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Abstract 
Biodiversity in grasslands is decreasing, worldwide as well as in the Swiss Alpine regions, 
which is why effective monitoring methods are needed. Remote sensing can provide broader 
spatial coverage, potentially addressing the limitations of conventional field surveys. This 
study investigated whether the spectral diversity of agriculturally managed plots in the Lower 
Engadin could serve as a proxy for biodiversity. Leveraging an object-based approach, it 
analysed the spectral diversity on plot level and related it to the management type. Remote 
sensing data (AVIRIS-NG, SwissImage RS and Sentinel-2) and agricultural plot data were 
processed, different data aggregation techniques and different quantification methods were 
tested. Most applications revealed significant differences between management types, but the 
results were not consistent across all datasets. However, consistent results could be achieved 
at different spatial and spectral resolutions. Important findings revealed that pastures 
exhibited higher spectral diversity than artificial meadows, most likely due to structural 
elements. Large differences were observed between mown and unmown plots, which suggests 
that a multitemporal analysis of the different conditions might be useful. Furthermore, the 
analysis highlighted the significance of dataset selection, aggregation, and applied spectral 
metrics. The study showed there is potential for spectral diversity to serve as a proxy for 
certain biodiversity parameters in alpine grasslands. While the object-based approach is 
feasible, careful interpretation and consideration of local conditions are essential. Overall, this 
research contributes to understanding spectral diversity's utility in assessing biodiversity and 
underscores the complexity of ecological relationships. 
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1 Introduction 

1.1 Motivation 
The grassland biodiversity is declining worldwide (Brondízio et al., 2019; IPCC, 2022). This 
trend is also observable in Swiss alpine grasslands (BAFU, 2016; Graf et al., 2014). To 
mitigate this decline, comprehensive monitoring of the affected ecosystems is essential.  The 
coverage of traditional field surveys is often limited by logistical and financial constraints. 
Modern remote sensing systems bear the potential to close the gap produced by a limited 
availability of plant surveys on grasslands. Therefore, remotely sensed data may offer the 
opportunity to provide information about the biodiversity of grasslands at large spatial scales. 
Biodiversity can be understood ambiguously and is quantified in different ways, which also 
offers a wide range of methods to measure it (e.g., Andermann et al., 2022; Pimm, 2023; 
Tilman et al., 1997). One promising method for remote measurement of biodiversity exploits 
the spectral diversity of the recorded data. This means trying to translate the variability in the 
reflectance of the measured wavelengths into insights about different aspects of biodiversity. 
In the last years, the spectral diversity has been increasingly recognized as a valuable 
indicator for different facets of plant diversity (Gholizadeh et al., 2019; Homolová et al., 
2013). But up to date, most applications are limited to experimental plots (Gholizadeh et al., 
2019; Rossi et al., 2020, 2022). The spectral diversity is calculated on areas with regular and 
uniform shapes and sizes, e.g., 20 m ´ 20 m, 60 m ´ 60 m window or polygons (Gholizadeh 
et al., 2019; Rossi et al., 2020). 
 
When studying the spectral diversity at larger spatial scales, the use of regular areas is 
restricted to natural grasslands, where no anthropogenic structure is present, or when the plots 
are defined manually. Agricultural landscapes exhibit a distinctive mosaic-like spatial 
structure which includes field boundaries, roadways, and fields at different phenological and 
management phases, all of which contribute to the inflation of spectral diversity 
measurements. Hence there might be a high spectral diversity, besides a low biodiversity. 
Therefore, when studying the spectral diversity in agricultural areas, the spatial units 
underlying the analysis need to be defined differently.  
 
So, to study the spectral diversity of agricultural areas, spatial units need to be defined, that 
represent the local management structures. For the study area, the Lower Engadin Valley in 
the Swiss mountains, the Canton of Grisons provides a spatial dataset containing the 
agricultural plots with their respective management types. A large part of the agricultural 
plots of the Lower Engadin is split up into very small areas of the size of only a few dozen 
square meters. Plots of sizes this small are not suited to be analyzed with the available data.  
Therefore, the original plot dataset must be processed to group plots together so that they 
exceed a certain minimum size. The refined dataset allows to study the spectral diversity of 
the Lower Engadin agricultural land plot by plot and also provides reference data in the form 
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of the management types. Hence, spectral diversity is calculated for individual agricultural 
plots, thereby characterizing the plant diversity unique to each plot.  We refer to this plot 
analysis method, as object-based approach.  
 
For this study, the data of different sensors is used, each with distinctive spatial and spectral 
resolution. AVIRIS-NG has high spectral resolution and medium spatial resolution (Jet 
Propulsion Laboratory, 2022a), SwissImage RS a very high spatial resolution, but only four 
spectral bands (Bundesamt für Landestopografie (Swisstopo), 2023b) and Sentinel-2 the 
lowest spatial resolution and medium spectral resolution (Sentinel Hub, 2023). It is essential 
to understand the differences between these sensors and to examine their capability to 
measure the spectral diversity. 
 

1.2 Objectives 
The overall objective of this thesis is to assess whether the previously presented object-based 
approach can be successfully applied to alpine grassland. In the course of this, different 
remote sensing datasets varying in spectral and spatial resolution are considered (AVIRIS-
NG, SwissImage RS and Sentinel-2) and assessed for suitability. For these datasets, several 
methods of data aggregation and means to quantify spectral diversity are tested. The aim is to 
identify differences between different management types and to relate them to factors relevant 
to biodiversity. The purpose of this work is to investigate the potential of remote sensing data 
for studying the biodiversity of alpine grassland. Different methods and approaches for 
assessing the spectral diversity of alpine grassland will be explored and promising methods 
will be proposed. 
 

1.3 Research Question 
These objectives are investigated by answering the following questions. 
 

1) Is it possible to study the spectral diversity of agriculturally managed plots in the 
Lower Engadin using an object-based approach? 

 
The first question concerns the data aggregation, especially for the plot data, which needed 
refinement. It asks whether plot data and remote sensing data can be brought in relation and 
whether the available reference data is useful. 
 

2) How can the spectral diversity of agriculturally managed plots of the Lower Engadin 
serve as a proxy for biodiversity measures? 

 
The second research question relates to how remote sensing data can best be used to measure 
biodiversity. Thus, to answer this question, it is necessary to observe which biodiversity 
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parameters can potentially be predicted, which data sets need to be used and how the data 
need to be aggregated and analyzed. 
  

1.4 Outline 
This thesis is structured as follows: The literature review explains how biodiversity and 
remote sensing data can be related and what approaches have been taken so far. In the 
material section, the study area and the used datasets are introduced. The method section 
presents the applied methodologies, while the emerging findings are presented in the result 
section. The discussion shows major limitations and tries to provide explanations for the 
observed phenomena. Finally, the conclusion summarizes the most important findings. 
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2 Literature Review 
For a better understanding of this chapter, the most important definitions of biodiversity: 
 

- Ecosystem: the complex of living organisms, their physical environment and all their 
interrelationships in a particular unit of space(Britannica, 2023). 

 
- Biodiversity (also called biological diversity): The variety of life found in a place on 

earth or the total variety of life on earth (Pimm, 2023). Biodiversity can be understood 
and studied in different ways. This is because the concept of biodiversity offers a 
range of perspectives and approaches to quantify it. For example, the taxonomic 
diversity studies the richness and abundance of species (Le Bagousse-Pinguet et al., 
2019), while the genetic diversity refers to the the range of different inherited traits 
within and among species (Finlay & Cooper, 2015). Biodiversity is not only 
understood globally but also locally or regionally. Because of its versatility, 
summarizing this complex and multidimensional concept in a single measure is 
problematic. Multiple mathematical indices have been proposed for this purpose, but 
these can provide contradictory results leading to misleading or incorrect conclusions 
about a community’s diversity (Daly et al., 2018). 

  
- a - Diversity: Alpha diversity refers to diversity on a local scale, describing the 

species diversity (richness) within a community (Andermann et al., 2022). 
 

- b - Diversity: Beta diversity describes the amount of differentiation between species 
communities (Andermann et al., 2022). 

 
- Functional Diversity: Describes the range of things that organisms do in communities 

and ecosystems (Petchey & Gaston, 2006). Therefore, it is the quantification of 
biological diversity that accounts for functional and phenotypic differences (Cadotte et 
al., 2011). FD is also described as the number of functionally different roles 
represented in an ecosystem (Tilman et al., 1997). FD has effects on the properties of 
an ecosystem, which are directly relevant to ecosystem services (Díaz et al., 2007). On 
grassland, structural elements like trees, hedges, bushes, or stone- or brush piles 
increase functional diversity. The reason for this is that they contribute functions on 
their own or provide a habitat for species that contribute functions that are not 
present in plain grassland. 

 
- Species Richness: A common measure of biodiversity, it counts the number of species 

in an area (Pimm, 2023).  
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- Plant Traits: Describe the morphological, anatomical, physiological, biochemical and 
phenological characteristics of plants and their organs (Kattge et al., 2011). 

 
- Plant Functional Diversity: The variation of plant traits (Rossi et al., 2020). 

 
- Spectral Variation Hypothesis: States that the spatial variability in the remotely 

sensed signal is related to environmental heterogeneity and could therefore be used as 
a powerful proxy of species diversity (Rocchini et al., 2018). 

 
- Ecosystem Services: The outputs, conditions, or processes of natural systems that 

directly or indirectly benefit humans or enhance social welfare (Johnston, 2018). 
 

- Environmental Factor: Any factor, abiotic or biotic, that influences living organisms 
(Gilpin, 1996). For this study, it is understood as factors without direct human impact 
(e.g., through infrastructure or agricultural management) 

 

2.1 Global State of Biodiversity 
According to the Living Planet Report (WWF, 2022), between 1970 and 2018 there has been 
a worldwide decline of monitored wildlife of 69%. This number indicates that global 
biodiversity is endangered. Biodiversity can be described as the variety of life and the 
interactions between organisms at all levels. This includes life in terrestrial, freshwater and 
marine ecosystems. These ecosystems provide various ecosystem services like oxygen, food 
and medicines and therefore are crucial for human living on earth. Furthermore, they regulate 
the climate, air quality, quality and quantity of fresh water, soils, ocean acidification, 
pollination and the dispersal of seeds and diseases (WWF, 2022). Different reports show that 
various kinds of ecosystems are under pressure (Brondízio et al., 2019; IPCC, 2022; 
Secretariat of the Convention on Biological Diversity, 2020; WWF, 2022). The major forces 
putting ecosystems under pressure are changes in land and sea use, the overexploitation of 
plants and animals, pollution, invasive alien species and climate change. Due to these 
pressures, it is estimated that the local biodiversity intactness has already been reduced 
beyond its planetary boundary on more than half of the world’s surface (Newbold et al., 
2016). 
 
The loss of ecosystems and biodiversity is not equally dispersed over the planet. To 
understand the trends in different regions, the Intergovernmental Science-Policy Platform on 
Biodiversity and Ecosystem Services (Brondízio et al., 2019) divided the world into different 
geographic regions (North America, Latin America and the Caribbean, Europa and Central 
Asia, Asia and the Pacific and Africa). This segmentation shows that between 1970 and 2020, 
the biodiversity loss in Latin America and Africa was much more severe than in Europe and 
North America. But still, the State of Nature in the EU – report (European Union. European 
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Environment Agency., 2020) shows some alarming signals regarding the condition of 
biodiversity. Even though there have been significant efforts across the member states of the 
European Union, biodiversity is still declining in wide parts of Europe (European Union. 
European Environment Agency., 2020). As the main pressures on ecosystems are still present, 
most of the protected areas in the EU are in poor condition (European Union. European 
Environment Agency., 2020).  
 
Also in Switzerland, biodiversity is not in a satisfactory state. 47% of all 160 types of habitats 
in Switzerland are under pressure. On a species level, 36% of all evaluated animal, plant and 
fungus species are categorized as threatened on the Red Lists (Federal Office for the 
Environment FOEN, 2014). Habitats in Switzerland are disappearing particularly in 
agricultural areas, in areas that are used for settlement and transport and where land use is 
becoming more and more intensive (Federal Office for the Environment FOEN, 2014). 
 
In recent years, there has emerged a more profound understanding of biodiversity and its 
importance for human living on earth. Also, there is now a better understanding of which 
policies, practices, technologies and behaviors can lead to the conservation and sustainable 
use of biodiversity (Brondízio et al., 2019). Consequently, at the Nagoya Biodiversity Summit 
in 2010, the United Nations introduced the Aichi Biodiversity Targets (Convention on 
Biological Diversity, 2020). These targets provided an overarching framework on biodiversity 
for the years 2011 until 2020 with the vision that by 2050 biodiversity should be valued, 
conserved, restored and wisely used. Ecosystem services should be maintained, and a healthy 
planet sustained. 20 strategic goals were defined that targeted the societal perception of 
biodiversity, aimed to reduce the direct pressures on biodiversity and enhance the benefits of 
all from biodiversity. Globally, there has been positive progress for only a small majority of 
the targets, while for most of the targets, there has been poor progress (Brondízio et al., 2019). 
The targets that were reached mostly concerned the understanding of biodiversity loss and 
developing strategies against it. The targets concerning actual protection mostly have been 
missed, so the Aichi Biodiversity Targets have not led to a change in the declining trend.  
 
The Swiss attempts to implement the Aichi Biodiversity Targets led to progress addressing 
public awareness of biodiversity and the conservation of the genetic diversity of cultivated 
plants and farmed animals. The Swiss government tried also to achieve further targets, for 
example, to eliminate incentives that are harmful to biodiversity. However, the measures 
taken have not led to a more sustainable use of resources, a reduction in pollution or the 
creation of sufficiently large and contiguous protected areas. (Federal Office for the 
Environment FOEN, 2014). 
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2.1.1 Decline of Grassland Biodiversity 
The alpine meadows of the lower Engadin belong to the surface class of temperate grasslands. 
Temperate grasslands comprise steppes, prairies and pampas, high-altitude steppes, forest 
steppes and wood pastures (Brondízio et al., 2019). They cover globally an area of 13 million 
km², which makes 5 - 10% of the global terrestrial surface. Temperate grasslands often show 
a high biodiversity of mammals and birds and are also important for global carbon storage 
(Brondízio et al., 2019). Globally, temperate grasslands belong to the habitats that show the 
highest plant species richness (Wilson et al., 2012). This richness is endangered, as no other 
biome has experienced the level of degradation and conversion as temperate grasslands 
(Brondízio et al., 2019). In the last century ca. 60% of the temperate grasslands have been 
converted. In North America and Europe, less than 10% remains intact while the decline is 
continuing. In the member countries of the EU, 49% of grassland areas show a bad 
conservation status (European Union. European Environment Agency., 2020). Therefore, 
grassland belongs to the habitats with the highest share of areas in a bad conservation status 
(European Union. European Environment Agency., 2020). Over the last century, most of the 
grassland habitats have been lost. Most often this is due to an intensification of agricultural 
cultivation and land use. That agriculture is a major pressure on biodiversity is evident from 
recent trends in agricultural habitats. Only 8% of agricultural habitats show improving trends, 
whereas 45% are assessed as deteriorating (European Union. European Environment Agency., 
2020). 
 
Alpine grasslands provide ecosystem services that are of important value for stakeholders in 
alpine regions like farmers, other local residents and tourists. Important ecosystem services 
for those stakeholders are e.g., fodder production, prevention of snow gliding, cultural 
heritage, habitat for pollinators or the maintenance of soil fertility (Díaz et al., 2007). 
 
Swiss agricultural habitats are also under major pressure. Due to the intensification of 
agriculture, habitats have decreased in size and of many habitats there are only very small 
areas remaining (BAFU, 2016). The pressure by intensification of the agriculture is increasing 
especially in mountain areas of Switzerland. Extensively cultivated areas often show 
characteristics of structural diversity. This means that these meadows and pastures are 
intersected by a diverse range of landscape components (e.g., hedges, stone- or brush piles), 
which can be valuable habitats for animal- and plant species and soil. Diverse landscape 
components can interfere with intensive agricultural management. To facilitate management, 
landscape components are removed. This leads to a decreased structural diversity. Practices 
that lead to this effect are the removal of landscape components, the draining of wet areas, the 
irrigation of dry meadows or the fertilization of nutrient-poor areas. Amongst the most 
endangered habitat types in Switzerland are dry meadows and pastures. Between 1900 and 
2010, dry meadows and pastures have lost around 95% of their size in Switzerland (BAFU, 
2016). A negative development is observed especially in mountain areas. 
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A large share of meadows and pastures in the Engadin are classified as dry meadows. A 
previous study has revealed that 20% of the former area of unimproved grassland types has 
disappeared and was mostly transformed into fertile habitat types (Graf et al., 2014). 
Unimproved grassland accounts for grassland that has not been artificially fertilized, plowed 
or reseeded and therefore often is exceptionally rich in species. Moreover, nutrient-poor 
meadows lost one-third of their former area mainly to fertile meadows and nutrient-poor 
pastures lost 17% to fertile pastures and abandonment. Extensively used agricultural land lost 
15% and intensively used land increased by 21% during the examined timespan. In 
1987/1988, extensive land covered 60%, intensive land 33% of the agricultural area; in 
2009/2010, the share of extensive land decreased to 51% and intensive land increased to 40%. 
The loss of extensively used areas was mainly due to intensification and much less due to 
abandonment. This shows a transition of either unimproved grassland towards cultivated 
grassland or from extensively used agricultural land towards intensively used agricultural 
land. Furthermore, several studies conducted on alpine grasslands in Switzerland revealed that 
the intensification of the management of agricultural grasslands is a major threat to 
biodiversity (Boch et al., 2021; Humbert et al., 2021). 
 

