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Abstract

The importance of landscape preservation has been widely accepted. Experi-

encing landscape beauty has health benefits and enables the touristic economy

sector in Switzerland to create a wide range of job opportunities. In order to

better understand how people perceive landscape, this thesis aims at analyzing

the Scenic-or-Not data set to build a machine learning model that predicts

landscape beauty. The resulting model was tested on its accuracy through

manual image evaluation on their scenic beauty and comparing the scores to

the value the model predicted. Validation sites were visited around Switzer-

land to view how the scenic scores from the model represented the real world.

Further the useability of the resulting scenic map in decision making pro-

cesses was analyzed with the ultimate goal to use the model as a landscape

preservation tool. Having a national scenic map could bring benefits when

planning infrastructure projects like wind turbines or highway routes. Such

a scenic map might capture public opinion on specific landscape scenes and

enable precise landscape preservation and through this win public approval

for large infrastructure projects.
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Zusammenfassung

Die Bedeutung des Landschaftsschutz ist allgemein anerkannt. Das Erleben

von Landschaftsschönheit wirkt sich positiv auf die Gesundheit aus und schafft

eine Vielzahl von Arbeitsplätzen im Tourismussektor in der Schweiz. Um bes-

ser zu verstehen, wie Menschen Landschaft wahrnehmen, zielt diese Arbeit

darauf ab, den Scenic-or-Not Datensatzes zu analysieren und ein maschinel-

les Lernmodell zu erstellen, dass Landschaftsschönheit vorhersagen kann. Das

daraus resultierende Modell wurde auf seine Genauigkeit getestet, indem ma-

nuelle Bildauswertungen auf ihre landschaftliche Schönheit untersucht und

die Ergebnisse mit dem vom Modell vorhergesagten Wert verglichen wur-

den. Es wurden Validierungsstandorte in der Schweiz besucht, um zu se-

hen, wie die landschaftlichen Bewertungen des Modells die reale Welt re-

präsentieren. Des Weiteren wurden die Möglichkeiten der resultierenden Land-

schaftsschönheitskarten in Entscheidungsprozessen analysiert, mit dem Ziel

das Modell als Instrument zum Landschaftsschutz einzusetzen. Eine natio-

nale Karte für Landschaftsschönheit könnte bei der Planung von Infrastruk-

turprojekten wie Windkraftanlagen oder Autobahntrassen von Vorteil sein.

Eine solche Landschaftskarte könnte die öffentliche Meinung zu bestimmten

Landschaften einfangen und einen präzisen Landschaftsschutz ermöglichen.

Dadurch könnte mehr öffentliche Befürwortung für große Infrastrukturpro-

jekte gewonnen werden.
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1 Introduction

The word landscape has multiple meanings in society. As Bell (1999) describes in

his book “Landscape, Pattern, Perception and Process”, landscape has many con-

notations which range from it being a piece of land, to being a painting of an area.

The way an observer perceives landscape depicts their individual interests. As an

example Bell (1999) describes a remote sensing scientist who looks through a lens of

a satellite, and a botanist who looks down upon a flower bed; Both of them might

use the word landscape to describe their view, but the real world extent of space

and the features in it, could not differ more (Bell, 2012).

A fitting illustration how landscape can influence the human well-being and be

perceived is Jürg Müller’s image series called “Alle Jahre wieder saust der Press-

lufthammer nieder”. The series of images show multiple perspectives of a lovely little

family home and how the surroundings slowly but surely are changed into an urban

modern city landscape. The small village grows, shopping malls and office buildings

are built and in the last image of the series the idyllic village is barely recognizable

except for the small centrally placed family home which stayed the same over the

years (Nüesch, 2015). When asked about the image series, Jürg Müller talks about

the feeling he had when whole neighbourhoods of family homes were torn down in

his home town in order to make space for a large industrial building. When applying

Bell’s (1999) approach, to the image series of Jürg Müller they show his knowledge

and feelings which he associates with the village he depicts in his image series. The

change of the environment he had known moves him. Jürg Müller’s image series is

a great example of how landscape is valued and how large changes to it are per-

ceived. The image series depicts the importance of preserving beautiful landscapes

in Switzerland. The following thesis explores the perception of landscape based on

different landscape characteristics and the possibility of predicting the perception of

landscape beauty using machine learning. It is therefore important to understand

the meaning of the word landscape and how it relates to our history and culture. In

the following chapters I will explore the changing definition of landscape over time

and the factors that lead us to describe landscape as beautiful.

1.1 Defining Landscape

The word landscape exists in the German language as well as in the English lan-

guage. This master thesis aims to compare the perception of landscape beauty in

Switzerland and Great Britain. Because a majority of people who live in Switzer-

land speak German, it is important to define both the English word and the German

word. In both languages landscape can be split into the word “land” and the word

“scape” or in German “schaft”. The suffix “scape” is equivalent to the suffix “ship”

and originates from the old English word “scyppan” which means “to shape”. Ad-

ditionally, the suffix “schaft” also originates from the German word “schaffen” and
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is therefore linked. The words “landscape” and “Landschaft” have a similar history

and origin and can be linked to each other, although they don’t mean the exact

same thing (Kenneth R Olwig, 2005) (Makhzoumi and Pungetti, 2003). When one

looks closer at the word landscape one can find multiple connotations. The oldest

definition of the word landscape was mentioned in the English dictionary in 1755 by

Samuel Johnson: “a region; the prospect of a country”. The word landscape focuses

on the idea of an enclosed region and belonging to someone or something (Kenneth

R. Olwig and Rose, 2022). In those days ownership was of great importance with

imperialism on its peak. Most European countries were obsessed with owning as

much land as possible.

