or kernels, is referred to as a “neuron” as it 

connects to representations of the input data within the CNN with each other. The adjustment is 

done by an optimizer, which implements a backpropagation algorithm to minimize the loss function 

[16]. The loss function computes a distance score between the predictions of the network and the 
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true values of the targets capturing how well the network is performing [16]. That score is called 

the “loss”. For a Conv layer to produce an output, the kernel slides over the whole input image with 

a certain step-size (stride). Each repetition of this process produces a new feature image, which 

represents a single layer in the output stack of a Conv layer. The number of output layers is denoted 

as the number of filters and is defined by the user. In other words, every entry in the 3D output 

volume of a Conv layer can be interpreted as an output of a neuron that looks at a small region of 

the input image and shares parameters with all neighboring neurons since these values stem from 

the same kernel [92]. The activation function is responsible to determine the neuron output by 

computing the weighted summation of the neuron input [91]. After the Conv layers, I added a layer 

to flatten the 3D-patches to a 1D-vector, which serves as an input to the following fully connected 

(dense) layer. That last layer produces an array of five probability scores (summing to one) each 

denoting the probability that a patch belongs to one of the five tree species [16]. 

I chose a kernel size of 3 × 3 pixels and a stride of one for both Conv layers, with the first having 

64 filters and the second having 128 filters. Generally, the convolutional layers cause a reduction 

of size of the input patches. Padding would add an appropriate number of rows and columns on 

each side of the input image making it possible to fit the center of the kernel on every pixel in the 

input patch and retaining the spatial dimensions of the input [16]. By not using padding, I reduced 

the image patches from 5 × 5 pixels to 3 × 3 pixels after the first Conv layer, and to 1 × 1 pixels 

after the second. Following Fricker et al. [2] and Mäyrä et al. [3] I did not use padding as it did not 

improve the results. 

After both convolutional layers, I apply batch normalization (BN) and dropout. BN [93] normalizes 

the obtained feature by subtracting the mean µ and dividing it by the standard deviation σ of each 

layer [18], [91]. Applying BN before the activation function allows reaching a more independent 

and high-speed learning [18]. Dropout [94] increases model performance and robustness by forcing 

neurons to make more strict assumptions [18]. I used relatively high dropout values of 0.5 after the 

first and 0.7 after the second Conv layer. After BN and dropout, an activation function needs to be 

applied to map the input of a Conv layer [91]. I used the rectified linear unit (ReLU) [95] activation 

function, the most commonly used function in the CNN context, which converts all values of the 

input to positive numbers [91]. ReLU is defined as: 

 

𝑓(𝑥)ோ = max (0, 𝑥) 
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FIGURE 4.10. The rectified linear unit function [16]. 

 

By applying a max(.) function between 0 and the input data x, ReLU equal or smaller than 0 to 0, 

and to x (i.e., estimated value) otherwise, as depicted in FIGURE 4.10 [18]. After a flattening layer 

which converts the output volumes of the Conv layers to a 1-D vector, the final probability scores 

are computed using a fully connected (dense) layer and the softmax activation function. In this dense 

layer, each neuron is connected to all other neurons in the previous layer [91]. To generate the 

probability scores, the dense layer employs the softmax activation function which is commonly 

applied in multi-class classifications and defined as  

 

𝑝 =
𝑒

∑ 𝑒
ே

ୀଵ

 

 

where eai represents the non-normalized output from the previous layer while N is the number of 

neurons in the output layer [91]. Softmax squeezes the data between 0 and 1 and divides the obtained 

outputs by their sum giving the probability of the input data belonging to a particular class (pi) [18]. 

The CNN model is finalized by selecting an appropriate loss function. The most popular loss 

function for multi-class classification tasks is the categorical cross-entropy, defined as 

 

 −𝑦 log(𝑝)
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where n is the number of classes, pi is the probability of class i, and yi is 1 for the correct class and 

0 for all other classes [3]. The model tries to minimize the loss function, which in this case is 

equivalent to maximizing the log-likelihood of the correct class assignment. This, however, can 

cause the model to overfit due to the loss function assigning 100% to a single class [3]. To avoid 

this, I applied the method suggested by Szegedy et al. [96] which was also applied for tree species 

classification by Mäyrä et al. [3]. The loss function called “label smoothing cross-entropy” 

penalizes the model for overconfidence by modifying the true target y and replacing them with y* 

[3]. 

