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Abstract

In recent years, the popularity of backcountry skiing has grown significantly, and the rising use

of GPS technology in mobile devices has progressively enabled research on backcountry skiing

behavior. To date, only few studies focus on the spatio-temporal distribution of backcountry ski

tours and particularly the prediction thereof. Knowing when and where individuals engage in

backcountry skiing is a key aspect for assessing the avalanche risk that skiers encounter in the

backcountry. This thesis presents pioneering work by using obfuscated Volunteered Geographic

Information data of backcountry ski tours to predict backcountry skiing activity in the Swiss

Alps. Furthermore, this study proposes a methodology to enrich geographically obfuscated

GPS data with weather variables, such as precipitation, temperature, and sunshine duration.

Through the implementation of a random forest algorithm, backcountry skiing activity could be

predicted with a 77% accuracy by incorporating the avalanche conditions, weather conditions,

free time variables, and popularity of the region as predictors. Popularity, the avalanche danger

level, and the relative sunshine duration were shown to be the most important predictors for

backcountry skiing activity. The probability of backcountry skiing activity is increased by a

factor of 2.5 on a day with optimal weather conditions compared to a day with bad weather

conditions, while the probability is decreased by a factor of 1.5 on days with high avalanche

danger compared to days with low avalanche danger.
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Chapter 1

Introduction

1.1 Motivation

Backcountry skiing has gained a lot of popularity in Switzerland during the last few decades

(Lamprecht et al., 2014). Although reasons for this growth are not well understood, there seems

to be a fascination to ski in untouched terrain, away from prepared slopes (Furman et al., 2010).

Not only the solitude in the terrain, but also the additional thrill of being the first one to access

an untracked slope of fresh snow tempts skiers to take disproportional risks in the backcountry.

This fascination for untouched terrain is described by McCammon (2004) as the “scarcity trap”,

one of six heuristic traps that frequently keeps backcountry skiers from making sound decisions.

Having a look at accident statistics, it becomes evident that backcountry skiers1 voluntarily put

themselves at risk of serious injury or even death when entering avalanche terrain. Reasonably,

a substantial amount of literature focuses on the avalanche risk and the analysis of backcountry

skiing accidents, with the goal of gaining insights into the decision-making process of skiers and

thereby minimizing the risk they take (e.g., Gŕımsdóttir and Mcclung, 2006; Schmudlach and

Köhler, 2016). Many studies focus on the behavior of backcountry skiers with respect to terrain

characteristics, snow conditions and avalanche forecast or demographic, group dynamics and

skill level of the skier (Hendrikx et al., 2018; Johnson and Hendrikx, 2021; Mannberg et al.,

2018; Winkler et al., 2021). There is plenty of literature on how various factors affect the risk of

being exposed to an avalanche, however little attention has been paid on how these factors affect

the actual backcountry skiing activity2. A reason for this could be that collecting extensive data

of backcountry skiers is difficult as it requires data that is often sensitive in terms of the skier’s

privacy (de Montjoye et al., 2013).

Techel et al. (2015), among others, pointed out that it is crucial to know when and where people

go backcountry skiing (i.e., the exposure of elements at risk), to put avalanche accidents into

1Hereafter the terms backcountry skiers and (backcountry) recreationists are used interchangeably.

2The term “activity” is used in this thesis as a measure for whether people ski in a region or not, rather than
the type of the activity itself.
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context. Gŕımsdóttir and Mcclung (2006) defined the avalanche risk as the ratio of accidents

to accidents and non-accidents, in other words, the probability of accidentally triggering an

avalanche while travelling in avalanche terrain. Yet risk is often analyzed solely relying on

accident statistics, overlooking the aspect of exposure or non-accidents (e.g., Winkler et al.,

2021). To understand the importance of exposure, consider the following example: Many

people feel uneasy to enter an airplane, which is understandable, considering some horrendous

airplane accidents in the past. However, putting these accidents into perspective reveals a

different picture. In 2017 for instance, approximately four billion passengers embarked on an

airplane, while only eight people died in airplane accidents in the same year, which suggests

that air travel is one of the safest modes of transportation in the world (Barnett, 2020). It

becomes evident, that solely studying accidents without considering the exposure does not

capture the full picture. Although there are a few studies in backcountry skiing literature that

include exposure in the study of avalanche risk (e.g., Gŕımsdóttir and Mcclung, 2006; Pfeifer,

2009; Schmudlach and Köhler, 2016; Techel et al., 2015), it was not yet studied which factors

contribute to high, respectively low activity.

By modelling the backcountry skiing activity, hence when and where people are in the field,

the exposure can be quantified, and contributory factors can be identified. Additionally, it

allows avalanche forecasters to evaluate the quality of their forecasts. Forecasters usually get

feedback when an event (an avalanche or an avalanche accident) happens, which can help to

evaluate whether the avalanche forecast was accurate. On the other hand, when they receive

no feedback about avalanches or accidents, the question arises, whether this can be attributed

to a low avalanche danger or to the fact that there were simply no people in the field who could

possibly report an avalanche. Predicting the backcountry skiing activity will therefore help

forecasters to evaluate the quantity of feedback they receive. For instance, when no avalanches

get reported on a day where the activity is predicted to be high, it can be an indication of good

avalanche conditions1. Contrarily, if the activity is predicted to be low and no avalanche gets

reported, this does not necessarily indicate good avalanche conditions.

1.2 Research Gap

Skitourenguru2 is a web service that supports backcountry skiers in the selection and planning

of suitable ski tours by providing information about such factors. It assigns avalanche risks two

times per day to thousands of ski tours in the alpine region. Users can search for ski tours

based on several well-established criteria such as travel distance, elevation gain, difficulty and

avalanche risk (Schmudlach, 2022b). Since 2007, Skitourenguru has collected over 6 million lo-

cation points emerging from over 8500 GPS (Global Positioning System) trajectories that were

1The term “good avalanche conditions” is used in this thesis from the perspective of a backcountry skier, thus it
refers to a low avalanche danger.

2www.skitourenguru.ch

2

www.skitourenguru.ch


uploaded by backcountry recreationists. This dataset has already been analyzed in coopera-

tion with the WSL Institute for Snow and Avalanche Research SLF (SLF), for studies about

avalanche danger levels (Techel et al., 2015), or the avalanche risks taken by backcountry skiers

under different avalanche forecasts (Winkler et al., 2021). The same data is used in this thesis,

except that all coordinate points are obfuscated to protect the privacy of the user. Woźniak

et al. (2017) showed, that many people express privacy concerns when engaging in outdoor

sports information sharing. Even though obfuscation is not a new phenomenon when it comes

to location based services (Kachore et al., 2015), there are no studies that explore the usability

of obfuscated GPS data in the backcountry skiing domain. Further, data on backcountry skiing

has been only analyzed ex post (e.g. Schmudlach et al., 2018; Winkler et al., 2021) and was not

yet used to predict backcountry skiing activity in the future.

These research gaps are tackled by using obfuscated, Volunteered Geographic Information (VGI)

data of backcountry ski tours to predict backcountry skiing activity in the Swiss Alps.

Summarized, this thesis addresses two different research gaps: 1.) Predicting backcountry ski-

ing activity and 2.) Doing so with obfuscated GPS data that emerge from VGI. This leads to

the following research questions (RQ):

RQ1: How can backcountry skiing activity be modeled using obfuscated, user-generated trajec-

tory data?

RQ2: How do the different predictors, such as weather forecast, avalanche conditions, and free

time, influence the backcountry skiing activity?

RQ3: What are the most important predictors for backcountry skiing activity?

3



Chapter 2

Background

2.1 Avalanches

In Switzerland, on average 21 people die every year in avalanches. Nowadays, an overwhelming

majority of the victims are recreationists and about 95% of accident avalanches are human-

triggered (Schweizer and Techel, 2017). The behavior and decision-making of backcountry

skiers is therefore strongly influenced by avalanches, thus it is important to discuss the most

important aspects of avalanches and their formation.

Avalanches can be split into several distinct avalanche types. The two most important types

are slab avalanches and loose snow avalanches. Loose snow avalanches start at a single point

and spread out as they move down the slope, usually involving only surface snow. Oftentimes,

loose snow avalanches get released naturally. Slab avalanches on the other hand have a distinct,

broad fracture line, which is often initiated by a failure due to a weak layer at depth in the

snowpack (McClung and Schaerer, 2006). Slab avalanches are far more dangerous than loose

snow avalanches, and they account for more than 90% of deaths occurring in avalanches (SLF,

2023b).

2.1.1 Contributing Factors

Fredston et al. (1994) used a triangle to graphically represent the factors contributing to an

avalanche (Figure 2.1), which was later used and adapted by many different authors, avalanche

forecasters and avalanche education programs (e.g., McCammon and Hägeli, 2007; Suter et al.,

2007; Williams, 1998). The three physical factors presented in the avalanche triangle are snow-

pack, weather and terrain. As indicated by the triangle, these three factors interact with each

other, however, the interactions are complex and much about avalanche release is still unknown

(Schweizer et al., 2003). Simplified, weather and terrain both influence the development of a

snowpack and the terrain characteristics determine whether an avalanche release is physically

possible. In the center stands the “human factor”, which is the main contributor to avalanche

accidents, as humans are the trigger for most of the accident avalanche releases (Schweizer and

Techel, 2017).
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Figure 2.1: Avalanche triangle according to Fredston et al. (1994).

Terrain

Terrain is the only time independent avalanche triggering factor. The primary terrain require-

ment for an avalanche is a slope inclination between 25° and 55°. Slopes with an inclination

below 25° usually do not produce enough shear stress and deformation for an avalanche release.

Yet, there is no precise lower limit for slope inclination below which the terrain can be regarded

as safe. For instance, wet avalanches can occur on slopes with inclinations below 25°. On steep

slopes (above 55°) on the other hand, continuous sluffing of loose snow prevents excessive snow

accumulation and consequently avalanche formation (McClung and Schaerer, 2006). However,

it is worth noting that there are different ways to measure the slope angle. Additionally, it is

to mention that skiers in flatter terrain can get caught by an avalanche that was released in

steeper terrain (remote-triggered or natural avalanches). A common rule of thumb for back-

country recreation is a 30° threshold for avalanche formation. This rule is presented in many

avalanche guides, and on some Swiss ski touring maps terrain steeper than 30° is specially col-

ored (Schweizer et al., 2003). Terrain characteristics are also included in the avalanche forecast

in the form of a “core zone”, which describes critical aspect and elevation for avalanche danger

levels. As opposed to slope angle, elevation affects avalanche danger only indirectly. In ele-

vations below the tree line for example, the snowpack is relatively stable due to temperature

variations and little wind resulting in a generally lower avalanche danger (Harvey et al., 2012).

Lastly, the terrain strongly influences snow redistribution through wind, which is discussed in

the following section.
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Weather

Precipitation, wind, air temperature and radiation are the most important weather variables

that directly or indirectly influence the stability of a snowpack. Generally, two different pro-

cesses result from weather conditions: Snow accumulation and snow metamorphism that takes

place after the snow is accumulated (McClung and Schaerer, 2006).

Precipitation is crucial, as it is primarily responsible for the formation of the snowpack. Once a

snowpack is built, the type of precipitation (rain, wet/dry snow) determines how much weight

and energy is added to the existing snowpack. Typically, new snow increases the avalanche risk,

as it puts additional weight to the snowpack (Fredston et al., 1994; Harvey et al., 2012). Rain

on the other hand adds water and heat to the snowpack, which favours wet slab avalanches as

the water can lubricate a sliding surface. As precipitation is the primary requirement for snow

accumulation, it is the strongest forecasting parameter for large and catastrophic new snow

avalanches (McClung and Schaerer, 2006).

Drift snow occurs when snow gets redistributed by wind, and it often accumulates on the lee

side of ridges or in gullies and notches, where wind speed decelerates quickly. Drift snow exerts

an additional pressure on the snowpack, which can lead to an avalanche release. Additionally,

snow particles become broken and abraded when they get deposited by the wind. This can

lead to a tightly packed snowpack that can quickly produce slab-like textures, which is an ad-

ditional factor favoring the formation of an avalanche. Even though drift snow accumulations

are influenced by terrain, re-location by wind is often irregular, thus it can be challenging to

detect. Also, wind influences the energy fluxes between the snowpack and the atmosphere,

which impacts the snow metamorphism and consequently the strength of the bonds between

layers in the snowpack (McClung and Schaerer, 2006; Schweizer et al., 2003).

Air temperature is critical as it determines whether precipitation falls as wet or dry snow, or

as rain. After a snowpack is built, the air temperature, or more precisely the gradient of the

air temperature, interacts with the snowpack, which can alter the surface layer of the snow and

produce a weak layer. Also, when high temperatures cause rain, heat gets introduced into the

snowpack. The temperature gradient inside the snowpack causes snow metamorphism. This can

lead to a stabilization of the snowpack, as it strengthens the bond between particles (Schweizer

et al., 2003).

Radiation can have two different effects on the snowpack, it can either warm or cool the snow-

pack, depending on the type of radiation (short- or long-wave) and the atmospheric conditions,

such as cloud cover. Radiative cooling or/and warming can produce weak layers, or it can

directly cause an avalanche (McClung and Schaerer, 2006).

Snowpack

As outlined before, snowpack is a product of weather conditions and terrain. Weather condi-

tions are directly connected to the snowpack as they initially produce it. Subsequently, the

weather development after the snowfall determines the stratigraphy of the snowpack. Tempera-

ture fluctuations and radiation impact the snow metamorphism, which can produce weak layers
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in the snowpack or strengthen the bonds and therefore the stability of the snowpack. When

new snow is accumulated on top of a weak layer, a persistent weak layer can emerge, which

is a typical avalanche problem, often referred to as old snow problem in avalanche forecasting

(Techel et al., 2015). Precipitation generally adds weight and possibly energy to the snowpack,

which impacts the stability. Besides weather variables, also the terrain influences the snowpack,

as it determines where drift snow accumulates. Further, sun-exposed aspects receive more solar

irradiation, which stabilizes the snowpack as a high temperature fluctuation leads to a stronger

bond between new snow and old snow layers. Consequently, shaded areas are more prone to

avalanches, because weak layers can persist over longer time periods when the temperature

fluctuation is low (Harvey et al., 2012).

Human

The human factor relates the snowpack instability to the actual avalanche hazard and includes

aspects like ego, incorrect assumptions, or peer pressure (Fredston et al., 1994). According to

Fredston et al. (1994), most accidents occur because victims either underestimate the avalanche

hazard or overestimate their own ability to deal with it. It is therefore essential to incorporate

the human factor into avalanche prevention. Because the human factor is closely related to

backcountry skiing in general, it is discussed in more detail in Section 2.2, as it has been

frequently studied in backcountry skiing literature.

2.1.2 Avalanche Hazard, Danger and Risk

Avalanches play a critical role in the decision-making of backcountry skiers and therefore the

activity prediction carried out in this thesis. This requires an unambiguous terminology for

the different terms relating to avalanche danger. The definitions and ideas introduced in this

section all follow Statham (2008), unless specified otherwise.

Avalanche danger and avalanche hazard are synonymous. Hereafter, the term avalanche danger

is used, but it is interchangeable with avalanche hazard. Statham (2008) describes avalanche

danger as a source of potential harm and a likelihood of 1.) the triggering and 2.) the size of an

avalanche. It is important to acknowledge that the avalanche danger is independent from the

avalanche risk. This means that the avalanche danger can be high, while the risk is low. An

example that illustrates this in the context of backcountry skiing is when no individuals are in

the field, but the avalanche danger is high.

In this thesis, the avalanche danger level (in this thesis referred to as raw danger level) will be

frequently used. The avalanche danger level is a five-scale danger classification that is used to

communicate the avalanche conditions. It is important to keep in mind that it describes the

avalanche danger, and not the avalanche risk. Only when an element at risk is introduced, the

avalanche risk can be assessed. The element at risk can be anything, for instance infrastructure,

animals, or humans, depending on the context. In the context of this thesis, the element at risk

is always assumed to be a backcountry recreationist, hence the term avalanche risk relates the

avalanche hazard to individuals in the field. The avalanche risk can be defined as a combination
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of 1.) the exposure of the element at risk (i.e., the backcountry skier), and 2.) its vulnerability

to the avalanche danger. Vulnerability expresses the susceptibility to the impact of an avalanche

hazard, which is specific to the element at risk. For instance, when a healthy adult stands beside

an old person, they both may be exposed to the same avalanche danger, yet they are at different

risks, as they have different vulnerabilities. The exposure on the other hand describes where

and for how long an element at risk is in the terrain. For backcountry skiing, this is the single

most important factor for the avalanche risk, as the exposure is the consequence of the actions

a backcountry skier takes. The exposure is higher when a lot of individuals are in the terrain, as

illustrated in Section 1.1 with the airplane example. Consequently, when analyzing the accident

risk, the exposure, i.e., how many individuals are in the field, needs to be considered (Techel

et al., 2015).

2.2 Backcountry Skiing

In this thesis, backcountry skiing is used as a collective term for snowboarding and skiing in

remote areas. It can be defined as skiing or snowboarding in the backcountry, away from pre-

pared slopes, where people primarily ascend under their own power. This stands in contrast to

off-piste skiing, which takes place close to ski areas, where people often use ski resort facilities to

ascend (Winkler et al., 2021) A typical backcountry skier is male, educated (university degree),

has no children and is roughly aged between 26 and 40 (Hendrikx et al., 2022; Winkler et al.,

2016).

The behavior of backcountry skiers has been researched in several parts of the world, includ-

ing North America, Scandinavia, and the Alpine European countries, including among others

Switzerland, France, and Italy. Even though some studies combined data from different geo-

graphic regions, there is a lack of comparison between them. Considerable differences in back-

country recreation and especially in avalanche warning systems between different geographic

regions might influence the behavior of backcountry skiers, and as Hägeli et al. (2009) suggest,

preclude the adoption of an existing decision aid to another geographic region. Other Alpine

countries in Asia or South America are greatly underrepresented in literature.

There are mainly two different approaches to analyze the behavior of backcountry skiers: 1.)

Survey-based studies, sometimes combined with GPS-tracking data, that focus on the decision-

making process, demographics, and group-dynamics of the skiers (e.g., Furman et al., 2010;

Hägeli et al., 2009; Hendrikx et al., 2022; Johnson and Hendrikx, 2021) and 2.) purely GPS data-

driven approaches that analyze the skiing behavior in terms of terrain use and avalanche risk,

without relating it to the individual demographic or decision-making processes (e.g., Bielański

et al., 2018; Schmudlach and Köhler, 2016; Techel et al., 2022). For a long time, field studies

and investigations have been challenging due to the remoteness in which backcountry skiing

naturally takes place. Within the last decade however, research has been enabled and driven

by the more widespread use of GPS tracking technology (Bielański et al., 2018; Hendrikx et al.,

2022).

As avalanches constitute the main danger for backcountry skiers, a great part of their decision-

8



making is based on minimizing the avalanche risk. Consequently, a vast majority of studies

focus on avalanche risk and prevention. In the last 20 years, a paradigm-shift away from

snowpack- and weather-related causes of avalanche accidents towards a mix of human-related

factors occurred (Hendrikx et al., 2022). In his much-cited article about common heuristics in

avalanche-related recreational activities, McCammon (2004) highlights the importance of the

human factor in avalanche prevention. His most important finding is that people take higher

risks under certain well-defined, human-related conditions. He concludes six heuristic traps that

cause backcountry skiers to make erroneous decisions: People usually take higher risks when

1.) in familiar terrain (familiarity trap), 2.) in larger groups (social facilitation trap), 3.) the

commitment to follow an initial decision is high and thereby overrules critical new information

about avalanche danger (consistency trap), 4.) wanting to impress or be accepted by other peo-

ple (acceptance trap), 5.) there is an overall positive impression of the leader (expert halo trap),

and 6.) there is a chance to be the first one to ski an untracked slope of fresh snow (scarcity

trap). To reduce the number of deadly accidents, avalanche education needs to address these

six traps, says McCammon (2004).