A more recent definition includes: “a picture, representing an extent of space, with

the various objects in it” (Kenneth R. Olwig and Rose, 2022). In this definition

the focus suddenly changes from ownership to what the actual landscape includes

in terms of objects, colors or texture.

With the invention of virtual reality, the definition of landscape includes a whole

new area which changes its importance once again. In today’s Europe the word land-

scape has been defined as follows: “an area, as perceived by people, whose character

is the result of the action and interaction of natural and/or human factors” (EU,

2023). In this definition, just like Bell (1999) described, the perception is a key part

when talking about landscape. The transformation of the word landscape, first de-

fined as ownership, later including the real physical objects and colors, and to finally

including the individual perception and relationship with a specific landscape shows

the complexity of the word and its value.

Stevens (1974) identified four basic patterns that every landscape consists of and

which we as humans perceive: (1) spirals, (2) meanders, (3) branches and (4) ex-

plosions (Stevens, 1974). The patterns fill the available space and form the start-

ing point to explore the signification of “Landscape” (Bell, 2012). The analysis

of Stevens (1974) breaks down the landscape into its most basic components and

helps to deeper understand its meaning. The classification into four different pat-

terns was not always satisfactory and leads Bell to include the concept of mosaic

landscapes. Here landscape is not seen as one unit but as a multilayered construct

where different patterns interact with each other and are hard to separate from each

other. According to Bell (1999) humans are the only species capable of consciously

designing objects in a creative way. Early on humans used landscape features and

its objects to influence styling of artifacts or tools. Landscape was, is and always

will be important for human cognitive development and well-being (Bell, 2012).

2



1.2 Landscape Beauty

1.2.1 Aesthetics of Landscape

Bell (1999) defines five areas which influence perceived landscape beauty. (Bell,

2012)

1. Diversity / Complexity

2. Coherence

3. Spirit of Place

4. Mystery

5. Multiple Scales

6. Strength

1. Diversity / Complexity The diversity or the complexity of the landscape

shows how healthy the ecosystems in it are. When a landscape is untouched

and unaltered it usually has a certain complexity which is shown in a multi-

layered and multi-scaled landscape with various healthy ecosystems in it. If

this multi-layered theme is not present, the landscape probably is simplified

by human intervention (Bell, 2012). Hunziker and Kienast (1999) come to

the same conclusion. They used spatial metrics to determine the correlation

between diversity and scenic value of a landscape and could show that the

relationship between the two variables was statistically significant (Hunziker

and Kienast, 1999).

2. Coherence Coherence in this context is defined as an ordered structure which

humans can understand. The comprehensions of the whole scene is more

significant than understanding singular parts of a landscape.

3. Spirit of Place Spirit of place or the Genius loci, is the aspect of uniqueness

to a place. The ancient Romans used this expression to describe religious sites

or special architectural buildings (Bell, 2012).

4. Mystery The factor mystery describes the situation in which a landscape can

be perceived at once or if there are areas which could be explored further (Bell,

2012).

5. Multiple Scales The scales of the landscape patterns compared to the hu-

man size generate a comparative feature to the landscape and makes it more

attractive (Bell, 2012). Also Havinga et al (2021) conclude in their research

how visual scale has an impact on perceived landscape beauty. In the research

of Having et al (2021) it was addressed that this could be caused by our prey
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and predator history and the elevation differences could provide refuge for us

as hunted species (Havinga et al., 2021b).

6. Strength The overall mixture of the factors one to five is defined as “strength”

(Bell, 2012).

1.2.2 Tranquility

Landscape is described in various ways and is deemed beautiful or dull very subjec-

tively. But the decision to call a landscape aesthetic, is not only influenced by visual

components but also smell, sound or touch. Tudor (2014) describes a framework to

characterize landscapes which is named the Landscape Character Assessment. In

figure 1 the different framework components also include audio and tactile aspects

which influence how people experience landscape (Tudor, 2014).

Figure 1: Division of Landscape into different subtopics as proposed by Tudor (2014)
(Tudor, 2014).

Chesnokova et al (2018) focus on the concept of sound and how this influences the

perception of landscape. Because sound might affect us more constantly than any

other sense it is therefore crucial to capture the perception of landscape. In the

article Chesnokova et al (2018) used two different word corpuses where the contents
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were analyzed based on references to acoustic features or sounds. They concen-

trated on their analysis on perception of sound and landscape (Chesnokova, Taylor,

et al., 2018). In order to analyze sound and noise as a physical feature a differ-

ent approach might give additional insights into how the actual landscape scene is

influenced. Wiener et al (1965) approached this issue by studying how sound prop-

agates in urban areas and used a data set which is corrected for inverse square law.

Thus they were able to model sound levels in urban area (Wiener et al., 1965). The

inverse square law describes how sound travels through the medium of air, where

disturbances or hindrances of the sound wave are neglected. It is assumed that the

sound waves move through an ideal space filled with air (see figure 2).

