
Exploring the Swin Transformer Architecture

for the Generalization of Building Footprints in

Binary Cartographic Maps

GEO 511 Master's Thesis

Author
Jan Winkler
15-728-686

Supervised by
Prof. Dr. Robert Weibel
Dr. Cheng Fu
Dr. Zhiyong Zhou

Faculty representative
Prof. Dr. Robert Weibel

20.01.2023
Department of Geography, University of Zurich

Abstract

This thesis explores using two distinct deep-learning models and three di↵erent data models to auto-

mate the process of cartographic generalization. Cartographic generalization aims to select essential

information, preserve typical elements, and simplify the information content to allow legibility in maps

across di↵erent scales. Specifically, the thesis focuses on automating the generalization of building foot-

prints. The automation of the described process has proven challenging in the past. The thesis unveils

that increased computation power, better computation models, and more data alone will not solve the

issue. Moreover, the thesis shows that a better approach is needed to feed data to the computation

model. Comparing the performance of U-Net and Swin Transformer computation models reveals that

U-Net with convolutions outperforms Swin Transformers, which use attention mechanisms. The thesis

suggests that a data model with an artificial attention mechanism rather than a computation model

with an attention mechanism is needed to learn the di↵erent generalization tasks on a building level.

The study then points out its limitations, including a need for more balanced data to train the Trans-

former model from scratch. Future research could focus on creating the needed more representative

training data. Finally, it outlines the possibility of building a purpose-built Transformer model for

future use.

Keywords: Automating, Cartographic Generalization, Buildings, Deep Learning, Data Model, Com-

putation Model, U-Net, Swin Transformer

Acknowledgements

First and foremost, I would like to extend my gratitude to Professor Dr. Robert Weibel, Dr. Cheng

Fu, and Dr. Zhiyong Zhou for their e�cient guidance and support throughout this project. Their

expertise, advice, and pertinent feedback challenged me to revisit concepts and critically assess my

work.

I am also grateful to Dr. Yu Feng and Professor Dr. Monika Sester for providing unrestricted access

to their data and code.

Next, I wanted to thank the team at swisstopo, specifically Dr. Roman Geisthoevel, for providing

comprehensive data, ideas, insights, and support.

Also, I want to express my special thanks to Nicolas Beglinger for the countless hours of discussions

on the topic, data, and deep-learning models. These discussions were essential to the success of this

project.

Finally, I sincerely thank my partner, family, and friends for their unwavering encouragement through-

out this journey. This project would not have been possible without their love and support.

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Research Aim . 2

2 Related Work 3

2.1 Evolution of Map Generalization . 3

2.2 Deep Learning . 5

2.3 Deep Learning Approaches in Map Generalization . 15

2.4 Research Gaps . 16

2.5 Research Objectives . 16

3 Data 17

3.1 Data Sources . 17

3.2 Comparison of the Spatial Extents . 19

3.3 Extensive Data . 23

4 Methodology 25

4.1 Technical Setup . 25

4.2 Computation Model Configurations . 26

4.3 Data . 26

4.4 Data Models . 28

4.5 Deep Learning Training . 32

4.6 Evaluation Metrics . 32

4.7 Experimental Setup . 34

4.8 Experiments . 35

5 Results 37

5.1 Brute Force Approach on Extensive Swisstopo Data 37

5.2 Comparing Data Models . 44

5.3 Comparing Computational Models . 51

5.4 Result Overview . 59

6 Discussion 60

6.1 Brute Force Experiments . 60

6.2 Comparing Data Models . 61

6.3 Comparing Computation Models . 62

7 Conclusion 64

7.1 Contributions . 64

7.2 Limitations . 64

7.3 Learnings . 65

7.4 Future Research . 65

Bibliography 66

Chapter 1

Introduction

1.1 Motivation

Cartography has come a long way. Even in ancient times, humans have generated maps for better

orientation or simple navigation and struggled with generalizing earth features (McMaster and Stu-

art Shea, 1992). Nowadays, maps and their di↵erent representations are everywhere. For example,

individual navigation, search & rescue, health, city planning, or politics are examples from an ex-

haustive list of applications that use digital maps. Nonetheless, the fundamental geometric tradeo↵

of placing as much valuable information as possible on the map while keeping up its legibility remains

a challenge (Weibel and Dutton, 1999). Additionally, background map data is crucial for geograph-

ical information systems (GIS) and location-based services, but keeping it updated with constantly

changing landscapes and built structures is becoming perpetually complex (Lee et al., 2017).

Cartographers have developed specific, standardized procedures to represent the real world with its

infinite level of detail in maps. For example, images, landscapes, or topographic models can build a

representation of the real world. These, in turn, can then be used as a base for producing cartographic

models to scale (Spiess et al., 2002; Bader, 2001). Besides researching philosophical ideals of why, when,

and how to generalize a map, cartographers discuss how single elements in maps, such as buildings,

roads, or rivers, can be modified by applying various operators, including simplification, aggregation,

elimination, or displacement. These operators ensure that specific elements can be represented on

di↵erent scales, making generalization indispensable (McMaster and Stuart Shea, 1992; Weibel and

Dutton, 1999; Weibel, 1995; Lee et al., 2017; Steiniger et al., 2008). In essence, map generalization

aims to select essential information, preserve typical elements, and simplify the information content

to allow legibility (Steiniger et al., 2008).

The single operators have distinct functions and act on features depicted in the map. Elimination

allows the removal of small or isolated structures (i.e., buildings). The displacement operator moves

buildings away from roads or separates them so that they are not depicted too close together in the

desired target scale. Aggregation comes into play when grouping specific buildings into larger units if

the generalization result should not separately show the buildings. Simplification allows generalizing

indentations or contorted building geometries (Lee et al., 2017; Spiess et al., 2002). Often, more than

one single operator is used for a single structure (e.g., simplification and displacement) (Harrie and

Weibel, 2007; Steiniger et al., 2008). For a long time, the procedural method to achieve automated or

semi-automated generalization was to acquire explicit knowledge from experts (cartographers), which

1

allowed defining constraints that drive optimization models. As it turned out, the generalization

process’s holistic automation proved disreputably challenging.

Current works in artificial intelligence have used neural networks trained for semantic segmentation

to solve the described issue with a more technically holistic approach. Specifically, pioneering papers

including Sester et al. (2018); Feng et al. (2019); Kang et al. (2020) and Courtial et al. (2021) use single-

channeled image data coupled with convolutional neural networks (CNNs) to learn the complicated

process of building generalization. All papers show promising results; however, the used computation

models, loss functions, and data models show insu�cient capabilities to produce meaningful predic-

tions for complicated generalization tasks. A reasonable path to pursue could be introducing new

computation models (architectures), loss functions, and data models to automate cartographic gener-

alization. The recent advent in computer vision (CV) of a neural network architecture originating in

natural language processing (NLP), called Transformer, could thus be a valid path to pursue. Trans-

formers are gradually replacing state-of-the-art (SOTA) models in computer vision deep learning, more

specifically semantic segmentation on single- or multi-channeled images (Mai et al., 2022; Dosovitskiy

et al., 2020; Liu et al., 2021; Xu et al., 2021). The Transformer architecture uses a di↵erent math-

ematical procedure to process the input data than the CNNs, called attention mechanisms. These

attention mechanisms resemble human attention, capturing more intricate details in input images.

Therefore, using Transformer models could be an exciting path to increase models’ capabilities to

perform building generalization automatically.

1.2 Research Aim

This thesis aims to shed new light on automated building generalization using deep learning with

an exploratory methodological approach. The main objectives are to discover the possibilities of

introducing transformer architecture, task-specific loss functions, and multi-channeled data models

into the domain of cartographic generalization and thereby providing solid methodological foundations

for further investigating the topic. The thesis is part of the ’DeepGeneralization’ project by the

Department of Geography (GIUZ) at the University of Zurich in collaboration with swisstopo1 (CHE)

and the IGN2 (FRA).

1https://www.swisstopo.admin.ch/
2https://www.ign.fr/

2

https://www.swisstopo.admin.ch/
https://www.ign.fr/

Chapter 2

Related Work

Automating generalization has seen various approaches from di↵erent research teams in the last couple

of years within the realms of cartography, geoinformatics, and computer science (Sester et al., 2018;

Feng et al., 2019). This section summarizes the key aspects related to cartographic generalization,

deep learning, and the use of deep learning for cartographic generalization.

2.1 Evolution of Map Generalization

The overview provided in Harrie and Weibel (2007) shows the subsequent development of ideas to

model the overall generalization process. The overview starts with condition-action models, then

shows human interaction modeling, and finally presents constraint-based practices.

Condition-Action Models: Condition-action modeling is a two-phase map generalization method

involving structural recognition (condition) and execution (action). The structural recognition phase

performs the identification of and relationships between objects. The identified conditions then trigger

the algorithms for generalization in the execution phase. This approach was popular in the late 1980s

and helped to move away from the previous method of using hardwired algorithms to model the

generalization process mechanically. However, it has some limitations, most prominently the di�culty

of formalizing rules for cartographic knowledge and the need for many rules to cover the possible

relationships between map objects. Despite these limitations, some systems using this approach have

produced good results for specific generalization tasks (Harrie and Weibel, 2007; Steiniger et al., 2008;

Schylberg, 1993; Beard, 1991; Nickerson, 1986, 1988)

Human Interaction Modeling: In the early 1990s, there was a focus on developing strategies for

map generalization that relied heavily on human interaction. These strategies, known as interactive

generalization systems, contained a range of algorithms for generalization that were available from

academic research at the time. Nonetheless, these systems lacked automated process modeling to guide

the algorithms. To address this, a new paradigm called ”amplified intelligence” was proposed byWeibel

(1991), in which the computer (generalization software) performs tasks that can be formalized as

algorithms and the human guides and control the algorithms, using their ability for holistic judgment.

Software vendors have produced several interactive software solutions for map generalization, some

of which are toolbox approaches and others are specific interactive generalization systems (Harrie

3

and Weibel, 2007; Weibel, 1991; Steiniger et al., 2008). However, according to an evaluation of

interactive generalization systems, there is a minimal increase in productivity, and the e↵ectiveness of

the generalization largely depends on the user’s skills (Ruas, 2001). These limitations gave rise to a

later instance of constraint-based models, namely agent-based methods.

Constraint-Based Models: Constraint-based modeling is a map generalization method involving

setting conditions or constraints that the resulting map must satisfy. These constraints may include

requirements for the level of detail, representation of certain map features, and distances between

features. The generalization process involves finding a solution that satisfies as many constraints as

possible, often through a process of compromise, because many constraints may conflict with each

other. A cost may be assigned to violations of constraints to find the optimal solution, and the so-

lution with the lowest total cost is chosen. There are three main methods for finding this optimal

solution: agent modeling, combinatorial optimization, and continuous optimization. Agent modeling

is versatile and can handle a wide range of generalization tasks, but it requires many accurately de-

fined constraints and formalized plans to guide the selection of appropriate algorithms and control

parameters. Combinatorial optimization is e↵ective for tasks that can be discretized, such as selection,

displacement, and simplification, but it may only be suitable for tasks with a small search space. Fi-

nally, continuous optimization is limited to rubber sheet transformations, such as feature displacement,

smoothing, simplification, enlargement, and exaggeration, but it cannot handle operators such as ag-

gregation, selection, and typification. In terms of computational e�ciency, continuous optimization is

the fastest, followed by combinatorial optimization and agent modeling. However, agent modeling has

shown the most potential for modeling the complete set of generalization operators and integrating

other constraint-based techniques, which is why it acts as state-of-the-art (Harrie and Weibel, 2007;

Barrault et al., 2001; Mackaness, 1995; Ruas and Plazanet, 1996).

4

Figure 2.1: The figure provides an intuitive overview of the evolution of systems to automate car-
tographic generalization. The x-axis represents time, and the y-axis is the level of automation of
methods to perform cartographic generalization. The dashed line signifies the paradigm shift induced
by introducing artificial intelligence (AI) systems to automate map generalization.

According to the research plan provided by Professor Weibel, these applications still use specific human

(expert) knowledge and can be seen as a form of amplified intelligence. Nevertheless, researchers

started to use machine learning (ML) techniques (both supervised and unsupervised) and early forms of

neural networks, such as self-organizing maps, to further push the ability of generalization algorithms,

however, with limited success.

2.2 Deep Learning

Deep learning is an approach to artificial intelligence (AI) (Goodfellow et al., 2016). Various teams

across domains have tackled many problems using deep learning. Why the name deep learning?

Deep learning makes use of neural networks. Within a neural network, there are many sequential

layers called hidden layers (Figure 2.3), through which the information the model should learn passes.

Since there is usually more than one of these hidden layers, these networks are called deep neural

networks. Since these deep neural networks perform learning tasks, the name deep learning developed

(Goodfellow et al., 2016; Zhang et al., 2021; Chollet, 2017).

