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Abstract

Grassland ecosystems are a dominant land cover worldwide and can be important carbon sinks. Management

interventions, such as cutting and fertilising, can influence soil organic carbon (SOC) dynamics. Because agri-

culture is responsible for substantial greenhouse gas (GHG) emissions, thus contributing to global warming,

it is important to understand which is the most suitable management practice to improve the carbon sink

capacity of grasslands, or at least to minimise SOC losses to the atmosphere.

The influence of aboveground productivity on SOC stocks and CO2 exchanges between the biosphere

and the atmosphere is still unclear. This Master Thesis aims to understand the relationship between plant

productivity, plant CO2 assimilation (GPP), ecosystem respiration (ER) and the resulting SOC stocks in an

extensively managed mountain grassland situated in the canton of Graubünden (CH). For this, six different

aboveground productivity categories are obtained by different fertilisation combinations of nitrogen, phos-

phorus and potassium (NPK). Soil samples (1990-2022) were analysed for SOC stocks and total nitrogen

(Ntot). Data on annual yield and daily weather conditions are available (1990-2022). Net ecosystem car-

bon exchange (NEE) was measured between April 2022 and April 2023 on 12 campaigns with transparent

chambers. From NEE, ecosystem respiration normalised for 10 °C (ER10) and gross primary productivity

(GPPpot) were derived.

This study found a decline in SOC stocks of -14.60 ±1.55 % between 1990 (9.66 ±0.27 kgm−2) and

2022 (8.20 ±0.18 kgm−2) because of climate warming. The degree of change of the SOC stock was not

correlated with fertilisation driven differences in plant productivity. No differences in mean GPPpot (9.34

±0.12 µmol CO2 m−2 s−1), ER10 (-2.74 ±0.04 µmol CO2 m−2 s−1) and their ratio (3.24 ±0.06) were found

between different productivity categories. Finally, no relationship was found between SOC stocks and the

ratio GPPpot/ER10.

This work provided information on how a possible influence of different aboveground productivity on

SOC stocks and NEE could be difficult to detect, since the carbon cycle is also influenced by many other

factors, such as weather variability and nutrient availability. Further studies could be conducted in a similar

pre-alpine grassland, but one not limited by nitrogen availability, and in a year not affected by drought, also

considering possible differences in belowground biomass.
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Acronyms and Abbreviations

Cmin Mineral carbon

Ctot Total carbon

ER Ecosystem respiration

ER10 Ecosystem respiration normalised at 10 °C

GDDsum Sum of growing degree days

GHG(s) Greenhouse gas(es)

GPP Gross primary productivity

GPPpot Potential gross primary productivity

GS Growing season

GSL Growing season length

IDM De Martonne aridity index

K Potassium

MAP Mean annual precipitation

MAT Mean annual temperature

N Nitrogen

NEE Net ecosystem (carbon) exchange

NEEday Net ecosystem (carbon) exchange during the day

NEEnight Net ecosystem (carbon) exchange during the night

NPK Mineral fertilisation with nitrogen, phosphorus, and potassium

Ntot Total nitrogen

OC Organic carbon

OM Organic matter

P Phosphorus

Ptot Total precipitation

Recoday Ecosystem respiration during the day

Reconight Ecosystem respiration during the night

RelS Relative sunshine duration

SM Soil moisture

SOC Soil organic carbon

SOM Soil organic matter

ST Soil temperature

Tmax Maximum temperature

Tmean Mean temperature

Tmin Minimum temperature
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1 Introduction

1.1 Background

Definition and importance of grasslands

In regions defined as grassland, a minor component of woody vegetation is present and herbaceous vegetation

dominates (Pendall et al. 2018). Grasslands cover between 20 and 40 % of the global land surface, excluding

Antarctica and Greenland, and almost 70% of the total agricultural land (Bahn et al. 2008, Eze et al. 2018,

FAO 2010, Rogger et al. 2022, Scholz et al. 2018). Grassland ecosystems contribute to approximately one-third

of the total net primary production and store considerable amounts of organic carbon (OC) (Crowther et al.

2019, Eze et al. 2018, Poeplau et al. 2018). In Europe, especially where highly productive crop production

is restricted by climate or topography, grassland is one of the most common land uses (Bahn et al. 2008,

Soussana et al. 2007).

Agriculture and carbon cycling

The majority of terrestrial OC, the primary constituent of organic matter (OM), is stored in soils (Crowther

et al. 2019, Hofmann et al. 2016, Lal 2004, Paustian et al. 2016, Volk et al. 2011). It represents long-term

carbon storage in the soil and plays a crucial role in soil fertility, water holding capacity, and overall soil

health (Paustian et al. 2016). In order to achieve positive ecosystem carbon balance, the photosynthetic

activity of plants and the related carbon fluxes entering the soil need to exceed the sum of autotrophic

and heterotrophic respiration and other carbon losses (harvesting, grazing, methane emissions and leaching)

(Davidson & Janssens 2006, Lal 2004, Rogger et al. 2022). Several studies have found grassland ecosystems to

be important carbon sinks (Hörtnagl et al. 2018, Pendall et al. 2018, Rogger et al. 2022, Soussana et al. 2007).

Management interventions, such as grazing, cutting and mulching, can influence SOC dynamics in grasslands

(Poeplau et al. 2018). To alleviate nutrient limitation of plant growth and stimulate primary productivity,

nutrients in the form of fertilisers are often applied in agricultural systems (Crowther et al. 2019, Poeplau

et al. 2018, Soussana et al. 2007). This practice also influences the carbon cycle. Several studies have found

a positive correlation between increased productivity using fertilisers and SOC stocks (Eze et al. 2018, FAO

2010, Poeplau et al. 2018, Sanderman et al. 2017). Because agriculture generates significant greenhouse gas

(GHG) emissions, thus contributing to global warming, it is important to understand how the carbon sink

capacity of grasslands could be improved (Paustian et al. 2016, Rumpel et al. 2020). Some authors claim that

management practices that promote the regeneration of SOC would make it possible to mitigate agriculture’s

GHG footprint (Lal 2004, Rumpel et al. 2020, Sanderman et al. 2017). This topic is also becoming increasingly

relevant, because climate change can alter carbon cycling in grasslands, but it is still uncertain which effects

global warming will have on carbon budgets (Davidson & Janssens 2006, Pendall et al. 2018). It is important

to find the most suitable management practices in agriculture that can increase SOC stocks globally, or at

least mitigate SOC losses to the atmosphere (FAO 2010, Rumpel et al. 2020, Wiesmeier et al. 2013). It is

essential to focus on grasslands, as this land cover type is dominant worldwide.
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Research gaps and relevance of this research

The influence of productivity on SOC stocks and OM turnover rates is still unclear (Sanderman et al. 2017).

It is thus necessary to better understand the interactions between management activities in grassland and

climate change, especially if mitigation of global warming through carbon sequestration is intended (Eze et al.

2018). The results of this project will help to fill these knowledge gaps.

The GHG budget of grasslands, with special attention to CO2 moved into the focus of research, as permanent

grasslands store much more SOC compared to arable fields. The exchange of GHG between the grassland

ecosystem and the atmosphere is strongly affected by grassland managements, such as the amount and type

of fertiliser applied, thus influencing carbon’s biogeochemical cycling (Hörtnagl et al. 2018). Therefore, one

possible mitigation strategy for the global warming crisis appears to be increasing the storage of atmospheric

CO2 as OC in the soil (Puche et al. 2023, Rumpel et al. 2020). To this end, grasslands and their productivity

related to different fertilisation practices are of central importance.

1.2 Research questions

This master thesis aims to understand the relationship between plant productivity, plant CO2 assimilation,

ecosystem respiration (ER) and the resulting SOC stocks in a mountain grassland (Figure 1). The research

questions are:

1. Is the SOC stock in the chosen Swiss mountain grassland site shrinking or rising with climate warming?

2. Is the degree of change of the SOC stock correlated with fertilisation driven differences in plant pro-

ductivity? Does higher productivity translate into lower SOC losses?

3. Are there differences in potential gross primary productivity (GPPpot), ecosystem respiration nor-

malised at 10 °C (ER10) and their ratio (GPPpot/ER10) between different productivity categories?

4. Is there a positive relationship between the SOC stocks and the ratio GPPpot/ER10?

1.3 Objectives and hypotheses

Fertilisation strongly affects yield (FAO 2010). The aim of this project is to investigate if and how above

ground productivity affects the SOC stock, respectively, if and how the carbon sequestration depends on

the fertilisation management practice. The study aims to show which management is most suited to achieve

carbon sequestration in grassland soils, thus mitigating climate change and compensating for GHG emitted

by agriculture. Nevertheless, SOC sequestration is only one temporary component of the strategy to mitigate

global warming. OC sequestration has a finite lifespan and is only efficient until SOC stocks have reached a

new equilibrium (Paustian et al. 2016, Rumpel et al. 2020).

The first hypothesis to be tested is that the SOC stocks may shrink with rising temperatures and subsequently

increasing microbial respiration (Davidson & Janssens 2006, Rumpel et al. 2020, Sanderman et al. 2017). The

second hypothesis is that the SOC stock increases with increasing productivity in the different management

2



forms, because the OC input is greater than the combined ecosystem carbon losses (Davidson & Janssens

2006, FAO 2010, Paustian et al. 2016, Poeplau et al. 2016, Rumpel et al. 2020). The third hypothesis is that

CO2 fluxes differ between productivity categories and increase with aboveground productivity, as different

yields affect carbon cycling (Bahn et al. 2008). The last hypothesis to be tested is that higher GPPpot/ER10

ratios are found in field parcels with higher SOC stocks, indicating a higher net carbon gain by the ecosystem.

This could be because either more carbon can be assimilated through photosynthesis or/and less carbon is

lost to the atmosphere via ER (Davidson & Janssens 2006).

Figure 1: Grassland in Muldain. Picture taken on 6 June 2023, before the first harvest of the season.

3



2 Materials and Methods

2.1 Experimental site and treatment design

The research site is located in Switzerland in the Canton of Graubünden in Muldain (46°41′25.746′′N ,

9°31′05.415′′E) at an altitude of 1200 m a.s.l. (Figure 2). The soil at the location is defined as Gleyic

Fluvisol (WRB), and the soil texture is characterised by sandy loam (27% clay, 26% silt, 40% sand, 6.5% org.

C) (Agroscope 2021). The grassland site is extensively managed and has been receiving the same treatments

since 1989. The long-term experiment includes 16 treatment combinations on four replicates, for a total of

64 parcels with an area of 10m2 each (Agroscope 2021) (Figure 3).

Figure 2: Location of the grassland field under study in Muldain. The image on the left shows the geographical location of

Muldain in Switzerland, Canton Graubünden. A zoom shows the exact location of Muldain, south of Chur and Lenzerheide

and east of Thusis. The black quadrant in the right-hand image shows the exact location of the investigated grassland field in

Muldain. Source: ©swisstopo.

Figure 3: Experimental complete randomised block design. The plot is divided into four replicates (REP1, REP2, REP3 and

REP4) of 16 fertilisation treatment combinations of phosphorus (P) and potassium (K). The upper replicate faces North and

further up the slope. In each cell, the plot number and treatment combination are indicated. In the 24 green-coloured plots

selected for this work, the mean productivity (2013-2022) is indicated, and the green colours represent the productivity

gradient.
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This master thesis will focus on a subset of six treatments that cover the range of productivity and

include a phosphorus (P) and potassium (K) fertilisation gradient. The same amount of nitrogen (N), 25

kg ha−1year−1 , is applied to all parcels. In addition, P and K are applied at different rates, from 0 to

1.5, compared to the norm (P2O5: 1 = 72 kg ha−1year−1 and K2O: 1 = 216 kg ha−1year−1 ). The grass is

cut three times during the summer period from June to September, and the mean (2013-2022) annual dry

yield ranges from 450 gm−2 for the P0K0 treatment, to 700 gm−2 for the P1K1.5 treatment. These mean

yield values (2013-2022) will be used as names for the six productivity categories (Figure 3). The average

productivity of this period was selected, rather than of the whole available time series or of one single year,

because it is believed to better represent the current climate and nutrient availability.

2.2 Climate parameters

2.2.1 Historical climate

Available data and parameters calculation

Daily minimum and maximum temperatures (Tmin and Tmax, °C), daily relative sunshine duration (RelS, %)

and daily total precipitation (Ptot, mm) were interpolated for Muldain by MeteoSwiss for the last 47 years

(1977-2023) using data from neighbouring meteorological stations. Because data for yield and SOC stocks

are available since 1990, the period between 1990 and 2022 was considered for weather parameters. The term

calendar year refers to the period between January 1 and December 31 of the same year, while agricultural

year refers to the period between the last harvests of two consecutive years, from October 1 of the previous

calendar year to September 30 of the following year. From these daily weather parameters, several climatic

parameters were calculated:

• Growing season length (GSL, Days): days between the first and the last consecutive five days with a

mean daily air temperature higher than 5°C (’5mid’ method) (Mesterházy et al. 2018). GSL, especially

in a mountain grassland, is an important influencing factor for biomass production (Davidson & Janssens

2006).

• Heat accumulation (GDDsum, °C): accumulation of growing degree days (GDD). In agriculture, the

concept of GDD is frequently used to describe the phenological development of plants (Romano et al.

2014). Equation 1 illustrates how GDD was calculated (Mcmaster & Wilhelm 1997). Various researchers

have utilised different base temperatures (Tbase) to calculate GDD for grassland (Bürli et al. 2021,

Mcmaster & Wilhelm 1997, Romano et al. 2014). Here, a value of 0 °C was chosen for Tbase, so GDDsum

is equal to the sum of positive (> 0 °C) mean daily temperatures in the chosen period (calendar year,

agricultural year, growing season, month).

GDD =
Tmax + Tmin

2
− Tbase (1)
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• Mean temperature (Tmean, °C): the sum of mean daily temperatures (mean between minimum and

maximum daily temperature) divided by the number of days in the chosen period.

• Total precipitation (Ptot, mm): the sum of daily precipitation during the chosen period.

• De Martonne aridity index (IDM, unitless): the ratio between the total annual precipitation divided

by the mean annual temperature with an addition of 10 °C (Equation 2) (Emadodin et al. 2021).

IDM =
Ptot

Tmean + 10
(2)

• Mean relative sunshine duration (RelS, %): mean ratio between the effective sunshine duration and the

maximally possible if no clouds were covering the sun during the chosen period.

Overview of the climate in Muldain (1990-2022)

Between 1990 and 2022, the MAP was 939 mm, and the MAT was 7°C (Figure 4). The MAT has significantly

increased in Muldain over the last 32 years by about 1.5°C, with a slope of +0.05°C yearly (Figure 4).

Temperatures are getting higher, especially during the spring and summer months (from April to July). In

contrast, no temperature increases were found for the other seasons (except for November and December).

The increased temperatures would be expected to translate into longer growing seasons. The simple linear

regression model predicts an increase in GSL of about one day every two years, with important interannual

variations. However, this linear model is not statistically significant.