2.2 Assessing Biodiversity 
Biodiversity is crucial for the ecosystem services that an ecosystem can provide. The impact 
of biodiversity on ecosystem services can be assessed by identifying the key characteristics 
through which organisms affect ecosystem properties (Bello et al., 2010). The delivery of 
ecosystem services is directly modulated by the FD of biological communities (Díaz et al., 
2007). Common biodiversity concepts are the a - Diversity and the b - Diversity, which were 
described earlier. As for this study, diversity is not studied on a species level, the applied 
approach comes closer to examining the characteristics of the b - Diversity. I expect that 
when studying the spatial heterogeneity of ecosystems, the obtained results might represent 
the diversity of traits (e.g., functional diversity) better than the diversity of species (similarly 
to e.g., Schneider et al., 2017. This is because FD consists of elements of different spatial 
scales. Some features that impact FD on grasslands have sizes that small so they cannot be 
examined with the available datasets, whereas this is possible for other features (e.g., trees, 
large stones, hedges). FD is a term that can be interpreted in different ways. In a general 
interpretation, it is understood as the phenotypic diversity of organisms. More recent 
definitions have focused on the value and range of organismal traits that influence ecosystem 
functioning (Petchey & Gaston, 2006). FD can be linked to other biodiversity – concepts. For 
example, Naeem & Wright (2003) have found a positive relationship between FD and species 
richness. The FD of an ecosystem can influence various of its processes (Tilman et al., 1997). 
Results even suggest that the number of functionally different groups present in an ecosystem 
may even be a stronger determinant of ecosystem processes than the total number of species 
(Tilman et al., 1997). To get meaningful conclusions from measurements of FD, it should be 
the goal to define traits that are important for the functioning of ecosystems. Various studies 
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have shown that locally, ecosystem functions are linked to functional diversity (Bello et al., 
2010; Díaz et al., 2007; Rossi et al., 2020). The dominant mechanisms by which this is done 
are the mass ratio, niche complementarity and buffering capacities, but are strongly dependent 
on the functional attributes of the local ecosystem (Balvanera et al., 2006; Díaz et al., 2006, 
2007). According to Petchey and Gaston (2006), measuring FD should ideally meet the 
following standards: 
 

- Appropriate functional information (traits) about organisms should be included in the 
measure. Irrelevant information should be excluded. 

 
- Traits should be weighted according to their relative functional importance. 

 
- The statistical measure of trait diversity should have desirable mathematical 

characteristics. 
 

- The measure should be able to explain and predict variation in ecosystem-level 
processes. 

 
Among ecosystem traits are plant traits. Plant traits are structural, physiological, biochemical 
or phenological features, e.g., plant height, photosynthesis rate, nitrogen content or leaf 
phenology (Homolová et al., 2013). Ecologists have identified hundreds of plant traits 
(Homolová et al., 2013). They are measured at the level of individual plants but also on the 
canopy level (Homolová et al., 2013). The diversity of plant traits affects the properties of an 
ecosystem and thus also the ecosystem services it provides. Plant traits determine how 
primary producers respond to environmental factors, affect other trophic levels and influence 
ecosystem processes and services (Kattge et al., 2011). Additionally, they provide a direct link 
from functional diversity to species richness (Kattge et al., 2011). 
 
Due to the large logistical effort and being time intensive, field measurements of plant trait 
data are limited to small areas, to a certain moment in time and to a certain number of species 
only (Homolová et al., 2013). Remote sensing techniques offer the potential to solve these 
constraints. They can provide spatially contiguous information, cover larger areas and allow 
repeated measurements without disproportional efforts. Furthermore, remote sensing 
techniques are very well suited to extract spatial variation, which is an important 
characteristic of biodiversity (Rocchini et al., 2018). For this study, specific traits (greenness, 
chlorophyll content and water content) are assessed, but also the entire spectral signature of 
plants and communities. In heterogeneous environments, these traits can vary spatially. Areas 
with highly heterogeneous environments can host more species due to their higher number of 
available niches (Rocchini et al., 2010). Heterogeneous environments can be expected to have 
a high structural diversity. Extensively managed areas host a higher structural diversity 
(BAFU, 2016) than intensively managed, this information provided by the agricultural plot 
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dataset is exploited to find a relationship between spectral diversity and environmental 
heterogeneity.  
 

2.3 Assessing Biodiversity Using Remote Sensing Techniques 

2.3.1 Introduction to Vegetation Measurements 
Interactions between incident radiation and canopy elements are described by three main 
physical mechanisms: absorption, reflection and transmission. Radiation is emitted by the sun 
and interacts with the atmosphere, the canopy and the radiation reflected by the canopy can be 
retrieved by remote sensing instruments. The solar reflected radiation in the range between 
380 and 2500 nm is commonly used in vegetation studies because most of the diagnostic 
absorption features of green vegetation are located in this part of the spectrum. The 
reflectance of vegetation canopies depends on the radiative properties of leaves, other non-
photosynthetic canopy elements and their spatial arrangement (Homolová et al., 2013).  
 
Remote sensing measurements are characterized by their spatial resolution (addressing the 
pixel size), temporal resolution (addressing the temporal intervals, in which the measurement 
is repeated) and spectral resolution (addressing the sample of the electromagnetic spectrum 
that is covered). For each pixel of the resulting image, the incoming radiation is detected at 
one or more wavelength ranges and measures the mean reflection within the ground ranging 
distance of this pixel. When obtaining grassland data, with a decreasing spatial resolution 
(i.e., increasing pixel size), more and more individual plants occur within a single pixel. This 
leads to spectral signatures of several species to be detected combined together by the sensor. 
Grassland plants have smaller canopies than many other vegetation types. This means that 
space- or airborne measurements are almost always on canopy level and not on plant or even 
leaf level. Consequently, pixels do not contain a pure signal of single plants but a mixed 
signal of multiple plants. 
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Figure 1: Illustration of the Spectral Diversity of a Plot (white polygon, left image). The color of each pixel 
within the plot represents the reflectance value of the pixel (right image). The visualized values are 
randomly generated for visualization purposes and do not represent measured values. The spatial resolution 
of the generated raster has a lower spatial resolution than the AVIRIS-NG and SwissImage datasets, 
therefore the clipped raster areas of these datasets do match the area of the polygon more precisely.  

The environmental diversity is transferred to measurable variables on plot level in the 
following manner: For each pixel, the reflectance properties are measured as a mean 
reflectance value. As illustrated in Figure 1, each plot consists of a variable number of pixels. 
Using measures of variability, the spectral diversity of one plot can be calculated. Then, the 
spectral diversity of different plots can be compared (Figure 2). Similar to the metrics of α 
and β diversity, Cavender-Bares et al. (2017) labeled differences in spectra among pixels 
within a plot as alpha spectral diversity and among plots as beta spectral diversity. 

 
Figure 2: Illustration of the Spectral Diversity of several neighboring Plots (white polygons, left image). 
Each Plot has a spectral variability, that can be compared between plots. The visualized values are 
randomly generated for visualization purposes and do not represent measured values. 
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2.3.2 Assessing Biodiversity with Remotely Sensed Data 
Applications of remotely sensed data for assessing the functional diversity of ecosystems 
build on the underlying assumption that higher spectral variation in canopy reflectance is 
caused by either variation in habitats, plant communities with their specific optical 
community traits or in the species themselves with their specific optical traits (Fassnacht et 
al., 2022). This link between spectral variation and plant biodiversity is also referred to as the 
Spectral Variation Hypothesis, which predicts a link between spectral heterogeneity and 
biodiversity (Palmer et al., 2002). The environmental heterogeneity is most often assessed by 
studying the variation of plant traits. For that, a wide range of plant traits are considered. 
When working with coarse spatial and spectral resolution data, plant traits are studied as 
properties of the entire canopy. For these applications, among others vegetation indices are 
used to quantify the variation of plant traits (Homolová et al., 2013; Turner et al., 1989). The 
emergence of instruments with high spectral resolution allows a more detailed estimation of 
plant traits (Homolová et al., 2013). Very specific traits were measured like this, e.g., single 
plant pigments and leaf fluorescence (Blackburn, 2007; Homolová et al., 2013; Ustin et al., 
2009).  
 
The interpretation of the link between spectral variation and actual environmental 
heterogeneity depends on multiple factors and is often ambiguous. A major challenge in 
measuring plant characteristics with remote sensing data is the structure of the canopy. Taking 
measurements on the canopy level has a negative impact on the retrieval accuracy of single 
biochemical traits (Homolová et al., 2013). This is because an average value is measured, 
neglecting the small-scale variations. A further issue that is important to be considered is that 
the spectral variation caused by species or functional traits is often subtle in comparison to 
other factors, that are present in a study area (Fassnacht et al., 2022). The exposure of bare 
soil or plant litter can for example affect the measured environmental heterogeneity 
significantly (Gholizadeh et al., 2018; Hauser et al., 2021). Filtering of pixels detecting bare 
soil improves the performance of spectral diversity metrics but can be difficult, especially for 
sensors with coarse spatial resolution (Gholizadeh et al., 2018). A further restriction is the 
selection of plant traits. Using empirical data often lacks a causal relationship (Homolová et 
al., 2013). This means that when working with airborne or spaceborne imagery, the applied 
metric often does not directly represent a specific plant trait. Consequently, the emerging 
statistical relationships are often less robust and transferable, as they are usually site and time 
specific (Homolová et al., 2013). Additionally, it is important to be aware that potential 
insights can be superimposed by effects that are not specifically studied. Accordingly, Hauser 
et al (Hauser et al., 2021) showed, that properties of the vegetational cover (canopy 
architecture, exposure of bare soil, plant litter) can veil potential variations of FD. When 
analyzing the environmental heterogeneity of grassland, it is important to be aware of these 
methodological constraints. 
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2.3.3 Scale Effects 
The first issue with scale is that the exact relationship between species counts and area 
depends on the characteristics of the ecosystem that is analyzed (Fassnacht et al., 2022). This 
issue refers to the size of the examined area and is independent of the remotely sensed data 
acquisition.  
 
Further scale effects refer to effects related to the spatial extent of the study area in relation to 
the spatial grain (pixel size, ground sampling distance or spatial resolution) of the remotely 
sensed data. When calculating local spectral heterogeneity for local species diversity 
estimates, pixels should be smaller than the sampling units (Rocchini et al., 2010). This is a 
further restriction that limits the available data.  
 
Finally, there is an impact of the spatial resolution on the performance of spectral diversity 
metrics (Gholizadeh et al., 2018; Wang et al., 2018a). It can be assumed, that the coarser the 
spatial grain of a remotely sensed data set is at a given location, the more species occur within 
an individual pixel. However, as this diversity lies within one pixel, the diversity cannot be 
measured using remote sensing techniques and is only represented by a mean reflectance 
value. This means that a smoothing of the original diversity happens when a coarse resolution 
is used. Consequently, it can be expected that the coarser the spatial grain of the remotely 
sensed data is, the smaller the overall spectral variation across all pixels of a given area 
(Fassnacht et al., 2022; Rocchini et al., 2010). Statistically, the spatial variability of 
reflectance values should reach its maximum, when the spatial grain of each pixel is equal to 
the size of the objects under examination (Rocchini et al., 2010). As grassland plants are 
usually of the size of a few millimeters to centimeters, working with high spatial resolution 
data should reveal the most precise predictions. But there are also contradicting effects, which 
can corrupt the performance of high-resolution data. For example, when pixels with a very 
high spatial resolution (e.g., a ground spatial distance of ∼1 to 5 m) are used, shadows can 
create a higher spatial heterogeneity among spectra (Rocchini et al., 2010). As this 
heterogeneity does not come from a high environmental diversity, these impacts can lower the 
quality of the predicting metrics. Accordingly, several studies have shown that the 
relationship between spectral diversity and species richness is not consistent across scales 
(Gholizadeh et al., 2018; Wang etal., 2018). Wang et al. (2018) stated that the optimal pixel 
size for plant-biodiversity studies varies depending on the size of the individual organisms. 
Contrastingly, Gholizadeh et al. (2018) claim, that the performance of the quantification 
decreases with increasing pixel size. To study grassland biodiversity both suggest working 
with a higher spatial resolution than when studying the biodiversity of a forest canopy. 
Therefore, the spatial resolution should be adapted to the ecosystem under analysis. Wang et 
al (2018) propose a pixel size of 1mm to 10cm as optimal to predict prairie biodiversity. 
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2.3.4 Temporal Variations  
Ecosystems show temporal variations, which are also captured in the spectral signal. These 
variations consist of daily, seasonal and irregular variations. Examples of daily variations are 
the photosynthetic activity or the leaf orientation of plants (Chávez et al., 2014). This 
variation needs to be considered especially when data acquisition does not always happen at 
the same time of the day. Seasonal variation can have a strong impact on the spectral signal. 
So has the relationship between field- and remote sensing-based α- and β-diversity detected to 
weaken towards the end of the growing season (Gholizadeh et al., 2020). Flowering events 
that occur seasonally also have a large impact on the spectra signal (Fassnacht et al., 2022). A 
way to get a better understanding of seasonal effects is to conduct repeated measurements 
throughout the season. The irregular variation stands for the impacts of temporary stresses and 
disturbances, that do not occur regularly (e.g., mowing events, drought and effects of wind 
and rain) (Fassnacht et al., 2022).  
 
Because of these temporal variations, species can have unique spectral signatures at one time 
but less pronounced differences at another time (Fassnacht et al., 2022). This leads to a 
variation in the measured environmental heterogeneity. So, it can be difficult to establish a 
stable relationship between spectral variation and biodiversity metrics in areas with a 
pronounced temporal dynamic (Fassnacht et al., 2022). To use spectral variation as a reliable 
predictor for biodiversity, it is crucial to identify suitable time windows or to include the 
temporal dimension into the applied spectral variation measure (Fassnacht et al., 2022). An 
important temporal variation especially on managed grassland is mowing. After a mowing, 
the spectral signal of a meadow can completely change from one day to another. Therefore, it 
is important to keep track of mowing events as well as to analyze their implications on 
spectral diversity measurements.  
 

2.4 Spectral Metrics 
Spectral diversity metrics are applied to predict environmental heterogeneity by quantifying 
the variation in spectral data. They are calculated based on the distance between pixel values 
in a multidimensional spectral space. The position of a pixel in the multidimensional spectral 
space is given by its reflectance value of each band. If all pixels of a sample have similar 
reflectance values, they build a small and dense point cloud. Pixels with large differences in 
reflection values at different wavelengths result in dispersed point clouds. 
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Figure 3: With multispectral remote sensing, a value (digital number) is recorded per pixel and band. 
Spectral metrics quantify the dispersion of the pixel values in the spectral space. Figure from Rocchini et al. 
(2010). 

There is a wide range of diversity metrics in use and their performance can vary significantly 
depending on various factors (e.g., spatial resolution and exposure of bare soil) (Gholizadeh et 
al., 2018). The metrics can be calculated to quantify variation over the entire spectra of the 
acquired data, but also to quantify specific characteristics. Metrics that performed well on 
grassland applications are the Variance (Dahlin, 2016), Standard Deviation, Coefficient of 
Variation (CV) and Spectral Angle Mapper (Gholizadeh et al., 2019). Another commonly 
used metric on grassland and agricultural areas is the Rao's Q diversity index, which 
addresses the abundance and the pairwise spectral distance among pixels (Rocchini et al., 
2017, 2018; Tassi et al., 2022). The algorithm calculates the expected difference in reflectance 
values between two pixels drawn randomly with replacement from the considered evaluated 
pixels set and is often applied to the NDVI (Tassi et al., 2022). It is important to emphasize 
that the performance of those metrics strongly depends on the local circumstances and 
measurement parameters. Hence, only because they performed well in a hereby presented 
application, does not mean that they lead to meaningful results in other applications. 
 

2.5 Similar Studies 
Directly neighboring to the research area is the Swiss National Park (SNP). The SNP is a 
protected mountain area in the canton of Grisons, which is unique in Switzerland because it 
has not been managed for the last 100 years (Rossi et al., 2020). The SNP was founded in 
1914 and belongs to the category with the highest protection according to the International 
Union for Conservation of Nature (IUCN) (Schweizerischer Nationalpark, 2023). On an area 
of 170 km2 habitats and natural processes can develop protected from human influences 
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(Schweizerischer Nationalpark, 2023). Studies on grassland biodiversity were conducted in 
this area (Rossi et al., 2020, 2022). Its grassland areas differ from the grassland areas in the 
lower Engadin, as they are not managed. Due to the management, the methodologies to study 
spectral diversity need to be adapted to areas that are managed, which will be described in 
more detail in the methods section. 
 
