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Abstract 

Background: Over the past years, great efforts are being taken to improve 

infrastructure for bicycling by the Canton and the City of Zurich. However, as in 

most places, data on bicycle ridership is still sparse and relies on counting stations 

at specific points in the network. On the other hand, crowdsourced data from 

Strava provides a continuous spatial map of ridership. The user bias of Strava data 

can be mitigated by including geographic variables as well as official counts to 

model ridership.   

Goals: This thesis explores how accurate bicycle ridership can be predicted using 

Strava counts and geographic variables with official counts as ground truth. The 

goal is to get a spatially continuous map of bicycle ridership at street segment level 

for the urban area of Zurich. Secondly, the aim is to find out which geographic 

covariates are the best local predictors for bicycle ridership. 

Methods: The most significant geographic variables were selected using a LASSO 

Regression. This work distinguishes between in-sample and out-of-sample 

estimations of ridership by using two distinct sampling strategies. Three 

Generalised Linear Mixed Models were fitted: One for each sampling strategy 

using cross-validated 80-20 train-test splits and one GLMM using all counting 

stations as training data.  

Results: Results show very good in-sample accuracies and only moderate and 

highly unstable out-of-sample estimates. The models perform worse at stations 

with high seasonality, where primarily leisure riders are present. Significant 

predictors besides the Strava counts were the socio-economic Swiss Neighbourhood 

Index, distance to points of interest, exposure to accidents and winter as season. 

Conclusion: Ridership is predictable using Strava and geographic data. For better 

performance, mainly on unseen data, it is suggested to either add more variables 

concerning seasonality or perform separate models for leisure-oriented paths.  
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1 Introduction 

1.1 Motivation 

Mobility is one of the sectors which account for most CO2 emissions in Central 

European Countries. Furthermore, it’s the only sector that has increased its 

greenhouse emissions compared to 1990, instead of a decline (Eurostat, 2022). One 

highly valued attempt to make traffic more sustainable is the promotion of 

bicycling as mode of transport (Larsen et al., 2013). In recent years, authorities 

like the City of Zurich have got the strong political duty for the promotion of cycling 

(Kanton Zürich, 2020; Stadt Zürich, 2020), shifting towards emission free and 

space efficient modes of mobility. Thereby, they focus on improving conditions for 

bicycling in everyday life, for example for commuting or running errands (Kanton 

Zürich, 2023; Stadt Zürich, 2021a).  

However, environmental benefits are not the only reason for the promotion of 

bicycling: In the past years, several studies have shown the positives of active 

transportation in general (Mueller et al., 2015). For instance, Celis-Morales et al. 

(2017) associate cycle commuting with lower risk for cardio-vascular disease, 

cancer and all-cause mortality, which shows that bicycling also provides benefits 

for health. 

To support decision makers in their aim to promote cycling, insights in the actual 

usage of infrastructure is key, both for existing bike paths or lanes and the building 

of new ones. Up to today, most of the data about ridership is only punctual and 

thus represents the ridership volume at specific streets in the network (Graser et 

al., 2021; Livingston et al., 2021). This is also the case in Zurich, Switzerland, 

where both the city and the canton operate automated counters at specific locations 

(Kanton Zürich, 2022; Stadt Zürich, 2022). These counters deliver temporally rich 

data, as they work automatically around the clock. Nevertheless, they are a limited 

data resource, as they lack spatial insights into the ridership in a holistic, network-

based manner. 

In contrast to punctual count data, crowdsourced GPS data from tracking apps 

deliver a continuous flow of data points. In the 2010s, tracking apps like Strava 

have grown constantly - in 2020, Strava numbered 50 millions of users out of 195 
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countries tracking and sharing their activities online (Strava, 2020a). Soon, 

research has started to see the potential of this generated data. First studies 

emerged which tried to use the tracking data to predict ridership (Jestico et al., 

2016) or assess infrastructure (Heesch & Langdon, 2016). At the same time, there 

also critical remarks about user submitted data and studies emerged which assess 

the accuracy of crowdsourced geographic features (e.g. Jackson et al., 2013). 

While there are pitfalls of crowdsourced data at both the part of the user and the 

providers, the enormous potential of those vast amounts of data stands out. In 

2019, Roy et al. presented a study to predict bicycle ridership, including a range of 

geographic variables that correlate to bicycling. The use of a range of other 

variables is their way to statistically mitigate the pitfalls of crowdsourced data.  

The motivation behind this thesis is to explore the potential of bicycle ridership 

prediction using crowdsourced data in Zurich, Switzerland. The use of a model 

combining official counts as ground truth and crowdsourced data along with 

geographic variables as predictors is promising, as it helps to compensate for the 

weakness of each input. A spatially continuous model of ridership would improve 

the foundations for decision making in the enhancement of bicycle infrastructure 

by the authorities.  

1.2 Research Questions, Hypotheses, Goals 

The goal of this thesis is to contribute to the state of the art concerning bicycle 

ridership. Both the methods and results should enhance the understanding of the 

use of crowdsourced data for ridership prediction in Switzerland and provide a first 

step to close the research gap described in Section 2.4.  

In context of the research gap and existing studies, the following research 

questions are to be answered in this study:  

- RQ 1: How well is bicycle ridership in Zurich’s Urban Area predictable from 

Strava and geographic data? 

- RQ 2: Which variables are the best local predictors for ridership? 

As for hypotheses, the subsequent assumptions will be questioned throughout this 

thesis: 
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H1: It is possible to predict ridership as precise as in related studies, meaning that 

for 80% of segments, daily counts of ±25% of riders can be predicted. 

H2: There are differences in variable importance compared to related studies in 

the US – for instance, in Zurich’s Urban Area, socio-economic variables might not 

be significant predictors for ridership. 

As contained in the first hypothesis, a concrete goal is to predict monthly counts 

within the same ranges of accuracy as in related studies from the US. As for time 

units of the prediction, this study aims for predicting monthly counts, but also 

provide outputs for the annual average daily bicyclists (AADB) and average daily 

bicyclists in the period of April-October. 



 

 

2 State of the Art  

In this chapter, the background and existing research is presented to contextualise 

the topics of this thesis. First, the use of crowdsourced bicycle ridership data at the 

example of Strava is assessed in Section 2.1. Exemplary studies that already 

predicted bicycle ridership using Strava data are described in Section 2.2, followed 

by an overview of the current state of bicycling and its associated data in Zurich in 

Section 2.3. Lastly, the research gaps are summarised in Section 2.4. 

2.1 Crowdsourced Bicycle Ridership Data at the Example of Strava 

As mentioned in the motivation, crowdsourced data is a phenomenon that emerged 

over the past decade. In research, crowdsourced data is also named a type of 

emerging data, in contrast to traditional data which comes from manual counts or 

automated counts (see Figure 1).  

The vast advantage of 

crowdsourced data is the spatial 

coverage. Contrary to measures 

at specific points in a network, 

crowdsourced data is continuous 

(see Figure 2).  

In the case of Strava, users track 

themselves to share their 

activities online, in what could be 

called a social network for 

athletes. Thereby, all users are 

motivated to contribute with 

encouraging messages (see 

Figure 3). The base functions of 

Strava are free to use, whereas 

the membership for CHF 12 a 

month (as of July 2023) unlocks 

further tools and options. 

Figure 1: Types of Ridership Data 

Figure 2: Continuous Map of Strava Bicycle Trips in Zurich in 
2019 (EBP, 2020) 
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The app can be used on smartphones but can also be synced with smart wearables 

of different brands.  

Strava has its own data platform called Strava Metro. Through this platform, 

Strava provides the data of its users in an anonymised way. Public authorities, or 

anyone who works for them, can apply and get access to Strava Metro. The aim of 

Strava Metro is to help authorities make data-driven decisions and thus improve 

infrastructure (Strava, 2020b).  

What are the things to consider when working with crowdsourced data?  

Among the concerns is the data acquisition setting, the app design and data 

characteristics (Tironi & Valderrama, 2017). These factors may change 

considerably over time, as companies like Strava follow their own interests, or 

incentives for users change. Research needs high data quality and users must not 

be nudged to choose certain options. For privately owned data, such characteristics 

are impossible to control. However, the most critical thing about crowdsourced 

ridership data is the missing representativeness. The sample of crowdsourced data 

does not represent the population. Often, few users contribute an over 

proportionally amount of data. Moreover, the contribution is heavily biased in 

terms of gender and age, mostly towards male and younger persons (Garber et al., 

2019).  

Besides the population, the bias towards recreational riders is an inherent problem 

in crowdsourced data (Garber et al., 2019; Roy et al., 2019). Recreational riders 

may choose other routes and have other needs than the average bicyclist. On the 

part of providers, the binning of usage data to boost privacy of users affects the 

data quality (Raturi et al., 2021). Concerning the Strava data in this study, this is 

discussed in Chapter 3.2.1.  

We believe if you sweat, you’re an athlete. 

Strava athletes upload everything from walks around the block to Tour 
de France stage wins. If you’re out there going for it, you’re one of us. 

We’re the leading platform for movement. 

(strava.com/about) 

Figure 3: Exemplary Slogans and Logo of Strava 
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Summing up, there are concerns about data quality (acquisition settings for users, 

binning by providers) and inherent biases towards certain groups of people, 

because the data is not representative. These aspects show that the usage of 

crowdsourced data must be carefully assessed. 

2.2 Research: Crowdsourced Data to Predict Ridership 

In literature, several researchers have linked crowdsourced data to official counts, 

to both mitigate the downsides and sum up the advantages of both methods. Over 

the past decade several studies emerged which focused on the estimation of 

ridership. 

While the common goal is the same, the studies differ in the observation time 

considered, number of counting stations, geographic variables or type of accuracy 

specified. Jestico et al. (2016) provide one of the earliest studies. They used 

manually computed cycling counts in peak traffic hours of Victoria BC, Canada. 

The manual counts were done on several days in January, May, July and October, 

resulting in a separate ridership map for each of those months. They had an 

average model error of 38% over all iterations of the cross-validation, where they 

randomly selected 90% train and 10% test samples of the stations. 

One of the two most important related studies for this thesis is written by Roy et 

al. (2019). As the title “Correcting Bias in Crowdsourced Data to Map Bicycle 

Ridership of All Bicyclists” says, they focus on the methodology to make the 

insights of crowdsourced data inclusive for all riders. They state that the inclusion 

of a variety of other variables accounts for the bias in crowdsourced data and 

makes the results representative for all riders (Roy et al., 2019, p. 15). Their study 

is conducted in Maricopa County, Arizona, USA. Interestingly, they use 44 

counters spread in the whole County to train their data, whereas they validate 

their model using 60 manually computed counts during peak hours, in the City of 

Tempe, inside their perimeter. While the climate is arid, they do account for 

seasonality using April, May, October and November as sampling months. Data is 

extrapolated to arrive at a range of results for the AADB. According to them, their 

model can predict ±25% of riders for 80.3% of segments. This relative figure is 

written in their discussion (p.15), whereas otherwise, they refer to absolute 

numbers of riders in their accuracies, which makes findings hard to interpret. They 
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provide out-of-sample accuracies, as they tested the model with another type of 

count data, that was manually conduced in the City of Tempe and also extrapolated 

from peak hours to whole day figures. The in-sample Poisson model fit in the train 

set resulted in an R2 of 0.64. Even though they provide precise accuracies they refer 

to categorical maps as the most accurate output for prediction.  

The second reference paper is by Nelson et al. (2021). They propose a generalised 

model for different cities in the US and Canada, involving various kinds of 

networks, bike cultures and climates. However, they also compute city-specific 

models, where another set of geographic variables is selected. As one would expect, 

this mostly leads to better results. In terms of numerical results, only in-sample 

accuracies were produced. In the city specific models, the accuracy, respectively 

the R2 value varied between 0.76 and 0.92. Due to the diverse setting, they 

formulate four general recommendations for ridership models using crowdsourced 

data:  

- Four variables to always use (number of Strava riders, % of Strava riders 

commuting, bicycle crash density and median household income)  

- Further possibly relevant variables (e.g. slope, distance to residential area) 

- The importance of the official counts regarding temporal and spatial 

characteristics  

- Not to oversell results – categorical maps are the most reliable output they 

name, equally as Roy et al. (2019).  

And what about Europe? Interestingly, despite some countries where bicycling has 

a very high share in daily mobility, there are only few studies with the same 

research goals. Livingston et al. (2021) present a study done with data from 

Glasgow, Scotland in which they also aim to fill gaps left by related studies 

concerning the characteristics of counters and making out-of-sample predictions. 

In contrast to other studies, they do not consider geographical variables and 

acknowledge the bias of Strava users as a limitation. They examined the 

differences in correlation between smaller and larger time aggregations and tried 

out-of-sample predictions testing a variety of models. The best model fit resulted 

using a negative binomial model. Finally, their models can predict order of 

magnitudes throughout the whole city, but they state that for applications that 
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require more precision the signal to noise ratio is not appropriate. Livingston et al. 

(2021) still think that a precise prediction could be obtained, if more variables 

would be included and the number of Strava riders is not too low.  

2.3 Bicycling in Zurich 

The authorities of the Canton and the City of Zurich are investing a lot to improve 

infrastructure for bicyclists, as the political forces demand (Kanton Zürich, 2020; 

Stadt Zürich, 2020). A major part of an improvement of the situation should come 

from priority routes for bicycles. While the terms (Veloschnellrouten, respectively 

Velovorzugsrouten) and the corresponding definitions are slightly different 

between Canton and City, the aim is the same – there should be a network of routes 

where bicyclists of all ages and moving velocities are safe to ride. The City of Zurich 

talks about different types of bicycle riders concerning the frequency of rides in 

their strategy paper (Stadt Zürich, 2021b). They state that the future network aims 

to improve conditions for all groups. For the Canton of Zurich, thanks to the 

existence of safe and undisrupted routes, more commuters should be encouraged 

to refer to bicycles as mode of transport (Kanton Zürich, 2021). Even though plans 

are there, the implementation is taking a lot of time. Objections from local people, 

a few political parties or business owners delay ongoing projects, whereas the most 

controversial subject seems to be parking space that is removed to make space for 

the bicycle routes (Brun, 2022). 

Authorities of City and Canton still rely on the punctual nature of automated 

counters, surveys and estimations to assess bicycle ridership on their 

infrastructure. While for motorised individual traffic and public transport, there is 

a detailed transport demand model operated by the Canton of Zurich, bicycles are 

only roughly captured as of today. In the future, cycling should be represented 

more completely (Amt für Mobilität, personal communication, 05.12.2022). In the 

meantime, other ways are explored to get a better understanding about ridership: 

In 2020, the Canton of Zurich explored the “Suitability of Strava Data For 

Questions Of Bike Traffic” (EBP, 2020). The descriptive study analyses patterns of 

Strava usage in the whole Canton and shows the correlation between counters and 

Strava counts in the year 2019. This thesis builds on that former study – it follows 

one of the further research possibilities named by the authors. The City of Zurich 
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is exploring another approach: They asked for people who voluntarily share their 

daily movement patterns with the authorities, with the incentive that the data 

would improve the planning of adequate infrastructure (Stadt Zuerich, 2022). 

These projects all share the same goal: Using generated data of our digitalised 

world to improve the understanding of how people move and behave, in our case in 

bicycling.  

As for research, there are various studies concerning bicycling around Zurich (e.g. 

Büchel et al., 2022; Meister et al., 2022; Menghini et al., 2010). However, the 

studies are mostly focused on route choice or safety assessments. The spatial 

ridership prediction has not been covered yet. Ridership has often been used in 

assessments, for example in many studies that covered the changes in mobility 

during the Covid-19 pandemic (e.g. Lustenberger et al., 2021). 

2.4 Research Gap 

The state of the art unveiled several research gaps: 

- Whether for Zurich, nor Switzerland there is research about the prediction 

of bicycle ridership that involves the use of crowdsourced data. 

- The same applies to geographic covariates, which have only been named in 

related studies from overseas. 

- Some existing studies only presented in-sample accuracies, while 

predictions of unseen data could not be tested. Moreover, the difference 

between in- and out-of-sample estimates has not been addressed yet.  

With the research questions and goals stated in Section 1.2, this thesis tries to 

close those research gaps and contribute to a better understanding of bicycle 

ridership in a spatially continuous manner.  



 

 

3 Case Study and Data 

This thesis involves a high amount of data, which is partly used in a generalised 

linear mixed model. Besides the ridership data of Strava and the official counts 

provided by the City, respectively the Canton of Zurich, a wide variety of 

geographical co-variates is tested. An overview over the study area is given in 

Section 3.1. Section 3.2 reflects on the data used in this thesis: The 

implementations of ridership data and geographic data are described and assessed. 

3.1 Study Area 

The study area is involving Zurich, Switzerland and a big part of the urban area 

around the city. It was drawn so that a variety of official bicycling counting stations 

operated by the City or the Canton of Zurich could be included. In Figure 4, an 

overview about the study area is given: All finally used counting stations, the 

convex hull of the final perimeter and the spatial division into urban and not urban 

area are shown. This division is deduced from the five action areas in the 

development plan of the Canton (Raumordnungkonzept ROK, kantonaler 

Richtplan). The reason for focusing on urban area is that the authorities focus on 

improving conditions for bicyclists in everyday life and not in a leisure context. 

Therefore, it was decided to focus on the City and the urban Limmattal and Glattal 

nearby.  