 

𝑦∗ = 𝑦(1 − 𝛼) +
𝛼

𝑛
 

 

I used α = 0.2 which would replace y = [0, 1, 0, 0, 0] with y* = [0.05, 0.8, 0.05, 0.05, 0.05]. At least 

for RGB-image classification [96], [97], this method has been shown to improve model robustness 

[3]. I also applied L2 regularization, which is a popular method to prevent the model from 

overfitting [16], [18]. This method, which is also called weight decay in the context of neural 

networks inserts a penalty into the loss function proportional to the square value of the weight 

coefficients forcing the network to make compromises on its weights’ making it more general [16], 

[18]. As an optimizer for the model, I chose the Adaptive Moment Estimation (Adam) [98], which 

has shown excellent results and is thus the most widely used optimizer for deep learning networks 

[18]. Adam is more memory efficient and needs less computational power than alternatives and 

works by calculating an adaptive learning rate for each parameter in the model [91]. I used a learning 

rate of 0.001 with Adam, which is the proportion that weights are updated [91]. 

I developed code for defining and training my CNN model based on the scripts provided by Fricker 

et al. [2] and Mäyrä et al. [3]. 

4.4.2 Model Training 

I defined a batch size of 64 and set the number of epochs for the model to 50. One epoch refers to 

one model training iteration over all training data [16]. However, the model did not need 50 epochs 

to be trained as I also applied early stopping [99]. Early stopping means that the training of the 

model is stopped and the results are saved once maximum validation accuracy is reached [16]. This 

technique can be very effective in training CNNs without significant overfitting [99]. I defined early 

stopping in a way that training is halted when the validation accuracy does not improve after five 

epochs. 
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4.4.3 Full Study Area Classifications 

I applied the final model to the full AVIRIS-NG HSI data to compute a pixel-wise tree species 

classification map. To make a prediction for each pixel in the data, the model needs to be supplied 

with image patches of the same size the model was trained on. First, I transformed the full image 

data into the new coordinate system (calculated by PCA from the training data) by multiplying them 

with the PC loadings. Then, I predicted each pixel by extracting a 5 × 5 pixel patch around the pixel 

and feeding it to the CNN to make a prediction based on its’ weights. However, the output scene 

was ultimately reduced in size by a border equal to the patch radius (i.e., 2 pixels). Causing this is 

the fact that border patches, which contain no-data values outside the area of interest, cannot be 

used by the CNN for prediction. I applied the model to each of the nine flightstrips separately, due 

to computational limitations, which means that the resulting predictions rasters have the same pixel 

size as the corresponding flightstrips (i.e., 1.9–2.1 m). 

Finally, I combined the individual predictions per flight strip to one tree species classification map. 

I first resampled all segments to a 2 m pixel size and then aligned all rasters. Because neighboring 

flight strips overlap, I defined how the final prediction class was chosen if two different classes 

were predicted for the same pixel. This was done by assigning the label with the higher prediction 

probability score. 

4.5 Accuracy Assessment 

One common accuracy assessment approach is to present the classification of the testing data and 

the corresponding ground data summarized on a per-class basis in the form of a confusion matrix 

[100]. Based on this table metrics can be calculated, including the overall accuracy (OA), the user’s 

(UA), and the producer’s accuracy (PA). OA expresses the fraction of correctly classified samples, 

while UA is the number of true positives divided by all positive predictions per class and PA is the 

number of true positives divided by the actual number of samples per class [101]. Additionally, I 

report the F1-score, which is a commonly used statistic in DL studies and can be described as the 

harmonic mean between UA and PA. It is defined as 

 

𝐹1 =  
2 × 𝑇𝑃

2 × 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
 

 

where TP are the true positives, FP the false positives, and FN the false negatives [102]. I report the 

F1-score for each species in addition to the average F1-score of all species and the weighted average 

F1-score which takes the number of samples per class into account weighing the species with a lot 

of samples more. 
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5 Results 

5.1 Model Training 

With early stopping, I defined that the model training is stopped when the classification accuracy 

of the validation set does not increase after five epochs. When this criterion is met, the model 

restores the weights from the best epoch (i.e., the epoch with the highest validation accuracy) and 

is being saved. Accuracy and loss of the training and validation sets during CNN training are 

depicted in FIGURE 5.1 showing that the first epoch produced the best results in terms of validation 

accuracy (accuracy = 0.55,  loss = 1.41), while it kept improving in terms of training accuracy. 

 

 

FIGURE 5.1. Accuracy and loss of the training and validation data sets during CNN training. 

 

I chose the weights from the epoch with the best validation metrics and not the best training metrics, 

because the goal during prediction is classifying data the model has never seen before, similar to 

the validation data, which is why validation metrics are more informative about model performance. 
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This behavior of the model indicates that the most important representations are learned by the 

model after the first epoch with no major improvements in validation metrics afterwards. 

5.2 Classification Results 

FIGURE 5.2 shows the confusion matrix for the trained CNN comparing the samples of the test set 

with its’ predicted classes. Here a 5 × 5 pixel patch, as explained in 4.3.4, represents one sample. 