Numerous studies have examined the human factor and its importance for the risk taken by

backcountry recreationists (Atkins, 2000; Hendrikx et al., 2018; Johnson and Hendrikx, 2021;

Maguire, 2014; McCammon, 2009). Hendrikx et al. (2022) conducted a study in the US and

northern Norway that tracked the decision-making process of backcountry recreationists by us-

ing surveys combined with GPS data. They found that solo-travel, although commonly regarded

as more risky behavior, represented a quarter of all observed tours. At the same time, only 6%

of all solo-trips were undertaken by females. Also, groups of two or three males spent more time

in complex terrain than any other group combination, while solo females avoided all complex

terrain. However, it has to be noted that females are greatly underrepresented in backcoun-

try skiing, and thus the sample size of female recreationists was comparably small. Not only

gender or group dynamics, but also the self-assessed backcountry skills impact the behavior.

Self-assessed experts spend more time in complex and more serious avalanche terrain, but they

also have higher terrain management skills than self-assessed intermediates. Contrary to that,

intermediates and experts seem to be similarly active with regard to the forecasted avalanche

danger, with highest activities under moderate avalanche danger rating and lowest activities

under low and high danger ratings in both groups. Even though the number of trips under a

certain forecasted avalanche danger level does not differ within the two groups, Johnson and

Hendrikx (2021) found that the terrain-use does differ, as skiers with higher avalanche education

tend to adjust their terrain use towards less steep slopes when avalanche danger increases, while

using more steep slopes on lower avalanche danger days.

The key role of the decision-making process is also highlighted by Hägeli et al. (2009), who

showed that a decision-aid that combines avalanche conditions, terrain ratings, and elevation

induces a more avalanche danger-sensitive behavior of amateur recreationists. This is in line

with Schmudlach and Köhler (2016), who combined avalanche forecast data with terrain data

to calculate and later publish the avalanche risk of 625 popular routes on the Skitourenguru
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website. A Route Click Statistics Dataset (RCSD) from Skitourenguru reveals that most of

the users click on routes with “low risk”. Hence, the most prominent factor influencing the

decision-making is unambiguously the avalanche danger. But besides the avalanche danger,

there are other important factors as well. Furman et al. (2010) found in a survey-based study

that recreationists, as suggested by McCammon (2004), are more likely to ski a slope when the

slope is untracked, when there is a leader present in the group or when the slope is familiar.

However, McCammon’s (2004) statement that men in the presence of women are more likely to

ski hazardous terrain, was not supported by Furman et al. (2010).

Decision-making remains complex, and assessing the resulting risk requires knowledge about the

exposure backcountry skiers face. To date, only few studies focus on the exposure, i.e. when,

where and for how long individuals are in the terrain. Zweifel et al. (2006) made an attempt to

quantify backcountry recreation by using a registration board and automated measuring sta-

tions to count backcountry skiers on designated routes. The results are promising, but only

suited for small-scale studies. A larger scale study on backcountry activity assessment was not

yet carried out.

2.3 Leisure and Outdoor Recreation

Activity prediction has been greatly left out in previous studies about backcountry skiing. How-

ever, there is research on the prediction of leisure activity, tourism in general and recreational

traffic (e.g., King et al., 2014; Lingras et al., 2002; Mach et al., 2020). Additionally, there have

been plenty of studies that examine the influence of weather conditions on outdoor recreation

(Dwyer, 1988; Verbos et al., 2018), some of which include backcountry skiing.

Backcountry skiing is a recreational activity, often taking place on holidays and weekends, as it

requires a half- or even full-day trip. Research on leisure and tourism is therefore well-applicable

to backcountry skiing as well. Probably the most similar to backcountry skiing prediction is the

prediction of skier days1 in ski resorts (e.g., King et al., 2014; Riddington, 2002). Ski resorts

exhibit a high demand of prediction techniques of skier days, because resorts must adapt their

resort capacity planning operations to the changing travel patterns. Even though resort skiing

is different from backcountry skiing, there are overlaps in the behavior of both types of skiers.

The biggest difference is that in resorts skiers usually do not have to worry about avalanche

danger, since resorts plan and prepare their slopes so that a minimum avalanche danger can be

guaranteed. Hence the terrain use in resorts is not so much influenced by avalanche danger but

by personal preferences, quality of the prepared slope, and or weather conditions (King et al.,

2014). Other differences are that people in ski resorts consider resort-specific variables like the

price of a ticket and the resort-facilities. However, as we investigate the predictive modelling of

skier days and leisure activity in general, we see that many predictive variables among different

1A skier day in the skiing industry is standard metric defined as a single skier or snowboarder at one resort for
any amount of time during one day.
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fields are similar and can also be applied to backcountry skiing. King et al. (2014) subdivide

the predictor variables for the skier day prediction into three dimensions, with the following,

non-exhaustive variables:

• Weather Dimension: Current Snow Depth, New Snow Fall, Average Daily Temperature

• Economic Dimension: Unemployment Rate, Consumer Price Index, Gas Price Index

• Time Dimension: Day of the Week Indicator, Holiday Indicator, Day Number of the Season

The weather and time dimension can also be applied to backcountry skiing. The economic

dimension however is disregarded in this thesis, because it is likely much less influential for

backcountry skiing, as there is no direct financial aspect in the form of a ski resort fee to it. An

additional factor that is not important for resort skiing but is crucial for backcountry skiing is

the avalanche forecast, which is certainly an important predictor for backcountry skiing activity.

Weather-related studies that focus on the impact on outdoor recreation have increased steadily

since 2009 (Lee et al., 2015; Verbos et al., 2018). Rutty and Andrey (2014) found that virtually

all skiers and snowboarders access a weather forecast when planning a tour, and that it can

even deter them from ultimately going outside. They also found that winter recreationists

are especially sensitive to conditions with precipitation, especially to rainfall and freezing rain.

Precipitation is often a more palatable condition than for example temperature, as people can

instantly feel if it is raining or not, but they might not sense slight variations in temperature.

This is in line with Haugom and Malasevska (2019), who found that weather is among the

most important attributes for Alpine resort skiers, with the most preferred conditions being

sunny weather with no precipitation and an air temperature of -5°C. It becomes apparent that

precipitation is an important factor for not only resort skiing, but also backcountry skiing.

In the same study, approximately a third of all participants stated that sun/cloud conditions

were important, which is in line with tourist research revealing the sensitivity of tourists to

good weather conditions, especially the sunshine duration (Wegelin et al., 2022). Dwyer (1988)

used seasonality, day of the week, and weather data to explain fluctuations in the daily use

of urban forest recreation sites. This is in line with Wegelin et al. (2022), who showed that

the main explanation for fluctuation in touristic activity on Mount Rigi, a famous touristic

mountain in Switzerland, was sunny weather followed by the day of the week and seasonality,

as well as institutional factors such as vacation periods. The activity was increased by 133%

on a sunny day, compared to a bad weather day, and by 80% on a Sunday, compared to a

Monday. Similarly to the day of the week, “Activity Day” is a category of variables that is

often used in recreational prediction and includes information about the day of the week (work

day, weekend) and holidays (Verbos et al., 2018), similar to the “Time Dimension” in the skier

day prediction as proposed by King et al. (2014). In conclusion of existing literature in the field

of leisure and outdoor recreation, three types of predictors should be included in the prediction

of backcountry skiing activity: 1.) Weather-related predictors, 2.) free time-related predictors,
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and 3.) avalanche-related predictors.

Lastly, it has to be mentioned that research on leisure and recreation often relies on Volunteered

Geographic Information (e.g., Nogueira Mendes and Pereira da Silva, 2018; Santos et al., 2022;

Upton et al., 2015). The dataset used in this thesis is also user-generated and falls into the

category of VGI, therefore it is important to shed some light on characteristics and issues

associated with this specific type of data.

2.4 Volunteered Geographic Information

The term “Volunteered Geographic Information” (VGI) was first introduced by Goodchild

(2007, p.212), who described it as the “engagement of large numbers of private citizens, of-

ten with little [. . . ] formal qualifications, in the creation of geographic information”. Goodchild

shaped the idea that humans build a sensor network, where each sensor (i.e., each human), is

equipped with five senses, the intelligence to interpret and compile what they sense and the

ability to move freely on the Earth’s surface. This immensely large network of sensors has great

potential to be a significant source of geographers’ understanding of many different processes

that occur on the Earth’s surface.

VGI was enabled by new web technologies developed in the early 2000s, collectively referred to

as web 2.0, that allowed users to produce and share content online to the point where it be-

came possible to construct websites that were almost entirely based on user-generated content

(Goodchild, 2007). Especially since GPS technology was commonly included in cell phones in

the early 2010s, the amount and availability of location-based data experienced a steep increase

(Bielański et al., 2018; Hendrikx et al., 2022). One of the most prominent VGI applications

is Open Street Map (OSM), which is a web service that allows users to create geo-referenced

information or contribute to and edit information contributed by other users (Goodchild, 2007).

There are also many web services for a more specific target group, for instance skiers, bikers,

or hikers, where users share geo-referenced information with their peers in a specific field. An

example for such a target-specific web service is Skitourenguru, from which the data used in

this thesis emerges.

Despite the great potential VGI data holds, we must be aware that the data is not produced

by professionals, but mostly by untrained people. Therefore, the results may or may not be

accurate (Goodchild, 2007; Senaratne et al., 2017; Zhang and Zhu, 2018). In contrast to purely

scientific data, where the primary motivation for data collection and sharing is to achieve a

certain research goal, there are a variety of reasons why non-professionals contribute to VGI.

Epstein et al. (2015) conclude five different types of reasons, why people share their personal

data online: 1.) The request for information, 2.) a desire for emotional support, 3.) seeking

motivation or accountability from audience, 4.) motivating or informing the sharing audience,

and 5.) communicating a certain impression to their audience. Additionally, while scientific

data collection follows a precise approach (e.g., random, stratified or systematic), data collection

through volunteers is oftentimes spontaneous and driven by opportunistic motivations which

results in a spatial bias (Zhang and Zhu, 2018). It is important to be aware that there are
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different motivations for VGI, as this possibly influences what people choose (not) to share.

Therefore, we have to assume that user-generated content always contains a certain bias. A

common issue also contributing to this bias is a phenomenon known as participation inequality.

It describes fact that in online communities, 90% of the content is produced by only 1% of the

users, while 90% of the users observe but never contribute (Nielsen, 2006). Zweifel et al. (2006)

found that only a fifth of all backcountry recreationists were willing to use a registration board

for the purpose of quantifying backcountry skiing activity, which confirms the participation

inequality in the backcountry skiing domain. Additionally, the minority that contributes, may

show a different behavior than users that do not contribute. For instance, Furman et al. (2010),

Hägeli et al. (2009) and Hendrikx et al. (2022) pointed out that voluntary surveys on avalanche

safety primarily attract participants who already have a special interest in avalanche safety, are

more engaged and more aware of possible risks, which leads to a more conservative decision-

making. Additionally, in the context of a safety survey, people might adjust their answers to

more conservative behavior due to social compliance. On the contrary, when people share their

content online, rather than in a scientific survey setting, the intent to impress peers by sharing

exceptionally sophisticated and hazardous tours, can lead to a bias towards more reckless be-

havior. Unfortunately, VGI data shared in the setting of an online web service usually does not

contain information about motivations behind information sharing. It is impossible to quantify

this bias when no personal information about the contributing person is provided. It becomes

evident that quality assessment is often impossible with VGI data, which reduces the credibility

of this data source (Flanagin and Metzger, 2008).

Despite the limitations VGI data holds, Johnson and Hendrikx (2021) highlight the importance

of citizen science techniques, as such detailed and abundant data about the behavior of back-

country skiers would be extremely difficult to obtain using a more traditional, survey-based

approach.

2.5 Machine Learning

In this chapter, some basic concepts of machine learning (ML) are explained. Unless stated

otherwise, the definitions and ideas follow Marsland (2015), who examined machine learning

from an algorithmic perspective.

Machine learning is a technique where computers adapt their actions in order to make them

more accurate, where accuracy is a measure of how well the chosen actions reflect the correct

ones. This enables computers to learn from experience to perform a certain task, and by using

this technique, to build an algorithm (Mitchell, 1997). During the learning process, an input

is required, which tells the algorithm if it is getting better or not. Based on this input, ML

algorithms can be classified into four different classes: 1.) Supervised learning, 2.) unsupervised

learning, 3.) reinforcement learning, and 4.) evolutionary learning. Further, ML algorithms

can deal with different types of problem set-ups such as classification, regression, clustering,

anomaly-detection, and reinforcement learning (Alzubi et al., 2018). In this thesis, supervised

learning is applied to solve a classification problem. Therefore, this is going to be explained in
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more detail.

The basic principle of supervised learning is that the algorithm learns with a set of examples

(training data), where the correct response is provided. In other words, each time the algorithm

generates a response, this response is compared to the true response provided in the input data

set, thereby determining the effectiveness of the actions taken by the algorithm. An interesting

thing to notice is that if the algorithm would be fed with all possible combinations of input

features, the algorithm would simply be an extensive look-up table. However, what distinguishes

a machine learning algorithm from a look-up table is that the algorithm is able to produce correct

outputs for inputs it has not encountered during the learning process. In other words, after

learning from a given data set, the algorithm is ideally able to correctly solve the problem for

a new, unseen dataset, with new, unseen input combinations. This is called generalization. In

classification problems, each data point belongs to exactly one class, and the set of classes build

up the whole possible output space. Hence the algorithm is trained to identify to which of the

classes a data point belongs.

Machine learning tasks are usually solved by following the same set of steps: 1.) Data collection

and feature selection, 2.) algorithm choice and parameter selection, and 3.) training and

verification. An overview over how those steps are implemented in this thesis is provided in

Chapter 4. In the following, an overview is given over the Random Forest algorithm, which is

applied in this thesis to predict backcountry skiing activity.

2.5.1 Random Forest

Random forest (RF) is an ensemble learning method that solves different types of problems

based on the principle of a decision tree (DT). In the example of a classification problem,

the DT classifies a data point (consisting of several input features) using questions about the

attributes of the data item. The series of questions form a hierarchical tree, in which each

node in the tree represents a question, and each child-node represents a possible answer to

the question. An example of a decision tree is provided in Figure 2.2. To determine the best

possible question (usually referred to as split) on a specific node, a measure quantifying the

effectiveness of the split is required. The most common measure is the GINI impurity index,

which quantifies the level of purity within each child-node. It reaches its maximum value when

all training data points within one node belong to a single class, denoting a purity of 100%.

A tree is generated by optimizing each node split in terms of purity of the child-nodes. The

data point gets classified by following the tree from the top-node to a leave-node (terminal

child-node), which represents one class of the classification (Kingsford and Salzberg, 2008).

The idea of ensemble learning is that by combining lots of different learners, the result will

get better than by using just one single learner. Because each tree is trained with slightly

different data, it will produce slightly different results. A set of decision trees put together form

a random forest. Every data point is run through all decision trees of a random forest, resulting

in n classifications of n different trees. Ultimately, the data point gets assigned to the class

for which most of the DTs voted (Marsland, 2015). To avoid correlation between the different
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decision trees, RF uses a technique called “bagging”. This is where the randomness is introduced

into the forest. Bagging means that each DT is trained with a randomly resampled training set.

Additionally, for each node in a DT, a randomly selected set of attributes is used. This achieves

more stable classification results, which are more robust to slight variations in the input data.

Due to the Law of Large Numbers, RFs do not overfit, therefore the number of uncorrelated

DTs can be increased for as long as the generalization error decreases (and longer, but this

would not be sensible), in order to increase the accuracy (Breiman, 2001; Rodriguez-Galiano

et al., 2015). Advantages of the RF algorithm are that it can deal with any data type. Further,

it produces robust outputs, even for smaller datasets. Because the classification is based on

decision trees, it is, in comparison to some other ML algorithms, relatively comprehensible how

the algorithm classifies the data, as opposed to the black-box-nature of e.g., neural networks.

Further, due to the bagging, the algorithm can calculate the accuracy on-the-go, by applying

each of the decision trees to all the training data samples that have not been used for the given

tree. This is called Out-Of-Bag (OOB) accuracy, respecitvely Out-of-Bag error. Also, since the

different trees work independently, the random forest can run on as many different processors

as available, which speeds up computational time almost linearly (Marsland, 2015).

Does the skier ski on 

prepared slopes?

D
Does the skier ascend 

under their own power?
Resort - Skier

yesno

yesno

Backcountry - SkierOff-Piste - Skier

What type of skier?

Figure 2.2: Example of a decision tree to categorize a skier. Black boxes show node splits, while
coloured ovals show terminal nodes. The black oval at the top indicates the data input into the decision
tree.

2.5.2 Imbalanced Data

A dataset is technically considered imbalanced when the distribution among its classes is un-

equal. Even though there may well be more than two classes, this section focuses on data with

only two classes. In the machine learning domain, a dataset is considered imbalanced when it
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exhibits a severe imbalance in the order of 1:100 or higher. However, even when dealing with

datasets that have imbalances smaller than 1:100, it is worthwhile to examine some of the issues

that can arise due to the imbalance.

In a two-class classification setting, data imbalance leads to the presence of a majority class

and a minority class. It has to be mentioned that the class imbalance does not necessarily have

to be inherent to the nature of the phenomenon, but can also be a result of data collection,

storage or time restrictions. Data that is imbalanced due to external factors is called extrinsic

imbalance, which stands in contrast to intrinsic imbalance (He and Garcia, 2009).

The basic problem of imbalanced learning is that traditional machine learning algorithms often

assume that the distribution among classes is balanced. When fed with imbalanced data, most

algorithms fail to yield equally good performance in both the minority and the majority class

(Krawczyk, 2016). Usually, the majority class reaches a high degree of accuracy, often near

100%, while the minority class remains undiscovered, ignored or assumed to be noise or out-

liers, which results in a low degree of accuracy (Ali et al., 2015). Unluckily, the minority class

is often more important than the majority class, as imbalanced datasets often occur in domains

like fraud detection (Makki et al., 2019), anomaly detection (Jiang et al., 2019) or medical diag-

nosis (Fotouhi et al., 2019). Misclassification in the minority class, for instance failing to detect

cancer or fraud, are often more costly and severe compared to misclassification in the majority

class. The wide range of applications and domains, where imbalanced data occurs, calls for solu-

tions. Krawczyk (2016) summarises two main approaches to tackle the class imbalance problem:

1) Data-Level Methods

Methods that operate on the data-level make the data suitable for standard learning

algorithms. The general goal is to balance the distribution by either oversampling the

minority class or undersampling the majority class. The problem with this approach

is that there is a possibility that either important information gets lost, or meaningless

information is amplified (e.g., Chawla et al., 2002).

2) Algorithm-Level Methods

This approach focuses on the modification of existing algorithms to reduce the bias in

imbalanced data settings. This can be achieved by penalizing errors differently, based on

the class they belong to. This is called cost-sensitive learning. By assigning higher costs

(or weights) to minority class errors, the bias towards the majority class can be alleviated

(e.g., Zhou and Liu, 2010).