Figure 2: Moving sound waves inside of an ideal medium as described by the inverse
square law (Hyperphysics, 2023).

The sound levels experienced by the human ear can be calculated and generally

decreases by six decibel per doubling of distance to the source. This number is

based on the formula of the inverse square law for sound level calculations and is

not exactly true for every scenario in nature. It is more of an approximation, suited

for the role noise plays in this master thesis.

L2 = L1 − |20× log(
r1

r2
)| (1)

Equation 1 shows the mathematical basis for the approximation which is used for

this thesis and represents the basis for the basic noise data which is generated

(Hyperphysics, 2023).

1.2.3 Importance of Landscape Beauty for the Community

According to Krebs (2014) human well-being starts with landscape (Krebs, 2014).

Experiencing a beautiful landscape makes us feel at home. Early in the existence of

humankind, people identified different features of landscape with feelings and most

importantly, their health. The ancient Persians experimented with gardens and

searched for the optimal scene for a garden, where feelings of humans climaxed and
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made them feel comfortable and at ease. Architects would design and shape gardens

in order to recreate an Eden-like environment, where fruit and plants would prosper

and symbolize the a garden of life. These gardens usually were only accessible to a

selected group of people (Thompson, 2011). In the 18th century the importance of

green spaces for the overall health of the population was rediscovered. Especially

in industrialized cities such as London a process was started where the English

government built parks which then became known as “the lungs of London”. For

the first time green spaces were created and designed specifically to increase pub-

lic health. At first these parks were not publicly accessible but after some years

and a devastating cholera epidemic, the city decided to start opening the parks and

other green areas with the goal to improve public health (Thompson, 2011). This

development spread quickly and other European cities followed suit. Today it is

widely acknowledged that the effects of experiencing landscape beauty have a pos-

itive impact on one’s physical or psychological well-being. Among other issues it

may help with short-term recovery from stress or mental fatigue (Velarde, Fry, and

Tveit, 2007). Today most European cities and federal institutions have carefully

planned guidelines on how green spaces and recreational areas are to be created and

maintained. The federal bureau for environment in Switzerland (BAFU), discusses

in its guidelines how creative solutions are crucial to generate enough green spaces

for the increasing population in urban areas. This is especially important to prevent

urban sprawl. Urban communities are becoming denser and with it the pressure

on the population increases. The authors name issues like the low life expectancy

for urban trees because of missing root space or salt overdoses. Overall the issue of

urban green spaces has become more complicated. Human needs have changed and

minimal life standards have increased. Additionally, the urban heat island effect as

well as climate change in general have become increasingly important issues. Green

areas are therefore included in cities development guidelines in Europe and around

the world (BAFU, 2023).

Switzerland has a unique mountainous landscape and a large economic sector is de-

pendent on the effect the landscape has on people who visit Switzerland for touristic

or health reasons. Another aspect where landscape perception has a large influence

are political decisions. Because Switzerland has a direct democracy, it enables the

people to have a strong voice and they can influence decisions. The perception of

landscape may influence how and if large infrastructure projects are implemented.

One example where the state repeatedly has difficulty to communicate its impor-

tance, is the construction of wind parks. These would be much needed for the energy

diversification goal which Switzerland is trying to implement. Reto Rigassi, CEO

of Suisse-Eole, which is the trade association of Swiss wind energy, explained in

an interview that most of the wind park projects are being blocked by objections

which are coming from the general public. He suspects that people might not like
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the sight of large wind turbines in front of their homes and that they would be

afraid that the turbines would not only be hideous, but devaluing their properties

as well as being the cause of noise pollution (Winzenried, 2018). Due to this issue

the state ordered a research project for the evaluation of general approval ratings of

the public towards different energy sources and their effects on landscape. Hunziker

and Salak (2022) have done two online questionnaires with more than a thousand

participants. The first questionnaire was done in 2018 and the second in 2022. The

research team then compared how the approval had changed over time and classified

for which landscape type the approval had gone up or down. Hunziker and Salak

(2022) have found that in general the public wants to see these renewable energy

sources like windparks developed and implemented in Switzerland but not in areas

like the Jura, Voralpen or in untouched mountainous regions (Salak and Hunziker,

2022). This shows how difficult it is for decision makers to find a suitable location

for infrastructure projects that change the Swiss landscape immensely.

Another field where landscape preservation is important, is the urban sprawl which

has massively increased in Switzerland (Jaeger, Bertiller, and Schwick, 2007). Jaeger

et al (2007) have found that over the whole of Switzerland the urban sprawl has in-

creased by 20% per inhabitant. The urban sprawl needs to be given more attention

and the research team surrounding Jaeger have proposed various different strategies

to contain the issue at hand. One of the proposed strategies is a better understand-

ing of landscape to enable better spatial planning (Jaeger, Bertiller, and Schwick,

2007). This means landscape studies have to be conducted to develop a research

based understanding of how the Swiss people view landscape and which aspects are

more valued than others. To tackle the issue a quantification of landscape value

has to be done. Scotland for example has created a national data set which shows

national landscape features “of outstanding scenic value in a national context” (UK,

2023). Such a data set is missing for Switzerland and could be a useful basis for

future decision makers and spatial planners. Not only would there be general ba-

sis for scenic landscapes but further studies and improvements could be promoted.