As the model uses those patches to predict the center pixel this means that the classification metrics 

apply to all labeled pixels in the test set as a single sample. 

The OA of the CNN is 70% with an average F1-score of 0.67 and a weighted average F1-score of 

0.70 as stated in the classification report (TABLE 5.1). The weighted average F1-score exceeds the 

standard average because the species with the most samples in the test set, beech, has the highest 

accuracy metrics of all species with an UA of 75%, a PA of 86% and a F1-score of 0.80. This, 

however, is not caused by training the model with an unbalanced training set as I equalized the 

number of training samples per species before model training. 

 

 Oak Beech Ash Pine Linden 

Oak 108 1 11 12 0 

Beech 48 231 22 8 0 

Ash 7 27 112 6 11 

Pine 21 8 16 107 11 

Linden 18 2 23 3 41 

 

FIGURE 5.2. Confusion matrix for the trained CNN where rows indicate the predicted species and 

columns the ground truth. 
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The highest UA is achieved for oaks with 82%. However, the PA for oaks (53%) is the lowest of 

all species. This is caused by a large number of oak samples being wrongly classified while the 

likelihood that a sample that was classified as an oak was actually an oak was high. In absolute 

numbers, this is the model’s most common misclassification. Other major misclassifications are ash 

as beech, beech as ash, and oak or ash as pine or linden. The lowest score of any species is the UA 

of linden of 46% as the model does not seem to be able to learn the most important representations 

needed for a more robust classification of linden. More confusion matrices that show the UA and 

PA for each case are given in the appendix. 

 

TABLE 5.1. Classification report for the trained CNN. Support indicates the number of image patches 

per class in the test set. Support indicates the number of test samples per class. 

Species UA PA F1 Support 

Oak 0.82 0.53 0.65 202 

Beech 0.75 0.86 0.80 269 

Ash 0.69 0.61 0.65 184 

Pine 0.66 0.79 0.72 136 

Linden 0.47 0.65 0.55 63 

Overall Accuracy 70%    

Average 0.68 0.69 0.67  

Weighted Average 0.72 0.70 0.70  

 

While the classification accuracies and metrics of the CNN are not exceptional, the model is able 

to outperform conventional machine learning methods like a random forest (RF) and a support-

vector machine (SVM) classifier (FIGURE 5.3 & TABLE 5.2). The OAs of RF and SVM are 67% 

and 66% respectively, lower than the 70% OA of the CNN classifier. The average F1-score for RF 

is 0.61 with a weighted average of 0.65. For SVM, the average F1-score is 0.62 and the weighted 

average F1-score is the same as for RF. While the overall model metrics are lower, both RF and 

SVM exceeded the highest PAs for individual species compared to CNN. With 93% the RF PA for 

beech is the highest metric of all three models. The highest value for the SVM is also the PA for 

beech at 86%, which is equal to the CNN. In terms of per-species F1-scores all three models are 

mostly in tune with beech having the highest value followed by pine, ash, oak, and linden. In the 

CNN case, oak and ash have equal F1-scores. The highest misclassification rate is consistent for all 

three methods, which is oak classified as beech. However, RF misclassifies ash as beech even 

slightly more often. Also, RF and SVM perform worse than the CNN when trying to classify linden 

correctly. Especially RF seems to have trouble, with only 19 correctly classified linden samples, a 
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PA of 0.30, and a F1-score of 0.37. The linden UA, however, is similar with 49%. More confusion 

matrices that show the UA and PA for each case for RF and SVM are given in the appendix. 

 

 

Oak Beech Ash Pine Linden 

Oak 99 7 7 14 4 

Beech 49 250 51 19 18 

Ash 23 11 107 4 15 

Pine 25 1 8 96 7 

Linden 6 0 11 3 19 

 

FIGURE 5.3. Confusion matrices for the comparison methods. Left: Random forest (RF). Right: 

Support-vector machine (SVM). 

 

TABLE 5.2. Classification report for RF and SVM. 

 RF    SVM   

Species UA PA F1  UA PA F1 

Oak 0.76 0.49 0.59  0.76 0.48 0.59 

Beech 0.65 0.93 0.76  0.70 0.86 0.77 

Ash 0.67 0.58 0.62  0.69 0.59 0.63 

Pine 0.70 0.71 0.70  0.58 0.75 0.65 

Linden 0.49 0.30 0.37  0.45 0.44 0.45 

Overall Accuracy 67%    66%   

Average 0.65 0.60 0.61  0.64 0.62 0.62 

Weighted Average 0.67 0.67 0.65  0.67 0.66 0.65 

 

 

Oak Beech Ash Pine Linden 

 96 7 9 13 1 

 51 232 32 16 2 

 7 23 108 4 15 

 35 4 18 102 17 
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5.3 Full Study Area Classifications 