The in- or exclusion of counting stations will be explained more thoroughly during 

this thesis. Of the stations used in the end, most are inside or at the border of 

urban area. The convex hull of the perimeter (“Study Area” in Figure 4) is deduced 

from the rectangular export of Strava Metro. This area has been shrunk a bit 

further due to time limits in the network matching.  
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Figure 4: Study area: Counting Stations in Zurich's Urban Area (own map using ArcGIS Pro) 

3.2 Data 

3.2.1 Ridership Data 

The main data for this analysis is bicycle ridership data. In Table 1, an overview 

over the six ridership variables is given, while in Figure 4, the counting stations 

are shown on a map. Furthermore, a table containing details of all counting 

stations and their considered measurements can be found in the Appendix (Letter 

B). 

Table 1: Ridership Data used for this Study 

 Variable Description Source 

a) 
Official Counts Canton of 

Zurich 

20 locations, aggregated monthly, cross-sectional 

data 

Canton of 

Zurich 

 

b) 
Official Counts City of 

Zurich 

16 locations, aggregated to monthly, cross-

sectional data  

City of Zurich1 

(OGD) 

 
1 Available at https://data.stadt-zuerich.ch/dataset/ted_taz_verkehrszaehlungen_werte_fussgaenger_velo (Assessed on the 

16/08/2023) 

https://data.stadt-zuerich.ch/dataset/ted_taz_verkehrszaehlungen_werte_fussgaenger_velo
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c) Strava Counts on edge-level Monthly counts on street segment level; Strava Metro 

d) Strava % of commute 

Additional predictor variable. Significant 

predictor in the study by Nelson et al. (2021). See 

Chapter 3.2.1. 

Strava Metro 

e) Season of Count 

Additional predictor variable. Derived from 

months:  
 

Strava Metro 

 
Winter:  

Spring: 

12-02 

03-05 

Summer:  

Autumn: 

06-08 

09-11 

f) Year of Count Additional predictor variable. 2021 or 2022. Strava Metro 

 

a) and b): Official Counts from Counting Stations by the City or the Canton 

The counts recorded by counting stations were imported from .csv 

respectively .xlsx files into R. While the counting stations of the City of Zurich were 

all provided in one file, the Canton provided one Excel file per counting station. 

Therefore, all stations had to be merged first. The data was then filtered for the 

years 2021 and 2022. As the raw data was quarter-hourly or hourly data, the 

lubridate package was used to aggregate the counts to monthly data.  

A link to the Strava data was necessary in order to use the counts in the analysis. 

The matching of the counting stations to a unique street segment of the network 

was done manually. As described in Section 4.1, the network, with very few 

exceptions, consists of one segment per cross-section, independent of the number 

of lanes or bicycle infrastructure. In some cases however, the authorities use two 

or more counting stations to capture the traffic on one cross-section. For these 

stations, the values were added to obtain the total ridership per cross-section.  

For the use of official counts as ground truth in the regression models, the data 

quality is very important. Whereas the Strava data was available all year round, 

there were a lot of gaps in the official counts. In some cases, the stations were 

newly installed, in others there was a technical problem that led to missing data. 

For the monthly counts used in the regression, only months that had >= 25 days of 

recorded counts were used. 
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Another uncertainty is the counting itself. The two authorities work with similar 

methods of measurement: An induction loop is inserted on the pavement (see 

Figure 5).  

Figure 5: Example of an Induction Loop in Glattbrugg (Screenshot of Google Street View on 
www.maps.google.com, accessed on 16/08/2023) 

The induction loop is connected with a little computer, which sends the counts to 

a server each day. The counting works as every bicycle containing metal is emitting 

an electromagnetic signal when it passes by, which is recognised by the induction 

loops. Further classifications of the signal filter out motorcycles or even bikes that 

are only pushed. The measurement with induction loops has the disadvantage that 

bicycles made purely out of carbon are not counted. Further uncertainties can be 

double counts or missed bicycles, depending on how the loops are placed and on 

the path somebody takes when riding over them.          

The Canton and the City of Zurich use the same technology, but not the same 

model of counters. The Canton directly uses the counts of its stations, while the 

City works with correction factors for most stations, which are factors that correct 

the stations’ count according to manual counts conducted. For some stations these 

factors are considerably higher than for others. This study has used those factors 

and multiplied all stations counts to correct them.  
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c) – f) Strava Counts: Characteristics and Things to Consider 

The GPS data from Strava trips ( c) in Table 1) is matched to OpenStreetMap 

(OSM) features. All OSM features that contain counts appear as geometries in the 

export of Strava Metro. OSM contains a lot of diverse features in their maps – 

besides the main lanes of streets, features like tramways, sidewalks or bike lanes 

are separate features. Unfortunately, the GPS data often gets matched to such 

features. A part of it might be rightfully, however the result is not very practicable 

for analysis of ridership as Figure 6 exemplary shows: The crossing around the 

tram station ETH/Universitätsstrasse has a vast number of edges and links 

between them.  

It would be little useful to predict 

ridership on this network. For this 

reason, the Strava counts on this OSM 

network have been matched to a more 

suitable network. This is explained in 

Section 4.1.  

 

 

 

In the Strava data, there is a lot of additional information besides the bare count. 

The commute label ( d) in Table 1) lets users mark all trips that have a non-leisure 

purpose. As not all users make use of that option, Strava uses certain definitions 

to decide whether a trip is marked as leisure or commute. The tagged commute 

trips thereby serve as validation for the commute trips that were identified using 

diverse models (Sunde, 2019). 

In principle, commutes or other trips with a non-leisure purpose are the trips that 

this study is interested in. However, the study area itself might partly account for 

that as it is mostly urban area and, even if transport planning is focusing on 

promoting cycling for non-leisure trips, for the usage of infrastructure it actually 

does not matter what the purpose of the user is. To use the commute label without 

Figure 6: Example of Multiple Strava Edges at 
Universitätsstrasse, Zurich (own screenshot QGIS) 
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losing data, this work adopted the method already used by Nelson et al. (2021) and 

used the % of commute trips as an additional variable available for the regression 

analysis. 

The month and the year ( e) and f) in Table 1) of the respective counts are further 

additional attributes that are used in the modelling process. The aggregation of 

the months to seasons proved to be beneficial for the performance of the model and 

was therefore maintained for all models.  

As mentioned, there is a strong bias regarding gender and age in the Strava data. 

88.7% of Strava users around Zurich were between 18 and 54 years old in 2022 

(shown in the Strava Metro Dashboard). The gender distribution is not directly 

visible. It can be assumed that its similar to the study by EBP (2020, p.13), where 

male users accounted for 80% of total users.  

Another point to keep in mind is the binning of data by Strava, executed as privacy 

protection measure. For every edge and hour, 0-3 riders are rounded down to 0, 

while 4 and all other numbers of riders are rounded up to the nearest multiple of 

5. This means an information loss, especially in low-ridership edges. When 

comparing data before and after the binning, Raturi et al. (2021) even found that 

in extreme cases, the opposite conclusions can be drawn. In respect to this study, 

the use of monthly data instead of hourly or daily counts, and no selection on 

commute or leisure trips are measures that mitigate this information loss. 

Concerning the last point, Raturi et al. (2021) remark that the binning treats 

leisure and commuting unequally, as commuting mostly takes place in peak hours 

(less omitted riders because of more concentrated flows), while leisure activities 

are dispersed temporally and spatially.  

3.2.2 Geographic Data 

As proposed by Roy et al. (2019), geographic covariates are included to account for 

the missing representativeness in the Strava data. Table 3 shows all geographic 

variables, their unit, granularity and references. If the data is Open Government 

Data (OGD), the link is provided All variables were prepared and computed using 

R (R Core Team, 2023) or QGIS (QGIS.org, 2023).. In the Appendix (Letter C), 

histograms of all variables can be found.  
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a) Exposure to Accidents: The correlation to accidents involving bicycles is 

straightforward: The more accidents, the more bicycles probably have passed this 

segment of the network. In the exemplary research by Nelson et al. (2021), bicycle 

crash density belongs to the most significant covariates to ridership across 

different cities. In a wider context, safety and street conditions are a major factor 

of people’s choice for active transportation modes (Hankey et al., 2012). There is 

OGD of all accidents represented by one point each. As street segments in the used 

network may be short, a 40 meters buffer was applied. Each segment is assigned 

an absolute value of accidents that happened since 2011. Accidents may be counted 

numerous times as segments are treated independently. The range of values was 

1 – 35 for stations and 1 – 60 for all streets.  

 b) Speed Limit of Street: The speed limit of streets is one characteristic of the built 

environment, which has effects on bicycling (Sallis et al., 2013). Many cyclists 

prefer off street or physically separated paths (Winters & Teschke, 2010). 

 

The speed limit inside the city borders 

was provided by the City of Zurich, 

whereas in the other areas, 

OpenStreetMap (OSM) data was used. 

A spatial join was performed with the 

network of this study. Both this 

method and the use of OSM data is a 

source of impreciseness. The different speed limits were classified numerically as 

visible in Table 2. This was seen as appropriate, as there are already steps of speed 

limits, and these three steps were considered as the important ones.  

A limitation of this variable is that with the network of this thesis, it does not 

matter if there is a separated bike lane, as all segments are treated the same (see 

Section 4.1). All classes from 0-3 feature both in stations and all street segments. 

 

 

 

Value Range of Speed 

Limit 

Implementation 

 Unknown (NA) 0 

 ≤ 30km/h 1 

30km/h < x ≤ 50km/h 2 

 >50km/h 3 

Table 2:Implementation of maximal Speed on Street 

Values 
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 Table 3: Geographic Variables included in this Thesis 

 

 
2 Kanton Zürich. Available at https://opendata.swiss/dataset/polizeilich-registrierte-verkehrsunfalle-im-kanton-zurich-seit-

2011 
3 City of Zurich. Available at https://data.stadt-zuerich.ch/dataset/geo_signalisierte_geschwindigkeiten 
4 Bundesamt für Statistik. Available at https://www.bfs.admin.ch/bfs/de/home/dienstleistungen/geostat/geodaten-

bundesstatistik/boden-nutzung-bedeckung-eignung/arealstatistik-schweiz.assetdetail.25885691.html 
5 Bundesamt für Statistik. Available at 

https://www.bfs.admin.ch/bfs/de/home/statistiken/bevoelkerung/erhebungen/statpop.html 
6 Swisstopo. Available at https://www.swisstopo.admin.ch/de/geodata/height/alti3d.html 

All accessed on the 16/08/2023 

Category  Variable Source Unit  Granularity Reference 

Safety 

and 

Design 

a) 
Exposure to 

accidents 

KTZH2 

(OGD) 

Number of 

accidents 

Street Segment with 40m 

Buffer 
Nelson et al. (2021) 

  
b) Speed limit 

of street 

City3 

(OGD), 

OSM 

1 Category 

 
Street  Sallis et al. (2013) 

Land 

Use 

c) 
Distance to 

green space 

BFS 

Arealsta

tistik4 

(OGD) 

Distance in 

[m] 

 

Street Segment (euclidean 

distance to nearest ha-raster) 

 Roy et al. (2019) 

Sallis et al. (2013) 

  

d) Distance to 

residential 

area 

BFS 

Arealsta

tistik 

(OGD) 

Distance in 

[m] 

Street Segment (euclidean 

distance to nearest ha-raster) 

 Roy et al. (2019) 

Sallis et al. (2013) 

  

e) 

Distance to 

POI 

KT ZH 

  

Distance in 

[m] 

Street Segment 

Assignment of midpoint to cell 
  

  

f) 

Mixed land 

use in area 

BFS 

Arealsta

tistik 

(OGD) 

1 Category  
Street Segment 

Assignment of midpoint to cell 

Winters et al. (2010) 

Saelens et al. (2003) 

Demogra

phics 

g) 

Population 

density 

BFS5 

statpop 

(OGD) 

1 Person 

500x500m Cell Grid 

resample from hectares 

Assignment of midpoint to cell 

Nehme et al. (2016) 

Winters et al. (2010) 

  

h) 

% of 80+ 

years old 

inhabitants 

BFS 

statpop 

(OGD) 

1% of 

inhabitants 

500x500m Cell Grid 

resample from hectares 

Assignment of midpoint to cell 

Sallis et al. (2013) 

Nehme et al. (2016) 

Socio-

economic 

i) Swiss 

Neighbour-

hood Index 

BFS 1 Decile  
500x500m Cell Grid 

Assignment of midpoint to cell 

Nelson et al. (2021) 

Roy et al. (2019)  

Topogra

phy 

j) Slope of the 

street 

Swissto

po6 

(OGD) 

1 Category 

Street Segment split every 

120m. Mean of slopes per 

Segment. 

Winters et al. (2010) 

Broach et al. (2012) 

Hood et al. (2013) 
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c) and d) Distance to green space or residential area: Both variables were found to 

be significant covariates by Roy et al. (2019). There is also evidence that proximity 

to green space and residential areas correlate positively with the choice of active 

transportation as mode of transport (Sallis et al., 2012). Both variables were 

computed as shortest distance to the nearest raster cell of interest. Of the 

Arealstatistik data set, for green space, AS_18_27 = 10 was used and for residential 

area AS_18_27 = 2. The variables were implemented by taking the shortest 

absolute distance in meters of the street segment to the closest POI of the named 

dataset. For the stations data set, the range was 0m – 653m for green space and 

0m – 467m for residential area. In all streets it was 0m – 1486m for green space 

and 0m – 1202m for residential area.  

e) Distance to other POI: Points of Interest (POI) are a land use class that induces 

traffic. For this reason, the Office of Mobility and Transport of the Canton of Zurich 

maintains a data set of facilities that greatly induce traffic, including shopping 

centres, concert halls or large schools. The original name of the data set is «stark 

verkehrserzeugende Einrichtungen». The variable was implemented by taking the 

absolute distance in meters from the midpoint of any street segment to the closest 

POI of the named dataset. The range was 105m – 2628m for stations and 15m – 

4370m for all street segments. 

f) Mixed Land Use in Area: Mixed land use is positively associated with the choice 

of active transportation (Saelens et al., 2003; Winters et al., 2010). Yang et al. 

(2019) on the other hand found weak correlations of bicycling to mixed land use. 

To assess it in this study, mixed land use was implemented using the Arealstatistik 

(AS_18_27) classes 2 (residential), 3 (public buildings) and 5 (not specified 

buildings, among others commercial area). For each cell, the number of different 

classes (0-3) in a 500m*500m neighbourhood was calculated using QGIS, which 

leads to a range of values from 0-3. Each street segment belongs to the cell of its 

midpoint.  

g) Population Density: More people living on the same space is associated with 

more bicycle traffic, as Nehme et al. (2016) and Winters et al. (2010) have 

confirmed. Both studies focused on bicycling as mode of transport and not in a 

leisure context. In this study, hectare cells of the Arealstatistik have been 
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resampled to 500x500m cells. For each cell, the total population was then divided 

through 2.5km2. Each street segment belongs to the cell where its midpoint lies. 

The values are the absolute numbers of people living in those 2.5km2 and ranged 

from 3 – 5941 for stations and 0 – 5941 if all street segments are considered.  

h) Percentage of Population older than 80 years: Conceptually, a common concept 

and goal is to make bicycling a safe mean of transport for everyone from 8 to 80 

years old. People older than 80 years are generally not considered, as they are often 

not fit and/or comfortable enough anymore to ride a bicycle. While related studies 

by Nelson et al. (2021) and Roy et al. (2019) considered median age and percentage 

of veterans, this study refers to this indicator to consider age. As for population 

density, the hectares were resampled to 500x500m cells. Each street segment 

belongs to the cell where its midpoint lies. The values are the percentage of people 

older than 80 years in those 2.5km2 and ranged from 0 – 18.75% for stations and 

0% - 75% for all street segments. 

i) Swiss Neighbourhood Index (SNI): As socio-economic measure, the Swiss 

Neighbourhood Index (Panczak et al., 2023) was implemented. The SNI is provided 

by the BFS and combines income, all-cause mortality and housing parameters. For 

this thesis, the version SwissSEP 3 (decile values) was used.  The inclusion of this 

variable is inspired by Roy et al (2019) and Nelson et al. (2021), as median 

household income was one of the most significant covariates in both studies. 

Therefore, the significance of this variable can be compared to the culturally 

different societies in the US. The SNI provides values for all single residential 

buildings in Switzerland, whereas a neighbourhood is always formed with the 

nearest 50 households. Here, the values were aggregated to a 500x500m raster. 

For each cell, the median SNI decile value was calculated and used. Due to the use 

of decile values, the range of values was 0 – 10 for stations and all streets alike. 

j) Slope: Slope can be an important factor for riders to choose their route, while 

most riders tend to avoid steep slopes (Broach et al., 2012; Hood et al., 2013). 

However there are also studies where such correlations remained weak (Yang et 

al., 2019). As bicycling is a kind of active transportation, slope is a common factor 

to include. In context of this study using Strava data, the anticipated effect may 

not stand equally, as the leisure-oriented users of Strava possibly do not fear steep 
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slopes - the contrary could even be true. The slope variable was included by using 

the qprof7 plugin in QGIS. For each 120m of a given street segment, a slope was 

calculated. For each segment, the mean of the slopes was then averaged. For the 

use in regression models, the slope values were then categorised numerically from 

0-3 as follows:  

Table 4: Implementation of Slope Values 

All classes appear in the stations and 

subsequently in all streets, however 

only a station that is located on a 

bridge has class 3, so the slope is that 

steep only for a very short distance.  

The reason for the classification of 

slopes is that small differences might 

not affect decisions by riders. Following Broach et al. (2012), slopes were classified 

in two-degree steps. In that study, the route choice of riders was significantly 

affected by slopes over 2°.  

 

 

 

 

 
7 Available at https://github.com/mauroalberti/qProf (Accessed on the 16/08/2023) 

Value Range of 

Slope [°] 

Implementation 

0 0 

0.1 - 2 1 

2.1 - 4 2 

 >4 3 

https://github.com/mauroalberti/qProf


 

 

4 Methods 

From aggregating bicycle counts to predicting ridership, a variety of steps were 

necessary to tackle challenges and to arrive at the goals of this study. In Figure 7, 

a flowchart of the methods of this thesis is provided. In the following sections, the 

composition of the street network and the use of generalised linear (mixed) models 

will be described more closely.  