Not only were studies conducted on a similar field and on a neighboring area, but also with 
similar data. Rossi et al. (2022) also included data acquired with AVIRIS-NG in July 2018 in 
their analysis. Further applications in related fields of AVIRIS hyperspectral data are 
Blackburn (2007) (using a predecessor instrument) and Dahlin (2016). Sentinel-2 data have 
been used for biodiversity studies on grassland (Hauser et al., 2021; Ma et al., 2019; Rossi et 
al., 2020). 
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3 Materials 

3.1 Study Area 
The Engadin is an inner-alpine valley in the canton of Grisons, which reaches from Maloja to 
Martina at the border Swiss-Austrian border. The examined data reaches from the village 
Martina up to the village Lavin over 30 km. The Lower Engadin is situated adjacent to the 
SNP, the largest and oldest protected area of Switzerland.  

 
Figure 4: Study area and MeteoSwiss meteo stations in the Lower Engadin Valley. 

 The Lower Engadin belongs to the mountain area of the Eastern Central Alps. The slopes on 
both sides of the valley end up in prominent mountain ridges with peaks reaching heights of 
3400 m asl. The elevation of the valley ground ranges from 1035 m asl (Martina) to 1387 m 
asl (Lavin). The landscape of the valley is characterized by a northern slope with medium 
steepness, a steep and mostly forested southern slope, and the river Inn at the bottom of the 
valley. Most of the villages are located on the northern slope of the valley. As there are rather 
shallow gradients and many sun-exposed areas, most of the agriculturally used areas are also 
on the northern slope. Most plots are meadows and pastures. At the few flat areas, most 
located at the bottom of the valley, there are also a few field crops. 
 
The inner-alpine location leads to a dryness that is characteristic of the climate of the 
Engadin. The mean annual precipitation of the Engadin is between 700 and 1000 mm 
(MeteoSchweiz, 2023b). This is about half the amount of other areas of Switzerland (e.g., the 
Central Plateau) (MeteoSchweiz, 2023b). To get more detailed knowledge about the climatic 
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conditions and the weather conditions in the months before the data acquisitions, I retrieved 
the available climate data from four stations in or near the study area from 1990 to 2023. This 
data is freely available for research on the Data Portal for Education and Research (IDAWEB) 
(MeteoSchweiz, 2023a). When available, precipitation, temperature and duration of sunshine 
are aggregated to annual averages. 
 

Table 1: Annual Averages of the Meteo Stations in the Lower Engadin. 

Station 
Mean Annual 
Precipitation 

[mm] 

Mean Annual 
Temperature 

[°C] 

Mean Annual 
Duration of Sunshine 

[hour] 
Martina (1043 m asl) 729.48   
Scuol (1305 m asl) 709.00 5.9 1803.65 

Naluns  / Schlivera (2382 m asl)  0.7 
1803.39 

(Data availability only 
2011 – 2020) 

Susch (1418 m asl) 825.19   
 
The Lower Engadin has a long agricultural history. The first mentions of settled farmers reach 
back to the 2nd century BC (Clavuot, 2014). For a long time, the valley’s economy was 
agrarian-oriented. Since the 1950s, tourism has also become an important economic sector 
(Clavuot, 2014). Today, local agriculture is mostly focused on an extensive management of 
the areas with high ecological value (ARE Graubünden & ALG Graubünden, 2016). Only at 
the bottom of the valley, there are also conventionally managed areas (ARE Graubünden & 
ALG Graubünden, 2016). There is generally low pressure on agricultural areas, which is 
limited to land-use conflicts with conservation areas to preserve ecologically valuable 
landscapes (ARE Graubünden & ALG Graubünden, 2016). In contrast to most areas of the 
lower areas of Switzerland, the Engadin still harbors a great biodiversity on farmland (Graf et 
al., 2014). However, this biodiversity hot spot is getting under pressure. Between 1988 and 
2010, unimproved areas (i.e., grassland which has not been artificially fertilized, ploughed or 
reseeded), which are crucial for maintaining a high biodiversity, lost 20% of their covered 
area (Graf et al., 2014). 
 

3.2 Agricultural Plot Data 
Crucial for a successful application of the object-based approach are ground data of good 
quality. The approach would not work using regular or random areas. All cantons of 
Switzerland provide agricultural land use plans which are available on the data portal 
“Geodienste.ch” (Geodienste.ch, 2023). The land-use areas correspond to the agriculturally 
used areas according to the Swiss Ordinance on Agricultural Terms (LBV) derived by the 
confederation and cantons (geocat.ch, 2023).  
 
This study is based on the agricultural land use plan of the canton of Grisons from 2021. 
Earlier versions are not available according to the Swiss Federal Office for Agriculture. The 
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unprocessed dataset contains 162’802 agricultural plots, of which 9413 are within the study 
area. The plots within the study area make up an entire area of 29.368 km2, with a mean plot 
size of 3119.931 m2. The following cultures among others are included: Crops (Barley, 
Wheat, Oats, Rye), Potatoes, Maize, Meadows (Artificial meadows, less intensively used 
meadows, extensively used meadows), pastures and areas to explicitly support biodiversity. 
Validity information and extensive metadata for the dataset are not available, so it is difficult 
to make conclusions about the correctness and the spatial precision of the dataset. However, 
as the dataset is provided by a local authority (canton of Grisons), one can expect satisfying 
data quality. For permanent types of agricultural cultivation, a high degree of accuracy of the 
dataset can be expected, while for crop rotation areas the dataset is not up to date.  Spatial 
precision can be assessed using spot checks, for example by comparing the border of a plot 
directly adjacent to streets or other landscape elements using satellite imagery. These checks 
showed a high spatial precision of the data. 
 
To link biodiversity to spectral diversity, assumptions need to be made about the different 
management types. For extensively managed areas one can expect a higher plant- and 
functional diversity than for intensively used. This is because intensively managed plots have 
the main purpose of leading to a maximized harvest, while extensively used plots are often 
able to provide other services. Intensively managed areas are fertilized, leading to the 
proliferation of only a few species, primarily nutrient-demanding grasses. Pastures are 
expected to show a higher functional diversity than meadows, as they host more structural 
elements such as hedges, trees or dry-stone walls. The highest functional diversity one can 
expect is on plots that are labeled to promote biodiversity. The scientific background for these 
assumptions is given by Boch et al. (2021) and Humbert et al. (2021), who showed that 
intensive management of alpine grasslands in Switzerland has negative implications for 
biodiversity. 
 

3.3 Land Cover Classes 
The agricultural plot dataset includes forested areas. As the following analysis will only 
include grassland, these forested areas had to be excluded. This was done using the 
WordlCover Dataset provided by ESA (Zanaga et al., 2022). This freely available dataset 
provides land cover information at a spatial resolution of 10 meters based on Sentinel-1 and 
Sentinel-2 data (ESA WorldCover, 2023). It contains 11 land cover classes (including tree 
cover) with a global overall accuracy of about 75% (ESA WorldCover, 2023).   
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3.4 Remote Sensing Data 

3.4.1 AVIRIS-NG 

3.4.1.1 Data Characteristics  
The Airborne Visible InfraRed Imaging Spectrometer-Next Generation is a NASA Earth 
Science airborne sensor developed and operated by Jet Propulsion Laboratories (JPL) (Jet 
Propulsion Laboratory, 2022b). The sensor is a pushbroom spectral mapping system with a 
high signal-to-noise ratio (SNR), designed for high-performance spectroscopy (Chapman et 
al., 2019). It is the successor of AVIRIS-Classic, which has been in operation since 1989, 
mainly used for ecology sciences (Jet Propulsion Laboratory, 2022b). AVIRIS-NG measures 
the reflected radiance of the solar spectrum with 425 spectral bands at a wavelength range 
from 380 nm to 2510 nm with 5 nm sampling (Jet Propulsion Laboratory, 2022c). Potential 
uncertainties emerge from natural and irreducible measurement noise or calibration 
uncertainties arising from systematic optical and electronic imperfections in the instrument 
(Chapman et al., 2019). Scientific application areas are among others:  
 

- Ecology: composition, function, chlorophyll, pigments, etc. 
- Geology and soils: mineralogy and soil type 
- Coastal and inland waters: chlorophyll, plankton, dissolved organics, sediments, etc. 
- Snow and Ice Hydrology: snow cover fraction, grain size, dust, impurities, melting 
- Atmosphere: water vapor, clouds properties, aerosols, absorbing gases 
- Environmental hazards: contaminants, geological substrate 
- Agriculture: crop type, crop health, nitrogen, leaf water, soil composition, soil salinity, 

soil carbon 
 
Geometrically- and atmospherically corrected datasets are openly available via the AVIRIS-
NG Data Portal (Jet Propulsion Laboratory, 2023). On 1 July 2018, 28 flight strips were 
recorded in the areas of the Lower Engadin, the SNP and Val Müstair. The airplane carrying 
the sensor flew at an altitude of 4.8 to 5.5 km. Most flight strips have a cloud cover of 10 – 
30%, some even up to 50%. So, the data was not acquired at optimal conditions, 
consequently, some areas needed to be masked out due to the cloud cover. The spatial 
resolution of the flight strips varies between 2.6 and 3.4 meters for the entire area. An issue 
with the AVIRIS-NG dataset related specifically to the mountainous area of the lower 
Engadin and the SNP is the poor quality of the georeferencing of the data. Especially in steep 
areas, the position of the pixels does not exactly match the ground truth. This can be observed 
when comparing the data to other, more accurately referenced datasets or when comparing 
overlapping flight strips with each other.  
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Figure 5: Examples of the geographic impreciseness of the AVIRIS-NG dataset. Left Image: Impreciseness 
visualized by plotting unprocessed agricultural plots over the AVIRIS-NG product. The roads can be seen in 
the plot data as stripes between the plots. These stripes do not match the roads visible in the AVIRIS-NG 
scene. Right Image: Impreciseness is visualized by analyzing the border of two flight strips. The street 
should be continuous but has a significant offset. 

To cover the study areas, three flight strips were selected, all collected on July 1, 2018. They 
cover most of the managed areas of the Lower Engadin as well as alpine pastures and 
meadows on the northern slope of the valley. The study area could have been further 
expanded, but this would have come with storage- and processing issues, as the amount of 
data already reached a critical maximum working with only three flight strips. 
 
3.4.1.2 Pre-Processing 
The first processing steps are already conducted before the download of the data 
(georeferencing and atmospheric corrections). The data are provided in the ENVI format with 
an associated ASCII header file containing important information about the imagery data. To 
reduce the size of the datasets and to preserve the original pixel values, the datasets are 
provided in a rotated grid. This means that pixels are not aligned in a north-south direction but 
in the direction of the flight path. For the Engadin and SNP data acquisition, the flight strips 
were rotated by -58 degrees. The original coordinate reference system of the dataset is 
WGS84/UTM zone 32N (EPSG: 32632). 
 
In a first step, the flight strips were rotated and then merged. The north-eastern part of the data 
covered areas in Austria and Italy. As the study focuses on the Engadin, this part was cut off. 
The rotated, merged and clipped dataset was ready for manual image registration. In areas 
with simpler terrain, or if the georeferencing by the data provider had been more precise, this 
step would not have been necessary. As reference data served the SwissImage 10cm dataset 
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from 2019 provided by the Swiss Federal Office of Topography (Swisstopo) (Bundesamt für 
Landestopografie (Swisstopo), 2023a). The SwissImage 10cm is a freely available RGB 
product with a spatial resolution of 10 cm in the lower parts of Switzerland and 25 cm in the 
Alps. It is acquired every three years (Bundesamt für Landestopografie (Swisstopo), 2023a). 
In contrast to the AVIRIS-NG datasets, it has a higher spatial precision also in steep and 
mountainous areas.  

 
Figure 6: AVIRIS-NG product before (left image) and after (right image) image registration. Again, the 
streets serve as a reference in comparison to the agricultural plots. They should lie between plots; this is 
mostly the case in the image on the right side but not on the left side. 

As there are large areas covered with clouds, carefully conducted cloud filtering was 
necessary. Multiple methods were tested (cloud indexes, supervised classification) but it was 
difficult to find a satisfying working method. This is because several types of clouds are 
apparent in the scene, which were difficult to catch using one single approach. Approaches 
proposed in the literature did not lead to satisfying results either (Marshak et al., 2000; 
Sentinel Online, 2023). By inspecting the Principal Components (PCs), which were calculated 
for further analysis, I discovered that PC Band 5 showed very distinctive values for clouds. 
Especially the cirrus and nearly opaque clouds, which were rarely detected by the other 
approaches were well distinctive using this method. The center regions of the big clouds were 
not detected by this band, but as these regions are well distinctive on several original bands 
this was not an issue. So, a threshold was applied on PC Band 5 and original Band 2 (at 381 
nm) of the original dataset and combined to a cloud mask. The cloud masking methodology 
slightly tends to exclude pixels that are not clouds but was the most reliably performing 
method.  
 
The 425 spectral bands of AVIRIS-NG result in a relatively large dataset, which makes 
operations on the dataset computation-intensive and long-lasting. As many of the spectral 
bands are strongly correlated, I performed a data dimensionality reduction on the cloud-
masked dataset. I applied one of the most common and simple methods of dimensionality 
reduction which is to extract spectral features with a principal component analysis (PCA) 
(Wold et al., 1987). PCA is a multivariate statistical technique that is used to extract 
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information from spectral data and transform the data into a set of orthogonal variables called 
principal components (Prospere et al., 2014). This procedure reduces irrelevant information 
from the original inter-correlated variables and allows to extract the valuable information. The 
method has already been applied in other ecology-related studies using remote sensing data 
(e.g., Prospere et al., 2014). This data dimensionality reduction is applied either to reduce the 
computational effort but also because analyzing all 425 bands comes with the risk that the 
relevant data are superimposed and therefore hidden by a lot of irrelevant data.  
 
The first three PCs explain together 99.88% of the variance within the AVIRIS-NG data. The 
first PC explains 92.34%, the second explains 7.09% and the third only 0.36%. All other PCs 
explain less than 0.01% of the Variance, hence they were discarded. 
 

3.4.2 SwissImage  
The SwissImage RS is a high-resolution remote sensing product provided by Swisstopo 
(Bundesamt für Landestopografie (Swisstopo), 2023b). It has a spatial resolution of 10 cm in 
the lower parts of Switzerland and 25 cm in the Alps. In contrast to the formerly introduced 
SwissImage 10cm, it has an additional NIR – Band. It is available upon requested at 
Swisstopo. The four bands cover the following wavelengths: 
 

- Band 1: NIR [808 - 882 nm] 
- Band 2: red [619 - 651 nm] 
- Band 3: green [525 - 585 nm] 
- Band 4: blue [435 - 495 nm] 

 
The data acquisition in the study area was done in September 2019 (4. - 29.). The SwissImage 
RS is geometrically corrected, so no further processing was necessary for this dataset. As the 
data was acquired on clear days, there was no need for cloud filtering. In regions with 
complex topographies, the geometric deviation can be 3 - 5 meters, otherwise, it is below 0.25 
meters (Bundesamt für Landestopografie (Swisstopo), 2023b). As the entire dataset is very 
large, it is delivered in 1 km ´ 1 km tiles. For the mowing classification of SwissImage RS, 
which was a preliminary step for the main spectral diversity analysis, the high spatial 
resolution was not necessary, but a continuous dataset was needed. To obtain this, the tiles 
were resampled to a spectral resolution of 10 meters and then merged. The main spectral 
diversity analysis was performed using the original resolution.  
 

3.4.3 Sentinel-2 Data 
The MultiSpectral Instrument (MSI) onboard both Sentinel-2 satellites provides a set of 13 
spectral bands (4 visible bands, 6 Near-Infrared bands, and 3 Short-Wave Infrared bands) with 
a revisit time of 5 days (Sentinel Hub, 2023). Four bands have a spatial resolution of 10 m, six 
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bands of 20 m and three bands at 60 m spatial resolution. Sentinel-2 products are available, 
e.g., via Google Earth Engine (Harmonized Sentinel-2 MSI: MultiSpectral Instrument, 2023). 
 
3.4.3.1 Mowing Classification for Plot aggregation 
Sentinel-2 scenes were used for the processing of the agricultural plots. A supervised 
classification using a random forest classifier, based on 200 training points that were 
manually selected, was performed on scenes from June 2018 to August 2018 to categorize 
pixels as mowed and not recently mowed.  
 