Using a hybrid approach by combining data-level and algorithm-level methods is highly popular

and results in robust and efficient learners (Krawczyk, 2016; Krawczyk et al., 2014).

Not only learning, but also verification and performance assessment can be challenging with

imbalanced datasets. While accuracy can be an adequate metric for balanced classes, it is less

suitable for imbalanced classes. Accuracy can be defined as the ratio of all correct responses to

the total amount of responses an algorithm produces. Consequently, it is inverse to the overall
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error. In an imbalanced setting, the accuracy will be strongly influenced by the majority class,

while the effect of the minority class goes unnoticed. The algorithm achieves maximum overall

accuracy by always predicting the bigger class (majority class), simply because it outnumbers the

errors in the minority class (Ebert and Milne, 2022). If always the majority class is predicted, the

overall accuracy is high, while the minority class accuracy is low (Ali et al., 2015). A solution for

this is to look at each class separately, by calculating the accuracy for both classes separately

(i.e., sensitivity and specificity). By taking the arithmetic mean of both class accuracies, a

balanced accuracy can be calculated, which is not influenced by class imbalance (Marsland,

2015). However, there are many settings in which balancing the success rate of both classes is

not enough. Consider a tornado prediction or a cancer diagnosis: A false negative error, i.e.,

failing to detect cancer or to predict a tornado, is much more severe than a false positive error.

In this case, balancing the error rate for both classes does not take into account that the errors

in one class are more severe than the errors in the other class. In such cases, the performance

metric must assess the gravity of the different error types and needs to penalize them accordingly

(Ebert and Milne, 2022). It can be concluded, that it is essential to be aware of any potential

class imbalance when training the algorithm, but also when verifying the predictions.
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Chapter 3

Data

3.1 Avalanche Risk Property Dataset

3.1.1 Overview

The core dataset of this thesis is the Avalanche Risk Property Dataset (ARPD) provided by

G. Schmudlach (Schmudlach, 2022a). The dataset was pre-processed before it was utilized in

this thesis. The methods discussed in this section were all carried out by the data owner. Pre-

processing and further methods that were applied in this thesis are described in Section 3.1.3

and Chapter 4.

The ARPD comprises over 8000 GPS trajectories of backcountry ski tracks. Figure 3.1 shows

that the first recorded track dates back to 2005, when only very few individuals were tracking

and submitting their backcountry ski tour. In the following years, an increase in uploaded tracks

can be observed, which is possibly attributed to an increased use of mobile devices capable to

record a GPS track (Bielański et al., 2018; Hendrikx et al., 2022). The number of tracks contin-

ues to rise until 2013, where it stabilizes at approximately 750 tracks per year For the analysis,

seasons before 2013/14 are excluded due to the low number of tracks per season. This leaves

a total number of 6052 tracks that were collected between 2013 and 2021. The trajectories

were resampled in 10-meter intervals, which resulted in a total of 6.5 million transition points.

Each transition point can be assigned to exactly one tour by a unique identifier, each tour

encompasses several hundred transition points. The GPS dataset was intersected with a high-

resolution digital elevation model (DHM) and with the avalanche bulletin for the respective day.

The final dataset has more than 40 attributes, most of them describing terrain or avalanche

conditions. After the calculation of terrain and avalanche attributes for each transition point,

the coordinates have been intentionally obfuscated by the data owner. The obfuscation method

is described in Chapter 3.1.2. A detailed documentation of the attributes and how they were

calculated can be found in the ARPD User Manual (Schmudlach, 2022b).
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The tracks were uploaded from contributors to the platforms Skitourenguru1, Gipfelbuch2 or

Camptocamp3. The data from all three websites is merged, and there is no information on which

track was submitted to which website. According to Techel et al. (2015), camptocamp.org is

mainly used by French- and Italian-speaking recreationists, while gipfelbuch.ch and skitouren-

guru.ch are mainly used by German-speaking users. We must be aware that these two user

groups might show different behaviors, which cannot be quantified as there is no information

on which which tracks were submitted to which website. Additionally, we must be aware of the

participation inequality bias that VGI generally holds, as described in Section 2.4.

Figure 3.1: Distribution of yearly recorded tracks in the ARPD.

3.1.2 Obfuscation

Although the data was originally submitted as trajectories, containing coordinate information,

the data used for this thesis is obfuscated to maintain the privacy of the users. Transitions points

do not have any coordinate information but only a Warning Region Code (WRC), which relates

each point to a certain warning region (See Section 3.3). Therefore, the warning region is the

only location information available for each track. However, plenty of attributes describing the

terrain, for instance elevation, slope angle, and exposition allow the inclusion of the terrain and

the broader spatial context (warning regions) into the analyses even though the exact location

of each point is not provided. To illustrate the structure of the obfuscated data set, an example

is presented in Table 3.1.

1www.skitourenguru.ch

2www.gipfelbuch.ch

3www.camptocamp.org
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Table 3.1: Example of obfuscated ARPD structure.

Identifier Attributes Terrain Attributes

Coordinates Track-ID WRC Elevation Slope Aspect . . .

(x/y) [m a.s.l.] [°] [°]

obfuscated 234 1245 1911 32 97 . . .

obfuscated 234 1245 1924 35 95.5 . . .

3.1.3 Pre-Processing

For the further analysis, the ARPD is aggregated at the track level, resulting in a single data

point for each backcountry ski track1. After this aggregation, each track consists of the following

information and terrain attributes:

Information Terrain

• ID • Mean track elevation

• Date • Raw danger level

• Year

• Weekday

• Warning region code (see 3.3)

A few tracks span two or more warning regions, as they took place at the borders of warning

regions. This leads to multiple raw danger level (RDL) values corresponding to each warning

region. To resolve this issue, only the warning region in which most of the track points were

recorded (i.e., the statistical mode) was used. This means that the RDL value associated with

the region in which most of the track is spent in is used as the representative danger level for

the entire track

3.2 Raw Danger Level

The avalanche danger in Switzerland is described with a five-level danger scale ranging from

low (1) to very high (5). This danger scale is consistent with the European Avalanche Warning

Services (EAWS) (EAWS, 2023), and is referred to as raw danger level (RDL) in this thesis. It

includes the following levels:

1Backcountry ski tours and backcountry ski tracks are two different terms that essentially describe the same act.
However, track is used in a more technical sense, emphasizing on the GPS-tracking, while the tour denotes the
act of backcountry skiing itself and is not necessarily related to GPS-tracking.
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1 - Low

2 - Moderate

3 - Considerable

4 - High

5 - Very High

The basic principle is that with increasing RDL, there is an increase in terms of release prob-

ability, the density of potential triggering spots and the potential avalanche size (Schweizer

et al., 2020; Winkler et al., 2021). Techel et al. (2022) claim that the five-level danger scale

for avalanches is a strong simplification of a continuous, multi-dimensional feature, especially,

since the avalanche danger does not increase linearly, but exponentially with increasing danger

level. They show that avalanche danger can be more effectively assessed with a refined danger

level, which was implemented into the Swiss avalanche bulletin in 2022. The newly introduced

sub-levels give information on whether the avalanche danger is towards the bottom end (–), in

the middle (=), or towards the top end (+) of the forecast level (Heggli, 2022; Techel et al.,

2022). However, to make the raw danger level consistent throughout all seasons analyzed in

this thesis, only the RDL, but not the refined danger level is used.

The RDL is included in the avalanche bulletin, which gets published every day at 5 pm in the

winter season and is valid for 24 hours. In late spring and early fall, the bulletin gets pub-

lished sporadically, according to the snow conditions. Besides the RDL, the bulletin includes

the following sections (SLF, 2023a):

• Dangerous terrain in terms of elevation and exposition

• Avalanche problems

• A qualitative description of the avalanche danger

• Information about the snowpack

• Weather and measurements

• Recommendation for behavior in the terrain

However, as most of this information is provided in text form, only the RDL is used for the

analysis.

3.3 Warning Regions

The Warning Regions (WR), shown in Figure 3.2, are the smallest spatial units used to com-

municate avalanche danger by the avalanche forecasting service in Switzerland. Each warning

region is identified by a unique warning region code (WRC), where the first digit of the WRC

assigns each warning region to a greater climatic region. It is important to acknowledge that in

reality, the borders between regions are not discrete but rather represent a gradual transition

zone. This implies that there may be some degree of overlap or ambiguity in their delineation

and respectively in the avalanche danger level assigned to each region. However, since the ARPD
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is obfuscated, we cannot assess the proximity of a given track to the border of the respective

warning region. Therefore, the analysis is done on the spatial level of the warning regions,

without taking into consideration neighboring warning regions.

After pre-processing the backcountry ski tracks, each track is assigned exactly one WR. In total,

there are 149 WRs (Figure 3.2a). The 149 WRs are divided into nine greater climatic regions.

The greater regions “8 – Jura” and “9 – Mittelland” are excluded because the focus lies on

Alpine regions as a vast majority of tracks take place there (Figure 3.2b). This leaves a total of

128 Alpine warning regions, with an average size of 200 km2, located in seven greater climatic

regions. Of the total number of 6052 tracks (2013 – 2021), only 38 tracks lie in the regions

“Mittelland” and “Jura” and are therefore excluded, leaving a total of 6014 tracks for further

analysis (Table 3.2).

a. b. 

Figure 3.2: a. Warning regions, the smallest spatial units used to communicate avalanche danger in the
avalanche forecasts in Switzerland. Each warning region is labelled with its warning region code (WRC).
b. Greater climatic regions as defined by the first digit of the WRC. 1 – Westlicher Alpennordhang, 2
– Zentraler Alpennordhang, 3 – Östliche Alpennordhang, 4 – Wallis, 5 – Nord- und Mittelbünden, 6 –
Zentraler Alpensüdhang, 7 – Engadin/ östlicher Alpensüdhang. Regions 8 – Jura and 9 – Mittelland are
excluded. All warning regions, including names, can be found in Appendix A.

Table 3.2: Number of tracks used for the analysis.

Total tracks (2007 – 2021) 8668

Tracks since 2013/14 6052

Tracks since 2013/14

“Mittelland” and “Jura” excluded

6014
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3.4 Weather Data

The weather data used in this thesis is provided by MeteoSwiss1. Even though the weather

forecast rather than the actual weather measurement might determine the skiing activity, mea-

surement data is used in this thesis due to simplicity and accessibility of the data. In Europe,

while occasionally poor to medium-range accuracies may arise in weather forecasting, the over-

all accuracy remains high. Studies indicate that the correlation scores between forecasted and

actual weather typically fluctuate around 80% (Rodwell et al., 2013). It is therefore assumed

that the weather forecast of the evening before has a sufficiently high correlation with the ob-

served conditions on the following day, which justifies the choice of the measurement data. The

meteorological variables that will be used are temperature, relative sunshine duration, and pre-

cipitation. Wind data is not included in the analysis, as it would be too complex to analyze, and

there is no access to data that captures the influence of wind in a meaningful spatial resolution.

The meteorological variables were measured at the operational station network SwissMetNet

(Figure 3.3) and further interpolated on a 1 km grid (Figure 3.4). An overview over the used

variables is given in the next sections. A detailed documentation of each variable can be found

in the documentation of MeteoSwiss Spatial Climate Analyses (MeteoSwiss, 2021e). All data is

provided in a netCDF (Network Common Data Form) format, which is a standard format for

grid-based climate data.

Figure 3.3: Operational station network SwissMetNet, which comprises approximately 160 auto-
matic measuring stations, including approximately 100 automatic precipitation measurement stations.
Basemap: swissopo.

1www.meteoschweiz.admin.ch
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Figure 3.4: Example data showing the interpolated, gridded meteorological variables used in this thesis,
with a spatial resolution of 1 km. a. Temperature, b. Precipitation, and c. Relative sunshine duration
for January 11, 2015. In b., ray-like structures are visible, which are artefacts of the RADAR image.
Coordinates correspond to the Swiss Grid LV95.

3.4.1 Air Temperature

The daily mean air temperature 2 m above ground level is used for the analysis (MeteoSwiss,

2021a). For this data product, a deterministic analysis method has been employed, which specif-

ically addresses challenges in high mountain interpolation, such as the non-linear temperature

variations with topographic height and marked horizontal gradients. Nevertheless, interpolation

inaccuracy is highest in Alpine regions and in the winter season, with a mean absolute error

of 1.5°C. Large errors occur in inner Alpine valleys (up to 4°C), as those valleys are typical

cold-pool environments, and the temperature gets systematically over-estimated (Frei, 2014).

However, since backcountry ski tours usually do not take place in the valleys, this is not assumed

to impact the analysis.

3.4.2 Relative Sunshine Duration

For the sunshine duration, the relative sunshine duration data product is used (MeteoSwiss,

2021c). The relative sunshine duration (Srel) is the ratio between the effective sunshine duration

and the maximal possile sunshine duration with clear sky conditions determined for each calen-

dar day. A sunshine period is defined as a period, where the direct solar irradiation exceeds 200

W/m2. Srel is calculated using a statistical technique, which combines station measurements

with high-resolution satellite-based clearness indexes. The median of the mean absolute error

over a 10-year cross validation period is 10% for winter days, with an interquartile range of 6% -

14% (Frei et al., 2015). A relative, rather than an absolute measure, such as total irradiation, is

chosen, because seasonal variations are filtered out in the relative sunshine duration calculation.

This makes it easy to compare backcountry ski tracks that were recorded in different seasons.

3.4.3 Precipitation

CombiPrecip is a grid-based data product provided by MeteoSchweiz and is used as an approxi-

mation for precipitation in this thesis (MeteoSwiss, 2021d). CombiPrecip provides precipitation
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fields, which are a geospatial combination of raingauge measurements and RADAR estimates.

Detailed documentation of the interpolation and combination process can be found in the doc-

umentation of the CombiPrecip data product (MeteoSwiss, 2021e). The spatial resolution is 1

km2 and the temporal resolution is 1 hour. The hourly rather than the daily precipitation sum

is used because most backcountry ski tours take place in the early morning. There are four days

within the observed period of 8 years, where no CombiPrecip data is available. For those days,

the daily precipitation sums are used to fill the gaps (MeteoSwiss, 2021b).

3.5 Digital Elevation Model

For the analysis, a digital elevation (height) model (DHM) with a 200 m spatial resolution

was used. It originates from the DHM25 provided by the Federal Office of Topography, which

is a raster-based elevation model of Switzerland with a 25 m spatial resolution (Swisstopo,

2005). The DHM25 is derived from the height information of “Landeskarte 1:25’000” (LK25),

a national map of Switzerland. The mean accuracy of the DHM25 ranges from ±2 m to ±3 m

in the Alpine region. The 200 m resolution of the DHM is used in this thesis rather than the

finer 25 m resolution. The elevation information does not require a high level of precision, as it

will be only used to specify a broader elevation band for each track. By opting for the 200 m

resolution, a balance was achieved between computational efficiency and the accuracy required

for the analysis.
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Chapter 4

Methods

This chapter provides a detailed overview over the methods applied in this thesis. Since the goal

of the thesis is to model and predict backcountry skiing activity, it is important to understand

the conceptual idea behind the modelling process in order to follow the structure of this chapter.

The conceptual background of the model is therefore introduced at the beginning of this chapter

(Section 4.2). In Section 4.3, the generation of absence data is described, followed by the data

enrichment of both presence and absence data in Section 4.4. Section 4.5 ultimately explains

the modelling process in detail. A visual overview over the modelling process is provided in

Figure 4.1.

Freetime
weekend vs. weekday
holiday vs. no holiday

Weather
relative sunshine duration, 
precipitation, temperature

Avalanche 
Condit ions
raw danger level

Day of the Season
days since 1. November

Popular ity
total track density per 

warning region

Supervised 
Random Forest 

Act ivity
Presence, Absence

Absence (generated)

wr dat e act i v i t y ...

15 2021- 02- 27 0 ...

xy . . . 0 ...

Presence (ARPD)

wr dat e act i v i t y ...

15 2021- 03- 15 1 ...

xy . . . 1 ...

Data with 
target 

var iable 
(3.2, 4.2)

Feature 
Calculat ion 

(4.3)
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(4.4)
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Figure 4.1: Methodology of modelling and prediction. Numbers in brackets indicate the section in
which the respective part of the process is discussed.
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4.1 Software

All analyses described in Chapter 4 were performed using R version 4.2.21 and R Studio version

2022.12.0+3532. A list of the relevant R-packages used for the analyses is provided in Table

4.1. The notation for R-packages and -functions used in this thesis is package::function(),

which indicates that function() is implemented (::) in package. The majority of visualizations

are created with R and RStudio, however, some visualizations are produced with ArcGIS Pro

version 2.9.63.

Table 4.1: Most important R Packages with description and reference.

R-Package Usage Reference

BAMMtools Natural Breaks Algorithm Rabosky et al., 2014

caret Random Forest Utilities Kuhn, 2022

dplyr Data Manipulation Wickham, François, et al., 2023

exactextractr Fast Raster Value Extraction Baston, 2022

ggplot2 Visualization Wickham, 2016

hydroTSM Hypsometry Calculation Zambrano-Bigiarini, 2020

lubridate Date-Time Transformations Grolemund and Wickham, 2011

ncdf4 netCDF Manipulation Pierce, 2023

randomForest Random Forest Algorithm Liaw and Wiener, 2002

raster Raster Manipulation Hijmans, 2023a

rgdal Spatial Data Manipulation Bivand et al., 2023

sf Spatial Data Manipulation Pebesma, 2018

terra Spatial Data Analysis Hijmans, 2023b

tidyr Data Manipulation Wickham, Vaughan, et al., 2023

4.2 Modelling Backcountry Skiing Activity - Conceptual Back-

ground

The core dataset used to model backcountry skiing activity is the ARPD, which is described in

Section 3.1. Because the data is obfuscated, therefore containing no exact location information,

the spatial units of the predictions are the warning regions introduced in Section 3.3. The

backcountry skiing activity has a daily resolution, hence the goal is to predict the activity per

warning region and day. The 6014 backcountry ski tracks span over eight winter seasons and

125 warning regions. Hence, in a majority of warning regions, no more than five tracks were

1www.r-project.org

2www.rstudio.com

3www.esri.com
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recorded each season. Accordingly, it rarely occurs that more than one track is recorded in a

warning region on a specific day. This suggests that a multi-level daily prediction of the activity,

e.g., ranging from “low activity” to “high activity”, is not possible for this type and quantity

of data. For this reason, the target variable is treated as a binary variable, where 1 indicates

activity (i.e., presence) and 0 indicates no activity (i.e., absence). The basic assumption for

this approach is that there is backcountry skiing activity when at least one track is recorded.

Consequently, all tracks in the ARPD serve as and are in the remainder of this thesis referred to

as presence data or presence tracks. Owing to this methodology, the counterpart to the presence

data, the absence data, needs to be generated since there exists no data providing evidence that

there are no backcountry recreationists in the field. Therefore, an absence track is generated

for each warning region and day where no track was recorded. The underlying premise is that

the absence of data indicates the absence of individuals in the field, which indicates that there

is no backcountry skiing activity (i.e., absence of evidence = evidence of absence). It must be

noted that, following this methodology, there is no more than one absence track per day and

warning region. On the other hand, in the presence data there is no such restriction, leading to

some days where more than one track is recorded in the same warning region. However, since

the absence data is generally much more abundant than the presence data, no duplicates are

generated for the absence data.

For both the presence and the absence data, the same set of features (independent variables1)

is calculated, which is used to predict the activity (target variable). The presence and absence

data2 together form the training data, which is further used in a supervised machine learning

approach to predict backcountry skiing activity.