The generated tree species classification map (FIGURE 5.4) includes all pixels with a probability 

score ≥ 0.4 and a NDVI ≥ 0.75. The NDVI threshold is applied to only include vegetated pixels in 

the final classification map. The species with the highest abundance in the classification map is oak 

which is also the most dominant species. Pixels with a prediction confidence (i.e., probability score) 

of less than 40% were discarded as the forested area is not completely made up of the five species 

examined in this thesis. To each pixel the model assigns one probability score per species. This tells 

us the probability of a pixel belonging to a certain species. All probability scores summed up per 

pixel are 100%. For example, another prominent species in my study area is Maple (Acer 

pseudoplatanus). The average prediction confidence of all pixels in the final map (i.e., after 

confidence and NDVI thresholds) is 51.55%. While I would certainly desire this value to be higher 

it is acceptable. In 6.4 the full study classification map is further discussed. 

 

 

FIGURE 5.4. Full study area tree species classification map showing predictions with a probability 

score ≥ 0.4 and an NDVI ≥ 0.75. 
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6 Discussion 

In this thesis, I presented an experimental setup for the pixel-based classification of tree species 

from hyperspectral imagery with a Convolution Neural Network. This chapter comments on 

uncertainties, limitations, and possibilities in the experimental setup. 

6.1 Ground Reference Data 

For a high quality tree species classification, the ground reference data has to fulfill certain criteria 

and an accurate correspondence between field and remote sensing data needs to be established [2], 

[12]. Based on extensive literature review, Fassnacht et al. [12] defined criteria for the collection of 

ground reference data. Two of these criteria are that the data should be representative for the site 

under investigation and that the spatial scale of the data should match the problem under 

investigation. In the case of a tree species classification, this means that the collected ground 

samples must be representative for the true tree species distribution present. While I tried to fulfill 

these criteria as good as possible, the collected ground reference data is certainly not perfectly 

balanced. Rather, the number of samples by class matched my perceived relative abundance of 

species in the study area. There is, however, no easy way to verify this. Reference samples being 

biased towards dominant tree species could mean that reported accuracies for those species might 

be representative for a larger part of the wood volume but not necessarily for the larger fraction of 

individual trees [12]. And even though the model was ultimately trained using the same number of 

training samples per species, the fraction of artificial samples created with data augmentation was 

higher for species with less ground reference samples such as linden. However, the collection of a 

geographically more balanced and dispersed ground reference set was not possible due to the hilly 

topography of the study area and the dense forest structure. There are some spatial clusters of ground 

samples and some areas without any samples caused by the inaccessibility of the terrain. Both 

factors, the uneven distribution across species and across the geographical extent of the study area, 

are possibly introducing uncertainty into the final classification. 

Another possible uncertainty factor is introduced in the matching of the field data to the HSI. Each 

of the data sources used in that process, the GPS field samples, the HSI, and the LiDAR point cloud 

have a certain positional inaccuracy. In case of the LiDAR data and the ground reference samples, 

that accuracy is known but it is not for the AVIRIS-NG HSI, at least not exactly. Generally, we 

assume a positional uncertainty of AVIRIS-NG HSI of ± one pixel. To match the imagery to the 

collected ground samples and the delineated ITCs it first had to be co-registered to a reference 

image, the SWISSIMAGE orthophoto (4.2). This was critical to ensure the HSI geographically 

matched with the ITCs delineated from the LiDAR point cloud which was in sync with the 
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orthophoto. Accurate co-registration of different datasets, especially when working on a single tree 

level, is an important technical consideration in this field [12]. Also, manually co-registering images 

is prone to errors and thus positional uncertainties cannot be completely eliminated [42]. Positional 

inaccuracies and uncertainties can ultimately lead to incorrectly labelled samples used in the 

training and evaluation of the classification model. The effect of mislabeled pixels on the 

classification accuracy could be estimated by intentionally mislabeling a fraction of pixels and 

evaluating the classification accuracy of those as done by Clark et al. [103] and Laybros et al. [104]. 

In addition, mislabeled samples can be the result of inaccurate ITCs leading to mixed-canopy 

samples that are not labelled as belonging to several but to a single species. This could also be a 

reason for the large overlap of the standard deviations of the average per-species reflectance (see 

appendix). Still, my model, which incorporates the entire spectral information was able to 

differentiate species to a large degree. 

An adequate amount of data for training a neural network is essential as it has an effect on the 

accuracy and efficiency of the CNN classifier [105]. Unfortunately, collecting a large number of 

high-quality training samples is not always easy due to limited time, access, or interpretability 

constraints [15]. 