 

 

Figure 7: Workflow of Methods of this Thesis 
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For the whole analysis, R (R Core Team, 2023) was used if no other software is 

mentioned. The respective packages are noted in each step, used versions and 

references can be found in the bibliography.  

As an additional overview, all output types are given in Table 5 with a short 

explanation. 

Table 5: List of Outputs of this Thesis  

Overview over Outputs of this Thesis  

Product Type Description Purpose Where to find 

Shapefile Generalised Network with Strava Counts Prerequisite, 

Output 

Supplementary 

Material 

Table Model Summary of Strava Counts explained through 

Geographic Variables 
Explore Data Results 5.2.1 

Plot Proportion of Captured Strava Trips at Counting Stations Understand 

and/or filter 

Counting 

Stations 

Results 5.2.2 

Plot Correlation between Strava Trips and Station Trips at 

Counting Stations Results 5.2.2 

2 Tables GLMM 1: Summary of cross-validated Results  

Random Sampling vs Station Sampling 

RQ 1: Assess 

the different 

Sampling 

Types 

Results 5.2.3 

2 Plots GLMM 1: Variation of cross-validated Results 

Random Sampling vs Station Sampling 
Results 5.2.3 

2 Plots Prediction Accuracy for x % of Segments of average and 

best performing out-of-sample GLMM 

RQ 1: Assess 

Out-of-

sample 

performance 

Results 5.2.3 

2 Tables Jaccard Index of average and best performing out-of-

sample GLMMs 
Results 5.2.3  

Table Model Summary of final GLMM 2 using all Stations as 

Training Data 
RQ 1: Assess 

In-Sample 

performance 

Results 5.2.3 3 Plots In-Sample Accuracy of Final GLMM 2 

1 Plot In-Sample Accuracy for x % of Segments of GLMM 2 

Map Median in-sample Accuracy and median Trips per Station 

Table Importance of Variables in GLMM 2 RQ 2: Assess 

Importance of 

Variables 

Results 5.2.3 

4 Maps Average Daily Bicyclists April-October in Limmattal, City 

of Zurich, Glattal and the entire Study Area Output using 

GLMM 2 
Appendix D 

4 Maps Average Annual Daily Bicyclists in Limmattal, City of 

Zurich, Glattal and the entire Study Area 
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4.1 Preparing a Suitable Network with Strava Counts 

As described already in Subsection 3.2.1, the raw data obtained from Strava Metro 

is not yet a suitable network, as numerous edges might be given for each street 

and some of them are paths that do not even exist. So as a pre-processing step, the 

editing of a clear network, that has the desired characteristics, was necessary. 

Besides R, QGIS was used to visualise the network and for the correction process 

described in Section 4.1.2. Figures 8 and 9 show the Strava counts in Zurich, 

Universitätsstrasse, before and after the processes described in this Section.  

 

 

 

 

 

 

 

 

4.1.1 Network Matching 

The final product should be a simple network consisting of undirected street edges, 

as in Figure 9. Different networks were considered for the base for the final 

product: The swissTLM3d vector data by swisstopo8, the official measurement 

(Amtliche Vermessung, AV) network by the Canton of Zurich and OSM. Even 

though the Strava counts were already mapped on OSM features, this option was 

discarded first. OpenStreetMap is often not topologically correct and the coverage 

is very inconsistent, which could lead to issues. Between the TLM and the AV 

network, a closer comparison was done, where the differences between the two 

networks were analysed: The TLM network is more detailed than the AV network. 

For wider streets, it often gives more than just one edge. As the final product is 

 
8 Available at https://www.swisstopo.admin.ch/de/geodata/landscape/tlm3d.html (Accessed on 16/08/2023) 

Figure 9: Strava Counts on Edges of 
the AV Network after Editing (own 
Screenshot QGIS) 

Figure 8: Strava Edges with Counts 
before Editing (own Screenshot QGIS) 

https://www.swisstopo.admin.ch/de/geodata/landscape/tlm3d.html


4 Methods 24 

 

 

aimed to be a simple, undirected network with one value per street, the AV 

network is more suitable and was selected.  

The matching process is visible in Figure 10. A combination of filters, buffers and 

spatial joins was used to map the Strava counts to the AV network as precise as 

possible.  

Step 2 and 3 were necessary because of 

the already described multiple 

geometries of the Strava edges – there 

are several parallel lines that represent 

one street (see Figure 8 or 11 in purple). 

At times, these lines are then connected 

between each other as well, as this is the 

case inside the black circle in Figure 11. 

This leads to so called pseudo-nodes, 

which have only two incident edges. With 

the azimuth filter of Step 2), the vertical connections between the parallel lines are 

filtered out, so that only the parallel Strava edges remain. Step 3) makes sure that 

all pseudo nodes are filtered out using the to_spatial_smooth function of the 

1) Preprocessing
Conversion to CRS 2056, 

calculate azimuth and commute 
percentage

2) Azimuth Filter
Buffer of Strava segments and 
spatial join with AV segments          
→ Filter of Strava segments: 

Azimuth must be inside 20° of 
the AV Segment's Azimuth*

3) Remove Pseudo Nodes
Conversion to network, 

compound each string of 
Strava segments and selects 
the values of the edge in the 

middle

4) Spatial Join with AV 
Midpoint

Buffer of resulting edges, 
spatial join of each AV 

segment's midpoint with 
buffered edges

5) Sum up per Midpoint
Total trip count (sum) and 
percentage of commute 

(mean) for each AV segment. 

6) Join back to Line 
Geometry

Join of unedited AV 
segments with the result

Figure 11: Example of Strava Edges (own 
screenshot RStudio) 

Figure 10: Flowchart of Network Matching Process 
* Inverted values were also considered: Δ Azimuth ±180° ±360° <= 20° 
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sfnetworks package, so that all edges are as long as possible. In Step 4), the 

resulting Strava edges are buffered with a 12m rectangular buffer.  

This should make sure that all 

edges of a street are captured in 

the spatial join with the AV 

segment’s midpoints. In Figure 

12, it is visible that the grey 

polygons with a blue border 

overlap. At the location of the 

midpoints (in blue), the trips 

from all polygons are added 

which corresponds to Step 5). 

In Step 6), the attributes of the 

points are rejoined to the line 

geometries, so that the Strava trip counts can be plotted as in Figure 9 or 12.  

This resulted in a data frame containing all edges where at least for one month, 

Strava counts were at the minimum of 3-5 people (see Section 3.2.1., Strava 

Counts). One case, where the accuracy of this method is strongly limited, is visible 

inside the red circle of Figure 12: Whenever a smaller street at an intersection has 

a short AV segment, the midpoint may lies inside a polygon of the bigger street. 

Therefore, the trips are added, and the segment gets an inflated trip count. For 

this reason, the following Section describes how such cases were corrected.  

Figure 12: Example of Buffers, Midpoints and Final Network 
(own screenshot, RStudio) 
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4.1.2 Network Correction 

In a final step, manual work has been carried out to correct such mismatching and 

delete unwanted features such as highways and bike paths in forests, where only 

leisure activity is to be expected. Despite the extensive automatic filtering, manual 

editing was needed as it is mostly the case for network 

matchings. Following the methodology noted in Figure 

10, an efficient approach for manual editing was needed 

that ensured reproducibility. In Figure 13, a workflow of 

the manual editing is visible. In Step (1), a new column 

was created to store reference object ids. Per default, the 

object id of each edge is copied to this column. The 

network was then visually searched and sampled for 

unrealistic leaps in trip counts. If an error has been 

spotted, the immediate surroundings of the edge 

(whenever possible) were searched for fitting values. 

Hereby, the web tool of Strava Metro was used to check 

the true Strava counts. If a correct value is found, the 

object id of the edge with the right count is inserted in the 

reference object id column (Step (2)). This was the extensive manual part of the 

correction. In Step (3), a loop assigned the corrected trip counts and commute 

percentage to every edge, using the values of the reference edge.  

As for the commute percentage, the decision was taken to inherit also the commute 

percentage of the assigned reference edge. Even though this is an obvious source 

of error, it was considered more logical than keeping the existent values, as in 

many corrected edges, trip counts were wrongly multiplied or summed up from 

crossing edges, which seemed as a larger and more uncertain source of error.  

For editing, the month of September 2022 was chosen to be determining. That 

means that, if an edge for some reason (e.g. no Strava counts) did not exist in 

September 2022, it will not be in the network. Moreover, the correction and 

assignment of reference edges is based on September 2022 values. The reason for 

this choice is that, in transport planning, September is widely used as a reference 

month. For bicycling, it is not equally common, however it can be argued that 

(1) Each edge gets a 
reference edge (using 

OBJECTIDs). Default is the 
same.

(2) Manual assignment of 
another reference edge if 

trip counts are false. 
Values compared directly 

with Strava Metro. 

(3) Loop that searches the 
respective edge and copies 
the corrected values for all 

months.

Figure 13: Flowchart of 3 
Steps in the Network 
Correction Process 
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September represents both Summer and colder temperatures to a good extent. 

Additionally, there are no large holidays in this month, which fits well in the aim 

of this work to not focus on leisure activities.  

In Section 5.1, results that emerged in the editing process are given. Certainly, 

this method of editing has its pitfalls, that are again assessed in Section 6.3. 

Nevertheless, for most corrections, the method is accurate, because the right 

values were in an edge nearby. As already mentioned, repetitive need for correction 

was needed in many intersections, where Strava counts of crossing streets were 

wrongly assigned. Another common 

error were network edges of squares 

that lay close enough to streets and 

thus were assigned with values (see 

Figure 14). These were deleted, 

respectively assigned with value 0.  

 

The full methodology including code can be found on Github (see Appendix A). 

4.2 Fitting Generalised Linear (mixed) Models 

Model Choice: To arrive at the goals of this study, generalised linear models are 

used to predict bicycle counts. Having counts as response variable, a Poisson or 

negative binomial model should be fitted. For models using the Poisson 

distribution var[y] = μ is assumed – if var[y] is significantly greater than μ, while 

the most explanatory model is used, overdispersion is present. Alternatively, if the 

residual deviance of a Poisson model is much larger than the residual degrees of 

freedom, it is another sign of overdispersion. One possibility to deal with 

overdispersion is the use of negative binomial models (Dunn & Smyth, 2018). 

A general assumption of generalised linear models (GLMs) is the independency of 

the observations. This prerequisite is not met, as this study deals with repeated 

measurements over time. For this reason, the ridership prediction (Chapter 4.2.2) 

was computed by fitting a Generalised Linear Mixed Model (GLMM). GLMMs 

include random effects that account for the variability inside a cluster of repeated 

measurements(Breslow & Clayton, 1993; Dean & Nielsen, 2007).  

Figure 14: Wrongly assigned Edge Value at a Square in 
Affoltern (own Screenshot QGIS) 
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Transformation of Variables: Mathematical models like GLMs must be fed by 

numeric inputs. The coding of variables can thus be an important step of the study 

design. As justified in Subsection 3.2.2, the variables speed limit on street and 

slope were classified from 0-3. The variable mixed land use has also classes from 

0-3, as three is the maximal value of mixture of a given raster cell. 

For seasons (aggregated from months) and years, a coding for categorical variables 

had to be implemented. A common method is called one-hot encoding or dummy 

variable encoding. A variable with k categories is converted to a factor. Then, for a 

factor with k levels, commonly k - 1 binary “dummy” variables are created. The 

drop of one level is done to avoid multicollinearity, as the absence (i.e. a 0) for k-1 

levels already expresses the existence (i.e. 1) of the dropped level (Dunn & Smyth, 

2018, p. 10). For interpreting outputs of GLMs, the estimates of all levels are 

relative to their reference level, which is the dropped level.  

 

Another transformation was applied to the Strava Counts. In the main models, the 

Strava counts served as the most important predictor. After Dunn&Smyth (2018, 

p.121), transformations can be applied to any or all covariates. As interpretability 

degrades, it was decided to only transform the Strava counts and no geographic 

variable, so that RQ2 is not affected. The logarithmic transformation led to an 

improvement of the model fit and was therefore maintained. In Figure 15, the 

histograms of the Strava counts at stations can be seen – without transformation, 

the Strava counts are strongly right skewed, while the log-transformed counts are 

close to normally distributed.  
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Figure 15: Histograms of Strava Counts and the Logarithm of Strava Counts 

 

4.2.1 Explain Strava Counts using Geographical Covariates 

The first model explored the relationship between the Strava counts and the 

geographical variables. The aim of this step was purely exploratory and has no 

effect on the further steps of processing towards the prediction.  

The filtered Strava edge counts represent the dependent variable. The 

independent variables are all geographical variables, the commute percentage and 

the season and year of each count. For this negative binomial GLM, the function 

glm.nb of the MASS package was used. 

In theory, there were also repeated measurements in this model – each street edge 

has 24 monthly values. However, the inclusion of the random effect resulted in a 

non-converging model. For this reason, a regular GLM with negative binomial 

distribution was fitted.  

As a last preparation step, the Strava counts were filtered so that only edges that 

have more than 2000 trips in 24 months remain. This step was introduced after 

the first iterations of this model, as it had proved to boost the performance. Smaller 

counts are less robust and are often influenced by few users and vulnerable to 

effects of the binning procedure in Strava (see Section 3.2.1).  
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4.2.2 Main Models: Preparation of Ridership Prediction 

For the ridership prediction, the data of the counting stations is the response 

variable which serves as ground truth. Following preparation steps and decisions 

were necessary to find the best possible model with the available data: 

Correlation between Counting Stations and Strava: The analysis of the 

relationship between the counting stations and the crowdsourced data of Strava 

was the first step towards a descriptive model of ridership. First, the proportion of 

captured trips by Strava was plotted. Secondly, the Pearson correlation between 

the station trips and the Strava trips was examined. As the Pearson correlation 

assumes normally distributed variables, both the station and the Strava trips were 

log-transformed for the correlation analysis.  

The results of the correlation analysis served to filter out some counting stations 

that are not useful for a predictive model. According to the results, 5 stations were 

filtered out.  

At this point, the final dataset involves all stations and their available observation 

months (3-24) of official counts, the Strava count (available for all 24 months) and 

all other variables.  

Sampling Strategies: Before the variable selection and the prediction could take 

place, the sampling strategy had to be defined. As a common figure, a decision for 

an 80% train and 20% test data set was taken. Following that, there are two 

variants to split the data in a train and test set: 

1) Random Sampling: Take an 80% random sample of the whole dataset for 

the train set and the rest of observations for the test set. In the test set, 

there probably will not be stations that the model has not been trained on. 

2) Station Sampling: Take 80% of stations, but all their available months for 

the train set and the remaining stations for the test set. The test set has 

completely unseen stations.  

As both strategies give different insights, both were executed and described in the 

further process of prediction modelling. The random sampling led to figures for in-

sample accuracy (even if it is not entirely in-sample), while the station sampling 
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represents out-of-sample accuracy. In terms of related work to those strategies, 

Nelson et al. (2021) and Jestico et al. (2016) computed in-sample accuracies, as 

observations of the same locations were used in both the training and testing set. 

while Roy et al. (2019) determined out of sample accuracies.  

Variable Selection using Cross-Validation and LASSO:  

A wide range of variables was computed to contribute 

to the prediction models. However, some variables 

might be more predictive than others, and the 

inclusion of not correlated variables could even 

worsen the models. Hence, as in related studies by 

Roy et al. (2019) and Nelson et al. (2021), a variable 

selection process was conducted. For both sampling 

methods, the same procedure was applied (see Figure 

16). The cross-validation was carried out using the 

cv.glmregNB function of the mpath package. This 

function computes the optimal lambda which 

maximizes the log-likelihood. In other words, the 

lambda which provides the model with the best fit for 

the data. In the whole variable selection process, the 

random effect was discarded for simplicity, also because, to the author’s 

knowledge, no existing R function combines a negative binomial cross-validation 

with random effects.  

In Step 2, 100 iterations of fitting a LASSO (Least Absolute Shrinkage and 

Selection Operator) model were executed using the glmregNB function of the same 

package. This is an assessment of stability of the model using our data. Stability 

selection methods are commonly used to assess the performance of models like the 

LASSO (e.g. Meinshausen & Bühlmann, 2010). As lambda value, the median 

lambda of the 10-fold cross-validation was used.  

The LASSO is, as the name reveals, a selection operator which provide coefficients 

of significance to keep the most predictive variables in the model, while discarding 

others. It shrinks less important variables to zero by imposing a penalty on the 

absolute magnitude of regression coefficients  (Tibshirani, 1996). In each iteration, 

CrossValidation of Lambda                             
10-fold Cross-Validation with a 
negative binomial distribution

--> median optimal value of 
lambda

Stability Selection                                 
100 iterations of random 80% 
train sets to train LASSO 
models

The stable variables remain 
for fitting the optimal 
model

Figure 16: Flowchart of Variable 
Selection Process 
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a variable that did not emerge as beneficent for the model was shrunk to zero.  

The stability of the variables was then assessed based on the performance over 100 

iterations to arrive at the final set of variables for both sampling methods.  

A further measure to get the best possible model was the check for 

multicollinearity between the selected predictors. Together with model summaries, 

the Variance Inflation Factor (VIF) was computed, using the “multicollinearity” 

function of the performance package.  

4.2.3 Prediction of Ridership using GLMMs 

The final set of variables could now be fitted into a GLMM for both sampling 

methods. For the final models, the glmmTMB function was used. The random 

effect is implemented by the term 1| OBJECTID (see Equation 1). The OBJECTID 

refers to the unique identifier of the network. As every OBJECTID has only one 

corresponding station, it could be used to account for the repeated measurements.  