2.2.1 Domain - Computer Vision (CV):

One domain where deep learning is applied is called computer vision (CV). Generally, CV is a vast

field with several overlaps to other disciplines such as pattern recognition, artificial intelligence, maths,

5

physics, or image processing (Goodfellow et al., 2016). In CV, practitioners make use of the fact

that images can be stored in a computer as matrices or tensors. Storing images as matrices allows

the application of mathematical computations originating in linear algebra, where matrices can be

modified using matrix multiplication, addition, or changed by sub-matrices (Chollet, 2017). All these

operations can be used in the image (pre-) processing or image analysis and in connection with making

image data useable for neural networks. CV deep learning has seen a strong progression along with

the increase in computation power in recent years. The main tasks computer vision deep learning

excels can be observed in Figure 2.2 (Goodfellow et al., 2016; Zhang et al., 2021):

Figure 2.2: Three main tasks of CV deep learning. Image Classification: The model learns to classify
an image, Object Detection: The model learns to detect in what region of an image specific items
are located, Image Segmentation: The model learns to perform a pixel-wise classification. (Graphic:
Patel 2020)

2.2.2 Deep Learning Architectures

This section provides an overview of the deep learning architectures relevant to this thesis. Specific

model architectures are available depending on the task a computer vision deep learning model should

learn. These model architectures are a set of algorithms that are designed to recognize patterns in

visual data, such as images.

2.2.2.1 Fully Connected Neural Networks - FCNN

One important neural network architecture is the fully connected neural network (FCNN) (Figure 2.3).

If a network consists only of fully connected layers, it is a fully connected neural network. According

to Ramsundar and Zadeh (2018), FCNNs can be used in many applications. In general, FCNNs learn

the data, given enough time. However, their performance is often weaker compared to special-purpose

networks tuned to the structure of a problem space. One disadvantage of FCNNs is that they are

computationally costly on higher-dimensional, non-tabular data (Zhang et al., 2021).

6

Figure 2.3: Arbitrary architecture of a fully connected neural network (FCNN). In each layer, there
are several nodes and vertices. Since all the nodes in the hidden layers are connected to every other,
as shown in the visualization above, the layers are said to be fully connected. If there are only fully
connected hidden layers, the network is said to fully connected too. Since information can flow to
any node, FCNNs are structure agnostic (Ramsundar and Zadeh, 2018). (Graphic: LeNail 2019)

.

2.2.2.2 Convolutional Neural Networks - CNN

Another essential network architecture is the convolutional neural network. Convolutional neural

networks are used on two-dimensional data, for example, images (Zhang et al., 2021; Chollet, 2017).

The name of the convolutional neural network describes what happens inside the network. The

hidden layers in the network perform di↵erent types of downsampling operations on the data that

passes through them. Two essential down-sampling operations, convolution and pooling are described

in the following:

Convolution: The main reason to use convolutions is to reduce the dimensionality of the data. As

mentioned in Section 2.2, high-dimensional data can be stored as n-dimensional matrices. Storing the

information as matrices allows for the application of matrix multiplication. When multiplying the

image matrix with a pre-defined kernel matrix (Figure 2.4), the said convolution occurs. The latter

operation yields a down-sampled result of the input data. Applying the convolution operation multiple

times in a network increases the amount of encoded information while the dimensionality decreases

(Figure 2.5).

Figure 2.4: Arbitrary 3x3 kernel matrix used for convolution operations. Graphic: (Dumoulin and
Visin, 2018)

7

Figure 2.5: Application of convolution on 5x5 matrix with a 3x3 kernel, stride 1, yielding a 3x3 result
(Dumoulin and Visin, 2018). In the top left, the algorithm starts. The numbers in the blue matrix
are multiplied elementwise with the kernel. The kernel values are shown in the bottom left of each
matrix element. The multiplication and summation of all the values of the first iteration lead to the
result shown in the green, smaller matrix to the right (e.g., 12). Then the matrix shifts with a stride
of 1 horizontally, and the procedure commences again. (Graphic: Dumoulin and Visin 2018)

Important parameters in the convolution operations are the kernel size (number of pixels in height

and width) and the stride size (number of pixels to move horizontally or vertically). In the example

above, the kernel has a size of 3x3 (3 pixels wide, 3 pixels high) and a stride of 1.

Pooling: A further down sampling strategy is pooling. Many convolutional neural networks use

one or more pooling layers. There are various ways of pooling data (f.e., average, max, min values).

Assuming there is an NxN matrix, pooling works similarly to the convolution operation mentioned

in the prior paragraph. However, instead of multiplying the values in the NxN matrix by an MxM

kernel, pooling incrementally performs the chosen (average, min, max) operation on a given kernel

(see Figure 2.6).

8

Figure 2.6: Application of max pooling on 5x5 matrix with a 3x3 kernel, stride 1, yielding a 3x3 result
(Dumoulin and Visin, 2018). In the top left, the algorithm starts. The numbers in the blue matrix
are processed with a 3x3 window. The maximum value is chosen for each submatrix and written to
the smaller green matrix. For the first iteration, this result is thus 3. Then the algorithm shifts the
kernel with a stride of one, and the procedure starts again. (Graphic: Dumoulin and Visin 2018)

Feature Extraction Using the described down-sampling encoding strategies, specific features of an

image can be extracted. One of the advantages of convolutional neural networks is that the feature

extraction is location invariant, meaning that the models can learn specific features, disregarding their

location in the image (Zhang et al., 2021). A visual intuition can be observed in Figure 2.7.

Figure 2.7: Architecture of LeNet (Lecun et al., 1998), the first convolutional neural network.
(Graphic: Zhang et al. 2021)

Further Development: Over the years, using convolutions on two-dimensional data has been kept,

and new architectures emerged. A further landmark was the fully convolutional network, first proposed

by Shelhamer et al. (2014). Fully convolutional neural networks consist of only convolutional layers.

A significant advantage was that computation speeds increased.

9

2.2.2.3 U-Net

One example of a fully convolutional neural network used for semantic segmentation is the U-Net.

The U-Net architecture - initially introduced by Ronneberger et al. (2015) - is a modified version

of fully convolutional networks. U-Nets were first used for biomedical image segmentation and later

adapted to di↵erent image segmentation tasks, such as shape detection in autonomous vehicles (Giurgi

et al., 2022; Sugirtha and Sridevi, 2022; Tran and Le, 2019) or landcover detection in remote sensing

(Solórzano et al., 2021; Xie et al., 2022; Giang et al., 2020; Wang et al., 2022).

Figure 2.8: The figure shows a diagram of the U-Net architecture as proposed by Ronneberger et al.
(2015). (Graphic: Ronneberger et al. 2015)

Architecture: Why is it called U-Net? Because their architecture is ”U” shaped (Figure 2.8).

As Figure 2.8 shows, all the down-sampling on the left-hand side (convolutions followed by max

pooling) show the encoding of information. With these operations, the spatial dimension of an image

is reduced, encoding the information into a subspace. At the bottom, the information is encoded,

and all of the spatial information is lost. On the right-hand side, the information decoding happens

through deconvolution (Ronneberger et al., 2015). In these steps, the model unfolds the information

into the original dimensions, finally presenting a pixel-wise probability, representing the probability P

of a pixel p belonging to a class c (Chollet, 2017).

Deconvolution: In order to cast the values of an encoded vector representation into a higher di-

mensional matrix, deconvolution is applied (Dumoulin and Visin, 2018). There are di↵erent types of

deconvolution (some authors call it transposed convolution) operations (Dumoulin and Visin, 2018).

Deconvolution does the exact opposite of the convolution operation, creating a matrix with more

dimensions from a small matrix (Figure 2.9).

10

Figure 2.9: Deconvolution, applying a 3x3 kernel on a 2x2 matrix, yielding a 4x4 result (Dumoulin
and Visin, 2018). (Graphic: Dumoulin and Visin 2018)

2.2.2.4 Transformer

The following section provides a basic intuition of the core element of the Transformer architecture,

the attention mechanism, followed by an introduction to the Swin Transformer architecture.

Overview: In recent years, a new neural network architecture called Transformer (Vaswani et al.,

2017) has become the model of choice in natural language processing (NLP) (Dosovitskiy et al., 2020).

In NLP tasks, the Transformer successfully replaced the former state-of-the-art (SOTA) architectures

(recurrent neural networks (RNNs) and long short-term memory networks (LSTM)) with its more

straightforward structure, higher computational speed, and better results on various benchmarks

(Zhang et al., 2021; Chollet, 2017). In computer vision, the works of Dosovitskiy et al. (2020); Liu et al.

(2021) have recently shown that the Transformer is a valid alternative to traditional CNN approaches.

In semantic segmentation, Dosovitskiy et al. (2020) and Liu et al. (2021) have outperformed current

SOTA methods on the ADE20K dataset.

Attention Mechanisms Attention mechanisms are the core of the transformer architecture (Vaswani

et al., 2017; Zhang et al., 2021). Attention mechanisms allow the decoder to use the most relevant

parts of the input sequence flexibly, by a weighted combination of all the encoded input vectors, with

the most relevant vectors being attributed the highest weights (Chollet, 2017).

Self-Attention: We briefly focus on a text example similar to Chollet (2017, p.1369) to get an

intuition. Text can be represented as an n-dimensional vector. Therefore, every word in a text sequence

represents a distinct token. For example, the sequence ”Bank in the park” has four tokens (”Bank”,

”in”, ”the”, ”park”). Each of these tokens can be represented/encoded numerically. Numerical

encoding allows each word to have some meaning. For example, the word ”Bank” might have a

di↵erent meaning in another sentence (e.g., ”John robs a bank”). Herefore, it would be helpful if the

tokens in a sentence gave each other some context. Giving meaning can be achieved by reweighing

each token by a specific weight. It is done by multiplying each token with all other tokens in the

sequence and then normalizing the results. These results we now call weights. Finally, each token is

multiplied by the respective weight, and all these products are added into new, weighted tokens with

added context (Chollet, 2017). Although in CV, the attention mechanism has to be applied to one

more dimension, the principle stays the same.

11

Multi-Head Attention: In order to have a system that can learn numerous relationships, it is

possible to expand self-attention to multi-head attention. The said expansion adds flexibility to the

system and prevents overloading a single attention mechanism. Adding this flexibility is achieved

by stacking multiple ”query,” ”key”, and ”value” (Figure 2.10, ”WQ”, ”WK”, ”WV ”) matrices in

the system. With the said stacking, the attention calculation is done in parallel. The computational

performance of the system remains the same and does not decrease (Vaswani et al., 2017; Zhang et al.,

2021; Chollet, 2017).

Figure 2.10: This figure shows one possible visual description of self-attention mechanisms as shown
in Khan et al. (2021). (Graphic: Khan et al. 2021)

2.2.2.5 Swin Transformer

Overview: Liu et al. (2021) introduced the Swin Transformer (Swin stands for Shifting Windows),

a new general purpose backbone for CV. The advantage of the Swin Transformer is that it can deal

with large images within reasonable computation time. A major limitation that the pre-decessing ViT

(Vision Transformer, Dosovitskiy et al., 2020) could not handle since the computational complexity

increased quadratically with image size (Figure 2.11) (Liu et al., 2021). Moreover, the Swin Trans-

former uses location embeddings to account for pixel locations when calculating the attention matrices

(Liu et al., 2021).

Figure 2.11: Di↵erent patching algorithms. On the left, the patching was proposed by Liu et al. (2021)
for the Swin Transformer (SwinT). On the right is the patching proposed by Dosovitskiy et al. (2020)
for the Vision Transformer (ViT). (Graphic: Liu et al. 2021)

12

Architecture: Swin Transformer takes an input image and splits it into non-overlapping patches

(Figure 2.12), which then act as tokens. For each of these tokens, self-attention is calculated. Then,

the patches are merged in the following steps, reducing the number of tokens and increasing the field

of view for the attention calculation. This token-merging operation is applied in four stages (Figure

2.13).

Figure 2.12: Graphical description of how the Swin Transformer approaches patch partition and
illustrates how the shifted window approach operates in more detail (Liu et al., 2021). (Graphic: Liu
et al. 2021)

Figure 2.13: This figure shows an overview of the Swin Transformer (tiny version) architecture. More
details can be found in Liu et al. (2021). (Graphic: Liu et al. 2021)

.

Attention-Heads: As mentioned in Section 2.2.2.5, Swin Transformer architecture can be used for

various tasks. Depending on the task, there are a large variety of di↵erent algorithms to calculate

attention. These algorithms are called attention-heads. The two most notable connections with the

Swin Transformer are uperhead and mlphead. Please refer to Chapter 4 for a detailed description of

which attention heads were used for this thesis.

2.2.3 Loss Functions

Another essential component of deep learning is the loss function. Loss functions play a vital role in

model training (Goodfellow et al., 2016; Chollet, 2017; Zhang et al., 2021). There are a large number

of di↵erent loss functions for varying tasks. Essentially, loss functions to control how the deviation

between a model prediction (ŷ) and the ground truth label (y) is computed. The deviation between

the prediction and the label is the target that the neural network aims to optimize. In the backward

pass, the respective weights in a model are ideally updated so that the model increases its performance

on the prediction tasks. For this thesis, the following existing loss functions were used.