6.2 Image Patch Extraction 

In many remote sensing studies on tree classification spectra are only extracted from fully 

illuminated tree crowns. Especially in northern latitudes, shadowed pixels can pose a problem as 

the solar zenith angle is always quite large and, thus, shadowed pixels are present even in the best 

acquisition periods (i.e., during mid-summer) [7]. By eliminating the spectra of shaded pixels from 

the training data some of the intra-species variability of the spectral signatures can be reduced to 

increase classification accuracies [12]. The spectral properties of shadowed parts differ from sunlit 

segments of the same tree crown and thus are more often misclassified [51]. That is, however, also 

the reason I did not restrict training data selection to sunlit pixels. Since I intend to apply the model 

across the entire study area and thus to cope with any sort of illumination property, I trained the 

model using any sort of illumination. Also, limiting the data to sunlit pixels would reduce the 

already quite small amount of data I have. If an entire ITC is shadowed all the pixels within would 

have to be discarded and even if only a single pixel of an ITC is shadowed, it would not be possible 

to extract the 5 × 5 pixel image patches for most of the pixels in the ITC. This is because the model 

cannot deal with no-data values, which would have been assigned to shadowed pixels. 

As for the selected patch size, I also assessed the performance of  models using 3 × 3 and 7 × 7 

pixel patches. The 3 × 3 pixel patches were able to classify the test patches with an overall accuracy 

(OA) of 68% and an average F1-score of 0.66. In the 7 × 7 pixel patch case, the model resulted in 

an OA of 65% and an average F1-score of 0.64. Both alternatives were thus not able to outperform 

the 5 × 5 patches, which classified the image patches of the test set with an OA of 70% and an 
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average F1-score of 0.67. However, the differences between the different patch sizes are marginal, 

especially in case of the average F1-score. The idea behind using larger image patches is that they 

are more likely to contain information from several trees, which can be helpful for classification 

purpose[3]. An example would be that pines tend to be surrounded by other pines [3]. Using image 

patches that are too large could, however, lead to the model using spatial and spectral information 

having no or only little explanatory power for classifying the patch’s center pixel. 

6.3 CNN Model 

Defining the architecture of the CNN and finding the optimal values for the hyperparameters was a 

long and exhaustive process. I was focused on ultimately generating the best possible classification, 

meaning that I wanted to find the best model for the given circumstances which were the 

classification task itself, the quality and resolution of the input data, and the computational capacity. 

Most techniques and concepts used for the final model are primarily included to prevent overfitting. 

Overfitting occurs when the gap between the classification accuracy of training and testing data is 

large. This is ultimately caused by the model learning irrelevant patterns in the training data causing 

it not being able to generalize, which results in low validation and testing accuracies [16]. Dealing 

with overfitting means finding the right balance between optimization and generalization. 

Optimization refers to adjusting the model to get the best result possible, while generalization refers 

to how well the trained model performs on data it has never seen before [16]. The process of fighting 

overfitting by finding that balance is called regularization [16]. As Chollet & Allaire [16] state, the 

best solution to prevent overfitting is to get more training data. I followed that approach by 

augmenting the training data (see 4.3.6). Using the novel MixUp technique and traditional data 

augmenting transformations, including changing the brightness, rotating, and adding random noise, 

I increased the amount of training data 96-fold. Data augmentation not only increases the size of 

the training set, but also its variance [23]. According to Weinstein et al. [106], a larger training set 

with increased heterogeneity should further enhance the accuracy and generalization of the CNN. 

Another fundamental approach I took to prevent overfitting is the utilization of a rather simple 

model architecture to reduce the computational complexity of the CNN [107]. Simplifying the 

network and subsequently reducing the number of parameters leads to a lighter CNN model making 

the training and execution faster [18]. However, not many standards have been defined in that 

direction for hyperspectral classification problems [18]. In addition to data augmentation and model 

simplification, which are applied before the actual model execution, I also used regularization 

techniques applied during the training process. The used L2 regularization adds a penalty to the loss 

function to minimize the squared magnitude of the weights. This forces the model to reduce its’ 

weights making it more general [18]. An alternative to the L2 regularization is the L1 regularization 

where the penalty is added proportionally to the absolute value of the weight coefficients (the L1 

norm of the weights) [16]. L1 regularization enforces the identification of the most relevant features 

in a dataset, while L2 pursues a less aggressive regularization that is, however, more efficient in 
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computational terms [18]. Coding-wise, the L2 regularization is applied with the Conv layers as a 

so-called kernel regularizer. Applied as individual layers are batch normalization [93] and dropout 

[108]. Batch normalization tries to accelerate the training of deep neural networks via normalization 

steps that fix the means and variances of the layer inputs [93]. The original authors of this technique, 