Figure 4: Historical climate in Muldain (1990-2022). The figure on the left shows the significant increase in the mean annual

temperature with the results of the simple linear regression model. The graph on the right displays the deviations from the

norm (939 mm) of the total annual precipitation.

No trends were found for monthly and yearly Ptot over time (Figure 4). Additionally, an increasing
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trend was found for the RelS. This means that precipitation is getting less evenly distributed over the year.

Because a moderate negative Pearson correlation between annual Ptot and mean annual RelS duration was

found, years with higher RelS duration could have received less precipitation. This, together with increasing

temperatures and with constant precipitation led to increasingly dry conditions, especially during the years

with Ptot below mean values. A (statistically non significant) decreasing trend in IDM, where lower values

stand for more arid conditions, was found over time (Emadodin et al. 2021). This is in line with several

studies reporting more pronounced increasing temperatures in Alpine regions and several drought periods in

Switzerland because of increased temperature and pronounced precipitation deficits (De Boeck et al. 2016,

Rogger et al. 2022, Volk et al. 2021). A summary of the results regarding Pearson correlation coefficients and

Mann-Kendall Test for weather parameters over time can be found in the Appendix (Table 9 and Table 10).

2.2.2 Weather in Valbella and the Alpine region between January 2022 and June 2023

The Alpenklima Sommerbulletin 2022: Klimazustand in den Zentral- und Ostalpen, created by DWD et al.

(2022), proposes an overview of the summer weather in the Swiss Alps in 2022, representative for Muldain.

Compared to the reference period of 1991-2020, temperatures between May and August, particularly in

October, were generally above normal. In most of the central and eastern Alps during May to August, the

amount of sunshine was significantly above average. Furthermore, the precipitation shortfall in these regions

was not made up for by the regionally above-average precipitation in June and September. Due to the mainly

sunny conditions, the summer also had a protracted period of minimal rainfall. May, July, and August, along

with October, were especially dry months in the Alps.

In Table 7 (Appendix), the weather in Muldain from January 2022 to June 2023 is shown in more detail

by reporting minimum, maximum and mean monthly temperature, total monthly precipitation and mean

monthly RelS duration. The data, provided by MeteoSwiss (IDAweb), are for the nearby meteorological

station in Valbella.

2.2.3 Soil temperature and moisture (2022-2023)

Soil moisture (rel-%, where 100% equals field capacity) and soil temperature (°C) were monitored continuously

between 19.04.2022 and 29.04.2023, using PlantCare mini-loggers (firmware version 1.34, hardware version

C1.0). Two loggers were placed at 10 cm depth in 8 selected plots (10, 12, 29, 30, 33, 35, 54, and 56),

representing the four replicates of the highest (700) and lowest (450) productivity categories. Data were

recorded hourly until April 26, then four times daily at six-hour intervals (00:30, 6:30, 12:30, and 18:30). All

loggers functioned until 03.03.2023; after that, some stopped recording because of empty batteries. Figure

5 shows the time course of soil moisture and temperature. For each time point, data was first averaged for

each plot between two repetitions (n=2) and then between the four replicates (n=8).
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Figure 5: Soil temperature and moisture in Muldain (2022-2023). The graph shows daily average values for temperature

(orange line) and moisture (blue line) in the soil from April 2022 to April 2023. The temperature curve follows the seasonal

course, with warmer temperatures in summer and colder temperatures in winter. The soil moisture shows maximum values

during winter 2022 and spring 2023 and low values during summer 2022, which coincide with the drought recorded for that

period (DWD et al. 2022)

2.3 Soil samples

2.3.1 Soil sampling and analysis

Soil sampling 1989-2022

Since the fertiliser management project’s begin in 1989, soil samples for the topsoil (depth: 0 - 20 cm)

were taken every year at the end of October. The sampling time was always after the last harvest, before

fertilisation and before the first snowfall. For each field parcel, 1 kg of soil was randomly sampled by taking

seven cores (4 cm diameter) with the Edelmann drill. The soil was oven dried (40°C), sieved (2mm) and

archived in plastic jars. For this project, soil samples from 1990 onwards were considered, since the first

fertilisation for this experiment took place at the end of 1989 and harvest data starts in 1990.

Additional soil sampling in 2022

In October 2022, soil samples with a defined volume were taken at the upper soil depth (0 to 20 cm) in

addition to the usual samples (Figure 25 in the Appendix). Each plot was randomly sampled twice, once

towards the north and once towards the south, using sampling tubes (core diameter: 5 cm). The superficial

grass was cut off at the top of the soil samples, then separated according to depth (0 to 10 cm, 10 to 20 cm

and any remainder). The samples were weighed, oven dried at 105 °C for 48 hours and then weighed again.

The samples were then sieved (2 mm) and weighed again after stones and roots remaining in the sieve had

been removed.
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Total carbon and nitrogen analysis

In 2022, all soil samples were analysed for total soil carbon (Ctot) and nitrogen (Ntot) using the elemental

analyser (LECO, CN928). About 2g of soil were put into ceramic cups, without the need to be milled.

Soil mineral carbon analysis

Since the elemental analyser delivers concentrations for Ctot, and not OC, the percentage of mineral carbon

(Cmin) has been determined with the calcimeter (Figure 24 in the Appendix). Ctot in soils is the sum of

both SOC and Cmin (Capriel 2013, Nelson & Sommers 1996). In 2022, samples from 2006 to 2021 for the 24

selected field parcels were measured for calcium carbonate (CaCO3) content (%-mass). The method is based

on equation (3) of the reaction of calcareous soil (CaCO3) with hydrogen chloride (HCl), where carbon dioxide

gas (CO2) is released. The volume of gas generated is proportional to the carbonate content of the sample.

This method to determine calcium carbonate in soil samples is the reference method ("CaCO3") prepared by

Diane Bürge under the approval of Thomas Bucheli (version: 17.03.2022, code: B-Kalk). The method can

be found for internal use in the Agroscope website (https://link.ira.agroscope.ch/de-CH/publication/45887 ).

A detailed explanation of this method is to be found in the Appendix (Section .2.1).

CaCO3 + 2 HCl CaCl2 + H2O + CO2 (3)

Figure 6: Mean (±SE, n=16, 2006-2021) soil mineral carbon concentration (%-mass) for the 24 selected field parcels.

Figure 6 shows the mean soil Cmin concentration (±SE, n=16, 2006-2021), which ranges between 0.017

and 0.0264, with a median value of 0.025 (%-mass). For most field parcels, the mean Cmin concentration

is lower than 0.05 (%-mass). Field parcels 10, 46, 47 and 60 show mean values between 0.05 and 0.01 (%-

mass). Field parcels 63 and 64 differ strongly from all others regarding Cmin concentrations, showing values
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higher than 0.2 (%-mass). Because of these differences, the percentage of Cmin is subtracted from the Ctot

concentration specifically for every field parcel. Calculations of OC concentration were performed slightly

differently, depending on the soil sample year. This is because Cmin was analysed only for soil samples of

the period 2006-2021, so for the other years (1990-2005 and 2022), an average Cmin (n=16, 2006-2021) is

subtracted.

• Soil samples 1990-2005 and 2022: SOC (% of field parcel Y in year X) = Ctot (% of field parcel Y in

year X) - Cmin (average between 16 years for field parcel Y). Assumption: Cmin is constant over time.

• Soil samples 2006-2021: SOC (% of field parcel Y in year X) =Ctot (% of field parcel Y in year X) -

Cmin (% of field parcel Y in year X)

2.3.2 Soil organic carbon stocks calculation

In order to compare SOC contents over time and between productivity categories, SOC stocks were calculated

from the SOC concentrations. Soil density was calculated from the soil samples collected in 2022 with a

given core volume. For the samples collected in 2022, a specific soil density was applied to every sample.

For the historical samples (1990-2021), the mean soil density (firstly averaged between the two replicates

for every parcel and then between all 24 parcels) was used (Poeplau et al. 2016). Based on Equation 4, the

calculations assume constant soil density over time and are detailed in the Appendix (Section .2.2) (Eze et al.

2018, Garcia-Pausas et al. 2007, Poeplau et al. 2017).

SOC stocks (kgm−2) = SD (m) * SBD (kgm−3) * RA (1m−2) * SOC concentration (%) (4)

where:

SD = Soil depth

SBD = Soil bulk density

RA = Reference area

2.3.3 Soil properties

Soil nitrogen concentration

Soil Ntot concentrations have been measured for all historical samples (1990-2022). At the beginning of the

experiment, when considering the average of every field parcel for the first five years (n=5 for every of the 24

field parcels), Ntot values range from 0.540 to 0.827 %, with a mean (n=24) of 0.641 ±0.015 %. Currently

(2018-2022), Ntot concentrations range between 0.471 and 0.750 %, with a mean of 0.568 ±0.015 %. Mean

yearly Ntot (n=24) was found to decrease significantly over time (Mann-Kendall test: p-value < 0.001, tau-

statistics = -0.708) (Figure 7). This nitrogen depletion is true for all six productivity categories and applies

to all field parcels.
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Figure 7: Decreasing mean total nitrogen concentration in soil over time (1990-2022). The black dots represent the mean

annual Ntot concentrations (n=24), with the standard errors in grey. The blue line is the fitted loess curve (local polynomial

regression) with a percentage confidence interval of 0.95 shown in transparent grey.

Clay content, soil pH, bulk density and C:N ratio

In 1989, when the first soil samples were collected at experiment start, clay content and soil pH were measured.

Soil bulk density was calculated in 2022 by dividing the dry fine soil mass (<2mm) by the core volume (5cm

diameter, 10cm height). Mean values (n=24) and standard error of these selected soil properties are presented

in Table 1.

Table 1: Minimum, maximum and mean values for clay content, soil pH, bulk density and C:N ratio.

Soil property Minimum value Maximum value Mean value ±SE (n = 24)

Clay content (%) 24.20 33.70 26.83 ±0.36

Soil pH 6.80 7.20 6.95 ±0.03

Soil bulk density (kg L−1 ) 7.62 9.68 8.84 ±0.12

C:N ratio 8.58 8.76 8.67 ±0.01

2.4 Grass sampling and analysis

Every year since 1990, the plant canopy has been mowed three times at 5cm height for a subset of every

field parcel (area: 1.25 m x 5m = 6.25 m−2) using a motor mower with a finger bar. After harvest, plant

biomass was oven dried at 105 °C and weighed to determine the annual aboveground dry yield. For further

analysis in the laboratory, grass samples were oven dried at 60 °C, milled and archived at Agroscope. In
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June 2023, the grass samples of 2022 (for all 3 harvests and all 64 field parcels) were analysed for Ctot and

Ntot concentrations with the same procedure as with the soil samples (Elemental analyser, LECO CN928),

except that 0.4 g (not 2 g) were weighed in the ceramic cups.

2.5 Ecosystem carbon fluxes

2.5.1 Measuring technique

Figure 8: Ecosystem CO2 gas exchange measurements technique. In the photo, the transparent cuvette can be seen, fixed to

the ground with the red rubber band (secured to the ground with metal stakes) and yellow cell foam band. The humidity and

air temperature sensor inside the chamber, the infrared CO2 probe and the small fan can be seen, in order from the right.

Leaning against the cuvette is also the logger, connected to the sensors. The thermometer recording the ground temperature

at the time of measurement is not visible.

The ecosystem CO2 gas exchange of the grassland site was measured according to Volk et al. (2011). Figure

8 illustrates how the measurements were performed in the field. On each of the 24 selected field plots

there are two frames, one to the North and one to the South, and here is where the chamber for the CO2

measurements was placed. A static cuvette made of transparent polyacrylics (30x40x35cm) was used for

this. An infrared CO2 probe (GMP343 diffusion model, Vaisala, Vantaa, Finland) was installed inside the

cuvette and connected to a handheld control and logger unit (MI70 Indicator, Vaisala) to record the camber

CO2 concentration. To facilitate air mixing inside the cuvette, a moderate turbulence was created by a small

fan (0.5-0.8 ms−1). To isolate the system from the atmosphere during the measurement, a cell foam band

was used to seal the cuvette to the frame. A two minutes measurement period per frame was conducted by
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measuring changes in CO2 concentration at five seconds intervals. By selecting a brief measurement period, it

was possible to reduce the impact of changing ambient conditions inside the chamber and prevent the cuvette

from fogging up from high evapotranspiration rates. Under clear skies only, measurements were performed

during the day between two hours before and after solar noon (NEEday). At night, measurements started

at least one hour after sunset (NEEnight). Soil temperature was recorded at 10cm depth during each flux

measurement using a handheld electric thermometer.

For this project, 12 measuring campaigns have been conducted approximately every two weeks, from June

2022 (14.06.2022) to June 2023 (06.06.2023), with a winter break between November (7.11.2022) and April

(18.04.2022).

2.5.2 Estimation of Gross Primary Productivity and Ecosystem Respiration

Relationship between soil temperature and ecosystem respiration

Nearly all of the CO2 that is produced in soils comes from microbial decomposition of organic materials

and root respiration. These processes, just like all chemical and biological reactions, depend on temperature

(Davidson & Janssens 2006).

Figure 9: Ecosystem respiration during the campaigns plotted with the Arrhenius curve. The colours of the data points,

described in the legend, represent the month of the measurements. The Arrhenius line (in black) is suitable for describing the

relationship between ecosystem respiration and temperatures for most points. There are, however, points from the campaigns

of 19 July 2022 and 16 August 2022 that do not follow the line. The summer of 2022 was very dry (DWD et al. 2022) and,

therefore, the ecosystem respiration on these dates was lower than expected due to water limitation (Cook & Orchard 2008,

Davidson & Janssens 2006).

The Arrhenius equation (5) was used to describe the temperature dependence of ecosystem respiration
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(ER) (Figure 9) (Bahn et al. 2008, Davidson & Janssens 2006, Hofmann et al. 2016, Hussain et al. 2011,

Lloyd & Taylor 1994, Rogger et al. 2022). The values for the equation parameters were already determined in

earlier experiments on (pre)alpine grassland by Matthias Volk and adopted for the measurements in Muldain.

R(Tsoil) = R10 exp

[
E0

(
1

10◦C − T0
− 1

Tsoil − T0

)]
(5)

where:

Tsoil: Soil temperature (°C)

R10 (2.78 µmol CO2 m−2 s−1): Respiration rate at reference temperature of 10 °C

E0 (73.3 °C): Activation energy

T0 (260 °C): Growth characteristic of the exponential function

Relationship between soil moisture and ecosystem respiration

ER is not only affected by soil temperature but by soil moisture as well. Water constraint also affects

microbial decomposition and root respiration (Cook & Orchard 2008, Davidson & Janssens 2006). Figure

10 displays the positive linear relationship between ER10 and soil moisture for the mean values generated

during 11 measuring campaigns (all except the last one, where no soil moisture data are available). For

simplicity, ER10 has positive values here, as opposed to the usual values where the atmospheric perspective

is considered.

Figure 10: Positive linear relationship between ER10 and soil moisture. The black dots represent mean ER10 and soil moisture

values (n=24) for the NEE measuring campaigns. The blue line is the fitting of the simple linear regression model, whose

results are reported in the graph, with a confidence interval of 95% shown in transparent grey.