13

2.2.3.1 Binary Cross Entropy (BCE)

The binary cross entropy loss is one of the most common loss functions for classification tasks. Since

semantic segmentation is a pixel-level classification, the binary cross-entropy function works well for

binary classification tasks (Jadon, 2020; Yi-de et al., 2004). According to Jadon (2020), the BCE loss

function belongs to the category of distribution-based loss functions. Mathematically, the BCE loss

function LBCE is defined as:

LBCE(y, ŷ) = �(y · log(ŷ) + (1� y) · log(1� ŷ))

where y is the ground truth label and ŷ is the prediction.

2.2.3.2 Focal Tversky Loss

Jadon (2020) mentions the Focal Tversky Loss as a region-based loss function. Abraham and Khan

(2019) proposed the Focal Tversky Loss as a generalized focal loss function based on the Tversky

Index (TI), which specializes in di�cult classification examples. With Focal Tversky Loss, it is

possible to weigh down easy cases and focus on hard cases (Jadon, 2020; Abraham and Khan, 2019).

Mathematically, Focal Tversky Loss (LFT) is defined as:

LFT =
X

c

(1� TIc)
�

where � is a scaling factor in the interval [1, 3] and TI is the Tversky Index which is defined as:

TI(y, ŷ) =
y · ŷ

y · ŷ + � · (1� y) · ŷ + (1� �) · y · (1� ŷ)

where the � coe�cient is used to weigh false positives (FP) and false negatives (FN).

2.2.3.3 Dice BCE Loss

This loss function originates from the combination of a widely used metric that calculates the similarity

between two images (Dice coe�cient) and a modified version of the binary cross entropy loss mentioned

above (Jadon, 2020; Taghanaki et al., 2019). According to Taghanaki et al. (2019), this function has

been proposed to cope with imbalanced class labeling. Jadon (2020) states that the pure Dice Loss

belongs to the region-based loss functions, whereas BCE Loss belongs to the distribution-based loss.

Jadon (2020) thus puts Dice BCE Loss into a new category, called compound loss, and calls the loss

function itself Combo Loss. Mathematically, Dice BCE (or Combo Loss) LDBCE is defined as:

LDBCE = LCombo = ↵Lm�BCE � (1� ↵)DL(y, ŷ)

where ↵ controls the contribution of the Lm�BCE and DL components respectively and Lm�BCE is

the modified version of the BCE loss function:

14

Lm�BCE = � 1

N

X

i

�(y � log(ŷ) + (1� �)(1� y)log(1� ŷ)

where � 2 [0, 1] controls the level of model penalization for false positives (FP) and false negatives

(FN), and DL is the Dice Loss defined as:

DL(y, ŷ) =
2yŷ + 1

y + ŷ + 1

2.3 Deep Learning Approaches in Map Generalization

In map generalization, more profound e↵orts using deep learning to automate the challenging interplay

of operators, rules, or constraints mentioned in Chapter 1 have been undertaken recently. Thereby,

deep learning approaches produced a new angle on the task while heralding a paradigm shift. Accord-

ing to Sester et al. (2018), the approaches addressed are mainly applied in vector space. However,

there are also methods using rasterized representations. The thesis at hand will pursue rasterized

image representations of the spatial scene.

First Attempts: Sester et al. (2018) were among the first to apply deep learning models in map

generalization using image-based modeling. In the study, the researchers applied a simplified U-Net

network architecture. Sester et al. (2018) found that pixel-wise comparison of the correct predic-

tions cannot capture the generalization e↵ect. They state that instead, using the IoU leads to more

meaningful accuracy values. Also, visual inspection showed that the network has learned to simplify

buildings at di↵erent scales, but some characteristic features are not necessarily preserved, and minor

irregularities may appear. In a subsequent study of the same group, they compared various architec-

tures and found that a derivation of the U-Net architecture, named residual U-Net, performed best

(Feng et al., 2019). The main limitation was that some predictions showed a shortcoming regarding

the edges of a building that appeared to be more wobbly and distorted in the prediction output (Feng

et al., 2019; Kang et al., 2020).

Possible Data Models: Touya et al. (2019) mentions that in connection to road data, there are

ways of including metadata in an input image to a neural network by adding a dimension (or channel) to

the image (section 4.4.2). Similar to RGB data, contextual data could be passed into a neural network

by extending single-channel images to multi-channel images. In remote sensing, multi-channel images

are often used to enrich the data with geo-relevant context (Ge et al., 2022). Fu (2022) mentions that

pursuing a multi-channel data model approach in map generalization could be worthwhile.

Location Encoding: Touya et al. (2019) argues that using image-based maps and CNNs could cause

a loss of critical spatial information. Moreover, according to Touya et al. (2019) and Courtial et al.

(2021), the topological relations inherent in maps need to be su�ciently represented; otherwise, a loss of

cartographic quality may. Therefore, it could be essential to consider pixel location encoding closely.

A methodological overview of various approaches to pass location embeddings to neural networks

recently published by Mai et al. (2022) is noteworthy. This paper shows how two-dimensional location

information can be embedded into a high-dimensional vector using a location encoder. The fact that

15

this information can be stored as a vector allows neural network models downstream to learn this

information much more straightforwardly than any other attempt to pass location information to a

model. However, Mai et al. (2022) also mentions that the research has yet to develop to a satisfying

extent for vector polygon data, which would be crucial for building generalization. The main issue

was that the embedding techniques only worked for polygons if there were no holes or overlaps in the

vector geometries. Finally, Mai et al. (2022) points out that for rasterized data, the question remains

on how location encoding can be embedded into raster data and what the benefits are. A method to

possibly solve this issue could be the attention mechanisms in the Swin Transformer architecture as

introduced in Section 2.2.2.5.

2.4 Research Gaps

The outlined related work allows the identification of the following research gaps:

• Account for pixel location embedding in image-based map data

• Apply attention mechanisms, varying receptive field sizes, and location encoding to map gener-

alization by using a Transformer-based model architecture

• Augment map image data with contextual information channel and introduce new data models

to change the way how data gets passed into a computation model

• Develop a robust method for quantitative and qualitative evaluation of map generalization

2.5 Research Objectives

In order to address the above-stated research gaps, the planned thesis contributes to filling these gaps

by pursuing the following research objectives (ROs):

RO.1 Utilize the work of Feng et al. (2019) as baseline results

RO.2 Implement Swin Transformer architecture as described in Section 2.2.2.5 (Liu et al., 2021;

Xu et al., 2021)

RO.3 Perform experiments to compare the performance of both computation models (Swin

Transformer & U-Net) and the training of these computation models with new data models

quantitatively. More specific research questions regarding the single experiments can be

found in Section 4.8

RO.4 Evaluate performance qualitatively

16

Chapter 3

Data

This section gives an overview of the data, the data sources, the spatial extents, and extent-specific

statistical information. The data used are topographic map material.

3.1 Data Sources

Topographic Maps: Topographic maps are detailed maps that depict natural and artificial features

on the earth’s surface. They typically have scales ranging from 1:5’000 to 1:1’000’000 and are used to

accurately represent the terrain through contour lines, elevation points, water bodies, roads, buildings,

towns, and other technical features such as boundaries, power lines, and railroads. These geographic

objects are represented on the map using a cartographic symbolization system appropriate for the

map’s scale (Spiess et al., 2002).

Thesis Specific Data: The thesis used data from two di↵erent sources, namely OpenStreetMaps

(OSM) and swisstopo. The OSM data was initially used in the work of Feng et al. (2019); Sester et al.

(2018) and then made available for use in this thesis. This thesis marks the first time the swisstopo

data are used in connection with the application of deep learning to automate the cartographic gen-

eralization of buildings. For both sources, the 1:10’000 and 1:25’000 scales were used. Initially, the

data is stored as vector files. Then, the vector data was rasterized into images. These images can be

observed in Figures 3.1 and 3.2, which show the two map extents from the locations Stuttgart (DE)

(OSM data) in Figure 3.1 and Zürich (CH) (swisstopo data) in Figure 3.2.

17

Figure 3.1: The image shows a map extent image of the OSM data around the urban area of Stuttgart,
with peri-urban and rural settlements. OSM (1:10’000), size: 42’800x35’000 pixels, number of build-
ings: 89048

Figure 3.2: The image shows a map extent of the swisstopo data around the two Swiss cities, Zürich
(bottom left, southwest) and Winterthur (top right, northeast). The countryside between the two
cities shows periurban to rural settlements. swisstopo (1:10’000), Size: 46’001x40’001, number of
buildings: 72’096

OSM Data Preparation: The OSM data used in Feng et al. (2019) could be accessed. The data

were stored as a .png file for each scale. Each of these files shows the same extent on a di↵erent

scale. All map elements except building footprints were removed by Feng et al. (2019); thus, the data

shows a binary map of buildings. These files were then processed to patches in Python as described

in Section 4.3.2.

Swisstopo Data Preparation: Swisstopo (Dr. Roman Geisthövel) provided map material for all

the buildings of Switzerland stored in vector format in the 1:10000 and 1:25000 scales. Since Dr.

Yu Feng provided access to the data and code used in Feng et al. (2019), the swisstopo dataset was

18

rasterized, matching the resolution mentioned in 3.1 and the procedure described in Section 4.3.2.

3.2 Comparison of the Spatial Extents

The following section shows a statistical comparison of the spatial extents shown in Figures 3.1 and

3.2. The chosen extents were selected to have approximately the same amount of pixels (Zürich size

in pixels 46’001x40’001, Stuttgart size in pixels 42’800x35’000). The reason why the swisstopo dataset

is larger than the OSM dataset originates in the condition to have approximately the same size of

pixels but also approximately the same amount of buildings (89’048 buildings in the OSM extent and

72’096 buildings in the swisstopo extent). Note that the swisstopo extent is more extensive in pixels

and, at the same time, contains fewer buildings, whereas the OSM data is more minor in pixels but

contains more buildings.

Building Pixels vs. Background Pixels: Comparing the portion of building pixels present in

the two scenes shows that there is a di↵erence of roughly 1.2% in building densities (Figure 3.3). With

7.1%, the map extent around Zürich shows a lower density of buildings compared to the building

density in Stuttgart (8.3 %).

Figure 3.3: The figure shows the ratio of pixels that belong to buildings for the swisstopo (Zürich)
dataset and the OSM (Stuttgart) dataset. The y-axis represents the percentage of pixels belonging
to buildings. In order to show that the density of buildings is moderately low, the y-axis ranges from
0-100%. The x-axis represents the respective data set.

Building Area Distribution: Comparing the distribution of building area pixel count reveals

fundamental di↵erences in the distribution of building areas (number of pixels that make up a building

footprint area) between the input and the target scale for each data source. For example, in Figure

3.4, we can observe that the count distribution of the target map pixels shows that the swisstopo

building areas are generally larger (counts of buildings with more pixels are higher than in the input

image). On the other hand, in Figure 3.5, the distribution’s visual comparison shows that the OSM

buildings’ sizes are similar in the input and target maps.

19

Figure 3.4: The histogram shows the distributions of the area per building footprint in the number of
pixels for the swisstopo map extent. In this histogram plot, the x-axis represents the range of areas,
and the y-axis represents the frequency of the areas. The histogram bars show the areas’ distribution,
with each bar’s height representing the number of data points that have areas within that bin range.
The purple histogram shows the source map, whereas the coral-colored histogram shows the target
map.

Figure 3.5: The figure shows the distribution of the area per building footprint in the number of pixels
for the OSM map extent. In this histogram plot, the x-axis represents the range of areas, and the
y-axis represents the frequency of the areas. The histogram bars show the areas’ distribution, with
each bar’s height representing the number of data points that have areas within that bin range. The
purple histogram shows the source map, whereas the coral-colored histogram shows the target map.

20

Building Perimeter Distribution: Comparing the distribution of building perimeter pixel count

reveals fundamental di↵erences in the distribution of building perimeters (the number of pixels that

make up the perimeter of a building) between the input and the target scale for each data source.

Figures 3.6 and 3.7 show the distribution of building perimeters in the input and target maps. In Figure

3.6, the target map has more buildings with larger perimeters than the input map, suggesting that

there might be a rule in the swisstopo dataset that requires buildings to be a specific size. However,

in 3.7, the di↵erence between the two maps is not as significant, which means that the building sizes

in both maps are more similar.

Figure 3.6: The figure shows the distribution of the perimeter per building footprint in the number
of pixels for the swisstopo map extent. In this histogram plot, the x-axis represents the range of
perimeters, and the y-axis represents the frequency of the perimeters. The bars in the histogram show
the distribution of the perimeters, with the height of each bar representing the number of data points
that have perimeters within that bin range. The purple histogram shows the source map, whereas the
coral-colored histogram shows the target map.

21

Figure 3.7: The figure shows the distribution of the perimeter per building footprint in the number of
pixels for the OSM map extent. In this histogram plot, the x-axis represents the range of perimeters,
and the y-axis represents the frequency of the perimeters. The bars in the histogram show the
distribution of the perimeters, with the height of each bar representing the number of data points
that have perimeters within that bin range. The purple histogram shows the source map, whereas the
coral-colored histogram shows the target map.