Equation 1: Final GLMM 

𝑔𝑙𝑚𝑚𝑇𝑀𝐵(𝑡𝑟𝑖𝑝𝑠_𝑠𝑡𝑎𝑡𝑖𝑜𝑛 ~ 𝑡𝑟𝑖𝑝𝑠_𝑠𝑡𝑟𝑎𝑣𝑎 +  𝑐𝑟𝑟_𝑐𝑚𝑚 +  𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡𝑠 +  𝑣𝑚𝑎𝑥

+  𝑑𝑖𝑠𝑡_10_𝑔𝑟𝑒𝑒𝑛 +  𝑑𝑖𝑠𝑡_2_𝑟𝑒𝑠𝑖𝑑  +  𝑑𝑖𝑠𝑡_𝑠𝑣𝑒 +  𝑚𝑖𝑥_𝑣𝑎𝑙𝑢𝑒  

+  𝑃𝑜𝑝𝐷𝑒𝑛𝑠  +  𝑢80_𝑝𝑒𝑟𝑐 +  𝑠𝑤𝑖𝑠𝑠_𝑠𝑒𝑝_𝐷 +  𝑠𝑙𝑜𝑝𝑒 +  𝑠𝑒𝑎𝑠𝑜𝑛_𝑤𝑖𝑛𝑡𝑒𝑟 

+  (1|𝑂𝐵𝐽𝐸𝐶𝑇𝐼𝐷), 𝑑𝑎𝑡𝑎 =  𝑡𝑟𝑎𝑖𝑛_𝑑𝑎𝑡𝑎_𝑣2, 𝑓𝑎𝑚𝑖𝑙𝑦 =  "𝑛𝑏𝑖𝑛𝑜𝑚2")  

The family argument “nbinom2” is one of the two implementations of the negative 

binomial distribution provided by the glmmTMB package. It assumes a quadratic 

relationship between the mean and the variance of the negative binomial 

distribution, with variance equal to μ(1 + μ/ϕ) (Brooks et al., 2017). nbinom1 would 

assume a linear relationship with variance equal to μ(1 + ϕ). As nbinom2 

performed better especially for out of sample predictions, it was selected for the 

final models.  

GLMM 1 Predicting Ridership using train and test sets 

To evaluate the variation of results for both sampling strategies, a 20-fold cross 

validation was performed, using an 80-20 train-test set partition. For assessment 

in each iteration, the AIC, R-Squared of all effects and R-Squared of the fixed 

effects were computed. The latter two using the performance package and 

according to Nagakawa et al. (2017), who formulated R-squared definitions for 
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GLMMs. Additionally, to quantify the error rates in the predictions following 

measures were computed:  

Table 6: Error Measures used for Prediction Accuracies 

Error Measure Formula 

Mean Absolute Error (MAE): mean(abs(actual - predicted)) 

Root Mean Squared Error (RMSE): sqrt(mean((actual - predicted)^2)) 

Mean Absolute Percentage Error (MAPE): mean(abs((actual - predicted) / actual)) * 100 

 

For each measure, the mean and the standard deviation of all iterations were 

calculated, and the different measures were plotted to visualize the variation of 

accuracy for both the random sampling and the station sampling method.  

For the further visualisation of out-of sample performance, two models of the 20 

iterations were selected. One average-performing and one of the best-performing 

models, determined principally by the MAPE and the AIC. 

For each model, plots showing the proportion of segments predicted with a certain 

accuracy, the prediction accuracy per station of the test set and the Jaccard Index 

for categorical maps as output were created. The Jaccard Index assesses the 

accuracy of classifications and helps to decide if a categorical map is a reasonable 

output. For all categorical maps as output, breaks for 5 classes ranging from very 

low to very high were created using the getJenksBreaks function of the 

BammTools package. To compute the breaks, the medians of station trips from all 

stations was used, to account for the different number of observations between 

stations. From initially 7 classes, the classes 5-7 were aggregated to one class for 

very high values, following the distribution of the station trips’ median. The 

Jaccard Index for each class following (Labatut & Cherifi, 2012) was then 

calculated as follows in Equation 2:  

 

 Equation 2: Jaccard Index of Classification 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝐼𝑛𝑑𝑒𝑥 =
𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝑈𝑛𝑖𝑜𝑛
=  

𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁 
   

 

 

TP= True positive 

FP= False positive 

FN= False negative 
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GLMM 2: Predicting Ridership using the whole Data as Training Set 

Finally, to arrive at the most expressive model, all stations could be used as 

training data set. For this final model, only in-sample accuracies can be calculated. 

The importance of geographic variables was also assessed using this model. 

Categorical maps have been defined as the most reliable output by both Roy et al. 

(2019) and Nelson et al. (2021). Therefore, a total of 8 categorical maps were 

produced using ArcGisPro: Besides maps showing the whole perimeter, separate 

maps were produced for Limmattal/Furttal, City of Zurich and Glattal. As time 

units, following the goals of this thesis, for each map two version were created: One 

shows the AADB and the other the average daily bicyclists from April-October. For 

that, the monthly values were divided by 30 and averaged over 7 respectively 12 

months. For each map and region separately, natural breaks (Jenks) were used to 

divide the values in five classes.  

 



 

 

5 Results 

5.1 Network  

The unedited AV network was roughly clipped to the perimeter of this study. This 

step led to 31945 edges remaining. Using the network matching for September 

2022, 15460 edges with assigned and summed Strava counts remained. This 

number represents the maximum of possible edges for each month. However, in 

colder months there may be a lot less than that, for example, January 2021 records 

12135 edges with counts. The Strava counts were finally filtered once more – all 

edges with less than 2000 trips over the 24 months were left out. Due to the 

distribution visible in Figure 17, this led to the loss of another almost 50%, 

resulting in 7760 edges.  

A total of 699 edges were corrected manually and assigned to the counts of another 

edge. This accounts for 4.5% of all edges. The corrected edges are rather high-count 

connections: In Figure 17, the distribution of counts (median of monthly values per 

edge) and the medians of corrected and uncorrected edges is visible. It shows that 

the median of corrected edges (302.5) is three times higher than the median of 

uncorrected street segments (100). Table 7 shows an overview of the counts of the 

network.  

Table 7: Overview Network Counts 

 

 

Network: Overview 

Total Edges in 

perimeter 
31945 

Total edges with counts 

(09/22) 
15460 

Total edges with >2000 

trips in 24 months 
7760 

Manually corrected 

edges  
699 

Figure 17: Distribution of Corrected Edges 
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5.2 Regression 

5.2.1 Explain Strava Counts using Geographical Covariates 

The GLM to explore the relationship between the Strava Counts and the 

geographic variables resulted in the following output in Table 8:  

Table 8: Output GLM Strava Counts explained through Geographic Variables 

Almost all predictors 

are clearly significant, 

Population Density a 

bit less and Year 2022 

stands out as the only 

not significant input. 

In the estimates, there 

is a larger range of 

values. The speed limit 

and the season 

variables have the 

largest estimates, even 

when the units of the 

variables are kept in 

mind. For the season 

variables, this is not 

surprising, as they are, together with the commute percentage, the only dynamic 

variables. All other variables are constant over time. However, the estimates of the 

season variables and the year 2022 cannot be interpreted alike the others. As they 

are categorical variables implemented by one-hot encoding, their estimate is 

always relative to the reference level (see Section 4.2). At the bottom of the table, 

the AIC, a value for R-squared and the number of observations is provided.  

5.2.2 Main Models: Preparation of Ridership Prediction 

Proportion and Correlation between Counting Stations and Strava:  

Figure 18 shows the proportion of bicycle trips captured by Strava at official 

counting stations. The plot shows the wide variety of stations in terms of station 

Variable Estimate Std. Error p-value 

Intercept 5.291 1.045e-02 < 2e-16 *** 

Strava % of commute -0.001214 1.403e-04 < 2e-16  *** 

Exposure to accidents 0.05715 3.879e-04 < 2e-16 *** 

Speed limit on street 0.2412 2.119e-03 < 2e-16  *** 

Distance to green space -0.0002587 1.045e-05 < 2e-16  *** 

Distance to residential area 0.0003888 1.619e-05 < 2e-16  *** 

Distance to POI 0.0001453 2.802e-06 < 2e-16  *** 

Mixed land use -0.02359 1.553e-03 < 2e-16  *** 

Population density -0.000005345 1.855e-06 0.00396 ** 

% of 80+ years old 

inhabitants 
-0.004425 2.963e-04 < 2e-16  *** 

Swiss Neighbourhood Index 0.02496 7.345e-04 < 2e-16 *** 

Slope of street -0.08422 2.278e-03 < 2e-16 *** 

Season: Spring 0.293 5.329e-03 < 2e-16  *** 

Season: Summer 0.544 5.238e-03 < 2e-16  *** 

Season: Winter -0.6883 5.325e-03 < 2e-16  *** 

Year 2022 -0.003431 3.743e-03 0.35936 

AIC=2588100 Nagelkerke’s R2= 0.538  Observations=186149 

p-value: *** <0.001 ** < 0.01  * <0.05 . <0.1 
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trips and the proportion of Strava trips captured. The proportion is shown in 

classes that were built using the mean and the standard deviation. The triangles 

represent stations by the Canton, the squares stations by the City of Zurich. It 

shows that the counting stations of the Canton have an overall higher proportion 

rate of Strava trips captured – the mean of Canton stations is 0.059, whereas the 

mean of the city station is 0.020, resulting in an overall mean of 0.041. Generally, 

the variables appear to be negatively correlated as the distribution resembles an 

L-shape, i.e. all stations with a high number of trips have a low proportion of 

Strava trips captured.  

 

 

Figure 18: Proportion of Captured Strava Trips at Stations.  

 

In Figure 19, the correlation between the counts and the Strava counts can be seen. 

On the x-axis, the 41 counting stations are named. The plot shows an overall very 

good correlation, with some stations as outliers. While most stations have a 

Pearson correlation of around 0.9, the outliers correlate worse. The station 

“Saumackerstrasse” even correlates negatively, which is the reason for the missing 

data point. The mean Pearson correlation is 0.86, the median 0.93 and the 

standard deviation 0.29. This further shows the existence of outliers, which 

strongly deviate the mean. Regarding the location of the stations, there is no trend 

visible, as both Canton and City authorities operate very well but also not strongly 
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correlating stations. In Table 9, all discarded stations are visible - all stations that 

have a Pearson correlation of less or equal than 0.75 were discarded for the further 

analysis. The station “Glattuferweg, Opfikon” right at the threshold was discarded 

either way because of very small Strava counts.  

Finally, 36 counting stations with 679 months of measurement were used to 

predict ridership in the further steps of this thesis. On average, there are 18.86 

months per station. The mean Pearson correlation at the used stations was 0.93. 

 

 

Figure 19: Correlation between Station Trips and Strava Trips at Stations 
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Table 9: Discarded Stations 

 

 

 

 

 

 

Variable Selection using Cross-Validation and LASSO:  

For both sampling methods, a 10-fold cross-validation was computed to obtain the 

optimal lambda for the respective LASSO. Table 10 shows that the optimal 

lambdas are very similar between the two sampling types.  

Table 10: Optimal Lambdas for LASSO after Cross-Validation 

 

Following that, the 100 iterations of the LASSO were executed for each sampling 

strategy, as a mean of stability selection. Table 11 shows for all variables the 

percentage of times the variable remained as useful for the model and was not 

shrunk to zero by the LASSO.  

Results show that all variables are important in the majority of iterations. The 

random sampling has a bit more consistent results than the station sampling, 

which makes sense, as in the station sampling there can be more variations 

between iterations, when whole stations are in- or excluded. 

 

 

Discarded Stations 

Station Reason 

Glattuferweg, Opfikon Very low Strava Counts, moderate correlation (0.75) 

Kloten, Schaffhauserstrasse Low correlation (0.59) 

Saumackerstrasse Negative correlation (-0.86) 

Schulstrasse Low correlation (0.60) 

Sihlpromenade Low correlation (0.53) 

Measure Random Sampling Station Sampling 

SD 0.00920 0.01419 

Mean 0.02267 0.02043 

Median 0.02351 0.01720 
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Table 11: Stability Selection Results using LASSOs 

Out of reasons of simplicity and 

easier comparison, it was decided to 

exclude the same variables for both 

sampling methods: Firstly, the year 

2022 and secondly the season 

variables of spring and summer. 

Year 2022 has rather low stability 

values and was additionally not 

seen as very meaningful, as 

ridership is aimed to be predicted 

generally and not for a certain year 

(which represents certain 

conditions including weather). The 

season variables of Spring and 

Summer did not perform that well 

either. Nelson et al. (2021) have also 

only considered “Counts of Winter 

months”, so with that stability 

scores, it was seen as best to exclude 

both Spring and Summer.  

The test for multicollinearity in the GLMMs resulted in low correlation between 

the variables. No VIF above 4 was recorded.  

After these steps, the final variables for the model predicting bicycle ridership have 

been selected and are shown in Table 12.  

 

Table 12: Final Set of Variables for GLMMs 

Category Variable Type 

Ridership Official Counts at 34 locations Response; dependent variable 

Crowdsourced 

Ridership 

Strava Trip Count Predictor; independent variable 

 Strava % of Commute Predictor; independent variable 

 Count Collected in Winter Predictor; independent variable (…) 

Variable 
Random 

Sampling 

Station 

Sampling 

Strava Trips  1.0  1.00 

Strava % of commute  1.0  0.84 

Exposure to accidents  1.0  1.00 

Speed limit on street  1.0  0.98 

Distance to green space  1.0  0.95 

Distance to residential 

area 

 1.0  0.97 

Distance to POI  1.0  1.00 

Mixed land use  0.6  0.96 

Population density  1.0  1.00 

% of 80+ years old 

inhabitants 

 1.0  0.97 

Swiss Neighbourhood 

Index 

 1.0  1.0 

Slope of street  1.0  0.99 

Season: Spring  0.8  0.57 

Season: Summer  0.6  0.75 

Season: Winter  1.0  1.00 

Year 2022  0.58  0.81 
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Safety and Design Exposure to accidents Predictor; independent variable 

  Speed limit of street Predictor; independent variable 

Land Use Distance to green space Predictor; independent variable 

  Distance to residential area Predictor; independent variable 

  Distance to POI Predictor; independent variable 

  Mixed land use in area Predictor; independent variable 

Demographics Population density Predictor; independent variable 

  % of 80+ years old inhabitants Predictor; independent variable 

Socio-economic Swiss Neighbourhood Index Predictor; independent variable 

Topography Slope of the street Predictor; independent variable 

 

 

 

5.2.3 Prediction of Ridership using GLMMs 

The final GLMMs were fitted using the variables above in Table 11 and the random 

effect. GLMM 1 used 80% train and 20% test sets of both sampling strategies, while 

GLMM 2 is the most expressive model using all stations for training. 

GLMM 1: 20-fold Cross-Validation of both Sampling Strategies 

In Tables 13 and 14, the summarised results of the respective 20-fold cross-

validation are visible. Plots in Figures 20 and 21 show the variation of results 

graphically. Be aware that the scales of the figures are different. Single iterations 

cannot be compared between the two sampling methods as the subsets are 

different.  

Table 13: GLMM 1 - Summary of 20-fold Cross-Validation using Random Sampling 

Random Sampling 

Measure MAE RMSE MAPE AIC R2_all R2_fixed 

SD 335 877 2.59 33.96 0.00 0.01 

Mean 3928 7489 15.44 10506 0.98 0.85 

Median 3959 7553 14.55 10499 0.98 0.85 
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Table 14: GLMM 1 - Summary of 20-fold Cross-Validation using Station Sampling 

Station Sampling 

Measure MAE RMSE MAPE AIC R2_all R2_fixed 

SD 17185 36473 49.06 261.51 0.00 0.02 

Mean 19138 32416 72.49 10560 0.97 0.86 

Median 13512 19728 56.76 10481 0.98 0.86 

 

 

Figure 20: Plots of Variation of Error Measures in the Cross-Validation; Random Sampling GLMM 1 

 

 

Figure 21: Plots of Variation of Error Measures in the Cross-Validation; Station Sampling GLMM 1 
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The results clearly differ between the two sampling strategies. For random 

sampling, the mean MAPE is 15.44% with a standard deviation of ±2.59%. For the 

station sampling, the mean MAPE is 72.49% with a standard deviation of ±49.06%, 

while the median MAPE is 56.76%. These values show the moderate but also very 

unstable results in the station sampling. The difference between mean and median 

further implies negative influence of outliers on the mean. Other error measures 

show a similar pattern, the station sampling has higher values and a much higher 

variability over these 20 folds. The R2 values are an exception to this, as they show 

stability for both sampling methods. This suggests that the model fit is very good 

and not dependent on the subset of data used.  

The plots in Figures 20 and 21 visualise the variability of the cross-validation. For 

the station sampling that provides out-of-sample predictions, the results are very 

dependent on the iteration, as there is no stability in the predictions. Of the 20-

folds, the average performing model that was selected is Model 7, while the best 

model is Model 9.  

At the left side in Figure 22, the relative prediction accuracy of the averaging 

performing out-of-sample prediction model is plotted against the percentage of 

segments where this accuracy is reached. This model, which corresponds to 

iteration 7 of the variation plots in Figure 21, shows that for 60% of segments, the 

Figure 22: Out-of-Sample Prediction Accuracy proportionally to % of Segments  
Observations have been classified into 2.5% classes of the relative absolute differences to plot.               
Average Model: 133 observations in 56 classes             
Best Model: 140 observations in 33 classes 
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monthly counts ±50% of riders are correctly predicted. Close to 45% of segments 

are predicted with ±25% of monthly riders.  