ER10

As no photosynthesis happens without sunlight, the measured net ecosystem carbon exchange (NEEnight)

was taken to reflect ER (Reco). The Arrhenius equation (5) was used to normalise NEEnight for temperature

(10 °C at 10 cm soil depth) for each frame on each field parcel (ER10). These normalised data take into
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account the effects of seasonal fluctuations in substrate availability, heterotrophic and autotrophic biomass,

and soil moisture availability (Volk et al. 2011).

GPPpot

Using the Arrhenius equation (5), a normalised daily Reco (Recoday) was interpolated using the Reco ob-

tained during night measurements (Reconight) and the soil temperature recorded at the time of the NEE

measurements during the day (NEEday) (Volk et al. 2011).

GPPpot = NEEday - Recoday (6)

Equation 6 was applied to estimate GPPpot using NEEday data and ER data normalised for temperature

during the day (Recoday). NEEday measurements at mid-day and under clear sky conditions depict an

environment without a radiation assimilation limit. Thus, these GPP estimates represent the potential GPP

(GPPpot) at maximum radiation at seasonal solar altitude (Volk et al. 2011).

2.6 Statistical analysis and data visualisation

The data were processed and prepared for analysis using Microsoft Excel (2016). All data visualisation and

statistical analysis were performed in the R environment (R Core Team, 2023, version 4.3.0). The packages

used are indicated in italics in brackets.

Minimum, mean, and maximum values for the different variables were calculated with the summary

function base, and the standard error and standard deviation were calculated with the package stats.

To establish the existence of a linear relationship between two variables, a simple regression model was

run, for the example between time and yield (stats). The linearity of the relationship was assessed using

the Pearson correlation (stats) and simple visualisations of scatter plots (graphics). A general check of all

linear model assumptions was performed using a Top-level function for Global Validation of Linear Models

Assumptions (gvlma). If some assumptions were not met, data underwent log or square-root transformation,

and the model requisites were re-checked. For the analysis of monotonic trends in time series, the non-

parametric Mann-Kendall trend test (Kendall) was applied when the linear regression model’s assumptions

were not met. For this test, the presence of (partial) autocorrelation was checked (stats).

To detect the presence of differences between two groups concerning a particular variable (e.g. for weather

indices between years with high and years with low yields), a two-tailed T-test was performed (stats). If the

T-test assumptions were not met, the Mann-Whitney-U-Test (Wilcoxon rank-sum test) was applied.

To detect the presence of differences between more than two groups regarding a certain variable (for

example, differences in yield between productivity categories), a two-way Analysis of Variance (ANOVA) for

randomised complete block design was performed, treating the field replicate as a blocking variable (stats).

If the ANOVA assumptions were not met, the Friedman rank sum test was applied as a non-parametric

alternative. The repeated measures ANOVA was used to compare means across one or more variables based

on repeated observations (e.g. comparison of ER between measuring campaigns).
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A pairwise comparison was performed using the Tukey’s Honest Significant Difference method (stats).

Letters of the pairwise comparison were created for later presentation in plots (multcompView).

For all statistical analyses, the necessary assumptions were tested. Homoscedasticity was tested with the

Breusch-Pagan test (car) or with Levene’s test (rstatix ) and by visual observation of the Residuals vs Fitted

plot (graphics). Normality was checked with the Shapiro-Wilk Normality Test (stats) and by visualising the

Q-Q plot of the residuals (graphics).

A significance level of α = 0.05 was chosen for all the statistical analyses. The packages used for data vi-

sualisation were ggplot2, ggpubr and patchwork. Results of linear regression models were reported on graphics

with the package ggpmisc. Examples of the R code used for the various data analyses and visualisations can

be found in the Appendix (Section .5).

The study area maps were created with the free and open source geographic information system QGIS

(version Hannover 3.16.7, 14.05.2021), using geodata from the Federal Office of Topography (©swisstopo).
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3 Results

Premise

To avoid burdening the text, it will not always be repeated that a certain result is statistically significant. It

will only be specified if a statistical analysis does not generate a significant result. When mean values (with

standard error) are given for a certain variable, an n of 4 refers to the average of the four field replicates of a

productivity category, an n of 24 to the average between the 24 field plots (six fertiliser combinations repeated

four times). Other n refers to the average between the number of years in the period under consideration or

to something else specified in the text.

3.1 Aboveground productivity

3.1.1 Yield and fertilisation treatment combinations

ANOVA was used to test if different fertilisation treatments lead to different aboveground productivity.

Data was averaged over time for every field parcel, and then the means of these averaged yields (n=4) were

compared between productivity categories. Figure 11 shows that mean yield (n=4) differed as a result of

different P and K applications. Table 2 summarises the mean dry yield for the six productivity categories

and the corresponding period.

Figure 11: Differences in mean yield between productivity categories. The red dots indicate mean values (n=4), while the four

grey dots represent the average yield for the indicated period for the four field replicates of the respective productivity

category. The black horizontal lines within the boxplots represent the median values, and the letters above are the pairwise

comparison results.

However, depending on the period considered (1990-2022, 2013-2022, 2022), these differences in yield

vary, which is visible by the different results of the pairwise comparisons (indicated with different letters).

Even though only six out of the 16 treatment combinations have been selected for this research, the gradient

between the lowest and the highest mean yield obtained is apparent.
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Table 2: Mean yield (±SE, n = 4) of the six productivity categories for three time periods (1990-2022, 2013-2022, 2022).

Productivity

category

Mean aboveground dry yield (gm−2)

1990 - 2022 2013 - 2022 2022

450 550.9 ±10.1 a 451.2 ±14.8 a 237.3 ±2.8 a

490 616.8 ±25.9 b 489.5 ±19.2 a 265.8 ±24.2 a

640 714.9 ±16.7 c 641.7 ±23.0 b 429.3 ±18.4 b

660 734.1 ±10.3 cd 662.7 ±12.1 b 475.1 ±30.0 b

680 732.7 ±10.3 cd 676.5 ±6.7 b 441.2 ±32.8 b

700 776.3 ±9.6 d 703.5 ±14.5 b 466.8 ±18.8 b

3.1.2 Yield over time

General trend

A simple linear regression was applied to test whether there was a significant linear relationship between

time (years) and mean annual yield (n=24). It was found that time explained 16% of the variability in

yield and that during the last 33 years, yield decreased on average by about 6 gm−2 per year (Figure 12).

The Mann-Kendall test confirmed this decreasing trend over time (tau = -0.307, p<0.05). However, when

performing the simple linear regression model and the Mann-Kendall test separately for the six productivity

categories, it was found that a significant decrease in yield is only true for the three lowest productivity

categories. These results are reported in the Appendix (Figure 26 and Table 12). More details on mean

annual yield are to be found in Table 8 (Appendix).

Figure 12: Decreasing mean yield over time (1990-2022). The dark grey bars represent the mean annual yield (n=24) together

with the standard error. The blue line fits the simple linear regression model, whose results are reported in the graph, with a

confidence interval of 0.95 shown in transparent grey.
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3.1.3 Yield and weather

Correlation between mean yield and climatic parameters

Mean annual yield (n=24) was found to negatively correlate (Pearson) with temperature-based climatic

parameters, especially with GDDsum during the GS. No correlation was found between mean yield and GSL.

A moderate (>0.4) positive correlation was found with Ptot between May and July as well as with IDM.

More details can be found in the Appendix (Table 11).

Simple linear regression models to explain yield with climatic parameters

A simple linear regression model was performed between yield and all climatic variables that showed at

least a moderate correlation (Pearson) with yield. It was found that higher temperatures, especially during

the GS and, in particular, during April and July, led to lower harvests (Figure 13). In contrast, higher

precipitation rates, especially between May and July, supported greater yields (Figure 13). This ties in with

the positive linear relationship between yield and IDM during the GS (Table 11 in the Appendix). The more

light (RelS) and the warmer, the higher the probability of drought conditions which impede plant growth.

No relationship was found between yield and the GLS. The results of the performed simple linear regression

models are summarised in the Appendix (Table 13).

Figure 13: GDDsum during the GS and Ptot between May and July predict yield. The left figure shows the negative

relationship between yield and GDDsum during the GS, while the right figure shows the positive relationship between Ptot

from May to July and yield. The black dots are the values for mean annual yield (n=24) and the respective climate variable

for the 33 years between 1977 and 2022. The blue lines are the fit of the simple linear regression models whose results are

reported in the graphs, with the confidence interval of 0.95 shown in transparent grey.
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Weather comparison between years with particularly high and low yield

By plotting the mean yield (n=24) over time, it is clear that interannual variations are present (Figure 12).

Mean yields (n=24) ranged between 386 ±22 (2022) and 968 ±32 gm−2 (2008) for the period between 1990

and 2022, with mean values around 688 gm−2. There were years where the mean yield was lower than the

average yield (1990-2022) for the lowest productivity category (551 gm−2), where no P or K were applied.

On the contrary, there were years in which the mean yield exceeded mean yield (1990-2022) of the highest

productivity category (776 gm−2) (Figure 14).

Figure 14: Years with particularly high and low yield. The graph columns represent the mean annual yield (n=24), together

with standard error bars. Grey years represent mean yield values in the norm, between 551 and 776 gm−2. Mean yields lower

than 551 gm−2 (group "low") are depicted in orange and mean yields higher than 776 gm−2 (group "high") are coloured in

light blue. The thresholds of 551 and 776 gm−2 for the lowest and highest productivity categories, respectively, are shown

with horizontal grey dotted lines.

The two-tailed T-test was applied to test which weather parameters differed between years with mean

yields higher than 776 ("high") and years with mean yields lower than 551 gm−2 ("low") (Figure 15). It

was found that GDDsum during the GS, in April and in August and RelS during the GS were significantly

higher in years with low yields compared to years with high yields. In addition, in years with low yields, Ptot

in March and April was lower compared to years with high yields. Summarising, extremely high GDDsum

during the GS and low precipitation rates in spring led to lower aboveground biomass production.
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Figure 15: Weather parameters in years with particularly high and low yield. The red dots indicate mean values (n=10 four of

the "high" group and n=5 four of the "low" group). The grey dots represent the values of the respective climate variables in

the respective years with particularly high and low yields. The black horizontal lines within the boxplots represent the median

values, and the p-value of the two-sided T-test is reported.

3.2 Soil organic carbon stocks

3.2.1 SOC stocks and productivity

ANOVA was used to test if mean SOC stocks during three chosen periods (1990-2022, 2013-2022 and 2022)

differed between the six productivity categories. Table 3 summarises mean SOC stocks for the six productivity

categories and the corresponding period.

Table 3: Mean SOC stocks for three time periods and their relative change over time (1990-2022) of the six productivity

categories. Letters report the results of the non-significant pairwise comparisons.

Productivity

category

Mean SOC stocks (kgm−2) Relative change (%)

1990 1990-2022 2013-2022 2022 1990-2022

450 9.03 ±0.27 a 8.85 ±0.27 a 8.29 ±0.24 a 7.70 ±0.44 a -14.89 ±3.05 a

490 9.39 ±0.80 a 9.33 ±0.70 a 8.70 ±0.67 a 8.57 ±0.48 a -7.99 ±2.90 a

640 9.99 ±0.97 a 9.60 ±0.84 a 8.99 ±0.81 a 8.45 ±0.56 a -14.71 ±2.72 a

660 10.27 ±0.94 a 9.58 ±0.90 a 9.09 ±0.86 a 8.31 ±0.50 a -18.43 ±2.72 a

680 10.05 ±0.59 a 9.55 ±0.50 a 9.01 ±0.51 a 7.96 ±0.56 a -20.47 ±5.67 a

700 9.25 ±0.33 a 9.04 ±0.09 a 8.48 ±0.11 a 8.20 ±0.23 a -11.12 ±3.28 a

Figure 16 shows that the mean SOC stocks (n=4) did not differ between productivity categories, regardless
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of the period considered. The same is true when comparing the change in SOC stocks (%) relative to the

initial values (1990) (Figure 17). The relative change in SOC stocks was calculated by dividing the difference

in SOC stocks between 2022 and 1990 with the starting SOC stocks in 1990 and multiplying by 100.

Figure 16: No differences in SOC stocks between productivity categories. The red dots indicate mean values (n=4), while the

four grey dots represent the average SOC stocks for the indicated period for the four field replicates of the respective

productivity category. The black horizontal lines within the boxplots represent the median values, and the letters above are

the results of the (non-significant) pairwise comparisons.

Figure 17: No differences between productivity categories regarding SOC stocks relative change. The understanding of the

facets of Figure 16 also applies here.

Pearson correlation and simple linear regression models were run to identify possible positive relationships

between increasing productivity and SOC stocks. No correlation was found, indicating that higher produc-
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tivity did not lead to higher SOC stocks. Figure 18 shows a general visualisation with boxplots for SOC

stocks and mean yield for the six productivity categories. From this visualisation, it is clear that there is no

dependency. Another visualisation can be found in the Appendix (Figure 28).

Figure 18: No relationship between mean yield (2013-2022) and final SOC stocks (2022) for the six productivity categories.

The green boxplots represent the mean yield, and mean SOC stocks are shown with the brown boxplots. The increasing

productivity from the lowest category, 450, to the highest, 700, is visible. Conversely, SOC stocks do not differ between

productivity categories and do not follow an increasing trend with increasing productivity.

3.2.2 SOC stocks over time

Figure 19: Decreasing mean SOC stocks (n=24) over time (1990-2022). The black dots represent the mean annual SOC stocks,

together with the standard errors in grey. The blue line is the fitted loess curve (local polynomial regression) with a percentage

confidence interval of 0.95 shown in transparent grey.
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The Mann-Kendall test was performed to test whether mean annual SOC stocks (n=24) showed a trend

over time. A moderate-strong decreasing trend was found (tau = -0.678, p<0.05) (Figure 19). The Mann-

Kendall test was also performed separately for the six productivity categories, to test if the decreasing

trend in SOC stocks applies independent from the aboveground productivity. It was found that SOC stocks

strongly decreased (tau-statistics < -0.6, p<0.05) for all productivity categories. These results are presented

in the Appendix (Figure 27). More data regarding annual SOC stocks over time are to be found in Table 8

(Appendix).

3.2.3 SOC stocks and weather

Over the entire period, SOC stocks decreased, showing a negative linear relationship with increasing temper-

atures and a positive linear relationship with decreasing soil Ntot as well as with decreasing yield. However,

these relationships are only evident over a longer period of time and not from year to year and could be spu-

rious. Only GDDsum in May was found to correlate significantly with annual losses of SOC stocks. Between

annual relative changes in SOC stocks and other weather parameters, no additional linear correlations were

discovered when assessed with Pearson correlation coefficients and simple linear regression models. More

details are reported in the Appendix (Figure 29 and Table 11).