Dataset Complexity: For both sources, the Intersection over Union (IoU) (check Section 4.6.1)

was calculated to determine how the input (1:10’000) and target (1:25’000) map extents di↵er. For

example, in Figure 3.8, it can be observed that the IoU between the input and target for the swisstopo

data is smaller compared to the IoU for the OSM data. Since there is more change from the input to

the target map in the swisstopo map extent, we assume more operators are inherently present in the

data. If more operators are present in the data, we could infer that the data is more challenging to

learn for a model. Thus, we call the swisstopo dataset to be the more complicated task, whereas the

OSM dataset is the less complicated task.

22

Figure 3.8: The figure shows the comparison of the similarity between two map datasets (Swisstopo
from Zürich and OSM from Stuttgart) by showing their IoU values on the y-axis. The x-axis represents
the di↵erent datasets. The higher the IoU value, the more similar the maps are; the lower the IoU
value, the more di↵erent the maps are.

Operators: The two data sets also di↵er in terms of how they were generalized. On the one hand,

professional cartographers generalized the swisstopo dataset. On the other hand, the OSM data

which was also used in Sester et al. (2018) and Feng et al. (2019), was presumably generalized with

the CHANGE software (Powitz, 1993). Therefore, a fundamental di↵erence in the two data sets

regarding the number of operators for a single building can be assumed. For example, according to

Sester et al. (2018), the OSM data contains operators such as simplification and aggregation, whereas

displacement and multiple operator combinations are not present in data generalized with CHANGE

(Powitz, 1993). On the other hand, since the swisstopo data was produced by cartographers, all

possible operators with various combinations can be found in the data.

3.3 Extensive Data

For a specific experiment described in Section 4.8.1, a comprehensive swisstopo dataset was used.

The aim was to thoroughly test the overall capabilities of the Transformer model by providing a

massive dataset and checking how the Transformer handles it. Figure 3.9 depicts Switzerland, divided

by a 30km x 30km grid. The red squares were the selected grid cells for the experiment. In order

to capture as many di↵erent settlements and building types as possible, the grid cells were selected

across Switzerland. The focus, however, lay on selecting grid cells with a comparably high density

of buildings. As a result, the extensive dataset is approximately twenty-five times larger than the

datasets used for the other experiments described in section 4.8.1.

23

Figure 3.9: This figure exhibits a map of Switzerland divided into grid cells. The grid cells displayed
in red symbolize the grid cells containing the buildings used for the experiments conducted on the
extensive swisstopo data.

24

Chapter 4

Methodology

The following section covers all the relevant technical and procedural details. Table 4.1 provides a

crisp overview of the key terms and their meaning discussed in the following.

Table 4.1: The glossary table provides an overview for better orientation in the overall workflow.

Term Content

Computation Model U-Net (Section 2.2.2.3), Transformer (Section 2.2.2.4)
Data Source swisstopo (Section 3.1), OSM (Section 3.1)

Data Model
single-channel (Section 4.4.1),
two-channel (random (Section 4.4.2), centered (Section 4.4.2))

4.1 Technical Setup

4.1.1 Hardware

The main workhorse for the computations done for the thesis was a MacBook (M1, 2020) with 16 GB

of RAM. All of the more extensive computations, such as deep learning model training and large-scale

data engineering, were performed on the UZH S3IT Science Cluster’s1 CPUs and GPUs (Tesla V100).

4.1.2 Software

Most of the visual GIS data exploration was done on the personal computer in QGIS (LTR Bialovieca

3.22). All data-related computations were done using Python 3 (3.9). For sequential workflows,

JupyterNotebooks were used, whereas, for auxiliary code, such as definitions for object classes and

functions, python files were used. A more detailed overview of used software packages can be seen in

Table 4.2:

1https://docs.s3it.uzh.ch/

25

https://docs.s3it.uzh.ch/

Table 4.2: Package overview for with a precise description of the used software.

Task Library (version)

Data Engineering
numpy (1.22.3), GDAL (3.5.0), matplotlib (3.5.1),

sci-kit-image (0.18.3), open-cv (4.6.0.66), pandas (1.4.2), os, sys

Deep Learning PyTorch (1.11.0), PyTorchLightning (1.5.8), TensorBoard (2.9.1)

4.2 Computation Model Configurations

This section briefly describes which computation models were used to perform the experiments. As

described in Chapter 2, the computation models chosen for this thesis are U-Net and Swin Transformer.

4.2.1 U-Net

This thesis used a vanilla U-Net model proposed by Ronneberger et al. (2015). With the vanilla archi-

tecture and an input image size of 224x224 pixels, the model contained roughly 30 million parameters.

4.2.2 Swin Transformer

The Swin Transformer model allows one to choose from a large variety of attention heads and four

model architectures. For this thesis, the Swin Transformer with the setting

• attention head: mlphead

• architecture: base

was used for most of the experiments. Liu et al. (2021) proposed to use uperhead attention after

having performed a set of experiments on the ADE20K dataset. However, for geospatial applications,

a more lightweight, e�cient attention mechanism called mlphead was proposed by Xu et al. (2021).

Since cartographic generalization closely resembles the geospatial application from Xu et al. (2021),

the mlphead attention mechanism was also used for this thesis. The architecture setting directly

impacts the computation model’s number of parameters (model complexity). The base architecture

setting with the mlphead yielded roughly 130 million parameters. For the brute force experiments, the

architecture parameter tiny was selected (yielding roughly 85 million parameters) to reduce training

time.

4.3 Data

A detailed description of the data used for the thesis can be found in Chapter 3.

4.3.1 Data Preparation

The map data is initially stored as vector data for both data sources (Chapter 3). Then, using

the GDAL library, the vector data were rasterized with a pixel size of 0.5x0.5 meters. After the

26

rasterization, the data were stored as images in binary format (0: background pixel, 1: building

pixel). This format allows reading the images with Python and the seamless transformation between

Python arrays and PyTorch tensors. Figure 4.1 provides an intuitive overview of the data processing

used in the thesis.

Figure 4.1: Detailed overview of how the map image data were pre-processed into smaller patches.
The workflow describes the procedure used to generate the training data for all three data models
used in the thesis experiments.

4.3.2 Patches

The data was fed to the computation model after cutting up the scenes depicted in Figures 3.1 and 3.2

into smaller patches of 224x224 pixels. For the single-channel (Section 4.4.1) and two-channel random

(Section 4.4.2) data model, the patches were generated without any overlaps. For the two-channel

27

centered data model (Section 4.4.2), patches were generated di↵erently (refer to Section 4.4.2). For

all the patches, there exists an input and a target patch (Figure 4.2). The first (input) patch shows

a map extent of the original scale (1:10000), whereas the second target patch shows the same map

extent on a more minor (target) scale (1:25000).

Figure 4.2: Original patch (1:10’000 scale) and target patch (1:25’000 scale) of the same size (224x224
pixel). The original patch shows a higher level of detail, whereas the target shows a generalized view
of the map extent

4.4 Data Models

In the following, we discuss the di↵erent data models used to perform the experiments discussed in

Section 4.7. Figure 4.3 provides a visual intuition of the data models used in the thesis.

Figure 4.3: Schematic overview of the three di↵erent data models. The main di↵erence between
the data models is the number of channels. Either there was one single channel containing all the
information or two channels. The two channels were split according to information content. The focus
building was stored in the first channel, and the context buildings were stored in the second channel.
Both two-channel data models di↵er in how the focus building is placed. The focus building is always
placed in the center using the first data model. The focus building is placed randomly in the image
in the second data model.

The works of Sester et al. (2018); Feng et al. (2019); Kang et al. (2020) use single-channel images of

maps (Chapter 2). The single-channel data model served as the base for the thesis at hand. Developing

the ideas from Touya et al. (2019) further led to the introduction of two-channel data models, first

discussed by Fu (2022). The latter was achieved by adding contextual information to a map extent by

adding a tensor dimension to the input image, yielding two-channel images rather than one-channel

images. A conceptual schema can be observed in Figure 4.4.

28

Figure 4.4: Schematic overview of the two-channel data model, stacking the single channels into one
single image

4.4.1 Single-Channel Data Model

The single channel data model is the original data model proposed by Feng et al. (2019). The com-

putation model is given a single patch with one channel with a predefined size (224x224 pixels in this

work). With this approach, the model has to predict all the buildings visible in the given scene. Be-

sides, all empty patches (no building pixels) were omitted during the data preparation. Furthermore,

each patch had to contain at least 20 percent of building pixels.

Figure 4.5: Single channel data model, input, and target patch. This is the same data model as
proposed by Feng et al. (2019)

4.4.2 Two-Channel Data Models

In the two-channeled approach, the input data is split into two channels (Figure 4.4). One channel

contains the focus building; the other contains the context (surrounding) buildings. In this approach,

the model predicts only the focus building. There are two types of two-channeled data models: one

with random placement of the focus building and one with the central placement of the focus building.

The following describes the procedures used to process the data.

29

Random Focus Building: This approach randomly selects a building from a given input-target

patch pair. This transformation happens on the fly whenever a patch is passed to the computational

model. Again, the constraint was that the patches could not be empty nor contain less than 20 percent

of building pixels.

Algorithm 1 Pseudocode for generating input and target patches with random placement of focus
building

1: procedure RandomSelection(input, target)
2: Generate empty tensor (t)
3: Label all buildings in input and target patch
4: Calculate region properties, extract coordinates of pixels belonging to a building
5: Generate masks for each building (one mask per building)
6: Check which buildings are fully contained in patch
7: if there are fully contained buildings then
8: Calculate IoU between fully contained input building masks and target patches
9: Create list of fully contained buildings (primary list)

10: else
11: Calculate IoU between randomly selected buildings in map
12: Create list of partially contained buildings (backup list)
13: end if
14: if Length of primary list is larger than 0 then
15: Select a fully contained building from primary list at random
16: Add building to focus channel (dimension 0) of tensor t
17: else
18: Select partially contained building from backup list at random
19: Add building to focus channel (dimension 0) of tensor t
20: end if
21: Subtract focus building from original scene
22: Set result as context channel (dimension 1)
23: Stack tensor with focus channel as dimension 0, context channel as dimension 1
24: Pass stacked tensor to model
25: end procedure

Figure 4.6: Example of a patch with two channels and random focus building placement. The focus
building is shown in black, and context buildings are shown in gray. Note how the input patch shows
both channels, whereas the target patch only shows the focus channel. Computation models trained
with this data model have to predict only a single building at a time.

30

Centered focus building: In this approach, the focus building is always placed in the center of a

patch. However, contrary to the random building placement, the patches are generated before passing

them to the computation model. After the patches are generated, they are saved.

Algorithm 2 Pseudocode for generating input and target patches with centered placement of focus
building

1: procedure CenteredSelection(input, target)
2: Select building from selected input map extent
3: Generate bounding box and centroid around selected building
4: Identify missing height and width pixels to generate patch of predefined size (e.g. 224x224

pixels)
5: Identify top left of patch to generate
6: Copy missing row and col pixels from original input map
7: Set focus building in the center (dimension 0),
8: Set other buildings in the context channel (dimension 1)
9: Select building with most overlap from target map

10: Generate array with corresponding input/target pairs
11: end procedure

Figure 4.7: Example of a patch with two channels and centered focus building placement. The focus
building is shown in black, and context buildings are shown in gray. Note how the input patch shows
both channels, whereas the target patch only shows the focus channel. Computation models trained
with this data model have to predict only a single building at a time.

4.4.3 Dataset size overview

As mentioned in Section 4.3.2, the patches were generated without overlaps for the single-channel and

two-channel random data models. Therefore, the number of patches can be calculated by dividing

the original image into 224x224 pixel patches. Conversely, the patches were constructed around each

building for the two-channel-centered approach. Thus, the number of patches represents the number

of buildings in the original image scenes. The exact numbers can be observed in Table 4.3. Moreover,

in Table 4.3, the swisstopo dataset for the brute force experiments (extensive data) is significantly

larger than the other datasets. Detailed information can be found in Section 4.8.1.

31

Table 4.3: Overview of the dataset sizes split by source and data model. The indicated number of
patches represents the respective total amount of patches. The constraint on the ratio between the
background and building pixels in each patch is ignored.

Source Data Model Number Patches
Patch Size

[pixel x pixel]

OSM (Stuttgart) two-channel centered 89’048 224 x 224

OSM (Stuttgart) two-channel random 29’854 224 x 224

OSM (Stuttgart) single-channel 29’854 224 x 224

swisstopo (Zürich) two-channel centered 72’096 224 x 224

swisstopo (Zürich) two-channel random 36’672 224 x 224

swisstopo (Zürich) single-channel 36’672 224 x 224

swisstopo (extensive data) single-channel ⇠1’000’000 224 x 224

4.5 Deep Learning Training

The deep learning models were trained over a varying number of epochs. Usually, a model was trained

past overfitting, logging the results every five epochs (Section 4.7). Thus, the point where the model

was optimally trained could be obtained.

Overfitting One Batch: Whenever a new loss function or hyperparameter was applied, the model

would be pushed into overfitting on one single batch to run a sanity check if any errors exist in the

computation as a first step (Persson, 2020; Tobin, 2019).

4.5.1 Training, Validating, and Testing Data

The training and validation data for all the experiments performed were randomly selected using a

90% / 10% training/validation split. A priori, the test set was decoupled from this process. The test

set was chosen to be 5% of the original data.