3.5 Software 
Most of the image processing operations of the AVIRIS-NG data were done in ENVI (Exelis 
Visual Information Solutions, 2017). Further operations on remote sensing data and data 
analysis were conducted in a Python environment using Rasterio (Gillies, 2023)and Xarray 
(Hoyer & Hamman, 2017). The processing of the agricultural plots was also done in Python 
using Geopandas (Jordahl et al., 2020). Using Seaborn (Michael L. Waskom, 2021) and 
Matplotlib (Hunter, 2007), the visualizations were done. The Python libraries Scikit 
(Pedregosa et al., 2011) and Scipy (Virtanen et al., 2020) were used to perform the statistical 
analysis of the spectral diversity data. For geographical visualizations, I used QGIS (QGIS 
Development Team, 2022). 
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4 Methods 

4.1 Processing of Agricultural Plots 
Before the spectral diversity of the agricultural areas could be calculated, the agricultural plots 
that formed the basis for the calculations had to be processed to resolve some issues that 
would have significantly affected the results. A major issue was the size of the plots in the 
initial dataset. Because of the common agricultural heritage practices, the agricultural plots 
had become increasingly fragmented over time. In some areas, the plot size had become too 
small for a meaningful analysis. So, these plots needed to be merged sensibly. The plots were 
merged based on two criteria. The first criterion addressed the type of agricultural 
management of a plot. In the Lower Engadin, one can find a wide range of management types 
(e.g., artificial meadows, intensively- and extensively used meadows, intensively- and 
extensively used pastures, areas to support biodiversity, etc.). All plots of the land-use dataset 
have been attributed to one of these categories. The second criterion was not contained in the 
original dataset. It builds on the assumption that if a plot was mowed within the same few 
days as a neighboring plot, it may be one single plot and managed as one by the local farmer. 
Based on the Sentinel-2 time series of June to August 2018, each scene and each plot was 
checked if the plot was recently mowed or not. If the majority of the pixels of a plot were 
categorized as mown, the plot was also categorized as such. From this, the date of the first 
mowing was extracted for each plot and served as the second criterion. Adjacent plots were 
merged when the date of the first mowing and the management categories were equal. This 
step reduced the number of plots from 13’210 to 9762 and increased the mean size from 2909 
m2 to 3936 m2. 
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Figure 7: Example of the agricultural plots before and after the merging. The black-colored borders show 
the borders of the merged plots. The white lines show the borders of the unprocessed dataset that were 
dropped while merging. 

The next step was the exclusion of forested areas based on the WorldCover dataset. 
Furthermore, the plots were buffered by 10 meters. This made sure that the potentially 
relatively large spatial diversions between remote sensing data and agricultural plot data do 
not lead to negative impacts when analyzing the data. After that, plots that still have a size of 
more than 2000 m2 were selected. After these processing steps, the dataset was considered 
ready for analysis and had the following properties: 
 

- Number of Plots: 1777 
- Mean Area: 7318 m2 
- Cumulated Area: 13’004’242 m2 
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Table 2: Compilation of the management types that are present within the study area (Green: selected for 
further analysis, Red: not selected). 

 
Table 3: Definition and Description of the management types that are objects of the study. 

Management 
Type 

Description  

Permanent 
meadows 

Areas that are mown at least once a year for forage production. 
Permanent meadows have existed for more than six years as such 
(Bundesamt für Landwirtschaft BLW, 2017). 

Original German 
Definition 

English Definition 
(translated and 
abbreviated) 

Number of 
Plots per 
Management 
Type 

Cumulative 
Area per 
Management 
Type [m2] 

Übrige Dauerwiesen (ohne 
Weiden) 

Permanent meadows 751 5’907’755 

Wenig intensiv genutzte 
Wiesen (ohne Weiden) 

Low-intensity meadows 192 1’192’209 

Extensiv genutzte Wiesen 
(ohne Weiden) 

Extensively used meadows 
 

458 3’546’575 

Regionsspezifische 
Biodiversitätsförderfläche 
(Grünflächen ohne 
Weiden) 

Region-specific 
biodiversity area 

162 1’068’137 

Extensiv genutzte Weiden Extensively used pastures 52 390’997 
Waldweiden (ohne 
bewaldete Fläche) 

Wooded pastures 2 21’291 

Weiden (Heimweiden, 
übrige Weiden ohne 
Sömmerungsweiden) 

Pastures 7 26’350 

Übrige Flächen innerhalb 
der LN, nicht 
beitragsberechtigt 

Other areas, not eligible 
for contributions 

3 6572 

Kunstwiesen (ohne 
Weiden) 

Artificial meadows 128 764’661 

Sommerweizen (ohne 
Futterweizen der 
Sortenliste swiss granum) 

Spring wheat 
 

2 5055 

Sommergerste Spring barley   16 59’680 
Futterweizen gemäss 
Sortenliste swiss granum 

Fodder wheat 2 9539 

Getreide siliert  Silage Cereals 1 2638 
Hanf Hemp 1 2783 
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Low-intensity 
meadows 

Low-intensity meadows are lightly fertilized meadows on dry to wet 
sites. They can have a high plant diversity (Forschungsinstitut für 
biologischen Landbau FiBL et al., 2023d). In the canton of Grisons, 
there are defined different mowing periods, based on the location of 
the meadows. In the valley region, mowing is allowed from June 15, 
and in the more alpine areas from July 1, or July 15. (Amt für Natur 
und Umwelt, 2017). 

Extensively used 
meadows 
 

Extensively used meadows are unfertilized meadows on dry to wet 
sites. They provide an important habitat for many plant and animal 
species (Forschungsinstitut für biologischen Landbau FiBL et al., 
2023c). 

Region-specific 
biodiversity areas 

A wide range of cultivations with the aim to promote biodiversity 
(includes extensively used areas, not harvested strips on fields, 
hedges or dry stone walls) (Forschungsinstitut für biologischen 
Landbau FiBL et al., 2023a) 

Extensively used 
pastures 

Extensively used pastures are low in nutrients, mostly of large areas 
and on uneven terrain. They are characterized by diverse vegetation 
and ecologically valuable structures (Forschungsinstitut für 
biologischen Landbau FiBL et al., 2023b).  

Artificial meadows An artificial meadow is an area sown as a meadow and cultivated 
within a crop rotation for at least one growing season (Bundesamt für 
Landwirtschaft BLW, 2017). 

 
Table 2 shows that not all management types are sufficiently present in the study area to be 
included in the analysis. Only management types with a cumulative area of more than 
100’000 square meters were selected for the analysis. Furthermore, certain management types 
did not represent grassland and therefore needed to be excluded from the analysis. As in the 
Lower Engadin, meadows and pastures are the dominant type of cultivation, several present 
types of cultivation do not meet the two criteria and are therefore excluded (Wooded pastures, 
Pastures, Areas not eligible for contributions, Spring wheat, Fodder wheat, Silage Cereals, 
Hemp). Remaining are six different types of management, all differently managed pastures 
and meadows. 
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Figure 8: Area distribution of the selected management types.  

Figure 8 shows that the plot sizes of the selected management types are similarly distributed. 
The median plot size is around 5000 m2 for all categories. All management types contain 
outliers that are not shown in Figure 8, the largest plot covers an area of more than 200’000 
square meters.  
 
A last selection of agricultural plots is done after the analysis of the spectral diversity metrics. 
Plots with exceptionally high spectral diversity values were individually manually checked for 
multiple management types within the plot and other effects distorting the diversity metrics. 
Plots with very high diversity that could not be attributed to species richness or functional 
diversity were excluded. 
 

4.2 Spectral Diversity Analysis 

4.2.1 Theoretical background of the applied Methods 
To analyze functional diversity, plants offer a wide range of traits that can be the subject of 
the examination. To develop predictive measures of functional diversity, the choice of 
functional traits with which organisms are distinguished is crucial (Petchey & Gaston, 2006). 
It is also important to find a meaningful way to summarize the trait information (Petchey & 
Gaston, 2006). This study exploits the fact that plant traits can be scaled to canopy level, not 
only plant level (Homolová et al., 2013). The functional traits that were studied were 
determined by the available data the study was conducted with. As the study was done using 
optical remote sensing data, the functional diversity was assessed only by analyzing the 
reflectance properties of the plants. But as the AVIRIS-NG dataset offered a very wide range 
of detected wavelengths, this can be done very extensively. Hence, for this study, there was 
no critical selection of plant traits, but just a selection of plant traits that were possible to 
analyze with remote sensing data. To find the most accurate prediction of the environmental 
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heterogeneity, different spectral metrics were tested and if possible, applied to different 
datasets. Scale and spatial resolution have a significant impact on the success of a spectral 
metrics analysis (Gholizadeh et al., 2018). To examine this impact, this study tested three 
datasets, all with significant differences in spatial resolution and covered spectral range.  
 

4.2.2 Object-based Approach 
There is a large number of studies in the ecology field addressing biodiversity assessments 
calculating spectral diversity based on regular plots (e.g., Fassnacht et al., 2022; Rocchini et 
al., 2018; Rossi et al., 2022). When working with a moving window (Rocchini et al., 2018) or 
randomly placed plots (Fassnacht et al., 2022), covering an extended area, the approach relies 
on the assumption that the diversity of the remote sensing signal is driven by ecological 
factors. Therefore, this approach is limited to areas where ecological factors are expected to 
be the main determinants of spectral diversity (e.g., forested areas or untouched grassland). If 
other factors contribute to diversity, the spectral metrics do not only quantify the ecological 
diversity. Anthropogenic influences, such as roads or settlements, can also become evident, 
affecting spectral diversity. Agricultural land management practices can also be significant 
anthropogenic influences. Management leads to severe differences in reflectance properties. 
For example, a recently mown meadow looks completely different compared to a neighboring 
meadow that has not been mown for several weeks, although they may be very similar from 
an ecological perspective. When working with random regular areas or a moving window, 
such areas would likely be analyzed within the same spatial unit. The spectral dissimilarity 
between the two areas would return very high spectral diversity values, primarily attributable 
to differences in land management practices. Consequently, the results of studying grassland 
diversity would depend stronger on the dissimilarity of the management and not on the 
ecological diversity. An alternative to tackle this issue would be to draw the analyzed units 
manually, but this would be hardly applicable when trying to cover large areas.  
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Figure 9: Examples of managed and untouched grassland. On the left side a scene near Scuol within the 
study area. The scene is not suited to measure spectral diversity with a moving window approach, as the 
diversity would be strongly influenced by the dissimilarity of management (top-left and bottom-right 
corners), streets and settlements. The scene on the right side lies within the Swiss National Park, there has 
been no management for decades. Here it would be an option to assess spectral diversity using a moving 
window, as the diversity is mainly driven by environmental factors. 

Therefore, to study ecological parameters, it was important to analyze grassland independent 
of the current state of management. To achieve this, this work is grounded on an object-based 
approach. This describes the approach of analyzing grassland at the level of agricultural plots, 
without variations of management within the plot. Like this, it can be assumed that the 
spectral diversity of the signal was only driven by ecologic factors within certain sub-regions 
of a surface. The plots were not given by a moving window or otherwise randomly placed 
within a study area. They were defined by the land-use dataset of the canton of Grisons and 
then processed.  
 

4.2.3 Evaluation of the Entire Spectrum 
To explore the entire spectrum of AVIRIS-NG, the first three PCs were analyzed. For the 
SwissImage RS and Sentinel-2, no PCA was performed, because only a few bands were 
available. To quantify the spectral diversity, the variance and the Coefficient of Variation 
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(CV) of different products of AVIRIS-NG, SwissImage RS and Sentinel-2 were calculated. 
The variance is a common statistical measure for dispersion and has also been applied to 
quantify spectral diversity (Dahlin, 2016; Laliberté et al., 2019). Very similar to the standard 
deviation, it measures how far a set of numbers of a dataset is spread out from the mean value. 
Given a sample of data of size the sample variance is calculated as follows: 
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The coefficient of variation (CV) is a measure that is widely applied in studies concerning the 
spectral diversity of remote sensing data (Gholizadeh et al., 2019; Hauser et al., 2021; Rossi et 
al., 2022; Wang et al., 2016, 2018b). The CV calculates the ratio between the standard 
deviation (square root of formerly introduced variance) and the mean of the reflectance value 
at a specific wavelength (Rossi et al., 2022). The resulting values of the CV can also be 
negative (when the mean value is negative). To cover the entire spectrum, the CV can be 
averaged over all measured wavelengths, when working with PCs, a weighted average of 
specific PCs can also be applied. When the mean value, with which the CV was calculated, 
could have negative values, the CV delivered chaotic results. This is the case because there is 
no linear relationship to the standard deviation. Therefore, the CV is only presented when 
applied on the NDVI in the results section, the results of the other products can be found in 
the appendix. 
  
The analyzed bands were clipped for each plot and the Variance and the CV were calculated. 
For the AVIRIS-NG PC analysis, several ways to summarize the resulting values were tested 
(inspired by Dahlin (2016)). The number of analyzed PCs was varied between one to ten. I 
also tested whether a weighting of the diversity values retrieved per PC would enhance the 
result. In the end, calculating the mean Variance and CV of the first three PCs led to the most 
meaningful result. When working with the original SwissImage RS and Sentinel-2 bands, the 
average of all bands was calculated. 
 

4.2.4 Working with specific Plant Traits 
Working with empirical, not specified data often lacks a causal relationship (Homolová et al., 
2013). Analyzing the spectral diversity of the full spectrum bears this risk. The issue can be 
overcome when analyzing specific plant traits. Another advantage of this approach is that 
comparing the results of the different datasets is possible, as only a small fraction of data, that 
is common to all datasets, is used. This can be done for example using the Normalized 
Difference Vegetation Index (NDVI). The NDVI is a widely used index for analyzing 
vegetation, as it quantifies its greenness and productivity and helps understand its density 
(USGS, 2023). It has been applied in several studies regarding biodiversity (e.g., Gholizadeh 
et al., 2019). It is calculated as follows: 
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For the AVIRIS-NG dataset, I calculated the NDVI using Band 57 (662nm) as RED and Band 
91 (832nm) as NIR. For the SwissImage RS, I used the Red Band at 619 - 651 nm and the 
NIR band at 808 - 882 nm to calculate it. The spatial variability of the NDVI I quantified in 
the same way as when exploiting the entire spectrum using variance and CV. The only 
difference was that no mean value was calculated, as there was only one resulting layer per 
plot. For Gholizadeh et al. (2019) the standard deviation of the NDVI worked as a good 
predictor of biodiversity. The NDVI was calculated from AVIRIS-NG, Sentinel-2 and 
SwissImage RS imagery.  
 
Another plant trait that is widely used in ecology studies is the plant chlorophyll content 
(Homolová et al., 2013; Hunt et al., 2012). An index that shows good results in detecting 
chlorophyll is the triangular greenness index. It relies only on the RGB-Bands and performs 
well also on canopy scale. It is calculated as follows: 
 
231 = 	−0.5	[(8- − 8.)9:- − :/; − 98- − 8/;(:- − :.)]        (Raymond Hunt et al.,2011) 
 
Where 8-,			/,			. is the wavelength of the specific bands in nanometers and :2 is the spectral 
reflectance of the band. 

 
e.g., for AVIRIS-NG: 
 

231 = 	−0.5	[(632 − 437)(:34! −	:567) − (632 − 547)(:34! −	:647)] 
 
Vegetation-related indexes using only RGB bands are rare, as most use either a NIR or a red-
edge band (Hunt et al., 2012). Indices specifically designed for chlorophyll detection mostly 
use narrow bands of the red-edge region of the spectrum (e.g., Leaf Chlorophyll Index (Datt, 
1999) and Normalized Pigment Chlorophyll Index (Peñuelas et al., 1994)). Since NDVI 
already covers the red edge, I explored an index that only covers the RGB region to assess 
whether significant results can be achieved using this region alone. The TGI can be 
determined with narrow bands but also using broad-band multispectral sensors or digital 
cameras (Raymond Hunt et al., 2011). 
 
To also explicitly analyze the SWIR region, a further index was introduced. The normalized 
difference infrared index (NDII) is an index that detects canopy water content, and therefore 
can also potentially detect differences between plots. The index values increase with 
increasing water content. Applications include crop agricultural management, forest canopy 
monitoring, and vegetation stress detection (NV5 Geospatial, 2023). On AVIRIS-NG it was 
calculated using Band 89 (817 nm) and Band 255 (1649 nm).  
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4.2.5 Mowing Detection 
An important property of a grassland canopy, that has a very large impact on the reflectance, 
is the recent mowing status of a grassland surface (see Figure 10). A recently mowed meadow 
is in most cases distinguishable from a neighboring meadow that has not been mowed. In an 
RGB band display, the recently mowed meadows appear brighter and less intense green. At 
very dry conditions, they appear in light brownish and yellow tones, while most unmown 
meadows stay green. 
 
Differing mowing statuses of meadows have the potential to lead to distorted results of the 
spectral metrics analysis. To solve this issue, within a category of management types, the 
spectral metrics can be compared by distinguishing between recently mowed and unmown 
plots. Additionally, knowing the mowing status of plots allows to compare results overall 
categories of management types.  
 
Classifying the plots on mown and not mown I have done by training a classifier and 
performing a Minimum Distance Classification. The minimum distance technique uses the 
mean vectors of each endmember, which is obtained using training areas. Then it calculates 
the Euclidean distance from each unknown pixel to the mean vector for each class. Pixels are 
assigned to the nearest class (Richards, 1999).  
 

4.3 Plot Refinement based on Spectral Diversity Values 
The original dataset providing the agricultural plots and the processing steps performed on the 
dataset ultimately did not provide plots that perfectly represented the actual management 
structures in the Lower Engadin. There were still plots, which contained more than one 
management type or where the borders did not match the change of management observed by 
the remote sensing data. These plots resulted in extreme values in the spectral diversity 
analysis. As they would have distorted the result of the analysis, these plots needed to be 
excluded, which was done very carefully. 
 