The lengthy and resource intensive process of planning new infrastructures could

be rethought and bring about change in areas like energy diversification, nature

preservation or green area planning without losing important scenic landscapes.

1.3 Machine Learning

When looking at a phenomena on a large scale with multiple variables and complex

relationships, machine learning is an appropiate and interesting approach to con-

sider. In this chapter the idea behind machine learning is explained and different

algorithms are presented.
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1.3.1 What is Machine Learning

Humans learn from experience. Based on experience a human mind can make de-

cisions and usually our decision making skills improve with increasing experience.

This principle also applies to machine learning. In the year 1950 Alan Turing, who

is portrayed in the Hollywood movie “The Imitation Game”, suggested that com-

puters could be able to think with the right programming and data input. In his

paper “Computing Machinery and Intelligence” he describes a framework for build-

ing such a machine and how to test its intelligence (Turing, 1950). The issue until

1957 was that computers could not store enough data and had long computation

times. Then suddenly from 1957 to 1974 artificial intelligence (AI) development

picked up speed. Today AI is everywhere and, with the most recent and promi-

nent example of ChatGPT, has reached a wide range of applications. ChatGPT is

an AI which can answer questions and remembers topics from earlier conversations

(Anyoha, 2017). AI systems are built on a variety of different algorithm approaches

such as linear regression, decision tree, random forest algorithm or convolutional

neural network. The developer starts with a large data base which represents the

phenomena that is to be modelled. To build a model a machine learning algorithm

approach is chosen and in a first phase the model is trained with a subset of the

available data. In the training phase the algorithm learns by searching for patterns

inside the data. The other unused data entries are later used to test the accuracy

of the model. In this step the model actively predicts certain outcomes based on

the test data set as input and the patterns that the algorithm has learned in the

training phase (Mahesh, 2018)(Goodfellow, Bengio, and Courville, 2016).

1.3.2 Importance of Machine Learning

Since the years between 2010 and 2013 machine learning as a scientific concept has

developed immensely. This can be explained by the following two developments:

The first is the progress of easy to use machine learning frameworks that were

released (Hey et al., 2020). Two famous frameworks were Keras (Chollet, 2023) and

Scikit-learn (Pedregosa et al., 2011) which opened up machine learning models as

a concept to a wider audience. A second important factor was the rapid growth of

large data availability. An example for this availability is the Swiss geodata platform

geo.admin.ch that was created in the year of 2010, and through which geodata on

diverse topics for the whole of Switzerland was made accessible. Such open data

platforms supported the development towards machine learning applications and

research projects in this field (Swisstopo, 2023c).

In short, machine learning is a type of artificial intelligence that allows computers

to learn from large data sets and improve their performance on specific tasks over

time. Machine learning is used in different fields to improve our everyday life. It can

automate many tasks that would otherwise require human intervention, and thus
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can save time and money for businesses as well as individuals. Among other things,

machine learning can be used to automate customer service inquiries, detect fraud, or

optimize supply chain operations. Further machine learning algorithms can analyze

vast amounts of data to identify patterns, predict an individuals’ preferences or

behavior. This kind of analysis would take humans months or even years to conduct

and therefore the huge effort would be disproportionate compared to the yield. Such

models can further be used for various tasks such as personalized recommendations,

ads, or other content generation to improve online user experience. Furthermore,

machine learning is increasingly being put to use in medicine to identify patterns

that might not be obvious to human doctors at first. This can lead to earlier and

more accurate diagnoses and better treatment outcomes. On the whole, machine

learning is important because it has the potential to revolutionize whole industries

and improve our lives in countless ways. Its ability to learn from extensive data sets

and make predictions based on that data means that it can help us make better

decisions, automate tedious tasks, and gain insights that might not be discernible

with human analysis alone (Hey et al., 2020)(Goodfellow, Bengio, and Courville,

2016).

Random Forest Algorithm

As mentioned before, machine learning is not a specific algorithm but much more a

set of different algorithm approaches, each with its advantages and disadvantages.

An algorithm type which is relevant for this thesis is the Random Forest family.

Random Forest is used for classification and regression and is essentially the con-

struction of multiple decision trees. The model is usually fed with an input vector

filled with different dependent X variables and an independent variable Y which is

an one dimensional array of the same length as the X variables. The algorithm then

builds multiple decision trees based on the input vectors and each decision tree de-

livers a result. All these decision trees form the random forest model and depending

on the input variables for the prediction, the model chooses the best suited decision

tree. One advantage of random forests is bagging. Bagging is a technique used in

machine learning to reduce variance. Further overfitting can be prevented with bag-

ging which is a big issue when training a machine learning model. Random forest

uses bagging to build multiple decision trees and combine their predictions. In bag-

ging, multiple subsets of the original dataset are created by randomly sampling data

points. These subsets are used to train individual models, and their predictions are

combined to make a final prediction. In the context of random forests, bagging is

used to create multiple decision trees, each of which is trained on a different subset

of the original data. In addition to random sampling, random forests also use feature

bagging, where a random subset of features is selected for each decision tree. This

further increases the diversity of the trees and helps prevent overfitting. Once all

the decision trees have been trained, their predictions are combined by taking the
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average (for regression) or majority vote (for classification). This ensemble approach

helps to improve the accuracy and robustness of the model.