3.3 Ecosystem carbon fluxes

3.3.1 Comparison between measuring campaigns

CO2 fluxes were compared between the 12 measurement campaigns using ANOVA. GPPpot, ER10 (µmol CO2

m−2 s−1) and their ratio (unitless) were not constant over time but showed variations between measurement

dates. Mean values (±SE, n=24) are summarised in Table 5 for each measurement campaign, along with soil

moisture (rel-%) on the day of the measurements and soil temperature (°C) during night and day.

Table 4 summarises minimum, maximum and mean values (n = 12 campaigns) for ER, ER10 and GPPpot

(µmol CO2 m−2 s−1). Minimum and maximum values correspond to the mean values (n=24) during a

certain campaign. Figure 20 shows the mean CO2 fluxes (n=24) over time along with soil moisture and soil

temperature. Figure 21 visualises the mean GPPpot/ER10 (n=24) over time. More details are reported in

Table 5).
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Table 4: Minimum, maximum and mean GPPpot, ER10 and their ratio for the six productivity categories. µmol CO2 m−2 s−1

is the unit for GPPpot and ER10, while the ratio GPPpot/ER10 is unit less.

CO2 flux Minimum Maximum Mean (n=12)

ER
-2.21 ±0.07

7.11.2022

-8.08 ±0.16

2.8.2022
-5.23 ±0.56

ER10
-1.30 ±0.06

16.08.2022

-3.94 ±0.11

18.04.2023
-2.74 ±0.21

GPPpot
1.89 ±0.28

19.07.2022

15.33 ±0.45

8.7.2022
9.24 ±1.07

Table 5: Soil temperature (ST, °C) and moisture (SM, %) together with CO2 fluxes (µmol CO2 m−2 s−1) and the ratio

between GPPpot and ER10 on the different measuring campaigns. Mean values refer to the average between the field parcels

for every campaign (n=24). Letters represent the results of the pairwise comparisons.

Date SM STnight ER10 STday GPPpot GPPpot/ER10

2022-06-14 23.34 18.9 -2.8 ±0.05 de 19.9 10.1 ±0.3 cde 3.6 ±0.08 bc

2022-07-08 34.30 19.2 -3.3 ±0.05 f 18.7 15.3 ±0.5 f 4.7 ±0.15 e

2022-07-19 8.17 23.3 -1.8 ±0.05 b 21.9 1.9 ±0.3 a 1.1 ±0.15 a

2022-08-02 32.34 22.7 -2.7 ±0.05 cde 20.8 10.1 ±0.3 cd 3.8 ±0.10 cd

2022-08-16 6.00 21.5 -1.3 ±0.06 a 19.5 3.1 ±0.3 a 2.4 ±0.25 c

2022-09-05 14.34 18.5 -2.4 ±0.05 c 17.4 10.7 ±0.3 de 4.4 ±0.11 de

2022-09-20 18.27 13.8 -2.6 ±0.05 cd 12.2 9.2 ±0.2 c 3.6 ±0.10 bc

2022-10-04 78.28 11.0 -2.7 ±0.08 cde 12.0 8.8 ±0.3 c 3.3 ±0.08 bc

2022-10-19 23.02 13.3 -2.8 ±0.07 de 12.3 8.9 ±0.3 c 3.2 ±0.09 bc

2022-11-07 88.72 8.2 -2.9 ±0.1 e 7.5 6.1 ±0.2 b 2.2 ±0.09 b

2023-04-18 77.84 11.6 -3.9 ±0.1 g 9.5 11.5 ±0.3 e 3.0 ±0.10 bc

2023-06-06 - 16.1 -3.7 ±0.1 g 14.9 14.1 ±0.3 f 3.8 ±0.10 cd
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Figure 20: GPPpot and ER10 compared between measurement campaigns. The grey dots represent ER10 and GPPpot,

respectively, for the 24 parcels on the indicated date. The red dots indicate mean values (n=24), while the black horizontal

lines within the boxplots are the median values. The letters above the boxplots refer to the results of the pairwise

comparisons. The orange line shows the daily mean values for soil temperature, while the blue line shows the daily mean

values for soil moisture. Harvest dates (25.05.2022, 19.07.2022 and 22.09.2022) are indicated by the vertical green dashed lines.

Figure 21: GPPpot/ER10 compared between measuring campaigns. The understanding of the facets of the graph in Figure 20

also applies here.

3.3.2 Comparison between productivity categories

GPPpot, ER10 and GPPpot/ER10 were averaged over the measuring campaigns (n=12) for every of the 24

field parcels. With ANOVA, it was found that mean GPPpot, ER10 and their ratio did not differ between

the six productivity categories. Figure 22 visualises and Table 6 report these results.
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Figure 22: GPPpot, ER10 and GPPpot/ER10 compared between productivity categories. The red dots indicate mean values

(n=4), while the four grey dots represent the average GPPpot, ER10 and their ratio for the four field replicates of the

respective productivity category. The black horizontal lines within the boxplots represent the median values, and the letters

above are the results of the (non-significant) pairwise comparisons.

Table 6: Mean GPPpot, ER10 (µmol CO2 m−2 s−1) and their ratio for the six productivity categories.

Productivity category GPPpot ER10 GPPpot/ER10

450 9.08 ±0.28 a -2.584 ±0.06 a 3.32 ±0.11 a

490 9.14 ±0.39 a -2.598 ±0.06 a 3.39 ±0.22 a

640 9.50 ±0.23 a -2.785 ±0.13 a 3.25 ±0.12 a

660 9.22 ±0.43 a -2.732 ±0.10 a 3.15 ±0.19 a

680 9.30 ±0.30 a -2.816 ±0.12 a 3.18 ±0.10 a

700 9.79 ±0.17 a -2.895 ±0.04 a 3.18 ±0.07 a

3.4 Relationship between SOC stocks and carbon fluxes

Simple linear regression analysis was performed to detect significant linear relationships between:

• SOC stocks in 2022 and the ratio GPPpot/ER10;

• Relative changes in SOC stocks (1990-2022) and the ratio GPPpot/ER10.

No linear relationship, nor of any other type, was found between relative changes in SOC stocks (1990-

2022) and GPPpot/ER10 (Figure 23). The same is true between SOC stocks (2022) and GPPpot/ER10 (Figure

30 in the Appendix). Therefore, the ratio between GPPpot/ER10 measured in 2022 cannot be used to predict

changes in SOC stocks nor to explain possible differences in final SOC stocks (2022). The weak or non-

existent relationships between carbon fluxes and SOC stocks (changes) can be seen in Table 14 (Appendix)

according to the very low Pearson correlation coefficients.
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Figure 23: No relationship between GPPpot / ER10 and SOC stocks relative change (%). Every point represents the SOC

stocks relative change between 1990 and 2022 and the mean (averaged over the measuring campaigns) ratio between GPPpot /

ER10 for the corresponding field parcel. The dots colour corresponds to the productivity category.
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4 Discussion

4.1 Grassland productivity

4.1.1 Yield differences between fertilisation treatment combinations

European alpine and pre-alpine grasslands provide essential ecological services such as the promotion of

biodiversity and soil conservation and the support the economy by providing livestock fodder. Due to the

need for high yields, fertilisers are employed every year to alleviate nutrient limitations and so stimulate plant

growth (Bernhardt-Römermann et al. 2011, Botter et al. 2020, Crowther et al. 2019, Eze et al. 2018). Not

only the amount of fertiliser applied is important, but also the type, rates and combination of the several

nutrients determine the productive potential of grasslands (Poeplau 2021, Samuil et al. 2018).

The grassland in Muldain showed different yields depending on the combination of N, P and K in the

fertiliser application (Figure 11 and Table 2). Increasing productivity with higher nutrient supply is recog-

nisable. However, these differences varied depending on the period chosen. In the last decade, the yield

differences between the productivity categories have been less pronounced. The reasons for this might be

climate warming and increasing dryness in combination with the decreasing soil Ntot concentration. These

aspects will be discussed further in the next two chapters (4.1.2 and 4.1.3).

4.1.2 Yield changes with weather variability

As climatic conditions influence grassland productivity, aboveground biomass is characterised by interannual

variations (Grigulis & Lavorel 2020, Samuil et al. 2018). The lowest mean yields were found in Muldain for

the years 2003, 2011, 2018, 2020 and 2022 (Figure 14), in line with other studies reporting yield losses due

to drought for the same years (Emadodin et al. 2021, Finger et al. 2013, Sweeney et al. 2019). Other studies

confirm the fact that grassland aboveground productivity is reduced under warmer and drier conditions, also

in subalpine regions (Addy et al. 2022, De Boeck et al. 2016, Qi et al. 2018, Schmid 2017, Wu et al. 2021).

The fact that lower yields are mainly caused by water limitation is also consistent with the results of the

T-test comparison of the weather parameters between years with the highest and years with the lowest yields

(Figure 15), in which years with the lowest harvests were characterised by high temperatures and low spring

precipitation, possibly leading to drought.

Yield in 2022

As a result of drought, especially in May, July and August, caused by above-average temperatures and a

prolonged period of low rainfall (DWD et al. 2022), the mean yield in 2022 was the lowest since measurements

began in 1990 and, depending on the productivity category, was about 28-47% below the norm (2013-2022)

(Figure 12 and Table 2).
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4.1.3 Decreasing yield with climate change and decreasing soil nitrogen

Effects of climate change on yield

If warming is accompanied by a decline in water availability, the potential benefits of warmer temperatures

on plant growth in mountain regions through extended growing seasons may be countered by the negative

impacts of drought, which would result in a lower aboveground biomass production (Schuchardt et al. 2021,

Volk et al. 2021). No linear relationship between yield and the length of the growing season was found

in Muldain for the period 1990-2022. Several studies identify climate change, with its increasing dryness

caused by changing precipitation patterns and rising temperatures, as the main cause of declining grassland

productivity (Brookshire & Weaver 2015, Emadodin et al. 2021).

These results are consistent with the positive linear relationship between yield and Ptot between May

and July and the negative linear relationship between yield and GDDsum during the growing season found in

Muldain for 1990-2022 (Figure 13). Yields were lower at higher temperatures and at low precipitation rates

in spring and summer, which is confirmed by the positive linear relationship between yield and IDM during

the agricultural year (yield = 360.16 + 5.96*IDM, R2
adj = 1.13, F1, 31 = 5.84, p-value = 0.022*, n=33).

The summer climate in the European Alps is expected to become warmer and drier, making extreme

events such as prolonged droughts more likely (De Boeck et al. 2016, Finger et al. 2013, Schmid 2017), so

that further yield declines are predicted for the future (Addy et al. 2022, Carozzi et al. 2022).

Influence of decreasing soil total nitrogen on yield

Important premise: The elemental analyser provided the Ntot present in the soil samples, which does not

correspond to the plant-available N in the inorganic form of nitrate (NO –
3 -N) and ammonium (NH +

4 -N)

(Fernandez & Kaiser 2021). In the absence of data on N in the chemical forms that are readily available for

plant roots, Ntot is used, assuming that a constant proportion of Ntot represents plant-available N and that

a decrease in Ntot in the soil leads to a deficiency in plant-available N (Capriel 2013).

As shown in Figure 7, Ntot decreased over time (about 10% in the last 30 years), and this trend is true

for all productivity categories. There are two possible explanations for this decline in soil Ntot. The first can

be attributed to agricultural management practices. Since the grassland under study is extensively managed,

only limited amounts of N were applied through fertilisers. The 25 kg ha−1 year−1 applied are even lower than

the usual values of 50 kg ha−1 year−1 applied on likewise extensively managed pre-alpine grasslands (Botter

et al. 2020). Moreover, pasture management involved three annual harvests, during which the nutrients were

removed by the grass cuttings. This N could, therefore, not replace the N used by vegetation for its growth

and was lost by the removal of aboveground plant biomass (Turner 2021). This translocated N was unlikely

to be compensated for by the low fertiliser application of N (Bernhardt-Römermann et al. 2011). The second

possible explanation is related to the decline in productivity of the field, which may have led to a decrease

in N input to the soil due to declining plant residues and their decomposition (Capriel 2013).

The declining soil Ntot, assuming it is representative of plant available N, may have contributed to the

decreasing grassland productivity in Muldain (Figure 12). Several nutrients are required for plant growth,
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with N being a key player (Botter et al. 2020, Crowther et al. 2019, Fay et al. 2015). The availability of a

balanced supply of N, P and K is crucial for the efficient development of vegetation, as grassland productivity

can be limited by an imbalance between supply and demand of plant nutrients, e.g. due to N deficiency in

the soil (Puche et al. 2023, Zhang et al. 2007). This is consistent with Liebig’s law, which holds that a plant’s

ability to grow is dependent on the resources, particularly nutrients, available in minimum quantity (Fornara

et al. 2013, Hanson et al. 1985). In addition, water availability and plant nutrient uptake are strongly linked

(Bernhardt-Römermann et al. 2011). It could be that with increasing drought conditions during the GS,

plants had additional difficulties taking up the available nutrients, including N, due to water limitation.

Stronger yield decrease for low nutrient treatments

The declining yield trend was found to be statistically significant only for the three treatments with the

lowest nutrient levels. Similar findings of greater yield decline in less productive grasslands are reported by

Samuil et al. (2018) and Bernhardt-Römermann et al. (2011). In the field plots that received high nutrient

treatments, nutrient removal with harvest was, at least partly, compensated for by fertiliser application. On

the other hand, in the plots that received low nutrient treatments, nutrient replacement and removal through

haymaking may no longer be in balance, which may have led to a greater decline because of more pronounced

nutrients deficiency (Bernhardt-Römermann et al. 2011).

4.2 Soil organic carbon stocks

SOC stocks comparison with other studies

The mean SOC stocks (n=24) in Muldain (0-20 cm soil depth) ranged from 8.439 ±0.238 to 9.017 ±0.546

kgm−2 for the period between 2013 and 2022 (Table 3). These values can be compared with similar results

from Moll-Mielewczik et al. (2023), who report mean SOC stocks of 8.14 kgm−2 for 24 long-term monitoring

sites distributed across Switzerland (1985-2014, soil depth 0-20 cm). This study also includes an extensively

managed grassland in Graubünden at an altitude of 1818 m a.s.l., where mean SOC stocks of 9.17 kgm−2

were found. In another study conducted in Switzerland, mean SOC contents of 9.3-11.7 kgm−2 (varying soil

depth) were determined for various selected grassland areas (Bolliger et al. 2008). These SOC contents are

more similar to the initial (1990) SOC stocks in Muldain (Table 3). Ammann et al. (2009) report 6.1-6.5

kgCm−2 values for their experiment in the Swiss Plateau (450 m a.s.l., soil depth: 100cm). These SOC stocks

are lower than those found in Muldain, nonetheless in the same order of magnitude. Similar SOC stocks, 7.1

±3.7 kgm−2 (soil horizon A), were found by Wiesmeier et al. (2013) when sampling 333 grassland soils in

Bavaria in south-eastern Germany. In contrast, much lower SOC stocks (1-5 kgm−2, 0-20cm) are reported

by Pendall et al. (2018) in their report on the situation in US grasslands in 2005. Differences between the

SOC stocks found in Muldain and those reported by other studies might be due to different agricultural

management and different location characteristics regarding weather, climate, soil and elevation. In addition,

not all the studies cited considered only the upper soil (0-20 cm), and used identical sampling techniques in

the same period.
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4.2.1 Reasons for interannual SOC stocks change

Climatic conditions, i.e. temperature and precipitation, are the most important drivers of SOC stock change,

as they influence both OC input into and output from the soil by affecting grassland productivity and micro-

bial decomposition of soil organic matter (SOM). Weather fluctuations thus lead to changes in SOC stocks

(Fuchslueger et al. 2019, Puche et al. 2023, Wiesmeier et al. 2018). However, the correlation between changes

in SOC stocks and weather variability, and between changes in SOC stocks and aboveground productivity,

could only be described on a longer time scale and not for each year (Figure 29 in the Appendix). The

increase or decrease in SOC stocks in some years could not be linked to particular weather conditions or yield

in the same year of sampling. This could be due to three aspects.

