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Abstract

Mapping language richness is essential not only for a better understanding of the lan-
guages themselves, but also to gain new insights into related cultural phenomena such
as migration or expansion. However, spatial language distribution data can be sparse
to non-existent, depending on the time and location. In the framework of this thesis, a
probabilistic method is developed to interpolate spatial language distributions over time
in the case of South America, where overall information on the distribution of Indigenous
languages families and Indo-European languages is provided at only two points in time:
around the time of contact and around 1990. The newly developed algorithm, that allows
to interpolate between given points in time, is composed of a cellular automaton as core
underlying mechanism and Bayesian inference as statistical method. Follow-up research is
suggested to further test the transferability of this model, thereby building a solid foun-
dation for a globally applicable model allowing to conduct linguistic research in various
regions across the globe.
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1 Introduction

1.1 Motivation and study aim

Language richness, i.e., the number of languages in a given region, and the spatial distribu-
tion of languages, especially over time, are tightly linked to cultural development and changes
since language evolution reflects society-shaping natural and sociocultural influences. Mapping
language richness is therefore essential not only for a better understanding of the languages
themselves, but also to gain new insights into related cultural phenomena such as migration or
expansion (Grollemund et al. 2015; Bouckaert et al. 2018). Or, following the train of thoughts
by Lameli: “ [...] our understanding of human language and communication benefits from the
geographical approach, especially the knowledge organized via maps and atlases” (2009).

Currently, two big databases of the world’s languages exist: Ethnologue (Eberhard et al. 2022)
and Glottolog (Hammarström et al. 2022). Ethnologue presents the disadvantages of not in-
cluding any academic references and of not being freely accessible. Glottolog only contains
point locations, no counts for languages nor speaker ranges, i.e., geographical areas occupied
by the speakers of a language (Gavin et al. 2017). The GIScience department at UZH therefore
launched the Glottography project to establish a unified presentation manner for working with
world-wide language samples which takes into account geography by using already published
geographical distributions of languages.

The goal of this master’s thesis is to develop a probabilistic method for interpolating spatial
language distributions in a given area and over a certain time span, preferably of historical
dimensions. The motivation behind developing this new probabilistic method is to map potential
spatial language distributions over a time span for which only limited data exists. As introduced
in the first paragraph, filling these gaps will hopefully not only allow a better understanding
of the mapped languages themselves, but also facilitate historical studies of related cultural
phenomena. The developed probabilistic method is embedded in a process-based simulation
model and includes a cellular automaton as core underlying mechanism and Bayesian inference
as statistical method.

To conduct my thesis, I chose to work with data from the Glottography project as it presents the
advantages of both included academic references and speaker ranges - the latter representing
an advantage for a study dealing with spatial language distributions. Within the available
Glottography data, I selected the continent of South America as study site due to certified data
only being available around the time of first contact, 1500 A.D. (Evers 2023), and 1990 A.D. This
perfectly ticked the box of a large time span over which to develop my probabilistic interpolation
method. Furthermore, this choice will hopefully also lead to a broadened knowledge of language
richness and related cultural phenomena in South America.

However, I had to diverge from my initial plan to include all of the languages represented in
the data from around 1500 A.D. and 1900 A.D. Indeed, due to time and computing constraints,
which will be discussed in more detail in chapter 6.2.2, I had to focus on the distribution patterns
of, on the one hand, the Indigenous language families as a whole and, on the other hand, the
Indo-European language family. I hope though that, for more in-depth analysis, my developed
method will, in the future, be reused to assess South America’s phylogenetic diversity patterns
over time with more than just two groups of language families.

In summary, the goal of this thesis is to develop a probabilistic interpolation method for spatial
language distributions based upon the example of South America between roughly 1500 A.D.
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and 1990 A.D. My research aims at filling existing knowledge gaps in current language and phy-
logenetic, i.e., language family related, diversity studies for South America and at contributing
to a better understanding of related cultural developments on a continent heavily influenced by
European colonisation during this time period. Moreover, I’m positive that the outcome of this
thesis will help to further spread the use of process-based simulation models when working with
spatial language distributions. Finally, my newly developed method, based upon the combined
use of a cellular automaton and Bayesian inference, will hopefully set the basis for a globally
applicable model, thereby allowing to conduct research also in other regions across the globe.

1.2 Research goal

Within this study, I will focus on the following research goal:

How is it possible to interpolate spatial language distributions in a given area and
over a certain time span with a known distribution both in the beginning and in the
end?

1.3 Outline

In the next chapter, background information about the following topics will be introduced in
the form of short summaries: linguistics definitions, the driving factors of language spreading
at a global scale, South America’s specific linguistic situation, process-based simulation models
(PBMs) and related current research, cellular automata (CA) as well as Bayesian inference.
Chapter 3 then introduces the study site - South America - and the data sets used for this thesis.
Chapter 4 subsequently explains the chosen, applied and developed methodologies, before the
results are presented in chapter 5. In chapter 6, the choice of methods and the research goal are
discussed. Possible improvements are propounded and an outlook to future research is given in
chapter 7. Finally, conclusions are drawn in chapter 8.

2



2 Background

2.1 Languages

2.1.1 A few linguistics definitions: language, language family and language
richness

About 7000 languages and 400 language families exist worldwide (Campbell 2019; Pacheco
Coelho et al. 2021). The term “language family” describes a set of languages for which there
exists proof of a common ancestor (Campbell 2019). The 400 language families also comprise
isolates, i.e., languages with no known relative forming single membership language families,
and extinct language families, i.e., language families which do not contain any language with
remaining native speakers (Campbell 2012; Campbell 2019). A glimpse at the complexity of
sorting and linking languages within a language family can be seen in Figure 2.1.

Figure 2.1: An illustration of the complexity of sorting and linking languages within a language
family at the example of the Indo-European language family. (Source: Sundberg 2014)

However, it is often difficult to decide whether a detected language is merely a dialect or a
language of its own – a correct classification based upon size or mutual intelligibility can be
ambiguous and sometimes impossible to find (Campbell 2012; Oppenheim et al. 2019). Further-
more, as Oppenheim et al. state, “distinctions often incorporate politicized notions like ‘prestige’
(Hudson, 1996; Wei, 2000), leading to the popular aphorism that “language is a dialect with an
army and a navy” (Weinreich, 1945)” (2019). In this thesis, I will use the term ‘language’ ac-
cording to the conception used by Kaufman (2007) as I am using his language data (see chapter
3.2). This means that languages are categorized and distinguished from dialects based upon
their phonology, lexicon, morphology, texts, and syntax (Kaufman 1990).
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While the number of languages in a given region can either be referred to as language richness
or language diversity, the amount of language families in an area is called phylogenetic diversity.
The term “linguistic diversity” should be avoided if possible as it is ambiguous (Pacheco Coelho
et al. 2019; Pacheco Coelho et al. 2021).

A “spatial language distribution” describes how languages or language phenomena like language
families are organized in space, i.e., how they are regionally distributed (Lameli 2009). The
spreading of languages happens according to human agencies such as military, economical, or
religious activities and is the reason behind changing spatial language distributions (Phillipson
2008). “Language spreading” is therefore defined as the gain, over time, of a language’s speaker
numbers (Cooper 1982) with the critical step being the corresponding language’s adoption by at
least one foreign population group (Mufwene 2006). Hence, the mere demographic increase of
a language’s original population group is not enough to speak of language spreading (Mufwene
2006). A good example for language spreading is the dispersal of the Portuguese and Spanish
languages in South America: the number of Portuguese and Spaniards did not simply increase,
but South American speaker communities stopped using their traditional languages and started
speaking Spanish and Portuguese instead. This process happened mostly forcefully and was
marked by the Europeans’ military invasion of South America.

2.1.2 Driving factors of language spreading at a global scale

There exist multiple non-spatial and spatial factors and processes which, over time, have been
discussed to influence language spreading (Greenhill 2014). Spatial processes alone explain
over 1/3 of the world’s spatial language distributions. Important spatial factors and processes
of language spreading are water bodies, mountains, ecosystem boundaries and the ecosystem
boundaries’ universal role as spatial barriers. As for non-spatial processes, at a global scale,
population size seems to be the only relevant factor (Bentz et al. 2018; Moore et al. 2002).
Population size is a very valuable factor since it indirectly also covers socio-cultural and political
elements which heavily impact the population size (Gavin et al. 2017). For example, wars and
diseases generally reduce the population size which therefore implicitly indicates such a political
or socio-cultural event.

Water bodies, especially rivers, have a very ambiguous role when it comes to language spreading.
On the one hand hand, rivers, as well as coast lines, tend to favour a high language diversity and
reduced language spreading due to high individual but very low group mobility (Bouckaert et al.
2018; Greenhill 2014). This means that generally, many individual population groups speaking
different languages live along a river or coastline in their own niches. Their contact and exchange
is mostly reduced to individual mobility, e.g., trade or marriage. Since nearly no larger group
movements like migration take place, the various languages are neither massively spreading nor
suppressing other languages along the rivers or coastlines: there is a high language diversity
but reduced language spreading in these areas. However, in certain cases, usually over very
long distances, rivers and coastlines can also be important traffic and transport routes (Nichols
1997). In these cases, since people speaking various languages from very different regions either
move permanently (water body as a traffic route) or meet frequently (water body as a trading
route) along the river or coastline, these water bodies can become a factor of increased language
spreading (Nichols 1997). Good examples of it are the increased language diversity along the
coastlines of New Guinea as well as the extremely high number of language families along the
world’s largest river system, the Amazonas (Ranacher et al. 2017).

Since at least the late Middle Ages, mountains allow for language niches with high language
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diversity while language spreading occurs bottom-up with the valley languages slowly eradicat-
ing the high altitudes’ languages. The spreading mechanism behind this bottom-up pattern is
the so-called “vertical bilingualism”, which describes the fact that highland settlers generally
know lowland languages but not vice versa. The reason for the bottom-up language spreading
is climate. Indeed, the beginning of the Little Ice Age led towards highland economies becoming
more precarious and lowland economies becoming more prosperous due to comparably longer
growing seasons. Therefore, lots of highland settlers at least partially migrate for work towards
the lowlands and “vertical bilingualism” increases (Nichols 1997).

People and therefore languages tend to move along similar habitats if possible: a longer migra-
tion route to the same or a similar ecosystem has proven to be preferred over shorter routes
to foreign ecosystems where new adaptation mechanisms have to be learnt (Grollemund et al.
2015).

2.1.3 Language diversity in South America

South America comprises roughly 420 spoken Indigenous languages grouped into about 100
language families, including isolates (Campbell 2012; Campbell 2019). In total, the South
American language families represent about a quarter of the world’s language families (Campbell
2012; Campbell et al. 2012). However, Indigenous South American languages and language
families are not strictly confined to the continental territory of South America: some of them
spread into lower Central America as well as the Caribbean islands know as Antilles (Campbell
2012; Kaufman 2007).

Their uniquely high language diversity makes Indigenous South American languages somewhat
special (Campbell 2012) and a very interesting study area. However, despite their unique
position, the systematic study of Indigenous South American languages only started in the
1940s with a more in-depth understanding of them beginning to take place even later, around
the early 2000s (Campbell et al. 2012). This might also be due to the obstacle of naming issues:
indeed, South America comprises many single languages with multiple names as well as the
opposite case where one name refers to several languages (Campbell 2012).