Random Selection: Both Sester et al., 2018 and Feng et al., 2019 have used an approach where

the testing area was predefined as a small but coherent extent on the map. In this thesis, the test

area per se does not exist, as the process was chosen to be truly random. Thus, all the testing patches

have a random position in the original input map. Therefore, putting together the test set would lead

to a random representation of the input map with random positions of the testing patches.

4.6 Evaluation Metrics

The following details describe the metrics logged during training and evaluate model performance.

In this thesis, instance segmentation was applied to binary data. Therefore, the following confusion

matrix for binary classification can be applied, as shown in Table 4.4.

32

Table 4.4: Binary classification confusion matrix

Ground Truth

positive negative

positive True Positive (TP) False Positive (FP)
Prediction

negative False Negative (FN) True Negative (TN)

4.6.1 Intersection over Union (IoU)

The most important metric used in this thesis is Intersection over Union (IoU) or Jaccard-Index (JI).

Essentially, the IoU measures the similarity of sets. In geometry, the IoU can be used to measure

how similar geometries are. In the case where two geometries are perfectly congruent, the IoU is 1.

If the shapes are incongruent, the IoU is 0. In CV, the IoU is often used to measure the similarity of

images where a pixel-by-pixel comparison is applied. Recent works performing instance segmentation

for geospatial applications such as Sester et al. (2018), Xie et al. (2022), or Giang et al. (2020), but also

researchers from other fields (Liu et al. (2021) or Yang and You (2018)) have used the IoU to compare

images to determine the di�culty of the learning tasks, or to evaluate the prediction performance. In

this thesis, we want to train models, for instance, segmentation tasks, and compare the similarity of

geometric shapes in images; therefore, the IoU is used. Mathematically, the IoU is defined as:

IoU(A,B) = JI(A,B) =
|A \B|
|A [B|

Referring to the confusion matrix for binary classification, the IoU can also be defined as:

IoU = JI =
TP

TP + FP + FN

4.6.2 Precision

Precision measures the ability of a binary classification model to predict the true positive cases.

Mathematically, precision is the number of true positives divided by the number of true positives plus

the number of false positives or:

Precision =
TP

TP + FP

4.6.3 Recall

Recall measures the number of true positive predictions made out of all positive predictions. Therefore,

it can also be called true positive rate. The mathematical definition of recall is the number of true

positives divided by the number of true positives plus the number of false negatives or:

Recall =
TP

TP + FN

33

4.6.4 F1-Score

The F1 score is the harmonic mean of precision and recall, taking both metrics into account in the

following equation:

F1 = 2 ⇤ precision ⇤ recall
precision+ recall

4.6.5 Test Set Evaluation

The model performance was evaluated based on the capability of a trained computation model to

predict random examples from a test set. The model never saw specific examples from the test

set during training. As mentioned in Section 4.6.1, various teams of researchers also used the IoU to

evaluate the model performance. It is important to note that this measure was not explicitly developed

to determine the results of cartographic generalization. Therefore this metric is merely a proxy for

model performance, and a high IoU value does not necessarily indicate a good generalization. For the

test set evaluation shown in Chapter 5, there are two types of IoU values reported:

• IoU (single case IoU): indicating the IoU between two specific images (Chapter 3) or two specific

patches.

– The IoU between an input and target (IPT-TGT) image shows how similar the two images

are. The assumption is that if the IoU is lower, the scene is generally more di�cult to

predict since there is more change that the model has to predict.

– The IoU between a target and prediction (TGT-PRED) image shows how similar the pre-

dicted image is to the target. In the ideal case, the predicted and target images have perfect

congruency.

• mIoU (median IoU): indicating the median prediction performance of a model on the whole test

set. This metric represents the median value of the pairwise comparison of all targets and all

predictions in the test set.

4.7 Experimental Setup

4.7.1 Logging

During model training, the TensorBoard implementation provided in the PyTorchLightning framework

was used for logging the training and validation loss and the evaluation metrics. The model was saved

with the validation loss value every five epochs. When testing the model, the best model (lowest loss

value) was selected for the predictions on the test set.

4.7.2 Loss Functions

The initial objective of the study was to investigate the impact of utilizing various purpose-built loss

functions described in Section 2.2.3 on the outcomes of model training. However, initial experiments

34

with the brute force approach (see Section 4.8.1) led to the realization that the two di↵erent loss func-

tions did not significantly change the model’s prediction output. Therefore, the more straightforward

binary cross-entropy (BCE) loss function was ultimately employed in the subsequent experiments.

4.8 Experiments

This thesis’s approach toward applying deep learning in map generalization is exploratory. Therefore,

several experiments were conducted to try and grasp interactions and influences between the manifold

of parameters that can be changed in deep learning. As the set of combinations is large, and the

possibilities of changing parameters are almost infinite, the following section provides a conceptual

overview of the landmark experiments carried out in this thesis. The research objectives (ROs) listed

in the following are more detailed parts of the main objective to run experiments (Section 2.5, RO.3).

Figure 4.8: Conceptual experiment plan with two phases, first the holistic approach, followed by the
detailed approach

4.8.1 Brute Force Approach

In the first step, the general capabilities of the Transformer computation model were thoroughly

tested. The data for this experiment is described in Section 3.3. In this approach, the data model was

chosen to be single-channeled, and therefore the same as used in Feng et al. (2019) and Sester et al.

(2018). Two di↵erent, task-specific loss functions were tried: Focal Tversky Loss, and Dice BCE Loss.

According to Vaswani et al. (2017), Dosovitskiy et al. (2020), Liu et al. (2021) and Xu et al. (2021)

Transformers are data-hungry architectures, and therefore the training of a purpose-built Transformer

model is challenging. A further demurral is that the semantic segmentation task used to perform

cartographic generalization di↵ers from usual semantic segmentation tasks. Therefore, pre-trained

models could not be used. Attempting to split up this challenge into manageable parts, the following

research questions (RQ) for this experiment were defined as follows:

RQ.1 How does the model performance di↵er when the Transformer is trained with Focal Tversky

Loss, or Dice BCE Loss?

35

RQ.2 How is the performance compared to results from Feng et al. (2019)?

RQ.3 How do training times scale?

RQ.4 Is it possible to train a purpose-built Transformer model for automatic building general-

ization from the used training data?

4.8.2 Comparing Data Models

This set of experiments tried to capture any performance di↵erence in the data models described in

Section 4.4. The primary purpose was to determine whether the model training performance could

be improved by combining two-channels (focus and context) and feeding them to the computation of

a model context channel, compared to a single-channel model. Moreover, it was crucial to determine

whether a random selection of the focus building would outperform the centered placement of the

focus building. Therefore, the following research questions (RQ) were defined:

RQ.1 What is the e↵ect of random vs. centered building selection for the focus channel on the

training?

RQ.2 What is the e↵ect of random vs. centered building selection for the focus channel on the

test prediction evaluation?

4.8.3 Comparing Computational Models

Ultimately, experiments comparing the U-Net and Transformer architecture were carried out. Here,

the focus lies on two critical aspects regarding the architecture of the computation models. First, as

described in Chapter 2, the two models are fundamentally di↵erent. On the one hand, U-Net performs

multiple convolutions, whereas the Swin Transformer computes an attention map. The initial idea

was that the Transformer could capture the complex situations in patches where multiple operators

are at play better due to the sequential attention calculations. The reason being that, compared

to the convolutions in the U-Net architecture, intuitively, one could think that calculating multiple

attentions yields better results than convolving all the information in an image into a one-dimensional

vector. Comparing the computation models while holding the parameters and datasets constant, the

main research questions (RQ) for these experiments were:

RQ.1 How do Transformer models compare to the U-Net architecture in training performance?

RQ.2 How do both computation models perform on the swisstopo data set which is more di�cult

to learn compared to the OSM data set (see Chapter 3)?

RQ.3 What are the di↵erences in prediction capabilities of the two computation models if there

are multiple operators at play?

36

Chapter 5

Results

This section presents the findings of the experiments performed in the study. The results are organized

in the same order as described in Section 4.8. It is important to state that the evaluation of the

predictions of generalization results lays a stronger focus on the quantitative results of the IoU metrics

compared on the qualitative description. Nonetheless, the qualitative description is briefly noted for

each illustrated example.

5.1 Brute Force Approach on Extensive Swisstopo Data

Table 5.1 shows an overview of the experimental setup for the brute force experiments on the swisstopo

data. All the parameters except for the loss function and the learning rates were held constant. The

learning rate was defined with the PyTorch Lightning learn rate finder functionality in order to get

the optimal value.

Table 5.1: Setup for the brute force approach experiments, showing stable hyperparameters except
the learning rate.

Epochs Loss Function Learning Rate Computation Model Batch Size Optimizer Attention Head

300 Focal Tversky 8.32e-05 Swin tiny 32 AdamW mlp

300 Dice BCE 2.29e-05 Swin tiny 32 AdamW mlp

The results of the two experiments in Table 5.2 show similar metric values for both trials. In all of the

logged metrics the deviation of the results, the absolute di↵erence is smaller than one percent. Note

that the shown values represent mean values on the prediction performance on the test set.

Table 5.2: Results of the brute force approach experiments indicating similar performance of both
Swin Transformer models trained with the Focal Tversky Loss and the DiceBCE Loss functions. All
the metrics represent mean values on the prediction performance on the test set.

Experiment Accuracy F1 mIoU Precision Recall

Focal Tversky Loss 0.94514 0.8691 0.86921 0.8595 0.87902

Dice BCE Loss 0.94498 0.8679 0.86714 0.86401 0.87194

37

In Figure 5.1 we can observe the loss curves of the training and validation loss for the experiments

carried out with the Focal Tversky Loss and Dice BCE Loss. In both experiments, the models were

trained for 300 epochs. The curves look similar, with a slight tendency to overfitting in the Dice BCE

Loss experiment. Interestingly, the curves for the training loss are still pointing downwards even after

300 epochs while the validation loss is more or less stable. The latter, indicates that the models would

be able to learn more from the data, if training was continued. However, since the data intake for

these two models was significant, the training was stopped after roughly seventy hours.

Figure 5.1: Logged training and validation loss for the experiments with the Focal Tversky and the
Dice BCE Loss on the extensive swisstopo dataset. Both plots show the originally logged values, and
a smoothed curve.

5.1.1 Prediction Results: Dice BCE Loss Experiments

Three visual examples of the model prediction performance for the Dice BCE Loss experiment are

shown in Figures 5.2 - 5.4. The prediction results were randomly selected after being split into

percentiles. The first (lowest) percentile shows the worst performance whereas the sixth (highest)

percentile shows the best prediction performance of the model. In the leftmost image (Figure 5.2 -

5.4), the input image is shown, followed by the target and finally the predicted patch. As mentioned in

Section 4.6.5, ideally, the predicted patch looks the same as the target patch. The IoU value between

the input and the target, denoted as IPT-TGT IoU, serves as a measure for the di�culty of the

prediction task in terms of the IoU (low IoU - more di�cult, high IoU - less di�cult). The IoU value

between the target and the prediction, denoted as TGT-PRED IoU, indicates how well the model

predicted the task in terms of the IoU (low IoU - bad prediction, high IoU - good prediction).

38

Figure 5.2: Random selection of a prediction result from the lowest percentile with the Swin Trans-
former computation model and the single channel data model on the extensive swisstopo dataset using
the Dice BCE Loss function. Operators at play: simplification, displacement, enlargement. The model
appears confused about the various generalization tasks at hand and predicts a number of round blobs
as buildings. The prediction result is not useable.

Figure 5.3: Random selection of a prediction result from the mid-range percentile with the Swin
Transformer computation model and the single channel data model on the extensive swisstopo dataset
using the Dice BCE Loss function. Operators at play: simplification. On the upper left corner, the
model correctly performs the simplification of one building. The other buildings in the scene stay the
same. Also here, the model predicts straight edges. The corners of most of the buildings appear to be
rounded.

39

Figure 5.4: Random selection of a prediction result from the highest percentile with the Swin Trans-
former computation model and the single channel data model on the extensive swisstopo dataset using
the Dice BCE Loss function. Operators at play: simplification. The model performs multiple simplifi-
cation operations correctly in the upper half of the patch. Also, the long building on the right side of
the patch appears to be generalized well. The large structure in the center shows a result that slightly
di↵ers from the target.

5.1.2 IoU Value Distribution for Dice BCE Loss Experiments

The IPT-TGT IoU and TGT-PRED IoU appear to have a strong correlation. Also, both value

distributions (IPT-TGT IoU and TGT-PRED IoU) shown in Figure 5.5 are similar in shape and

form.

40

Figure 5.5: IoU distribution of all the predictions on the test set of the Swin Transformer model trained
on comprehensive swisstopo dataset with single-channel data model and the Dice BCE Loss function.
The distributions on the x- and y-Axis appear to be substantially skewed. Between IPT-TGT IoU
and TGT-PRED IoU there appears to be a high correlation. The red marks show the position of the
randomly sampled examples shown in Figures 5.2 - 5.4

5.1.3 Prediction Results: Focal Tversky Loss Experiments

For the experiment carried out using the Focal Tversky loss, the results are in the same structure as

described in Section 5.1.1

41

Figure 5.6: Random selection of a prediction result from the lowest percentile with the Swin Trans-
former computation model and the single channel data model on the extensive swisstopo dataset using
the Focal Tversky Loss function. Operators at play: simplification. The model fails the generalization
task overall. The building edges appear curved and wobbly.