Ioffe and Szegedy [93], state that batch normalization also has a beneficial effect in the gradient 

flow through the network by reducing the dependence of gradients on the scale of the parameters 

or their initial values. Ioffe and Szegedy [93] also mention that using batch normalization can 

eliminate the need for dropout as it provides similar regularization benefits. I did however use both 

techniques. The model produced the highest test accuracies when applying dropout directly after 

batch normalization and before the activation function. Dropout acts by randomly dropping a 

fraction of all neurons after each training epoch to equally distribute the feature selection power 

across all neurons [91]. This forces the model to learn different independent features [91], prevents 

complex co-adaptions, and is thus also a regularization method against overfitting [94]. However, 

Park and Kwak [109] report that traditional dropout adds random single-pixel noise, which can 

make it ineffective in 2-D and 3-D models. 

In section 5.1 I described the model’s behavior during training. The model achieved the highest 

validation accuracy and the lowest validation loss during the first epoch. Scientific literature on 

such behavior is sparse as it is most likely often viewed as non-successful. I hypothesize that the 

non-convergence of accuracy and loss towards a maximum or minimum respectively could be a 

hint that a fraction of the image patches get classified randomly. As that pattern also appeared with 

other model architectures and during hyperparameter tuning it could be a sign that the quality of the 

training data is sub-optimal. As described in 6.1 and 6.2 an array of computational steps is needed 

to extract the image patches used for model training, validation, and testing. At each step a certain 

factor of uncertainty is introduced. Depending on how large that factor is this could ultimately lead 

to misclassified patches or patches that include irrelevant information preventing the model from 

learning important representations. Still, whilst the classification accuracies are not quite at the 

desired level, they are acceptable and show that the model is able to learn the most important 

spectral differences among tree species. These representations are probably learned in the first 

epoch as the gap between train and validation accuracy widens afterwards, which can be a sign for 

potential overfitting. 

6.4 Classification Accuracy 

The adequacy of the training data that spectrally define the classes is of fundamental importance to 

a classification and a major determinant of the classification accuracy [110], [111]. As mentioned 

in 6.3 the produced classification accuracies could be limited by the quality and quantity of the 

hyperspectral input data. To assess that, I conducted a partial least squares discriminant analysis 

(PLS-DA). Partial least squares (PLS) [112] is a family of statistical methods specifically designed 

for the large degree of auto-correlation inherent in hyperspectral data [113]. PLS-DA is an effective 
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technique that addresses the complexities associated with high dimensional data by executing 

dimension reduction and classification simultaneously [113]. The underlying principle is that a few 

eigenvectors of spectral matrices are created, which are used to produce scores that explain both the 

variance of the hyperspectral data as well as the correlation with the dependent variable (i.e., tree 

species) [113]–[116]. 

Using R version 4.0.4 [44] and the caret [117] package, designed for classification and regression 

training, I classified all original image patches with 319 spectral bands by applying a PLS-DA. I 

only included the image patches of the training set as I wanted to assess their suitability for CNN 

training. The model was executed 50 times to generate a probability plot as seen in FIGURE 6.1. 

The results show that for each species the probability of a patch being classified correctly is larger 

than the patch being classified as any other species. However, the chance of correct classification 

is about only 40% for all species. 

 

 

FIGURE 6.1. Probability plot showing the classification probability per tree species after 50 PLS-DA 

simulations. 

 

The CNN classification model resulted in better classification accuracies than this simple PLS-DA. 

This could indicate that the different pre-processing steps like dimensionality reduction and data 

augmentation, as well as the model itself maximize the extraction of information from the training 

data. The PLS-DA also exhibits a different behavior in terms of misclassifications as compared to 
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the CNN model. The major misclassifications of the CNN (FIGURE 5.2) like oak as beech, beech 

as ash, or ash as linden are not visible in the PLS-DA results. In the PLS-DA case the 

misclassifications are almost equally distributed across all species without any clear patterns. Most 

misclassified patches are classified as pine, while the species with the least number of misclassified 

patches is linden. Especially for linden, this is a harsh contrast to the CNN classification results 

where linden has the lowest user’s accuracy (UA) of all species. UA is the number of true positives 

divided by all positive predictions per class. One reason for the low UA of linden (47%) could be 

that most of the trees I sampled were relatively small compared to other trees. The average tree 

height per species, assessed from the LiDAR point cloud, of all sampled trees is summarized in 

TABLE 6.1. With an average height of 17.82 m the sampled linden are more than six meters smaller 

than the next taller species. That circumstance is also illustrated in the mean tree crown size per 

species which is the smallest for linden as well with 41.15 m2. As I only found a few really large 

linden during the ground reference data acquisition this circumstance is no surprise. Most linden I 

observed (in the accessible terrain) were located in the understory and could thus not be sampled. 