4.3 Generation of Absence Data

To create the absence data, all possible date – warning region pairs are generated. Spanning

over 125 warning regions and eight winter seasons, this results in a total of 180’500 date –

warning region combinations. No absence tracks were generated for the three warning regions,

in which no track was recorded during any of the eight seasons and therefore a prediction is

not possible. These warning regions are “1122 - Gruyère”, “4241 - Reckingen”, and “5215 -

Val Sumvitg”. Furthermore, summer months between May 15 and November 15 are excluded.

In a second step, all date – warning region combinations that already exist in the ARPD are

excluded, leaving a total of 176’571 absence tracks. Consequently, the ratio between absence

and presence data is approximately 30:1.

Every presence track is associated with terrain information, such as the elevation, from which an

approximate location in the WR can be inferred. Naturally, absence tracks contain no terrain

1Hereafter, features and (independent) variables are used interchangeably.

2Hereafter, presence (respectively absence) data and presence (respectively absence) tracks are synonymous and
used interchangeably.
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information, as they never took place. Therefore, every absence track requires an artificially

generated reference elevation, which is used to join the meteorological variables to the absence

tracks. This artificially created elevation is further referred to as reference elevation. The

reference elevation is not generated randomly but depends on 1.) the warning region and 2.)

the existing tracks in this specific warning region. To assess the topographic features of each

warning region, a hypsometric curve is calculated for each warning region, using the DHM. The

hypsometric curve shows the cumulative elevation frequency for a given region. Existing tracks

(presence tracks) are plotted on the hypsometric curve to reveal in which elevation backcountry

ski tours usually take place in this region.

In Figure 4.2 two representative examples of hypsometric curves are given, which indicate that

backcountry ski tours are often concentrated in a narrow elevation band specific to the warning

region. It also shows that in generally lower elevated warning regions, backcountry ski tours

often take place in the higher elevations of the regions (Figure 4.2b), whereas in higher elevated

regions, backcountry ski tours can (but do not necessarily have to) take place in mid-range

elevations (Figure 4.2a). This illustrates that it is critical to consider the presence tracks to

generate a reference elevation for the absence tracks rather than taking for example the mean

elevation of the warning region, or even a random value. An elevation belt is defined for every

warning region, which spans from the 5% percentile to the 95% percentile of all tracks recorded

in this warning region. Every absence track is assigned a random reference elevation that lies

in the elevation belt of the respective warning region. An example that shows the artificially

generated elevation of absence tracks compared to the elevation of real tracks is given in Figure

4.3.

After generating and processing the absence data, both presence and absence data is structured

in the same way (Table 4.2), so that they can be enriched with additional features.
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a. 

b. 

Figure 4.2: Examples of hypsometric curves for the warning regions a. 4232 – Südliches Simplon Gebiet
and b. 2132 – Ybrig. To make different warning regions comparable, axes show the relative elevation (y)
and area above respective elevation (x), rather than absolute values. Warning region specific information
is provided in the top right corner. Red dots indicate the mean elevation of existing tracks. For better
readability, only a sample of all tracks in these regions is displayed.
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Figure 4.3: Hypsometric curve of warning region 1225 – Iffigen showing the mean elevation of presence
tracks (red dots) and artificially generated elevation of absence tracks (blue triangles). To make different
warning regions comparable, axes show the relative elevation (y) and the relative area above respective
elevation (x), rather than absolute values. Warning region-specific information is provided in the top
right corner. For better readability, only a sample of both groups is displayed.

Table 4.2: Example structure of presence and absence data before data enrichment with other attributes.

Date WRC Reference

Elevation

Other

Attributes

Activity

2019-01-23 1245 1934 . . . presence

2019-03-02 1222 2120 . . . absence

4.4 Data Enrichment with Predictor Variables

This section illustrates how both presence and absence data is enriched with additional features

that are later used to predict backcountry skiing activity. Meteorological features are described

in Section 4.4.1. In the following, popularity (4.4.2), raw danger level (4.4.3), holiday (4.4.4)

and day of the season (4.4.5) are discussed. The raw danger level is already present in the

presence data, therefore, Section 4.4.3 is only relevant for the absence data.
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4.4.1 Meteorological Features

This section gives an overview over the meteorological variables. Essentially, they are all calcu-

lated using the same procedure. However, since precipitation, unlike temperature and Srel, has a

temporal resolution of 1 hour, some additional steps at the beginning are necessary. Therefore,

this section is divided into the subsections “Precipitation” and “All Variables”.

Precipitation

For precipitation, two data sources are available: CombiPrecip and the daily precipitation sum

(Section 3.4.3). Because most backcountry ski tours take place in the morning between 7 am and

12 pm, it is crucial to differentiate between morning precipitation and the daily precipitation.

This is particularly important on days where the weather in the morning is clear but there is

a substantial amount of precipitation later in the day. Because the CombiPrecip data provides

hourly temporal resolution, it is chosen over the daily precipitation sums. Daily precipitation

sums are only employed on the few days, where CombiPrecip data is missing. On those days,

only minimal or no precipitation at all occurred. Under these circumstances, the daily estimates

are assumed to adequately represent the morning precipitation.

To calculate the precipitation in the morning, precipitation rasters for each time step between 7

am and 12 pm are summed up for each day. This results in only one raster per day, representing

the morning precipitation. For the other meteorological variables (temperature and Srel), only

daily measurements are available, making a differentiation between the morning and the whole

day impossible. Therefore, for both temperature and sunshine duration, a daily average is used.

All Variables

Every track is enriched with three meteorological variables: Air temperature, precipitation, and

relative sunshine duration. Exact locations of tracks are obfuscated, which makes it impossible

to make an exact, location-based join of meteorological data. The only geographic reference

is the warning region and the mean elevation (artificial reference elevation) for the presence

(absence) tracks. Precipitation and temperature are meteorological features known to change

with topographic height (Spreafico and Weingartner, 2005). The relationship between sunshine

duration and altitude is not always straightforward, yet there are certain situations where there

is clearly a strong variation with altitude. For example, in the presence of fog or low stratus,

which is a common meteorological situation in Switzerland in the wintertime, Srel can be reduced

to 0% at ground level but might be near 100% above the stratus clouds or fog (Scherrer and

Appenzeller, 2014). It becomes evident that for meteorological variables, not all locations in the

warning regions are equally representative of a track that takes place in a specific elevation range.

Particularly in the Alps elevation varies greatly, even at small distances. It is therefore crucial

to take the elevation into account to ensure that meteorological attributes are representative of

the track. To achieve this, meteorological attributes are calculated based on grid points lying

in an elevation band ± 100 m of the mean elevation (artificially generated elevation) of the

presence (absence) data within the respective warning region. This is done by applying the
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procedure outlined in Figure 4.4 to all three variables.

 
1. Exclude all DHM raster cells 

outside elevation belt ± 100 m 

of mean elevation. 

2. Load meteorological variable 

for respective day and region.  

3. Exclude all meteorological 

raster cells outside elevation 

belt and calculate mean. 

 

a. DHM masked by warning 

region polygon. 

b. DHM raster cells of track 
elevation belt. 

c. Precipitation raster masked by 

warning region, overlayed with 

elevation belt. 

d. Precipitation raster cells masked 

by track elevation belt. 

a. b. 

c. d. 

Figure 4.4: Procedure to calculate meteorological variables for a given track on the example of Srel.
Procedure is repeated for every track and meteorologic variable (Temperature, Precipitation, Srel). a. -
d. show different states of the calculation, 1. - 3. indicate different processes.

Figure 4.4 can be summarized in three steps:

1. A 200 m resolution DHM is masked with the polygon of the warning region (Figure 4.4a).

2. All raster cells that do not fall within the 200-m elevation belt around the mean track

elevation are excluded (Figure 4.4b).

3. The remaining raster cells are polygonised and used as a mask for the meteorological input

variable (Figures 4.4b & d), which is precipitation in the example of Figure 4.4.

Step 3 is carried out using the function raster::mask(), which masks a raster (the meteorological

variable) with a polygon (the polygonised elevation belt). In this function, a raster cell is only

considered to be inside a polygon when the center of the cell lies inside the polygon. This

can cause problems, when the raster and the DHM, which is used to create the elevation belt

polygon, have different spatial resolutions. When a 1 km raster cell is overlayed by polygons

emerging from a 200 m raster, most of the 1 km raster cells will not be masked by the polygon,

even though the polygon touches the raster cell (Figure 4.5a). One solution to this problem is to

use a DHM with the same resolution as the meteorologic input variable (1 km). However, this

leads to an oversimplification of the topography and consequently the elevation belt (Figure

4.5b). Therefore, an intermediate step is required, in which the raster of the meteorological

variable is resampled to match the spatial resolution of the DHM (200 m). Visually, the pattern

does not change, but each 1 km raster cell is replaced by 5 x 5 raster cells with a spatial

resolution of 200 m. The resampled cells masked by the elevation belt (Figure 4.5c) are further

used to calculate a mean value that is representative of the track.
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a. 

b. 

c. 

Figure 4.5: Application of raster::mask() with different spatial resolutions of Srel [%] (colour) and
DHM25. The black cells show the polygonized, track-specific elevation belt emerging from DHM25 for
an example track. Figures on the left show the Srel raster of the whole warning region overlayed with
the elevation belt, figures on the right show the raster cells of Srel selected by the raster::mask() function
overlayed with the elevation belt. a. Srel: 1 km, DHM: 200 m. b. Srel: 1 km, DHM: 1 km. c. Srel: 200
m, DHM: 200 m.

4.4.2 Popularity

Techel et al. (2015) found that backcountry skiing is a spatially variable phenomenon, often

concentrated near population centers. The proximity to a population center, often associated

with accessibility, impacts the popularity of a region, which in turn influences the activity. The

popularity is therefore an important, time-independent factor that needs to be considered. The

basic principle to assess the popularity of a warning region is that a higher overall track density

indicates higher popularity. The track density is calculated for each warning region, using all

tracks within the eight-year period of the analysis. Track density values are further classified

into five groups, using the Jenks natural breaks algorithm (BAMMtools::getJenksBreaks()).

Figure 4.6 shows the density curve as well as the histrogram of the five different popularity

classes. Class 5 is the least popular and at the same time the biggest class, while class 1 is

the most popualar but smallest class. Only 3% or 4 regions out of all warning regions fall into

class 1, while 50% fall into class 5. This shows that tracks are highly concentrated in only

a few warning regions. In Figure 4.7 it is visible that populartiy is to some degree spatially

autocorrelated. Popularity hotspots are among others the Engadin valley around St. Moritz,

parts of southern Valais including Zermatt and Gstaad, the central Alps including the Gotthard

area, and southern Ticino around Lugano. All those hotspots are popular touristic regions
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offering good accessibility and infrastructure, which is a possible explanation for the high track

density. Less popular regions are situated at the northern Pre-Alps and generally the western

Alps.

a. b.

Figure 4.6: a. Histogram of warning region track densities. Each black horizontal line represents one
warning region. Track densities are calculated based on all recorded tracks from season 2013/14 to season
2020/21. A smoothed density curve is indicated in black. b. popularity classification into five classes
based on track density, ranging from 1 = high popularity to 5 = low popularity. The fraction of warning
regions in the respective class is indicated on top of every column.

Gstaad

Zermatt

Gotthard

Lugano

St. Moritz

Figure 4.7: Spatial distribution of popularity classes of Alpine warning regions in Switzerland. Popu-
larity ranges from “1 = high popularity” to “5 = low popularity”. Touristic hotspots are displayed in
blue. In three regions, no track was recorded in the observation period, therefore no value was calculated
(indicated by NA). All warning regions, including names, can be found in Appendix A.
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4.4.3 Raw Danger Level

The raw danger level was already added to the ARPD by the data owner. Therefore, only the

absence data needs to be enriched with RDL. For this, the avalanche bulletin1 data provided

by the WSL Institute for Snow and Avalanche Research SLF is used (F. Techel, personal com-

munication, January 31, 2023). In lower elevated regions at the northern and southern edge of

the Alps there are days in the beginning and the end of the season, but at times also during the

season, where there is none or very few snow. On those days, no avalanche bulletin is issued,

which leads to many days without a RDL value in the absence data. In the presence data as

well there are a few days with no RDL value. In the R programming environment, no data

is represented by NA, which is an abbreviation for “not applicable”. In the remainder of this

thesis, NA is used to indicate no data values. How the NA values are further dealt with in

the modelling process is described in Section 4.5. An overview over NA-values in presence and

absence data is provided in Table 4.3.

Table 4.3: Overview over presence and absence data.

Presence Tracks 6014

Presence tracks with RDL = NA 7 (0.1%)

Absence Tracks 176’571

Absence tracks with RDL = NA 25’514 (14%)

4.4.4 Holiday

Holidays were queried through the Date.Nager API2, which provides holiday dates of over 100

countries. Included are the following Swiss holidays:

Weihnachten (25.12) Stephanstag (26.1) Neujahr (1.1) Berchtoldstag (2.1)

Karfreitag Ostersamstag Ostersonntag Ostermontag

Tag der Arbeit (1.5) Auffahrt Auffahrtsbrücke Pfingstsamstag

Pfingsonntag Pfingstmontag

Holidays in italics are unofficial holidays that are adjacent to official holidays. They are either

weekends, or workdays used as a “Brückentag”, which is a day between a weekend and a holiday

that many people like to take off for an extended weekend. It has to be noted, that all holidays

except for the Swiss national day (August 1) are regulated on a Cantonal3 level. Therefore,

1www.slf.ch/en/avalanche-bulletin-and-snow-situation/about-the-avalanche-bulletin.html

2https://date.nager.at/api

3Cantons are the political entities that form the Swiss Confederation. In total, there are 26 Cantons in Switzer-
land.
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the holidays used in this thesis do not necessarily apply to all Cantons. The holidays used in

this thesis are among the most popular in all Cantons. However, there are possibly holidays

that are not included but might be important in specific Cantons, especially since religious

denominations differ among Cantons.

4.4.5 Day of the Season / Season

The “day of the season” feature is an indicator of how advanced the season is. It is calculated as

days since November 1 of each season. The values span from day 1 (beginning of season) up to

day 200 (end of season). In other words, it is a date attribute without the year component and

with a different starting date. This transformation of the date makes the temporal component

of tracks of different seasons comparable. Additionally, a season attribute is included, which

assigns each track to the season it took place in. This is done to see how (dis)similar the different

seasons are, but is not included in the final model. A high influence of the season attribute on

the prediction outcome would suggest that there are critical differences among seasons.

4.5 Model Building

This section is structured as follows: In the beginning, an overview over target variable and

features is given (Section 4.5.1). Further, two different approaches to improve the model are

discussed: 1.) A data-specific approach (how is the data implemented?) (Section 4.5.2) and

2.) an algorithm-specific approach (how is the algorithm implemented?) (Section 4.5.3). In the

last section (Section 4.5.4), the verification process is explained and discussed.

4.5.1 Target Variable and Features

To predict backcountry skiing activity a supervised random forest algorithm is applied. The

target variable is further referred to as the activity variable: “Presence” indicates that the data

point belongs to the presence data and therefore indicates activity, while “absence” indicates

no activity. Table 4.4 gives an overview over the features used to predict the target variable.

Some features are implemented in different ways, which is indicated by Implementation 1 and

Implementation 2. The different implementations are more closely discussed in the next section.
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Table 4.4: Target variable and predictors (i.e., dependent variables or features) with different data-
specific implementations for modelling.

Target variable Feature Implementation 1 Implementation 2

Activity

Weekday Nominal (7 levels), one

hot encoded

Nominal (binary)

Meteorological features Ordinal (classed) Numeric (continuous)

Day of the season Ordinal (classed) Numeric (integer)

Raw Danger Level Ordinal, NAs excluded Ordinal, NAs set to 0

Precipitation CombiPrecip-NAs

excluded

CombiPrecip-NAs

enriched with daily

precipitation

Holiday Nominal (binary) -

Popularity Ordinal -

Warning Region Numeric (integer) -

4.5.2 Data-Specific Adjustments

Predictor variables (features) vary in in their scale of measurement as well as in their number of

categories. Meteorological features are continuous, while most other features are either ordinal

or nominal. Some features are binary (e.g., holiday), while others can take on 200 different

values (day of the season). Strobl et al. (2007) pointed out, that this type of data can lead

to a bias in the variable importance measures of the random forest algorithm. Therefore,

in one implementation some features are transformed to equalize the number of categories

among features. For features in which there is no relationship among the different categories

(i.e., nominal features), one hot encoding is applied. One hot encoding creates a new feature

from every category of a categorical feature. The new features are binary representations of

the categories of the old feature. It is usually applied for algorithms, which cannot directly

deal with categorical, text-based features, as it transforms features from text-based to numeric

features (Dahouda and Joe, 2021). However, since random forests can deal with text-based data,

one hot encoding is used as a way to reduce and thus equalize the number of categories among

features. In the first implementation, numeric features (precipitation, relative sunshine duration,

temperature, and day of the season) are classified into different categories based on the Jenks

natural breaks algorithm (Table 4.5). This allows the transformation from numeric to categorical

features and simultaneously the reduction of categories. In the second implementation, they

are treated as continuous numbers (meteorological features) or integers (day of the season). It

has to be noted that the warning region code and the day of the season are implemented as an
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integers, since random forests cannot handle categorical features with more than 100 categories.

Table 4.5: Feature discretization into classes.

Feature Range Class

Relative Sunshine
Duration

0 – 27% 3

28 - 71% 2

72 - 100% 1

Precipitation

0 – 1.8 mm 1

1.81–7.1 mm 2

>7.11 mm 1

Temperature

-30 – -9°C -2

-8.9 – -4°C -1

-3.9 – 0.3°C 0

0.31 – 5.3 °C 1

>5.31 °C 2

Day of the
Season

0 – 61 1

62 – 106 2

107 – 151 3

152 – 200 4

Tracks without a CombiPrecip value (i.e., NA) are excluded in a first approach, then enriched

with daily precipitation sums in a second approach. The weekday feature is once treated as

a nominal, one hot encoded feature with 7 levels and once implemented as a binary variable,

which has only the two levels “workday” and “weekday”. The raw danger level is treated as

an ordinal variable ranging from low (1) to high (5) avalanche danger. First, data that has no

RDL value (i.e., NA), is excluded. In a second attempt, NA values are replaced with 0, which

is not a real danger level used in practice but is used in this thesis to indicate an avalanche

danger level smaller than 1. In an Additional approach, regions that contain a) less than 10

and b) less than 15 total tracks over all eight seasons are excluded, based on the assumption

that a prediction is not sufficiently reliable when the data is very sparse. In a last step, the

least important variable is excluded.

To assess the impact of different feature representations, a systematic approach is applied, which

is visually described in Figure 4.8. First, an original model is built that implements all features

according to Implementation 1 in Table 4.4. In the following models, the feature implementation

is stepwise altered. If the altering yields a better model performance, it is accepted, otherwise it

is discarded. The goal is to evaluate the effectiveness of each feature representation in enhancing

the model’s predictive performance. The assessment of the predictive performance is discussed

in Section 4.5.4.
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Figure 4.8: Data-specific model optimization process. The initial model incorporates all predictor
variables with implemenation 1 (4.4). The model is altered (from top to bottom, model 1 to model 8) by
a stepwise introduction of implementation 2 for every predictor variable. If the altering yields a higher
performance, it is accepted, otherwise it is discarded. In the last three alterations, the least popular
warning regions and the least important predictor is excluded.