Another important advantage is that random forest uses Classification and Regres-

sion Trees (CART), which are its base estimator. Using the CART approach enables

the random forest algorithm to gain additional advantages. One of these is the non-

parametric aspect, which means that CART do not make any assumptions about the

distribution of the data. Also, CART can handle both categorical and continuous

input variables and can be used for both classification and regression tasks. Further

CART ensures better interpretability because the resulting decision tree from the

CART algorithm can be easily interpreted and visualized. The reasoning behind

the model’s predictions can thus be easily explained. Additionally, CART is not

sensitive to outliers or missing data, which makes it a robust algorithm for handling

noisy data. And lastly CART can handle large datasets with a high number of

features, making it suitable for big data applications.

A large issue with random forest approaches in general and where users should be

careful, is the fact that random forest algorithms have a tendency to over fit. This is

something one should bear in mind when interpreting results and predictions from a

random forest model (Yingchun and Liu, 2014)(Goodfellow, Bengio, and Courville,

2016).

1.3.3 Overfitting and Underfitting

One danger which often occurs when training a machine learning model are so

called fitting issues. Fitting describes the process when a function is applied to the

underlying data or specifically on top of the X variables of the model. This is the

step where the model learns and tries to understand underlying patterns within the

data. If the relationship is clearly recognisable for the algorithm and the data has

very few outliers, this process usually works very well. However, these circumstances

rarely occur, which is when the issue of overfitting or underfitting arises.

Overfitting describes a problem where the algorithm fits its function too well onto

the training data set and tries to include data points like outliers or noise. This

procedure leads to a drop in accuracy when evaluating the test data set with the

model, because it is not able to generalize on patterns that occur within the whole

data set but only inside the training data set (Khan, 2015). On the right side in

figure 3 overfitting is visualized in a simplified example. The error function increases

again after the optimal learning capacity has been reached.

Underfitting is the opposite problem. Here the machine learning model does not

learn enough to draw a relationship between the data points which results in a poor

performance. The underlying issue is that the model is too simple to capture the

complexity of the data. This scenario is visualized on the left side in figure 3. Here

the error function further decreases because the model has not reached the optimal

learning capacity yet and the underlying data is much more complicated than the
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model can predict yet (Khan, 2015)(Goodfellow, Bengio, and Courville, 2016).

Figure 3: This figure shows how a loss function could look like when a model un-
derfits or overfits. On the left side of the graph the model underfits because the
learning potential is not completely exploited. On the right side of the graph the
model tries to learn more from the underlying data, even though the error increases
again at red line. The red line represents the full learning potential of the model
(Goodfellow, Bengio, and Courville, 2016).

1.3.4 One-hot Encoder

To ensure that a machine learning model can read and learn from the data which

it is provided with, string type data needs to be encoded into numeric values. For

this, various different methods can be used, where the label encoder and the one-hot

encoder are the two methods which are discussed in the scope of this master thesis.

The one-hot encoder is an encoding mechanism which takes all the possible val-

ues the data provides and creates a presence matrix.

Figure 4: Example of a one-hot encoded data set. All possible category values get
a column and each column is filled with either a one if the category is present for
the data entry or a zero if the category is not present.

Figure 4 shows a simplified example of how string format data is encoded using a

one-hot encoder. The resulting presence matrix on the right represents the data

which can be fed into a machine learning model. The advantage of such an encoder
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is that when decisions are traced back, it is easy to see which subcategories were

effective in correct predictions of the model.

1.3.5 Label Encoder

The label encoder is another method to encode data in order to make it readable

for machine learning algorithms. Here the data is taken and for each unique value a

numeric value is given. The user ends up with a numeric key book which corresponds

to a string value list. This numeric key book is then inserted into the machine

learning algorithm.

1.3.6 Performance Analysis

When implementing a machine learning model, it is crucial to test different hyper-

parameters. The performance of the model could significantly improve when the

right hyper-parameter values are chosen. Such an analysis can also give insights to

whether the model being under- or overfitted. When using Python and the Scikit-

Learn framework, a selection of the following hyper-parameters is usually tuned to

achieve the best accuracy.

Figure 5: Example of a decision tree where the
rectangular boxes represent nodes. The depth to
where the tree is built until a node is considered a
leaf is called the max depth.

Maximum depth describes how

deep the tree is allowed to

go. Consider Figure 5 which

on the right-hand side shows

the maximum depth variable

for the example tree. That

variable defines that this tree

is not allowed to go past two

splits and is basically defin-

ing the maximal depth the tree

is supposed to grow. De-

pending on the data the ran-

dom forest regressor could be

worse when the algorithm keeps

splitting nodes excessively and

at the same time the un-

derlying pattern in the data

is better modelled when stay-

ing in a shallower depth pat-

tern.

When considering the same example from Figure 5, the minimum sample split rep-

resents the minimal required number of samples inside of a node to allow a split. If
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the number of samples inside of the particular node is smaller than the minimum

sample split value, the node will not be split again.