South America nowadays has the highest language diversity in both mountain (Nichols 1997) and
latitudinal gradient niches (Nettle 1998). While the former reinforces suspicions that, despite
bottom-up language spreading, the overcoming of high slopes is not easily done by languages
and language families (Nichols 1997), the latter proves Nettle’s “Ecological Risk Hypothesis”
true (Nettle 1998). The “Ecological Risk Hypothesis” claims that ecosystem richness, based
upon climatic drivers like precipitation, temperature, and seasonality as well as the ecosystem’s
stable productivity conditions, favours a latitudinal gradient with language and niche diversity
being higher closer to the Equator (Greenhill 2014; Grollemund et al. 2015; Mace et al. 1995;
Nettle 1998; Pacheco Coelho et al. 2019). However, due to the European colonization and its
heavy impact upon Indigenous South American culture, language diversity close to the South
American equator is not as high as expected in comparison with other equatorial regions (Nettle
1998).
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2.2 Process-based models (PBMs)

2.2.1 Theoretical background

Process-based simulation models (PBMs) originate in macro ecology (Gavin et al. 2017) and are
custom-built models made to fit data (Connolly et al. 2017). They are opposed to “purely statis-
tical” models (Connolly et al. 2017) and have clearly defined rules and interpretable parameters
(Pacheco Coelho et al. 2021). Their working principle is “allowing investigators to hold certain
factors constant to isolate and assess the impact of certain chosen processes” (Gavin et al. 2017).
This means that there is a shift from single-factor correlative studies towards multi-causal ap-
proaches which include statistical methods but are more than just a statistical model (Gavin
et al. 2013). Furthermore, PBMs are a computer-simulated experience (Pacheco Coelho et al.
2021).

Since central topics of ecology -– like explaining patterns or using heterogenous, gridded en-
vironmental data as basis for species richness (Gotelli et al. 2009) — are similar to working
with language diversity patterns, macro ecology’s methodological advance in using PBMs is
considered useful in future work on language distribution patterns (Gavin et al. 2013).

Indeed, factor-driven analysis of language spreading have so far mostly been empirical, correl-
ative studies. However, correlation does not necessarily infer causation, this being the reason
why PBMs can be used to properly determine the specific drivers of changing language diversity
patterns by detecting if, how, and to what extent the chosen factors determine the number and
spatial pattern of languages in a certain place, e.g., South America (Gavin et al. 2017; Pacheco
Coelho et al. 2021). Furthermore, PBMs allow for regionally different drivers of language diver-
sity changes (Pacheco Coelho et al. 2021). Studies using PBMs for assessing language diversity
patterns have already been conducted in Australia and North America and will be discussed
in more detail in chapter 2.2.2 (Gavin et al. 2017; Pacheco Coelho et al. 2019; Pacheco Coelho
et al. 2021).

2.2.2 Current state of research

Currently, three main studies using process-based models (PBMs) for assessing language distri-
bution patterns have been conducted (Gavin et al. 2017; Pacheco Coelho et al. 2019; Pacheco
Coelho et al. 2021).

In the first one, by Gavin et al., the authors investigate a potential causal relation between,
on the one hand, the number of languages and the spatial language distribution in modern
Australia and, on the other hand, some major factors and processes determining them. The
study focuses on isolating and assessing a strict minimum of underlying processes and factors.
The idea here is to get a best possible approximation by using and testing the least possible
hypotheses. The result is stunning: the average predicted number of languages corresponds to
the observed number of languages and the estimated spatial language distribution shares 56
percent with the real-world language distribution of today.

To achieve this, Gavin et al. used an underlying hexagonal grid. Besides the finding that
very few processes and factors already allow for some rather well matched number of languages
and spatial language distributions, the study also shows that the before untested hypotheses
of environmentally limited group size per area, i.e., carrying capacity, and climatic conditions
are indeed key causal factors. Furthermore, Gavin et al. presume that such key causal factors
are undergoing regional changes since the carrying capacity is quickly outshined where other
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processes like natural barriers are likely to determine language distributions. This is supported
by the findings of Pacheco Coelho et al. (2019) and Pacheco Coelho et al. (2021), stating that
universal indicators, similar to macro ecology, do not exist.

Pacheco Coelho et al. ((2019)) based their work upon the study by Gavin et al. (2017) and
tested for more processes and factors determining the number of languages and the geograph-
ical language distribution in a given region, North America, using a geographically weighted
path analysis. Besides additionally assessing topological complexity, river density, ecosystem
diversity, and population density, they also tested for both direct and indirect effects of all the
factors. Their main findings are that the impact of causal factors, especially ecological ones,
varies spatially and that the factors are “connected in a complex web of causality, consisting
of both direct and indirect effects”. Moreover, results indicate population size to be the most
influent factor while the absence of sociocultural and historical factors due to the use of gridded
map cells is presumably responsible for at least some of the unexplained variation.

Pacheco Coelho et al. (2021) then built a more complex simulation model based upon their
study from 2019. The implementation is done within a hexagonal grid and based upon artificial
algorithmic cycles. The language ranges are depicted as non-overlapping polygons in order to
simplify the modelling. Pacheco Coelho et al. also introduced and modelled the concept of
“shocks” for rapid changes, both positive and negative, in population sizes. This is important
since population size change can lead to range expansion or contraction and therefore induce
processes like language fragmentation and diversification or language extinction - crucial pro-
cesses which were not represented in previous simulation models focusing only on population
size itself. Important for modelling shocks is the notion of “carrying capacity”, i.e., the environ-
mentally limited group size per area, already introduced by Gavin et al. in 2017. The shocks can
then be “ [...] limited to a particular group [...] or felt by all the groups within a given region
[...] ”, therefore emphasizing the previous findings of regional, not global, processes and factors
determining the number of languages and the geographical language distribution. Furthermore,
Pacheco Coelho et al. (2021) introduce the concept of languages being able to emerge from
randomly selected cells.

2.3 Cellular automata (CA)

Cellular automata (CA) are mathematical representations of complex systems which evolve
within time and space, first introduced by Von Neumann in the 1960s. They are constituted
of a set of discrete elements, normally a grid, where each cell is in one of several finite states,
i.e., where each cell can only take one single value per time step (Beltran et al. 2010; Das 2011;
Sarkar 2000; Yassemi et al. 2008). For example, in a binary grid, each cell can at each time step
t either take value 0 or value 1.

Each cell’s value can change once per time step. The change occurs according to a set of rules
called “transition rules” which are a function of the cell’s own value at the preceding time step
and the neighbouring cells’ values at the current time step. The transition rules can contain
deterministic, probabilistic, or stochastic elements and use either a Von Neumann — only the
cells connected to the sides of the cell in question -– or a Moore -– all the cells connected to the
sides and vertices of the cell in question -– neighbourhood function (see Figure 2.2) (Beltran et
al. 2010;Yassemi et al. 2008). This means that “each cell is restricted to the local neighborhood
interactions only [...]” (Das 2011).

In the beginning, a cellular automaton is in an initial configuration from which it proceeds deter-
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Figure 2.2: Von Neumann (a) and Moore (b) neighbourhood functions. (Source: Das 2011)

ministically according to the transition rules. Since it has no other input, it is an autonomously
working model (Sarkar 2000).

Cellular automata present several advantages for spatio-temporal modelling compared to other
methods: they can deal with both the spatial and temporal component while being inherently
spatial, they are compatible with geospatial data sets, i.e. GIS data, and, most importantly,
they allow us to model complex situations while using rather simple and local rules (Yassemi
et al. 2008). The complexity and predictability of a cellular automaton’s output heavily depend
on the number of cells and their potential values, as well as the transition rules and the chosen
neighbourhood function (Beltran et al. 2010). This can be considered a disadvantage of cellular
automata.

Nevertheless, cellular automata, originally developed as “formal models of self-reproducing or-
ganisms”, are nowadays not only commonly used for modelling in bioglogy, but in many other
domains (Sarkar 2000).

2.4 Bayesian inference

Bayesian inference is a concept for data analysis which has its roots in statistics, but is widely
applied in all types of research. It is based on probabilities and the previous knowledge of
events, i.e., the learning from data. This means that Bayesian inference reflects our knowledge
about the world around us and asks the question: “How does one get from mere sample data
towards a probability distribution of a population and its parameter(s)?” (McElreath 2016)

For example, one can make a survey at the university cafeteria to ask whether people like tea.
The goal of such a survey would be to better restock the cafeteria’s offerings. The interviewed
university staff’s answers – Yes or No – are data generated through a process of sampling. The
question to answer then is: “How can one infer the probability distribution of the complete
university staff’s positioning towards tea from the data gathered through the few staff members
interviewed?” Knowing the model of our case study, i.e., sampling as data-generating process,
one can subsequently infer the single parameter – probability of tea liking within all of the
university staff – from the data collected in the sampling process.

To answer this type of question in a structured way, Bayesian inference uses the Bayesian
theorem:
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P (parameters | data) = P (data | parameters) ∗ P (parameters)

P (data)
(1)

Which equals to:

posterior (probability) =
likelihood (function) ∗ prior (probability)

marginal likelihood (function)
(2)

The posterior probability gives the probability distribution of a specific model parameter ac-
cording to the observed data. The highest peak of this probability distribution corresponds
to the highest posterior probability (y-axis value) and the most likely value for the analyzed
specific parameter (x-axis value) (McElreath 2016). In our example, the posterior probability
is the probability distribution of the whole university staff’s tea fondness given the results from
the survey conducted at the cafeteria.

The likelihood function indicates how likely certain data is to be produced for each parameter
value of the model. The likelihood function is the information we have in any case of applying
the Bayesian theorem (McElreath 2016). In our example, the likelihood function expresses how
probable the answers “Yes” or “No” are for the question of how well university staff overall likes
tea.

The prior probability is the knowledge of each specific parameter value before seeing any data. A
core element of the Bayesian inference concept is that the prior needs to be updated whenever
new information is available. The prior can either be informative (strong) or uninformative
(flat): the former is used when past experiences or domain knowledge exists, and the latter is
used if no information is available (McElreath 2016). In our example, the prior is the knowledge
about tea preferences at university from former surveys. In case such a former survey exists,
the prior is strong, otherwise, due to lack of previous knowledge, the prior is weak.

The marginal likelihood is a normalizing constant – since it does not depend on a specific
parameter – which can be omitted without losing proportionality. In our example, the marginal
likelihood corresponds to the data collected in the cafeteria survey. Due to the omitting of the
normalizing constant, the Bayesian theorem is reduced to:

P (parameters | data) ∝ P (data | parameters) ∗ P (parameters) (3)

The posterior can mainly be influenced in two ways. The first one is an increased amount of data
which leads towards a less influential prior while narrowing the posterior. Most importantly,
though, the posterior probability better approximates the true population parameters in that
case. The second way is a very strong prior probability, i.e., specific, definitive information
about a parameter is known. The prior then pushes that parameter towards specific – potentially
biased – values, and the posterior is narrowed. However, contrary to the case with the increasing
amount of data, it is not sure if the posterior approaches the true population parameters due
to the potentially biased prior information. Therefore, a good prior probability is helpful,
but gathering more data is even better for running a Bayesian inference. Indeed, with few
observations, all we get is a blurry picture, while with more observations, we can be more
certain about the true nature of things. Nevertheless, as with every statistical method, some
uncertainty always remains (McElreath 2016).
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Bayes’ theorem is, in practice, applied to many possible values for each parameter. For each
potential value, it is retained how well they explain the data. In case the model and population
have only one parameter, grid approximation is used to find suitable estimates. For simple
models, there may even exist an analytical solution instead of sampling. If the model and popu-
lation comprise several parameters though, a Markov Chain Monte Carlo (MCMC) approach is
usually the method of choice. Contrary to the grid approximation, the MCMC mainly focuses
on values that explain the data well and neglects those that don’t. Furthermore, it already needs
a good initial value to start its journey through parameter space. Both grid approximation and
MCMC are tools that estimate the posterior distribution of a model and its parameters given
the data (McElreath 2016).