Figure 5.7: Random selection of a prediction result from the mid-range percentile with the Swin
Transformer computation model and the single channel data model on the extensive swisstopo dataset
using the Focal Tversky Loss function. Operators at play: simplification. The model achieves a
mediocre prediction performance. The jagged building edges lead to wobbly prediction results.

42

Figure 5.8: Random selection of a prediction result from the highest percentile with the Swin Trans-
former computation model and the single channel data model on the extensive swisstopo dataset using
the Focal Tversky Loss function. Operators at play: simplification. The model predicts most of the
simplifcation operations correctls. The building in the bottom right shows an acceptably straight
edge. On the right edge of the patch, the building has a slanted edge where the model partially filled
up intricate features.

43

5.1.4 IoU Value Distribution for Focal Tversky Loss Experiments

Figure 5.9: IoU distribution of all the predictions on the test set of the Swin Transformer model
trained on comprehensive swisstopo dataset with single-channel data model and the Focal Tversky
Loss function. The distributions on the x- and y-Axis appear to be substantially skewed. Between
IPT-TGT IoU and TGT-PRED IoU there appears to be a high correlation. The red marks show the
position of the randomly sampled examples shown in Figures 5.6 - 5.8

5.2 Comparing Data Models

This section shows the results of the experiments on the application of the three di↵erent data models

on the Zurich (swisstopo) and Stuttgart (OSM) data sets.

44

5.2.1 Training and Validation Loss Performance

Figure 5.10: Training and validation loss curves of the experiments carried out with the Swin Trans-
former model on Zurich and Stuttgart with the two-channel random data model. The model trained
for 500 epochs. In the case of Stuttgart there appears to be slight overfitting. In the case of Zürich
even after the extensive training time, no overfitting seems to occur.

Figure 5.11: Training and validation loss curves of the experiments carried out with the Swin Trans-
former model on Zurich and Stuttgart with the two-channel centered data model. For Stuttgart,
overfitting occurs quicker compared to Zürich. For Stuttgart around epoch 7, for Zürich around epoch
12. Compared to the Swin Transformer models, U-Net appears to run into overfitting much quicker.

Comparing the performance in terms of the training and validation loss curves, it is clear that the

two-channel random data model allows for extended training time whereas the two-channel centered

approach runs into overfitting quicker.

45

5.2.2 mIOU Performance Overview

Table 5.3: Comparison of the mIoU results on the test set of all Swin Transformer models trained
with the di↵erent data models on the Zurich (swisstopo) dataset.

Computation Model Data Model Batch Size mIoU

Swin Transformer Single-channel 32 0.91491

Swin Transformer Two-channel random 32 0.95053

Swin Transformer Two-channel centered 32 0.94127

Swin Transformer Two-channel centered 8 0.94165

The highest mIoU value on the test set was achieved by the two-channel random data model (Table

5.3). The results are not much higher than the results for the two-channel centered data model

approach. It is noteworthy that the experiment on the two-channel centered data model showed

an increased performance after reducing the batch size from 32 to 8 samples per batch, yielding a

convergence towards the performance of the model trained with the two-channel random data model,

even after relatively short training.

Table 5.4: Comparison of the mIoU results on the test set of all Swin Transformer models trained
with the di↵erent data models on the Stuttgart (OSM) dataset.

Computation Model Data Model Batch Size mIoU

Swin Transformer Single-channel 32 0.96063

Swin Transformer Two-channel random 32 0.96475

Swin Transformer Two-channel centered 32 0.97358

Swin Transformer Two-channel centered 8 0.97755

Table 5.4 shows the IoU values for the experiments performed on the Stuttgart (OSM) dataset. The

performance of the computation model trained with the two-channel centered data model and reduced

batch size performs best. However, the performance di↵erence is marginal. Similar to the experiments

on the Zurich (swisstopo) dataset (Table 5.3), for two-channel centered’s data model, when decreasing

the batch size from 32 to 8, the model performance increased in terms of the mIoU.

5.2.3 Prediction Results: Two-Channel Random Data Model

In the following, three visual examples from predictions on the Zurich dataset are shown. Each example

is a randomly sampled prediction result. All the prediction results were classified into percentiles with

the same procedure as described in Section 5.1.1.

46

Figure 5.12: Random selection of a prediction result from the lowest percentile with the Swin Trans-
former computation model and the two-channel random data model on the Zurich (swisstopo) dataset.
Operators at play: simplification. The model fails to clearly predict straight lines. The blob is pre-
dicted even though it should be removed.

Figure 5.13: Random selection of a prediction result from the mid-range percentile with the Swin
Transformer computation model and the two-channel random data model on the Zurich (swisstopo)
dataset. Operators at play: simplification. There is a minor simplification operation which the model
should predit, however, it fails to do so correctly.

47

Figure 5.14: Random selection of a prediction result from the highest percentile with the Swin Trans-
former computation model and the two-channel random data model on the Zurich (swisstopo) dataset.
Operators at play: None. Since there is no operator at play, the model should predict the input image
exactly, which it does.

5.2.4 Prediction Results: Two-channel Centered Data Model

In the following, three visual examples from predictions on the Zurich dataset are shown. Each example

is a randomly sampled prediction result. All the prediction results were classified into percentiles with

the same procedure as described in Section 5.1.1.

Figure 5.15: Random selection of a prediction result from the lowest percentile with the Swin Trans-
former computation model and the two-channel centered data model on the Zurich (swisstopo) dataset.
Operators at play: deletion. Even though the model should predict an empty image, the model pre-
dicts a structure similar to the input.

48

Figure 5.16: Random selection of a prediction result from the mid-range percentile with the Swin
Transformer computation model and the two-channel centered data model on the Zurich (swisstopo)
dataset. Operators at play: simplification. The model performs a minor simplification but not to a
satisfying extent. The corners on the left side of the building are still visible in the prediction evn
though there should be a straight edge.

Figure 5.17: Random selection of a prediction result from the highest percentile with the Swin Trans-
former computation model and the two-channel centered data model on the Zurich (swisstopo) dataset.
Operators at play: None. There is no operator at play and the model correctly predicts the input
structure. However, the corners appear rounded, which is not a perfect result.

5.2.5 IoU Value Distribution

This section shows the IoU value distribution of two Swin Transformer models trained on the Zurich

test dataset. Figure 5.18 depicts the distribution of all the IoU values between the input and the

target (IPT-TGT) plotted against the target-prediction IoU (TGT-PRED) in the test set for the Swin

Transformer model trained with the two-channel random data model.

49

Figure 5.18: IoU distribution of all the predictions on the test set of the Swin Transformer model
trained on the Zurich dataset with the two-channel random data model. The distributions on the x-
and y-Axis appear to be heavily skewed. Between IPT-TGT IoU and TGT-PRED IoU there appears
to be a high correlation. The red marks show the position of the randomly sampled examples shown
in Figures 5.12 - 5.14.

Figure 5.19 depicts the distribution of all the IoU values between the input and the target (IPT-TGT)

plotted against the target-prediction IoU (TGT-PRED) in the test set for the Swin Transformer model

trained with the two-channel centered data model.

50

Figure 5.19: IoU distribution of all the predictions on the test set of the Swin Transformer model
trained on the Zurich dataset with the two-channel centered data model (batch size 8 experiment).
The distributions on the x- and y-Axis appear to be heavily skewed. Between IPT-TGT IoU and
TGT-PRED IoU there appears to be a high correlation. The red marks show the position of the
randomly sampled examples shown in Figures 5.15 - 5.17.

5.3 Comparing Computational Models

This section shows the results of the experiments on the application of the two di↵erent computational

models on the Zurich (swisstopo) and Stuttgart (OSM) data sets. To keep the result section concise,

only the loss performance curves of the U-Net computation models are included. The loss curves of

the Swin Transformer model can be observed in Figures 5.10 and 5.11.

5.3.1 Training and Validation Loss Performance

Comparing the performance in terms of the training and validation loss curves, it is clear that the

two-channel random data model allows for extended training time whereas the two-channel centered

approach runs into overfitting quicker.

51

Figure 5.20: Training and validation loss curves of the experiments carried out with the U-Net com-
putation model on Zurich and Stuttgart with the two-channel random data model. The model trained
for 100 epochs. In the case of Stuttgart there appears to be slight overfitting. In the case of Zürich,
towards the end of the training time, a slight tendency towards overfitting seems to occur.

Figure 5.21: Training and validation loss curves of the experiments carried out with the U-Net com-
putation model on Zurich and Stuttgart with the two-channel centered data model. Similar to the
results shown in Figure 5.11 for Stuttgart, overfitting occurs quicker compared to Zürich. For Stuttgart
around epoch 7, for Zürich around epoch 12. Compared to the Swin Transformer models, U-Net ap-
pears to run into overfitting much quicker.

5.3.2 mIOU Performance Overview

The comparison of the computational models (U-Net and Swin Transformer) on two di↵erent data

models (Two-channel random and centered) can be observed in Tables 5.5 and 5.6. The experiments

52

were performed on the Zurich (swisstopo) and Stuttgart (OSM) dataset. For conciceness, the results

in tables 5.5 and 5.6 show only the results for the best performance. In both cases, the computational

model showed better performance on the Stuttgart (OSM) dataset. A complete overview with the

model performance in terms of the mIoU is shown in Table 5.7.

Table 5.5: Comparison of the model prediction performance on the test set (Stuttgart) in terms of
the mIoU. The Tableshows the result for both computational models (Swin Transformer and U-Net),
trained with the two-channel random data model.

Computation Model Data Model mIoU

Swin Transformer Two-channel random 0.96475

U-Net Two-channel random 0.99943

Comparing the Swin Transformer and the U-Net on the two-channel random data model, the U-Net

model performed better than the Swin Transformer model in terms of the mIoU. The performance

di↵erence amounts to 0.03468.

Table 5.6: Comparison of the model prediction performance on the test set (Stuttgart) in terms of
the mIoU. The Table shows the result for both computational models (Swin Transformer and U-Net),
trained with the two-channel centered data model.

Computation Model Data Model mIoU

Swin Transformer Two-channel centered 0.97358

U-Net Two-channel centered 0.99781

Comparing the Swin Transformer and the U-Net on the two-channel centered data model, the U-Net

model outperformed the Swin Transformer model in terms of the mIoU by 0.2423.

5.3.3 Prediction Results: Two-Channel Random

In the following, the prediction results of the U-Net trained with the two-channel random data model

are shown. In Figures 5.22 to 5.24, three di↵erent examples from di↵erent prediction-performance

percentiles are shown. The selection and computation was done as described in Section 5.1.1.

53

Figure 5.22: Random selection of a prediction result from the lowest percentile with the U-Net com-
putation model and the two-channel random data model on the Zurich (swisstopo) dataset. Operators
at play: simplification. The model fails to simplify the shown structure. Especially the creation of a
rounded building edge is striking. The shape of the target building is not matched.

Figure 5.23: Random selection of a prediction result from the mid-range percentile with the U-
Net computation model and the two-channel random data model on the Zurich (swisstopo) dataset.
Operators at play: simplification. The model more or less is able to predict a structure similar to the
target. However, there appears to be a slanted building edge, which appears distorted on the output.

54

Figure 5.24: Random selection of a prediction result from the highest percentile with the U-Net com-
putation model and the two-channel random data model on the Zurich (swisstopo) dataset. Operators
at play: None. The model correctly predicts the input structure.

5.3.4 Prediction Results: Two-Channel Centered

In the following, the prediction results of the U-Net trained with the two-channel random data model

are shown. In Figures 5.25 to 5.27, three di↵erent examples from di↵erent prediction-performance

percentiles are shown. The selection and computation was done as described in Section 5.1.1.

Figure 5.25: Random selection of a prediction result from the lowest percentile with the U-Net compu-
tation model and the two-channel centered data model on the Zurich (swisstopo) dataset. Operators
at play: aggregation. The target building from the input image, is represented in an aggregated form
in the target patch. However, the model fails to detect that and predicts the input structure.

55

Figure 5.26: Random selection of a prediction result from the mid-range percentile with the U-Net
computation model and the two-channel centered data model on the Zurich (swisstopo) dataset.
Operators at play: simplification. The model achieves a modest result. The simplification is not
complete and two out of four edges of the building appear wobbly.

Figure 5.27: Random selection of a prediction result from the highest percentile with the U-Net
computation model and the two-channel centered data model on the Zurich (swisstopo) dataset.
Operators at play: None. The model correctly predicts the input structure.

5.3.5 IoU Value Distribution

This section shows the IoU value distribution of two U-Net models trained on the Zurich test dataset.

Figure 5.28 depicts the distribution of all the IoU values between the input and the target (IPT-TGT)

plotted against the target-prediction IoU (TGT-PRED) in the test set for the U-Net model trained

with the two-channel random data model.

56

Figure 5.28: IoU distribution of all the predictions on the test set of the U-Net model trained on
the Zurich dataset with the two-channel random data model. The distributions on the x- and y-Axis
appear to be heavily skewed. Between IPT-TGT IoU and TGT-PRED IoU there appears to be a high
correlation. The red marks show the position of the randomly sampled examples shown in Figures
5.22 - 5.24.