When analyzing the plot with outliers in the different diversity metrics, it became clear that 
these values mostly came from plots containing multiple management types or the border of a 
shadowed area, so there were areas with high and areas with low illumination. In some cases, 
the border of different AVIRIS-NG flight strips passed through the plot, which also led to 
outlier values. This step was done by hand, to ensure that the proper plots were excluded from 
the analysis, and not plots that had high values because of their high functional diversity. 
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Figure 10: AVIRIS-NG scene and agricultural plots near the village Ardez. The plot in blue was not used in 
the spectral diversity analysis, as the border of the plot did not correspond with the actual management 
practice. This was well visible as the border from green to yellow was very well recognizable and passed 
along a clear line, that indicated this is not a natural border, but a border caused by management. Also, 
other plots showed changes, but they were less clear and therefore may had other reasons than 
management. 

4.4 Overlapping SwissImage Tiles 
As the SwissImage RS tiles had overlapping areas, the plots that were analyzed multiple times 
needed to be aggregated. This was done by calculating the mean of each spectral diversity 
metric over the number of observations. The original values deviated only marginally from 
each other per plot. 
 

4.5 Statistics and Visualization 
The results of the spectral diversity analysis are presented using boxplot diagrams. Boxplot 
diagrams show the 25th to the 75th percentile of the data range with a box. The bar within the 
box represents the median value. Whiskers show the minimum and maximum values without 
outliers. To test for significant differences in spectral diversity between the plots of different 
management types, statistical tests were performed. The first test involved two variables: the 
management type as a group variable and the diversity metric as the dependent variable, 
which was being examined for differences. As the results of the spectral diversity analysis 
were not always normally distributed, this led to the usage of the Kruskal-Wallis test (UZH 
Methodenberatung, 2023b). A Kruskal-Wallis test is used to examine the differences in the 
central tendency of a variable between more than two independent samples. The dependent 
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variable does not have to be normally distributed. The objective of the test is to determine 
whether there is a statistical difference between the medians of at least three independent 
groups. The null hypothesis usually states that there are no significant differences between the 
medians of the data groups. The alternative hypothesis states that the median is not equal for 
all the data groups. The test returns a p-value, if the p-value is lower than 0.05, one can reject 
the null hypothesis (UZH Methodenberatung, 2023a). The Kruskall-Wallis test only gives 
information if there are differences between the data groups, but not between which groups. A 
post-hoc test needs to be performed, to find out which groups differ significantly. As 
performed after the Kruskall-Wallis test, the Dunn-Bonferroni test was applied (UZH 
Methodenberatung, 2023a). The null hypothesis and alternative hypothesis were the same as 
for the Kruskal-Wallis test and the same level of significance was needed. The test returned a 
matrix of p-values, from which one can read which groups do differ significantly. 
 
The statistical analysis of the mowing condition I have done using the Mann-Whitney-U test, 
which tests for differences between two samples (UZH Methodenberatung, 2023b). 
 
When comparing the results of different sensors or underlying methods, I calculated the 
coefficient of correlation (Pearson’s r) to describe correlations. It is a measure of the strength 
of a linear association between two variables.  
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5 Results 

5.1 AVIRIS-NG data 
As the main focus of this study is on the AVIRIS-NG dataset, the dataset is analyzed in more 
detail than the SwissImage RS - and Sentinel-2 data. 
 

5.1.1 Analyzing the Entire Spectrum 
Several ways to evaluate the results of the spectral diversity derived by the AVIRIS-NG PCs 
were tested (only first PC, mean of PC 1 to 3, weighted mean of PC 1 to 3). The most 
promising results, statistically and by visual interpretation, were obtained when the mean of 
the applied diversity metrics was calculated across the three first PCs. As the aim of the study 
is to observe differences in the spectral diversity of different management types, results were 
regarded as convincing when these differences were evident in the data. The Kruskal-Wallis 
test for the mean Variance of the three first PCs returned a p-value of <0.001 indicating strong 

evidence that different management types indeed had distinct median values of the spectral 

variance. 

 
Figure 11: Boxplot of the mean Variance of the first three AVIRIS-NG PCs, grouped by the different 
management types. 
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Table 4: P-Values of the Dunn-Bonferroni post-hoc test of all management types of mean Variance of the 
first three AVIRIS-NG PCs. 

 Artificial 
meadows 

Low-
intensity 
meadows 

Extensively 
used 

meadows 

Permanent 
meadows 

Extensively 
used 

pastures 

Region-specific 
biodiversity 

area 
Artificial 
meadows 1 0.51389 0.00278 0 0.00007 0.35761 

Low-
intensity 
meadows 

0.51389 1 0.0186 0.00001 0.00028 0.7777 

Extensively 
used 

meadows 
0.00278 0.0186 1 0.00431 0.00974 0.04613 

Permanent 
meadows 0 0.00001 0.00431 1 0.11279 0.00003 

Extensively 
used 

pastures 
0.00007 0.00028 0.00974 0.11279 1 0.00056 

Region-
specific 

biodiversity 
area 

0.35761 0.7777 0.04613 0.00003 0.00056 1 

 
Amongst the meadows, the artificial meadows had the lowest Variance. Extensively used- and 
permanent meadows showed significantly higher values than the other two types of meadows. 
Especially for artificial meadows, a low spectral diversity could be explained by the absence 
of structures that enabled intensive management and fertilization, which made a low plant 
diversity very likely. Another reason for the low spectral diversity may be the rotational 
farming, applied on artificial meadows. This may hinder local developments, that would be 
distinctive in the data. On the other hand, pastures often are rich in structures (e.g., trees or 
hedges), which increased the spectral diversity, especially at the spatial resolution level of 
AVIRIS-NG. Consequently, pastures differed significantly from all other management types 
except permanent meadows.  
 

5.1.2 Analyzing AVIRIS-NG NDVI 

 
Figure 12: Boxplot of the mean Variance (right image) and CV (left image) of the NDVI of AVIRIS-NG, 
grouped by the different management types. 

Using the NDVI, the spectral metrics aimed to quantify differences in vegetation productivity 
and density. The spectral metrics calculated using the NDVI produced similar results to using 
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the full spectrum. The value range of the CV differed from the calculation using the PCs, 
there were no negative values. This was because negative values of the NDVI would show 
clouds or water surfaces. These elements were not present within the studied areas, as clouds 
were masked out and the agricultural plots did not contain water surfaces. In both measures, 
there were significant differences between the management types. (p-value <0.001 for both 
metrics). The low values of artificial, low-intensity and extensively used meadows may have 
resulted from homogenous vegetation covers. As in Figure 11, extensively used pastures 
strongly differed from other management types (e.g., artificial meadows). But unlike the use 
of the entire spectrum, permanent meadows showed similar values that did not differ 
significantly.  
 

Table 5: P-Values of the Dunn-Bonferroni post-hoc test of all management types of the Coefficient of 
Variation of the NDVI of AVIRIS-NG. 

 Artificial 
meadows 

Low-intensity 
meadows 

Extensively 
used meadows 

Permanent 
meadows 

Extensively 
used pastures 

Region-specific 
biodiversity 

area 
Artificial 
meadows 1 0.00001 0.00056 0 0.04736 0.89255 

Low-intensity 
meadows 0.00001 1 0.05529 0 0 0.00001 

Extensively 
used meadows 0.00056 0.05529 1 0 0.00004 0.00056 

Permanent 
meadows 0 0 0 1 0.07118 0 

Extensively 
used pastures 0.04736 0 0.00004 0.07118 1 0.03626 

Region-
specific 

biodiversity 
area 

0.89255 0.00001 0.00056 0 0.03626 1 

 

Table 6: P-Values of the Dunn-Bonferroni post-hoc test of all management types of the Variance of the 
NDVI of AVIRIS-NG. 

 Artificial 
meadows 

Low-
intensity 
meadows 

Extensively 
used meadows 

Permanent 
meadows 

Extensively 
used pastures 

Region-specific 
biodiversity area 

Artificial 
meadows 1 0.00006 0.03624 0 0.00382 0.94371 

Low-intensity 
meadows 0.00006 1 0.00522 0 0 0.00002 

Extensively 
used meadows 0.03624 0.00522 1 0 0.00002 0.02247 

Permanent 
meadows 0 0 0 1 0.85452 0 

Extensively 
used pastures 0.00382 0 0.00002 0.85452 1 0.00392 

Region-specific 
biodiversity 

area 
0.94371 0.00002 0.02247 0 0.00392 1 
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5.1.3 Analyzing AVIRIS-NG TGI 
The Triangular Greenness Index detects the chlorophyll content of the canopy, the spectral 
metrics applied on TGI therefore quantified the spatial variation of the chlorophyll content. 
Unlike the NDVI, the TGI produced also negative average values within the studied plots. 
When the green reflectance was less than the red-blue line, for example, for reddish soils, then 
the TGI was negative. (Raymond Hunt et al., 2011). Therefore, the CV did not produce 
reliable results and is not presented here. 
 
The variance showed similar tendencies as when looking at the entire spectrum and the 
NDVI. There were significant differences in both spectral metrics between the different 
management types (p-value <0.001), but not as strong differences as for the NDVI. 

 
Figure 13: Boxplot of the mean Variance of the TGI of AVIRIS-NG, grouped by the different management 
types. 

Table 7: P-Values of the Dunn-Bonferroni post-hoc test of all management types of the mean Variance of the 
TGI of AVIRIS-NG. 

 
Artificial 
meadows 

Low-
intensity 
meadows 

Extensively 
used meadows 

Permanent 
meadows 

Extensively 
used pastures 

Region-specific 
biodiversity area 

Artificial 
meadows 1 0.18083 0.64417 0.00238 0.0011 0.00008 

Low-intensity 
meadows 0.18083 1 0.23987 0.14428 0.01352 0.00669 

Extensively 
used meadows 0.64417 0.23987 1 0.00015 0.00115 0.00001 

Permanent 
meadows 0.00238 0.14428 0.00015 1 0.05508 0.045 

Extensively 
used pastures 0.0011 0.01352 0.00115 0.05508 1 0.41677 

Region-specific 
biodiversity 

area 
0.00008 0.00669 0.00001 0.045 0.41677 1 

 
This was also evident when looking at the p-values of the Dunns-Bufferoni test. The 
differences were generally smaller, only a few were significant. Again, permanent meadows 
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and pastures did differ significantly from the other meadows, they also showed a broad range 
of variance values. The TGI was the single method of data aggregation, that produced high 
values in the variance of biodiversity areas. 
 

5.1.4 Analyzing AVIRIS-NG NDII 
To cover also specifically the SWIR region of the AVIRIS-NG spectrum, I performed a 
spectral diversity analysis on the NDII. The NDII produced also significant differences 
between management types. The results resembled those obtained using the full spectrum and 
the NDVI. 

 
Figure 14: Boxplot of the mean Variance of the NDII of AVIRIS-NG, grouped by the different management 
types. 

Table 8: P-Values of the Dunn-Bonferroni post-hoc test of all management types of the mean Variance of the 
NDII of AVIRIS-NG. 

 
Artificial 
meadows 

Low-
intensity 
meadows 

Extensively 
used meadows 

Permanent 
meadows 

Extensively 
used pastures 

Region-specific 
biodiversity area 

Artificial 
meadows 1 0.1526 0.07904 0.00001 0.00944 0.09065 

Low-intensity 
meadows 0.1526 1 0.00028 0 0.0004 0.0012 

Extensively 
used meadows 0.07904 0.00028 1 0.00007 0.07291 0.79776 

Permanent 
meadows 0.00001 0 0.00007 1 0.71736 0.0107 

Extensively 
used pastures 0.00944 0.0004 0.07291 0.71736 1 0.11956 

Region-specific 
biodiversity 

area 
0.09065 0.0012 0.79776 0.0107 0.11956 1 

 

5.1.5 Analyzing the Effect of Mowing on AVIRIS-NG data 
For the analysis based on the mowing status of the plots, the pastures were not included, as 
pastures did generally not get mowed but grazed. Six pasture plots were classified as mown in 
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the AVIRIS-NG scenery. These plots appeared like they had been grazed in the days before 
the data acquisition and therefore visually appeared similar to mowed areas.  
 
For the AVIRIS-NG data, mown and not mown plots were distributed among the different 
management types in the following way: 
 

Table 9: Mown and not mown plots per management type, classified on AVIRIS-NG. 

Management Type Mown plots Not mown plots 
Artificial meadows 27 68 
Low-intensity meadows 8 103 
Extensively used meadows 12 164 
Permanent meadows 346 145 
Region-specific biodiversity area 27 81 
Total 420 561 

 

 
Figure 15: Boxplot of the Variance, derived from the three first AVIRIS-NG PCs, separated in mown and not 
mown plots. 

Across management types, the Variance did differ between mown and not mown areas (p-
value (p-value <0.001). The spectral diversity of the mown plots was higher than that of the 
unmown plots, which could also be observed with the other sensors and types of data 
processing. A possible explanation for this may be the exposition of bare soil, which was 
more prominent in recently mown areas. This factor could increase spectral diversity, its 
influence has been described by Gholizadeh et al. (2018).  
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Figure 16: Boxplot of the Variance of the different management types, separated in mown and not mown 
plots, derived from the three first AVIRIS-NG PCs. 

The differences between mown and not mown plots per management type changed with the 
management type, there was also a management type (extensively used meadow) with a 
significantly lower variance at mown plots.  
 

Table 10: P-values resulting from the Mann-Whitney-U test, testing for significant differences between the 
Variance of mown and not mown plots of each Management Type. Input dataset: AVIRIS-NG first three 
PCs. 

Management Type p-value  
Artificial meadows 0.8917 
Low-intensity meadows 0.1762 
Extensively used meadows 0.0237 
Permanent meadows 0.2198 
Region-specific biodiversity area 0.0003 
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Figure 17: Boxplot of CV and Variance, separated in mown and not mown plots, derived from the NDVI of 
AVIRIS-NG. 

The NDVI of AVIRIS-NG produced a more distinct separation between mown and non-
mown areas. This was the case for the Variance and the CV. The exposition of bare soil may 
play an even more important role, as this may lower the NDVI. The level of significance was 
higher than when studying the entire spectrum (p-value <0.001 for both metrics). With the 
NDVI, all management types showed a higher CV at mown areas, most even significantly. 

 
Figure 18: Boxplot of the CV of the different Management Types, separated in mown and not mown plots, 
derived from the NDVI of AVIRIS-NG. 
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Table 11: P-values resulting from the Mann-Whitney-U test, testing for significant differences of the CV 
between mown and not mown plots of each Management Type. Input dataset: AVIRIS-NG NDVI. 

Management Type p-value  
Artificial meadows 0.0002 
Low-intensity meadows 0.0000 
Extensively used meadows 0.3738 
Permanent meadows 0.0000 
Region-specific biodiversity area 0.0000 

 
The same tendency was also observed when looking at the TGI, although the difference 
between mown and non-mown plots derived from the TGI Variance is the lowest observed 
with AVIRIS-NG data (p-value Variance 0.002). 

 
Figure 19: Boxplot of the Variance across all management types, separated in mown and not mown plots, 
derived from the TGI of AVIRIS-NG. 

 
Figure 20: Boxplot of the CV of the different Management Types, separated in mown and not mown plots, 
derived from the TGI of AVIRIS-NG. 
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Table 12: P-values resulting from the Mann-Whitney-U test, testing for significant differences of the 
Variance between mown and not mown plots of each Management Type. Input dataset: AVIRIS-NG TGI. 

Management Type p-value  
Artificial meadows 0.1721 

Low-intensity meadows 0.3962 

Extensively used meadows 0.5553 

Permanent meadows 0.3803 

Region-specific biodiversity area 0.9830 

 
The TGI showed no consistent relationship for the different management types between 
mown and non-mown plots. The p-value showed that there are no significant differences 
detectable between mown and non-mown plots for all management types. 
 

5.1.6 Cross-Comparison of the AVIRIS-NG data 
To find a correlation within the four tested methods to aggregate AVIRIS-NG data, the 
Variance of the methods was plotted against each other and the Coefficient of Correlation was 
calculated. Every data point within the plots represents an agricultural plot. Correlation could 
be observed between certain methods of data aggregation when looking at the Variance. 
Comparing the NDVI and NDII showed the highest correlation, while comparisons to the TGI 
resulted in low values. Compared to the variance full spectrum, the NDII showed the highest 
correlation. The variance did not correlate stronger, because different regions of the spectrum 
were used for the calculations. 
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Figure 21: The Variance per plot of the full AVIRS-NG spectrum plotted against the Variance per plot of the 
three applied indexes (upper row). In the lower row, the Variance per plot of the three indexes plotted 
against each other. 

5.2 SwissImage RS data 
When working with SwissImage RS data (spatial resolution: 0.25m in mountainous areas) it is 
likely to obtain different results than when using AVIRIS-NG data. This is because the 
performance of spectral metrics is dependent on spatial resolution. Due to a smaller pixel size, 
the SwissImage RS data can detect more details and smaller structures, which may be of 
advantage when studying the spectral diversity of grassland. The SwissImage RS has been 
recorded more than a year after AVIRIS-NG, so both products have different local conditions 
and the observed plots and their management may have changed in the meantime. 
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5.2.1 Analyzing All SwissImage RS Bands 

 
Figure 22: Boxplot of the mean Variance and CV of all SwissImage RS Bands, grouped by the different 
management types. 