The major advantages of Bayesian inference are the possibility to capture the uncertainty of
a process, that the concept can be extended to model processes of almost any complexity and
that its results are very straightforward to interpret (McElreath 2016).

10



3 Data

3.1 Study area

3.1.1 South America

The study area of this thesis is South America itself, defined as the landmass lying south of
the isthmus of Panama (Wallenfeldt 2018), as well as Southern Panama. For better readability,
I will however address the study area as “South America” and not mention Southern Panama
separately every time.

Figure 3.1: The defined study area of this master’s thesis in WGS 84: South America and
Southern Panama within a bounding box (in blue).

The exact study area ranges from 55°36’42.6"S to 12°26’14.3"N and from 81°24’39.4"W to
34°43’48.0"W within the World Geodetic System 1984 (WGS 84) (see Figure 3.1). This bound-
ing box has been extracted from the low-resolution “World” dataset by Natural Earth which is a
standard dataset included in the Python module "GeoPandas". The bounding box corresponds
to the corresponding minimum and maximum values of the combined geometry attributes of
the data set’s entries where the continent is “South America”.

3.1.2 Suitability of the study area

South America is a suitable study area for developing my probabilistic method for interpolating
spatial language distributions since comparable, certified language data – from the Glottography
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project, see chapter 3.2 – exists for two timestamps in that area: around the time of first contact,
1500 A.D. (Evers 2023), and around 1990 A.D. In South America, interpolating between these
two years means interpolating over a time period of historic dimensions because of colonization.
Indeed, colonization in South America started around 1500 A.D. and did not only impact
language and phylogenetic diversity as well as spatial language distributions, but also had
heavy cultural consequences (Nettle 1998). Such a vast and meaningful time period is, on the
one hand, more challenging concerning the results, while also, on the other hand, guaranteeing
big enough changes in spatial language distributions for my interpolation method to register.

3.2 Language data

While modern studies of Indigenous South American languages mostly focus on spatially or
contentwise limited topics like certain areas or individual language families (Campbell et al.
2012), there exist some overarching large-scale classifications of Indigenous South American
languages (Campbell 2012). One of these is a comprehensive mapping of both "Time of Contact"
and "Contemporary" language distribution patterns by Terrence Kaufman (2007).

Figure 3.2: Digitized Kaufman maps at "Time of Contact – 1500 A.D." (left) and "Contem-
porary – 1990 A.D." (right): Snapshots from the "Glottography" project. (Source: Kaufman
2007)

The classification and subsequent mapping by Kaufman is the base data set used in this thesis.
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It is based on the overall common points between previous overarching large-scale classifications
by Swadesh (1959), Loukotka (1968), Suárez (1974) and Greenberg (1968) as seen in Campbell
2012 and was continuously updated between 1985 and 1989 (Kaufman 2007). While the "Con-
temporary" maps therefore refer to the time around 1990 at the latest, the "Time of Contact"
maps depict the areas occupied by speakers of the represented Indigenous South American lan-
guages at the corresponding time of first contact with European colonizers around 1500 A.D.
(Asher et al. 2007). As described in chapter 2.1.3, naming issues are a main complication of
Indigenous South American languages’ classification. In the mapping by Kaufman, for stan-
dardization, languages are therefore referred to with their most common English name or the
name used by scholars to describe them (Asher et al. 2007; Kaufman 2007). Common spelling
variations are also added (Asher et al. 2007).

For this thesis, I use digitized polygon versions of Kaufman’s maps (see Figure 3.2) which
are also used for the Glottography project. I obtained the data from the ERC Consolidator
project "South American Population History Revisited (SAPPHIRE)" headed by Erik van Gijn
at Leiden University. The digitized polygons were handed to me as two separate .json data sets:
one for "Time of Contact", one for "Contemporary".

Using the digitized polygon versions of Kaufman’s large-scale classification of Indigenous South
American languages presents two main assets for me: First, the fact that the original assessment
and classification of both "Contemporary" and "Time of Contact" language distribution pat-
terns were done by the same person – Kaufman – allows for sensible comparisons between both,
i.e., makes my probabilistic interpolation method statistically sound. Second, the digitization
was done by specialists in the field of linguistics and should therefore contain no errors.

3.3 First settlements

The digitized language distribution map from around "Time of Contact" (TOC) only contains
indigenous language families. To retrace the spreading of the Indo-European language family
in South America, I therefore need to implement European settlement seeds which I assume
to introduce Indo-European languages as dominant languages in their corresponding areas. At
least one seed needs to be implemented within the language distribution map from around
"Time of Contact" for an interpolation between the TOC and "Contemporary" (C) maps to be
possible. More seeds can then be added to the CA-generated follow-up maps in order to better
represent the historic reality.

Since the TOC map by Kaufman (Kaufman 2007) describes the language diversity patterns
in South America roughly around 1500 A.D., I decided to use the first stable, yet short-lived,
European settlement in continental South America as starting point: Santa María la Antigua
del Darién, founded in 1510 (Cubero-Hernández et al. 2022; Keen 2023). Further European
settlement seeds, chosen upon the criteria of successful, non-temporary foundations undertaken
between 1510 A.D. and 1600 A.D., are added to the CA-generated follow-up maps at fitting time
stamps. The reason for choosing 1600 A.D. as limit for introducing new settlement seeds is that
more and more cities and dwellings started to be founded then and that, with me not having the
historical background to properly assess which of these new settlements are most important to
South American colonization, I preferred to favour missing information over potentially wrong
information. In an updated version of my probabilistic method for interpolating spatial language
distributions, it would however strongly be recommended to reassess and extend the choice of
European settlement seeds for higher accuracy.
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The chosen European settlement seeds (see Table 3.1) represent the two most powerful colo-
nizing forces of South America: Spain and Portugal. The other three present forces, France,
the Netherlands and the United Kingdom, only started founding durable settlements in South
America during the 17th century (British Library 2018; Ebert 2019; Webster et al. 2023) and are
therefore not represented due to my chosen seed-placing limit of 1600 A.D. Since I am studying
the spreading of the Indo-European language family as a whole, discharging the still scarcely
represented languages French, Dutch, and English (Kaufman 2007) is not a problem for the
modelling process.

Settlement Founding Year Modern Country Colonizing Force

1 Santa María la Antigua del Darién 1510 Colombia Spain
2 Panamá Viejo* (Panama City) 1519 Panama Spain
3 Nueva Toledo (Cumaná) 1521 Venezuela Spain
4 Santa Marta 1525 Colombia Spain
5 Piura 1532 Peru Spain
6 São Vicente 1532 Brazil Portugal
7 Cartagena* 1533 Colombia Spain
8 Cuzco* 1533 Peru Spain
9 Quito* 1534 Ecuador Spain
10 Trujillo 1534 Peru Spain
11 Lima 1535 Peru Spain
12 Asunción 1537 Paraguay Spain
13 Olinda 1537 Brazil Portugal
14 Chuquisaca* (Sucre) 1538 Bolivia Spain
15 Santa Fé de Bacatá* (Bogota) 1538 Colombia Spain
16 Santiago de Chile 1541 Chile Spain
17 Potosí 1545 Bolivia Spain
18 Nuestra Señora de la Paz* (La Paz) 1548 Bolivia Spain
19 Salvador 1549 Brazil Portugal
20 Concepción 1550 Chile Spain
21 Huancavelica 1563 Peru Spain
22 Rio de Janeiro 1565 Brazil Portugal
23 Caracas 1567 Venezuela Spain
24 Cochabamba 1574 Bolivia Spain
25 Buenos Aires 1580 Argentina Spain

Table 3.1: Important European settlements in South America between 1510 A.D. and 1600 A.D.
Settlements with a * have been built upon existing Indigenous dwellings or cities.

The European settlement seeds to include were mostly determined based upon historical evi-
dence from the online version of the Encyclopaedia Britannica (see references in Table A1 in the
appendix) and are listed according to their name at the founding time. In case their modern
name diverges, it is added in brackets. The settlements’ corresponding coordinates, needed to
implement the seeds into my interpolation method, were gathered through the website Geo-
hack (N.N. 2023b). The settlements marked by an * in Table 3.1 were built upon pre-existing
Indigenous dwellings or cities.
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3.4 Geographical data

3.4.1 Habitat data

Habitats are defined as natural landscapes providing food and shelter to a given organism or
group of organisms (NGS 2022). However, the only publicly available data covering all of South
America was an ecoregions data set called “Ecoregions 2017” (Dinerstein et al. 2017) and found
at https://ecoregions.appspot.com/.

Ecoregions are not centered upon a specific species and its needs like habitats. Instead, they
cover broader areas classified according to their interacting fauna, flora and climate (IPBES
2023). Contrary to habitats, ecoregions are geographically specific and exist only once, e.g., the
“Venezuelan Andes montane forests” are an ecoregion only located in Venezuela (IPBES 2023,
Ecoregions2017). However, despite being different from each other, habitats and ecoregions are
still closely related due to being defined spatial areas based upon their environmental features.
Therefore, in the context of this thesis and due to the aforementioned data constraints, I make
use of ecoregions instead of habitat data.

3.4.2 Topographical data

The topographical data is provided by the GLOBE digital elevation model (DEM) (GLOBE
1999) available at https://www.ngdc.noaa.gov/mgg/topo/globe.html. This is a 30-sec-second
(approximately 1-km) DEM provided and quality-controlled by the National Oceanic and Ath-
mospheric Administration (NOAA).
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4 Methods
The goal of this thesis is to develop a probabilistic method for interpolating spatial language
distributions in a given area, South America, over a certain time span, i.e., the years between
1510 A.D. and 1990 A.D. The motivation behind developing this new probabilistic method is to
map potential spatial language distributions over a time span for which only limited language
data exists.

In order to achieve this, my chosen statistical method is Bayesian inference which infers the
posterior distribution of potential evolutionary language histories, i.e., potential interpolation
sets of spatial language distributions between 1510 A.D. and 1990 A.D. To be able to use
Bayesian inference with good context data and within a reasonable computation time, I need
to produce a “starting history” as input data for it. For this, I use a cellular automaton (CA):
the final output of the CA is a first potential interpolation of spatial language distributions in
South America between 1510 A.D. and 1990 A.D. Despite being non-probabilistic, this output
is a good input data set for the Markov Chain Monte Carlo (MCMC) method, the tool I use
for implementing Bayesian inference in this thesis.

I use a cellular automaton because CA have already successfully been used over a longer period
within language studies (e.g., Beltran et al. 2010). Furthermore, their grid-like nature will
hopefully allow for a good diffusion simulation of colonial languages in South America (Gavin
et al. 2017; Pacheco Coelho et al. 2019). Bayesian inference is suited for my interpolation project
since it allows me to roughly assess the reliability of my interpolation method and therefore to
continuously improve the generated evolutionary language histories. The choice of the MCMC
as tool for implementing the Bayesian theorem is due to my Bayesian inference model containing
many parameters and an MCMC being typically applied in such cases.

4.1 Development of the CA

All programming related to the CA and the data used within it is done in Python.

4.1.1 CA concept

Figure 4.1: Moore neighbourhood for a grid cell Pi,j. (Source: Yassemi et al. 2008)

I use a CA (see chapter 2.3) to interpolate an initial evolutionary history between the “Time
of Contact” around 1510 and “Contemporary” around 1990. The spatial language distribution
around “Time of Contact”, called TOC, is the CA’s initial configuration from which it proceeds.
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The second spatial language distribution, called C for “Contemporary”, is the final step which
needs to be reached through the interpolation. Both TOC and C are grids in order for the CA
to work.