The maximum leaf node variable defines how many final nodes at the end of the

tree are allowed. Usually, the regressor starts with one node and continues down

until different hyper-parameters limit the further growing of the tree or the leaf

cannot split into further leaves. With maximum leaf nodes set to a value, the tree

stops growing when the lowest layer of the tree contains the number of leaves which

corresponds to the previously set value of the maximum leaf node variable.

In the above mentioned example from Figure 5 the variable minimum sample leaf

describes the minimum number of samples a leaf needs to have, so it is allowed to

be defined as a leaf. If a node is prepared to be split and one of the resulting leaves

from this node split will have less than the minimum sample leaf hyper-parameter,

the split will not occur.

The maximum sample hyper-parameter defines the number of samples that are used

for each tree building process. This is only done if bootstrap is activated. Bootstrap

is a training process where each tree is not trained with the complete data set for

the X variables, but only gets a subset of the data set. The maximum sample refers

to the size of the subset which gets put into the tree building process.

The maximum feature attribute defines how many features of the X variable data

set are to be considered. This is an interesting parameter, because not all features

might have an effect on the training progress of the model. Some variables describe

the underlying phenomenon well and others might not be as descriptive.

There are several different accuracy scores to evaluate how well the model predicted

the test samples. For a regression model the R2 value is commonly used. The R2

value is a mathematical term to describe how much of the variance in the data can

be explained (Chesnokova, Nowak, and Purves, 2017).

Another accuracy score which is relevant for classification models is the F1 score.

This describes the number of correctly classified samples. Predictions can be cate-

gorized into the following four groups:

• False positive: these are samples which were categorized in a certain category

even though they do not belong there.

• False negative: these are samples which were not categorized in a certain

category even though they belong there.

• True positive: these are samples which were categorized correctly.

• True negative: these are samples which were correctly not categorized in a

certain category.
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The F1 score is then calculated based on following equation 2:

F1 =
2× (TruePositives)

2× (TruePositives) + FalsePositives+ FalseNegatives
(2)

Source: (Scikit, 2023)

1.3.7 Interpolation Methods

Interpolation is a spatial prediction technique which includes a wide range of different

methods, each with its own advantages and disadvantages. In this chapter two

interpolation methods that are relevant to this thesis will be presented.

1.3.7.1 Inverse Distance Weighted Interpolation

A first relevant interpolation method for this master thesis is the inverse distance

weighted interpolation. This is a popular method of interpolating point data. Here

the sample point’s weight decreases with increasing distance to the target point. The

user has to be careful to take into consideration that the quality of the prediction of

data decreases with this method when the distribution of sample points is uneven

(QGIS, 2023).

1.3.7.2 Multilevel B-Spline

A second possible interpolation method that is relevant to discuss is the multilevel

B-spline interpolation method. Here a smooth surface is put through a set of points

on different detail levels. The process which the algorithm goes through, includes

choosing a basis function and control points. Then this basis function is fitted to the

control points. In the multilevel B-spline interpolation method this process is done

on different levels. The method has different advantages such as noise reduction

with its changing level of detail. Through this the method is also great to use on

large and irregular distributed data sets (Lee, Wolberg, and Shin, 1997).

1.4 Previous Work

There are multiple projects that aim to quantify landscape beauty, as such a quan-

tification method can be an important variable for decision makers to consider in

construction or zoning projects. The issue which usually arises is that landscape

beauty as a concept is hard to quantify. Different approaches have been tried ranging

from small-scale participatory studies to large scale volunteered geographic systems

(VGI). In this chapter some of the existing projects will be presented.

Müller, Backhaus and Buchecker (2020) did a small-scale participatory study with

the goal of identifying suitable locations for wind energy turbines. They chose three

study sites where wind energy projects were already planned. By doing qualitative
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interviews with people of the affected municipalities the research team tried to eval-

uate meaningful places and with this give a prediction where wind energy project

might have a high approval rate among the inhabitants. The possible wind sites

which were looked at were in the municipalities Surselva, Schwyberg and Vechigen,

all of which financially live predominantly from tourism and agriculture. Müller,

Backhaus and Buchecker (2020) realized that the meaningful places did not differ

substantially between the supporters and opponents of the wind projects. It was

more the value a wind turbine and the perceived meaning which differed between the

two groups. Where the supporters saw potential for a well placed wind turbine on a

piece of land which had multiple advantages like clear ownership or sufficient wind

speeds, the opponents usually argued that the planned areas were meaningful be-

cause they were unspoiled, natural or peaceful and should be left that way. Contrary

to the supporters the opponents did not see a benefit of contributing to the energy

transition of Switzerland and that this contribution could be worth altering the

planned wind site area. Müller, Backhaus and Buchecker (2020) realized that their

approach did not have the desired effect, for which they give three possible explana-

tions. A first explanation for the unexpected outcome could be unfortunate timing

of the interviews, which was when the the specific sites were already chosen and the

population already polarized on the topic (Müller, Backhaus, and Buchecker, 2020).