4.5.3 Algorithm-Specific Adjustments

The random forest is built in RStudio using the randomForest package, which implements

Breimann’s (2001) Random Forest algorithm. The randomForest::randomForest() function

comes with a set of default hyperparameters that do not need to be adjusted. Even though

leaving the hyperparameters to their default values is a common practice, Huang and Boutros

(2016) emphasized on the importance of parameter tuning as a critical step in model fitting,

which is outlined in this section.

First, the algorithm needs to be adjusted to handle the class imbalance. In the randomForest

package there are two different parameters, which can be used to counteract class imbalance.

With the classwt parameter, different weights can be assigned to the two classes. It has to be

noted that in the documentation of the randomForest package, it does not become evident how

exactly the classwt parameter is implemented into the random forest algorithm, therefore this
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parameter has to be handled with care. The second parameter that can be used to balance

classes is the sampsize parameter. It specifies how many data points from each class are used

to build one decision tree. Sampsize can be either used with or without replacement. When

used with replacement, each data point can theoretically be pulled from the sample several

times. When used without replacement, each data point can only be used once for every tree.

According to Strobl et al. (2007), trees should be built without replacement in order to produce

an unbiased output. According to this study, sampling with replacement can aggravate minor

input variations in the data, which can add an artificial bias to the data. However, both meth-

ods are applied and compared.

For the construction of the tree, the most common parameters to be adjusted are mtry, ntree,

and maxnodes. Mtry is the number of features randomly sampled at each node as candidates for

the split, ntree defines the number of trees to grow and maxnodes limits the maximum number

of terminal nodes in each tree.

There exist built-in functions to find optimal hyperparameters for a random forest, such as ran-

domForest::tuneRF(). However, they optimize with respect to the Out-of-Bag error estimate,

which is insensitive to class imbalance. The OOB error estimate is calculated simultaneously to

the random forest construction by using a tree to predict the outcome of all data that was not

used to build this specific tree. It is an automatic byproduct of the randomForest() function.

The mean of all error rates gives an OOB estimate of the generalization error (Breiman, 2001).

Even though OOB-errors are often said to be unbiased, there are studies that suggest that

OOB-errors can over-estimate the error (Janitza and Hornung, 2018).

Therefore, hyperparameters were optimized manually to find the value for which maximum

performance is achieved. This is done using a stepwise increase of the respective parameter and

is optimized for the Balanced Accuracy, which is calculated on an unseen test set, rather than

an Out-of-Bag error. The balanced accuracy and other skill scores are discussed in the next

section.

In the sampsize parameter, an equal number of presence and absence data points is used, which

is a recommended practice for imbalanced data (Janitza and Hornung, 2018). According to

Breiman (2001), random forests do not overfit with an increasing number of trees because of

the Law of Large Numbers. In theory this means that higher ntree will always lead to a smaller

or equally large error. Therefore, the optimization of ntree is treated with less priority.

Because classwt was found to perform radically worse than sampsize, it is discarded and there-

fore not optimized.

Table 4.6: Hyperparameters and tested values for best performance.

Hyperparameter Values

sampsize n : n, with n = c(50, 100, 200, 300, 400, 500, 600, 700,

800, 900, 1000)

mtry n = 1 – 12 (maximum of features)

ntree n = 1 - 1000
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4.5.4 Verification and Validation

The data is split into train and test data. The test dataset consists of one whole winter season,

the train data is the complement of the test data. Each model is trained with the train data

that includes all data but the test data. The model is then applied to the new, unseen test

data and a confusion matrix of predicted and observed values is created (Figure 4.9). Based

on this confusion matrix, the following skill-scores are calculated and used for the performance

assessment of the model:

Presence 

(ARPD Tracks)

Absence

(Generated)

Presence
True Positive

(TP)

False Positive

(FP)

Absence
False Negative

(FN)

True Negative

(TN)

Observed

P
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Figure 4.9: Confusion Matrix showing the relationship between predicted and observed entities. Green
boxes show correctly predicted entities, red boxes show erroneous predictions.

Sensitivity =
TP

TP + FN
(4.1)

Specificity =
TN

TN + FP
(4.2)

Balanced Accuracy =
(Sensitivity + Specificity)

2
(4.3)

Hanssen-Kuipers Skill Score (KSS) =
TP × TN − FP × FN

(TP + FN)× (FP + TN)
(4.4)

(4.1) and (4.2) and are calculated according to Swets (1988). (4.3) follows from (4.1) and (4.2),

and is used frequently when dealing with imbalanced classes (e.g., Bekkar et al., 2013; Marsland,

2015). Sensitivity (Specificity) are measures of how many of the presence (absence) data points

were correctly predicted. The balanced accuracy is an advanced accuracy measure that is not

influenced by class imbalance. The Hanssen–Kuipers Skill Score is also known as the Peirce

Skill Score, which was first defined by Peirce (1884) and later by Hanssen and Kuipers (1965).

It is a measure used in rare and severe event prediction, which is suitable for imbalanced classes,

where the minority class is in the focus (Ebert and Milne, 2022).
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After data- and algorithm-specific optimization, the test season is permuted to assess the sensi-

tivity of the model to variations among test seasons. Additionally, the robustness of the model

against the inherent uncertainty in meteorological measurements is evaluated. For this, inten-

tional input uncertainties were introduced into the meteorological features (4.7). The data was

manipulated using stats::rnorm(). This function generates random, normally distributed num-

bers. For the standard deviation, the uncertainty obtained from MeteoSchweiz documentation

of the data products was used (MeteoSwiss, 2021a, 2021c), while the original values served as

a mean, from which the generated values deviated. For CombiPrecip however, uncertainty is

only provided as a RADAR scatter in dB, but not in millimeters. Therefore, an arbitrary value

of 1 mm is chosen, based on the fact that most morning precipitation values do not exceed

1 mm. Because precipitation gets usually underestimated (MeteoSwiss, 2021d), uncertainties

are always added to the mean, instead of using a normal distribution around the mean. Also,

subtracting precipitation from the original value would result in many negative and thus non-

sensical values.

Table 4.7: Uncertainties of meteorological variables that are introduced into the data to assess the
robustness of the model against input uncertainty.

Variable Uncertainy

Temperature 0.6°C

Precipitation 1 mm

Srel 10%
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Chapter 5

Results

In this chapter, an overview over the results is provided. In the beginning, the presence data

is characterized (5.1). Further, the backcountry skiing prediction is discussed in terms of the

optimal algorithm setting (5.3.1), the skill scores (5.3.2), the influence of the different predictors

(5.3.3 and 5.3.4), the spatial and temporal distribution of errors (5.3.6 and 5.3.5), and ultimately

the robustness of the model (5.3.7).

5.1 Characterization of Presence Data

Figure 5.1 shows the seasonally recorded track number in the observation period spanning from

2013/14 to 2020/21. On average 750 tracks were recorded each season. However, there are

substantial variations among the different seasons. During the season 2016/17, exceptionally

few tracks were recorded, which can be attributed to the climatic conditions during this winter

season. The whole winter was anomalously dry, which resulted in an extreme lack of snow.

In parts of southern and western Switzerland it was the driest winter since 40, respectively 55

years. Additionally, the average temperature in the Alps deviated locally +1 - +2 °C from the

norm temperature 1981-2010 (MeteoSchweiz, 2017b).

Further, the number of tracks per season decreased significantly in 2019/20 and 2020/21, which

is likely due to the COVID-19 pandemic. It has to be noted that these seasons might show

different patterns than the seasons not affected by the pandemic. However, analyzing and

quantifying those patterns would go beyond the scope of this thesis.
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Figure 5.1: Number of tracks per season in the observation period from 2013/14 to 2020/21.

In Figure 5.2, the weekly evolution, i.e., the 7-day sum of total tracks, is visualized for each

season. Figure 5.3 shows the same data as Figure 5.2, but the different seasons are stacked to

visualize the trend over all seasons. The backcountry skiing season usually starts in November

and ends in May. All seasons show a similar behavior, with an increase of total tracks from

the beginning of the season until early spring, where in most seasons the maximum number of

tracks were recorded. This is followed by a strong decrease in April and May, which denotes

the end of the season. In the season 2019/20, the roughly constant number of tracks in January

and February were followed by a steep drop in March. This coincides with the first COVID-

19 lockdown in March 2020 in Switzerland. The season 2020/21 seems to be qualitatively

comparable to other, non-pandemic seasons, but smaller in magnitude. The week between

Christmas and New Year has exceptionally high numbers in all seasons except for seasons

2014/15 and 2016/17. December 2014 was characterized by above-average temperatures in all

parts of Switzerland, which induced below-average snow conditions. Only in the last week of

December 2014, a strong onset of winter with heavy snowfall took place, which possibly led to

unfavorable skiing conditions (MeteoSchweiz, 2015). In the northern Alps, December 2016 was

the second warmest, in the southern Alps the fourth warmest since the start of measurement in

1864. Additionally, in many regions it was the driest December ever measured in Switzerland

(MeteoSchweiz, 2017a). This correlates with exceptionally low numbers of recorded tracks at

the beginning of season 2016/17.
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Figure 5.2: Yearly evolution of weekly aggregated tracks for each season in the observation period
between 2013 and 2021. Due to differences in season days (leap years), there are slight variations among
the definition of weeks in each season.

Figure 5.3: Yearly evolution of weekly summarized tracks, stacked for all seasons to show the overall
trend throughout the season. Note that the exact definitions of each week may differ slightly among
seasons due to different amount of season days (leap years).
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The total number of tracks over all seasons is nearly constant throughout the week and is

significantly higher on the weekends (Figure 5.4). A majority of tracks (56.4%) were recorded

on a weekend. This is approximately doubled compared to the baseline frequency of the weekend

(2/7 = 28.6%). The distribution among workdays is almost uniform. Only a slight increase can

be observed from Monday to Friday. Of the 6014 presence tracks, 377 tracks or 6.3% took place

on a holiday. The number of total tracks per RDL roughly follows the baseline frequency of the

avalanche danger levels (Figure 5.5). The most frequent baseline danger level (“2 – Moderate”)

coincides with the most frequent danger level in the recorded tracks. The frequency of levels

“1 – Low” and “2 – Moderate” is higher in the tracks than in the baseline, while levels “3

– Considerable”, “4 – High” and “5 – Very High” are less frequent in the tracks than in the

baseline. No track was recorded for danger level 5, but instead, some tracks were recorded on

days where no avalanche bulletin was published (level 0). Spatially, the tracks are concentrated

in a few hotspots, which have been discussed earlier for the popularity calculation (Section

4.4.3). In Figure 5.6 the warning regions are colored according to the overall track density. The

average size of a WR is about 200 km2 and contains on average 44 tracks in total since 2013.

The highest track densities are found in the regions “6111 – Bedrettotal” and “2224 – südliche

Urseren”, which are located near the border between the two climatic regions “2 – zentraler

Alpennordhang” and “6 – zentraler Alpensüdhang”.

Figure 5.4: Frequency of weekdays throughout all seasons for presence tracks (yellow) and baseline
frequencies (green). The baseline frequency for each day is 1/7 or 14.3%.
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Figure 5.5: Frequency of raw danger levels throughout all seasons for presence tracks (yellow) and
baseline frequencies (green). The baseline frequency is based on seasons 2012/13 to 2020/21, and is
obtained from www.slf.ch.

Figure 5.6: Overall track density per Warning Region for the Swiss Alps, 2013 – 2021.

5.2 Presence vs. Absence Data

The premise for the activity prediction is that absence and presence tracks, i.e., artificially

generated and real recorded backcountry ski tracks, have different properties. This section

provides a quantitative and qualitative comparative analysis of both classes in terms of the

features used for the prediction. It has to be noted that comparison is exclusively carried out

with relative frequencies rather than absolute counts because absence tracks greatly outnumber

presence tracks.

In Figure 5.7, frequency distributions and boxplots are provided for each meteorological feature

by class, Table 5.1 provides a quantitative overview. Precipitation values are generally low for
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both absence and presence tracks, as it is only the 4 – hour mean sum in the track-specific

elevation belt. In both classes, the majority of tracks obtained no precipitation at all. However,

significantly more presence tracks received no precipitation (85%) compared to the absence

tracks (65%). Contrastingly, the relative frequency of tracks receiving more than 5 mm of

precipitation is 10 times higher in the absence (2.22%) than in the presence (0.21%) tracks. In

the precipitation histogram (Figure 5.7a), it can be observed that the shape of the distribution

is similar in both classes, but the absence class is shifted towards slightly higher precipitation.

This is in line with the mean value of absence tracks (0.41 mm), which is about sixfold compared

to presence tracks (0.07 mm).

For relative sunshine duration, a majority of the data lies either below 10% or above 90% in

both classes (Table 9b). This is also reflected in the boxplots in Figure 5.7d, which show that

both classes have a relatively high standard deviation. However, the two classes show opposing

trends, which is visible in Figure 5.7c: For Srel above 90%, the frequency of presence tracks

exceeds absence tracks by 21%, whereas for Srel below 10%, presence tracks are exceeded by the

absence tracks by 22%. This is also reflected in the mean values, which differ by approximately

20%.

The temperatures for both classes exhibit a nearly normal distribution, as depicted in Figure

5.7e. Notably, the two classes show very similar means (Figure 5.7e). However, the standard

deviation is about 1°C or 17% higher in the absence tracks, which means that presence tracks

tend to concentrate within a narrower temperature range.

In Figure 5.8, the frequency distributions of weekday, raw danger level, and popularity are

depicted. The distribution of weekdays in the absence data follows a uniform pattern, aligning

with the baseline frequency for each weekday. As opposed to this, presence tracks exhibit a

distinct concentration on the weekends, which was already discussed in Chapter 5.1.

6.3 (5.6)% of presence (absence) tracks took place on a holiday. The baseline frequency is on

average 6.3%. It varies with the number of days in a season (leap year) and the specific dates of

the holidays, as some holidays fall in or out of the season defined between November 15 and May

15. Hence the holiday frequency is approximately the baseline frequency and approximately 12%

higher than the holiday frequency in the absence tracks.

For the raw danger level, the highest frequency can be observed in level “2 – Moderate” in

both classes, which is in line with the baseline frequency discussed in Section 5.1. It is striking,

however, that presence tracks are concentrated in levels 1 – 3, whereas absence tracks span a

wider range from 0 – 4. Presence tracks exceed baseline frequencies in levels 1 and 2, while falling

below in levels 3, 4, and 5. Absence tracks approximately align with the baseline frequency in

levels 1, 4, and 5, while falling slightly below in levels 2 and 3. Danger level 0 exhibits a

relatively high frequency in the absence tracks and is nearly nonexistent in the presence tracks.

For popularity, absence tracks virtually follow the baseline frequency, while presence tracks are

concentrated in the higher popularity levels 1 – 3.
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Table 5.1: Mean and standard deviation for meteorological features by activity group. a. Precipitation,
b. Relative sunshine duration, and c. Temperature. For relative sunshine duration and precipitation,
additionally the relative frequencies for 0 mm (<10%) and >5mm (>90%) are given.

a. Precipitation

Activity Mean [mm] Standard deviation [mm] 0 mm >5 mm

Absence 0.41 1.47 65% 2.22%

Presence 0.07 0.44 85% 0.21%

b. Relative Sunshine Duration

Activity Mean [%] Standard deviation [%] <10% >90%

Absence 46.95 41.29 35 % 29 %

Presence 69.80 35.87 13.2 % 50 %

c. Temperature

Activity Mean [°C] Standard deviation [°C]

Absence -1.78 5.70

Presence -1.67 4.85
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a. b.

c. d.

e. f.
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Activity

Figure 5.7: Frequency distribution and boxplots of precipitation (a., b.), relative sunshine duration (c.,
d.) and temperature (e., f.) by class. In a., only precipitation values <2 mm and relative frequencies
<4% are displayed, to avoid visual distortion owing to very high frequencies for 0 mm values (65% of
absence tracks resp. 85% of presence tracks). For better readability, the y-axis for b. was logarithmically
transformed, consequently only values >0 mm are displayed
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a. b.

c.

Activity

Absence

Presence

Baseline

Figure 5.8: Frequency distribution of a. weekday, b. raw danger level, and c. popularity by activity
group. Baseline frequencies are indicated by the black boxes. Baseline frequency of popularity emerges
from Figure 4.6, baseline frequency of RDL emerges from www.slf.ch. In c., absence frequency for level
5 is 0.08% and presence frequency for level 0 is 0.1%, therefore they are not visible. Presence frequency
for level 5 is 0%.

5.3 Prediction

5.3.1 Hyperparameters

The hyperparameters ntree, mtry, sampsize, and maxnodes were optimized by a using stepwise

increase, as described in Section 4.5.3.

In theory, increasing the number of trees (ntree) will always result in a smaller or equally large

error because of the Law of Large Numbers. For the most part, this could be confirmed with

OOB-error estimates and cross validation. The OOB-error for both classes decreases rapidly

with an increasing n and stabilizes at approximately n = 250 trees and a OOB error rate of

0.225 (absence) and 0.20 (presence) (Figure 5.9a). In the cross-validation, similar results were

obtained. For the cross-validation, skill scores rather than error rates were calculated, which

means that high values, rather than low values indicate a good fit. The steep drop of the error

rate, respectively increase of skill scores at the beginning is not captured by the cross-validation

approach, since the minimal number of trees tested is 50 (Figure 5.9b). Sensitivity and KSS
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slightly decrease from n = 50 to n=100, while specificity increases. After approximately n =

500, all skill scores are relatively stable. Therefore, 500 trees were used for the final model.

a. b. 

Overall

Presence

Absence

Figure 5.9: a. OOB-error rate by class as produced by randomForest::randomForest() and b. cross-
validation skill scores with increasing number of trees (ntree).

For mtry, sensitivity decreases with increasing n, while specificity first increases, then stabilizes

at approximately n = 3 (Figure 5.10). The balanced accuracy and KSS slightly peak at n = 3

and n = 6. However, the variations are minor. It has to be noted that mtry is also sensitive

to the total number of features used. As the number of features varies with different feature

implementations, the default value (square root of total number of features) is chosen. For

the sampsize parameter, skill scores focusing on the presence (Sensitivity, KSS) class generally

decrease with increasing sample size, while specificity remains at a high level throughout all

sample sizes. Therefore, a relatively small sample size of 200:200 is chosen. Sampling without

replacement yields slightly higher performances, therefore it is preferred over sampling with

replacement. An adjustment of the maximum numbers of terminal nodes (maxnodes) yielded

lower values in all skill scores than setting it to the default value. Therefore, the default value

is employed, which means that there is no limit on the maximum number of nodes.
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sampsize

a. b.

Figure 5.10: Skill scores obtained through cross-validation for different values of a. mtry, i.e., the
number of randomly selected features for each split and b. sampsize, i.e., the number of sampled data
points for every tree. The sample size for both absence and presence class is the same.

5.3.2 Skill Scores

An overview over skill scores calculated for different model runs are presented in Table 5.3. The

indices of the different models correspond to the model implementations presented in Figure

4.8. All models hold the same algorithm-specific properties, with mtry and maxnodes set to the

default value, ntree = 500 and sampsize = 200 for both classes. Furthermore, sampling without

replacement was applied, as this produced slightly higher values.

Model 5 yielded the highest performance throughout all skill scores. In this model, weekdays

were treated as a binary variable (weekend / workday), meteorological (i.e., continuous) vari-

ables were treated as continuous variables rather than categorical variables, and NA values were

included as 0 (RDL) respectively enriched with daily precipitation sum data (precipitation). It

becomes evident that equalization of classes by either using one hot encoding or classifying con-

tinuous variables did not improve the model. Contrary to that, including NA values by replacing

them with a dummy value (RDL) or with another data source (precipitation) did improve the

model’s performance. However, it is worth noting that the performance improvement due to the

inclusion of NA values is specifically observed in the presence tracks (i.e., sensitivity). In the

case of absence tracks, the inclusion of NA values does not significantly affect the performance

(i.e., specificity), as it remains relatively unchanged.