Each grid cell of the CA contains exactly one language family per time step. The language
families are coded as integer values, and the grid steps are algorithmic cycles which do not
necessarily correspond to a real time unit. The number of time steps can therefore be chosen
deliberately. The transition rule of the CA uses a Moore neighbourhood (see Figure 4.1). If
wi,j represents the weight of the eight neighbouring cells of Pi,j and Pi,j itself, Pi,j copies the
current language family of one of its neighbours or its previous own value based upon this
weighing scheme. The language family of each grid cell can change once per time step according
to the basic transition rule:

wi,j =

{
1
9

for a current neighbour or Pi,j itself
0 otherwise

(4)

However, this version of the CA (using equation 4) turns out to struggle to converge towards C.
I therefore modify the basic transition rule to also consider the language family of each cell in C.
The eight neighbouring cells and Pi,j itself have now a higher weight if their cell value matches
the corresponding cell value in C. For example, if a neighbouring cell of Pi,j contains the same
language family, e.g., Indo-European, in both the current time step t and C, the weight of
that cell grows tenfold. That means that there is a ten times higher chance for Indo-European
being copied from that cell into Pi,j at time step t+1. This variation of a CA uses non-random
transition rules, which would be problematic if used as the sole method for inference. However,
in this thesis, the CA only serves as a way to generate an initial evolutionary history for the
MCMC, therefore this issue can be neglected. The updated transition rule used in the CA hence
is:

wi,j =


(1
9
) ∗ 10 if the value at t matches the value in the C map

(1
9
) ∗ 1 if the value at t does not match the value in the C map

0 for cells that are neither a direct neighbour nor Pi,j itself
(5)

Moreover, several different grids are iterated at each time step and compared to C to find the
most fitting one. For this comparison, the number of grid cells containing the same value as
in C are calculated for each of the produced grids at a time step t. The grid with the highest
amount of identically filled out grids cells is kept within the interpolation process. This means
that this grid is the output data from which the next time step t+1 is randomly iterated. The
reason behind this comparison is the prevention of too many and abrupt changes between the
last iterated time step and the C map, i.e., an irregular progression of the interpolation.

An example of the CA used to gain a potential interpolation between two given spatial distribu-
tions representing a "past" and a "present" map with randomly generated test data can be seen
in Figure 4.2. Only two language families – represented by the colors green and orange – are
present. Over the course of the four time steps, the original spatial language distribution gets
transformed into a distribution very similar to the given "present" map. Furthermore, the grid
at the last iterated time step (time step 4) is already very similar to the given final language
distribution and the interpolation process overall seems to be fluid.
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Figure 4.2: Example of the CA used to gain a potential interpolation between two given spatial
distributions representing a "past" and a "present" map. Only two language families – repre-
sented by the colors green and orange – are present and the CA comprises four time steps.

4.1.2 Pre-processing the language data for the CA

Using my CA on the real language data (see chapter 3.2) requires pre-processing. All language
families within the pre-processed data are kept despite only focusing on the expansion of the
Indo-European language family at the cost of non-Indo-European language families as a whole
for the development of my interpolation method. This allows me to show in a later excursus
(see chapter 7.2) that the CA also works for non-binary data. A feature which will hopefully
increase the attractiveness of the here developed method for future work with spatial language
distributions.

In an initial step, I load the two .JSON language data sets into Python and turn them into
geodataframes. The two geodataframes are then rearranged so that they are ready for further
calculations. The most important step here is to convert both geodataframes into the WGS 84
coordinate system.

In a second step, since the CA only works with numerical values, I filter out each unique language
family in both the "Time of Contact" (TOC) and the "Contemporary" (C) geodataframes and
create a dictionary allocating each of these language families a unique integer value, starting at
1. Through the dictionary, it is moreover possible to conserve the information of which newly
assigned integer refers to which language family. Among the 115 detected language families,
there are two categories representing no proper language family. Instead, the two “language
families” "Unclassified" and "Bookkeeping", as defined by Glottolog (Hammarström et al. 2022),
include languages which have either not been properly classified or have in the meantime been
reclassified. However, since my goal is to develop a probabilistic method for interpolating spatial
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language distributions and not to improve the data sets I got, I will consider "Unclassified" and
"Bookkeeping" to be proper language families. As I will later on focus on the expansion of the
Indo-European language family at the cost of non-Indo-European language families as a whole,
this should also not impact my results. The freshly allocated integer values – called integer
codes in the following sections – are added in a supplementary column to both geodataframes
and the geodataframes are regrouped around that column.

Since the digitized language data do not continuously cover all of South America, I need to
deal with these data gaps. Otherwise, after rasterizing the geodataframes, there will be void
cells dispersed over the continent. To do so, I import the 1:50m "Land" shapefile by Natural
Earth and add it as first entry to both geodataframes. Since during the following rasterization
process of the geodataframes, entries situated more towards the bottom of the geodataframes are
superimposing entries situated more towards the top of the geodataframes, putting the "Land"
shapefile in first position means that it will only be visible for areas where no other language
data is available. As it got assigned its own integer code (0), all areas with no language data in
the original .JSON files will therefore be treated as one additional language family within the
CA: "Land Default". However, as this research does not focus on single language families but
on Indo-European and non-European as whole, this does not impact my results.

The superimposing of the further down entries in the geodataframes during the rasterization
process also deals with the issue of multilingualism within the TOC and C grids rasterized for
the CA. Indeed, if several language families are overlapping, only the language family situated
the furthest down in the corresponding geodataframe will be retained during rasterization. In
case of multilingualism, I want to keep the language family with the smallest speaker ranges in
order to represent the highest possible phylogenetic diversity within my CA. To do so, I add
a supplementary column to both geodataframes for which the area of each language family’s
speaker ranges is calculated. After that, the two geodataframes are rearranged by descending
area size. Eliminating multilingualism reduces the complexity of reality and will lead towards
information loss in the results. However, the advantage of it is simplicity, which makes inference
– and therefore the development of my probabilistic interpolation method for spatial language
distributions – possible.

However, due to my decision concerning multilingualism, five Indigenous language families
with medium sized speaker ranges – Andoque, Kanoê, Naduhup, Taushiro, and Waorani –
are completely superimposed by language families with smaller language ranges in the TOC
geodataframe, but not in the C geodataframe. This can be explained by the fact that most
of the small language families go extinct between TOC and C while the middle-sized ones are
more prone to survival. Since the developed CA does not allow new language families to be
added during the interpolation process, I need to reintroduce these five languages, present in C
but not in TOC, into TOC. This is done by later implementing seeds into the rasterized TOC
language grid in a similar fashion as for the European settlement seeds (see chapter 3.3). To
do so, the coordinates for the five seeds are first determined based upon the language families’
point locations in Glottolog (Hammarström et al. 2022). Then, knowing the coordinates of the
bounding box’s vertices as well (see chapter 3.1.1), I determine the grid cell corresponding to
each of the five coordinates and implement a 5x5 cell-sized language seed around that grid cell.

Furthermore, three language families – Misupalman, Puri-Coroado, and Timote-Cuica – are
present neither in TOC nor in C due to the multilingualism solution. All three of them are, for
completeness reasons, being kept in the dictionary, but ignored within any further calculations.
Two more language families – Nuclear Trans New Guinean and Sino-Tibetan – are present in
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C but not in TOC. However, these language families were and are not present at all in South
America. Instead, they were wrongly identified somewhere during the map production process
and are hence discarded.

Figure 4.3: Rasterized spatial language distributions for the retained 110 language families in
South America at 1510 A.D. and 1990 A.D.

The final step in pre-processing the South-American language data is to rasterize the two geo-
dataframes. To do so, I use the bounding box defined in chapter 3.1.1 and a resolution of 0.1°.
After adding the Indo-European language family into the TOC grid by implementing the first
European settlement seed, the language grids contain the same 110 language families each (see
Figure 4.3). The grid cells within the boundary box which represent the ocean contain no value,
i.e., are void, to prevent the language families from spreading into the ocean. The dictionary
comprises two wrongly classified and eliminated language families and three language families
which are hidden in both TOC and C in addition to the 110 language families. TOC translates
to 1510 A.D. (the founding year of the first implemented European settlement, Santa Mariá
Del Darién) and C to 1990 A.D. (the last update of Kaufman’s contemporary map happening
around 1989, see chapter 3.2). The shape of both language grids is 682 x 468 cells.

4.1.3 Running the CA with the language data

To run the CA with the language data for South America, I use the two pre-processed language
grids for TOC and C, described in chapter 4.1.2. An interpolation between these two spatial
language distributions is only possible if both contain exactly the same language families.

In a first step, I reduce the amount of language families to work with to two: Indo-European
gets integer code 1 and all the Indigenous language families get integer code 0. The reason for
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Figure 4.4: Rasterized binary "TOC" and "C" spatial language distribution maps of South
America between which the CA interpolates.

this binary approach is to reduce the computation time within the Bayesian inference’s MCMC
later on. The binary TOC and C maps, between which a first potential interpolation is infered,
can be seen in Figure 4.4.

The CA runs with equation (5) (see chapter 4.1.1) and 241 time steps. The first and the last
time step represent the TOC and C map, which leaves 239 in-between time steps which each
represent two real years. This amount of time steps is chosen because, between the various
constellations I tested, it allows for the most regular progression of the interpolation, i.e., for
the Indo-European language family to most fluidly reach the extension known from the C map.
Furthermore, three different grids are iterated at each time step and compared to the C map
to find the most fitting one. This relatively low number of comparisons is due to the fact that
the interpolation inferred through the CA is only a non-deterministic input data set for the
MCMC. Using more comparisons would therefore be obsolete – as the MCMC later maximizes
the likelihood – and increase computation time with only minor gain.

Computation time is also a general issue when running the CA with the real language data. In
order to reduce it, the language grids are hot-encoded at every time step t and fed into the CA
to infer the most probable language grid at the subsequent time step t+1. The hot-encoding was
chosen because, within the CA, it allows to perform a convolution for each of the two language
family values – 0 and 1 – in order to obtain the probability with which each of the two values
is copied towards Pi,j. The convolution is conducted with a 3x3 Moore neighbourhood mask
as described in chapter 4.1.1. However, the convolution mask has reduced diagonal spreading
to avoid too rectangular shapes for the inferred spatial language distributions. Specifically,
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that means that the convolution mask does not have the shape [[1, 1, 1], [1, 1, 1], [1, 1, 1]], but
[[ 1√

2
, 1, 1√

2
], [1, 1, 1], [ 1√

2
, 1, 1√

2
]].

After having inferred and compared three different language grids and the one to be kept for
time step t+1 has been chosen, this language grid’s hot-encoding is reversed. Indeed, a 2-
dimensional version of the grid is needed to potentially implement further European settlement
seeds, to write out the grid into a .TXT file as input for the MCMC and to plot the intermediate
step of the interpolation process.

Figure 4.5: CA-induced interpolation steps for binary spatial language distributions at 100-
year-intervals.

Let’s start with the potential implementation of further European settlement seeds. Since one
time step corresponds to 2 real years, not every new-founded city can be added in the correct
year. Instead, some cities have to be implemented into the inferred map depicting the year
closest after the corresponding settlement’s foundation date. For example, the settlement seed
for Santa Marta can only be implemented into the map representing 1526 despite the city already
having been founded in 1525 (Kline et al. 2023; Wallenfeldt 2022). All European settlement
seeds are implemented as a 5x5 cell-sized language seed around the grid cell corresponding to the
central x,y-coordinates of the corresponding settlement (see chapter 3.3). European settlement
seeds are not implemented at every time step.
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After the potential implementation of further European settlement seeds, I need to write out
the language grid for time step t+1 into a .TXT file as input for the MCMC. While the integer
codes for Indo-European and non-Indo-European remain the same for the MCMC data input,
the grid’s void values need to be encoded as . and, if European settlement seeds have been
added in time step t+1, these have to be encoded separately as # (for more details, see chapter
4.2).