Müller, Backhaus and Buchecker (2020) and Moore and Hacket (2016) have both

found that the time of including the public is crucial to achieve the best results in

finding a suitable site (Müller, Backhaus, and Buchecker, 2020) (Moore and Hackett,

2016). According to Moore and Hacket (2016) the project should be specific enough

to include the public, but not yet specific enough to ensure no political polarization

occurs (Moore and Hackett, 2016). Also Müller, Backhaus and Buchecker (2020)

have identified a specific moment to include the public. Ideal would be just after

the identification of suitable planning areas in the cantonal zoning plan and before

the designation of specific sites in the municipal zoning plan. Otherwise the popu-

lation will have made up their minds towards refusal and decision makers will have

problems convincing the people (Müller, Backhaus, and Buchecker, 2020). Another

reason they have identified as a possible reason for their unexpected outcome to

their study is the lack of embeddedness of the wind park project into local develop-

ments. This includes ensuring that the local residents realise that the project is not

just of national and global importance and therefore completely detached from the

local community, but rather that the project could fit into the region and have sub-

sequent benefits for the local community (Müller, Backhaus, and Buchecker, 2020).

This has been confirmed by Devine-Wright (2011) who shows how planners should

invest a considerable amount of time embedding such a project, otherwise the local

population will take over which will result in very contrasting meanings of place and

landscape (Devine-Wright, 2011). As a last aspect Müller, Backhaus and Buchecker

(2020) found the struggle over hegemony where supporter and opponents of wind
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energy projects see very differing landscapes and that these spatial perceptions are

a manifestation of a political disagreement within the local community (Müller,

Backhaus, and Buchecker, 2020). It is important to note that in the study Müller,

Backhaus and Buchecker (2020) the people who were questioned were local people.

One could argue that evaluating the opinions of local people differs substantially

from the meaning national or global people would ascribe to the same landscape

scenes.

The issue with local approval rates of wind parks was recognized by McKenna et

al (2021) as well and was analyzed by them in their research which focuses on cost

efficiency and public approval ratings (McKenna et al., 2021). McKenna et al (2021)

focus on an approach where they try to evaluate a larger area using the Scenic-or-Not

data set which is also used in this thesis. Just like Fast et al (2016) have concluded

that even though approval for wind parks has increased over the last years, many

wind projects still encounter local resistance which only seems to intensify if the

local population is not included in the decision making process (Fast et al., 2016).

This issue is central in the research which McKenna et al (2021) have done and they

propose a quantitative framework to explore the relationship between cost efficiency

and landscape beauty using the Scenic-or-Not data set, that is also used in this the-

sis. The Scenic-or-Not project consists of a web interface where users can view an

image and give it a score between one and ten. The application has been gathering

scores by different users until 2015 and the data covers nearly 95% of the 1 km

squares of land mass in Great Britain and contains 1,536,054 ratings for 212,212 im-

ages (McKenna et al., 2021). By questioning the British public on how they would

evaluate the image of a landscape in an image and saving the scores over some time,

their project has given the science community a data set to investigate what people

value most as landscape features. Using this data set McKenna et al (2021) build

different regression models with various predictors, like distance to national parks or

distance to airports. The results showed that an increase of 1% higher scenic value

has 6% lower probability of being evaluated positively. These results show how vital

scenic beauty and its preservation is. They also show how the Scenic-or-Not data set

can be used to analyze large areas based on the scenic value. The difference between

the machine learning approach by McKenna et al (2021) and the participatory study

drawn up by Müller, Backhaus and Buchecker (2020) in terms of spatial dimensions

and included data, leads to different areas of application for the two approaches.

Olafsson et al (2022) have emphasized that both approaches have their advantages

but should be used for different tasks concerning landscape evaluation. Olafsson et

al (2022) conclude that when using Flickr images, the majority of images correlate

to places which can be accessed easily. At the same time the images originated

from local people as well as from visitors and tourists. On the other hand, the

information gathered from the public participatory geographic information system

(PPGIS) which they have built, more likely includes less accessible locations and
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therefore differs from the Flickr data. The research of Olafsson et al (2022) hinted

that PPGIS is better suited for the analysis of a larger range of different intrinsic

and social affective landscape values. Olafsson et al (2022) conclude that decision

makers can draw from Flickr data when looking at aesthetic value of landscapes but

when the goal is to assess more detailed information on landscape, PPGIS should be

used to arrive at appropriate decisions concerning landscape conservation (Olafsson

et al., 2022).

It is without a doubt that the spatial researchers benefit from such large scale image

and text data like Flickr or the Scenic-or-Not data set which allow great insights

into the perception of landscape. This potential of the Scenic-or-Not data set was

also picked up by Seresinhe, Preis and Moat. Seresinhe, Preis and Moat did sev-

eral research projects using the Scenic-or-Not data and were able to show how they

could not only link scenery with different distinct features but also use the data

and a deep learning model to predict scenic values for areas which did not have any

data points. As a deep learning scene recognition model, they used the Places365

CNN (Seresinhe, Preis, and Moat, 2017)(Zhou et al., 2016). This is a pre-built

convolutional neural network which was trained with 1.8 million images from 365

scene categories. This model is able to detect landscape features with a calculated

accuracy. They found that on one hand, natural areas usually correlate to higher

scenic values but on the other hand also man-made objects may have a higher scenic

value. Examples could be: viaducts, windmills or a light house. They also believe,

like Ulrich (1993), that certain preferences could be developed through evolution.

Because people feel more at ease when they have some form of shelter or a place

which we think might be interesting to explore (Ulrich, 1993). This would support

also their findings which show that not only natural landscape have high scenic

values. Man-made structures can act as safe spots and because of evolution could

correlate to more comforting landscapes (Seresinhe, Preis, and Moat, 2017).