However, some of the rather small linden were still top of the canopy and thus sampled. 

 

TABLE 6.1. Mean tree height and mean tree crown area per species of all sampled trees with the 

according standard deviations. 

Species Mean tree 
height [m] 

Tree height standard 
deviation [m] 

Mean tree 
crown area 
[m2] 

Tree crown area 
standard 
deviation [m2] 

Oak 25.80 5.80 45.77 14.50 

Beech 27.69 6.17 48.48 15.19 

Ash 24.28 7.36 45.26 15.92 

Pine 24.39 6.41 50.55 15.30 

Linden 17.82 9.70 41.15 17.31 

 

 

The lower average height could lead to a number of uncertainties in the pre-processing and 

ultimately in the training of the CNN. In hyperspectral data, small trees have a higher possibility of 

being in shadowed areas, compared to large trees, which could lead to higher noise in the spectral 

signature of those pixels [7]. In addition, the smaller tree crown diameter of these trees poses 

multiple problems. Small crowns can be lost in the background signal if image pixels are larger than 

the crowns [6]. Also it is harder to automatically detect smaller tree crowns as more spatial detail 

is needed [4]. All these factors could lead to a high uncertainty regarding species ID and crown 
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location in the extracted image patches for smaller trees, which is most likely the most detrimental 

for the classification of linden. 

Official information on forests from the Canton of Aargau can be used to further evaluate the 

classification results for the study area. The plant sociological map [118] shows the main forest 

types present in my study area. The classification of 10 categories was summarized based on the 

more detailed forest classes defined by Ellenberg & Klötzli [119]. 

 

 

FIGURE 6.2. Subset of the study area showing the forest types (left) and the CNN predictions (right). 

This subset is located at the eastern border of the study area. 

 

FIGURE 6.2 shows a subset of the study area for comparison of the plant sociological map of the 

Canton of Aargau with my CNN predictions. This is an example for a good model performance as 

a high ash abundance is predicted in the location of the reported Alder-ash Forest area. Another 

larger-scale example for good prediction is the southernmost forest area of my study area. As can 

be seen in FIGURE 6.3 that area is an oak Forest Reserve. In the full study area classification map 

(FIGURE 5.4) that area exhibits the highest relative abundance of oak. 
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FIGURE 6.3. Long-Term contracts for the preservation of forest in the Canton of Aargau [120]. 

 

Such observations show that some ecological circumstances can be, at least to some degree, 

reproduced by the CNN model. However, more work is needed to exploit the full potential of 

hyperspectral data for tree species classification and to improve the robustness of the model and the 

classification accuracies. Especially the optimization of the pre-processing steps, which include 

image co-registration and field data matching, could have a significant positive effect on the 

prediction accuracies. Also, deep learning and CNNs offers an almost infinite number of different 

solutions for such problems. It might as well be that other, more complex, network architectures 

(e.g. ResU-Net [24], 3D-CNNs [3], Parallel CNNs [19]) are better in exploiting the full information 

content of hyperspectral imagery from sensors like AVIRIS-NG. Another improvement in 

classification results could perhaps come from more and better distributed sample data. 
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7 Conclusion 

This thesis shows that a simple CNN architecture can classify tree species from hyperspectral data 

with an overall accuracy (OA) of 70% and an average F1-score of 0.67. Training, validation, and 

testing data was derived from ground reference data, a LiDAR point cloud, and AVIRIS-NG 

imagery to classify five major tree species (oak, beech, ash, pine, linden) for a 10,4 km2 forest area 

in the Jurapark Aargau (JPA). One of the main challenges in training a robust prediction network is 

to sample and generate an adequate amount of high-quality data. At each processing step between 

the ground reference data collection and the image patch extraction uncertainties are being 

introduced. Limiting that level of uncertainty is immensely important in creating training data with 

large explanatory power. This allows the CNN model to learn the representations needed to 

discriminate among many tree species. In this thesis, the quantity as well as the quality of the 

training data was certainly limited. Especially the image co-registration of the AVIRIS-NG flight 

strips and a reference orthophoto seem to have a large potential for introducing a level of (positional) 

uncertainty. However, a simple CNN model with two convolutional layers managed to outperform 

established machine learning methods. A support-vector machine classifier achieved an OA of 66% 

and an average F1-score of 0.62, and a random forest classifier an OA of 67% and an average F1-

score of 0.61. The CNN utilized different regularization methods, including L2 regularization, batch 

normalization, and dropout to increase its robustness and to prevent overfitting. In addition, MixUp 

and data augmentation techniques were used to increase the number of training samples 

synthetically. 