Subsequently, the inferred spatial language distribution for time step t+1, including potential
European settlement seeds, is plotted. Afterwards, the only just plotted 2-dimensional language
grid is hot-encoded and fed into the CA to allow the inference of the most probable language
grid at the subsequent time step t+2. So the process begins anew until a spatial language
distribution has been inferred for all 239 in-between time steps.

The so-produced complete evolutionary language history containing 239 inferred time steps and
the given TOC and C maps is a first potential interpolation of spatial language distributions
between the the binary TOC and C maps for South America. While this evolutionary language
history is still non-probabilistic, it is the so-called “starting history” which will be fed as input
data into the MCMC (see chapter 4.2). Excerpts of the CA-induced binary “starting history”
can be seen in Figure 4.5.

4.2 MCMC for Bayesian inference

The output of the CA, a first evolutionary language history called “starting history” and saved
in 241 .TXT files (one for each time step), is the input needed to run the Markov Chain
Monte Carlo (MCMC) method within my probabilistic interpolation method for spatial language
distributions. Indeed, an MCMC needs good input data to start its journey through parameter
space. The use of the MCMC is necessary since my Bayesian inference model contains many
parameters and MCMC is typically the tool of choice in such cases.

The “starting history” is a complete evolutionary language history of South America comprising
the 239 inferred in-between language distributions and the two given spatial language distribu-
tions at 1510 A.D. and 1990 A.D.

The question my Bayesian model wants to answer is: “What is the distribution of probable
evolutionary histories between 1510 A.D. and 1990 A.D. in South America, given the prior
knowledge of the spatial language distributions between 1512 A.D. and 1988 A.D. and the input
data of the spatial language distribution at 1990 A.D.?” Knowing that my Bayesian model uses
sampling as data-generating process, all parameters can be inferred from the input data by
using an MCMC. To do so, in a first step, the Bayesian theorem is established as described in
equation (2) on page 9. In the theorem, the term “in-between evolutionary language history”
does not refer to the complete evolutionary language history, but only to the 239 interpolated
in-between language distributions. Furthermore, the abbreviation SLD for “spatial language
distributions” is used to keep the equations short. Finally, the number of parameters, i.e., the
parameter space, is n ∗ (T − 2) = 76′921′416 with n=319’176 grid cells and T=241 total time
steps.

• Posterior probability: The posterior probability is the probability distribution of the
in-between evolutionary language history of South America between 1512 A.D. and 1988
A.D. given the input data of the spatial language distributions at 1990 A.D. Or, put in a
more technical way, the posterior probability is, given the aforementioned input data, the
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probability distribution of the n*(T-2) parameters.

P (parameters | data) = P (SLD between 1512 and 1988 | SLD at 1990) (6)

• Likelihood function: The likelihood function is the probability of getting the spatial
language distribution of South America at 1990 A.D. given the in-between evolutionary
language history of South America between 1512 A.D. and 1988 A.D. Or, put in a more
technical way, the likelihood function is the probability of getting the spatial language
distribution of South America at 1990 A.D. given the probability distribution of the n*(T-
2) parameters. This probability ai,j for each cell Pi,j at the final time step T can be
computed based upon the previous time step T-1 and using an equation similar to the
basic transition rule for the CA:

ai,j =

{
1
9

for a neighbour at T or Pi,j itself at T-1
0 otherwise

(7)

P (data | parameters) = P (SLD at 1990 | SLD between 1512 and 1988) (8)

• Prior probability: The prior probability is the strong and informative probability dis-
tribution of the in-between evolutionary language history of South America between 1512
A.D. and 1988 A.D. based upon the previous knowledge of the history’s starting point, i.e.,
the spatial language distributions at 1510 A.D. Or, put in a more technical way, the prior
probability is the probability distribution of the n*(T-2) parameters where the probability
ai,j for each cell Pi,j at each time step t can be computed based upon the previous time
step t-1 and using basically the same equation as for the likelihood function (see 7):

ai,j =

{
1
9

for a current neighbour or previous Pi,j itself
0 otherwise

(9)

P (parameters) = P (SLD between 1512 and 1988 | SLD at 1510) (10)

• Marginal likelihood function: The normalizing constant which can be omitted is the
input data, i.e., the spatial language distribution at 1990 A.D.

P (data) = P (SLD at 1990) (11)

In a next step, I would implement the MCMC fitting this Bayesian model. However, due to
time and expertise issues, I did not implement the MCMC myself, but instead used the one
developed by Dr. Takuya Takahashi. An outline for this MCMC, programmed in C++, can
be found in the following GitHub repository: https://github.com/takuya-tkhs/language_
diffusion/blob/main/MCMC_idea_for_publication.pdf.

I will however give a short overview over MCMC in general and some specific characteristics of
the one implemented by Dr. Takuya Takahashi in order to make my future results more easily
understandable.
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MCMC is a highly efficient algorithm to draw samples from a high-dimensional target distribu-
tion (McElreath 2016). A fact which makes MCMC a very promising approach in my attempt
to develop a probabilistic interpolation method for language distributions since my target dis-
tribution in the Bayesian model - the posterior distribution according to equation (6) - is indeed
highly complex. While the MCMC simulates its samples out of the real-world target distribu-
tion, the new samples are always based upon information from the previous sample (McElreath
2016). This has however the effect that the samples are correlated instead of independent
(McElreath 2016), an important notion to keep in mind when analyzing the MCMC’s results.
Finally, the MCMC reaches a stationary state at some point, i.e., it reaches a point where,
within acceptable error, the probability distribution of the posterior will not change anymore.
Reaching this point is called “convergence” and describes a “final and good” target distribution.
To reach convergence, a lot of experimenting concerning the necessary amount of sample steps
is necessary (McElreath 2016).

Additionally, a few more characteristics are included in the MCMC implemented by Dr. Takuya
Takahashi. On the one hand, due to computation time limits, the MCMC can only deal with
binary data, i.e., only take in two different “language families”: Indo-European and non-Indo-
European. However, four different values are still included in the “starting history” and sampled
by the MCMC: 0, 1, # and . While the two numbers represent non-Indo-European and Indo-
European respectively, the . stands for voids, i.e., cells with no value. As within the CA, the
only cells containing voids are the ocean cells. The # however represents at a time step t all grid
cells in which Indo-European settlement seeds have been implemented at that time step. The
freshly implemented settlement seeds are marked specifically so that they cannot be eradicated
by the MCMC in that same time step t. From time step t+1 onward, the settlement seeds
marked with # at time step t are then represented by 1.
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5 Results
The MCMC for the Bayesian model samples 100 evolutionary histories which are saved in 100
.TXT files containing each the 241 time steps of one history. These 100 evolutionary histories
are the results of the newly developed probabilistic interpolation method for spatial language
distributions.

For further processing and visualizing the results, the 100 .TXT files are read into Python and
the data saved in two dictionaries. The first dictionary represents the stacked samples while
the second dictionary represents the stacked time steps. This allows to visualize the spatial
extension probability of the Indo-European language family as dominant language in South
America for each of the 241 time steps: for each cell at each time step, the probability of the
spatial extension is calculated based upon the 100 evolutionary histories. A selection of the 241
time steps can be seen in Figure 5.1.

Figure 5.1: Spatial extension probability of the Indo-European language family as dominant
language in South America for selected years.
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The depicted spatial extension probabilities (see Figure 5.1) show that, for all the interpolated
evolutionary histories, the spreading patterns of the Indo-European language family always
seem to unfold from the coasts towards the centre of the continent. Furthermore, the Indo-
European language family seems to first spread in the Northern half of South America with
a strong focus on the Western coast. Indeed, the North-East of the continent looks mostly
untouched until the 1750s with the Indo-European language family only spreading in the lower
half of modern-day Brazil. While these inferred spreading patterns are of course also related
to the placement of the European settlement seeds, they nevertheless show that the performed
spreading mechanism via neighbouring cells is able to produce meaningful results. Indeed,
the interpolated evolution histories follow the historical colonization pattern of South America
(see Figure 5.2), a pattern which is most likely strongly related to the language spreading of
Indo-European on the continent.

Figure 5.2: Early colonization patterns in the 16th century (left) and Iberian colonies around
1780 in South America (right). (Sources: Dastrup 2020 (left), Britannica 2019b (right))

The spatial extension probability around 1550 furthermore vividly depicts how the Indo-European
language family spreads from the implemented European settlement seed points: while the cen-
tres of the seed points have a spatial extension probability close to 100%, the surrounding
neighbouring cells have very diverse probabilities and proceed according to various spreading
patterns. For example, Indo-European mostly expands towards the West of Cumaná, a settle-
ment in North-Eastern Venezuela, while progressing in a circular shape around Bogotá.

The spatial extension probability around 1630 however shows intriguing square-shaped spatial
language distributions. This is due to a modelling restriction of the CA, which will be discussed
in more detail in chapter 6.2.2.
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The spatial extension probability around 1750 indicates that the Indo-European language family
already dominates in the areas it also dominates today after roughly 250 years, i.e., after half
the time between the “Time Of Contact” and today, with the exceptions of the Amazon Basin
and the Southern tip. The interpolated spreading and rise in importance of Indo-European in
South America hence mostly already happened in the first two centuries of colonization, with the
spreading rate seeming to slow down afterwards. This indicates that the interpolation method
is most likely heavily dependent on the choice of the European settlement seeds. Indeed, the
Amazon Basin and the Southern tip are the only regions of South America where no settlement
seeds were implemented. Therefore, a good starting point to improve the interpolation method
would probably be to reconsider the chosen European settlement seeds - and their number -
with historical expertise.

Finally, the spatial extension probability around 1910 shows that the areas in which Indo-
European is dominant are rather well defined towards the end of the interpolation process: the
borders between them and the non-Indo-European areas are sharply delimited with only the
border cells between the two areas having in-between probabilities.

However, the lowest divergences between the spatial extension probabilities of the 100 evolution-
ary histories happen already around 1850 as well as at the very beginning of the interpolation
process (see Figure 5.3). The explanation for the latter is that, at the beginning of the interpo-
lation process, only very few settlement seeds are yet implemented. Since those are furthermore
still small – as each time step only allows to spread into the neighbouring cells –, the Indo-
European language family can only spread from a very limited amount of cells. Therefore, the
spreading is rather straight forward without many divergences between the different evolution-
ary histories.

The explanation for the low divergence around 1850 – with an approximate Indo-European
grid cell proportion of 70% – is most probably the reaching of a local maximum within the
interpolation process. A hypothesis which is backed by the previous observation that, already
around 1750 and with the exception of the Amazon Basin and the Southern tip, the Indo-
European languages seem to be dominant in almost all of the areas where they are also dominant
nowadays. Furthermore, some consequences of a local maximum can be observed after 1850
concerning the proportion of grid cells within South America primarily speaking Indo-European.
Indeed, in some evolutionary histories, Indo-European languages then also seem to spread into
cells which are not filled with Indo-European in the final, given spatial language distribution
from 1990. This would explain why one can observe the grid cell proportion dipping down
again around the late 1980s for the evolutionary histories where this happens (see Figure 5.4).
In other evolutionary histories, after 1850, the Indo-European languages still spread mostly into
cells which are also filled with Indo-European in the final, given language distribution from
1990. Therefore, since only a few grid cells are left to be filled between 1850 and 1990, the curve
of their Indo-European grid cell proportion increases steadily but with a minimal slope until
1990 (see Figure 5.4).