First, a complex interplay of many factors determines changes in SOC stocks. Besides weather and

aboveground productivity, many drivers influence the carbon cycle, such as soil pH, water, oxygen and

nutrients availability, as well as SOM stability and substrate availability, among others (Hofmann et al. 2016,

Wiesmeier et al. 2013).

Second, lag effects may play an important role in the change of SOC stocks. The weather and productivity

in one year may not only influence the changes in SOC stocks in the same year but possibly in subsequent

years as well. Similarly, the changes in SOC stocks observed between two consecutive years are not only due

to the weather conditions and aboveground biomass of that period but also to the weather and productivity

of previous years (Trumbore 2000). These aspects can explain why a direct correlation between the change in

SOC stocks and the weather and between the change in SOC stocks and productivity could not be described

statistically, as was the case with yield variations over time.

Third, SOC stocks in agricultural landscapes are characterised by a large spatial heterogeneity at the

small scale, which could affect the detection of interannual variations in SOC stocks by the applied sampling

method. Indeed, the in time repeated sampling approach of soils is suitable for studying treatment variations

over a longer period of time, but not intended for detecting short-term temporal dynamics of changes in SOC

stocks (Hofmann et al. 2016).

4.2.2 Reasons for and consequences of SOC losses over a longer time period

SOC losses: comparison with other studies

Climate change not only implies rising temperatures but also leads to weather extremes such as droughts, and,

together with agricultural management, affects grassland productivity and the carbon cycle. The relationship

between climate change and terrestrial carbon reservoirs, particularly the role of soils as potential carbon

sources or sinks, has been extensively discussed during the past 20 years (Gubler et al. 2019). Sun et al.

(2022) performed a meta-analysis with the results of 136 studies that conducted warming experiments on

various ecosystem types worldwide, including grasslands. They found that warming resulted in a significant

decrease in SOC in most studies. SOC losses between 8 and 20% were found in Muldain between 1990 and

2022 (Figure 19 and Table 3). This is in line with the findings of other studies (Capriel 2013, Puche et al.

2023, Sochorová et al. 2016, Volk et al. 2021, Wiesmeier et al. 2016).
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Reasons for SOC losses

Several factors and their interaction could have caused the SOC losses observed in Muldain between 1990

and 2022. The net balance of C input and output determines the SOC content. Primary production and

OM decomposition, influenced by weather variability and climate change, biologically regulate carbon fluxes.

In addition, grassland production and OM decomposition are influenced by soil factors, including texture,

nutrients, and water availability, which control the OM flow into the soil, its quality, and its decomposition

rates (Capriel 2013, Garcia-Pausas et al. 2007, Volk et al. 2021).

A first explanation for the decreasing SOC stocks in Muldain might be the observed rising temperature

(Figure 4). Because of the dependency of microbial activity on soil temperature, higher temperatures might

enhance the decomposition of plant residues and so lead to greater SOC losses (Poeplau 2021, Puche et al.

2023, Sun et al. 2022, Volk et al. 2021). This confirms the first hypothesis that the SOC stocks may shrink

with rising temperatures and subsequently increasing microbial respiration.

A second possible reason for decreasing SOC stocks lies in the declining aboveground productivity, which

is affected by weather variability, more occurring dry seasons, with climate change, and declining soil Ntot.

Lower aboveground plant productivity translates into lower possible carbon inputs into the soil through plant

residues decomposition, and so to decreasing SOC stocks over time, by stable or increasing ER (Crowther

et al. 2019, Eze et al. 2018, Puche et al. 2023).

In addition to a decline in aboveground biomass production, agricultural management includes harvesting.

Even though carbon input also occurs from roots and harvest residues, possible carbon inputs to the soil

are limited because of grass removal after every cutting (Wiesmeier et al. 2013, Wilts et al. 2004), which

according to the literature accounts for about 80-95% of the aboveground biomass (Puche et al. 2023, Seeber

et al. 2022). Because there were no other sources of OC input, such as manure treatments for fertilisation,

photosynthetic assimilates were the only source of OC in the grassland in Muldain (Eze et al. 2018, Soussana

et al. 2007, Volk et al. 2021). Poeplau et al. (2018) and Carozzi et al. (2022) state that biomass removal,

for example with crop yield and residues export, can convert the grassland into net carbon sources, if crop

residues are not returned to the soil.

Consequences of SOC losses

SOC losses have consequences for soil quality and climate warming. SOC has numerous beneficial effects

on soil properties because it affects many soil functions and processes, such as the cycling and storage of

nutrients, soil fertility, the filtering of pollutants and water holding capacity, and helps to reduce soil erosion

(Gubler et al. 2019, Sochorová et al. 2016). As a crucial measure of soil quality, SOC losses are considered

as soil degradation (Capriel 2013, Garcia-Pausas et al. 2007, Lal 2004, Poeplau 2021). In addition, as SOC

represents the largest carbon pool in terrestrial ecosystems, even slight changes in SOC content can have

a significant impact on the atmospheric CO2 concentration, contributing significantly to climate warming

(Capriel 2013, Deng et al. 2021, Poeplau 2021, Wiesmeier et al. 2016).

33



4.2.3 No differences in SOC stocks between productivity categories

The second hypothesis of this thesis was that the SOC stock increases with increasing productivity in the

different management forms because the OC input is greater than the combined ecosystem carbon losses

(Davidson & Janssens 2006, FAO 2010, Paustian et al. 2016, Poeplau et al. 2016, Rumpel et al. 2020). Several

studies report increased SOC stocks with grassland mineral fertilisation and the consequently increased yields

(Conant et al. 2001, Poeplau 2021, Sanderman et al. 2017, Sochorová et al. 2016). It is believed that the

accelerated microbial decomposition caused by climate warming could be counterbalanced by higher grassland

productivity, thus leading to a positive relationship between aboveground biomass and SOC stocks (Seeber

et al. 2022). However, this hypothesis could not be confirmed for Muldain, as no significant differences in SOC

stocks and their change over time were found between productivity categories (Figures 16 and 17, Table 3).

Additionally, no apparent relationship between increasing productivity and SOC stocks was found, indicating

that higher productivity did not lead to higher SOC stocks (Figure 18 and Figure 28 in the Appendix).

SOC stocks were not significantly different between productivity categories at the beginning of the ex-

periment (1990) and are still similar, even though lower compared to initial values, between productivity

categories (2022). Because SOC stocks in individual years can be affected by weather conditions and sam-

pling techniques (Fuchslueger et al. 2019, Puche et al. 2023, Wiesmeier et al. 2018), SOC stocks for two

different time periods (1990-2022 and 2013-2022) were also included as these are considered to be more rep-

resentative. There was no gradual increase in SOC stocks with increasing productivity; the mean SOC stocks

for productivity categories 450 and 700 were nearly identical to each other for all time periods considered,

as well as to the other productivity categories. Although the lowest SOC stocks were found in productivity

category 450 for all periods considered, the highest were not found in the highest productivity category (700);

the highest mean SOC stocks, although not significantly different from the other productivity categories, were

found in the middle productivity categories (Table 3). The non-significant differences between productivity

categories regarding initial and final SOC stocks agree with the fact that no significant differences were found

in SOC losses during the last 30 years (1990-2022) between productivity categories (Figure 17). This is

not an isolated case, as other studies report a lack of a consistent relationship between higher productivity,

obtained with more nutrients application through fertilisation, and SOC stocks, as well as with changes in

SOC stocks (Crowther et al. 2019, Fornara et al. 2011, Harmens & Mills 2012). For this lack of relationship

between productivity and SOC stocks, there might be several possible explanations.

Role of nutrients application

The grassland field under study is characterised by low N and a gradient of P and K fertiliser applications.

Poeplau et al. (2016) report SOC losses for all PK fertilisation levels in the absence of N, but SOC stocks

increase following productivity, if N fertilisation is provided. A following paper by Poeplau et al. (2018)

confirms similar conclusions, where N application was strongly correlated with the accumulated SOC stocks.

Similar results are provided by Eze et al. (2018), where SOC stocks were increased only when N fertiliser

was applied. Application of other nutrients had no effect on SOC stocks when N fertiliser was not applied,
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even though it increased grassland productivity. Comparable outcomes are shown by Fornara et al. (2013),

who show that multi-nutrient application might lead to lower carbon sequestration in permanent grasslands.

Because, in Muldain, the same and limited amount of N was applied to all plots regardless of productivity

category, differences in aboveground productivity may not translate into differences in SOC stocks. If N is

so decisive even in Muldain’s grassland, being limited, applications of P and K could not lead to differences

in SOC stocks despite productivity differences.

Effect of harvest and possible contribution of belowground biomass

Another possible explanation for the lack of correlation between SOC stock and productivity is the grassland

management. With harvest, most of the aboveground biomass is exported. As a result, differences in

aboveground productivity may not lead to differences in OC input to the soil (Poeplau 2021, Poeplau et al.

2018). This is because, following harvest, the biomass that remains available for decomposition may be similar

between productivity categories. Consequently, the influence of nutrients addition to SOC sequestration might

be blurred (Fornara et al. 2013).

Related to harvest is the possible role of plant roots. Some scientists claim that because most of the

aboveground biomass is exported from mown grasslands, most of the carbon that reaches the soil is derived

from the roots (Poeplau 2021, Poeplau et al. 2018). In addition, in some grasslands, belowground biomass

might be higher than aboveground biomass (Eze et al. 2018). The question is whether, in Muldain, below-

ground biomass differs between productivity categories and, if yes, whether higher aboveground productivities

translate into higher belowground productivities as well or if the opposite happens. Fornara et al. (2013)

report, for example, similar root mass across different nutrient treatments, highlighting that root mass gen-

erally decreased when various nutrients were added and increased only when N was applied. In this study,

for example, nutrient treatments had different impacts on aboveground productivity than on belowground

mass. Similar findings are reported by Poeplau (2021), who explain the lower root biomass found in fertilised

plots compared to unfertilised plots with a shift of the root:shoot ratios towards shoots. Unfortunately, no

data concerning the belowground biomass are available for Muldain. Therefore it is impossible to confirm

the hypothesis that root biomass might counteract differences in aboveground productivity, in terms of SOC

sequestration.

Importance of initial SOC stocks and soil properties

In addition to the possible explanations mentioned before, no relationship between productivity and SOC

stocks change between 1990 and 2022 might be present because of non-different initial SOC stocks (1990).

Initial SOC stocks are crucial to predict and describe changes in SOC over time in many ecosystems (Bellamy

et al. 2005, Capriel 2013, Hanegraaf et al. 2009, Moll-Mielewczik et al. 2023). This would support the

hypothesis that SOC stocks changed equally, and independently of productivity, because starting SOC stocks

(1990) did not substantially differ between productivity categories (Figure 16 and Table 3).
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High variability between field replicates

A final possible factor hampering the detection of an eventual positive relationship between productivity

and SOC stocks might be the high variation in SOC stocks between the four replicates, which could be

greater than the treatment effects. The two-way ANOVA, which considered the field replicate as a blocking

factor, found no significant differences in SOC stocks between productivity categories. However, significant

differences between field replicates were detected, possibly affecting the statistical power of the ANOVA

(Blainey et al. 2014). A similar issue was encountered by Poeplau et al. (2018).

4.3 CO2 fluxes

CO2 fluxes comparison with other studies

ER between June 2022 and June 2023 ranged between -2.21 ±0.07 and -8.08 ±0.16, with mean values of

-5.23 ±0.56 µmol CO2 m
−2 s−1. ER10 ranged between -1.30 ±0.06 and -3.94 ±0.11, with mean values of -2.74

±0.21 µmol CO2 m−2 s−1. GPPpot ranged between 1.89 ±0.28 and 15.33 ±0.47, with mean values of 9.34

±1.07 µmol CO2 m−2 s−1 (Table 5). These results align with the ecosystem CO2 fluxes reported by other

studies (Bahn et al. 2008, Flanagan & Johnson 2005, Gilmanov et al. 2007, Rogger et al. 2022). Flanagan &

Johnson (2005) report ER rates of -9 µmol CO2 m−2 s−1 for a moist year (2022) and -5 µmol CO2 m−2 s−1

for a drier year (2001) in a native Canadian grassland. Bahn et al. (2008) provide ER for 20 European

grasslands across a climatic transect. Maximum rates of ER ranged from -1.9 to -15.9 µmol CO2 m−2 s−1,

while ER10 ranged between -0.3 and -5.5 µmol CO2 m−2 s−1. Rogger et al. (2022) conducted an experiment

on a medium intensively managed grassland in central Switzerland at 1000 m above sea level and measured

CO2 fluxes for 15 years (2005-2019). ER ranged from -3.3 to -3.5 µmol CO2 m
−2 s−1, while GPP ranged from

8.0 to 9.6 µmol CO2 m−2 s−1. Differences in CO2 fluxes with these studies might lie in the used measuring

technique (eddy covariance vs static chambers vs flexible chambers), in the period and site under study, and

in the grassland management.

4.3.1 Reasons for differences between measuring campaigns

Environmental parameters

The magnitude of ER is determined by root respiration and microbial decomposition of OM, processes that

strongly depend on temperature (Davidson & Janssens 2006, Volk et al. 2021). Because of the dependence

of ER on temperature, the greatest values were found at the highest soil temperatures (02.08.2022), while

the smallest values at the lowest temperatures (07.11.2022) (Figure 20).

By constant environmental conditions, ER10 would be similar over the year. However, ER10 in Muldain

showed important variations over time. Seasonal changes in ER10 are due to the fact that the ability of

an ecosystem for respiration is not only temperature dependent but influenced by other factors such as soil

moisture (Figure 10) (Davidson & Janssens 2006, Flanagan & Johnson 2005, Hussain et al. 2011). Depending

on soil moisture, ER might vary greatly even at the same temperature (Reichstein et al. 2003, Rogger et al.

2022). The smallest ER10 was measured on 16.08.2022, by a very low relative soil moisture of 6%. On the
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contrary, the greatest ER10 was measured on 18.04.2023, by a much higher relative soil moisture of 78%

(Figure 20, Table 5 and Table 4). This is in line with the findings of Flanagan & Johnson (2005), who

explained a large part of the seasonal and interannual variation in ER10 data with soil moisture changes.