Further, excluding regions with only a small number of total tracks over the whole period

(models 6 and 7; Figure 5.11) resulted in a deterioration of the model’s performance, as did

the exclusion of the least important variable “holiday” (model 8). Generally, data-specific ad-

justments resulted in a greater variation in sensitivity (0.087) compared to specificity (0.01).

The KSS exhibits a relatively high standard deviation of 0.093, while the standard deviation of

the balanced accuracy lies between the values for specificity and sensitivity (0.046), as it is the

geometric mean of the two.
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Table 5.2: Skill scores of different model runs according to Figure 4.8. The standard deviations for
each skill score is calculated from all different model runs.

Model Sensitivity Specificity KSS Balanced Accuracy

1 (Initial) 0.656 0.794 0.450 0.725

2 0.662 0.796 0.458 0.729

3 0.682 0.792 0.474 0.737

4 0.730 0.797 0.527 0.763

5 0.743 0.800 0.543 0.771

6 0.728 0.790 0.518 0.759

7 0.715 0.789 0.504 0.752

8 0.725 0.780 0.505 0.753

STDEV 0.087 0.01 0.093 0.046

a. b.

Figure 5.11: Warning Regions with a. <10 (Model 6) and b. <15 (Model 7) total tracks from 2013/14
to 2020/21.

5.3.3 Variable Importance

The randomForest package holds two different methods of variable importance measurement:

Mean decrease in accuracy (MeanDecreaseAccuracy) and mean decrease in GINI impurity (Me-

anDecreaseGINI). The former expresses the mean decrease in accuracy the model suffers by

excluding a given feature. The latter is a measure of how much a given feature contributes to

the homogeneity, hence the purity, of a node in the resulting random forest (Breiman, 2001;

Liaw and Wiener, 2002).

Strobl et al. (2007) pointed out that the MeanDecreaseGINI is biased and should not be used

with data of varying types. According to this study, importance is over-estimated for categorical

features with a high number of categories and numeric features, while under-estimated for fea-

tures with only few categories or even binary features. This is due to the fact that features that

offer a high number of possible splits (i.e., numeric and high-cardinality categorical features),

are chosen more often for a split, and therefore their importance is over-estimated. The findings

of Strobl et al. (2007) could be verified in this thesis. To uncover a potential bias, a random
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column was introduced. The random column contains randomly generated numbers between

0 and 1, it is therefore a continuous feature with a high number of possible splits. Ideally,

this random column should have no influence on the prediction since there is no relationship

between the target variable and the random column. The variable importance should therefore

be 0 for the random feature. In Figure 5.12b however, it is visible that according to the Mean-

DecreaseGINI, the random column is the third most important feature. It becomes apparent

that there is a tendency that continuous (meteorological features) and high-cardinality cate-

gorical variable (warning region code, day of the season) are the most important, while binary

features and features with only few categories (holiday, raw danger level, popularity) are least

important. The variable importance measured by the MeanDecreaseAccuracy does not seem to

be subject to this bias, therefore it is preferred as a measure of variable importance.

random
holiday
precip
SrelD
rdl
wrc
dos
season
pop
temp
weekday

0 50 100 150

MeanDecreaseAccuracy

holiday
precip
rdl
pop
weekday
season
dos
wrc
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0 500 1500

MeanDecreaseGini

continuous

continuous
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categorical (125)

categorical (200)
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categorical (7)

categorical (5)

categorical (5)

continuous

categorical (2)

a. b.

Figure 5.12: Variable Importance as measured by a. MeanDecreaseAccuracy and b. MeanDe-
creaseGINI. Data types for features in b. are listed next to the graph. For categorical features, the
number of categories is expressed in brackets. Importance Metrics in this Figure emerge from a model
with no hyperparameter fine-tuning or data-specific adjustments and are thus not comparable to other
variable importance plots presented in this section. The following variable names are abbreviated: pop
= popularity, rdl = raw danger level, SrelD = relative sunshine duration, precip = precipitation, temp
= temperature, dos = day of the season, wrc = warning region code

Figure 5.13 shows the variable importance calculated with the best performing model (Model

5). The variable importance differs by class and the weighted mean of both classes is strongly

influenced by the majority class (absence), whereas the unweighted mean in strongly biased

towards the presence class, since presence variable importance values are one to two orders of

magnitude higher.

For the prediction of the presence class, the time-independent popularity variable is most im-

portant, followed by the avalanche forecast (RDL) and the relative sunshine duration. For the

absence prediction, the three meteorological variables are most important, followed by pop-

ularity. In the absence prediction, the avalanche forecast has a negative importance, which

indicates that it adds to a higher error rate compared to a model that does not include the

avalanche forecast. In both classes, the importance of the holiday variable is approximately 0,

which indicates that it has no importance for neither absence nor presence prediction.
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a. b. 

c. d. 

Figure 5.13: Variable Importance of best performing model (Model 5), representing a. presence class,
b. absence class, c. weighted mean of both classes, and c. unweighted mean of both classes. The
following variable names are abbreviated: pop = popularity, rdl = raw danger level, SrelD = relative
sunshine duration, precip = precipitation, temp = temperature, dos = day of the season, wrc = warning
region code.

5.3.4 Partial Dependence

Partial dependence is a measure for the marginal effect a variable has on the predicted outcome

of a model. The basic idea is to marginalize all features but one in order to reveal the relationship

between the one feature that is not marginalized and the predicted outcome probability (Hastie

et al., 2001). In other words, one feature is altered while keeping all other features constant to

determine the influence each instance of a feature has on the probability for a given outcome.

The resulting probabilities can be visualized in a partial dependence plot. In this case, the

partial dependence is calculated for the presence class, as this is the class of interest. Because

there are only two classes, the partial dependence for the absence class is inverse to the presence

class. The y-axis of the partial dependence plot shows the probability for presence. However,

the plots should be interpreted relatively rather than absolutely. Also, it is worth noting that

due to the class imbalance, the probability distributions for both classes are fundamentally

different. In Figure 5.14, it is visible that in the absence class, most probabilities exceed 0.5,

while the opposite is the case in the presence class. Therefore, the mean probability in the

presence class is below 0.5, which indicates that most of the data points are getting assigned to

the absence class. This is the reason, why probabilities in the partial dependence plots for the

presence class rarely exceed 0.5.
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a. b.

Figure 5.14: Probability distribution of a. presence and b. absence class.

Figure 5.15 shows the partial dependence plot for each predictor variable. The partial depen-

dence plots reveal that presence predictions are positively influenced by lower popularity values

(high popularity) (a.). Further, presence tracks are associated with lower avalanche danger

levels but are not likely to occur with danger level 0 (NA). As the danger level increases, pres-

ence tracks get less likely and the confidence interval widens. This can be attributed to the

relatively rare baseline occurrence of higher danger levels, which leads to less reliable estimates

and therefore higher uncertainties (b.). Further, the probability of a presence track is highest

when no precipitation occurs and rapidly decreases with higher precipitation (c.). The prob-

ability increases almost linearly with increasing Srel and is highest for a value of 100% (d.).

The temperature plot shows that the optimum range for a presence track lies between -10°C

and 0°C. Presence tracks get less likely with extremely high (above 8°C) and low (below -15°C)

temperatures (e.). In the temporal dimension, presence is least likely at the beginning and the

end of the season, and most likely in the middle of the season (f.). The partial dependence for

the warning region variable has to be interpreted with care. As mentioned before, the warning

region code was implemented as an integer, because random forests do not allow more than 100

categories for categorical variables. Therefore, not all warning regions displayed on the x-axis

really exist. However, as the first digit of the WRC indicates one of the seven the climatic

regions in the Alps, the partial dependence plot can be interpreted accordingly. The highest

probabilities can be found in the Regions 2 – Zentraler Alpennordhang, 5 – Nord- und Mit-

telbünden, and 6 – Zentraler Alpensüdhang, while lowest probabilities are found in regions 1

– Westlicher Alpennordhang and 4 – Wallis (g.). It can be concluded, that a presence track

is more likely to occur in the northeastern part than in the southwestern part of Switzerland.

Ultimately, presence is more likely on a weekend, compared to a workday. Generally, it can be

observed that the partial dependence plots qualitatively follow the distribution of values in the

absence tracks (see Section 5.2).
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a. b.

c. d.

e. f.

g. f.

Figure 5.15: Partial dependence of predictor variables for presence class. The red line shows the mean
of 20 iterations of the variable importance calculation, the transparent area shows the 95% confidence
interval.
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5.3.5 Temporal Distribution

In Figure 5.16, the mean daily probability for a presence track is shown for every season. In the

same figure, the daily proportion of presence tracks is plotted. It can be observed that lower

probabilities are found at the beginning and at the end of a season, while highest probabilities

occur in the middle of the season around March. For the most part, this correlates with the

number of presence tracks throughout the season. The regularly high probability peaks can

be attributed to weekends, which consistently align with the peaks of presence tracks. Peri-

ods of anomalously few presence tracks, such as January 2016 approximately coincide with low

probabilities. In March 2020 however, even though the number of presence tracks is exception-

ally low, the probabilities are not particularly low. The reason for this is most likely the first

COVID-19 lockdown, which greatly restricted the mobility. The probability therefore does not

align with the track counts, since the COVID-19 restrictions are not included in the model. In

Figure 5.17, it can be observed that there exists a distinct positive correlation between mean

daily probability and daily presence track counts for all seasons. For some seasons, the positive

correlation is more distinct, and the variations are relatively low (e.g., 2013/14 and 2018/19).

In other seasons, the positive correlation is less pronounced and the variations are larger (e.g.,

season 2019/20).
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Figure 5.16: Mean daily probability for presence vs. daily proportion of presence tracks. The black
curve indicates the local polynomial regression line with a 95% confidence interval.
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Figure 5.17: Mean probability of presence vs. absolute number of presence tracks. Each point rep-
resents one day. The blue curve indicates the local polynomial regression line with a 95% confidence
interval.

5.3.6 Spatial Distribution

Figures 5.18 - 5.21 show the spatial distribution of the four skills scores sensitivity, specificity,

balanced accuracy, and KSS for each season. The values were calculated using the best per-

forming model (Model 5) for each season separately, using all seasons except the target season
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as training data. Additionally, for every warning region the total number of presence tracks

recorded in the target season are shown with circles of different sizes. Red triangles indicate

that zero tracks were recorded in the target season. According to equations (4.1), (4.3), and

(4.4), sensitivity, balanced accuracy, and KSS cannot be calculated when there are no presence

tracks (i.e., TP + FN = 0), which is represented by NA. Figure 5.22 reveals the relationship

between the total track count and the different skill scores for the example season 2017/18,

which can be considered representative for all seasons.

Sensitivity (Figure 5.18)

Sensitivity, i.e., how many presece tracks were correctly predicted (true positive rate), is con-

sistently high in the central and northeastern part, as well as in the in the southeastern part of

Switzerland (Engadin Valley and Ticino). In the Northwest, sensitivity is often in the lowest

quartile, especially in the northern Pre-Alps. The overall pattern is for the most part consis-

tent throughout all seasons. Higher sensitivity values tend coincide with regions with a higher

number of presence tracks, while low sensitivity values can be found in regions where there

are generally less recorded tracks. The positive trend between sensitivity and presence track

number is relatively strong for sensitivity values below 1. However, the trend is undermined

by sensitivity values = 1, which occur in regions with high track numbers, as well as in regions

with only few tracks (Figure 5.22a). The standard deviation among the warning regions is

approximately 0.4 and the highest of all skill scores, indicating high variations among warning

regions. However, variations of the standard deviation among different seasons is low.

Specificity (Figure 5.19)

Specificity, i.e., how many absence tracks were correctly predicted (true negative rate), is gen-

erally high and a majority of regions exhibit specificity values above 0.75. In regions where

track occurrence is scarce or even absent, the specificity is maximized, while regions with a

high number of presence tracks stand out with a comparably low specificity. This trend is also

visible in Figure 5.22b, where a negative correlation between track count and specificity can

be observed. The spatial pattern exhibited by the specificity is consistent throughout all sea-

sons, and variations among different warning regions is comparably low (0.21), especially when

compared to sensitivity, where the standard deviation of all warning regions is approximately

doubled (Figure 5.24).

Balanced Accuracy(Figure 5.20)

The balanced accuracy is the arithmetic mean of sensitivity and specificity, hence it is a com-

bination of the two skill scores. High values are found in the center and northeastern part of

Switzerland, however there is no clear spatial trend. There is also no clear relationship between

track count and balanced accuracy (Figure 5.22c). Very low values however are exclusively

found when less than 10 presence tracks were recorded. It can be observed that values exhibit a

binomial distribution, with one peak at approximately 0.5 and one peak at approximately 0.7,
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thus most values lie between 0.5 and 0.8 (Figure 5.23). This is in line with Figure 5.24, which

shows that the standard deviation of the balanced accuracy is smallest of all skill scores, hence

there is only little variation among different warning regions.

KSS (Figure 5.21)

For KSS, there are some hot and cold spots (regions with high, respectively low values), where

autocorrelation is present. However, the locations of the spots are not consistent throughout

the different seasons and no general pattern can be perceived, similarly to the balanced ac-

curacy. Hot and cold spots appear to be randomly distributed. Figure 5.22 does not show a

linear correlation between KSS and the presence track count. Further, the variations among

the different warning regions are relatively high, with a mean standard deviation of 0.31. The

distribution of values (Figure 5.22d, 5.23d) is qualitatively congruent with the balanced accu-

racy (Figure 5.22c, 5.23c), only the range of values differs, as it is much wider for the KSS

than for the balanced accuracy. This is due to the fact that both skill scores represent a stan-

dardized combination of errors from both classes. Analogous to the balanced accuracy, KSS

values exhibit a binomial distribution, with one peak in the negative range and one peak at

approximately 0.5. It has to be noted that KSS is the only skill score that can take values

below zero. A KSS below zero indicates that the product of falsely predicted tracks (FN x FP)

is bigger than the product of correctly predicted tracks (TP x TN). In other words, the model

performs worse than a random prediction (Ebert and Milne, 2022). Figure 5.22 reveals that

all negative values are concentrated in warning regions with less than five total tracks per season.

Presence Tracks

Recorded presence tracks are not uniformly distributed in space but concentrate in a few re-

gions. Most of the tracks were recorded in the central and northeastern parts of the Alps. Less

tracks were recorded in the western Alps. Numerous warning regions in the western Alps and

in the northern Pre-Alps did not record a single track in at least one season. During the two

COVID-19 seasons (2019/20, 2020/21), exceptionally few tracks are recorded in regions in the

southwestern Alps (Valais), which are situated near the Italian and French border. Some regions

with high track counts can be associated with touristic hotspots like “7114 – Zermatt” or “1222

– Gstaad”. Furthermore, the number of presence tracks impacts both sensitivity and specificity.

In conclusion, residuals in sensitivity and specificity have some spatial autocorrelation, while

residuals of the balanced accuracy and the KSS seem to be more randomly distributed. Sen-

sitivity and specificity are inversely affected by the total track number in each warning region.

While a high number of presence tracks correlates with high sensitivity, it opposingly correlates

with relatively low specificity values throughout all seasons. Put differently, the probability of

detection in each class increases with increasing number of data points in the respective class.

Therefore, the spatial autocorrelation of sensitivity and specificity is a consequence of the au-

tocorrelation in the presence track distribution. In contrast to that, neither the residuals of the
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KSS nor of the balanced accuracy show a clear spatial trend. Further, the standard deviation

of the balanced accuracy among the different regions is very small, while bigger variations are

exhibited by KSS.

18/19

19/20 20/21

14/15

17/18

16/1715/16

13/14

Presence Tracks

Sensitivity

Figure 5.18: Sensitivity per warning region with best performing model (Model 5) for all test seasons.
NA values are employed when calculation is not possible.
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Figure 5.19: Specificity per warning region with best performing model (Model 5) for all test seasons.

66



18/19

19/20 20/21

14/15

17/18

16/1715/16

13/14

Presence Tracks

Balanced Accuracy

Figure 5.20: Balanced Accuracy per warning region with best performing model (Model 5) for all test
seasons. NA values are employed when calculation is not possible.
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Figure 5.21: Hanssen-Kuipers Skill Score (KSS) per warning region with best performing model (Model
5) for all test seasons. NA values are employed when calculation is not possible.
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Figure 5.22: Relationship between a. sensitivity, b. specificity, c. balanced accuracy, and d. KSS and
total track count per warning region, season 2017/18. The blue curve indicates the local polynomial
regression line with a 95% confidence interval. Plots for all other seasons can be found in Appendix B.
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Figure 5.23: Histogram of a. sensitivity, b. specificity, c. balanced accuracy, and d. KSS values from
all seasons and warning regions. Note that the bin width is 0.05 for all skill scores, but d. KSS has a
greater range than the other skill scores, therefore it is represented by more bins.

Figure 5.24: Standard deviation of skill scores among warning regions. Standard deviations are calcu-
lated for each skill score and season. Boxplots contain standard deviations of all seasons.
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5.3.7 Robustness

The model was trained and optimized using season 2015/16 as a test set for validation. However,

after the final model was fitted, the robustness of the model in terms of the used test season

was assessed by permuting the test season. Table 5.3 shows the skill scores emerging from the

different permutations. The standard deviation is less than 0.05 for all skill scores, indicating

only small variations among test seasons. A correlation analysis was carried out to determine

whether the number of presence tracks per season influences the skill scores. Even though the

Pearson Correlation Coefficient is positive for all skill scores, indicating a positive correlation,

R2 is relatively small (below 0.3), and p-values for a one-sided t-statistic are greater than 0.05.

This suggests that there is no significant correlation between the number of tracks in each season

and the performance of the model. A visual representation of skill scores and total track number

is provided in Figure 5.25, which shows visually that there is no correlation between skill scores

and track number.

Lastly, in order to assess the robustness of the model against uncertainties in the input data, the

model was trained with data that contained a known input uncertainty. The uncertainty was

introduced into the meteorological variables, as they are believed to hold the highest uncertainty.

Meteorological variables are measured by a sensor, then interpolated with a complex statistical

method and further averaged over the elevation belt of each track. The uncertainty in other

input features, such as weekday or the avalanche danger level, are considered to be very small.

Table 5.4 shows the model performance in terms of the four skill scores obtained by applying

the intentionally altered meteorological variables to the fitted model, as well as the deviation

from the best scores. The results suggest that the deviations are minor (below 0.02) for all

skill scores. However, sensitivity is stronger impacted than specificity, as the deviation from

the best model is approximately 16 times higher for sensitivity compared to specificity (Table

5.4). KSS suffered the highest performance loss (-0.018), while the balanced accuracy was only

moderately decreased (-0.008).
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Table 5.3: Skill scores produced by the best performing model (Model 5) with permuted test seasons.
For each test season, the complementary data is used for training. Mean and standard deviation of each
skill score is provided at the bottom, as well as results from the correlation analysis.

Test Season Sensitivity Specificity KSS Balanced Accuracy
# Tracks
per Season

13/14 0.764 0.754 0.518 0.759 901

14/15 0.728 0.785 0.513 0.756 786

15/16 0.743 0.800 0.543 0.771 1018

16/17 0.790 0.752 0.541 0.771 528

17/18 0.736 0.817 0.553 0.777 670

18/19 0.780 0.761 0.541 0.771 965

19/20 0.742 0.705 0.447 0.724 515

20/21 0.688 0.756 0.444 0.722 631

Mean 0.746 0.766 0.512 0.756 751

STDEV 0.032 0.034 0.043 0.022 195

Pearson’s r 0.194 0.453 0.498 0.498 –

R2 0.04 0.20 0.25 0.25 –

p-value 0.32 0.13 0.10 0.10 –

Table 5.4: Skill scores for a model with a known input uncertainty of meteorological variables compared
to the best performing model (baseline).