The likely forming of a local maximum within the interpolation process is probably due to
a too high number of time steps. However, the 241 time steps were necessary for the Indo-
European language family to reach the Southern tip of South America between 1510 and 1990.
If one decides to further work with the probabilistic interpolation method for spatial language
distributions, I would therefore recommend to also insert, in consultation with a historian, seed
points for European settlements founded later than 1600. Since some of them will most likely
be located in the Southern tip of South America, this should then allow for a faster and more
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accurate spreading pattern of Indo-European in that area. Subsequently, the number of time
steps should be reducible and a potential local maximum in the interpolation process avoided.

Figure 5.3: Proportion of grid cells within South America primarily speaking an Indo-European
language, cumulated over 100 samples/evolutionary histories.

Figure 5.4: Proportion of grid cells within South America primarily speaking an Indo-European
language for selected samples/evolutionary histories. Left: medium grid cell proportion increase
after 1850 with a sudden dip around 1990. Right: steady, but very slow grid cell proportion
increase after 1850.
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6 Discussion

6.1 Choice of methods

In the following, I will shortly explain why, among all the options I had, I chose the previously
presented methods (see chapter 4) for developing my probabilistic interpolation method for
spatial language distributions.

6.1.1 A process-based simulation model (PBM) as overall concept

As overall concept, I decided to use a process-based simulation model (PBM) (see chapter
2.2.1) since these have recently very promisingly been introduced in several studies assessing
language diversity patterns (see chapter 2.2.2). Using a PBM as overall concept furthermore
gave me the freedom to freely choose my statistical method, i.e., Bayesian inference, within it.
Unfortunately, the biggest asset of PBMs – focusing on assessing the causal impact of selected
driving factors of language spreading – did not come into play in this thesis: due to time and
computation restraints, I had to forfeit my original plan to implement the chosen factors and
processes of language spreading into the MCMC in order to later causally assess their impact
on the generated spatial language distributions.

However, knowing that the direct effect these factors and processes have on the spatial language
distribution at the in-between steps of the interpolation is of high importance – it would not
only allow to assess the importance of these factors in the regional context of South America,
but also to determine potential factors which could enhance the accuracy of my probabilistic
interpolation method now and in the future –, I instead give an outline on how to implement
selected driving factors with real data within the MCMC (see chapter 7.1). This knowledge
should prove useful in case someone decides to further use my probabilistic interpolation method
for spatial language distributions.

Therefore, I still consider the concept of PBMs very important for this thesis: they did not only
provide me with the original spark for my work, but will hopefully still help to fully unfold the
potential of the developed interpolation method.

6.1.2 A cellular automaton (CA) as core underlying mechanism

Grid structures have already been successfully applied as basis for working with spatial language
distributions in the studies by Gavin et al. (2017), Pacheco Coelho et al. (2019) and Pacheco
Coelho et al. (2021). Pacheco Coelho et al. even introduced the idea of algorithmic, artificial
cycles within the grid (2021). This brought me to the idea of using a cellular automaton (CA)
(see chapter 2.3) as core underlying mechanism within my PBM. Especially since CA in specific
have already successfully been used over a longer period within language studies, e.g., in the
language shift study by Beltran et al. (2010). The grid-like nature of a CA allows to model
the spatial language distributions in South America as raster with discrete time steps, e.g., 2
years. The use of these discrete time steps – algorithmic cycles, only indirectly related to real
time – instead of real years was important as it offered me more experimental variability during
modelling. Another advantage of using a CA was the clear language family attribution. Since I
ignored multilingualism and only attributed a single language family to each area – like in the
study by Pacheco Coelho et al. (2021)–, the fact that each cell of the CA can only contain a single
value per time step fitted perfectly. I am aware that that this approach reduces the complexity
of reality and led towards errors in the results. However, the advantage of it is simplicity, which
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made inference – and therefore the development of my probabilistic interpolation method for
spatial language distributions – possible.

6.1.3 Bayesian inference as statistical method

I decided to use Bayesian inference as statistical method since it is well tailored to my case
of learning and deriving, i.e., interpolating, from existing real-world language data. Moreover,
Bayesian inference can be extended to model processes of almost any complexity. Therefore,
my interpolation between two given states consisting of about 300’000 different cells each was
still feasible. Furthermore, the fact that the Bayesian inference can capture the uncertainty of
the modelling process was a huge asset since the interpolation process is heavily dependent on
the chosen input data, e.g., language data, settlement seed choices, making it therefore a rather
uncertain process. Finally, the results of a Bayesian inference are straightforward to interpret.
This was an especially big advantage as I was not modelling and implementing the Bayesian
inference for this thesis myself, but instead feeding my data set into an existing MCMC.

6.2 RG: Development of a probabilistic interpolation method for spa-
tial language distributions

In this chapter, I will discuss the research goal:

RG: How is it possible to interpolate spatial language distributions in a given area and
over a certain time span with a known distribution both in the beginning and in the end?

As the results (see chapter 5) show, with the combined use of a cellular automaton and Bayesian
inference, it is possible to interpolate spatial language distributions in South America over a
time span of roughly 500 years given only the distributions around 1510 and 1990. While the
interpolation process is of course underlying data uncertainty (see chapter 6.2.1) and restrictions
due to modelling choices and limitations (see chapter 6.2.2), the overall results look very promis-
ing. To further enhance the accuracy of the sampled evolutionary histories, it would however
be important to add spatial factors and processes of language spreading as the example of the
Amazon Basin (see chapter 6.2.3) shows. Adding such factors and processes is also backed by
literature, which acknowledges their importance in the development of spatial language distri-
butions over time (see chapter 2.1.2). Furthermore, if one embeds the developed interpolation
method into a process-based model simulation (see chapter 2.2), the importance of each added
spatial factor of language spreading could also be assessed in a regional context. This would
then not only allow for a generally enhanced accuracy of my interpolation method, but also for
locally optimized interpolation processes. An outline on how to implement geographical factors
within the developed interpolation process is therefore given in chapter 7.1.

6.2.1 Data uncertainty

The most important issue is the incompleteness of the digitized polygon data set. The large
percentage of both "Unclassified" and "Bookkeeping" – language family constructs containing
languages which have either not been properly classified or have in the meantime been reclassified
– and the substantial amount of void polygons are a result of this. Furthermore, there are
wrongly identified language families as the examples of Nuclear Trans New Guinean and Sino-
Tibetan show: both language families are depicted as being part of the C map while in reality,
they were never and are not present in South America. While the language data’s incompleteness
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is mostly a problem when representing more then two language families in the interpolation
process - as suggested for future research, see chapter 7.2 -, it may also lead to smaller errors
when only distinguishing between Indo-European and non-Indo-European language families.

The same goes for the way I chose to deal with multilingualism in a given area. Since the
digitized language polygons can overlap or contain several languages and language families, I had
to decide which language family to keep per given area. To do so, I ordered the polygons from
the biggest to the smallest in the geodataframe. During the rasterization process of the digitized
language polygons, the algorithm gives priority to the later entries, i.e., the smaller polygons,
and their integer codes, i.e., codes representing a language family, are therefore attributed
preferentially to each grid cell. Hence, the language family of a smaller polygon is preferred
over the language family of a larger polygon in case of multilingualism. My way to deal with
multilingualism attributes more importance to language families with a smaller spreading area,
giving them a chance to also be represented within the language distribution. This choice,
giving preferential treatment to small language families and therefore a high language diversity,
influences the results in favour of such small language families. This is cemented by the fact that
eight language families of middle-sized range – Andoque, Kanoê, Naduhup, Taushiro, Waorani,
Misupalman, Puri-Coroado, and Timote-Cuica – are either in both TOC and C or only in C
completely superimposed by several language families with smaller language ranges.

Also, overarching large-scale language classifications like Kaufman’s have recently come more
and more under pressure in academia. Indeed, the authors of such classifications have often
compiled information about which they had little to no personal knowledge. Furthermore, in
numerous instances, the classifications are “based on little to no evidence for some of the entities
they classify”(Campbell 2012). Therefore, the choice of my language data is certainly worthy
of discussion in a modern linguistics context.

As already mentioned when presenting my results (see chapter 5), the choice of the European
settlement seeds to implement is also a delicate matter. Since the current choice seems to be
partially responsible for a local maximum in the interpolation process, historians should be
included or at least consulted in future applications of the interpolation method.

Another uncertainty related to the European settlement seeds is the assumption that the found-
ing of a European settlement equals the immediate dominance of an Indo-European language
in that area. However, when a European settlement gets founded, it probably takes years to
decades before an Indo-European language is dominant in that area. That time span is also
highly dependent on both the amount of people speaking other languages in that area and the
number of Indo-European speakers immigrating into the new settlement: if only very few people
speaking Indigenous language live around the newly founded settlement or many Indo-European
speakers immigrate, it will most likely take less long for an Indo-European language to become
dominant. Although this assumption is a good first approximation, it needs to be seen with a
critical eye and a more refined method to spatially locate dominant language families might be
necessary in case of further application of the developed interpolation method.

6.2.2 Restrictions due to modelling choices and limitations

While both the CA and the MCMC depend on the input data and are therefore sensitive to
data issues, modelling choices and limitations also lead towards restrictions and potential errors
within my interpolation method for spatial language distributions.

First, the chosen resolution for rasterizing the digitized language polygons – 0.1° – appears at
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the same time too high and too low. Indeed, a lower resolution and therefore lower amount of
cells would have reduced the MCMC’s computation time and therefore potentially allowed a
higher amount of sampled evolutionary histories. It could in the future also help keeping the
MCMC’s computation time manageable when interpolating between more than two language
families. However, as the example of Belém (see chapter 6.2.3) shows, the current resolution
already leads to errors in more detailed analysis. A problem which would only intensify if the
resolution gets reduced.

As already mentioned when presenting the results (see chapter 5), the interpolated evolutionary
histories all share a rather square-shaped language spreading pattern. Since a CA works with
a neighbourhood, the induced spreading pattern reflects the shape of its neighbourhood. In my
case - as it is usual - I used a square neighbourhood, i.e., the Moore neighbourhood. Despite
weighing the diagonal cells of the Moore-neighbourhood with 1√

2
instead of 1 to reduce the

square-shaped spreading pattern, the Indo-European language family still strongly expands in
square-shaped spreading patterns. Despite the CA delivering only the “starting history” for the
MCMC, the MCMC does not seem to be able to sample the square-shaped spreading pattern
completely out of the evolutionary histories.

Another potential weakness of the CA is the fact that a grid at a random time step t can have
more in common with C then the last iterated time step at t=240. However this has been
adjusted/accounted for with the usage and implementation of the Bayesian inference.

An important issue is that the CA struggles to reach C if it only considers the language family
of each neighbouring cell at time step t. In that case, the interpolated evolutionary history
only consists of randomly scattered patterns. To avoid this and obtain a meaningful “starting
history” for the MCMC, the basic transition rule was adjusted to also consider the language
family of each neighbouring cell in C (see chapter 4.1.1). As this variation of my CA uses
non-random transition rules, it can never be used as the sole method for inference. However, in
combination with Bayesian analysis, it does not pose a problem for the interpolation method.

The MCMC has a very high computation time due to the extremely high number of parameters
– 76’921’416, see chapter 4.2. This leads to some severe limitations: running the MCMC over
three days results in 100 evolutionary histories where each history can only contain binary data,
i.e., two language families. To minimize this limitation, the interpolation was reduced to only
two language family groups: the spreading of the Indo-European language family at the cost
the non-Indo-European language families since colonization heavily impacted South America in
the analyzed time span. Discovering more about this process and the way Indo-European drove
out Indigenous language families seems not only important from a linguistic perspective, but
also with respect to history and social justice.