The result of analyzing the entire SwissImage RS spectrum resembled the result of the 
analysis of the full AVIRIS-NG spectrum, especially for the Variance. Figure 38 also showed 
that the use of the entire AVIRIS-NG spectrum, by exploiting the PCs, and the four 
SwissImage RS bands led to similar results. These two methods showed a slight correlation (r 
= 0.3271). For both spectral metrics, there were significant differences between the 
management types (p-values <0.001).  
 
The value distribution of the CV was noticeable. Extensively used meadows, which are 
expected to have a high species richness, have the second-highest median value of all 
management types. Whether this value was actually due to the high species richness or to 
other effects could not be assessed based on the available data. 
 

Table 13: P-Values of the Dunn-Bonferroni post-hoc test of all management types of the mean CV of all 
bands of the SwissImage RS. 

 Artificial 
meadows 

Low-
intensity 
meadows 

Extensively 
used meadows 

Permanent 
meadows 

Extensively 
used pastures 

Region-specific 
biodiversity area 

Artificial 
meadows 1 0.00347 0 0 0 0.06414 

Low-intensity 
meadows 0.00347 1 0 0.01857 0 0.27687 

Extensively 
used 

meadows 
0 0 1 0.00031 0.00013 0 

Permanent 
meadows 0 0.01857 0.00031 1 0 0.0002 

Extensively 
used pastures 0 0 0.00013 0 1 0 

Region-
specific 

biodiversity 
area 

0.06414 0.27687 0 0.0002 0 1 
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Table 14: P-Values of the Dunn-Bonferroni post-hoc test of all management types of the mean Variance of 
all bands of the SwissImage RS. 

 Artificial 
meadows 

Low-
intensity 
meadows 

Extensively 
used meadows 

Permanent 
meadows 

Extensively 
used pastures 

Region-specific 
biodiversity area 

Artificial 
meadows 1 0.00033 0.00001 0 0 0.00339 

Low-intensity 
meadows 0.00033 1 0.84954 0.00776 0.00832 0.5098 

Extensively 
used 

meadows 
0.00001 0.84954 1 0.00054 0.007 0.32918 

Permanent 
meadows 0 0.00776 0.00054 1 0.13681 0.0005 

Extensively 
used pastures 0 0.00832 0.007 0.13681 1 0.0024 

Region-
specific 

biodiversity 
area 

0.00339 0.5098 0.32918 0.0005 0.0024 1 

 

5.2.2 Analyzing SwissImage RS NDVI 

 
Figure 23: Boxplot of the Variance and CV of the NDVI of the SwissImage RS, grouped by the different 
management types. 

Both spectral metrics showed large values and also a large range of values for extensively 
used pastures. There were significant differences observable between the management types 
(p-values <0.001), extensively used pastures did differ from all other management types 
significantly at both spectral metrics. A reason for this may be that the NDVI was very 
sensitive to structures introduced by grazing (e.g., trampling damage) and that the pixel size 
of the SwissImage RS was small enough the detect these structures. This would have 
explained that the difference between extensively used pastures and all other management 
types was the largest here compared to all other methods and datasets.  
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Table 15: P-Values of the Dunn-Bonferroni post-hoc test of all management types of the mean CV of the 
NDVI of SwissImage RS. 

 
Artificial 
meadows 

Low-
intensity 
meadows 

Extensively 
used meadows 

Permanent 
meadows 

Extensively 
used pastures 

Region-specific 
biodiversity area 

Artificial 
meadows 

1 0.19962 0 0.00002 0 0.45191 

Low-intensity 
meadows 

0.19962 1 0.00002 0.01282 0.00004 0.5919 

Extensively 
used meadows 

0 0.00002 1 0.00189 0.04869 0 

Permanent 
meadows 

0.00002 0.01282 0.00189 1 0.00151 0.0012 

Extensively 
used pastures 

0 0.00004 0.04869 0.00151 1 0.00001 

Region-specific 
biodiversity 

area 

0.45191 0.5919 0 0.0012 0.00001 1 

 

Table 16: P-Values of the Dunn-Bonferroni post-hoc test of all management types of the mean Variance of 
the NDVI of SwissImage RS. 

 Artificial 
meadows 

Low-intensity 
meadows 

Extensively 
used meadows 

Permanent 
meadows 

Extensively 
used pastures 

Region-specific 
biodiversity area 

Artificial 
meadows 1 0.07788 0 0.00001 0 0.22854 

Low-intensity 
meadows 0.07788 1 0.00041 0.04679 0.00008 0.56894 

Extensively 
used meadows 0 0.00041 1 0.00817 0.02721 0.00002 

Permanent 
meadows 0.00001 0.04679 0.00817 1 0.00118 0.00558 

Extensively 
used pastures 0 0.00008 0.02721 0.00118 1 0.00002 

Region-specific 
biodiversity 

area 
0.22854 0.56894 0.00002 0.00558 0.00002 1 

 

5.2.3 Analyzing SwissImage RS TGI 

 
Figure 24: Boxplot of the mean Variance of the TGI of the SwissImage RS, grouped by the different 
management types. 
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The Variance of the TGI did produce significant differences (p-value <0.001), but it did show 
different patterns as the other methods applied to the SwissImage RS. The reasons for this 
remained unclear. Similarly, as for the AVIRIS-NG data, the Variance of biodiversity areas 
was high, which could not be observed when studying the full spectrum of the other sensors 
or the NDVI. 
 

Table 17: P-Values of the Dunn-Bonferroni post-hoc test of all management types of the mean Variance of 
the TGI of SwissImage RS. 

 Artificial 
meadows 

Low-
intensity 
meadows 

Extensively 
used meadows 

Permanent 
meadows 

Extensively 
used pastures 

Region-specific 
biodiversity area 

Artificial 
meadows 1 0.00196 0.78343 0.00001 0.72423 0.00012 

Low-intensity 
meadows 0.00196 1 0.00004 0.49723 0.02231 0.43961 

Extensively 
used meadows 0.78343 0.00004 1 0 0.82217 0 

Permanent 
meadows 0.00001 0.49723 0 1 0.00486 0.75486 

Extensively 
used pastures 0.72423 0.02231 0.82217 0.00486 1 0.00594 

Region-specific 
biodiversity 

area 
0.00012 0.43961 0 0.75486 0.00594 1 

 

5.2.4 Analyzing the Effect of Mowing on SwissImage RS Data 
Table 18: Mown and not mown plots per management type, classified on SwissImage RS. 

Management Type Mown Not Mown 
Artificial meadows 29 71 
Low-intensity meadows 40 71 
Extensively used meadows 220 60 
Permanent meadows 209 292 
Region-specific biodiversity area 34 75 
Total 532 569 
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Figure 25: Boxplot of CV and Variance, separated in mown and not mown plots, derived from all 
SwissImage RS Bands. 

As observed in the AVIRIS-NG data, mown plots showed a higher spectral diversity 
compared to areas not mown. But when analyzing the entire AVIRIS-NG spectrum, the effect 
was more pronounced, here only the CV was significant (p-value CV <0.001; p-value 
Variance: 0.35). The earlier observed tendency for high CV values for mown areas could 
again be observed across management types, for most management types at a significant 
level. 

 
Figure 26: Boxplot of the CV of the different Management Types, separated in mown and not mown plots, 
derived from all SwissImage RS Bands. 
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Table 19: P-values resulting from the Mann-Whitney-U test, testing for significant differences between 
mown and not mown plots of each Management Type. Input dataset: All SwissImage RS Bands. 

Management Type p-value  
Artificial meadows 0.0000 
Low-intensity meadows 0.2298 
Extensively used meadows 0.0555 
Permanent meadows 0.0021 
Region-specific biodiversity area 0.0000 

 
Using the NDVI, this tendency was also visible. For the AVIRIS-NG data, the tendency was 
stronger at the NDVI than when exploiting the entire spectrum, this is also the case for the 
SwissImage RS. The differences are strongly significant for both spectral metrics (p-value 
<0.001) 

 
Figure 27: Boxplot of CV and Variance, separated in mown and not mown plots, derived from the NDVI of 
the SwissImage RS. 
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Figure 28: Boxplot of the CV of the different Management Types, separated in mown and not mown plots, 
derived from the NDVI of SwissImage RS. 

The Mann-Whitney-U test returned significant p-values between mown and not mown plots 
of all management types.  
 
Figure 23 shows that the CV was highest at Artificial Meadows and Permanent Meadows. 
These high values mostly originated from mown plots, as we can see in Figure 28. The plots 
that were not mown showed relatively uniform values. 
 

5.3 Sentinel-2 data 

5.3.1 Analyzing Sentinel-2 High-Resolution Bands 
Only the results of the analysis of the high-resolution bands and the indices are presented. The 
calculations were done based on high-resolution bands with a spatial resolution of 10 m ´ 10 
m. Working with pixel sizes of 20 m x 20 m would not have made much sense to exploit 
diversity within the already small-scale agricultural structures of the Lower Engadin. 
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Figure 29: Boxplot of the mean Variance and CV of the Sentinel-2 high-resolution Bands, grouped by the 
different management types. 

Significant differences between the different types of management could also be identified 
using the Sentinel-2 data for both spectral metrics (p-value <0.001). For the variance, the 
earlier observed tendencies were not very distinct, but again a higher diversity was calculated 
for extensively used and permanent meadows and pastures, also with significant differences to 
artificial meadows. The CV showed large differences between pastures and meadows, which 
also have been observed using other methods.  
 

Table 20: P-Values of the Dunn-Bonferroni post-hoc test of all management types of the mean CV of the 
high-resolution bands of Sentinel-2. 

 Artificial 
meadows 

Low-
intensity 
meadows 

Extensively 
used meadows 

Permanent 
meadows 

Extensively 
used pastures 

Region-specific 
biodiversity area 

Artificial 
meadows 1 0.03141 0.40998 0.30185 0.0015 0.10062 

Low-intensity 
meadows 0.03141 1 0.00045 0.00009 0.00001 0.60962 

Extensively 
used meadows 0.40998 0.00045 1 0.81675 0.00324 0.00414 

Permanent 
meadows 0.30185 0.00009 0.81675 1 0.00358 0.00128 

Extensively 
used pastures 0.0015 0.00001 0.00324 0.00358 1 0.00002 

Region-specific 
biodiversity 

area 
0.10062 0.60962 0.00414 0.00128 0.00002 1 
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Table 21: P-Values of the Dunn-Bonferroni post-hoc test of all management types of the mean Variance of 
the high-resolution bands of Sentinel-2. 

 
Artificial 
meadows 

Low-
intensity 
meadows 

Extensively 
used meadows 

Permanent 
meadows 

Extensively 
used pastures 

Region-specific 
biodiversity area 

Artificial 
meadows 1 0.97218 0.00075 0.01588 0.11319 0.91758 

Low-intensity 
meadows 0.97218 1 0.00052 0.01309 0.11421 0.88695 

Extensively 
used meadows 0.00075 0.00052 1 0.08524 0.85573 0.00031 

Permanent 
meadows 0.01588 0.01309 0.08524 1 0.66037 0.00842 

Extensively 
used pastures 0.11319 0.11421 0.85573 0.66037 1 0.09654 

Region-specific 
biodiversity 

area 
0.91758 0.88695 0.00031 0.00842 0.09654 1 

 

5.3.2 Analyzing Sentinel-2 NDVI 

 
Figure 30: Boxplot of the mean Variance and CV of the Sentinel-2 NDVI, grouped by the different 
management types. 

With the NDVI of Sentinel-2, different management types also could be discriminated (p-
values <0.001). The observed differences between management types were more distinct than 
when using the full spectrum. Remarkable was that the values of artificial meadows were 
similar to the values of permanent meadows and pastures, which show large differences in the 
other datasets. A possible explanation may be that greenness and vegetation density appear 
similar when studied at the spatial resolution of 10 m. 
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Table 22: P-Values of the Dunn-Bonferroni post-hoc test of all management types of the mean CV of the 
NDVI of Sentinel-2. 

 
Artificial 
meadows 

Low-
intensity 
meadows 

Extensively 
used meadows 

Permanent 
meadows 

Extensively 
used pastures 

Region-specific 
biodiversity area 

Artificial 
meadows 1.00000 0.00000 0.00000 0.07522 0.14097 0.00000 

Low-intensity 
meadows 0.00000 1.00000 0.00000 0.00000 0.00000 0.00174 

Extensively 
used meadows 0.00000 0.00000 1.00000 0.00000 0.00002 0.17664 

Permanent 
meadows 0.07522 0.00000 0.00000 1.00000 0.01055 0.00000 

Extensively 
used pastures 0.14097 0.00000 0.00002 0.01055 1.00000 0.00000 

Region-specific 
biodiversity 

area 
0.00000 0.00174 0.17664 0.00000 0.00000 1.00000 

 

Table 23: P-Values of the Dunn-Bonferroni post-hoc test of all management types of the mean Variance of 
the NDVI of Sentinel-2. 

 
Artificial 
meadows 

Low-
intensity 
meadows 

Extensively 
used meadows 

Permanent 
meadows 

Extensively 
used pastures 

Region-specific 
biodiversity area 

Artificial 
meadows 1.00000 0.00000 0.00069 0.29071 0.03629 0.00002 

Low-intensity 
meadows 0.00000 1.00000 0.00000 0.00000 0.00000 0.00321 

Extensively 
used meadows 0.00069 0.00000 1.00000 0.00018 0.00004 0.08754 

Permanent 
meadows 0.29071 0.00000 0.00018 1.00000 0.00438 0.00001 

Extensively 
used pastures 0.03629 0.00000 0.00004 0.00438 1.00000 0.00000 

Region-specific 
biodiversity 

area 
0.00002 0.00321 0.08754 0.00001 0.00000 1.00000 

 

5.3.3 Analyzing Sentinel-2 TGI 

 
Figure 31: Boxplot of the mean Variance of the Sentinel-2 TGI, grouped by the different management types. 

Similar to the examination of the AVIRIS-NG and SwissImage RS data, the results of the TGI 
were not in line with the results of using the entire spectrum and the NDVI. The TGI of 
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Sentinel-2 led to significant differences between management types (p-value <0.001) but it 
was difficult to find possible explanations for the results. 
 

Table 24: P-Values of the Dunn-Bonferroni post-hoc test of all management types of the mean Variance of 
the TGI of Sentinel-2. 

 
Artificial 
meadows 

Low-
intensity 
meadows 

Extensively 
used meadows 

Permanent 
meadows 

Extensively 
used pastures 

Region-specific 
biodiversity area 

Artificial 
meadows 1.00000 0.00752 0.00026 0.52512 0.22490 0.00053 

Low-intensity 
meadows 0.00752 1.00000 0.60565 0.00003 0.66309 0.40393 

Extensively 
used meadows 0.00026 0.60565 1.00000 0.00000 0.46046 0.62776 

Permanent 
meadows 0.52512 0.00003 0.00000 1.00000 0.09615 0.00000 

Extensively 
used pastures 0.22490 0.66309 0.46046 0.09615 1.00000 0.34673 

Region-specific 
biodiversity 

area 
0.00053 0.40393 0.62776 0.00000 0.34673 1.00000 

 

5.3.4 Analyzing the Effect of Mowing on Sentinel-2 Data 
The area distribution between mown and non-mown areas showed a large difference to the 
distribution at the AVIRIS-NG and SwissImage RS datasets. This could be explained by the 
date of the Sentinel-2 data acquisition (June 16, 2018). For example, on low-intensity 
meadows, mowing is only permitted in valley regions as of June 15. In more alpine areas it is 
not yet permitted by this date. Consequently, only 5 of 112 plots were classified as mown. 
The other management types were also mostly not mown at this time, only artificial and 
permanent meadows showed balanced ratios between mown and not mown plots. 
 

Table 25: Mown and not mown plots per management type, classified on Sentinel-2. 

Management Type Mown Not Mown 
Artificial meadows 63 37 
Low-intensity meadows 5 107 
Extensively used meadows 46 237 
Permanent meadows 225 276 
Region-specific biodiversity 
area 

31 78 

Total 370 735 
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Figure 32: Sentinel-2 CV and Variance of the high-resolution Bands, divided between mown and not mown 
plots. 

The CV showed significant differences between mown and not mown plots (p-value CV 
<0.001; p-value Variance: 0.07), and as for AVIRIS-NG or SwissImage RS, mown plots had a 
higher spectral diversity than not mown plots. This was also the case on a significant level for 
all management types, except artificial meadows.  

Figure 33: Sentinel-2 CV of the high-resolution Bands, divided between mown and not mown plots per 
Management Type. 
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Table 26: P-values resulting from the Mann-Whitney-U test of the CV, testing for significant differences 
between mown and not mown plots of each Management Type. Input dataset: Sentinel-2 High-Resolution 
Bands. 

Management Type p-value  
Artificial meadows 0.9374 
Low-intensity meadows 0.0682 
Extensively used meadows 0.0001 
Permanent meadows 0.0000 
Region-specific biodiversity area 0.0000 

 
Figure 34: Sentinel-2 CV and Variance of NDVI, divided between mown and not mown plots. 