This thesis shines a light on the potential of deep learning in the context of high resolution 

hyperspectral remote sensing imagery. Further work should be focused on the development of more 

powerful and robust CNNs that can be reliably used in all sorts of species discrimination tasks (e.g., 

crop discrimination). The goals of this thesis were defined in accordance with the needs of the JPA, 

highlighting the benefits of cooperation between researchers and forest practitioners. 
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A Appendix – Additional Figures 

 
FIGURE A.1. Average reflectance spectra of oak samples with the shaded area illustrating the standard 

deviation. 
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FIGURE A.2. Average reflectance spectra of beech samples with the shaded area illustrating the 

standard deviation. 

 

 

 

FIGURE A.3. Average reflectance spectra of ash samples with the shaded area illustrating the standard 

deviation. 
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FIGURE A.4. Average reflectance spectra of pine samples with the shaded area illustrating the 

standard deviation. 

 

 

 

FIGURE A.5. Average reflectance spectra of linden samples with the shaded area illustrating the 

standard deviation. 
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FIGURE A.6. Cumulative Beta distribution with shape parameters α = 0.4 and β = 0.5. 
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 Oak Beech Ash Pine Linden 

Oak 82% 1% 8% 9% 0% 

Beech 16% 75% 7% 3% 0% 

Ash 4% 17% 69% 4% 7% 

Pine 13% 5% 10% 66% 7% 

Linden 21% 2% 26% 3% 47% 

 

FIGURE A.7. Confusion matrix for the trained CNN showing the user’s accuracy per species (i.e., the 

number of correctly classified samples divided by all positive predictions per class). Rows indicate 

the predicted species and columns the ground truth. 
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Oak Beech Ash Pine Linden 

Oak 53% 0% 6% 9% 0% 

Beech 24% 86% 12% 6% 0% 

Ash 3% 10% 61% 4% 17% 

Pine 10% 3% 9% 79% 17% 

Linden 9% 1% 13% 2% 65% 

 

FIGURE A.8. Confusion matrix for the trained CNN showing the producer’s accuracy per species 

(i.e., the number of correctly classified samples divided by the actual number of samples per class). 

Rows indicate the predicted species and columns the ground truth. 
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Oak Beech Ash Pine Linden 

Oak 76% 5% 5% 11% 3% 

Beech 13% 65% 13% 5% 5% 

Ash 14% 7% 67% 3% 9% 

Pine 18% 1% 6% 70% 5% 

Linden 15% 0% 28% 8% 49% 

 

FIGURE A.9. Confusion matrix for the random forest classifier showing the user’s accuracy per 

species (i.e., the number of correctly classified samples divided by all positive predictions per class). 

Rows indicate the predicted species and columns the ground truth. 
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Oak Beech Ash Pine Linden 

Oak 49% 3% 4% 10% 6% 

Beech 24% 93% 28% 14% 29% 

Ash 11% 4% 58% 3% 24% 

Pine 12% 0% 4% 71% 11% 

Linden 3% 0% 6% 2% 30% 

 

FIGURE A.10. Confusion matrix for the random forest classifier showing the producer’s accuracy per 

species (i.e., the number of correctly classified samples divided by the actual number of samples per 

class). Rows indicate the predicted species and columns the ground truth. 

  

Ground truth 

P
re

d
ic

ti
o

n
 



 

61 

 

 

Oak Beech Ash Pine Linden 

Oak 76% 6% 7% 10% 1% 

Beech 15% 70% 10% 5% 1% 

Ash 4% 15% 69% 3% 10% 

Pine 20% 2% 10% 58% 10% 

Linden 21% 5% 27% 2% 45% 

 

FIGURE A.11. Confusion matrix for the support-vector machine showing the user’s accuracy per 

species (i.e., the number of correctly classified samples divided by all positive predictions per class). 

Rows indicate the predicted species and columns the ground truth. 
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Oak Beech Ash Pine Linden 

Oak 48% 3% 5% 10% 2% 

Beech 25% 86% 17% 12% 3% 

Ash 3% 9% 59% 3% 24% 

Pine 17% 1% 10% 75% 27% 

Linden 6% 1% 9% 1% 44% 

 

FIGURE A.12. Confusion matrix for the support-vector machine showing the producer’s accuracy per 

species (i.e., the number of correctly classified samples divided by the actual number of samples per 

class). Rows indicate the predicted species and columns the ground truth. 
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FIGURE A.13. Raw full study area tree species classification map showing all predictions without 

any thresholds applied. 
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FIGURE A.14. Full study area prediction confidence. This shows the probability score with which the 

model assigned a label to each pixel. 
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FIGURE A.15. Full study area NDVI. Calculated from AVIRIS-NG hyperspectral imagery. 
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FIGURE A.16. Raw RGB image of the AVIRIS-NG hyperspectral imagery. 
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