In comparison to that, the best performing Model 9 is visible at the right in Figure 

22. Compared to the average model, the best model predicts 90% of segments inside 

±50% of riders and exactly 50% of segments inside ±25% of riders. The differences 

only really start for the upper half of segments on the y-axis. The number of 

observations and classes (see Figure 22 description) further shows that generally, 

the average model has less observations in more classes, showing a higher spread 

of accuracies. The different number of observations is due to the Station sampling 

(see Section 4.2.2). 

Figure 23 shows the seven stations used to test the accuracy in each of the two 

selected out-of-sample models.: The average model has three stations that have 

very inaccurate predictions in general, the best model has only one.  

 

Figure 23: Out-of-sample Prediction at Stations: Average (Nr. 15)  vs. Best (Nr. 16) Model                   
Note: 3 Observations of Station “Talstrasse” and 1 of “Badenerstrasse” of are out of bounds in the left Plot 

Many stations have no high standard deviation inside their predictions, but the 

station has a shifted position as a whole – either over- or underestimated counts. 

As for categorical maps, the Jaccard Index was calculated for each appearing class 

in the test set. For the classification, the natural class breaks visible in Table 15 

were used. Table 16.1 and 16.2 show the results of for the respective model. 
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Table 15: Classes for Categorical Maps (full perimeter) 

 

The results in Table 16.1 and 16.2 show that the 

“medium” classes are predicted the worst from both 

models. Even in the best out-of-sample model, only 

approximately 1 out of 5 observations is labelled 

correctly in the “medium” class. 

 

 

Table 16.1 and 16.2: Results Jaccard Index: Average Model (7) vs Best Model (9) 

 

 

 

 

Between the models the average model performs better with very low counts while 

the best model is consistently better for all other classes. For this and all those out-

of-sample comparisons, the selected stations are key and may be very influential 

with this small sample size.  

GLMM 2: Model using all data as training set 

Finally, in Table 17, the summary of the model using all data as training set is 

given. As no stations are used as test data, the resulting accuracy is an in-sample 

accuracy, where the model did not have to deal with unseen data. The respective 

error measures of the in-sample prediction are visible in Table 18.  

The results show very good prediction accuracies. Unsurprisingly, the R2 is again 

very high with 0.846 or 0.976, depending on the inclusion of the random effect. 

There are several significant predictors, whose effects are presented later in this 

section. Overall, the magnitude of the standard errors compared to the estimates 

means that the significance of the variables is sensitive.  

 

Class Range 

Very low 2725 – 12602 

low 12603 – 27810 

medium 27811 – 41608 

high 68072 – 96681 

Very high >96680 

Average Model (7) 

Measure Very 

low 
low medium high Very 

high 

Intersection 42 8 0 11 5 

Union 55 36 29 43 37 

Jaccard 

Index 
0.76 0.24 0 0.26 0.14 

Best Model (9) 

Measure Very 

low 
low medium high Very 

high 

Intersection 18 21 9 23 9 

Union 34 56 42 48 20 

Jaccard 

Index 
0.53 0.38 0.21 0.48 0.45 
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Table 17: Model Summary of the GLMM using all Data as Training Set 

Variable Estimate  Std. Error  Pr(>|z|) 

Intercept  5.620  0.3045  < 2e-16  *** 

Strava Trips  0.6304  0.02094  < 2e-16  *** 

Strava % of 

commute 

 0.001189  0.0008849  0.179155 

Exposure to 

accidents 

 0.03861  0.0154  0.012153  * 

Speed limit on 

street 

 -0.1247  0.0763  0.102117 

Distance to green 

space 

 -0.0004298  0.000564  0.446012 

Distance to 

residential area 

 0.001521  0.0008125  0.061204  . 

Distance to POI  -0.0006629  0.0001419  2.96e-06  *** 

Mixed land use  0.007228  0.07994  0.927948 

Population 

density 

 0.0001421  0.00008715  0.103092 

% of 80+ years old 

inhabitants 

 -0.01591  0.02074  0.442941 

Swiss 

Neighbourhood 

Index 

 0.09118  0.02671  0.000641  *** 

Slope of street  0.07318  0.1124  0.514943 

Season: Winter  -0.2261  0.02787  5.02e-16  *** 

AIC= 13099.7 
Nakagawas’s R2:    

all effects: 0.976 

Nakagawas’s R2: 

fixed effects: 0.846 
Observations= 679 

p-value: *** <0.001 ** < 0.01  * <0.05 . <0.1 

 

Table 18: In-Sample Prediction Accuracy Measures of GLMM using all Data 

Mean Absolute Error (MAE)  3611 

Root Mean Squared Error (RMSE)  6923 

Mean Absolute Percentage Error (MAPE)  14.59 % 

 

Plots in Figures 24 and 25 reinforce the impression of high accuracies: Figure 24 

shows the model fit with all predicted and actual values.  
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Figure 24: In-Sample Accuracy Predicted vs. Actual Values 

Figure 25 shows a cumulative plot of the in-sample prediction accuracy. For 87% 

of the segments, ±25% of ridership and for 50% of segments, ±10% of ridership is 

predicted. Towards the low accuracies, there are few outliers, as for 97% of 

segments ±50% of riders are called correctly. 5 observations have a relative 

absolute percentage error of over 100%. 

Figure 26 and 27 show the distribution of predicted observations after station, 

location and season.  



5 Results 48 

 

 

 

Figure 25: In-Sample Prediction Accuracy proportionally to % of Segments 

 

 

Figure 26: In-Sample Accuracy after Station and Location                         
Note: Two observations of station “Fischerweg Dübendorf” are outside the bounds (y= 330 and y= 468) 
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Figure 27: In-Sample Accuracy after Station and Season                         
Note: Two observations of station “Fischerweg Dübendorf” are outside the bounds (y= 335 and y= 452) 

Figure 26 shows that of the stations with higher variation in predictions, almost 

all are operated by the Canton. The bad predictions show a similar pattern, of 19 

observations that are worse than ±50% relative difference, 16 are Canton stations 

and 3 are City stations. In general, there are fewer strongly underestimated than 

overestimated counts. 

Figures 28.1 and 28.2 show the distribution of seasons in accuracies lower than 

25% respectively 50%.  

Figure 28.1 and 28.2: Distribution of Seasons in inaccurate In-Sample Predictions 
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Looking at the seasons of observations worse than ±50%, it appears that those too 

high predicted counts were mostly autumn and winter observations. For all 

observations worse than ±25%, the distribution is more even, whereas Winter has 

still the most observations of all seasons. 

In Figure 29 a map shows the median relative difference for each station plotted 

on a map. While the relative accuracy is visualised by colours, the size of the circles 

also classifies the median station trip count. There are no clear trends visible. 

Geographically, it appears that stations in the Limmattal in the left are more 

accurate than in the Glattal towards the right upper corner. However, many 

stations in the Glattal are at riversides of the Glatt, compared to the stations in 

Limmattal, which are mostly at busy streets.  

Figure 29: In-Sample: Median Relative Difference at Counting Stations 
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GLMM 2: Importance of Variables  

Table 19: Effect of Geographic Covariates on Ridership 

Variable Unit 
Estimate and p-

value significance 
exp(Estimate) 

% Change in 

Ridership for 1 

Unit increase 

Intercept  1 bicycle rider  5.620  ***  239.3684  N/A 

Strava Trips  log(1 Strava rider)  0.6304  ***  1.880  88% increase 

Strava % of 

commute 

 1 % of Strava trips 

that are commuting 

 0.001189  1.001  0.1% increase 

Exposure to 

accidents 

 1 accident  0.03861 *  1.039  3.9% increase 

Speed limit on 

Street 

 1 street category  -0.1247  0.882  11.8% decrease 

Distance to green 

space 

 100m  -0.0004298  0.957  4.3% decrease 

Distance to 

residential area 

 100m  0.001521 .  1.164  16.4% increase 

Distance to POI  100m  -0.0006629 ***  0.935  6.5% decrease 

Mixed land use  1 more different land 

use class 

 0.007228  1.007  0.7% increase 

Population density  100 Persons  0.0001421  1.014  1.4% increase 

% of 80+ years old 

inhabitants 

 1 % of 80+ years olds  -0.01591  0.984  -1.6% decrease 

Swiss 

Neighbourhood 

Index 

 1 decile of the index  0.09118 ***  1.095  9.5% increase 

Slope of street  1 slope category  0.07318  1.075  7.5% increase 

Season: Winter Binary. Compared to 

reference season 

autumn 

 -0.2261 ***  0.797  20.7% decrease 

AIC= 12301.1  
Nakagawas’s R2:    all 

effects: 0.974 

Nakagawas’s R2: 

fixed effects: 0.858 
Observations= 631 

p-value: *** <0.001 ** < 0.01  * <0.05 . <0.1 

 

Table 19 shows the effect of each covariate on bicycle ridership. Note that the 

Strava trips and the winter season cannot be compared to all other variables, 

because of their respective implementation. 
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5 Predictors were found to be significant for predicting bicycle ridership in Zurich’s 

Urban Area: Number of Strava Trips (***), the exposure to accidents (*), the 

distance to POI(***), the Swiss Neighbourhood Index(***) and if the Count has 

been recorded in Winter(***). The intercept is also strongly significant with p < 

0.001. The value of the intercept shows that, if all predictors are zero-values and 

the season is autumn (reference level), a street segment has a base line ridership 

of 239 riders.  

Regarding the effects, the table can be interpreted as follows: For 100m more 

distance to a POI, there is a 6.9% decrease in bicycle ridership. For the Strava 

trips, the unit increase is on the log-scale. Due to the log-scale, the one-unit 

increase appears larger, which results in the high percentage of 88%. The seasons 

are interpreted as follows: if an observation was recorded in Winter, bicycle 

ridership decreases by 20.7% compared to autumn.  

GLMM 2: Categorical Maps 

 

 

 

 

 

 

 

 

 

 

Finally, Figure 30 shows an example of a categorical map for one of three regions 

of the perimeter. All other maps and this map in original size can be found in the 

Appendix D.

Figure 30: Example of a Categorical Map as Output of GLMM 2 



 

 

6 Discussion 

In this thesis, various steps were taken to predict bicycle ridership in the urban 

area of Zurich, Switzerland. The crowdsourced data collected by Strava had to be 

matched to a complete but simple street network. To mitigate the user bias in 

contribution to Strava, a wide range of geographic variables were included. 

Ridership data from 36 counting stations of the authorities of the Canton and the 

City of Zurich served as ground truth for the GLMM, which aimed to predict 

ridership for at least 7760 street segments, where a sufficient number (>2000 in 

24 months) of Strava trips was available. 

The prediction of ridership led to diverse results. Depending on the sampling 

strategy, both in-sample or out-of-sample accuracies have been computed. To 

answer the research questions, a general assessment of the prediction will be done 

in Section 6.1., whereas the importance of geographic variables is covered in 6.2. 

The limitations of this thesis will be summarised in Section 6.3. 

Apart from the ridership prediction using GLMMs, the use of crowdsourced data 

by Strava more generally can be assessed. For the proportion of captured trips by 

Strava, the results are as one might expect: In the city there are higher numbers 

of bicycle trips, but lower proportions of trips are recorded by Strava users.  Strava 

is used more for leisure trips than for commuting and those leisure trips might 

rather be in suburban areas than in the core city. Another explanation would be 

that those who track their commutes in Strava are people who ride longer 

distances and move not only inside city borders. All the highest proportion values 

are recorded at stations of the Canton, however only few stations stand out. The 

proportions of the counting stations of the Canton can also be compared to the 

figures in the study by EBP (2019), who analysed all stations in the Canton of 

Zurich: They recorded a mean proportion rate of 6.6%, which is close to the mean 

of canton stations in this thesis (5.9%). The stations that lie in more urban areas 

also performed worse in their report. 

The correlation is generally similar in the sense that most stations perform well 

with a Pearson correlation of around 0.9. The mean in the study by EBP (2019) is 

higher (0.94) than in this thesis (0.86 before removal of outlier stations, and 0.93 
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of considered stations). However, the results could be even closer, as in their study, 

many stations which performed above average lie outside of the perimeter of this 

thesis. Looking at stations that are covered in both studies, most results are 

replicated in this thesis:  The correlation of many stations has remained high. An 

exception is the counting station Kloten, Schaffhauserstrasse (Nr. 1819), which 

was above average in the study by EBP but was the worst performing canton 

station in this study with only around 0.59 Pearson correlation. A change in the 

measurement or other street conditions may have caused the significant decrease 

of trip counts in 2022.  

EBP only considered the year 2019 in their analysis and for some stations only one 

or a few months were available. This thesis included years 2021 and 2022 and had 

on average 18.86 months per station, but this may still not be enough to make valid 

statements in all cases. Proportion and/or correlation values are sensible to 

interruptions like construction works, as there are only 3-24 observations per 

station.  

6.1 Prediction of Ridership 

Different studies have shown examples of ridership prediction using Strava data 

as Section 2.3 has shown. One aspect that has not been examined in those studies 

is the difference between in-sample and out-of-sample accuracies. Nelson et al. 

(2021) referred to in-sample accuracies due to the lack of ground-truth data. Jestico 

et al. (2016) computed accuracies which also count towards in-sample accuracies, 

as they used what is called random sampling in this thesis. Roy et al. (2019) on the 

other hand presented out-of-sample accuracies. All studies include precise 

accuracies, however they are not always easy to interpret due to the absence of 

relative accuracies (Roy et al.,2019 and Nelson et al.,2021) or because of different 

time intervals, as they strictly used the annual daily average (AADB).  

In this thesis, both types of accuracies are covered. This thesis is also the first work 

in this study field that used a mixed model with a random effect to account for 

repeated measurements. In the following chapters, results of both types of 

accuracies are discussed and contextualised with the respective state-of-the-art 

study: First, the out-of-sample estimates of GLMM 1 in Section 6.1.1 and secondly 
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the in-sample accuracies of the final GLMM 2, in Section 6.1.2. The research 

question regarding prediction (RQ 1) is adressed in Section 6.1.3. 

6.1.1 Out-of-Sample Accuracies 

For out-of-sample predictions, there is no single figure of accuracy. The high 

variability during the 20-fold cross-validation is a clear sign that more stations, or 

more similar conditions at stations, would be needed to arrive at more stable 

predictions. The far more stable results of the random sampling strategy prove this 

point. The model fit on the other hand is constant, which shows that the model 

itself is well suited for all kind of station subsets. 

The average MAPE over 20 folds is 72% with a median of 56.76% and a standard 

deviation of 49%. Selecting a fairly average and the best model, ±25% of riders can 

be predicted for about 45% of segments (average model), respectively 50% of 

segments for the best iteration. The difference is higher looking at the accuracy 

where ±50% relative difference is still reached: the average model does that for 

60%, the best model already for 90% of segments. This could mean that certain 

characteristics, i.e. certain stations are more consistently predicted over 20 

iterations than others. Roy et al. (2019) state ±25% for 80.3% of segments, although 

it is difficult to match this statement with the results in their paper. Even if the 

monthly values of this thesis are converted and averaged to the AADB figure, the 

comparison with their study is not insightful, as they reported absolute values of 

differences between predicted and observed counts.  

To better understand the results one can further refer to the plots showing the 

predictions for each station of the respective test set. It shows that many stations 

do not have great variance between their observations but are consistently over- 

or underestimated (biased). This suggests that the model is not capable of 

identifying the characteristics of an unseen street edge so well that precise 

predictions are possible. Even when the resulting accuracies are classified for a 

categorical map with 5 classes, the Jaccard Index showed bad performances in the 

attribution to the right class. Nevertheless, predictions for some single stations are 

very good, but the accuracy of the test set as a whole is clearly affected by single 

stations.  
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Overall, the difficulty of out-of-sample estimates of bicycle ridership are illustrated 

well by the results of this study. The different conditions in terms of street category 

and environment and the differences in seasonality are not sufficiently captured 

by the GLMM. Moreover, results of different out-of-sample iterations are not easy 

to interpret and compare. It does not only matter which stations are in the test set 

but also on which stations the model has been trained on. This is illustrated nicely 

as the station “Badenerstr. Schlieren” is in the test set of both selected iterations, 

yet the vertical positions of observations are not exactly equal. In this case, the 

best iteration has slightly higher variation and worse predictions. Hence the in- or 

exclusion of the 6 other stations make a difference in the accuracy of any given 

station.  

6.1.2 In-Sample Accuracies 

GLMM 2 is the final and most expressive model of this thesis. All 36 stations were 

used to train the model and predict ridership for the whole perimeter. 

Consequently, only in-sample accuracies could be obtained. The MAPE of 14.59% 

is a very good result, which is slightly better compared to the mean MAPE of the 

random sampling in GLMM 1 (15.44%). This is the same for all error measures. 

Interestingly, the median MAPE (14.55%) over 20 iterations of the random 

sampling even outperforms the MAPE of GLMM 2. This may indicate that some 

outlier observations still have a considerable effect on the prediction accuracies 

and if in many iterations of the random sampling, those are not in the test set, the 

accuracy is considerably better. 

The plots confirm the presence of outliers: The station “Badenerstrasse Schlieren” 

(Nr. 421) has some bad predictions again, but is overall much more precise than in 

the out-of-sample models. Many of the outliers belong to stations located at the 

riverside of the Glatt. Looking at all observation with a relative difference above 

50%, a certain pattern catches one’s eye: Of those 19 observations, most are Canton 

stations (16 vs. 3). Moreover, a majority are located next to a river or the lake of 

Zurich and the seasons are not equally distributed (9 winter, 8 autumn, 1 spring 

and 1 summer observations). This suggests that the model does not predict well at 

places where the seasonality may be very strong and trips are more likely to be of 
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a leisure purpose as, in the study area, path at riversides are often meandering 

and not paved. 