The MCMC does, furthermore, not properly test for convergence. However, when analysing the
100 samples, it does not seem like the MCMC converges yet. The 100 samples are therefore
most likely not enough to reach a stationary state and a “final and good” target distribution,
i.e., the posterior distribution of the Bayesian model. For future application of the method,
the computation time for the MCMC should be reduced in order to experiment with higher
sample numbers and eventually reach a “final and good” distribution of the spatial language
distributions between 1512 and 1988 given the spatial language language distribution at 1990.
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6.2.3 Optimization potential: Example of the Amazon Basin

A good example to analyze how well my developed probabilistic interpolation method for spatial
language distributions works is the Amazon Basin (see Figure 6.1). Indeed, the Amazon Basin
is a mostly landlocked region whose climate and environment make it rather difficult to access,
especially for people not used to it like the European colonizers. The colonization of the Amazon
Basin – and subsequently the related spreading of the Indo-European language family – therefore
progressed rather slowly and often only at later stages, with a huge peak happening as recently
as in the 20th century (Wood et al. 1988). I would therefore expect my interpolation method to
represent this slow expansion of the Indo-European language family within the Amazon Basin.

Figure 6.1: Map of the Amazon Basin depicting the Amazon river and its most important
tributary rivers as well as important local centres. (Source: Kmusser 2013)

To test this hypothesis, I map the times by which a Indo-European language first reaches selected
settlements in the Amazon Basin. The chosen settlements are, with one exception, all located
in Brazil since Brazil comprises most of the Amazon Basin. The mentioned exception is Iquitos
(Peru), the city situated at the source of the Amazon river. This settlement represents both the
beginning of the Amazon river and the other South American countries comprising parts of the
Amazon Basin. The selected Brazilian settlements are all state capitals laying in the Amazon
Basin while also being important local centres. However, I had to leave out Belém, the capital
of Pará, as due to the rasterization resolution, Belém is unfortunately mostly categorized as
void ocean cells in my evolutionary histories and no spatial language information is available
for it. In total, five different settlements were selected (see Figure 6.2): Macapá, Manaus, and
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Iquitos, which are all located on the Amazon river, as well as Rio Branco and Porto Velho,
which are located on smaller tributary rivers of the Amazon.

Figure 6.2: Selected cities in the Amazon Basin.

The years, extracted from 100 samples, by which a Indo-European language first reaches these
five settlements, are represented in Figure 6.3. The median years in which a Indo-European
language first reaches these five settlements are represented in table 6.1. To compare the sampled
year values to reality, I use the approximate founding years of the settlements. I cannot use the
real years in which a Indo-European language first reached the selected settlements since this
information does not exist. Using the founding years is therefore the best available information
I can get to compare my sampled data with. Comparing the sampled median years to the
settlements’ founding years gives a first approximation of the method’s accuracy (see chapter
6.2.2), but is in no means a final assessment. Especially for the Amazon Basin region, since
for many settlements, e.g., Rio Branco or Porto Velho, the exact founding date is seemingly
unknown. More refined methods to assess the sampled years by which a Indo-European language
first reaches selected settlements will therefore be necessary in case one wants to continue using
my interpolation method. However, since I implemented my settlement seed points (see chapter
3.3) according to the same logic – settlement founding equals dominant Indo-European language
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– there is at least continuity within the entire implementation process of my interpolation
method.

Figure 6.3: Time by which a Indo-European language first reaches selected settlements in the
Amazon Basin based upon 100 samples.

Settlement Median year Approximate founding year

Rio Branco (Brazil) 1638 ≃ 1860s
Porto Velho (Brazil) 1696 ≃ 1900s

Manaus (Brazil, Amazon) 1791 1669
Macapá (Brazil, Amazon) 1804 1856
Iquitos (Peru, Amazon) 1973 1864

Table 6.1: Summary of the median years by which a Indo-European language reaches selected
settlements in the Amazon Basin. Furthermore, the approximate founding years of the settle-
ments are added. (Source for founding dates: Encyclopaedia Britannica, see Table A2 in the
appendix)
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However, the first approximation of the method’s accuracy, based on the selected settlements in
the Amazon Basin, already shows some interesting results. On the one hand, it is clear that the
interpolation reflects reality since European colonizers and therefore Indo-European language
families seem to have reached the Amazon Basin rather late. On the other hand, the settlements
along the Amazon river itself are found to speak Indo-European way earlier in reality than in
the interpolated evolutionary histories. This indicates the Amazon river to be an important
geographical factor which accelerated the colonization and therefore language spreading along
its course. Implementing geographical factors into the MCMC seems therefore a valid next step
if someone wants to further develop my interpolation method. This is further cemented by the
sampled median years around which Indo-European languages first reached the remote areas
around Rio Branco and Porto Velho: the sampled years are way earlier then the settlements’
founding dates. The reason for this is that currently, my interpolation method does not take
into account the important geographical factors slope and habitat barriers. Indeed, since the
Spanish had already founded many settlements on the West coast of South America by the mid
of the 16th century – e.g. Lima –, which are also used as seed points in my interpolation method,
Indo-European spreads rather fast towards the Western edge of the Amazon Basin in my evo-
lutionary histories. This is exactly where Rio Branco and Porto Velho are located. However, if
the geographical factors slope and habitat barriers were included, the Indo-European language
spreading towards the Western edge of the Amazon Basin would most likely be slowed down by
both the Andes and the switch from mountainous grasslands towards tropical and subtropical
forests (Dinerstein et al. 2017). Rio Branco and Porto Velho would then be reached later, closer
to their founding year. Finally, the large lower whisker of the boxplot for Iquitos indicates large
local differences between the 100 evolutionary histories. Hence, even when considering mere
neighbourhood spreading without any geographical factors, a lot of variance is already possi-
ble. This is interesting as it shows that, even when considering mere neighbourhood spreading
without any geographical factors, a lot of variance is already possible.

In summary, the example of the Amazon Basin shows that, while my developed interpolation
method works well in overall, its accuracy would probably strongly benefit from implementing
geographical factors. An outline on how to do this is therefore presented in chapter 7.1.
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7 Future Research

7.1 Implementation of geographical factors

A very interesting and important subsequent work to this thesis would be to implement ge-
ographical factors and processes of language spreading into the MCMC. This would not only
allow to assess the importance of these factors in the regional context of South America, but
also to determine potential spatial factors which could enhance the accuracy of the developed
probabilistic interpolation method. In order to facilitate such a task, in the following, a possible
workflow to implement some pre-selected driving factors within the MCMC is provided.

7.1.1 Selected factors and processes of language spreading

According to the studies by Gavin et al. (2017), Pacheco Coelho et al. (2019) and Pacheco Coelho
et al. (2021), the most important overall driving factors and processes of language spreading
are population size (with the related notion of environmentally limited group size per area, i.e.,
carrying capacity) as well as ecological and climatic factors. This aligns with the overall driving
factors and processes of language spreading discussed in a broader literary context, see chapter
2.1.2. However, it is very important to notice that global factors and processes do not seem to
exist: indeed, their importance is mostly regionally defined since in reality, the interweaving of
several factors and therefore the corresponding local mix is responsible for language spreading
(Gavin et al. 2013). Furthermore, the study by Gavin et al. (2017) shows that only three
factors and processes can already correctly predict about 50 percent of the spatial language
distributions. Finally, Pacheco Coelho et al. (2019) address the problem that sociocultural and
historical factors and processes are too complicated to include in grid-based structures and
are therefore mostly left out in these three studies: only population size is indirectly included
through the concept of carrying capacity, a value which is calculated based upon natural factors
like average rain.

This means that the most important driving factors and processes defined by these studies are
only a mild recommendation for this thesis since the key factors and processes might regionally
differ in South America. However, I will still orient my choice by them. Furthermore, while
the terms “spatial language distribution” and “language spreading” are normally defined in
relation to languages (see chapter 2.1.1), I will use them for language families and make the
assumption that the distribution and expansion of language families are similar to those of
languages. Concerning the number of chosen factors of language spreading, I orient my choice
by the low, but still successful, number chosen by Gavin et al. (2017) in their study. Therefore,
only two climatic or ecological driving factors of language spreading will be selected. These
are mountain slopes and habitat barriers (see chapter 2.1.2), since a correct implementation
of the ambiguous role coastlines and notably rivers play in language spreading (see chapter
2.1.2) is beyond the scope of this outlook – especially with a complex river system such as
the Amazon. Furthermore, sociocultural or historical factors are neglected. This due to the
usage of an underlying grid-based structure and because the processing of the numerous data
about natural factors necessary to calculate a valid carrying capacity would also exceed the
scope of this research outlook. However, this impacts the amount of insufficiently explained
spatial language distributions since South America is strongly influenced by the sociocultural
impact of colonization between 1510 A.D. and 1990 A.D. It seems therefore recommendable to
consider implementing sociocultural and historical factors in further grid-based research. An
extensive way of calculating the necessary carrying capacity for it can be found in the paper by
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Pacheco Coelho et al. (2021).

7.1.2 Weighted adjacency lists for geographical costs

Graphs are generally defined as comprising a finite number of nodes and a finite number of –
normally ordered – pairs called edges or arcs with the latter being able to contain weights or
costs. A typical example of a graph with ordered arcs comprising costs can be seen in Figure
7.1. Instead of a graphical depiction, graphs can also be stored in so-called adjacency lists.
These usually contain as many entries as the graph contains nodes and list all outgoing arcs
per node (see Table 7.1). An alternative way of depicting an adjacency list is to have one entry
per ordered arc and list the start node, end node and weight for each arc (see Table 7.2) (Pressl
2012).

Figure 7.1: Example of a graph with 6 nodes and ordered arcs comprising costs. E.g., the arc
between the nodes 1 and 2 has the costs ci,j=3. (Source: Pressl 2012)

Node Outgoing arcs

1 1-2, 1-4
2 2-3
3 3-5
4 4-2, 4-3, 4-5
5 5-6
6 /

Table 7.1: Typical adjacency list containing as many entries as the graph contains nodes and
listing all outgoing arcs per node. Adjacency list based upon the example in Figure 7.1.

Within the MCMC, the spatial language distributions can be seen as grid-like graphs with the
original c = 468x682 = 319’176 grid cells from the “starting history” being the nodes of the
graph. In compliance with the Moore neighbourhood used in the CA, ordered arcs with costs
then part from each node P to the node’s eight neighbours as well as the node itself (see Figure
7.2). The costs cP ,j from each node P to its neighbouring nodes are in the current version
of the MCMC all the same and normalized to 1: each cell has the same probability ai,j (as
defined in equations (7) and (9) on page 24) to be copied into Pi,j. However, using a grid-like
graph stored within adjacency lists has the huge advantage of allowing different costs for each
arc and therefore also allowing to have very different probabilities ai,j for the cells to be copied
into Pi,j. This is especially interesting for implementing geographical factors as a much higher
variability of the geographical factors can be implemented through the various costs. Indeed,
the probability ai,j of each cell to be copied into Pi,j does not depend on its value, but on the
geographical costs to switch from Pi,j to that cell. While the value of a cell stays unchanged
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during a time step t, the costs to reach it always change according to the node from where one
tries to reach it.