57

Figure 5.29: IoU distribution of all the predictions on the test set of the U-Net model trained on the
Zurich dataset with the two-channel centered data model. The distributions on the x- and y-Axis
appear to be heavily skewed. Between IPT-TGT IoU and TGT-PRED IoU there appears to be a high
correlation. The red marks show the position of the randomly sampled examples shown in Figures
5.25 - 5.27.

58

5.4 Result Overview

Table 5.7: Results of the relevant results for the carried out experiments regarding data models,
computation models on Stuttgart (OSM) and Zurich (swisstopo) dataset. Note that all the reported
metrics represent the median IoU (mIoU) of the prediction results on the respective test sets.

Computation Model Data Model Batch Size mIoU Stuttgart mIoU Zurich

Swin Transformer Single-channel 32 0.96063 0.91491

Swin Transformer Two-channel random 32 0.96475 0.95053

Swin Transformer Two-channel centered 32 0.97358 0.94127

Swin Transformer Two-channel centered 8 0.97755 0.94165

U-Net Two-channel random 8 0.99943 0.94593

U-Net Two-channel centered 8 0.99781 0.95766

59

Chapter 6

Discussion

In the following section, we discuss the results presented in Chapter 5.

6.1 Brute Force Experiments

General: No significant performance di↵erence between the two tested loss functions could be de-

tected (Section 4.8.1, RQ.1). Thus, the more straightforward Binary Cross Entropy loss function was

mainly used for the subsequent experiments comparing data models and computation models. More-

over, neither of the two configurations was capable of significantly outperforming the models used in

Feng et al. (2019) (Section 4.8.1, RQ.2).

Training: Principally, the Swin Transformer architecture can cope with and learn from a large

dataset, given enough time to train (Section 4.8.1, RQ.3). One of the initial ideas of the brute force

experiments was to check whether it would be possible to train a purpose-built Swin Transformer for

map generalization and achieve better prediction results than Feng et al. (2019) (Section 4.8.1, RQ.2).

Figure 5.1 shows both experiments’ reported training and validation dataset loss functions. Interest-

ingly, the training loss decreases in both cases even after 300 epochs (roughly 70 hours of training on

one Tesla V100 GPU). In the case of the Dice BCE Loss, there might be a slight tendency towards

overfitting; however, it would still be interesting to see the results with more extended training given

better-engineered training data and di↵erent data models. Therefore, it can be stated that building a

purpose-built Swin Transformer model failed for now, but changing specific settings discovered with

the completion of subsequent experiments could still yield a more successful model (Section 4.8.1,

RQ.4).

Predictions: Figures 5.2 to 5.8 all show the overall mediocre capability of the model to learn

given generalization tasks. For the experiments, a single-channel data model was used, and thus the

prediction task for the model incorporates the prediction of every building in one patch. Figure 5.2

shows that if there is a relatively high complexity (IoU value IPT-TGT 0.712), the model has limited

capabilities for predictions. Moreover, Figure 5.6 shows a case of strong simplification with which the

model expresses di�culties. As the prediction tasks get simpler (Figures 5.3, 5.7 and 5.4, 5.8), the

model shows the ability to predict structures to a significant extent. However, the model still shows

uncertainty in cases where the input data shows intricate structures, jagged edges, or the removal of

60

entire building parts. The uncertainty is shown through non-rectangular shapes or slightly wobbly

building edges.

IoU Values: Figures 5.9 and 5.5 both show that there is a strong correlation between the IPT-TGT

IoU and the TGT-PRED IoU. The latter suggests that if the IPT-TGT IoU is high for one prediction,

the TGT-PRED IoU is likely to be high too. Furthermore, an investigation of the value distributions

for the IPT-TGT IoU and the TGT-PRED IoU indicates skewed distribution towards the higher IoU

values. Thus, it can be inferred that simple prediction tasks can be handled, presumably because

the simple cases are highly over-represented in the training data. On the other hand, complicated

prediction tasks might be underrepresented in the data, and thus the model has issues with predicting

them.

6.2 Comparing Data Models

General: As described in Section 4.8, the performances of the di↵erent data models were assessed

in detail. These experiments aimed to eventually find an optimal solution to feed the data to the

computation models. For example, the single channel data model proposed in Feng et al. (2019)

has the disadvantage that the model has to predict a large number of pixels; thus, if the task gets

increasingly complex, the model runs into problems as discussed in Section 6.1. Therefore, the data

models described in 4.4 with centered building placement as proposed by Fu (2022) and random

building placement as proposed by the author of this thesis, respectively.

Training: The selection of the data model significantly sways training (Section 4.8.2, RQ.1). It is

interesting to see the di↵erence in training possibilities in Figure 5.10 and Figure 5.11. The model

trained with the two-channel random data model can train for a long time (roughly 500 epochs)

without any significant sign of overfitting. Compared to the same model trained with the two-channel

centered data model, severe overfitting occurs after about seven to ten epochs. Overfitting in the

latter-mentioned configuration is likely to occur since the building is always placed in the patch’s

center. In the case of the random selection of the building, the model is forced to learn more because

the building position constantly changes, which could be one of the main reasons no overfitting occurs

when the building is always placed in the center.

Predictions: The prediction performance di↵ers when training a model with a specific data model

Section 4.8.2, RQ.2). The predictions displayed in Section 5.2.3 and Section 5.2.4 show varying results.

The model trained on the two-channel random data model did not run into overfitting (Figure 5.10 and

Figure 5.20). Thus, whenever the model is shown a prediction task that is di�cult (e.g., Figure 5.12,

displacement and enlargement), the model tries to predict a structure but shows high uncertainty.

The latter is manifested in the blob-like appearance in the prediction patch in Figure 5.12. On the

other hand, the model trained with the two-channel centered data model showed severe overfitting

(Figure 5.11 and Figure 5.10) after a short training time. Thus, the model might not be trained very

well. It can be observed that when the model is given a complex prediction task (e.g., Figure 5.15,

aggregation and enlargement or Figure 5.16, simplification), the model tends to predict the input. The

latter observed behavior could be counteracted by increasing the training data set size.

61

IoU values: The visualizations of the IoU value distribution in Figures 5.18 and 5.19 both show a

strong correlation between the di�culty of the given prediction task (IPT-TGT IoU) and the evaluation

of the predictions (TGT-PRED IoU). The latter observation indicates a skewed distribution of simple

versus complicated examples in the training data, with a clear tendency to over-represented simple and

under-represented complex cases. Furthermore, Table 5.3 shows that computation models trained on

swisstopo data with the two-channel random data model compared to computation models trained with

the two-channel centered data model do not di↵er significantly in terms of performance. For example,

the random data model shows slightly better performance (random mIoU 0.95053 vs. centered mIoU

0.94165). On the contrary, comparing the performance of computation models trained with both data

models on the OSM data, we can observe that in Table 5.4, the centered data model appears to

be slightly better than for the random model (centered mIoU 0.97755 vs. random mIoU 0.96475).

Another interesting observation is that in all the figures depicting the IoU distribution of models

trained with the two-channel centered data model, there appears to be a spike around the IoU value

of 0.5. The latter is a phenomenon that requires further investigation. A hypothetical answer could

be that the pre-processing of the data with the centered approach detects building deletions better

than the other data models. The fact that this spike is also visible in the distribution of the prediction

IoUs could further point to increased learning capability of the deletion operator of models trained

with the centered approach.

6.3 Comparing Computation Models

General: Ultimately, the comparison between the computation models Swin Transformer and U-Net

sheds light on the capability of the higher (Swin Transformer) or lower (U-Net) complexity model to

learn building generalization. The model complexity is expressed in the number of model parameters

(see Section 4.2). The models described in more detail in Chapter 2 have their respective advantages

and disadvantages. One of the main issues with the Swin Transformer is the overall need for more data.

The main theoretical advantage was thought to be the attention mechanisms. On the other hand,

U-Net was thought to be too simple for learning the task of building generalization. The comparison

shown in Table 5.5 and Table 5.6 show the performance of both computation models trained with the

same data model.

Training: In terms of training performance, no computation-model specific could be detected (Sec-

tion 4.8.2, RQ.1). Analysing the single loss curves shown in Figures 5.10 and 5.20 yields that the

Swin Transformer and U-Net can train long, and show good learning capabilities without any severe

overfitting. On the contrary, consulting the loss curves in Figures 5.11 and 5.21 shows that both com-

putation models ran into severe overfitting after a low amount of epochs. Therefore, the main e↵ect

revealing a di↵erence in training capability cannot be allocated to the computation model selection

but to the data model selection.

Predictions: All the test predictions on the OSM test sets showed a better performance than the

results on the swisstopo test sets (Section 4.8.3, RQ.2). The prediction results shown in Sections 5.3.3

and 5.3.4 show similar prediction capabilities of the models as discussed in sections 5.2.3 and 5.2.4.

The models predict simple cases, but whenever the task appears to be more complex (more than one

operator at play, significant structural change), all models run into trouble. This manifests in the

62

prediction results being either wobbly (uncertainty, after long training) or similar to the input patch

(undertrained model, overfitting). Considering that the swisstopo dataset was assumed to be more

di�cult to learn compared to the OSM, it can be said that this assumption is reflected in the test

prediction results (Section 4.8.3, RQ.2). Finally, when inspecting the prediction results visually, it is

impossible to determine whether the prediction comes from a U-Net or a Swin Transformer model.

Therefore, it can be stated that in terms of the qualitative evaluation, both models show similarly

weak performances when it comes to more di�cult prediction tasks (Section 4.8.3, RQ.3).

IoU Values: The results in Table 5.7 clearly show that for both data models on both data sources,

the U-Net performs better than Swin Transformer in terms of the mIoU (Section 4.8.3, RQ.1).

63

Chapter 7

Conclusion

7.1 Contributions

The thesis has shed light on using new deep-learning computation architecture and data models

to automate cartographic generalization. On the one hand, the thesis has shown that increased

computation power, seemingly better or high-complexity computation models, and more data alone

will not solve the issue. For example, the training of a purpose-built Swin Transformer model failed.

However, it led to a series of more detailed experiments. These experiments revealed a need for further

improvement on how the data is fed to the computation models. More specifically, the thesis showed

that a random building selection per patch allows for a long training but not persistently increased

model performance. Thus, selecting a data model with a centered placement of the focus building

might be the ideal solution. The latter fact points towards a data model that simulates an attention-

like mechanism. The said mechanism can be achieved artificially, leveraging what the model should

focus on. Thus, the model learns the di↵erent generalization tasks on a building level, as shown in the

experiments. Moreover, a simple computation model architecture based on mathematical convolutions

such as the U-Net might su�ce to tackle building generalization. This was shown by comparing the

U-Net and Swin Transformer architecture in specifically designed experiments, where the U-Net model

outperformed the Swin Transformer. Additionally, the influence of heavily imbalanced training data

could be shown in all the experiments. Without exception, all the test sets were randomly sampled

prior to defining the training and validation sets. Therefore, it can be assumed that respective test

sets represent the data on which the models were trained. Therefore, the fact that all the IoU value

distributions from the performed model evaluations are heavily skewed towards a high value of IoU

allows the further assumption that simple generalization tasks are significantly over-represented in the

data sets, whereas complicated tasks fall short. Therefore the models tend to predict simple tasks

quickly and have trouble with more complex cases.

7.2 Limitations

It must be stated that a comparison between the U-Net and Swin Transformer computation model

performance is not entirely reasonable when the amount of data fed to the model is low, as was the

case in the detailed approach phase of the thesis. In order to train a Swin Transformer model from the

ground up, much more data is needed. One of the main reasons is the lower inductive bias the Swin

64

Transformer has compared to U-Net. However, since the task of cartographic generalization di↵ers

substantially from usual semantic segmentation tasks, no pre-trained model could be used. Therefore,

the possibility of training a purpose-built Swin Transformer model still exists. Moreover, the random

selection of the test-set patches might corrupt the performance evaluation. With the random selection,

it is impossible to reconstruct a structurally coherent testing site which could prove to be an issue

going further in the topic. Lastly, the number of possibilities to perform experiments with various

hyperparameters, loss functions, and data models is infinite. Hence, this thesis represents one possible

set of results within the maximum time frame of a master’s thesis and not a comprehensive collection

of experiments.

7.3 Learnings

Starting the methodological exploration with a time-intensive and complicated experiment, namely

the brute force approach, was a mistake. The better approach would have been to start with small

and short experiments regarding the data, data models, and computation models and then finally

scale up the best working solution. With the described bottom-up approach, there could have been a

possibility of training a purpose-built Swin Transformer model for future use.