Nevertheless, the GLMM 2 outperforms in terms of accuracy related work by 

Jestico et al. (2016) or Nelson et al. (2021). For the R2 as measure of the in-sample 

model fit, both the random sampling of GLMM 1 and GLMM 2 resulted in an R2 of 

0.98. Nelson et al. (2021) had 0.92 at their best performing city model. Relative 

Prediction Accuracy is only comparable to the study by Jestico et al. Their stated 

average model error of 38% is clearly higher than both in-sample MAPEs in this 

study. The prediction inside ±25% of the actual value for 87% of segments and 

inside ±10% for 50% of segments are not comparable to related studies, but clearly 

indicate the very good performance of the model if all characteristics of station are 

in the training data. 

6.1.3 Synthesis and General Assessment 

RQ 1 asked “how well is bicycle ridership in Zurich’s Urban Area predictable from 

Strava and geographic data?”. In H1, it was suspected that a similar prediction 

accuracy could be obtained to Roy et al. (2019).  

Overall, it can be said that bicycle ridership is predictable from Strava and 

geographic data. As Sections 6.1 and 6.2 showed, the great difference lies in the 

type of prediction that is intended. Good out-of-sample predictions would be the 

ultimate goal: A model that correctly predicts ridership at random locations on the 

base of Strava riders and a set of expressive geographic variables. Results suggest 

that for out-of-sample estimates, only up to 50% of segments can be predicted in a 

range of ±25% of riders and the median MAPE over 20 iterations is 57%. Even for 

the classification into categories to display on a map, the results show too little 

veracity with the assigned classes. The 20-fold cross-validation has shown high 

variability in accuracy which indicates that the GLMM does not perform equally 

well for all subsets of 29 stations as training set and more stations would likely be 

needed.  The same GLMM performed significantly better if it already had a 

knowledge of stations. When observations were sampled randomly, a MAPE of 

15.44 % was reached. A notable disparity between in- and out-of-sample estimates 

is also that for out-of-sample estimates, whole stations are shifted to under- or 

overestimations, while for in-sample predictions, the model seems to correctly 



6 Discussion 58 

 

 

identify a base line for each station. The great difference between these two 

sampling methods is one of the notable outcomes of this thesis, as in literature, 

this issue has generally been ignored.  

As best-outcome model of this thesis, the GLMM 2 has been run using all stations 

as training data. The results show similar accuracies to random sampling in 

GLMM 1.  The prediction accuracies plotted per station reveal some insights into 

where the model has difficulties even at in-sample predictions, where train and 

test data are the same. It appears that stations at watersides in colder months 

account for most of the bad in-sample predictions. Compared to warmer months, 

these stations may have a lack of leisure riders, which leads to the wrong 

estimates. The partition of leisure and functional riders (including activities such 

as commuting or running errands) is a point which should be more rigorously 

assessed for future models. It may even make sense to compute separate models. 

In the process towards the final results, two rather non-urban stations (421 Kloten, 

919 Zürich Witikon) with a high proportion of Strava riders were at first not 

considered. When they were added for reasons of consistency, the out-of-sample 

results improved. However, the standard deviation in the results also surged 

considerably - not the mean, but only the median MAPE got significantly better. 

For in-sample accuracies, the results remained the same or got slightly worse. 

This was a further sign that the addition of stations helps, but a clear focus on the 

characteristics of streets and station would possibly improve the model even more. 

Certainly, for a model like in this thesis, more stations would still be needed to get 

better out-of-sample estimates and therefore make the model spatially more 

predictive.  

Using the GLMM 2, a set of categorical maps for the whole and three areas of the 

perimeter has been produced (see Appendix D). All 36 stations have been used as 

training data, which means that there is no estimate of the out-of-sample accuracy. 

The classification in categories is a further simplification. For the best out-of-

sample model, the veracity of this classification was still moderate. Nevertheless, 

the accuracy in the final model is probably better, as a 20-fold Cross-Validation 

using 90-10 train-test splits has resulted in a median MAPE of 49%, compared to 

the median MAPE of 57% for 80-20 splits. 31 stations were used as training data 
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for those 90%, thus it can be seen as intermediate step between the 80-20 splits 

and the final GLMM 2. The variability is still large, as the mean MAPE of 68% 

with a standard deviation of 48% suggests. Visually, it is evident that the counts 

in the final maps show some jumps between neighbouring edges. This happens 

because segments are treated independently and spatial autocorrelation is not 

considered.  

Certainly, predictions of the final models can be used as reference for other models 

predicting bicycle ridership. For the upcoming years, the model and predictions 

could again be used provided that all necessary data is made available. If 

authorities of the Canton and/or the City of Zurich intend to adopt the approach of 

this thesis with one model, more counting stations are recommended, but also a 

sort of classification of each station regarding the type of riders it captures. 

Additional measurements would provide valuable ground-truth to assess the 

accuracy of the GLMM 2 of this thesis. Alternatively, two separate models are 

suggested: One for leisure-oriented routes and one for all other streets. 

The research question RQ 1 cannot be answered providing a single estimate. 

Certainly, bicycle ridership can be predicted well from Strava and geographic data, 

but it cannot yet be used to get accurate predictions at random locations. Assuming 

that the accuracy stated by Roy et al. (2019) is correct, H 1 must be rejected for 

out-of-sample estimates. For in-sample accuracy, this thesis presents even better 

results than related studies.  

Key Messages 

 

▪ This thesis assesses the difference between in- and out-of-sample 

predictions using different sampling strategies. 

▪ Out-of-sample predictions are unstable and depend on the subsets of data 

used in the 80-20 train-test split. ±25% of riders can be predicted for a 

maximum of 50% of segments for the best iteration.  

▪ In-sample accuracy of ±25% of riders is reached for 87% of segments.  

▪ Outliers affect the performance of the model. It appears that the strong 

seasonality of some stations is not captured well. (…) 
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▪ The predictions using all stations as training data can be used as reference 

for similar studies and provide a continuous map of bicycle ridership in 

Zurich’s Urban Area 

 

6.2 Importance of Variables 

The geographic covariates were necessary to account for the bias in the Strava 

data. Due to the absence of similar work in Switzerland or even Central Europe, it 

was completely unknown which variables besides the Strava trips would be the 

best predictors for bicycle ridership in Zurich’s urban area. RQ 2 aimed to answer 

that question, while a hypothesis (H2) of the author was that socio-economic 

variables, that proved to be significant in related studies in the US, might not be 

that relevant here in Switzerland. Results show that the most significant local 

predictors are Strava trips, Distance to POI, the Swiss Neighbourhood Index 

(Panczak et al., 2023) and Winter as season. Also significant (p<0.05) was the 

exposure to accidents.  

As the socio-economic variable Swiss Neighbourhood Index belongs to the most 

important covariates, the hypothesis H2 must be rejected. It must be noted 

however, that the significant variable in the studies by Nelson et al. (2021) and 

Roy et al. (2019) was the median household income. The Swiss Neighbourhood 

Index considers other socio-economic variables as well, such as all-cause mortality 

and housing parameters. A 9.5% increase in ridership for a one-decile higher socio-

economic index is a considerable result. Future work could focus on the association 

between those variables to validate this effect.   

Looking at the other variables in order of the model summary, the Strava trips 

were the most significant predictor, as was expected. Due to the logarithmic 

transformations, the magnitude of the effect is not comparable to related studies. 

The Strava % of commute was not significant for bicycle ridership in this 

perimeter. This contrasts to Nelson et al. (2021), where it was significant for all 

cities. Reasons could be the uncertainties in the network matching, but also 

differences of usage in Strava users or in the commuting patterns in Switzerland. 
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Crash density is relevant as already Nelson et al. (2021) suggested. Considering 

the range of values, the 3.9% increase seems to be a realistic result. If a safe, 

separate and convenient bicycle network would be available, people might favour 

routes that have seen less accidents. As long as this perfect state is not met, the 

number of accidents is a solid covariate if a long enough period of time is 

considered. 

The speed limit was not significant, which contrasts to findings by Roy et al. (2019). 

A reason could be that many stations are on streets with at least 50km/h speed 

limit (Category 2). Also the implementation in this thesis is prone to errors, due to 

the use of incomplete OSM data and a simple matching to the network.  

Distance to green space was no significant predictor in this study, in contrast to 

Roy et al. (2019) or in some cities in the study by Nelson et al. (2021). The decision 

to consider only one class of the Arealstatistik raster data for this variable may be 

an issue here. However, the addition of other classes including for example forests 

led to a higher AIC, worse in-sample accuracies and no change in significance. 

Therefore, the old version was maintained.  

The distance to residential area is also not significant. The correlation would have 

been positive, which means that a higher distance is associated with more 

ridership. This would have been a clear contrast to findings in related studies (e.g. 

Roy et al.,2019). The reasons for this probably lie in the distribution of values 

visible in the histogram (see Appendix C).  

The distance to POI was strongly significant and the model records a 5% decrease 

in ridership for each 100m more distance to a POI. This is a reasonable result and 

the association is as expected. For future work, similar implementations are 

suggested to account for amenities inducing traffic on a daily basis.  

Mixed land use was clearly not significant in the model. Research is divided 

whether mixed land use correlates with active transportation. Concerning this 

thesis, the overall mixed land use patterns and the inclusion of diverse counting 

stations may have caused that result. 
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Both population density and the percentage of 80+ year olds are not significant. 

Probably, the correlation to bicycle ridership exists, but the effect is just not 

significant enough.  

The slope of the street segment was no significant predictor for ridership. The use 

of Strava data has certainly influenced this result. It could also be that small slopes 

are not a great hindrance for riders in cities or that the implementation using three 

classes from 0-3 has smoothed the effect of this variable.  

The result for winter as season is as expected: Compared to autumn, on average 

20.7% less ridership is recorded in this perimeter. For Ottawa, Nelson et al. (2021) 

recorded a strong decrease of 52%, when all other months served as reference, 

again showing the importance of seasonality.  

As was already discussed above in Subsection 6.1.3, seasonality is one of the factors 

that make the modelling of bicycle ridership so difficult. The significance of winter 

as a season is confirmed equally in the assessment of predictions and in the model 

output itself. The methodology to capture the seasonal variability is one of the 

major choices to make. This thesis provides an example of an approach, using 

Strava counts that include the variability and, adding to that, the winter season 

as variable.  

To conclude, the Strava trips, the exposure to accidents, the distance to POI, the 

Swiss Neighbourhood Index and winter as season are significant predictors for 

bicycle ridership. As in several studies before (e.g. EBP, 2020; Jestico et al.,2016), 

Strava trips proved to be strong correlates to ridership and follow the same 

patterns of seasonality. The significance of accidents is a confirmation that 

accidents are generally related to volumes of ridership, like Nelson et al. (2021) 

suggested. The significance of the Swiss Neighbourhood Index means that bicycle 

ridership correlates with socio-economic parameters. The lower the socio-economic 

status of a neighbourhood, the less bicycle ridership is expected, coinciding with 

studies of other countries (Roy et al, 2019; Nelson et al.,2021). The seasonality of 

ridership has been mentioned several times in this thesis and the significance of 

winter as the season of measurement confirm that weather is a main factor for 

ridership volumes. 
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As for the predictions, the addition of stations influenced the significant variables. 

The magnitude of the standard errors suggested that the variables might be 

sensitive and this was proved, as due to the addition of two stations, speed limit 

on street, population density and distance to residential area lost their 

significance. The latter was even highly significant before. This shows that single 

stations can also make a big difference for the covariates, especially when the 

station has extreme values for some variables. The use of a separate model for 

routes focused on leisure riders would probably lead to other significant variables.  

Key Messages 

 

▪ The most significant local predictors for bicycle ridership are Strava trips, 

Distance to POI, the Swiss Neighbourhood Index, winter season and the 

exposure to accidents.  

▪ There are similarities but also contrasting results to related studies 

conducted in the US or Canada. 

▪ The implementation and distribution of values of a variable in the training 

set must be taken into consideration when interpreting the significance and 

magnitude of the effect. 

▪ Depending on their characteristics, the in-or exclusion of single stations can 

alter the significance of variables in a sample of 36 stations 

 

6.3 Limitations  

6.3.1 Data Availability 

Network 

The network posed the first challenge of this thesis. As described, the construction 

of the network involved various steps and uncertainties. The azimuth filter for 

example managed to filter out many unwanted street fragments, however, also 

some valid street edges got omitted, in the rare case that Strava segments had an 

azimuth of more than ±20° in long, winding segments, often at riversides. The 

further uncertainties lay in the counts. As mentioned, there were mismatches 

especially at crossings. Not all of them caught the eye of the manual corrector. As 
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the correction focused on large gaps on rather popular routes, there may be more 

remaining mismatches on streets with low Strava ridership. Furthermore, the 

correction process itself involves large uncertainties as it based on the assumption 

that spatially close streets with similar counts in one month have similar counts 

in all months. The limitations of this method not only apply to the Strava counts, 

but also the percentage of commute. Possibly, the percentage of commute would 

have been a more expressive variable if it was not for the network matching 

process.  

The use of a network with simple, undirected edges facilitates the interpretation 

and visualisation of counts. However, it has the disadvantage that all streets are 

represented alike. There is no possibility to distinguish a street with traffic-

separated bike lanes, for example. 

Bicycle Data 

The infrastructure of bicycling is one of the most important factors for bicycle 

ridership (Sallis et al.,2013) particularly the improvement of infrastructure could 

motivate many people to use bicycles more. A major limitation of this thesis is that 

bicycle infrastructure is not considered as predictor. Unfortunately, the 

availability of suitable data is fragmentary. One issue is the existence of two 

different authorities in the perimeter, the Canton and the City of Zurich. Both have 

their own mobility and bicycle departments. Naturally, there is coordination, but 

from a data perspective, no joint base data is available. Datasets by the City, for 

example the speed limit on streets, stop at the city borders. On the other hand, 

data maintained by the Canton includes only streets and infrastructure 

maintained by them, thus even if there is data for bicycle infrastructure, only big 

cantonal streets running through municipalities are included. The goal of the 

approach of this thesis on the other hand is to have prediction for all possible 

streets. Another problem is that occasionally, data is not up-to-date or it only shows 

a desired state of the future. The latter applies to the network of fast lanes for 

bicycles that is being built at the moment – the routes of the finished network are 

not suitable for training a model that predicts ridership in the past, on the base of 

data from 2021 and 2022. 
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Overall, more and more data got available as OGD and over the last years, 

authorities have certainly made efforts to improve data and its availability. 

Nevertheless, there is still much room for improvement for new data, its 

availability and its maintenance. 

6.3.2 Data Quality 

Trip Counts 

The data quality of the counts is very important, as they form the ground truth in 

the case of the official counts or the most significant predictor in case of the Strava 

counts. As described in Subsection 3.2.1, technical problems of the counting 

stations can lead to gaps in the data, which can complicate comparisons between 

stations. Other limitations are changing street conditions at the stations: For some 

filtered stations, there were inexplicable leaps in the counts which were so 

unrealistic that these months were filtered out. Some decisions on filtering can be 

difficult as bicycling data has patterns which seem extreme at times, especially in 

routes popular for leisure trips. The uncertainties in the Strava data concerning 

the matching to a suitable network and binning has been discussed above, 

respectively in Subsection 3.2.1. The binning is one reason that smaller Strava 

counts are not as reliable. For this reason, one counting station got discarded and 

the filter of edges (>2000 Strava trips in 24 months) was applied.  

Geographic Variables  

The sources of uncertainties in the covariates have been described in the 

description of each variable in Subsection 3.2.2. The implementations had 

influenced effects of the variable on ridership, which has been discussed in Section 

6.2. It can generally be said that future work could focus more on this part of the 

model. Better data, more tests on the sensibility of different implementations per 

variable and the discussion among different authors could improve a future model 

of bicycle ridership.  

Spatial Autocorrelation 

While this study aimed to predict bicycle ridership using Strava data and a range 

of geographic variables within a GLMM, it is important to acknowledge that 
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spatial autocorrelation was not considered in our analysis. Spatial autocorrelation, 

where nearby areas have similar values, may affect the reliability of predictions. 

Neglecting spatial autocorrelation could have led to biased variables or unrealistic 

differences in nearby predictions. Future research could account for spatial 

autocorrelation and enhance the approach of this thesis. A first step would be 

checking for spatial autocorrelation in model residuals. 



 

 

7 Conclusion and Outlook 

This thesis provides a continuous prediction of bicycle ridership in the urban area 

of Zurich. For the model of ridership, crowdsourced Strava counts and various 

geographic covariates of bicycling were used as predictors of a Generalised Linear 

Mixed Model, in which official count data of the City and the Canton of Zurich 

served as ground truth. Two different sampling strategies led to results for in-

sample as well as out-of-sample accuracies: For 87% of segments, monthly counts 

can be predicted within ±25% relative difference for in-sample estimates. Out-of-

sample predictions are instable and depend on the respective subsets of stations:  

±25% relative difference is predicted for at most 50% of segments. A final model 

using all ground truth data to train the model has been used to map the ridership. 

The main contribution of this work is providing a state-of-the-art workflow to 

predict ridership using Strava and geographic data. Compared to related studies, 

this thesis also includes the construction of a generalised network to match the 

Strava data. More importantly, this is the first study in this field which assesses 

the differences between in-sample and out-of-sample estimates. 

7.1 Future Work 

Future studies could build upon this work: To better capture the seasonality of 

bicycle ridership, it is suggested to either build a separate model for routes that 

are primarily frequented by leisure riders or add the predominant type of rides as 

an additional variable for each counting station. By doing so, the model may better 

understand the stronger seasonality of leisure rides. Furthermore, more counting 

stations and the consideration of a longer time period would help to improve 

predictions. As for the model inputs, the correlation of geographic variables could 

be assessed further and the incorporation of bicycle infrastructure would 

compensate for a limitation of this thesis.  