The same tendency is also apparent for the NDVI, again, the differences are more distinct and 
significant for both spectral diversity metrics (p-values <0.001). 

Figure 35: Sentinel-2 CV of NDVI, divided between mown and not mown plots per Management Type. 
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The Mann-Whitney-U test showed significant differences between all management types. 
 

5.4 Cross-Comparison between different Sensors 
Comparing the values resulting from applying the same methods on different sensors revealed 
whether the measurements were consistent across the different sensors. Looking at the CV of 
the NDVI revealed that the SwissImage RS did not correspond with the other sensors, while 
AVIRIS-NG and Sentinel-2 did correlate on a medium level. This made sense, as AVIRIS-
NG and Sentinel-2 measurements were taken only two weeks apart, while the SwissImage RS 
was obtained more than a year later (AVIRIS-NG: start of July 2018, SwissImage RS: 
September 2019, Sentinel-2: middle of June 2018). The medium correlation between 
AVIRIS-NG NDVI and Sentinel-2 NDVI showed that the difference in spatial resolution did 
not result in uncorrelated values. The effect of the different spatial resolutions of AVIRIS-NG 
and SwissImage could not be studied isolated, as the effect of the temporal offset was not 
assessable. 

 
Figure 36: Cross-comparison of the CV of the NDVI, derived using AVIRIS-NG-, SwissImage RS - and 
Sentinel-2-data.  

The TGI showed no correlation between the sensors. The TGI never showed consistent 
results, so it was not surprising, that no correlation could be seen for this variable. 

 
Figure 37: Cross-comparison of the Variance of the TGI, derived using AVIRIS-NG-, SwissImage RS - and 
Sentinel-2-data.  

A higher correlation between AVIRIS-NG and SwissImage RS was observed when looking at 
the results of exploiting the full spectrum. This was also in line with the similar results 
between AVIRIS-NG and SwissImage RS data presented in Figure 11 and Figure 22. A 
reason for the higher correlation in comparison to the NDVI may be that here the focus was 
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not on specific vegetation properties, but on all structures present within the plots. The 
vegetation properties might have changed significantly between the dates of the data 
acquisition, while other structures were more constant. Therefore, using the full spectrum may 
be a method that is more robust for temporal changes.  

 
Figure 38: Cross-comparison of the Variance when exploiting the entire spectrum, derived using AVIRIS-
NG PCs, SwissImage RS - and Sentinel-2-data.  

 
Figure 39: Cross-comparison of the CV NDVI, divided into mown and not mown plots, derived using 
AVIRIS-NG-, SwissImage RS - and Sentinel-2-data. 

 
Figure 40: Cross-comparison of the Variance when exploiting the entire spectrum, separated between mown 
and not mown plots, derived using AVIRIS-NG-, SwissImage RS - and Sentinel-2-data. 

Figure 39 and Figure 40 showed that the correlation was in most cases higher on mown plots 
than on plots, that were not recently mown. One reason for this could be that the grassland is 
brought into a uniform condition by mowing and therefore effects that lead to temporal 
differences are less significant. 
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6 Discussion  
The results presented so far show that differences in spectral diversity can be detected when 
investigating agricultural areas in the Lower Engadin with AVIRIS-NG, SwissImage RS and 
Sentinel-2 data. Correlating results between different sensors were obtained, which might 
indicate the robustness of the approach and might offer a transferability of the applied 
methods. A strong effect of mowing on the spectral diversity has been observed, which could 
be an indicator to test an adapted methodology for further applications, discriminating 
between mown and not mown plots. In this chapter, I will provide a more detailed perspective 
on these insights. Additionally, I will share the most important issues and limitations and will 
discuss the differences observed between sensors, data aggregation methods and spectral 
metrics. 
 

6.1 Impact of Plot Size  

 
Figure 41: The Variance of the NDVI of AVIRIS-NG plotted against the size of the respective plots. 

When calculating the Variance of a sample, the variation between observations is divided 
through the number of observations. For the calculation of the spectral variation, this means 
that the differences between pixels are divided by the number of pixels of a plot. Therefore, 
the values resulting from the calculations of the spectral metrics should be independent of the 
plot size. This was confirmed by Figure 41, which shows that there is only a very slight 
correlation between the Variance of the AVIRIS-NG NDVI and the plot size. 
 

6.2 Performance of the Spectral Metrics 
Due to the absence of strong validation data, it could not clearly be said which of the applied 
spectral metrics did perform better. In earlier applications, there was not necessarily a best-
performing spectral metric, as the performance of spectral metrics depended on several factors 
(e.g., spatial resolution, exposure of bare soil (Gholizadeh et al., 2018)). Therefore, I also 
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needed to assess for each application which metric works better. To make predictions whether 
a spectral metric performs better or worse for a specific application remains difficult. Figure 
42 shows distributions that support this finding. For the NDVI of AVIRIS-NG, CV and 
Variance correlate strongly, while when exploiting the PCs of AVIRIS-NG, this correlation 
cannot be found. This shows that the two metrics can behave very similarly but can also differ 
completely. The CV has proven as a useful spectral metric but could only be applied when the 
input pixel values are positive. Otherwise, negative average values can lead to chaotic and 
inconsistent results. For this study, only an indirect link between the CV of different sensors 
and data products and FD could have been established. However, the CV has also proven 
useful in creating a direct relationship between remote sensing datasets and biodiversity 
measures (e.g., to species richness on grassland (Gholizadeh et al., 2018)). 

 
Figure 42: Variance plotted against CV of the NDVI of AVIRIS-NG (left plot) and of the Entire Spectrum of 
AVIRIS-NG (right plot). To make the CV of the Entire Spectrum of AVIRIS-NG better comparable, the 
absolute values were calculated. 

When studying the value distributions of the spectral metrics across all applications (e.g., 
Figure 37), the results indicate that the variance is more robust to outliers. Hence, when 
examining and comparing the results of the different methods applied to the AVIRIS-NG 
data, the variance seems to produce more robust results across different applications using 
data of the same sensor. 
 

6.3 Indices vs. Full Spectrum 
The analysis of the AVIRIS-NG products revealed that using the full spectrum (PCs for 
AVIRIS-NG), NDVI and NDII obtained similar results, especially when using the variance. 
This can be seen Figure 11, Figure 12 and Figure 14, which showed that the variance revealed 
the same relationships between the management types. This was also supported when looking 
at the correlations (Figure 21), the analysis of the full spectrum showed a medium correlation 
to NDVI and NDII. Interestingly, NDVI and NDII did strongly correlate, although they were 
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calculated using different regions of the spectrum. The TGI did only correlate at a very low 
level with the results obtained using the full spectrum. Also to NDVI and NDII, correlation is 
relatively low. Although the NDII also revealed promising results, the index of interest for 
further discussion is the NDVI as it allows comparisons between AVIRIS-NG and 
SwissImage RS. 
 

6.4 Spectral- vs. Spatial Resolution 
When working with AVIRIS-NG data, features are visible that are not visible in the 
SwissImage RS because of the larger spectral coverage. On the other hand, in the AVIRIS-
NG scenery features remain hidden that are present in the SwissImage RS, because the 
SwissImage RS has a smaller pixel size. Thus, natural features such as small bushes, stones or 
fine meadow structures, but also anthropogenic features such as mowing patterns or power 
lines are recognizable. 
 
To answer the question of whether data with a high spatial resolution or with large spectral 
coverage and high spectral resolution, the applied methodology did not produce answers. 
Studying specific traits (e.g., vegetation density using NDVI) did produce meaningful results 
in this study but also in earlier studies ((Gholizadeh et al., 2019)). To find an optimal spatial 
and spectral resolution, methods should have been used that look at this problem in a more 
isolated way, despite the optimal resolutions might change between different applications. For 
example, by comparing the original spatial resolution of the SwissImage compared to a 
resampled product with lower spatial resolution. Wang et al. (2018) searched in this way after 
optimal pixel size for distinguishing a-diversity on grassland, they found out that using a very 
high spatial resolution of 1mm to 10cm works best. Figure 38 showed that there is a 
correlation on a low level when comparing the Variance of the AVIRIS-NG PCs to the four 
SwissImage RS bands. This indicates that a similar result can be obtained even when using 
data sets with strongly different spatial and spectral resolutions. For the other shown 
comparison between AVIRIS-NG data and the SwissImage RS, this correlation cannot be 
found. The temporal gap between the data acquisitions is likely the most important reason for 
this.  
 
The NDVI allowed for a coarse isolated analysis of the effects of the spatial resolution, as the 
same regions of the spectrum were used. When studying the results obtained per management 
type for the NDVI (Figure 12, Figure 23 and Figure 30), no major differences in the results 
became apparent. All three datasets revealed significant differences between the datasets and 
the resulting Variance and CVs stood in similar relations to each other. The differences 
revealed in the analysis were difficult to explain with the available data. Comparing the 
results of the NDVI of the three sensors (Figure 36) showed a medium correlation (r = 0.44) 
between Sentinel-2 and SwissImage RS, but no correlation between AVRIS-NG and 
SwissImage RS and AVIRIS-NG and Sentinel-2. This outcome was difficult to interpret, as a 
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correlation between SwissImage RS and Sentinel-2 is the least expectable (large temporal gap 
and largest difference in spatial resolution).  
 
For the often observed difference between artificial meadows and extensively used pastures, 
the SwissImage products revealed a higher level of confidence as for their AVIRIS-NG 
counterparts. This could be due to the different spatial resolution but would need further 
investigation to be confirmed. 
 

Table 27: P-values of the Dunn-Bonferroni post-hoc test resulting from comparing artificial meadows to 
pastures. The test searches for differences between the distributions of the Variance and the CV of the 
presented applications. In all cases, the extensively used pastures showed larger diversity values. 

 CV Variance 
AVIRIS-NG Entire Spectrum 0.0001 0.0207 
AVIRIS-NG NDVI 0.0474 0.0038 
SwissImage RS All Bands 0.0000 0.0000 
SwissImage RS NDVI 0.0000 0.0000 

 
An advanced insight into how the values of the spectral diversity emerged offers Figure 43. It 
showed that variations that were not or only very slightly recognizable in the RGB scene were 
well visible when looking at false color images, consisting of the PCs. This was the case for 
the high-diversity scene, but also for the low-diversity scene where small variations became 
apparent, that were not observable in the RGB bands. The compilation showed that slight 
spectral variations were best visible when the full AVIRIS-NG spectrum was exploited by 
using the PCs, as variations were observed that cannot be seen with the NDVI. This indicated 
that important variations of grassland were happening beyond the spectral range of the NDVI, 
which was considered a solid measure of vegetational properties. Therefore, it could be 
advantageous to have a wider spectral range available as RGB and NIR, e.g., a spectral 
coverage like AVIRIS-NG or at least a SWIR band. This showed that products like AVIRIS-
NG can offer additional insights in comparison to products with a small spectral coverage like 
SwissImage RS. On the other hand, the scene also revealed the advantages of the high spatial 
resolution of the SwissImage RS. For both plots, one could observe small structures like 
stones, hedges and small trees. This led to different results when assigning the plots a spectral 
diversity rank (ranked high to low after values of the variance). For example, the plot that had 
a low spectral diversity on the AVIRIS-NG products had a rather high diversity when 
examined with the SwissImage RS. This was because the fine structures were visible due to 
the improved spatial resolution. Furthermore, Figure 43 shows the importance of considering 
temporal effects. The SwissImage RS observation of the plot shown in the bottom row is 
inflated by the shadows cast by the neighboring trees and is therefore hardly comparable to 
the AVIRIS-NG scene. This is because the scenes were taken on different days of the year 
and at different times of day. 
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Figure 43: The upper row of Images shows different products of a plot with generally high spectral 
diversity. The lower row shows a plot with a low diversity. From left to right the images show: AVIRIS-NG 
RGB, AVIRIS-NG First 3 PCs, AVIRIS-NG NDVI, SwissImage RS RGB. (High-diversity plot: AVIRIS-NG 
Entire Spectrum Variance Rank (from high to low): 232, AVIRIS-NG NDVI Variance Rank: 43, SwissImage 
All Bands Variance Rank: 25, SwissImage NDVI Varienca Rank: 252; Low-diversity plot: AVIRIS-NG 
Entire Spectrum Variance Rank: 747; AVIRIS-NG NDVI Variance Rank: 1099, SwissImage All Bands 
Variance Rank: 175; SwissImage NDVI Variance Rank: 7) 

A closer look shows that this difference between PCs and NDVI can be observed in many 
plots. Figure 44 illustrates this phenomenon, as several plots that appear very homogenous in 
the NDVI show well-visible variation in the false color composite of the PCs. 
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Figure 44: PC False Color Scenes on the left side and the NDVI on the right side. 

6.5 Differences between Management Types 
The most noticeable observation across almost all applications and all sensors is the 
distinction between artificial meadows and extensively used pastures (Table 27 shows the 
respective p-values for the difference between the two management types). This relationship 
is interesting, as it corresponds to the expectation in almost all cases (Significantly higher 
variance of extensively used pastures for all AVIRIS-NG measures and all SwissImage RS 
measures except the TGI). Figure 45 shows exemplary plots with the management types of 
extensively managed pastures and artificial meadows. Even when only looking at the RGB 
bands, one can see clear differences between the two management types in AVIRIS-NG and 
SwissImage RS. In the SwissImage RS scene, finer structures are visible, but also in the 
AVIRIS-NG scene, variations are clearly detectable. In many cases, the variation within the 
plot is even more distinct, as extensively managed pastures often contain trees and bushes. 
The richness of these structures is likely to be related to a high FD, as the structures offer 
niches and habitats, that are not present on plain grassland. The artificial meadows also show 
slight variations but are less pronounced than the presented pastures. Again, the variations are 
detectable using AVIRIS-NG and SwissImage RS data.  
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Figure 45: AVIRIS-NG- (left side) and SwissImage RS scenes (right side). The scenes illustrate the different 
appearances of artificial meadows and pastures.  

6.5.1 TGI 
Figure 13 and Figure 24 revealed that the TGI did not produce results that matched those of 
the other applications. The TGI revealed pronounced variations that were difficult to attribute 
to specific causes. The abrupt variations did not emerge along features, that were observable 
at other products. This is illustrated in Figure 46. This may be an explanation for the very low 
correlation between TGI and the other products (PCs, entire spectrum and NDVI). The abrupt 
variations are most likely coming from the earlier described change from positive to negative 
values when the green reflectance is less than the red-blue line. The phenomenon discussed 
and the values obtained lead to the conclusion that the use of the TGI is not a suitable method 
to aggregate remotely sensed vegetation data based on which spectral diversity metrics should 
reveal meaningful differences in the spectral variation of different management types.  
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Figure 46: Two exemplary plots with a high TGI, plotted on different AVIRIS-NG products. Left side: RGB, 
middle: PC false-color image, right side: TGI. 

6.5.2 The Issue with the Biodiversity Areas 
The TGI did not deliver results that matched those of the other applications. In the case of 
biodiversity areas, however, it delivered results that corresponded more closely to the 
originally expected values than the other products. Therefore, it is exciting to take a closer 
look at these biodiversity plots. While the difference between artificial meadows and pastures 
is not as pronounced as in the other applications, the TGI derived from AVIRIS-NG and 
SwissImage RS provided significant differences between artificial meadows and biodiversity 
plots. Those differences could not be observed in the other applications. A closer examination 
of biodiversity plots (including the plots presented in Figure 46) with high diversity values of 
the TGI reveals that the plots mostly look like meadows with regular vegetation and without 
structural elements. Therefore, the examined plots look very similar to artificial meadows, 
they do not look like they offer a great diversity of niches and therefore one can expect a low 
FD. This is surprising as biodiversity areas should explicitly host elements such as hedges, 
groves and other small structures to provide such niches (Agridea, 2023). The randomly 
appearing structures produced by the TGI appear across all management types, the reason 
why they lead to significant differences between management types remains unclear. Visual 
inspection of the biodiversity plots indicates that the results obtained using the full spectrum 
and the NDVI of AVIRIS-NG and SwissImage RS are much more valid. Therefore, one can 
expect biodiversity areas to generally have a low FD. When analyzing them on plant level to 
study the species richness, different insights may emerge. 
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6.6 The Effect of Mowing 

 
Figure 47: Mown and not mown plots, calculated and plotted on AVIRIS-NG (right side) and SwissImage RS 
(left side). 

Before the differences between mown and unmown plots can be analyzed, the quality of the 
underlying classification must be verified. As no reference data is available, this cannot be 
done quantitatively, but only by visual inspection. Figure 47 and the study of other areas lead 
to the conclusion that the classification of AVIRIS-NG was done with a high degree of 
correctness, while the classification of SwissImage RS was often more difficult and therefore 
less accurate. Because of the dry conditions in the weeks before the data acquisition, the 
AVIRIS-NG was simpler to classify. The vegetation in the AVIRIS-NG scene was very dry 
and appeared brownish when mown, therefore it was well distinguishable. The SwissImage 
RS was acquired at less dry conditions, so the differences between mown and unmown plots 
were less pronounced. 