GPPpot is determined by seasonal temperature. Higher values are normally to be found by a more

developed canopy at higher temperatures. However, GPPpot is also influenced by soil moisture (Rogger et al.

2022, Volk et al. 2021). As indicated in Figure 20, the lowest GPPpot was measured on 19.07.2022, by very

low relative soil moisture (8.17 %). At similar temperatures, the highest values were measured, but at a

relative soil moisture of 34.30 %. Several studies identified drought as the cause for GPP declines in 2003

(Harmens & Mills 2012, Heyburn et al. 2017).

Aboveground biomass

Not only seasonal temperature and soil moisture determine the magnitude of GPPpot and ER10. Canopy

development plays an important role as well (Volk et al. 2021). The amount and activity of aboveground

biomass may also impact variations in GPPpot and ER10, with larger values likely to correlate with peak

biomass levels (Gilmanov et al. 2007, Schmitt et al. 2010). However, because the grassland under study

is managed, harvesting has an impact on the natural phenological plant development and hence decouples

it from the seasonal change in environmental conditions (Wohlfahrt et al. 2008). As it is clear by looking

at Figure 20, GPPpot and ER10 were much smaller right after the second harvest on 19.07.2022. Similar

findings are reported by Bahn et al. (2008) and Rogger et al. (2022). Harvest leads to a strong decline in CO2

assimilation by reducing the available amount of assimilating plant materials. Additionally, the exported

biomass is unavailable for decomposition and ER (Hussain et al. 2011).

Variations in the ratio GPPpot/ER10

The ratio GPPpot/ER10 helps to understand the relative importance of carbon uptake through photosynthesis

and carbon release through respiration. However, this ratio is not the ecosystem carbon balance, as carbon

lost through harvesting is not taken into account (Table 15 in the Appendix) and the CO2 fluxes data are

only available for 12 measurement campaigns and not for the whole year.

Variations in GPPpot and ER10 affect the GPPpot/ER10 ratio if GPPpot and ER10 do not change to a

similar extent in response to variations in environmental parameters, such as soil moisture (SM) and soil

temperature (ST). However, for example, the GPPpot/ER10 ratio did not differ significantly between the

campaigns 14.06.2022 (SM = 23.34%, ST = 18.9 - 19.9 °C), 19.10.2022 (SM = 23. 02%, ST = 12.3 - 13.3 °C)

and 18.04.2023 (SM = 77.84%, ST = 9.5 - 11.6 °C), despite different times of the year (Figure 21 and Table

5). This could be due to the complex interaction of soil temperature, soil moisture, canopy development stage

and available substrate for decomposition (Flanagan & Johnson 2005, Reichstein et al. 2003). For example,

on 18.04.2023 the soil temperature was lower than on 14.06.2022 and 19.10.2022, but the soil moisture was

much higher, so with an impact on the resulting CO2 fluxes (Table 5).

In addition, the effect of harvesting on GPPpot and ER10 is also evident from the GPPpot/ER10 ratio,

especially due to the decrease in GPPpot. The lowest ratio was found on 19.07.2022 (1.1 ±0.15 µmol CO2
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m−2 s−1), immediately after the second harvest. In contrast, the highest ratios at the highest aboveground

biomass were on 8.7.2022 (4.7 µmu mol CO2 m
−2 s−1), between the first and second harvests, and on 5.9.2022

(4.4 ±0.11 µmol CO2 m−2 s−1), before the second and last harvests.

4.3.2 No differences in CO2 fluxes between productivity categories

The third hypothesis of this thesis was that CO2 fluxes differ between productivity categories and increase with

aboveground productivity, as different yields affect carbon cycling (Bahn et al. 2008). When looking at Figure

22 and Table 6, mean GPPpot and mean ER10 (n=4) were greater by categories with higher productivity, as

expected. Especially obvious is the visual difference in mean GPPpot and mean ER10 between productivity

categories 450 and 700, as smallest values are to be found in the lowest productivity category. However, these

differences are not statistically significant, so the initial hypothesis can not be confirmed.

The ratio of OC inputs to outputs was similar and independent of aboveground productivity during the

measurement period since GPPpot/ER10 did not differ between productivity groups. Additionally, the ratio

GPPpot/ER10 was higher than 1 for all measuring campaigns, implying that more carbon was assimilated

than lost. Whether this defines the grassland under study as a net carbon sink is not possible to state

based on 12 campaigns. An interpolation over the year would be needed, and 2022 was a dry year, possibly

misrepresenting the general pattern. Furthermore, it is impossible to determine whether a grassland is a

carbon sink or source by considering only GPPpot and ER10 and neglecting other OC inputs and outputs,

such as harvesting (Table 15). This aspect will be further discussed in Chapter 4.4.

Possible reasons for no differences in ER10

Similarly to Dornbush & Raich (2006) and Ward et al. (2017), who did not find any correlation between

aboveground productivity and ER rates in central Iowa grasslands and three long-term grassland experiments

in South Africa, respectively, ER10 did not significantly differ between productivity categories in Muldain.

For this, there might be several possible explanations.

First, ER is not only controlled by aboveground productivity but is the result of complex interactions

of environmental and biotic factors (Flanagan & Johnson 2005, Reichstein et al. 2003). Soil temperature,

soil water availability, substrate quality, and changes in above- and below-ground vegetation and fauna

are all significant ER drivers (Reichstein et al. 2003). Because all these factors were similar across the

different productivity categories, they might have minimised possible differences in ER10 caused by different

productivity.

Second, the management of grasslands with regard to harvesting and fertilisation may alter the spatial

variability in nutrient availability and species composition, hence affecting the effects on above- and below-

ground processes (Reichstein et al. 2003, Schmitt et al. 2010). Regarding fertilisation in the grassland under

study, productivity categories differed in terms of P and K applied, but the same amount of N was applied to

all field parcels. Ward et al. (2017) found no significant change in ER depending on P addition but reported

significant differences in ER due to levels of N fertiliser. Similarly, Zhai et al. (2017) and Peng et al. (2011)
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found increased ER with higher N application. The fact that in Muldain, soil Ntot does not differ between

productivity categories could have hampered an eventual effect of different aboveground productivity on

ER10. Regarding harvest, the frequent removal of aboveground biomass may have weakened the relationship

between grassland productivity and ER. Harvesting the aboveground biomass can directly impact the OC

input to the soil and subsequently affect ER. It is possible that the removal of biomass could have had

similar effects across all productivity categories, leading to comparable ER10 rates (Hussain et al. 2011).

Related to this is the possible role played by belowground biomass. Unfortunately, no data are available

regarding roots biomass and activity, but a hypothesis based on the literature is that compensatory processes

were occurring within the grassland ecosystem. For example, plots with lower aboveground productivity

might have experienced higher belowground productivity, leading to comparable overall ER10 rates. Such

compensation effects could have masked the expected differences in ER10 between productivity categories

(Dornbush & Raich 2006)

Third, 2022 was a dry year in Muldain (DWD et al. 2022). Because soil moisture availability strongly

limits ER, ER10 might have been lower overall for all productivity categories. Drought might therefore have

masked any potential expected differences in ER10 between productivity categories (Hussain et al. 2011).

Finally, a high variability characterises ER10 data within each productivity category (Figure 22). It

is, therefore, more challenging to detect significant differences between productivity categories when ER10

significantly varies between field replicates. Additionally, data were averaged between campaigns to perform

the ANOVA; this data loss, together with the low sample size for each productivity category, might have

limited the statistical power of the analysis and so affected the detection of eventual differences.

Possible reasons for no differences in GPPpot

Remarkably, GPPpot did not vary with aboveground productivity, despite significant yield differences de-

pending on the nutrients applied (Figure 11). Similarly, Skinner & Adler (2010) were unable to determine

any relationship between GPP and aboveground biomass production and suggested that variations in below-

ground biomass and related root characteristics, such as depth and density, may be a factor influencing GPP

fluctuations. However, these are merely speculations since there are no data on the belowground biomass in

Muldain.

Another possible explanation is that drought leads to reduced GPP, similar to ER. The experiment expe-

rienced drought conditions in 2022 when most campaigns took place, which could have masked the expected

differences in GPPpot between productivity categories. Drought stress can affect all plants, regardless of their

initial productivity levels, leading to a convergence in GPPpot values (Farooq et al. 2012).

Finally, as was the case with ER10, the high data variability within productivity categories could have

complicated the detection of significant differences in GPPpot between productivity categories (Blainey et al.

2014).

Possible reasons for no differences in GPPpot/ER10

No differences were found in GPPpot/ER10 between productivity categories. This might firstly be because
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there were no significant differences in the carbon inputs and outputs between productivity categories. Sec-

ondly, this balance, like GPPpot and ER10, is influenced by temperature, soil moisture, nutrient availability,

and microbial activity, which might have been relatively consistent across the different productivity cate-

gories, thus leading to similar GPPpot/ER10 ratios. Another possible reason is the variability in GPPpot and

ER10 measurements, and potential errors or uncertainties in their estimation, which could have contributed

to the lack of detected differences in the GPPpot/ER10 ratio (Blainey et al. 2014).

4.3.3 No relationship between GPPpot/ER10 and SOC stocks

The last hypothesis of this work was that higher ratios between GPPpot and ER10 would be found in field

parcels with higher SOC stocks, indicating a higher net carbon gain by the ecosystem. This could be because,

either more carbon can be assimilated through photosynthesis and/or less carbon is lost to the atmosphere

via ecosystem respiration (Davidson & Janssens 2006). However, no relationship was found between the ratio

of GPPpot/ER10 and SOC stocks, when considering the relative change in SOC stocks between 1990 and

2022 (Figure 23) and the SOC stocks in 2022 (Figure 30 in the Appendix). This is confirmed by the low

Pearson correlation coefficients found (Table 14 in the Appendix). Possible reasons might explain the lack of

this relationship.

Firstly, the absence of a relationship between SOC stocks and GPPpot/ER10 could be related to the com-

plex dynamics and feedback mechanisms between plants, soil microorganisms, and carbon cycling processes.

Strong coupling and interaction between soil’s physical characteristics, chemical composition, belowground

components like plant roots and live microorganisms, and with above-ground factors like plant litter and

biodiversity, exist within soil systems (Flanagan & Johnson 2005, Hofmann et al. 2016, Reichstein et al.

2003, Wiesmeier et al. 2013). SOC stocks and the ratio GPPpot/ER10, as well as the relationship between

them, are influenced by various factors. One of these factors is the weather. The year of CO2 fluxes measure-

ments, 2022, was characterised by drought conditions, possibly affecting the resulting GPPpot/ER10 (Forte

et al. 2023). CO2 fluxes measured in 2022 might, therefore, not represent the ecosystem because of soil

moisture deficiency, thus potentially masking or overriding a potential relationship between SOC stocks and

GPPpot/ER10. Comparing CO2 fluxes of more and more diverse years with changes in SOC stocks might

lead to a different result.

Secondly, the time scale mismatch may have played a role. Values for GPPpot and ER10 are available only

for 12 dates between June 2022 and June 2023. On the contrary, information on SOC stocks ranges between

1990 and 2022. The measured CO2 fluxes may not be suitable to explain and interpret the final SOC stocks

(2022), because changes in SOC stocks in response to weather and to OC input from yield residues, might

take more time. Similarly, final SOC stocks were not only influenced by processes occurring in 2022 but also

by carbon inputs and outputs from previous years (Trumbore 2000). The mismatch in time scales could thus

make it difficult to detect a relationship between SOC stocks and GPPpot and ER10.

Thirdly, N limitation can directly impact GPPpot and ER10 by reducing photosynthesis, biomass pro-

duction, microbial activity, and litter decomposition rates (Puche et al. 2023, Zhang et al. 2007). These
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direct effects can subsequently influence the GPPpot/ER10 ratio through changes in carbon use efficiency and

feedback mechanisms. The impact of N limitation on GPPpot, ER10 and their ratio could have contributed

to a decoupling between SOC stocks and the GPPpot/ER10 ratio.

Finally, the presence of high variability in SOC stocks and in the GPPpot/ER10 ratio within each pro-

ductivity category, combined with a relatively small sample size, could have reduced the statistical power

to detect a relationship. Larger sample size or additional data points may be required to detect a potential

relationship that is obscured by this high variability (Blainey et al. 2014). Related to this are possible mea-

surement errors or limitations in the quantification of SOC stocks or the GPPpot/ER10 ratio that affect the

ability to detect a relationship. These aspects are further discussed in Chapter 4.4 "Possible limitations".

4.4 Possible limitations

4.4.1 Dry 2022

As already mentioned, the drought in 2022 may have affected the results of the measurements of CO2 fluxes

and, consequently, the interpretation of the lack of relationship between GPPpot/ER10 and SOC stocks, as

well as the lack of differences in GPPpot, ER10 and their ratio between productivity categories. As discussed

in several studies, droughts and the terrestrial carbon cycle are closely linked. Drought can have a significant

impact on the magnitude and patterns of carbon cycling over different time periods in grasslands. This, by

affecting vegetation productivity and, thus, OC input to the soil and, consequently microbial decomposition,

which in turn determines ER and carbon output (Deng et al. 2021, Fuchslueger et al. 2019, Hussain et al.

2011, Lei et al. 2020). Repeating the same experiment in a second, wetter year might be interesting to

validate the results of this work, or to draw alternative conclusions.

4.4.2 Field sampling, measurement technology and calculations

SOC stocks estimation

The first aspect that leads to uncertainty in SOC stock estimates is soil sampling. Since 1989, seven cores

for the top 20 cm have been randomly collected yearly for every field plot. The measurement accuracy of

soil sampling, which is influenced by sampling strategy and design, is primarily responsible for the associated

uncertainty in spatial and temporal SOC dynamics. Samples were not collected from the same location each

year, and it may be difficult to detect spatial variability in SOC stocks and represent it similarly over time

(Hofmann et al. 2016, Moll-Mielewczik et al. 2023). However, this uncertainty should be minimised given the

seven samples per plot.

Secondly, additional uncertainty may lie in the assumption of constant Cmin over time (Paragraph 2.3.1).

SOC concentrations were calculated as the difference between Ctot and Cmin. The simple linear regression

model was used to test if time significantly predicted mean Cmin concentration (n=24). The overall regression

was not statistically significant, meaning that the mean Cmin concentration was constant over time. The

Mann-Kendall test was performed separately for every field parcel to detect possible trends in Cmin over time.
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In most field parcels, Cmin stayed constant over time. However, in field parcels 19, 29, 30, 33, 36 and 42 a non-

parametric significant decreasing trend in Cmin was found. This could have led to a possible overestimation

of SOC concentration for these parcels for the years 1990-2005 and 2022, as the SOC calculations assumed

constant Cmin values in every field parcel.

Finally, for calculating SOC stocks in the historical soil samples, the mean soil density (n=24) determined

with the soil samples taken in 2022 was used. This underlies two assumptions. The first one is that mean

soil density (n=24) is representative of the soil density for every soil sample. Despite the fact that only

two samples per parcel were taken in 2022, them also not being entirely representative of the entire field

parcel, this solution was more appropriate than applying separate soil densities to each field parcel (Poeplau

et al. 2016). The second assumption is that soil density is constant over time, given the extensive grassland

management. However, possible differences in bulk density over time might play an important role, thus

affecting the calculated SOC stocks (Moll-Mielewczik et al. 2023, Poeplau et al. 2018).