Sensitivity Specificity KSS Balanced Accuracy

Baseline 0.743 0.800 0.543 0.771

Meteo Uncertainty 0.727 0.799 0.525 0.763

Difference – 0.016 –0.001 -0.018 –0.008
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Figure 5.25: Total tracks per season vs. skill scores.
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Chapter 6

Discussion

This chapter analyzes the results of this thesis in terms of the research questions posed in Section

1.2. First, the model building and the usability of the model is discussed (6.1). Further, the

most important variables for the prediction of backcountry skiing activity (6.2) and limitations

of the model (6.3) are presented. Practice advice for decision makers in the avalanche forecasting

domain is proposed in Section 6.4. Ultimately, the results are put into the context of literature,

and possibilities for future research are introduced (6.5). The research questions are discussed

in the following sections:

RQ1: How can backcountry skiing activity be modeled using obfuscated, user-generated trajec-

tory data? → Sections 6.1,6.3

RQ2: How do the different predictors, such as weather forecast, avalanche conditions, and free

time, influence the backcountry skiing activity? → Section 6.2

RQ3: What are the most important predictors for backcountry skiing activity? → Sections

6.2,6.4

6.1 Model - Building, Performance, Usability

Model Building

The challenges in the model building process were twofold: 1.) The construction of the training

data and 2.) the model building process itself.

To construct the training data, the tracks needed to be enriched with additional attributes.

While this was quite straightforward for attributes like weekday, day of the season, and holiday,

it took more effort for the meteorological variables. Since the tracks were obfuscated, it was

not possible to add variables purely by location. The only location information – the warning

region – is a rather broad geographic context and simply taking the average of the whole region

would not have been representative of a certain track, since meteorological variables can vary

quickly in space, especially in Alpine regions (Scherrer and Appenzeller, 2014; Spreafico and

Weingartner, 2005), and backcountry skiing usually takes place in a certain elevation band. As
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discussed in Chapter 4, meteorological variables were added to the tracks by using the elevation

information and the warning region. Meteorological variables usually come in a netCDF format,

for which the R environment provides some useful packages. However, there were some issues

with the netCDF files provided by MeteoSchweiz. For instance, the coordinate reference system

(CRS) was not correctly stored for the precipitation data, which led to problems with raster

computations1. Additionally, coordinates were stored differently for different meteorological

variables, some storing the data starting from the top left corner of the map, others storing

the data starting from the bottom left corner of the map. These issues have been ultimately

solved by manually altering the CRS information and the way the netCDF files were read (top

vs. bottom left corner).

Another challenge with the meteorological variables was that since the variables needed to be

intersected with both the DHM and the warning region, it was computationally rather extensive,

especially for the absence tracks, which were much more abundant than the presence tracks.

This issue intensified for the precipitation data, for which some additional steps were necessary

in order to sum up the hourly precipitation in the morning. It took a substantial amount of time

to optimize the process and required implementing and comparing similar raster-functions of

different packages, as there are considerable differences in terms of computational time among

different implementations of the same function. In summary, the issues with the meteorological

attributes primarily stem from technical aspects rather than conceptual ones.

The second set of challenges was related to the model building process. The main challenge

was to deal with the imbalanced data, and to find a verification metric for the prediction that

was not influenced by the class imbalance. This problem required a solution on the conceptual

level (i.e., which verification measure is suitable) as well as on the technical level (i.e., how to

adjust the algorithm to deal with imbalanced data). For the conceptual part, a solution was

found through literature research, while for the technical part the best parameter setting was

found by trial-and-error.

Skill Scores

The best performing model was able to successfully detect 74% (80%) of the presence (absence)

tracks. The model yielded a balanced accuracy of 77% and a KSS of 0.54, where 1 indicates

a perfect score and 0 indicates an unskilled prediction. The balanced accuracy produced by

the final model (77%) is slightly below the accuracy exhibited by prediction models that used

weather data to predict (recreational) traffic congestion (85 – 95%) (Lee et al., 2015; Lingras

et al., 2002; Liu and Wu, 2018). A study that resembles the problem set-up of this thesis,

predicting recreational use of urban forest sites, yielded a 90% accuracy (Dwyer, 1988). Other

1Other users encountered the same problem, as an example from StackOverflow, a website for the online commu-
nity of developers, shows. Reto Stöckli, who self-identified as the author of the data at MeteoSchweiz, confirms
in the comment section that they have been experiencing difficulties with the netCDF files since they started
using the new Swiss projection (LV95/CH1903+), and apparently, they have not found a solution yet.
https://stackoverflow.com/questions/71310611
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studies, e.g., studies on ski tourism prediction, used performance metrics only applicable to

regression models (e.g., R2), consequently they cannot be compared to the results of this the-

sis, because a classification approach was applied in this thesis (King et al., 2014; Riddington,

2002). Considering all limitations that will be described in more detail in Section 6.3, the level

of performance is satisfactory, although being slightly worse than other models in related liter-

ature.

The challenges of the modelling process are manifold. One challenge was to find a suited skill

metric to verify the predictions. Owing to the class imbalance, a simple estimate of the overall

accuracy did not provide useful results, as the minority class was simply outnumbered by the

majority class, as supported by existing literature (He and Garcia, 2009). It therefore required a

measure that focuses on the minority class or at least is not influenced by class imbalance. Liter-

ature about rare and severe (weather) forecasting offers skill scores that fulfill this requirement,

and that were ultimately chosen for this thesis: The balanced accuracy, a simple combination of

sensitivity and specificity, and the KSS, a measure specifically tailored to rare and severe event

forecasting (Ebert and Milne, 2022; Hanssen and Kuipers, 1965; Heierli et al., 2004; Marsland,

2015). While it is evident that false positives are preferred over false negatives for rare and

severe events such as tornadoes, this inference is less straightforward when considering back-

country skiing. On the one hand it is ambiguous whether one error type is substantially more

serious than the other, on the other hand it is questionable how rare backcountry skiing activity

really is. Therefore, the balanced accuracy is possibly more suited as a verification measure for

this problem. KSS and balanced accuracy show a very similar behavior among the different

model implementations (Table 5.3), which suggests that they are equally as good in detecting

the best performing model. However, as the requirements for the KSS are not necessarily given

in the context of backcountry skiing, it should only be used to relatively compare different

models, but not for making an absolute assumption on the performance of the model.

Spatial Dimension

The model showed similar performance when applied to different seasons, which shows that it

is not influenced by seasonal variations. The only exceptions to this are the two COVID-19

seasons (2019/20, 2020/21), which will be discussed later in more detail.

The residuals of both KSS and balanced accuracy are visually randomly distributed in space.

This is an indicator of how well the model captures the relevant factors, as the structural prob-

lems of a model can be reflected by the autocorrelation of its residuals (Chen, 2016). Both KSS

and balanced accuracy yield lowest values in regions where less than 10 tracks were recorded

in the observed season. This suggests, that the performance of the model is low when presence

tracks are missing.

For sensitivity and specificity on the other hand, certain spatial trends could be detected. Gen-

erally, more presence tracks are successfully detected in the northwestern part of the Alps, which

can be explained with a higher frequency of total tracks in the region. Conversely, specificity

is highest (often reaching values near 100%), in regions with small numbers of presence tracks
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(e.g., western Alps). It becomes evident that the model reaches higher scores when predicting

absence than presence. Given that the class imbalance problem was already addressed in the

training process by using equally sized samples from both classes, it raises the question why the

absence class still outperforms the presence class. The first thing to be pointed out is that even

though the model was trained with artificially balanced classes, the validation data to which

the model was applied, was not balanced, but contained the initial class imbalance. This led to

a high number of false positives, which is a well-known problem in machine learning with im-

balanced classes (e.g., Makki et al., 2019). Consequently, false negatives are less frequent than

false positives while true negatives are more frequent than true positives, which is ultimately

reflected in higher specificity compared to sensitivity. Yet, there is another factor that may be

far more contributory to this problem. For the generation of the absence data, the assumption

was made that “absence of evidence is evidence of absence”. In other words, it was assumed

that if no track is recorded, there are no backcountry skiers in the field, which was represented

as zero backcountry activity. The issue with this assumption will be discussed in more detail in

Section 6.3.

Temporal Dimension

The presence data revealed that backcountry skiing activity is a highly temporal phenomenon,

with a typical weekly and seasonal cycle. The results show that this temporal dimension is

well captured by the model. More activity is predicted on the weekends and in the mid-

season, compared to workdays and beginning/end of the season. Furthermore, for periods

of bad skiing conditions due to unfavorable weather (e.g., January 2016 or March 2019) low

presence-probabilities were correctly predicted, which correlates with low presence track counts.

Generally, probability for presence and actual recorded presence tracks are positively correlated

throughout all seasons, which demonstrates the effectivity of the model. There is however also

a time period where presence track counts do not correlate with the predicted probabilities. In

spring and especially in March 2020, the first COVID-19 lockdown with very strong mobility

restrictions led to a decrease in presence tracks but not in probability of presence, because the

COVID-19 restrictions are not incorporated into the model. In these months, backcountry skiing

conditions were theoretically good, but mobility was restricted to a minimum, which led to a

significant decrease in presence tracks even though the model predicted otherwise. Additionally,

in Figures 5.18 – 5.21 it is visible that presence tracks in warning regions near the French and

Italian border experienced a strong decrease in track counts during the two seasons after the

outbreak of the pandemic, while the decrease was less pronounced in regions more in the center

of Switzerland. Mobility restrictions as experienced in Switzerland during the pandemic can

however easily be incorporated into the model in the future.

6.2 Which Variables are the Best Predictors?

Variable importances differ among the two classes. For the presence class, popularity, avalanche

conditions (RDL), and Srel are most important. For the absence class, the meteorological
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variables are the most important, whereas for the presence class only one (Srel) out of three

meteorological variables ranks among the top three. A reason for this could be that even though

there are weather conditions that are clearly associated with backcountry skiing activity or a

lack thereof, the distinction between activity and no activity is not always straightforward. Days

with bad weather conditions (i.e., high precipitation sums, very high/low temperatures) often

exhibit only few presence tracks. Yet, there are bad weather days on which a track is recorded,

as well as many days where the weather conditions are favorable, but no track is recorded.

Even though only Srel ranks among the most important predictors for presence, the findings of

Haugom and Malasevska (2019) could be confirmed, as the results suggest that the optimum

weather conditions for backcountry skiing are sunny conditions (high Srel), no precipitation and

an air temperature of -5°C (Figure 5.15).

Further, the results suggest that certain avalanche danger levels eliminate the possibility of a

presence track with a very high certainty, for example when no avalanche bulletin is published

(danger level 0) or when the avalanche danger is very high (danger levels 4 and 5). On such

days, activity is very unlikely to occur. On the other hand, there are many days where the

avalanche conditions are favorable, yet no presence track is recorded, similarly to days with

good weather conditions. However, it is important to notice that even though all three danger

levels (0, 4, and 5) exhibit low probabilities for backcountry skiing activity, the situation is

different for low and high avalanche danger: While the lack of snow impedes the possibility of

backcountry skiing on days with danger level 0, the avalanche danger seems to be what stops

recreationists from going outside on days where backcountry skiing would be physically possible

but the danger level is high or very high. While recreationists remain in a passive state on

days without snow (the decision is made for them), they actively make the decision to not

venture outside when the danger level is high. Consequently, the difference between absence

and presence is more pronounced on days with danger level 0, as backcountry skiing is physically

not possible, compared to danger levels 4 and 5, where some (but not many) people still go

outside.

Even though some meteorological conditions decrease the likelihood of a presence track, a

considerable number of tracks is still recorded on days with bad weather conditions, whereas

hardly any tracks were recorded on days with critical avalanche conditions (due to the decision-

making of the skier) or on days without an avalanche bulletin (due to the lack of snow). This

suggests that the snow condition serves as a stringent criterion for individuals when deciding

whether to venture outside, whereas the weather condition is a flexible criterion that is desirable

but not essential. It has to be pointed out here, that the snow condition, rather than the

avalanche danger itself is the stringent criterion, as on days with danger level 0, technically not

the avalanche danger but the lack of snow is what stops recreationists from going outside.

Furthermore, the popularity is the most important variable for the presence class. This shows

that activity is bound to popular and well-accessible regions, often near population centers. As

the popularity is not dynamic over time, it would be worth excluding it from the model as a

predictor and only focus on the most popular regions. This might increase the performance
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of the model because it excludes regions where presence data is sparse and focuses on regions

where data is more abundant, and the prediction thus more reliable.

The weekend variable is the fourth most influential for the presence class. This is due the

majority of tracks being recorded on weekends, indicating a strong correlation between activity

and weekends. Holidays on the other hand are among the least important predictors for both

classes. A problem with the holiday variable is that for holidays that fall on a workday, the

weekend variable is still 0, indicating that it is technically a workday, which it is not. The

solution for this would be to set the weekend variable to 1 when a holiday falls on a workday,

as it is not a workday. Another issue with the holiday predictor is that holidays differ between

different political entities (Cantons) in Switzerland. As many recreationists head to other

Cantons for backcountry skiing, it is difficult to relate warning regions to specific holidays.

Additionally, some people work part time, hence they have an additional day off, which is not

captured by the weekend or the holiday predictor. School holidays could also be incorporated

into the model, though they are also dependent on the Canton, and are therefore harder to

implement. For that, the holiday behavior of Swiss citizens could be studied, as people living in

the French part of Switzerland possibly choose different destinations than people living in the

German-speaking northwestern part of Switzerland.

Ultimately, it has to be noted that the variable importance of the absence class, and especially in

comparison with the presence class, has to be interpreted with care, as there are some limitations

to the absence data that will be discussed in the next section.

6.3 Limitations

Even though the model performs relatively well, there are some limitations to it. The main

constraint lies in the data used for training. Interestingly, the obfuscation of the data was not

the main issue, but rather the quantity of the data and the classification into absence and pres-

ence tracks. The underlying premise for the generation of the absence data was that absence

of evidence is evidence of absence. But what was echoed by numerous scientists across various

disciplines before seems to be applicable to this particular topic as well: Absence of evidence is

not evidence of absence. Certainly, there have been many days where no track was recorded,

yet people were backcountry skiing. Because such days were treated as absence tracks in this

thesis, the input data for the model was initially flawed. The question is raised again: How rare

are the presence tracks really? Even though the answer to this question is difficult to find, we

can confidently say that they are not as rare as the data suggests, especially when considering

the participation bias VGI data holds (Nielsen, 2006). This indicates that the data imbalance

is caused by external factors (extrinsic imbalance) rather than inherent characteristics of the

data (intrinsic imbalance) (He and Garcia, 2009). In other words, the imbalance in the data

is likely not due to the nature of backcountry skiing, but due to the nature of data collection.

The approach, where the absence data was generated as a complement to the presence data,

would only work in a perfect setting in which every single backcountry tour ever carried out is

recorded.
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However, since a perfect setting is always a utopia, alternative methods are required. One

approach would be to use data that describes the behavior of users on a website dedicated to

backcountry skiing. The assumption that people do research on a route they plan for the next

day is probably more valid than the assumption that absence of evidence is evidence of absence.

Data that reveals how many times a backcountry skiing route is clicked on could possibly be

used to approximate backcountry skiing activity for the next day, with the assumption that

most people have a last look at the planned tour the night before. Such a dataset exists for

the Skitourenguru website1, from which the data used for this thesis was obtained. The Route

Click Statistics Dataset (RCSD) reveals the click statistic of the Skitourenguru website for many

popular backcountry skiing routes in Switzerland. It could be used similarly to the ARPD to

train a model.

A different approach would be to use remote-sensing data to detect backcountry skiing activity.

Remote sensing data was already used in avalanche research to map the spatial distribution and

size of avalanches (Hafner et al., 2021) or to measure snow depth (Bührle et al., 2022). Zweifel

et al. (2006) used satellite imagery to detect fresh tracks on the snow cover, from which back-

country skiing activity could be inferred. However, they argue that satellite imagery is costly

and only applicable in conditions with optimal visibility. As an alternative to satellite imagery

they suggest airborne photography, which is less impacted by clouds hindering visibility, but is

also rather expensive.

Another limitation of the model is that the spatial resolution of the warning region is too small

for the quantity of data used for training. On average, 750 tracks were recorded each season.

Consequently, in many warning regions and on many days, zero tracks were recorded, which

only allowed a binary activity classification. In practice, it would be more accurate to employ

a probabilistic approach to estimate the likelihood of individuals being in the field rather than

a binary classification. Another approach would be to expand the spatial entities used for ag-

gregation to larger areas, for example the seven climatic regions (Figure 3.2). However, it is

questionable to which extent spatially varying phenomena like avalanche or weather conditions

can be representatively aggregated in larger areas. Alternatively, the focus could be shifted

from all warning regions to only a fraction of warning regions that are known to be frequently

visited. Yet, excluding warning regions with only very few presence tracks did not enhance the

performance of the model.

Lastly, the model could potentially be improved by using additional meteorological predictors,

such as wind or the amount of fresh snow. An additional predictor describing the overall mo-

bility in the country could address for example local school holidays or COVID-19 restrictions.

However, the primary limitation is assumed to stem from the labelling of the data with absence

and presence, rather than from the choice of predictors.

1www.skitourenguru.ch
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6.4 Implications for Practitioners

In this section, practice advice for decision makers is presented. It is especially relevant

to avalanche forecasters, as well as to researchers studying backcountry skiing behavior and

avalanche risk.

As discussed in the last section, a probabilistic approach rather than a binary classification

should be applied. Therefore, this section gives an overview over some rules of thumb to es-

timate the probability of individuals being in the field under certain conditions. The rules

of thumb were created by applying the model onto different scenarios. The scenarios include

weather, avalanche conditions, and free time, as they have been shown to be the most influen-

tial dynamic predictors. The comparison is made between good and bad conditions. The terms

“good” and “bad” denote conditions where the probability of activity is expected to increase

(good scenarios), respectively to decrease (bad scenarios). By comparing two different scenar-

ios, where all features except the feature of interest are kept constant, an empirical Probability

Change Factor (PCF) can be calculated1. The PCF denotes the relative change in probabil-

ity of activity due to the change of the given conditions, which is consistent with the relative

change in probability revealed by the partial dependence plots (Figure 5.15). Therefore, the

PCF can be determined by calculating the relative change in probability revealed by the partial

dependence plot. Table 6.1 gives an overview over PCFs for the three different scenarios. It

hast to be mentioned that the PCF is only applicable for RDL greater than 0, as a RDL = 0

rules out presence with high confidence.

The PCF is 2.5 from bad to good weather, 1.5 from low to high avalanche hazard and 1.5 from

workday to weekend. This is in line with Wegelin et al. (2022), who found that sunny weather,

followed by the day of the week have the strongest impact on visitor numbers of a touristic

mountain in Switzerland.

The partial dependence plot (Figure 5.15b) shows, that for RDL, the probability increases

strongly from 0 to 1, and decreases again strongly from 2 to 4. Levels 1 and 2, as well as levels 4

and 5 are approximately equally likely. When two or more situations are combined in a way that

the positive effect on the probability is amplified (i.e., combine good with good conditions), the

factors can be approximately multiplied. This means that the probability is (2.5 x 1.5) times

higher on a weekend with good weather compared to a workday with bad weather. Accordingly,

the probability gets divided by the factor when two situations with balancing effects are com-

bined (i.e., combine good with bad conditions). For example, the probability is increased by a

factor of (2.5 / 1.5) on a weekend with bad weather compared to a workday with good weather.