 

 

8 Bibliography 

Breslow, N. E., & Clayton, D. G. (1993). Approximate Inference in Generalized 

Linear Mixed Models. Journal of the American Statistical Association, 

88(421), 9–25. https://doi.org/10.1080/01621459.1993.10594284 

Broach, J., Dill, J., & Gliebe, J. (2012). Where do cyclists ride? A route choice 

model developed with revealed preference GPS data. Transportation 

Research Part A: Policy and Practice, 46(10), 1730–1740. 

https://doi.org/10.1016/J.TRA.2012.07.005 

Brun, I. (2022). Zoff um Zürcher Velovorzugsrouten verzögert Umsetzung. Tsüri. 

https://tsri.ch/zh/velovorzugsroute-zuerich-einsprachen-hoengg-parkplaetze-

blaue-zonen.LUCjzUfCEXEPJJ9N 

Büchel, B., Marra, A. D., & Corman, F. (2022). COVID-19 as a window of 

opportunity for cycling: Evidence from the first wave. Transport Policy, 116, 

144–156. https://doi.org/10.1016/J.TRANPOL.2021.12.003 

Celis-Morales, C. A., Lyall, D. M., Welsh, P., Anderson, J., Steell, L., Guo, Y., 

Maldonado, R., Mackay, D. F., Pell, J. P., Sattar, N., & Gill, J. M. R. (2017). 

Association between active commuting and incident cardiovascular disease, 

cancer, and mortality: prospective cohort study. BMJ (Clinical Research Ed.), 

357, j1456. https://doi.org/10.1136/BMJ.J1456 

Dean, C. B., & Nielsen, J. D. (2007). Generalized linear mixed models: A review 

and some extensions. Lifetime Data Analysis, 13(4), 497–512. 

https://doi.org/10.1007/s10985-007-9065-x 

Dunn, P. K., & Smyth, G. K. (2018). Generalized Linear Models With Examples 

in R. http://www.springer.com/series/417 

EBP on behalf of the Canton of Zurich. (2020). Eignung von STRAVA-Daten für 

Fragestellungen des Veloverkehrs. 

https://www.zh.ch/de/mobilitaet/veloverkehr/veloinfrastruktur/datengrundla

gen.html#406702762 



8 Bibliography 69 

 

 

Eurostat. (2022, August 25). Climate change - driving forces - Statistics 

Explained. https://ec.europa.eu/eurostat/statistics-

explained/index.php?title=Climate_change_-

_driving_forces&stable=1#Total_emissions.2C_main_breakdowns_by_source

_and_general_drivers 

Garber, M. D., Watkins, K. E., & Kramer, M. R. (2019). Comparing bicyclists who 

use smartphone apps to record rides with those who do not: Implications for 

representativeness and selection bias. Journal of Transport & Health, 15, 

100661. https://doi.org/10.1016/J.JTH.2019.100661 

Graser, A., Stutz, P., & Loidl, M. (2021). Tracks vs. Counters: Towards a 

Systematic Analysis of Spatiotemporal Factors Influencing Correlation. 

GIScience: International Conference on Geographic Information Science. 

Hankey, S., Lindsey, G., Wang, X., Borah, J., Hoff, K., Utecht, B., & Xu, Z. (2012). 

Estimating use of non-motorized infrastructure: Models of bicycle and 

pedestrian traffic in Minneapolis, MN. Landscape and Urban Planning, 

107(3), 307–316. https://doi.org/10.1016/J.LANDURBPLAN.2012.06.005 

Heesch, K. C., & Langdon, M. (2016). The usefulness of GPS bicycle tracking data 

for evaluating the impact of infrastructure change on cycling behaviour. 

Health Promotion Journal of Australia, 27(3), 222–229. 

https://doi.org/10.1071/HE16032 

Hood, J., Sall, E., & Charlton, B. (2013). A GPS-based bicycle route choice model 

for San Francisco, California. Http://Dx.Doi.Org/10.3328/TL.2011.03.01.63-

75, 3(1), 63–75. https://doi.org/10.3328/TL.2011.03.01.63-75 

Jackson, S. P., Mullen, W., Agouris, P., Crooks, A., Croitoru, A., & Stefanidis, A. 

(2013). Assessing Completeness and Spatial Error of Features in 

Volunteered Geographic Information. ISPRS International Journal of Geo-

Information 2013, Vol. 2, Pages 507-530, 2(2), 507–530. 

https://doi.org/10.3390/IJGI2020507 



8 Bibliography 70 

 

 

Jestico, B., Nelson, T., & Winters, M. (2016). Mapping ridership using 

crowdsourced cycling data. Journal of Transport Geography, 52, 90–97. 

https://doi.org/10.1016/J.JTRANGEO.2016.03.006 

Kanton Zuerich. (2021). Veloschnellrouten | Kanton Zürich. Tsüri. 

https://www.zh.ch/de/mobilitaet/veloverkehr/infrastruktur/veloschnellrouten.

html 

Kanton Zürich. (2020, December 10). Regierungsratsbeschluss Nr. 1195/2020 | 

Kanton Zürich. https://www.zh.ch/de/politik-staat/gesetze-

beschluesse/beschluesse-des-regierungsrates/rrb/regierungsratsbeschluss-

1195-2020.html 

Kanton Zürich. (2022). Datengrundlagen Veloverkehr | Kanton Zürich. 

https://www.zh.ch/de/mobilitaet/veloverkehr/veloinfrastruktur/datengrundla

gen.html#-18063639 

Kanton Zürich. (2023). Veloinfrastruktur. 

https://www.zh.ch/de/mobilitaet/veloverkehr/infrastruktur.html 

Labatut, V., & Cherifi, H. (2012). Accuracy Measures for the Comparison of 

Classifiers. ArXiv E-Prints, arXiv:1207.3790. 

https://doi.org/10.48550/arXiv.1207.3790 

Larsen, J., Patterson, Z., & El-Geneidy, A. (2013). Build It. But Where? The Use 

of Geographic Information Systems in Identifying Locations for New Cycling 

Infrastructure. Http://Dx.Doi.Org/10.1080/15568318.2011.631098, 7(4), 299–

317. https://doi.org/10.1080/15568318.2011.631098 

Livingston, M., McArthur, D., Hong, J., & English, K. (2021). Predicting cycling 

volumes using crowdsourced activity data. Environment and Planning B: 

Urban Analytics and City Science, 48(5), 1228–1244. 

https://doi.org/10.1177/2399808320925822/ASSET/IMAGES/LARGE/10.1177

_2399808320925822-FIG2.JPEG 

Lustenberger, N., Becker, F., Hintermann, B., & Axhausen, K. W. (2021). 

Änderung des Verkehrsverhaltens während der COVID-19 Pandemie. 

https://doi.org/10.3929/ETHZ-B-000519119 



8 Bibliography 71 

 

 

Meinshausen, N., & Bühlmann, P. (2010). Stability Selection. Journal of the 

Royal Statistical Society Series B: Statistical Methodology, 72(4), 417–473. 

https://doi.org/10.1111/J.1467-9868.2010.00740.X 

Meister, A., Axhausen, K. W., Felder, M., & Schmid, B. (2022). Route Choice 

Modelling for Cyclists on Dense Urban Networks. SSRN Electronic Journal. 

https://doi.org/10.2139/SSRN.4267767 

Menghini, G., Carrasco, N., Schüssler, N., & Axhausen, K. W. (2010). Route 

choice of cyclists in Zurich. Transportation Research Part A: Policy and 

Practice, 44(9), 754–765. https://doi.org/10.1016/J.TRA.2010.07.008 

Mueller, N., Rojas-Rueda, D., Cole-Hunter, T., de Nazelle, A., Dons, E., Gerike, 

R., Götschi, T., Int Panis, L., Kahlmeier, S., & Nieuwenhuijsen, M. (2015). 

Health impact assessment of active transportation: A systematic review. 

Preventive Medicine, 76, 103–114. 

https://doi.org/10.1016/J.YPMED.2015.04.010 

Nakagawa, S., Johnson, P. C. D., & Schielzeth, H. (2017). The coefficient of 

determination R2 and intra-class correlation coefficient from generalized 

linear mixed-effects models revisited and expanded. Journal of The Royal 

Society Interface, 14(134), 20170213. https://doi.org/10.1098/rsif.2017.0213 

Nehme, E. K., Pérez, A., Ranjit, N., Amick, B. C., & Kohl, H. W. (2016). 

Sociodemographic Factors, Population Density, and Bicycling for 

Transportation in the United States. Journal of Physical Activity and 

Health, 13(1), 36–43. https://doi.org/10.1123/JPAH.2014-0469 

Nelson, T., Roy, A., Ferster, C., Fischer, J., Brum-Bastos, V., Laberee, K., Yu, H., 

& Winters, M. (2021). Generalized model for mapping bicycle ridership with 

crowdsourced data. Transportation Research Part C: Emerging Technologies, 

125, 102981. https://doi.org/10.1016/J.TRC.2021.102981 

Panczak, R., Berlin, C., Voorpostel, M., Zwahlen, M., & Egger, M. (2023). The 

Swiss neighbourhood index of socioeconomic position: update and re-

validation. Swiss Medical Weekly, 153, 40028. 

https://doi.org/10.57187/smw.2023.40028 



8 Bibliography 72 

 

 

Raturi, V., Hong, J., McArthur, D. P., & Livingston, M. (2021). The impact of 

privacy protection measures on the utility of crowdsourced cycling data. 

Journal of Transport Geography, 92, 103020. 

https://doi.org/10.1016/J.JTRANGEO.2021.103020 

Roy, A., Nelson, T. A., Fotheringham, A. S., Winters, M., & Edu, S. F. (2019). 

Correcting Bias in Crowdsourced Data to Map Bicycle Ridership of All 

Bicyclists. Urban Science 2019, Vol. 3, Page 62, 3(2), 62. 

https://doi.org/10.3390/URBANSCI3020062 

Saelens, B. E., Sallis, J. F., & Frank, L. D. (2003). Environmental correlates of 

walking and cycling: Findings from the transportation, urban design, and 

planning literatures. Annals of Behavioral Medicine, 25(2), 80–91. 

https://doi.org/10.1207/S15324796ABM2502_03 

Sallis, J. F., Conway, T. L., Dillon, L. I., Frank, L. D., Adams, M. A., Cain, K. L., 

& Saelens, B. E. (2013). Environmental and demographic correlates of 

bicycling. Preventive Medicine, 57(5), 456–460. 

https://doi.org/10.1016/J.YPMED.2013.06.014 

Sallis, J. F., Floyd, M. F., Rodríguez, D. A., & Saelens, B. E. (2012). Role of Built 

Environments in Physical Activity, Obesity, and Cardiovascular Disease. 

Circulation, 125(5), 729–737. 

https://doi.org/10.1161/CIRCULATIONAHA.110.969022 

Stadt Zuerich. (2022). Mit freiwilligen Datenspenden gesellschaftlichen 

Mehrwert schaffen. https://www.stadt-

zuerich.ch/prd/de/index/ueber_das_departement/medien/medienmitteilungen/

2022/august/220823a0.html 

Stadt Zürich. (2020). Vorlage 1: Volksinitiative «Sichere Velorouten für Zürich» - 

Stadt Zürich. https://www.stadt-

zuerich.ch/portal/de/index/politik_u_recht/abstimmungen_u_wahlen/archiv_a

bstimmungen/vergangene_termine/200927/200927-1.html 

Stadt Zürich. (2021a). Velostrategie 2030 Massnahmenband. www.stadt-

zuerich.ch/velo 



8 Bibliography 73 

 

 

Stadt Zürich. (2021b). Velostrategie 2030. Mit dem Velo sicher und einfach durch 

Zürich. 

Stadt Zürich. (2022). Automatische Zählungen des Veloverkehrs - Stadt Zürich. 

https://www.stadt-

zuerich.ch/ted/de/index/taz/verkehr/webartikel/webartikel_velozaehlungen.ht

ml 

Strava. (2020a, February 4). Strava Milestones: 50 Million Athletes and 3 Billion 

Activity Uploads. https://blog.strava.com/press/strava-milestones-50-million-

athletes-and-3-billion-activity-uploads/ 

Strava. (2020b, September 23). Strava Metro FAQ. https://metro.strava.com/faq 

Sunde, E. (2019, February 8). Tracking the rise of bike commuting around the 

world | by Erik Sunde | Strava Metro | Medium. 

https://medium.com/strava-metro/tracking-the-rise-of-bike-commuting-

around-the-world-5bada94585c5 

Tibshirani, R. (1996). Regression Shrinkage and Selection Via the Lasso. Journal 

of the Royal Statistical Society: Series B (Methodological), 58(1), 267–288. 

https://doi.org/10.1111/J.2517-6161.1996.TB02080.X 

Tironi, M., & Valderrama, M. (2017). Unpacking a citizen self-tracking device: 

Smartness and idiocy in the accumulation of cycling mobility data. 

Https://Doi.Org/10.1177/0263775817744781, 36(2), 294–312. 

https://doi.org/10.1177/0263775817744781 

Winters, M., Brauer, M., Setton, E. M., & Teschke, K. (2010). Built environment 

influences on healthy transportation choices: Bicycling versus driving. 

Journal of Urban Health, 87(6), 969–993. https://doi.org/10.1007/S11524-010-

9509-6/TABLES/6 

Winters, M., & Teschke, K. (2010). Route Preferences among Adults in the near 

Market for Bicycling: Findings of the Cycling in Cities Study. American 

Journal of Health Promotion, 25(1), 40–47. 

https://doi.org/10.4278/ajhp.081006-QUAN-236 



8 Bibliography 74 

 

 

Yang, Y., Wu, X., Zhou, P., Gou, Z., & Lu, Y. (2019). Towards a cycling-friendly 

city: An updated review of the associations between built environment and 

cycling behaviors (2007–2017). Journal of Transport and Health, 14. 

https://doi.org/10.1016/J.JTH.2019.100613 

  

8.1 Software 

Esri Inc. (2021). ArcGIS Pro (Version 2.9.6). Esri Inc. https://www.esri.com/en-

us/arcgis/products/arcgis-pro/overview 

QGIS.org (2023). QGIS Geographic Information System (Version 3.22 

Bialowieza). QGIS Association. http://www.qgis.org 

R Core Team (2023). R (Version 4.3.0): A language and environment for 

statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 

URLhttps://www.R-project.org/ 

RStudio Team (2020). RStudio: Integrated Development for R. RStudio, PBC, 

Boston, MA URL http://www.rstudio.com/. 

8.1.1 R Packages 

Name and Version 

Package Version Citation 

BAMMtools 2.1.10 Rabosky et al. (2014) 

base 4.3.0 R Core Team (2023) 

car 3.1.2 Fox and Weisberg (2019) 

corrr 0.4.4 Kuhn, Jackson, and Cimentada (2022) 

data.table 1.14.8 Dowle and Srinivasan (2023) 

fastDummies 1.6.3 Kaplan (2020) 

ggrepel 0.9.3 Slowikowski (2023) 

glmmTMB 1.1.7 Brooks et al. (2017) 

glmnet 4.1.7 Friedman, Tibshirani, and Hastie (2010); Simon et al. (2011); Tay, 

Narasimhan, and Hastie (2023) 

grateful 0.2.3 Rodriguez-Sanchez & Jackson (2023) 

gridExtra 2.3 Auguie (2017) 

igraph 1.4.3 Csardi and Nepusz (2006) 

jtools 2.2.1 Long (2022) 

leaflet 2.1.2 Cheng, Karambelkar, and Xie (2023) 

lme4 1.1.33 Bates et al. (2015) 

lwgeom 0.2.13 E. Pebesma (2023) 

MASS 7.3.58.4 Venables and Ripley (2002) 

http://www.qgis.org/
http://www.rstudio.com/


8 Bibliography 75 

 

 

Package Version Citation 

mpath 0.4.2.23 Wang, Ma, Zappitelli, et al. (2014); Wang, Ma, Wang, et al. (2014); Wang, Ma, 

and Wang (2015); Wang (2019); Wang (2020); Wang (2022) 

nngeo 0.4.7 Dorman (2023) 

osmdata 0.2.5 Mark Padgham et al. (2017) 

performance 0.10.4 Lüdecke et al. (2021) 

progress 1.2.2 Csárdi and FitzJohn (2019) 

randomForest 4.7.1.1 Liaw and Wiener (2002) 

raster 3.6.20 Hijmans (2023a) 

rmarkdown 2.22 Xie, Allaire, and Grolemund (2018); Xie, Dervieux, and Riederer (2020); Allaire 

et al. (2023) 

scales 1.2.1 Wickham and Seidel (2022) 

sf 1.0.13 E. Pebesma (2018); E. Pebesma and Bivand (2023) 

sfnetworks 0.6.3 van der Meer et al. (2023) 

sp 1.6.1 E. J. Pebesma and Bivand (2005); Bivand, Pebesma, and Gomez-Rubio (2013) 

statmod 1.5.0 Dunn and Smyth (1996); Smyth (2002); Smyth (2005b); Smyth (2005a); Hu and 

Smyth (2009); Phipson and Smyth (2010); Giner and Smyth (2016) 

terra 1.7.29 Hijmans (2023b) 

tidygraph 1.2.3 Pedersen (2023) 

tidyverse 2.0.0 Wickham et al. (2019) 

tmap 3.3.3 Tennekes (2018) 

units 0.8.2 E. Pebesma, Mailund, and Hiebert (2016) 

 

Bibliography 

Allaire, J. J., Xie, Yihui, Dervieux, C., McPherson, J., Luraschi, J., Ushey, K., ... & Atkins, A. (2023). *rmarkdown: 

Dynamic Documents for R*. Retrieved from https://github.com/rstudio/rmarkdown 

Auguie, B. (2017). *gridExtra: Miscellaneous Functions for "Grid" Graphics*. Retrieved from https://CRAN.R-

project.org/package=gridExtra 

Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. *Journal of 

Statistical Software, 67*(1), 1-48. https://doi.org/10.18637/jss.v067.i01 

Bivand, R. S., Pebesma, E., & Gomez-Rubio, V. (2013). *Applied Spatial Data Analysis with R, Second Edition*. Springer, 

NY. https://asdar-book.org/ 

Brooks, M. E., Kristensen, K., van Benthem, K. J., Magnusson, A., Berg, C. W., Nielsen, A., ... & Bolker, B. M. (2017). 

glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. *The R 

Journal, 9*(2), 378-400. https://doi.org/10.32614/RJ-2017-066 

Cheng, J., Karambelkar, B., & Xie, Y. (2023). *leaflet: Create Interactive Web Maps with the JavaScript "Leaflet" 

Library*. Retrieved from https://CRAN.R-project.org/package=leaflet 

Csardi, G., & Nepusz, T. (2006). The igraph software package for complex network research. *InterJournal Complex 

Systems*, 1695. https://igraph.org 

Csárdi, G., & FitzJohn, R. (2019). *progress: Terminal Progress Bars*. Retrieved from https://CRAN.R-

project.org/package=progress 

Dorman, M. (2023). *nngeo: K-Nearest Neighbor Join for Spatial Data*. Retrieved from https://CRAN.R-

project.org/package=nngeo 

Dowle, M., & Srinivasan, A. (2023). *data.table: Extension of "data.frame"*. Retrieved from https://CRAN.R-

project.org/package=data.table 

Dunn, P. K., & Smyth, G. K. (1996). Randomized quantile residuals. *J. Comput. Graph. Statist, 5*, 236-244 

Fox, J., & Weisberg, S. (2019). *An R Companion to Applied Regression, Third*. Sage. 

https://socialsciences.mcmaster.ca/jfox/Books/Companion/ 

Friedman, J., Tibshirani, R., & Hastie, T. (2010). Regularization paths for generalized linear models via coordinate 

descent. *Journal of Statistical Software, 33*(1), 1-22. https://doi.org/10.18637/jss.v033.i01 



8 Bibliography 76 

 

 

Giner, G., & Smyth, G. K. (2016). statmod: Probability calculations for the inverse Gaussian distribution. *R Journal, 

8*(1), 339-351. 