Deep SOC

Further uncertainty lies in the fact that for this study, SOC stocks refer only to the top 20 cm of soil. While

SOC concentrations are often higher in surface soils than in deeper layers, soils also store carbon throughout

the depth of the soil profile (Lal et al. 2015, Lorenz & Lal 2021). Most studies tend to focus on the topsoil

because, technical difficulties and higher costs associated with sampling deep soils aside, it is generally

acknowledged that the topsoil contains most of the SOM (Lorenz & Lal 2021, Ward et al. 2016). Deep

SOC is considered important, primarily because of its greater protection from degradation and consequent

longer residence time, so that despite low carbon concentrations in deep soil horizons, it contributes to more

than half of total SOC stocks overall (Rumpel & Kögel-Knabner 2011). However, in Muldain, SOC stocks

below the first 20 cm are not expected to reverse the results because soils in Swiss mountain regions are

typically shallow (Hoffmann et al. 2014). This could be observed during sampling, where it was manually

not possible to sample deeper with the technique used due to the high stone content and higher soil density.

Deeper soil sampling using adaptive techniques could provide insights into deep SOC. It could be interesting

to investigate whether most of the SOC in Muldain is stored in the top 20 cm or whether deeper soil layers

contribute strongly to the overall SOC.

Separation of NEE into GPP and ER

Additional uncertainty may lie in the partitioning of NEE into GPP and ER (Equation 6). GPPpot was cal-

culated by extending the relationship between temperature and NEEnight (determined by using the Arrhenius

equation 5), when GPPpot is zero, to daytime conditions. This approach could have led to an overestimation

of daytime ER, because leaf respiration is reduced during the day compared to dark conditions, and because

the temperature sensitivity of ER calculated from long-term data sets does not necessarily correspond to

the short-term temperature sensitivity useful for converting ER measured in the night to ER during the day

(Reichstein et al. 2004, Wohlfahrt et al. 2005).
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Winter measurements of CO2 fluxes

It is generally recognised that CO2 fluxes during the GS are the main driver of annual carbon balances and

provide essential information on mechanisms of carbon exchange. There is general agreement, nevertheless,

that respiratory losses during the cold season might cancel out the carbon budget determined during the GS.

This is because of considerable amounts of CO2 released by heterotrophic respiration in the soil even when it

is covered in snow (Merbold et al. 2012). Winter CO2 fluxes have not been measured in Muldain for several

reasons. Firstly, it is logistically and methodologically challenging to measure GHG fluxes in winter, because

the snow-covered site is more difficult to access, and because the cold temperatures make it challenging

for people and equipment to operate (Merbold et al. 2013). Secondly, the scope of this thesis was not to

estimate an annual net ecosystem carbon balance. For this aim, winter CO2 fluxes could be interpolated.

For comparing GPPpot and ER10 between productivity categories, winter fluxes were assumed not to bring

significant differences in CO2 fluxes depending on the aboveground productivity. However, this hypothesis

could only be tested with available data from winter measurements.

Interpolation of CO2 fluxes between campaigns

This work aims to answer the third and fourth research questions based solely on 12 measurement campaigns

of CO2 fluxes, all during the GS and under similar daytime sunlight conditions. For a complete understanding

of the carbon sink capacity of the grassland studied, and for detecting possible differences in GPPpot and

ER10 between productivity categories, interpolation of CO2 fluxes between campaigns would be needed.

This could be done using available data for soil temperature, soil moisture, relative sunshine duration (light

response curve) and canopy development (Volk et al. 2011). However, such an analysis is beyond the scope

of this thesis.

4.4.3 Grassland management and field design

Grassland management and field design could also contribute to uncertainties. The low N application rate

since 1989, which is below the norm for extensively managed grassland, is one factor contributing to N

limitation in the soil (Botter et al. 2020). Because of potential N depletion, plant growth is limited (Botter

et al. 2020, Crowther et al. 2019, Fay et al. 2015). Consequently, the grassland in Muldain, also in terms of

SOC stocks and CO2 fluxes, might not be representative of an extensively managed Swiss mountain grassland.

In addition, despite the small study area, the field design established in 1989 is characterised by a fairly

high variability in soil properties between field replicates. The blocking effect of the field replicates was

accounted for in the statistical analysis. However, the limited number of replicates and the variability between

them could have affected the results by masking possible differences between productivity categories (Blainey

et al. 2014). Nevertheless, this should have been minimised by considering the completely randomised block

design in the statistical analyses.
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5 Conclusion

Despite the recognised importance of grasslands as global carbon sinks, it is still uncertain which effects global

warming will have on the carbon budgets of such ecosystems. The influence of productivity on SOC stocks

and ecosystem carbon exchange with the atmosphere is understudied. It is important to find the most suitable

management practices in agriculture that can sustain the desired yields and increase SOC stocks globally,

or at least mitigate SOC losses to the atmosphere. Hence this thesis aimed to investigate if and how the

aboveground productivity of an extensively managed pre-alpine grassland affects the SOC stock, respectively,

if and how the carbon sequestration depends on the fertilisation management practice. Furthermore, the goal

was to show which fertilisation management is most suited to achieve carbon sequestration in grassland soils,

thus mitigating climate change and compensating for GHG emitted by agriculture.

The first research question was: Is the SOC stock in the chosen Swiss mountain grassland site shrinking

or rising with climate warming? The formulated hypothesis that SOC stocks may shrink with rising temper-

atures and subsequently increasing microbial respiration could be confirmed. SOC stocks losses were found

for all productivity categories between 1990 and 2022. Additionally to warming, possible reasons may be the

decreasing yield, and the consequent reduced OC input to the soil, caused by more often occurring drought

periods, together with decreasing soil Ntot.

The second research question was: Does higher productivity translate into lower SOC losses? The formu-

lated hypothesis that SOC stock increases with increasing productivity in the different management forms

(because the OC input is greater than the combined ecosystem carbon losses) could not be confirmed. De-

spite differences in aboveground productivity, no differences in SOC stocks were found between productivity

categories. This might be because many factors are involved in the complexity of the carbon cycling. Weather

variability, climate change, the harvesting practice, nutrients availability, and possible differences in below-

ground biomass may have masked a possible relationship between productivity and SOC stocks or stronger

determined changes in SOC stocks.

The third research question was: Are there differences in GPPpot, ER10 and GPPpot/ER10 between

different productivity categories? The hypothesis that CO2 fluxes differ between productivity categories and

increase with aboveground productivity could not be confirmed. Similarly to the lacking of a relationship

between productivity and SOC stocks, the complexity of the ecosystem may have influenced these results.

Additionally, the drought that characterised 2022 and the high data variability might have affected these

results.

The last research question was: Is there a positive relationship between the SOC stocks and the ratio

GPPpot/ER10? The hypothesis that higher GPPpot/ER10 ratios are found in field parcels with higher SOC

stocks, indicating a higher net carbon gain by the ecosystem, could not be confirmed. This could be because

similar amounts of carbon were assimilated through photosynthesis and lost to the atmosphere via ER.

Additionally, the year 2022 might not be representative, because of the drought.
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6 Outlook

It is crucial to further study the relationship between grassland productivity and SOC stocks to find the

most appropriate management form to maintain the carbon sink potential of grasslands with climate change.

Additional measurements, which are beyond the scope of this thesis, could be performed. First, information on

belowground biomass and root carbon could be useful; integrating aboveground and belowground components

may provide a more comprehensive understanding of ecosystem carbon dynamics and productivity. Roots

data could be used to test whether differences in aboveground productivity translate into differences in root

biomass and what thrives more SOC changes. Second, fertilisation and climate change may affect plant species

composition, which in turn influences productivity and possibly nutrients and carbon cycling (Poeplau et al.

2018, Ward et al. 2017). Data on the plant species composition, the respective yield and changes over time

might be relevant. Finally, it might be interesting to repeat measurements of CO2 fluxes in several years

with different weather conditions.
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Appendix

.1 Theoretical base

.1.1 Carbon cycling

What is a greenhouse gas?

Methane (CH4) and carbon dioxide (CO2) are examples of GHG, which are substances in the atmosphere

that absorb heat radiation reflected from the earth’s surface. The climate warms if organisms produce more

CO2 and CH4 than they consume, while the climate cools if the opposite occurs (Davidson & Janssens 2006,

Grotzinger & Jordan 2017).

What is a biogeochemical cycle?

The movement of a chemical element or compound through the biological and environmental elements of an

ecosystem is referred to as a biogeochemical cycle. The biosphere contributes to biochemical cycles through

the respiration process, the intake of nutrients from the hydrosphere and lithosphere, and the release of these

nutrients following the death and decomposition of organisms (Grotzinger & Jordan 2017).

Where is carbon stored?

The four main reservoirs for the carbon cycle are the atmosphere, the Earth’s oceans including their organisms,

the land surface including all land plants and soils (biosphere), and the deeper lithosphere (Grotzinger &

Jordan 2017). These pools are linked together by the carbon flow between them, which is significantly

impacted by human disturbances (Lal 2008).

Which are the ways for gas exchange?

The carbon cycle can be divided in four sub-processes (Grotzinger & Jordan 2017):

• The exchange of gases between the atmosphere and the ocean’s surface;

• The transportation of carbon dioxide from the biosphere to the atmosphere via photosynthesis, respi-

ration, and direct oxidation;

• The movement of dissolved organic carbon from surface waters to the oceans;

• The weathering and precipitation of calcium carbonate.

Gas exchange atmosphere-biosphere

The photosynthetic abilities of plants in terrestrial ecosystems are primarily responsible for the conversion

of carbon into organic binding forms. The degradation of all organic materials is carried out by soil organisms.

The exchange of CO2 between the terrestrial biosphere and the atmosphere during photosynthesis, respiration,

and decomposition results in this sub-cycle, which has the biggest flux of carbon material. About half of the

CO2 that plants absorb during photosynthesis is released back into the atmosphere during respiration. The
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remaining half is integrated as OC into the tissues of the plant, including its leaves, wood, roots, and seeds.

Animals consume plants, and microorganisms regulate their decomposition. Both procedures cause the plant

tissue to oxidise, thus releasing CO2. The soils store the majority of the organic carbon produced during

this process. Another portion is directly oxidised by forest fires and other combustion processes, entering the

atmosphere. A little amount of the CO2 that is taken up by plant tissue is dissolved in surface waters and

transported by rivers to the oceans, where it is is returned to the atmosphere through respiration of marine

organisms, before being taken up again by plants during photosynthesis (Davidson & Janssens 2006, FAO

2010, Grotzinger & Jordan 2017).

What does carbon sequestration mean?

Carbon sequestration refers to the process of transferring atmospheric CO2 into long-lasting pools and safely

storing it to prevent immediate re-emission. Carbon sequestration occurs through several processes, which

are based in the chemical, geologic, oceanic and terrestrial systems. The natural process of photosynthe-

sis, by transferring atmospheric CO2 into plant biomass, serves as the foundation for carbon sequestration

in terrestrial ecosystems. The potential to offset a sizeable portion of current GHG emissions may lie in

the sequestration of carbon as soil organic matter through changes in land use and better land manage-

ment. Carbon sequestration is thus understood as being a way of mitigating the increasing atmospheric CO2

concentrations (Lal 2004, 2008, Paustian et al. 2016, Sanderman et al. 2017).
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.2 Some methodology in more details

.2.1 Calcimeter and soil mineral carbon

Figure 24: Analysis of historical soil samples (2006-2021) for Cmin with the calcimeter.

The measurement procedure used to determine the Cmin concentration of soil samples is explained in more

detail in the following steps:

1. Sample preparation: The archived samples were already prepared for this analysis by drying them at

40°C and sieving them to 2mm. No further preparation was needed.

2. pH estimation: To determine how much soil material should be weighed in for the analysis, the pH

was estimated by pouring a few drops of hydrogen chloride on a small amount of soil. The smaller

the reaction of the soil with the acid, the larger the required weight of the soil sample. This step was

repeated for every soil sample.

3. Operating the measuring device: The required amount of soil or calcium carbonate was weighed into

an Erlenmeyer flask and 20mL of water were added. A small tube was filled with 5mL hydrochloric

acid and placed in the Erlenmeyer. The Erlenmeyer was tightly sealed with the rubber stopper on the

calcimeter. The liquid level in the columns was adjusted to zero by moving the adjustment vessel. The

magnetic stirrer was switched on. Then the Erlenmeyer was kipped carefully so that the acid would

run out of the tube. The resulting carbon dioxide pushed the liquid level down. After 20 minutes, the

liquid level, which corresponds to the amount of carbon dioxide in mL, was read off (Figure 24).
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4. Running in the measuring device: Before each measuring series (every day), all columns of the device

must be run in with a calcareous sample so that the water/gas interface is saturated. For this purpose,

0.3g CaCO3 were weighed into 5 Erlenmeyer flasks and weighed out as described under point 3.

5. Calibration of the measuring device: The calibration was done with pure water and calcium carbonate.

A blank value was first measured on each column. For this purpose, the water and the acid were added

to the Erlenmeyer flasks and measured as described in point 3. Then calcium carbonate samples were

used as standards. First 0.15g calcium carbonate was measured on all columns and then 0.3g.

6. Measurement of control samples for quality assurance: In each measurement series, a control soil with

a known lime content was measured on each column after calibration.

7. Measuring the lime content in soil samples: The estimated amount of soil (point 2) was weighed into

the Erlenmeyer flask and the measurement was carried out as described in point 3.

8. Calculation of CaCO3 concentrations: For the evaluation of the measured volume levels, the calculation

was done according to the ISO method 10693 (7).

CaCO3[%] = 100 ∗ mS ∗ (VP − VB)

mP ∗ (VS − VB)
(7)

where:

mS = Average weight of the standards used

VS = Average volume of the standards used

VB = Average volume of the blank samples

mP = Weight of the sample to be analysed

VP = Volume of the sample to be analysed

9. Calculation of mineral carbon concentration (%-mass): Based on the molecular mass of CaCO3 (100.0869

g/mol) and the molar mass of carbon (12.0107 g/mol), the mineral carbon concentration was derived

from the calcium carbonate values: 12% of CaCO3 mass consists in carbon.

.2.2 SOC stocks calculation

The following steps illustrate in more detail how the SOC stocks were calculated, according to Garcia-Pausas

et al. (2007), Poeplau et al. (2017) and (Eze et al. 2018):

1. SOC (%, 2022) = Ctot - Cmin for every sample (24 field parcels, North and South replicates, depths

0-10, 10-20 and rest).

2. Determination of the fine soil mass, by subtracting coarse fragments (roots and mineral parts > 2 mm)

from the total soil mass.

3. Conversion of the dry soil mass from gr to kg.
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4. Calculation of the sample volume by multiplying the area of the coring device (r=5cm, r2 * π) with the

sample depth. Volume conversion from cm−3 to m−3.