Arc Start node End node Costs/Weights per arc

1-2 1 2 3
1-4 1 4 4
2-3 2 3 2
3-5 3 5 8
4-2 4 2 6
4-3 4 3 10
4-5 4 5 5
5-6 5 6 5

Table 7.2: Adjacency list containing as many entries as the graph contains ordered arcs and
listing the start node, end node and weight per arc. Adjacency list based upon the example in
Figure 7.1.

Figure 7.2: Nine ordered arcs with costs cP ,j leaving a central node P according to a Moore
neighbourhood.

Another advantage of the spatial language distributions being stored as graphs instead of grids
in the MCMC is that the grid-like nature of the graphs could, at some point, even be discarded
in favour of a more sparse graph. This would then allow to also envision language spreading with
given costs towards non-neighbouring cells. However, this will not be further explored in this
thesis where the developed probabilistic method for interpolating spatial language distributions
is tied to language spreading between neighbours only.

7.1.3 Outline on implementing selected geographical factors

The first selected factor of spatial language spreading should be ecosystem barriers. The first
step towards its implementation is to choose a fitting habitat data set, e.g., the one presented in
chapter 3.4.1. This data set then needs to be rasterized within the same extent – the bounding
box defined in chapter 3.1 – and with the same resolution, 0.1°, as the two language data sets
TOC and C. Subsequently, each cell of the rasterized habitat data set contains a numerical value
representing a habitat. The rasterized habitat data set is fed into the MCMC in addition to the
“starting history” and will be overlaying each spatial language distribution at each time step t in
order to assess the geographical costs of copying a neighbouring cell given habitat information.
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The rasterized habitat data set is modelled as a grid-like graph and stays the same for all time
steps. This under the assumption that the habitats in South America have been mostly constant
over the past 500 years. This is a huge simplification of reality given habitat changes are prone
to have occurred during that time span - e.g., through deforestation. However, this assumption
of habitat consistency is deemed a necessary step to allow habitat information to be included
in the MCMC.

As described in chapter 2.1.2, people and therefore languages tend to move along similar habi-
tats if possible. Hence, if copying a neighbouring cell equals crossing a habitat barrier in the
overlaying habitat data set, the geographical costs for the copying are higher than for copying
a neighbouring cell lying within the same habitat as Pi,j. Since there do not seem to exist any
numerical values on the preference of moving along the same habitats, I arbitrarily fix the costs
for switching towards a different habitat at 10 and the costs for switching towards the same
habitat at 1. These values can easily be changed. However, in case several geographical factors
are taken into account, it is important that the values chosen for the habitat costs are around
the same magnitude then the costs of the other geographical factors. The probability ai,j for a
cell to be copied into Pi,j based upon habitat costs can be expressed through:

ai,j =


1

cP ,j∑9
n=1

1
cP ,j

for a current neighbour or previous Pi,j itself

0 otherwise
(12)

with:

chabitatP,j
=

{
10 for switching to a different habitat
1 for switching to the same habitat

(13)

The second factor of spatial language spreading I select are mountain slopes. The steps towards
their implementation are similar to the ones for the habitat barriers. First you have to choose a
fitting DEM data set, e.g., the one presented in chapter 3.4.2. The slopes data set then also needs
to be rasterized within the same extent and with the same resolution as the two language data
sets TOC and C. Subsequently, each cell of the rasterized slopes data set contains a numerical
value representing the cell’s elevation. The rasterized habitat data set is fed into the MCMC
in addition to the “starting history” and will be overlaying each spatial language distribution at
each time step t in order to assess the geographical costs of copying a neighbouring cell given
slope information. The rasterized slopes data set is modelled as a grid-like graph and stays
the same for all time steps under the assumption that the topography in South America to
have been constant over the past 500 years. This is again a huge simplification of reality given
topography changes are prone to have occurred during that time span - e.g., through land slides.
However, this assumption of topography consistency is deemed a necessary step to allow slopes
information to be included in the MCMC.

As described in chapter 2.1.2, language spreading in the mountains occurs bottom-up with the
valley languages slowly eradicating the high altitudes’ languages. A first set of geographical costs
for slopes is equal to the change in elevation when switching from the central node to one of the
neighbouring nodes in the overlaying slopes data set. Knowing that each cell of the underlying
spatial language distributions has a cell size of 10 km x 10 km due to the rasterization with
0.1°, one can calculate the slope in percent. The slope is already a more refined geographical
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cost then a simple change in elevation. It is however important to maintain both negative and
positive slopes for the geographical costs. It is therefore suggested to categorize the slopes in a
third step. This has one big advantage: the slope categories do not need to follow the slopes’
metric ordinal scale and so-created slope costs can therefore better represent the bottom-up
language spreading. An exemplary slope categorization following the Canadian Governments
categorizations (Canadian State 2013) can be seen in table 7.3. The lowest geographical costs
occur at steep uphill slopes (15% to 60%), representing the tendency that languages spread
bottom-up in more mountainous regions. Too steep uphill regions (> 60%) have higher costs
though since they are less accessible and therefore probably also less populated. Areas with
flat and gentle slopes (-9% to 9%) are considered neutral middle ground concerning the costs.
Finally, the steeper the slope goes downhill, the higher the geographical costs.

Category / Geographical cost cP ,j Slope range (in %)

1 15% to 30%
2 30% to 60%
3 9% to 15%
4 > 60%
5 -9% to 9%
6 -15% to -9%
7 -30% to -15%
8 -60% to -30%
9 < -60%

Table 7.3: Table showing the slope categories, i.e., the geographical costs given slope informa-
tion, for certain slope ranges

The probability ai,j for a cell to be copied into Pi,j based upon slope costs can therefore be
expressed through:

ai,j =


1

cP ,j∑9
n=1

1
cP ,j

for a current neighbour or previous Pi,j itself

0 otherwise
(14)

with cslopesP ,j : see table 7.3

In case the two geographical factors, i.e., habitat barriers and slopes, are both to be added
simultaneously, the two corresponding rasterized data sets need to be implemented into the
MCMC in addition to the “starting history”. It is in that case important that all the involved
geographical factors have about the same magnitude. Otherwise, the geographical factor with
the significantly higher magnitude will outshine the other. Furthermore, it is of course also
possible to include more – or different – spatial factors of language spreading than the two
presented here. The outline on how to implement selected geographical factors is indeed merely
meant to give an idea of and starting point for useful future research related to the here presented
probabilistic interpolation method for spatial language distributions.

7.2 Running the interpolation with non-binary language data

It is possible to run the CA to interpolate between non-binarised pre-processed language grids
for TOC and C. This results in a potential interpolation with the spatial language distributions
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containing 110 language families instead of 2 (see Figure 7.3). However, such an interpolation
will then need an updated MCMC which has reduced computation time for non-binary cell
values. This is crucial since the CA alone does not allow for a deterministic and therefore valid
interpolation. Furthermore, a different approach towards dealing with multilingualism would be
advisable since the here presented approach leads to a loss in information and potential errors
when dealing with more then two language families.

Figure 7.3: CA-induced interpolation steps for spatial language distributions containing 110
language families at 100-year-intervals.

The CA-inferred interpolation for multiple language families also needs improvement through
the MCMC’s likelihood function and prior probability since in areas where the Indigenous
language families are getting driven out and mixed up, the interpolated spatial language distri-
butions just show random scatter noise (see Figure 7.3). This should however improve if these
distributions are implemented as “starting history” into an MCMC. Moreover, one could start
to slowly raise the number of included language families instead of switching directly from 2 to
110 language families in order to reduce the random scatter noise.

The big asset of being able to run the here presented interpolation method with several language
families is that it makes the method more robust and polyvalent: the spreading patterns of not
only a single language family, but of several families could be simulated in parallel. This would
allow for more in-depth knowledge about an area’s language richness and distribution over time

43



as well as its related cultural development. Subsequently, the interpolation method could then
also become interesting for areas where, contrary to South America, basic knowledge about
language spreading already exists.
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8 Conclusion
Based on theories originating from research on language diversity and inspired by macro ecology,
a probabilistic method for interpolating spatial language distributions in a given area and over a
certain time span has been developed. This method is composed of a cellular automaton as core
underlying mechanism and Bayesian inference as statistical method. The output of the former,
called “starting history”, is the input for the MCMC, the tool of choice to implement Bayesian
inference in case the Bayesian model, like in the present case, contains many parameters. The
interpolation was executed for South America between the existing spatial language distributions
of “Time of Contact”, i.e., 1510 A.D., and “Contemporary”, i.e., 1990 A.D. The interpolation was
furthermore performed on the scale of language families, i.e., the spreading of the Indo-European
language family at the cost of the Indigenous language families was inferred.

While the interpolation method is subject to data uncertainties and restrictions due to modelling
choices and limitations, it allows for a good first approximation of the potential spreading pattern
of the Indo-European language family in South America between 1510 and 1990. However, the
additional implementation of geographical factors within the MCMC will most likely further
improve the accuracy of the interpolation method and is therefore highly recommended in case
of further use of the interpolation method. Furthermore, if the computation time constraints
within the MCMC are solved, the interpolation method can also be used to infer spatial language
distributions for several language families.

Related to the case study of South America, the here developed probabilistic method for in-
terpolating spatial language distributions could help to fill existing knowledge gaps in current
phylogenetic diversity studies for South America and at contributing to a better understanding
of related cultural developments on a continent heavily influenced by European colonisation
during the interpolated time period. In a broader context, the developed interpolation method
should be transferable to other areas and therefore be able to set the basis for a globally appli-
cable model allowing to conduct linguistic research in various regions across the globe.
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Appendix

A1 European settlements: References
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Panamá Viejo* (Panama City) Cubero-Hernández et al. 2022; N.N. 2023a

Nueva Toledo (Cumaná) Britannica 2015a; Heckel et al. 2023
Santa Marta Britannica 2020b; Kline et al. 2023

Piura Britannica 2018b; Davies et al. 2023
São Vicente Britannica 2012c; Burns et al. 2023
Cartagena* Kline et al. 2023; Pérez Morales 2020

Cuzco* Britannica 2023a; Davies et al. 2023
Quito* Britannica 2022b; MacLeod et al. 2023
Trujillo Britannica 2007b; Davies et al. 2023
Lima Davies et al. 2023; N.N. 2023e

Asunción Britannica 2020a; Keeling et al. 2022; Nickson et al. 2022
Olinda Britannica 2016; Burns et al. 2023; N.N. 2023c

Chuquisaca* (Sucre) McFarren et al. 2023
Santa Fé de Bacatá* (Bogota) Wallenfeldt 2022; Kline et al. 2023

Santiago de Chile Britannica 2022c; Carmagnani et al. 2023
Potosí Britannica 2015c; Davies et al. 2023; McFarren et al. 2023

Nuestra Señora de la Paz* (La Paz) Britannica 2023b; McFarren et al. 2023
Salvador Britannica 2021; Burns et al. 2023; N.N. 2023d

Concepción Britannica 2018a; Carmagnani et al. 2023
Huancavelica Britannica 2007a; Davies et al. 2023
Rio de Janeiro Schneider et al. 2022

Caracas Heckel et al. 2023
Cochabamba Britannica 2022a; McFarren et al. 2023
Buenos Aires Calvert et al. 2023; Keeling et al. 2022

Table A1: References for the implemented European settlements. Settlements with a * have
been built upon Indigenous dwellings or cities.

A2 Amazonian settlements: References

Settlement Reference

Rio Branco (Brazil) Britannica 2012a; Britannica 2014c
Porto Velho (Brazil) Britannica 2014b

Manaus (Brazil, Amazon) Britannica 2019a
Macapá (Brazil, Amazon) Britannica 2012b; Britannica 2014a
Iquitos (Peru, Amazon) Britannica 2015b

Table A2: References for the implemented Amazonian settlements.
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