The PCFs suggest that weather has the biggest influence on the activity, which is inconsistent

with the variable importance discussed in Section 6.2. It was shown that RDL is, after popular-

ity, the second most important predictor. There are several reasons for this inconsistency. First,

the PCF of weather (2.5) is a combination of multiple factors (Temperature, Precipitation, and

1The calculation follows the equation: Probability(bad) x PCF = Probability(good).
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Srel), which reinforce each other, while the PCF for RDL is only based on one predictor. RDL

exhibits a higher PCF than each weather variable individually, but not when they are combined.

Secondly, we must consider the baseline distribution of the RDL. Danger levels 4 and 5, the

highest danger levels, are also the ones that are issued least often. These levels are rare, not

only in the presence data, but also in the absence data. As a result, the model faces challenges

in distinguishing between absence and presence when the danger level is high, because of the

limited number of both absence and presence tracks in the training data. Therefore, the PCF

from RDL 2 to 4 is possibly underestimated by the model, due to the underlying baseline fre-

quency. On the other hand, for danger level 0, which is employed when no avalanche bulletin is

issued, the distinction between presence and absence is very clear, as hardly any presence tracks

take place under these conditions, but a lot of absence tracks exhibit RDL 0. The probability

increase from danger level 0 to 1 is 2.6, which is not included in the PCF of RDL. This explains

why the variable importance of RDL is high, even though the PCF is smaller than the PCF for

weather conditions.

For the other two scenarios (free time and weather), the baseline frequency is more uniform.

Weekdays naturally occur equally often, and good/bad weather is also more or less balanced

(strongly depending on the season). Therefore, the PCF for these scenarios is possibly more

reliable. In conclusion, the RDL is an important predictor, but due to the baseline frequency

and the danger level 0, its impact is more pronounced in lower danger levels compared to higher

danger levels. The PCFs give an idea of the impact a scenario has on the probability for

presence, however they have to be used with caution, as there are some limitations to them.

Table 6.1: Probability Change Factor (PCF) of good vs. bad weather, avalanche, and free time
conditions. PCFs should only be applied to scenarios with RDL ¿ 0.

Scenario Definition Probability Change

Factor (PCF)

Weather

Good

Srel = 100%

Precipitation = 0 mm

Temperature = -5° C 2.5

Bad

Srel = 0%

Precipitation = 5 mm

Temperature = -10° C

Avalanche
Good (low danger) RDL = 2

1.5
Bad (high danger) RDL = 4

Freetime
Good Workday

1.5
Bad Week

6.5 Implications

As Techel et al. (2015) pointed out, it is crucial to consider exposure when studying avalanche

risk. It is necessary to know how many people are in the field in order to put avalanche accidents
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or avalanche reports into context. Certainly, an avalanche accident is rated differently on a day

where many people are in the field compared to a day where only very few people are in the

field. Also, when no avalanche reports are received on a given day, this information holds less

uncertainty the more people are in the field who could have possibly witnessed and reported an

avalanche. Conversely, if there are no people in the field to potentially witness an avalanche, the

uncertainty of the same information is higher. Zweifel et al. (2006) carried out one of the few

studies in Switzerland, where they attempted to count backcountry skiers (hence backcountry

skiing activity) on a daily basis. However, the study focuses on a few particular regions and

analyses the activity ex post. This thesis provides a first experimental attempt to model and

predict backcountry skiing activity ex ante, with the use of backcountry skier counts deduced

from VGI data.

The results obtained in this thesis are in line with previous studies on the behavior of back-

country skiers. The probability of activity is increased on days with good weather conditions

compared to days with bad weather conditions, which is in agreement with Haugom and Mala-

sevska (2019), King et al. (2014), and Rutty and Andrey (2014). Concerning the avalanche

danger, the probability is decreased by a factor of 1.5 from danger level 2 to 4, which is a

smaller decrease than found by Zweifel et al. (2006), but still confirms that people are more

likely to go outside when the avalanche danger is lower. Further, the likelihood of activity is

increased on the weekend compared to workdays by a factor of 1.5. Similar results are found

by Techel et al. (2015), who found that the number of backcountry skiers is 2.3 times higher on

weekends compared to workdays. It is worth noting that the PCF is derived from an estimation

of the activity likelihood, rather than the absolute count of backcountry skiers. Consequently,

the PCF values are only limitedly comparable to studies that focus on the increase in the ab-

solute number of recreationists.

As described in Section 6.3, there are diverse limitations to the model. There is possibly a

substantial misclassification error in the initial training data due to the conceptual idea used

for the absence data, and presence data is generally too sparse in time and space for the detailed

spatial level the predictions take place on. However, even with all the limitations and the fact

that the data was obfuscated, a reasonably good result was obtained, where in approximately

77% of the cases the activity could be correctly predicted. As discussed in Section 6.1, this

aligns with other recreational prediction models in literature (Dwyer, 1988; Lee et al., 2015;

Lingras et al., 2002; Liu and Wu, 2018). Nevertheless, better results are expected with the

use of more presence track data for training. Because the backcountry skiing data used in this

thesis relies on people that voluntarily share information about their own tour, getting access to

such data can be challenging. Especially trajectory data is highly sensitive (e.g., de Montjoye

et al., 2013) and many people are not willing to share such data without a direct benefit, and

rightfully so. Remarkably, the obfuscation of the data did not hinder the modelling process,

which suggests that sensitive trajectory data may not be necessary for this type of prediction.

This thesis shows that the date and the warning region of a recorded tour provides enough

information to roughly estimate where and when people go backcountry skiing. However, it
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also demonstrates that the biggest uncertainty lies in the nature of the VGI data. Assuming

VGI data to depict reality is a risky assumption, given the variations in quality and largely

unknown motivations of contributors (Goodchild, 2007; Senaratne et al., 2017). The participa-

tion bias, which is often inherent to user generated data, leads to the underestimation of actual

numbers of recreationists in the field (Nielsen, 2006). Additionally, it is not clear, whether

data obtained through VGI provides a representative sample for the behavior of backcountry

skiers, as motivation may differ among individuals (Epstein et al., 20155), which has an impact

on credibility the data (Flanagin and Metzger, 2008). Zweifel et al. (2006) found that only a

fifth of all backcountry skiers were willing to use a voluntary registration board on site when

carrying out a ski tour. Hence using a correction factor on the VGI data could possibly create

a more accurate representation of individuals in the field. A correction factor would however

only work for days and regions, where at least one track was recorded. When there is no data

at all (which was often the case), activity cannot be inferred.

Lastly, this thesis showed that the modelling of backcountry skiing overlaps with leisure mod-

elling in many regards. Popular factors studied in leisure prediction, outdoor recreation, and

recreational traffic prediction, such as weather, free time, seasonality, and popularity/accessibility

of the region were effectively used to predict backcountry skiing activity (Dwyer, 1988; King

et al., 2014; Lee et al., 2015; Liu and Wu, 2018; Riddington, 2002; Rutty and Andrey, 2014;

Verbos et al., 2018; Wegelin et al., 2022). The importance of weather in outdoor recreations as

stated by Verbos et al. (2018) and Wegelin et al. (2022) could be confirmed. The only predictor

exclusive to backcountry skiing is the avalanche danger, which could easily be incorporated into

the model.
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Chapter 7

Conclusions and Further Work

Although the model created in this thesis has some limitations, it provides a solid basis for

backcountry skiing activity prediction, as it represents pioneering work in this research field.

Additionally, this thesis provides an approach for effectively incorporating weather variables into

geographically obfuscated data. It further allows 1.) an approximate estimation of whether

backcountry recreationists are in the field (i.e., backcountry skiing activity) and 2.) an idea

of which conditions enhance or diminish the probability for activity. The model reveals that

both the relative sunshine duration and the snow conditions strongly impact backcountry skiing

activity. Further, there is a clear positive correlation between probability of presence and actual

presence tracks for all observed seasons, which demonstrates the ability of the model to predict

backcountry skiing activity. It could be shown that the model is robust in terms of different

validation seasons as well as to input uncertainty of meteorological features. However, a common

saying in the machine learning domain is that “a model is only as good as the data it is fed”.

This thesis shed light on the limitations of the backcountry skiing data used for the model, as

well as on the conceptual idea, from which the absence data was generated. In the end, an

outlook on possibilities for future research was given. Alternative data sources were presented,

which could be investigated in the future to train an updated version of the model.
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Hägeli, P., Haider, W., Longland, M., & Beardmore, B. (2009). Amateur decision-making in

avalanche terrain with and without a decision aid: A stated choice survey. Natural

Hazards, 52, 185–209. https://doi.org/10.1007/s11069-009-9365-4

Hanssen, A. W., & Kuipers, W. J. A. (1965). On the relationship between the frequency

of rain and various meteorological parameters (Vol. 81). Koninklijk Nederlands Me-

teorologisch Instituut Mededelingen. https : / / cdn . knmi . nl / knmi /pdf /bibliotheek /

knmipubmetnummer/knmipub102-81.pdf

Harvey, S., Rhyner, H., & Schweizer, J. (2012). Lawinenkunde. Praxiswissen für Einsteiger und

Profis zu Gefahren, Risiken und Strategien. Outdoor-Praxis. Bruckmann Verlag GmbH,

München.

Hastie, T., Tibshirani, R., & Friedman, J. (2001). The Elements of Statistical Learning: Data

Mining, Inference, and Prediction. Springer, New York.

Haugom, E., & Malasevska, I. (2019). The relative importance of ski resort- and weather-related

characteristics when going alpine skiing. Cogent Social Sciences, 5(1), 1681246. https:

//doi.org/10.1080/23311886.2019.1681246

He, H., & Garcia, E. A. (2009). Learning from imbalanced data. IEEE Transactions on Knowl-

edge and Data Engineering, 21(9), 1263–1284. https://doi.org/10.1109/TKDE.2008.239

Heggli, M. (2022, November 28). Subdivision of danger levels in the avalanche bulletin [Accessed:

2023-07-07]. https://www.slf.ch/en/news/2022/11/subdivision-of-danger-levels-in-the-

avalanche-bulletin.html%7B%5C#%7Dtabelement1-tab2

Heierli, J., Purves, R. S., Felber, A., & Kowalski, J. (2004). Verification of nearest-neighbours

interpretations in avalanche forecasting. Annals of Glaciology, 38, 84–88. https://doi.

org/10.3189/172756404781815095

Hendrikx, J., Johnson, J., & Mannberg, A. (2018). How do we really use terrain in the back-

country? a comparison between stated terrain preferences and observed backcountry

travel behaviour. Proceedings of the International Snow Science Workshop, Innsbruck,

Austria, 7–12.

Hendrikx, J., Johnson, J., & Mannberg, A. (2022). Tracking decision-making of backcountry

users using GPS tracks and participant surveys. Applied Geography, 144, 102729. https:

//doi.org/10.1016/j.apgeog.2022.102729

Hijmans, R. J. (2023a). Raster: Geographic data analysis and modeling [R package version

3.6-14]. https://CRAN.R-project.org/package=raster

Hijmans, R. J. (2023b). Terra: Spatial data analysis [R package version 1.7-3]. https://CRAN.R-

project.org/package=terra

88

https://doi.org/10.5194/tc-15-983-2021
https://doi.org/10.5194/tc-15-983-2021
https://doi.org/10.1007/s11069-009-9365-4
https://cdn.knmi.nl/knmi/pdf/bibliotheek/knmipubmetnummer/knmipub102-81.pdf
https://cdn.knmi.nl/knmi/pdf/bibliotheek/knmipubmetnummer/knmipub102-81.pdf
https://doi.org/10.1080/23311886.2019.1681246
https://doi.org/10.1080/23311886.2019.1681246
https://doi.org/10.1109/TKDE.2008.239
https://www.slf.ch/en/news/2022/11/subdivision-of-danger-levels-in-the-avalanche-bulletin.html%7B%5C#%7Dtabelement1-tab2
https://www.slf.ch/en/news/2022/11/subdivision-of-danger-levels-in-the-avalanche-bulletin.html%7B%5C#%7Dtabelement1-tab2
https://doi.org/10.3189/172756404781815095
https://doi.org/10.3189/172756404781815095
https://doi.org/10.1016/j.apgeog.2022.102729
https://doi.org/10.1016/j.apgeog.2022.102729
https://CRAN.R-project.org/package=raster
https://CRAN.R-project.org/package=terra
https://CRAN.R-project.org/package=terra


Huang, B. F., & Boutros, P. C. (2016). The parameter sensitivity of random forests. BMC

Bioinformatics, 17(1), 1–13. https://doi.org/10.1186/s12859-016-1228-x

Janitza, S., & Hornung, R. (2018). On the overestimation of random forest’s out-of-bag error.

PloS ONE, 13(8), e0201904. https://doi.org/10.1371/journal.pone.0201904

Jiang, W., Hong, Y., Zhou, B., He, X., & Cheng, C. (2019). A GAN-Based Anomaly Detection

Approach for Imbalanced Industrial Time Series. IEEE Access, 7, 143608–143619. https:

//doi.org/10.1109/ACCESS.2019.2944689

Johnson, J., & Hendrikx, J. (2021). Using citizen science to document terrain use and decision-

making of backcountry users. Citizen Science: Theory and Practice, 6, 1–15. https :

//doi.org/10.5334/CSTP.333

Kachore, V. A., Lakshmi, J., & Nandy, S. (2015). Location obfuscation for location data privacy.

2015 IEEE World Congress on Services, 213–220. https://doi.org/10.1109/SERVICES.

2015.39

King, M. A., Abrahams, A. S., & Ragsdale, C. T. (2014). Ensemble methods for advanced skier

days prediction. Expert Systems with Applications, 41(4), 1176–1188. https://doi.org/

10.1016/j.eswa.2013.08.002

Kingsford, C., & Salzberg, S. L. (2008). What are decision trees? Nature Biotechnology, 26(9),

1011–1013. https://doi.org/10.1038/nbt0908-1011

Krawczyk, B. (2016). Learning from imbalanced data: open challenges and future directions.

Progress in Artificial Intelligence, 5(4), 221–232. https://doi.org/10.1007/s13748-016-

0094-0
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Techel, F., Mayer, S., Pérez-Guillén, C., Schmudlach, G., & Winkler, K. (2022). On the cor-

relation between a sub-level qualifier refining the danger level with observations and

92

https://info.skitourenguru.ch/download/data/ARPD_Manual_3.1.2.pdf
https://info.skitourenguru.ch/download/data/ARPD_Manual_3.1.2.pdf
https://info.skitourenguru.ch/download/data/ARPD_Manual_3.1.2.pdf
https://doi.org/10.5194/tc-14-737-2020
https://doi.org/10.5194/tc-14-737-2020
https://doi.org/10.1029/2002RG000123
https://doi.org/10.1080/13658816.2016.1189556
https://doi.org/10.1080/13658816.2016.1189556
www.slf.ch/en/avalanche-bulletin-and-snow-situation/about-the-avalanche-bulletin.html
www.slf.ch/en/avalanche-bulletin-and-snow-situation/about-the-avalanche-bulletin.html
https://www.slf.ch/en/avalanches/avalanche-science-and-prevention/avalanche-types.html
https://www.slf.ch/en/avalanches/avalanche-science-and-prevention/avalanche-types.html
https://doi.org/10.1186/1471-2105-8-25


models relating to the contributing factors of avalanche danger. Natural Hazards and

Earth System Sciences, 22(6), 1911–1930. https://doi.org/10.5194/nhess-22-1911-2022

Techel, F., Zweifel, B., & Winkler, K. (2015). Analysis of avalanche risk factors in backcountry

terrain based on usage frequency and accident data in Switzerland. Natural Hazards and

Earth System Sciences, 15(9), 1985–1997. https://doi.org/10.5194/nhess-15-1985-2015

Upton, V., Ryan, M., O’Donoghue, C., & Dhubhain, A. N. (2015). Combining conventional and

volunteered geographic information to identify and model forest recreational resources.

Applied Geography, 60, 69–76. https://doi.org/https://doi.org/10.1016/j.apgeog.2015.

03.007

Verbos, R. I., Altschuler, B., & Brownlee, M. T. (2018). Weather Studies in Outdoor Recreation

and Nature-Based Tourism: A Research Synthesis and Gap Analysis. Leisure Sciences,

40(6), 533–556. https://doi.org/10.1080/01490400.2017.1325794

Wegelin, P., von Arx, W., & Thao, V. T. (2022). Weather myths: how attractive is good weather

really for same-day visits to outdoor recreation destinations? Tourism Recreation Re-

search, 1–13. https://doi.org/10.1080/02508281.2022.2148076

Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York.

Wickham, H., François, R., Henry, L., Müller, K., & Vaughan, D. (2023). Dplyr: A grammar

of data manipulation [R package version 1.1.0]. https://CRAN.R-project.org/package=

dplyr

Wickham, H., Vaughan, D., & Girlich, M. (2023). Tidyr: Tidy messy data [R package version

1.3.0]. https://CRAN.R-project.org/package=tidyr

Williams, K. (1998). An overview of avalanche forecasting in north america. Proceedings of the

International Snow Science Workshop, Sunriver, OR, USA, 161–169.

Winkler, K., Fischer, A., & Techel, F. (2016). Avalanche risk in winter backcountry touring:

status and recent trends in Switzerland. International Snow Science Workshop, Breck-

enridge, CO, USA, 270–276.

Winkler, K., Schmudlach, G., Degraeuwe, B., & Techel, F. (2021). On the correlation between

the forecast avalanche danger and avalanche risk taken by backcountry skiers in Switzer-

land. Cold Regions Science and Technology, 188, 103299. https://doi.org/10.1016/j.

coldregions.2021.103299
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Appendix A

Warning Regions

Figure A.1: Warning Regions used by the WSL Institute for Snow and Avalanche Research SLF.
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Appendix B

Skill Scores

a. b.

c. d.

R
e
c
o
rd

e
d
 P

re
s
e
n
c
e
 T

ra
c
k
s

R
e
c
o
rd

e
d
 P

re
s
e
n
c
e
 T

ra
c
k
s

R
e
c
o
rd

e
d
 P

re
s
e
n
c
e
 T

ra
c
k
s

R
e
c
o
rd

e
d
 P

re
s
e
n
c
e
 T

ra
c
k
s

Figure B.1: Relationship between a. sensitivity, b. specificity, c. balanced accuracy and d. KSS and
total track count per warning region, season 2013/14.
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Figure B.2: Relationship between a. sensitivity, b. specificity, c. balanced accuracy and d. KSS and
total track count per warning region, season 2014/15.
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Figure B.3: Relationship between a. sensitivity, b. specificity, c. balanced accuracy and d. KSS and
total track count per warning region, season 2015/16.
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Figure B.4: Relationship between a. sensitivity, b. specificity, c. balanced accuracy and d. KSS and
total track count per warning region, season 2016/17.
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Figure B.5: Relationship between a. sensitivity, b. specificity, c. balanced accuracy and d. KSS and
total track count per warning region, season 2018/19.
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Figure B.6: Relationship between a. sensitivity, b. specificity, c. balanced accuracy and d. KSS and
total track count per warning region, season 2019/20.
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Figure B.7: Relationship between a. sensitivity, b. specificity, c. balanced accuracy and d. KSS and
total track count per warning region, season 2020/21.
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