5. Calculation of the soil bulk density (kgm−3 ) by dividing the fine soil sample mass with its volume. For

the samples collected in 2022 specific soil density was used for every single sample. For the historical

samples, a mean value of 8.84 kg L−1 was used.

6. Calculation of the soil mass for the given depth under 1m−2.

7. For every depth range and parcel, the SOC stocks (kgm−2 ) were calculated by multiplying the soil

mass (under 1m−2) with the SOC concentration.

8. Sum of the SOC stocks of the two depths (0-10 and 10-20cm), to obtain SOC stocks for the first 20cm

soil depth.

9. Average of the soil density between depths 0-10 and 10-20cm. The calculation was repeated for the soil

samples of every year (1989-2021), by applying the mean soil density (0-20cm) calculated in 2022. As

the grassland is extensively managed, a constant soil density over time was assumed.

.3 Additional figures

.3.1 Soil sampling in 2022

Figure 25: Soil sampling (01.11.2022), with Robin Giger in the picture, using sampling tubes to collect probes with a defined

volume.
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.3.2 Yield over time for different productivity

Figure 26: Yield (gm−2) over time (1990-2022) for the six productivity categories. The dots represent the mean annual yield

(n=4) of the respective productivity category to which a different colour is assigned. The lines are the fitted simple linear

regression models, which are only significant for the three lowest productivity categories.

.3.3 SOC stocks over time for different productivity

Figure 27: SOC stocks (kgm−2) over time (1990-2022) for the six productivity categories. The dots represent the mean annual

yield (n=4) of the respective productivity category to which a different colour is assigned. The lines are the fitted loess curves,

which show a significant non-parametric decreasing trend for all productivity categories.

59



.3.4 Productivity and SOC stocks

Figure 28: No relationship between productivity and SOC stocks. Each graph comprises 24 dots, each representing the mean

SOC stocks and yields for the periods indicated. The colours indicate the productivity categories.
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.3.5 SOC stocks and yield over time with weather parameters

Figure 29: Mean annual SOC stocks and yield over time (n=24, 1990-2022) together with temperature and precipitation based

parameters. For the mean SOC stocks, no correlation with either yield or weather is apparent.

.3.6 No relationship between final SOC stocks (2022) and GPPpot/ER10

Figure 30: No relationship between GPPpot / ER10 and final SOC stocks (2022). Every point represents the SOC stocks in

2022 and the mean (averaged over the measuring campaigns) ratio GPPpot/ER10 for the corresponding field parcel. The dots

colour corresponds to the productivity categories.
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.4 Additional tables

.4.1 Weather in Valbella from January 2022 to June 2023

Table 7: Monthly minimum, maximum and mean temperature, Ptot and mean RelS in Valbella (January 2022 - June 2023).

Month Tmin (°C) Tmax (°C) Tmean (°C) Ptot (mm) RelSmean (%)

January 2022 -6 1.3 -2.5 21.7 48

February -6.5 1.9 -2.2 42.3 50

March -3.6 5.2 0.8 1.9 72

April -1.6 7.2 2.8 30.6 58

May 5.2 13.6 9.4 61.4 45

June 8.2 18.5 13.3 137.4 58

July 9.8 19.2 14.5 79.7 69

August 9.4 18 13.9 60.6 71

September 4.3 11.5 7.9 95.8 46

October 5.5 14 9.4 93 55

November -1.2 5.4 2 29.5 41

December -4.8 1.7 -1.5 31.4 38

January 2023 -6.5 -0.3 -3.6 5.3 35

February -4.8 2.4 -1.3 10.5 60

March -3.1 5.1 0.7 43.2 48

April -1.7 5 1.4 70.5 36

May 3.9 11.3 7.5 93.9 38

June 8.2 17.6 13.2 19.5 59
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.4.2 Mean yield and SOC stocks over time

Table 8: Mean (±SE) annual yield and SOC stocks (n=24) over time (1990-2022).

Year Mean yield (gm−2) Mean SOC stocks (kgm−2)

1990 706 ±19 9.66 ±0.27

1991 728 ±21 10.27 ±0.26

1992 579 ±19 9.85 ±0.23

1993 698 ±17 9.29 ±0.27

1994 890 ±19 10.39 ±0.23

1995 697 ±19 10.32 ±0.24

1996 854 ±27 10.33 ±0.24

1997 895 ±24 9.78 ±0.25

1998 692 ±21 9.79 ±0.24

1999 637 ±10 9.86 ±0.27

2000 823 ±14 9.90 ±0.23

2001 858 ±17 9.46 ±0.23

2002 830 ±18 9.54 ±0.25

2003 517 ±17 9.43 ±0.25

2004 784 ±17 9.56 ±0.32

2005 663 ±12 9.77 ±0.24

2006 603 ±13 9.12 ±0.23

2007 603 ±16 8.99 ±0.24

2008 968 ±32 8.68 ±0.25

2009 785 ±32 8.61 ±0.22

2010 652 ±28 9.02 ±0.28

2011 494 ±16 9.23 ±0.26

2012 695 ±28 8.84 ±0.24

2013 670 ±23 8.99 ±0.24

2014 599 ±23 8.83 ±0.23

2015 606 ±23 8.90 ±0.25

2016 822 ±25 8.88 ±0.25

2017 568 ±23 8.87 ±0.23

2018 445 ±17 8.69 ±0.24

2019 698 ±22 8.63 ±0.22

2020 518 ±16 8.85 ±0.26

2021 729 ±42 8.77 ±0.23

2022 386 ±22 8.20 ±0.18
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.4.3 Pearson correlations

Table 9: Weather parameters over time. Reported are the coefficients of the Pearson correlation test and the tau-statistics of

the Mann-Kendall test. Stars represent the significance of the tests.

Weather parameter
Year

Pearson correlation

coefficient

Mann Kendall

(tau statistics)

MAT (°C) 0.639*** 0.447***

Tmean agricultural year (log) (°C) 0.638*** 0.455***

GSL (Days) 0.250 0.159

GDDsum during GS (°C) 0.669*** 0.489***

Tmean during GS (°C) 0.525** 0.383**

GDDsum in January (°C) -0.074 -0.011

GDDsum in February (log) (°C) -0.186 -0.086

GDDsum in March (°C) 0.075 0.057

GDDsum in April (log) (°C) 0.558*** 0.413***

GDDsum in May (°C) 0.030 0.019

GDDsum in June (°C) 0.558*** 0.455***

GDDsum in July (°C) 0.352* 0.239

GDDsum in August (°C) 0.137 0.148

GDDsum in September (°C) 0.299 0.201

GDDsum in October (°C) 0.322 0.246*

GDDsum in November (°C) 0.429* 0.282*

GDDsum in December (°C) 0.366* 0.248*

RelS in during GS (%) 0.421* 0.269*

RelS agricultural year (%) 0.189 0.106

Continued on next page.
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Table 10: Weather parameters over time: Pearson correlation test and Mann Kendall test (Continued).

Weather parameter
Year

Pearson

correlation test

Mann Kendall

(tau statistics)

Ptot during GS (mm) -0.101 -0.057

Ptot agricultural year (log) (mm) -0.115 -0.023

Ptot in January (log) (mm) 0.372* 0.242*

Ptot in February (log) (mm) -0.132 -0.063

Ptot in March (log) (mm) -0.151 -0.057

Ptot in April (mm) -0.178 -0.159

Ptot in May (log) (mm) 0.155 0.064

Ptot in June (log) (mm) -0.138 -0.076

Ptot in July (mm) -0.189 -0.135

Ptot in August (mm) 0.117 0.059

Ptot in September (log) (mm) -0.078 -0.038

Ptot in October (mm) 0.041 0.049

Ptot in November (log) (mm) -0.230 -0.121

Ptot in December (mm) 0.031 0.053

Ptot in May, June and July (mm) -0.163 -0.102

IDM during GS -0.177 -0.087

IDM agricultural year (log) -0.271 -0.197
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Table 11: Pearson correlation test of weather parameters with mean annual yield and SOC stocks (n=24), respectively. The

resulting Pearson correlation coefficients are reported with the significance of the test.

Weather parameter
Pearson correlation coefficient

Yield

(gm−2)

SOC stocks

(kgm−2)

SOC annual

change (%)

MAT (°C) -0.517** -0.580*** -0.145

Tmean agricultural year (log) (°C) -0.467** -0.597*** -0.131

GSL (Days) -0.143 -0.168 0.120

GDDsum during GS (°C) -0.656*** -0.589*** -0.070

Tmean during GS (°C) -0.583*** -0.532** -0.244

GDDsum in January (°C) - -0.027 -0.167

GDDsum in February (log) (°C) - 0.150 0.436

GDDsum in March (°C) -0.116 -0.029 0.199

GDDsum in April (log) (°C) -0.554*** -0.493** -0.017

GDDsum in May (°C) -0.264 -0.200 -0.403*

GDDsum in June (°C) -0.310 -0.490** -0.141

GDDsum in July (°C) -0.396* -0.250 0.152

GDDsum in August (°C) -0.281 -0.177 0.000

GDDsum in September (°C) -0.265 -0.214 0.070

GDDsum in October (°C) -0.137 -0.262 -0.239

RelS during GS (%) -0.523** -0.404* -0.094

RelS agricultural year (%) -0.345* -0.311 -0.247

Ptot during GS (mm) 0.322 0.075 0.035

Ptot agricultural year (log) (mm) 0.320 0.068 0.107

Ptot in January (log) (mm) -0.141 -0.255 0.086

Ptot in February (log) (mm) -0.024 0.040 -0.123

Ptot in March (log) (mm) 0.401* 0.140 0.016

Ptot in April (mm) 0.414* 0.038 -0.261

Ptot in May (log) (mm) 0.105 -0.020 0.311

Ptot in June (log) (mm) 0.148 0.026 -0.106

Ptot in July (mm) 0.448** 0.096 -0.261

Ptot in August (mm) 0.072 0.000 0.087

Ptot in September (log) (mm) -0.097 0.097 0.266

Ptot in October (mm) -0.260 -0.199 -0.268

Ptot in May, June and July (mm) 0.465** 0.095 -0.084

IDM during GS 0.379* 0.151 0.060

IDM agricultural year (log) 0.427* 0.215 0.135
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.4.4 Yield over time in relation to productivity categories and weather

Table 12: Statistics results of mean yield over time for the six productivity categories. The results of the simple linear

regression model and the Mann-Kendall test are reported. The two-tailed T-test compared the mean yield between the first

and the second half of the period under study (1990-2005 and 2006-2022).

Statistical test Simple linear regression model Mann Kendall test Two tailed t-test

Productivity category Slope R2
adj p-value tau statistics p-value p-value

450 - 8*year 0.327 <0.0005 -0.439 < 0.0005 < 0.0005

490 - 10*year 0.347 <0.0005 -0.428 < 0.0005 < 0.0005

640 - 5*year 0.125 <0.05 -0.242 < 0.05 < 0.05

660 - 5*year 0.066 <0.1 -0.205 < 0.1 > 0.1

680 - 4*year 0.050 >0.1 -0.205 < 0.1 > 0.1

700 - 5*year 0.073 <0.1 -0.201 > 0.1 < 0.1

Table 13: Simple linear regression models to explain yield variations with weather. The table presents the results of the linear

regression analysis between selected weather parameters and the mean annual yield (n=24).

Explanatory variable
Regression coefficients from simple linear regression models

F df Estimate p-value R2
adj

GDDsum during GS (℃) 23.36 31 -0.42074 3.46e-05 0.4114

Tmean during GS (℃) 15.93 31 -106.92 0.000374 0.3182

GDDsum in April (℃) 13.01 31 -1.4061 0.00107 0.273

GDDsum in July (℃) 5.757 31 -1.0900 0.0226 0.1294

Ptot May-July (mm) 8.547 31 0.9377 0.006414 0.1908

IDM during GS 5.205 31 7.978 0.029543 0.1161

LGS (Days) 0.6447 31 -1.164 0.42813 -0.01123

.4.5 Correlation between SOC stocks and carbon fluxes

Table 14: Pearson correlation test between SOC stocks (kgm−2) and CO2 fluxes (µmol CO2 m−2 s−1). The resulting Pearson

correlation coefficients are reported; a significant negative correlation was only found between final SOC stocks and GPPpot.

CO2 fluxes SOC stocks 2022 SOC relative change (%)

ER10 0.22 0.07

GPPpot -0.44* -0.28

GPPpot/ER10 -0.32 -0.14
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.4.6 Plant carbon content lost through harvest

Grass cut during the three harvests in 2022 was analysed for carbon content. For each harvest, the amount

of plant carbon content (g) for 1 kg of grass was determined. This amount was averaged to determine what

percentage of the grass is made of carbon. The amount of plant carbon content lost to cutting was also

summed between the three harvests, and scaled by the actual yield to obtain the net plant carbon content

(g) lost in 2022. Table 15 reports the results of plant carbon content lost with harvest (in % and in g) for

the 24 field parcels of interest.

Table 15: Plant carbon content lost through the three harvests in 2022 (25 May, 19 July, 22 September). Mean values (n=4)

are reported for the six productivity categories.

Productivitycategory Plant carboncontent lost (%) Plant carboncontent lost (g)

450 47.161 ±0.018 a 111.926 ±1.301 a

490 46.617 ±0.257 ab 123.762 ±10.815 a

640 46.369 ±0.146 b 198.976 ±7.950 b

660 46.020 ±0.172 b 218.563 ±13.376 b

680 46.295 ±0.170 b 204.263 ±15.239 b

700 46.193 ±0.143 b 215.629 ±8.526 b

.5 R code

The following figures illustrate some selected R codes as an example of the analysis performed.

Figure 31: R code used to load the necessary packages.
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Figure 32: R code used to read the data saved in .xlsx format.

Figure 33: R code used to compute some summary statistics, such as average and standard error.
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Figure 34: R code used to check the assumptions of the simple linear regression model, perform the analysis and save the

results as a table.

Figure 35: R code used to run several simple linear regression model in for-loops, repeating the analysis for multiple variables.

A first example.
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Figure 36: R code used to run several simple linear regression model in for-loops, repeating the analysis for multiple variables.

A second example.

Figure 37: R code used to perform the Mann-Kendall test, for a single variable and in for-loop.
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Figure 38: R code used to perform the two-tailed T-test. Continued in the next Figure.

Figure 39: R code used to perform the two-tailed T-test (continued).

Figure 40: R code used to perform the Wilcoxon rank-sum test, when the T-test assumptions were not fulfilled.
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Figure 41: R code used to perform the Analysis of Variance (ANOVA). A special case regarding the repeated measures

ANOVA, which is used to compare means across variables based on repeated observations, is reported.

Figure 42: R code used to perform the Friedman rank sum test, as a non-parametric alternative when not all ANOVA

assumptions were fulfilled.

Figure 43: R code used to perform multiple pairwise comparisons using the Tukey’s HSD method.
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Figure 44: R code used to create plots. A first example.

Figure 45: R code used to create plots. A second example.
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