Hijmans, R. J. (2023a). *raster: Geographic Data Analysis and Modeling*. Retrieved from https://CRAN.R-

project.org/package=raster 

Hijmans, R. J. (2023b). *terra: Spatial Data Analysis*. Retrieved from https://CRAN.R-project.org/package=terra 

Hu, Y., & Smyth, G. K. (2009). ELDA: Extreme limiting dilution analysis for comparing depleted and enriched populations 

in stem cell and other assays. *Journal of Immunological Methods, 347*(1), 70-78. 

Kaplan, J. (2020). *fastDummies: Fast Creation of Dummy (Binary) Columns and Rows from Categorical Variables*. 

Retrieved from https://CRAN.R-project.org/package=fastDummies 

Kuhn, M., Jackson, S., & Cimentada, J. (2022). *corrr: Correlations in R*. Retrieved from https://CRAN.R-

project.org/package=corrr 

Liaw, A., & Wiener, M. (2002). Classification and regression by randomForest. *R News, 2*(3), 18-22. https://CRAN.R-

project.org/doc/Rnews/ 

Long, J. A. (2022). *jtools: Analysis and Presentation of Social Scientific Data*. Retrieved from https://cran.r-

project.org/package=jtools 

Lüdecke, D., Ben-Shachar, M. S., Patil, I., Waggoner, P., & Makowski, D. (2021). performance: An R package for 

assessment, comparison and testing of statistical models. *Journal of Open Source Software, 6*(60), 3139. 

https://doi.org/10.21105/joss.03139 

Padgham, M., Rudis, B., Lovelace, R., & Salmon, M. (2017). Osmdata. *Journal of Open Source Software, 2*(14), 305. 

https://doi.org/10.21105/joss.00305 

Pebesma, E. (2018). Simple features for R: Standardized support for spatial vector data. *The R Journal, 10*(1), 439-446. 

https://doi.org/10.32614/RJ-2018-009 

Pebesma, E. (2023). *lwgeom: Bindings to Selected "liblwgeom" Functions for Simple Features*. Retrieved from 

https://CRAN.R-project.org/package=lwgeom 

Pebesma, E., & Bivand, R. (2005). Classes and methods for spatial data in R. *R News, 5*(2), 9-13. https://CRAN.R-

project.org/doc/Rnews/ 

Pebesma, E., & Bivand, R. (2023). *Spatial Data Science: With applications in R*. Chapman and Hall/CRC. https://r-

spatial.org/book/ 

Pebesma, E., Mailund, T., & Hiebert, J. (2016). Measurement units in R. *R Journal, 8*(2), 486-494. 

https://doi.org/10.32614/RJ-2016-061 

Pedersen, T. L. (2023). *tidygraph: A Tidy API for Graph Manipulation*. Retrieved from https://CRAN.R-

project.org/package=tidygraph 

Phipson, B., & Smyth, G. K. (2010). Permutation p-values should never be zero: Calculating exact p-values when 

permutations are randomly drawn. *Statistical Applications in Genetics and Molecular Biology, 9*(1), Article 39. 

Rabosky, D. L., Grundler, M. C,Anderson, C. J., Title, P. O., Shi, J. J., Brown, J. W., ... & Larson, J. G. (2014). BAMMtools: 

An R package for the analysis of evolutionary dynamics on phylogenetic trees. *Methods in Ecology and Evolution, 5*, 

701-707. 

Rodriguez-Sanchez, F., & Connor, J. P. (2023). _grateful: Facilitate citation of R packages_. Retrieved from 

https://pakillo.github.io/grateful/ 

Simon, N., Friedman, J., Tibshirani, R., & Hastie, T. (2011). Regularization paths for Cox's proportional hazards model via 

coordinate descent. *Journal of Statistical Software, 39*(5), 1-13. https://doi.org/10.18637/jss.v039.i05 

Slowikowski, K. (2023). *ggrepel: Automatically Position Non-Overlapping Text Labels with "ggplot2"*. Retrieved from 

https://CRAN.R-project.org/package=ggrepel 

Smyth, G. K. (2002). An efficient algorithm for REML in heteroscedastic regression. *Journal of Computational and 

Graphical Statistics, 11*, 836-847. 

Smyth, G. K. (2005a). Numerical integration. In *Encyclopedia of Biostatistics* (pp. 3088-3095). 

Smyth, G. K. (2005b). Optimization and nonlinear equations. In *Encyclopedia of Biostatistics* (pp. 3088-3095). 

Tay, J. K., Narasimhan, B., & Hastie, T. (2023). Elastic net regularization paths for all generalized linear models. 

*Journal of Statistical Software, 106*(1), 1-31. https://doi.org/10.18637/jss.v106.i01 

Tennekes, M. (2018). tmap: Thematic maps in R. *Journal of Statistical Software, 84*(6), 1-39. 

https://doi.org/10.18637/jss.v084.i06 



8 Bibliography 77 

 

 

van der Meer, L., Abad, L., Gilardi, A., & Lovelace, R. (2023). *sfnetworks: Tidy Geospatial Networks*. Retrieved from 

https://CRAN.R-project.org/package=sfnetworks 

Venables, W. N., & Ripley, B. D. (2002). *Modern Applied Statistics with S, Fourth*. Springer. 

https://www.stats.ox.ac.uk/pub/MASS4/ 

Wang, Z. (2019). MM for penalized estimation. arXiv e-prints. 

Wang, Z. (2020). Unified robust estimation. arXiv e-prints. 

Wang, Z. (2022). *mpath: Regularized Linear Models*. Retrieved from https://CRAN.R-project.org/package=mpath 

Wang, Z., Ma, S., & Wang, C. Y. (2015). Variable selection for zero-inflated and overdispersed data with application to 

health care demand in Germany. *Biometrical Journal, 57*(5), 867-884. 

Wang, Z., Ma, S., Wang, C. Y., Zappitelli, M., Parikh, C., Devarajan, P., & Parikh, C. R. (2014). EM for regularized zero 

inflated regression models with applications to postoperative morbidity after cardiac surgery in children. *Statistics in 

Medicine, 33*(29), 5192-5208. 

Wang, Z., Ma, S., Zappitelli, M., Parikh, C., Wang, C. Y., & Devarajan, P. (2014). Penalized count data regression with 

application to hospital stay after pediatric cardiac surgery. *Statistical Methods in Medical Research*. 

Wickham, H., Averick, M., Bryan, J., Chang, W., D'Agostino McGowan, L., François, R., ... & Riddell, A. (2019). Welcome 

to the tidyverse. *Journal of Open Source Software, 4*(43), 1686. https://doi.org/10.21105/joss.01686 

Wickham, H., & Seidel, D. (2022). *scales: Scale Functions for Visualization*. Retrieved from https://CRAN.R-

project.org/package=scales 

Xie, Y., Allaire, J. J., & Grolemund, G. (2018). *R Markdown: The Definitive Guide*. Chapman & Hall/CRC. 

https://bookdown.org/yihui/rmarkdown 

Xie, Y., Dervieux, C., & Riederer, E. (2020). *R Markdown Cookbook*. Chapman & Hall/CRC. 

https://bookdown.org/yihui/rmarkdown-cookbook 

 

 

 

 

 

 

 



 

 

Appendix 

A) Link to Github Repository 

All necessary R-code to to conduct this thesis can be found on Github:  

https://github.com/toezve/geo511_modelling_bicycle_ridership.git 

B) Counting Stations 

City 

Table 20: List of Counting Stations operated by the City of Zurich 

FK_Zaehler 

(primary key) 

Street OBJECTID 

AV 

Network 

Veloinfrastruktur 

Correction 

Factor 
Months of 

measurement 
Remarks 

Y2H19090841 Andreasstrasse 70185 Fuss/Veloweg 1.14 full   

Y2H20063173 Baslerstrasse 62169 30er Zone mit 

Velostreifen 

1.00 
full   

ECO09113506 Bertastrasse 62208 
30er Zone 

1.27 01/2021 –  

08/2021 

Until 

21/09/2021 

ECO09113500 Binzmühlestrasse 67710 

50er Zone mit 

Velostreifen 

1.22 
01/2021 – 

05/2021; 

07/2021 – 

11/2021; 

01/2022 – 

02/2022; 

05/2022 

  

Y2H20114444 Bucheggplatz 

Richtung Höngg, 

Hofwiesenstr. 

100010 added 

Velostreifen 

1.27 

03/2021 – 

12/2022 

Counts two 

diverging 

traffic lanes 

Y2H16069943 Hardbrücke HB 68732 

Fuss/Velobrücke 

1.03 

full 

full 
summed Y2H16069942 Hardbrücke Seite 

Altstetten 

64741  1.10 

ECO09113507 Hofwiesenstr 

Richtung 

Bucheggplatz 

65149 (ganze 

Str) Velostreifen 

Hauptstrasse 

1.28 01/2021 – 

02/2022; 

06/2022 – 

12/2022 

Only one 

directional 

Y2H21056106 Langstrasse 

(Fahrbahn Nord) 

69248 (ganze 

Querschnitt) 
Velostreifen 

Hauptstrasse 

1 

03/2022 – 

12/2022 

  

summed 

Y2H21056105 Langstrasse 

(Fahrbahn Süd) 

70010 

Ganzer 

Querschnitt 

Velostreifen 

Hauptstrasse 

1 

Y2H19101255 Langstrasse 

(Unterführung 

Nord) 

70010 

Ganzer 

Querschnitt 

Separierter 

Veloweg 

0.96 

Y2H21111102 Langstrasse 

(Unterführung 

Süd) 

70010 

Ganzer 

Querschnitt 

Separierter 

Veloweg 

1 

Y2H19070585 Limmatquai -> 

Bellevue 

67630/64037 
30er Zone 

1.47 
full summed 
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Y2H20083483 Limmatquai -> 

Central 

64037 
30er Zone 

1.33 
full summed 

Y2H19101198 Lux-Guyer_Weg 

Oberer Letten 

65866 
Fuss/Veloweg 

1 
full   

Y2G13124879 Militärbrücke 62546 Fuss/Velobrücke 0.95 full   

Y2H18106792 Mühlebachstrasse 66294 30er Zone 1.19 full   

Y2H22073807 Mythenquai 63293 Fuss/Veloweg 1.00 12/2022  

ECO09113499 Mythenquai 63293 
Fuss/Veloweg 

1.20 01/2021-

01/2022 

Until 

03/03/2022 

Y2H20011946 Saumackerstrasse 61733 

50er Zone ohne 

Velostreifen 

1.27 

04/2021 – 

05/2021; 

11/2021 – 

04/2022 

 

Y2H19111477 Scheuchzerstrasse 65622 

  
30er Zone 

1.05 01/2021 – 

05/2021; 

08/2021 – 

12/2022 

  

ECO10053914 Schulstrasse 68239 

  30er Zone 
1.43 

full  

ECO09113503 Sihlpromenade 69378 

Fuss/Veloweg 

beidseitig 

1.09 
01/2021 – 

05/2021; 

07/2021 – 

08/2021; 

11/2021; 

02/2022; 

05/2022 – 

07/2022; 

09/2022 

 

Y2H19111476 Talstrasse 66542 
50er Zone mit 

Velostreifen 

1.35 
12/2021 – 

12/2022 

Leap in 

counts in 

12/2022  

Y2H19070283 Zollstrasse HB 64179 
Velostreifen (eng) 

1.49 01/2021 – 

03/2022 
Until 03/2022 

 

Canton 

Table 21: List of Counting Stations operated by the Canton of Zurich 

NR Street OBJECTID 

AV 

Network 

Type Route Veloinfrastrukt

ur 

Months of 

measuremen

t 

Remark

s 

421 Badenerstrasse 

Schlieren 

20257  

Alltag 
  

  
2022 Summed 

521 Badenerstrasse 

Schlieren 

20257  

2221 Fischerweg, 

Dübendorf 

31197   Fuss-Veloweg 05/2022 – 

12/2022 
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918 Gaswerkstrasse, 

Schlieren 

20417 

  

Hauptverbindung, 

Alltag 

Nur LV oder 

landwirt. 

alle   

2721 Glattuferweg Süd, 

Opfikon 

93246 

  

Nebenverbindung, 

Alltag 

Fuss-Veloweg 10/2021 – 

04/2022  

 

2521 Glattuferweg 

Zunstrasse Opfikon 

93226 Zusätzliche 

Freizeitverbindung 

Strasse und 

Trottoir 

10/2021 – 

12/2022 

  

2621 Glattuferweg Opfikon 93207     Fuss-Veloweg 11/2021 – 

12/2022 

 

1519 Opfikon 92895 

Nebenverbindung, 

Alltag 

Hauptstrasse mit 

Velostreifen 

01/2021 – 

02/2022 

06/2022 – 

12/2022 

  

  

Summed  

  5019 Schaffhauserstrasse 

Glattbrugg 

92895 

1819 Schaffhauserstrasse, 

Kloten 

55714 Nebenverbindung, 

Alltag 

Hauptstrasse mit 

Velostreifen 

alle   

619  Tobelhofstrasse 

Dübendorf 

70609 Nebenverbindung, 

Alltag 

Veloweg  11/2021 – 

12/2022 

Not 

urban 

221 Ueberlandstrasse 

Dietikon West 

61004 Alltag Veloweg 10/2021 – 

12/2022 

  

2020 Dietikon Brücke 61704 

Veloschnellroute/Ne

benverbindung 

Alltag 

Veloweg auf Brücke, 

(einseitig Fuss/Velo) 

  

alle  Summed   
5120 Dietikon Brücke 61704  

1018 Dietikon 

Überlandstrasse Ost 

61092 Veloschnellroute, 

Alltag 

Fuss/Veloweg an 

60er Zone 

alle 
 

818 Vulkanstrasse,Schlier

en 

20538 Veloschnellroute, 

Alltag 

Veloweg ohne MIV alle 
 

716 Regensdorf West 55154 Nebenverbindung, 

Alltag 

Fuss/Veloweg  alle Not 

urban  

616 Regensdorf Ost 54606 

  

Nebenverbindung, 

Alltag 

Fuss/Veloweg  alle Not 

urban  

1121 Zürcherstr 

Dietikon 

60804 

  

Nebenverbindung, 

Alltag 

Velostreifen 2022 
Summed  

  
1021 Dietikon 60804 

2119 Schlieren, 

Zürcherstrasse 

20016 Haupt&Nebenverbi

ndung, Alltag 

Velostreifen 01/2022 – 

06/2021; 

05/2022 – 

12/2022 
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2421 Glattuferweg Zürich 70803   Fuss-Veloweg alle   

919 Zürich Witikon  70971 

Ref. edge 

69693 real 

edge 

 Hauptverbindung Veloweg alle Not 

urban 

317 Bassersdorf 9486  Nebenverbindung  Fuss-Veloweg alle Not 

urban 

2219 Basserdorf Feuerwehr 9597    Fuss-Veloweg alle 
 

417    Kloten 9106  Nebenverbindung  Fuss-Veloweg alle 
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C) Histograms of all Variables 
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Figure 31: Histograms of all Variables. 
Note: Stat. refers to the Counting Stations, while “All” refers to all (7760) street edges of the network.  

D) Categorical Maps  
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