 
Figure 48: Daily precipitation in Scuol in the month before the AVIRIS-NG data acquisition (upper, data 
acquisition on 1 July 2018) and SwissImage RS data acquisition (lower, data acquisition on 4 – 29 
September 2019) (Source: MeteoSchweiz, 2023a). 
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The distribution of mown and unmown plots for AVIRIS-NG, SwissImage RS and Sentinel-2 
suggests that the classification methods worked satisfactorily for all sensors. The Sentinel-2 
scene was recorded earliest in the year and only one-third of the plots were classified as 
mown. This makes sense as mowing is not allowed at this time of the year for some 
management types. AVIRIS-NG was recorded as the second, two weeks after Sentinel-2. 
More than 40% of the plots were classified as mown. SwissImage RS was recorded latest in 
the year and almost half of the plots are mown. A detailed compilation of the classification 
results can be found in Table 9, Table 18 and Table 25.  
 
The most striking finding of the analysis of the spectral diversity of mown and unmown areas 
was that mown areas had across almost all applications a significantly higher spectral 
diversity. A reason for this may be the exposition of bare soil, which could possibly increase 
the spectral diversity. The exposition of bare soil is more likely to occur at mown plots. As 
bare soil has a substantially different reflectance from vegetation, it can increase spectral 
diversity (Gholizadeh et al., 2018; Lucas & Carter, 2008). Another reason may be that at 
mown plots, the spectral difference between structures that are unaffected by the mowing 
(e.g., bushes, hedges, trees) and the surrounding grassland increases. This would increase the 
spectral diversity of mown plots containing such structures in comparison to unmown plots 
containing such structures. This hypothesis is supported by the differences between 
management types obtained by AVIRIS-NG. Permanent meadows which often contain 
distinctive structures show a higher spectral diversity than artificial meadows on AVIRIS-NG 
application. For the SwissImage RS applications, the result looks different, artificial meadows 
result in higher spectral diversity on mown plots than permanent meadows. However, this 
result does not seem valid, as only 29 artificial meadows were classified as mown and the 
high values were mostly coming from plots where the borders did not match the actual 
management structure. 
 
The difference between mown and non-mown plots was stronger when using the NDVI than 
when using the entire spectrum. This was the case for all three sensors. The reason for this 
may be that the NDVI was more sensitive to vegetational changes and may be stronger 
affected by the exposition of bare soil. As there were considerable differences between mown 
and unmown plots, it might be useful for future applications to use a more precise 
classification method and to carry out separate analyses for mown and unmown plots. 
 

6.7 Results in the Context of Further Literature 
According to current knowledge, no similar studies have yet been conducted that have 
investigated the spectral diversity of agricultural grassland using an object-based approach 
that directly coupled remote sensing data with local plot data. So, there is no data available 
that is directly comparable. The most comparable study has been conducted by Rossi et al. 
((2020)), who examined plant traits on plot level with a PROSAIL inversion using Sentinel-2. 
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Although processing the remote sensing data differently and examining different plant traits, 
they also retrieved significant differences between plots that were mowed and plots that were 
grazed. This outcome may have a similar reason as the differences between artificial 
meadows and pastures observed in this study. The diversity metrics applied by Rossi et al. 
also observed differences between mown and non-mown management types. But with the 
relationships being conflicting, it is critical to draw comparisons. 
 
In the SNP, neighboring the study area, the spectral diversity of untouched grassland has been 
examined, also using the data of AVIRIS-NG (Rossi et al., 2022). Comparing the CV and 
Convex Hull Volume of AVIRIS-NG to in-situ measured plant species richness within 5m ´ 
5m plots, no correlation could be found. While AVIRIS-NG did deliver meaningful results in 
this study predicting FD, it might have an inappropriate spatial resolution to study the species 
richness of grassland on such a small spatial scale.  
 

6.8 Issues and Limitations 
During the conduct of this study, several problems and limitations arose. These potentially 
limited the validity of the presented results. It is important to be aware of these issues when 
assessing the results and drawing conclusions. The first major limitation arose from the 
dataset, which contained the agricultural plots of the canton of Grisons. The dataset did not 
very accurately represent the agricultural structures and practices of the Lower Engadin at the 
time of each remote sensing data acquisition. This is because of expected inaccuracies when 
the dataset is obtained, but also due to the time lag between the collection of the plot dataset 
and the collection of the remote sensing datasets. A second problem of the plot dataset was 
the fine parcellation in certain regions, that needed to be refined. As the refinement was done 
based on the Sentinel-2 mowing classification, the accuracy of this process was constrained 
by the Sentinel-2 revisit time and the quality of the mowing classification. The refinement 
was done for Summer 2018, so the resulting plot dataset was more accurate for AVIRIS-NG 
and Sentinel-2 than for SwissImage RS. 
 
A further limitation was the data quality of the AVIRIS-NG dataset, which showed significant 
spatial offsets, especially in steep regions. For the plot dataset nor AVIRIS-NG detailed error 
information was available, so I could only broadly estimate the influence of these 
inaccuracies. These issues could be expected to be apparent over the entire study area and all 
management types, so they should not have concerned certain areas or management types 
specifically. A small bias may exist between plots on the valley ground and plots on higher 
elevations. This was first because the spatial imprecision of AVIRIS-NG is lower in flat 
terrain. Second, the plots in the valleys are less fragmented, so fewer refinements were 
required in these regions. This introduced mainly a spatial bias but could also have impacts of 
different severity on the different management types. This is because artificial meadows can 
mainly be found on the ground of the valley, while extensively used meadows and pastures 
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are mostly at higher elevations. To verify that the elevation of the plots did not have a severe 
impact on the spectral diversity, Figure 49 shows the variance of the NDVI of AVIRIS-NG 
plotted against the elevation above sea level of the respective plots. There is no correlation 
between the spectral diversity measure and the elevation of plots, which shows that the 
elevation of the plots did not introduce a bias. Due to these issues, it can be expected that the 
significance of the results is reduced, but they should not have led to biases that may resulted 
in false findings. Table 27 shows the different levels of significance between AVIRIS-NG and 
SwissImage RS. These differences may be partly explainable by the differing data quality but 
as one can see do not lead to conflicting results.  

 
Figure 49: The Variance of the NDVI of AVIRIS-NG plotted against the Elevation of the respective plot. The 
slightly negative correlation can be explained by the fact that the more intensively managed plots are mainly 
located in the valley areas, while the extensively farmed plots are more often located at higher altitudes. 

A further issue present in the AVIRIS-NG products was related to cloud extraction. To 
retrieve meaningful results, plots with a size smaller than 2000 m2 were excluded from the 
analysis. However, there were still areas whose spectral diversity values resulted from a very 
small number of pixels. This was the case because in some areas a large part of the pixels 
within a plot had been cloud-masked. The areas with only a few analyzed pixels resulted in 
very low diversity values. This problem occurred across all management types and therefore 
did not lead to a distortion of results, but it should be solved differently in future work. 
 
A further limitation, especially for the analysis based on the SwissImage RS was that the 
agricultural plots were refined for summer 2018. As the agricultural management practices 
seem to be dynamic, in several regions of the study area, the borders between different 
managements have changed between summer 2018 and September 2019. This can be 
observed when examining the SwissImage RS concerning the refined agricultural plots. 
Again, this effect is expected to be uniformly distributed over the entire study area and all 
management types and therefore should not have led to a bias towards a certain management 
type. 
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Figure 50: Left side: AVIRIS-NG scenery; Right side: SwissImage RS 2019 scenery. On the left side, the 
borders of the agricultural plots correspond relatively well to the changes in management visible in the 
scene.  On the right side one can see borders between different management passing through plots. 

Generally, examining the spectral diversity of grassland on a large spatial scale remains 
difficult, because no clear cause-effect relationships can be drawn. Possible insights can be 
superimposed by effects that were not the subject of the examination (Hauser et al., 2021). 
However, the discussion of the obtained results and comparison to similarly conducted studies 
showed that SwissImage RS and AVIRIS-NG are successful in detecting structures within 
agricultural managed areas, which may promote functional diversity. This worked using the 
full spectrum provided by the respective sensors, but also when using the NDVI. Especially 
the difference between intensively managed (fertilized and mown) and grazed management 
types was present across several datasets, data aggregation methods and quantifications of 
variability. The applied spectral metrics detected significant differences in the reflectance 
properties across all applied datasets. As the spectral metrics only quantified these differences 
but did not provide the underlying reasons, the reasons for these differences remained unclear 
in many cases. To draw more specific conclusions about the potential of predicting FD from 
remote sensing data, the reasons for the observed results would need to be explored in more 
detail. This could be done by studying specific observed phenomena isolated and on a smaller 
scaler. For example, the impact of structural elements or bare soil on the different products 
could be studied in small test plots. Another approach would be to study the effects of 
different spectral and spatial resolutions by resampling certain scenes, again at small test plots 
where detailed reference data would be available. 
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7 Conclusion 

7.1 Summary 
For this study, three remote sensing datasets were studied in the context of an agricultural plot 
dataset containing management data. The analysis focused on the AVIRIS-NG hyperspectral 
dataset, which was recorded in July 2018. This dataset and the agricultural plot data needed 
vast processing, which introduced several issues, limiting the validity of the analysis. From 
the original remote sensing datasets, several data products were analyzed: the full spectrum 
(AVIRIS-NG: first three PCs, explaining more than 99% of the variance; SwissImage RS: all 
four bands, Sentinel-2: all four bands with a spatial resolution of 10 meters), the NDVI, TGI 
and NDII (only for AVIRIS-NG). From these products, the CV and the Variance were 
calculated for each plot. A classifier to detect mown plots was run over the datasets, to 
discriminate between mown and not mown plots in the analysis. Both spectral metrics 
returned significant differences between management types for all analyzed products. 
However, the results vary strongly, only a few consistent relationships were observed. For 
many observed phenomena, it is difficult to find meaningful explanations. To draw more 
certain conclusions, the observed phenomena and the expected underlying explanations would 
need to be tested isolated. A relation observed several times was between artificial meadows 
and pastures, with the latter showing a higher spectral diversity in almost all applications. 
Most likely this was due to structural elements, that were often present in pastures but very 
rare in artificial meadows. A further finding common to all applications was the higher 
spectral diversity of mown plots. This was probably due to the exposition of bare soil, which 
was more present at mown plots and increased the spectral diversity. The observed results are 
likely to be related to the functional diversity of alpine grassland, better ground truth data 
would be needed to make more certain conclusions. 
 
The results that were explainable the best, the most consistent and returned highly significant 
differences were obtained generally when analyzing the full spectrum and NDVI of AVIRIS-
NG (also NDII) and SwissImage RS. This means that high spatial- and spectral resolution 
both offer advantages that are worth exploitation. For certain applications, it is difficult to 
predict which data set is more suitable, which method of data aggregation to choose and 
which spectral metric will give the best results. When calculating spectral diversity metrics on 
plot level on the full spectrum or the NDVI of AVIRIS-NG and SwissImage RS, one can 
expect to observe differences in the functional diversity of grassland. 
 

7.2 Research Questions 
1) Is it possible to study the spectral diversity of agriculturally managed plots in the 

Lower Engadin using an object-based approach? 
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Significant differences between plots of different management types were observed across 
several datasets and data aggregation methods. This suggests that when having plot data of 
adequate quality available, this approach works. But as the resulting values are often 
contradictory, the input data needs to be specifically selected and the results additionally 
verified and carefully interpreted. Also is the reproducibility not certain, as the results are 
dependent on local conditions. 
 

2) How can the spectral diversity of agriculturally managed plots of the Lower Engadin 
serve as a proxy for biodiversity measures? 

 
It is likely and can be justified, that the spectral diversity of the agricultural managed plots of 
the lower Engadin related to the FD of the respective areas. Therefore, one can expect that the 
spectral diversity can serve as a broad proxy for certain biodiversity measures, specifically in 
the context of the alpine managed grassland of the Lower Engadin. Significant results can be 
achieved using various spectral and spatial resolutions, also correlation can be observed 
between different datasets. For biodiversity measures defined on a finer spatial grain (e.g., 
species richness), the analyzed data did not provide indicators and a relation cannot be 
expected. 
 

7.3 Outlook 
If I had to conduct the study again, applying the same methodology, I would invest more time 
in finding a way to do the cloud filtering of the AVIRIS-NG data more precisely. In addition, 
a minimum number of analyzed pixels would have to be set when calculating the diversity 
metrics for a plot to be considered. 
 
Generally, for future applications, I would recommend working with AVIRIS-NG, because 
the spatial resolution is still adequate and the large spectral coverage is useful for vegetational 
studies. But also the SwissImage RS I can recommend, as the NIR band and the high spatial 
resolution offer valuable information. It would be desirable to work with a reference plot 
dataset that contains more specific information on biodiversity metrics than just the 
management types, e.g., by working on a few experimental plots. This would make the 
obtained values directly relatable. Conclusions about the observed relationships could be 
more certain if the relationships would be studied isolated. Then statements about causality, 
which could only be speculated about in this study, would be more reliable. Finally, more 
sophisticated techniques could be applied. This could be done by calculating more and more 
complex spectral metrics, although even then one cannot expect non-contradictory results. 
Also, further remote sensing datasets could be introduced. For example, one could try to work 
with radar data, as this would most likely also observe the diversity introduced by structures 
on grassland. The vegetational properties could also be represented more accurately when 
applying canopy reflectance models or atmospheric models. 
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8 Appendix A – Overviews 

 

Figure 52: Example result of the spectral diversity analysis: Spatial variation of the result obtained from 
analyzing the Variance of the NDVI of AVIRIS-NG. 

Figure 51: Plots and their respective Management Type in the Lower Engadin. 
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9 Appendix B – Further Results of the AVIRIS-NG Spectral 

Diversity Analysis 

 
Figure 53: CV of the first three PCs of AVIRIS-NG. 

Table 28: P-Values of the Dunn-Bonferroni post-hoc test of all management types of the CV of the first three 
AVIRIS-NG PCs. 

 Artificial 
meadows 

Low-
intensity 
meadows 

Extensively 
used meadows 

Permanent 
meadows 

Extensively 
used pastures 

Region-specific 
biodiversity area 

Artificial 
meadows 1.00000 0.55265 0.01415 0.00000 0.02067 0.05370 

Low-intensity 
meadows 0.55265 1.00000 0.06313 0.00000 0.00644 0.00875 

Extensively 
used 

meadows 
0.01415 0.06313 1.00000 0.00000 0.00010 0.00000 

Permanent 
meadows 0.00000 0.00000 0.00000 1.00000 0.88279 0.00867 

Extensively 
used pastures 0.02067 0.00644 0.00010 0.88279 1.00000 0.26237 

Region-
specific 

biodiversity 
area 

0.05370 0.00875 0.00000 0.00867 0.26237 1.00000 
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Figure 54: CV of the TGI of AVIRIS-NG 

Table 29: P-Values of the Dunn-Bonferroni post-hoc test of all management types of the CV of the TGI of 
AVIRIS-NG. 

 Artificial 
meadows 

Low-
intensity 
meadows 

Extensively 
used meadows 

Permanent 
meadows 

Extensively 
used pastures 

Region-specific 
biodiversity area 

Artificial 
meadows 1 0.20944 0.00164 0.00258 0.25181 0.58947 

Low-intensity 
meadows 0.20944 1 0.0766 0 0.71052 0.46152 

Extensively 
used meadows 0.00164 0.0766 1 0 0.57583 0.00853 

Permanent 
meadows 0.00258 0 0 1 0.00369 0.0001 

Extensively 
used pastures 0.25181 0.71052 0.57583 0.00369 1 0.413 

Region-specific 
biodiversity 

area 
0.58947 0.46152 0.00853 0.0001 0.413 1 

 

 
Figure 55: CV of the NDII of AVIRIS-NG. 
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Table 30: P-Values of the Dunn-Bonferroni post-hoc test of all management types of the CV of the NDII of 
AVIRIS-NG. 

 
Artificial 
meadows 

Low-
intensity 
meadows 

Extensively 
used meadows 

Permanent 
meadows 

Extensively 
used pastures 

Region-specific 
biodiversity area 

Artificial 
meadows 1 0.08982 0.83272 0.00001 0.04627 0.26997 

Low-intensity 
meadows 0.08982 1 0.01965 0.01302 0.00197 0.54441 

Extensively 
used meadows 0.83272 0.01965 1 0 0.04292 0.11218 

Permanent 
meadows 0.00001 0.01302 0 1 0 0.00125 

Extensively 
used pastures 0.04627 0.00197 0.04292 0 1 0.00658 

Region-specific 
biodiversity 

area 
0.26997 0.54441 0.11218 0.00125 0.00658 1 

 

10 Appendix C – Github Repository 
The most important coding steps of this thesis are found under:  
https://github.com/MaurusF/Thesis_SpectralDiversity.git 
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11 Appendix D – Spectral Diversity Analysis Cross-Comparissons 

 
Figure 56: Pairplots of the Variance of the SwissImage RS products. 

Figure 57: Pairplots of the CV of the SwissImage RS products.  

 

Figure 58: Pairplots of the Variance of the Sentinel-2 products. 

 

Figure 59: Pairplots of the CV of the Sentinel-2 products. 
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