7.4 Future Research

First, there is a need for further creation of meaningful, balanced training data. The latter could

be achieved by accessing a large amount of data and then labeling the single operators at play that

generalize single building shapes. Moreover, it would be helpful to have more sophisticated data

engineering before training the deep learning models. Specifically, in addition to having operator labels

on the building level, it could help to track the geometric complexity of the building shapes. With the

help of these added meta-data variables, a yet more comprehensive training set with a better balance

of simple and complex generalization examples could be generated. Then, the computation models of

choice could be unleashed, and a further attempt to learn cartographic generalization holistically could

be undertaken. Second, at some point, the Swin Transformer architecture can outperform U-Net, given

enough data. Therefore, a di↵erent path could be to run experiments, repeatedly comparing the U-Net

and Swin Transformer performance on more extensive and better-engineered training data. Third,

regarding the evaluation of the model performance, a substantial e↵ort should be made regarding

the performance metric. The IoU has proven helpful as a quantitative metric but lacks to capture

qualitative aspects of the prediction results. Therefore, an in-depth search for a more meaningful,

purpose-built generalization metric could be a di↵erent path to pursue. Specifically, a first step to

such an approach could be to look at cases where the IoU between the target and the prediction

(TGT-PRED) is low (i.e., weak model performance), but the generalization task for the same sample

is simple (high IPT-TGT IoU). Then, it might be possible to address specific issues of the IoU metric

or even systematically discover examples where the models struggle. This could improve how the IoU

is used for evaluating the prediction performance of building generalization tasks, paving the way to

a better understanding of the issue or even developing a new metric.

65

Bibliography

Abraham, N. and Khan, N. M. (2019). A Novel Focal Tversky Loss Function With Improved Attention

U-Net for Lesion Segmentation. In 2019 IEEE 16th International Symposium on Biomedical Imaging

(ISBI 2019), pages 683–687. ISSN: 1945-8452.

Bader, M. (2001). Energy minimization methods for feature displacement in map generalization.

Dissertation, Departement of Geography, University of Zürich, Zürich.

Barrault, M., Regnauld, N., Duchene, C., Haire, K., Baeijs, C., Demazeau, Y., Hardy, P., Mackaness,

W., Ruas, A., and Weibel, R. (2001). Integrating multi-agent, object-oriented, and algorithmic tech-

niques for improved automated map generalization. In Proceedings 20th International Cartographic

Conference, pages 2210–2216, Bejing, China.

Beard, K. (1991). Constraints on rule formation. Map generalization: making rules for knowledge

representation, pages 121–135.

Chollet, F. (2017). Deep Learning with Python. Manning, New York, NY, United States, 2021 edition.

Courtial, A., Touya, G., and Zhang, X. (2021). Generative adversarial networks to generalise urban

areas in topographic maps. International Archives of the Photogrammetry, Remote Sensing and

Spatial Information Sciences - ISPRS Archives, 43(B4-2021):15–22.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M.,

Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby, N. (2020). An Image is Worth

16x16 Words: Transformers for Image Recognition at Scale. arXiv preprint.

Dumoulin, V. and Visin, F. (2018). A guide to convolution arithmetic for deep learning. arXiv

preprint, pages 1–31.

Feng, Y., Thiemann, F., and Sester, M. (2019). Learning cartographic building generalization with

deep convolutional neural networks. ISPRS International Journal of Geo-Information, 8(6).

Fu, C. (2022). Datamodels for DL in Building Generalization. Departement of Geography, University

of Zürich.

Ge, Y., Zhang, X., Atkinson, P. M., Stein, A., and Li, L. (2022). Geoscience-aware deep learning: A

new paradigm for remote sensing. Science of Remote Sensing, 5(April):100047–100047. Publisher:

Elsevier B.V.

Giang, T. L., Dang, K. B., Toan Le, Q., Nguyen, V. G., Tong, S. S., and Pham, V.-M. (2020). U-

Net Convolutional Networks for Mining Land Cover Classification Based on High-Resolution UAV

Imagery. IEEE Access, 8:186257–186273. Conference Name: IEEE Access.

66

Giurgi, D.-V., Josso-Laurain, T., Devanne, M., and Lau↵enburger, J.-P. (2022). Real-time road

detection implementation of UNet architecture for autonomous driving. In 2022 IEEE 14th Image,

Video, and Multidimensional Signal Processing Workshop (IVMSP), pages 1–5, Nafplio, Greece.

IEEE.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press, Cambridge, MA,

United States.

Harrie, L. and Weibel, R. (2007). Modelling the Overall Process of Generalisation. Generalisation of

Geographic Information, pages 67–87.

Jadon, S. (2020). A survey of loss functions for semantic segmentation. 2020 IEEE Conference on

Computational Intelligence in Bioinformatics and Computational Biology, CIBCB 2020.

Kang, Y., Rao, J., Wang, W., Peng, B., Gao, S., and Zhang, F. (2020). Towards Cartographic

Knowledge Encoding with Deep Learning: A Case Study of Building Generalization. The 23rd

International Research Symposium on Cartography and GIScience, (2019):1–6.

Khan, S., Naseer, M., Hayat, M., and Zamir, S. W. (2021). Transformers in Vision: A Survey. ACM

Computing Surveys (CSUR), pages 1–30.

Lecun, Y., Bottou, L., Bengio, Y., and Ha↵ner, P. (1998). Gradient-based learning applied to document

recognition. Proceedings of the IEEE, 86(11):2278–2324.

Lee, J., Jang, H., Yang, J., and Yu, K. (2017). Machine Learning classification of buildings for map

generalization. ISPRS International Journal of Geo-Information, 6(10).

LeNail, A. (2019). NN-SVG: Publication-Ready Neural Network Architecture Schematics. Journal of

Open Source Software, 4(33):747–747.

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., and Guo, B. (2021). Swin Trans-

former: Hierarchical Vision Transformer using Shifted Windows. In Proceedings of the IEEE/CVF

International Conference on Computer Vision.

Mackaness, D. W. A. (1995). A Constraint Based Approach to Human Computer Interaction in

Automated Cartography. In Proceedings of the 17th International Cartographic Conference, pages

1423–1432, Barcelona, Spain.

Mai, G., Janowicz, K., Hu, Y., Gao, S., Yan, B., Zhu, R., Cai, L., and Lao, N. (2022). A review

of location encoding for GeoAI: methods and applications. International Journal of Geographical

Information Science, 00(00):1–35. Publisher: Taylor & Francis.

McMaster, R. B. and Stuart Shea, K. (1992). Generalization in Digital Cartography. Association of

American Geographers.

Nickerson, B. G. (1986). Development of a rule-based system for automatic map generalization. In

Proceedings of the 2nd International Symposium on Spatial Data Handling, Seattle, WA.

Nickerson, B. G. (1988). Automated cartographic generalization for linear features. Cartographica:

The International Journal for Geographic Information and Geovisualization, 25(3):15–66.

67

Patel, D. (2020). Image classification vs Object detection vs Image Segmentation | Deep Learning

Tutorial 28.

Persson, A. (2020). Pytorch Common Mistakes - How To Save Time.

Powitz, B. M. (1993). Computer-Assisted Generalization - An Important Software-Tool in GIS. In-

ternational Archives of Photogrammetry and Remote Sensing, 29:664–672.

Ramsundar, B. and Zadeh, R. B. (2018). TensorFlow for Deep Learning: From Linear Regression to

Reinforcement Learning. O’Reilly Media, Inc., 1st edition.

Ronneberger, O., Fischer, P., and Brox, T. (2015). U-Net: Convolutional Networks for Biomedical

Image Segmentation. In Navab, N., Hornegger, J., Wells, W. M., and Frangi, A. F., editors, Medical

Image Computing and Computer-Assisted Intervention – MICCAI 2015, pages 234–241, Cham.

Springer International Publishing.

Ruas, A. (2001). Automatic Generalisation Project: Learning Process from Interactive Generalisation.

Technical Report 39.

Ruas, A. and Plazanet, C. (1996). Strategies for automated generalization. In Proceedings of 7th

International Symposium on Spatial Data Handling, volume 1. Issue: 6.

Schylberg, L. (1993). Computational methods for generalization of cartographic data in a raster envi-

ronment. Dissertation, Department of Geodesy and Photogrammetry, Royal Institute of Technology,

Stockholm.

Sester, M., Feng, Y., and Thiemann, F. (2018). Building generalization using deep learning. Interna-

tional Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS

Archives, 42(4):631–637.

Shelhamer, E., Long, J., and Darrell, T. (2014). Fully Convolutional Networks for Semantic Segmen-

tation. arXiv preprint, arXiv:1411.

Solórzano, J. V., Mas, J. F., Gao, Y., and Gallardo-Cruz, J. A. (2021). Land Use Land Cover

Classification with U-Net: Advantages of Combining Sentinel-1 and Sentinel-2 Imagery. Remote

Sensing, 13(18):3600. Number: 18 Publisher: Multidisciplinary Digital Publishing Institute.

Spiess, E., Baumgartner, U., Arn, S., and Vez, C. (2002). Swiss Society of Cartography Topographic

Maps. Cartographic Publication Series, (17).

Steiniger, S., Lange, T., Burghardt, D., and Weibel, R. (2008). An approach for the classification of

urban building structures based on discriminant analysis techniques. Transactions in GIS, 12(1):31–

59.

Sugirtha, T. and Sridevi, M. (2022). Semantic Segmentation using Modified U-Net for Autonomous

Driving. In 2022 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRON-

ICS), pages 1–7.

Taghanaki, S. A., Zheng, Y., Zhou, S. K., Georgescu, B., Sharma, P., Xu, D., Comaniciu, D., and

Hamarneh, G. (2019). Combo Loss: Handling Input and Output Imbalance in Multi-Organ Seg-

mentation. arXiv:1805.02798 [cs].

68

Tobin, J. (2019). Why you should always overfit a single batch to debug your deep learning model.

Touya, G., Zhang, X., and Lokhat, I. (2019). Is deep learning the new agent for map generalization?

International Journal of Cartography, 5(2-3):142–157.

Tran, L.-A. and Le, M.-H. (2019). Robust U-Net-based Road Lane Markings Detection for Autonomous

Driving. In 2019 International Conference on System Science and Engineering (ICSSE), pages 62–

66. ISSN: 2325-0925.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and Plol-

sukhin, I. (2017). Attention Is All You Need. In Advances in Neural Information Processing Systems.

Issue: 30.

Wang, J., Yang, M., Chen, Z., Lu, J., and Zhang, L. (2022). An MLC and U-Net Integrated Method for

Land Use/Land Cover Change Detection Based on Time Series NDVI-Composed Image from Plan-

etScope Satellite. Water, 14(21):3363. Number: 21 Publisher: Multidisciplinary Digital Publishing

Institute.

Weibel, R. (1991). Amplified Intelligence and Knowledge-Based Systems. In Buttenfield, B. P. and

McMaster, R. B., editors, Map Generalization: Making Rules for Knowledge Representation, pages

172–186. Longman, London.

Weibel, R. (1995). Three essential building blocks for automated generalization. In Müller, J.-C.,

Lagrange, J.-P., and Weibel, R., editors, GIS and Generalization, pages 56–69. Taylor & Francis,

London.

Weibel, R. and Dutton, G. (1999). Generalising spatial data and dealing with multiple representa-

tions. In Longley, P., Goodchild, M., Maguire, D., and Rhind, D., editors, Geographical Information

Systems: Principles, Techniques, Management and Applications, pages 125–155. John Wiley, Chich-

ester, second edi edition.

Xie, X., Ye, L., Kang, X., Yan, L., and Zeng, L. (2022). Land Use Classification Using Improved U-

Net in Remote Sensing Images of Urban and Rural Planning Monitoring. Scientific Programming,

2022:e3125414. Publisher: Hindawi.

Xu, Z., Zhang, W., Zhang, T., and Yang, Z. (2021). E�cient Transformer for Remote Sensing Image

Segmentation. Artificial Intelligence Algorithm for Remote Sensing Imagery Processing, pages 1–24.

Yang, L. and You, C. (2018). Instance U-Net and Watershed: Improved Segmentations for breast

cancer cells. 12353505, Stanford.

Yi-de, M., Qing, L., and Quan, Z.-b. (2004). Automated image segmentation using improved PCNN

model based on cross-entropy. In Proceedings of 2004 International Symposium on Intelligent Mul-

timedia, Video and Speech Processing, 2004., pages 743–746, Hong Kong, China. IEEE.

Zhang, A., Lipton, Z. C., Li, M., and Smola, A. J. (2021). Dive into Deep Learning, volume arXiv:2106.

arxiv.

69

Personal declaration I hereby declare that the submitted Thesis is the result of my own, indepen-

dent work. All external sources are explicitly acknowledged in the Thesis.

Zurich, 20.01.2023

Jan Winkler

70

	Introduction
	Motivation
	Research Aim

	Related Work
	Evolution of Map Generalization
	Deep Learning
	Deep Learning Approaches in Map Generalization
	Research Gaps
	Research Objectives

	Data
	Data Sources
	Comparison of the Spatial Extents
	Extensive Data

	Methodology
	Technical Setup
	Computation Model Configurations
	Data
	Data Models
	Deep Learning Training
	Evaluation Metrics
	Experimental Setup
	Experiments

	Results
	Brute Force Approach on Extensive Swisstopo Data
	Comparing Data Models
	Comparing Computational Models
	Result Overview

	Discussion
	Brute Force Experiments
	Comparing Data Models
	Comparing Computation Models

	Conclusion
	Contributions
	Limitations
	Learnings
	Future Research

	Bibliography