A different approach when working with the Scenic-or-Not data is not looking at the

images themselves but analyzing the tags and description which are associated in

the data with the Geograph images. Chesnokova, Nowak, and Purves (2017) show

in their research how also a language based random forest model is able to predict

scenic values based on the votes of the Scenic-or-Not images. One issue they were

faced with were certain words that were written in Gaelic which causes a misclas-

sification of the word. Further issues were user bias, caused due to a single user

posting multiple images onto the platform Geograph and then being voted on for

the Scenic-or-Not project. This led to using 850 voted Scenic-or-Not images which

were described and tagged by a single user. A last interesting aspect in the paper

was the fact that the performance of the model increased when the resolution de-

creased. Chesnokova, Nowak, and Purves (2017) changed their grid resolution from

2.5 kilometers to 10 kilometers and with this could explain 67% of variance instead

of 41% (Chesnokova, Nowak, and Purves, 2017). Similarly like Chesnokova, Nowak,
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and Purves (2017), Havinga et al (2021) used a random forest algorithm to evalu-

ate Flickr images and environmental indicators to predict scenic beauty using the

Scenic-or-Not data set as a scenic referference value. For the environmental variables

Havinga et al (2021) chose three different factors which consisted of naturalness, vi-

sual scale, complexity and uniqueness. The environmental indicator “Naturalness”

referred to the percentage of ecosystem types which aimed at integrating the humans

innate biological need to affiliate with nature. “Visual Scale” targets at representing

our interpretation of higher elevations and the possibility of seeking refuge within

elevation differences. For this the elevation difference was calculated and imple-

mented in the model. With the variable “Complexity” our need to explore was

integrated. The variable complexity consisted of Patch Density Index (PDI) which

represents the spatial distribution of continuous ecosystem patches within a certain

area. Additionally, the Shannon Diversity Index (SDI) was calculated which is a

measure of biodiversity that looks at the number of different species in a specified

ecosystem and their corresponding abundance. Lastly, uniqueness was chosen as an

environmental indicator which integrated the fact that unique elements generate a

greater aesthetic value. When looking at a city environment, a green patch with

trees and a small pond with ducks swimming it, will uplift the general scenic value

of the particular area. On the other hand also man-made structures like historical

points of interest can have a similar effect on a more natural area (Havinga et al.,

2021b).

As a modelling approach a random forest regression model was chosen and imple-

mented. First a model for the environmental indicators was built and resulted in a

R2 of 0.82. A second model which was built based on the labels and words of Flickr

image metadata, also performed well and achieved a R2 of 0.679. The combinated

model out of the Flickr and the environmental indicator model performed the best

with a R2 of 0.829. Just like Chesnokova, Nowak, and Purves (2017), Havinga et al

(2021) were able to show that it is possible to build a scenic model based only on

aesthetically connotated words and additionally were capable of building a model

based on a selection of environmental variables. Havinga et al (2021) do emphasize

however, that a more accurate model could be achieved by altering certain environ-

mental variables (Havinga et al., 2021a).

1.5 Research Gap

The research area of landscape beauty and scenic perception has been growing in the

last years and has become a major component when talking about human health.

The reason why this area of research is so interesting, is that a data layer with the

scenic value for a specific area has a large range of different possible application

fields. These range from planning large infrastructure projects to landscape preser-

vation. To tackle this Scotland among other European countries has developed a

data set which is called National Scenic Areas. The government defines the data
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set as “[...] a national landscape designation of areas that have been identified as

having outstanding scenic value in a national context. The designation’s purpose is

both to identify our finest scenery and to ensure its protection from inappropriate

development through the planning system [...]” (UK, 2023). Such a data set is not

present on a national level for Switzerland and could have an impact on infrastruc-

ture planning.

Switzerland as a direct democracy allows their people to have a voice when it comes

to projects surrounding their homes or which change local recreational areas. This

makes project planning and execution a hard task for decision makers. When look-

ing at the example of wind energy, Salak and Hunziker (2022) concluded in their

research, which involved a large scale questionnaire on the views of the popula-

tion on possible wind park locations, that although the Swiss people are in favour

of wind energy they cannot agree on a location. Landscape preservation and site

planning are important issues in which the Swiss population expressed its opinion

and showed some hesitation. Untouched mountainous regions for example had a

low approval rating whereas suburbs or urban areas had a higher one (Salak and

Hunziker, 2022). To further explore the correlation between different landscape

features and scenic beauty, more research needs to be done. This could be based

on the Scenic-or-Not data set, similarly to the studies of Chesnokova, Nowak, and

Purves (2017) or McKenna et al (2021) have done. Both these studies focused on

the British mainland and concluded that their model could hold up when evaluating

scencic beauty and could possibly be used to develop a deeper insight into landscape

beauty. McKenna et al (2021) as well as Chesnokova, Nowak, and Purves (2017)

mention in their discussion the possibility of further evaluating a machine learning

model based on the Scenic-or-Not data set for a geographically different region and

see if such a model is transferrable (McKenna et al., 2021). This could give insights

on how different cultures that are used to experience different landscape features,

evaluate their landscape. The Swiss and the British landscape have some similarities

but differ in many aspects such as the coastal area in Great Britain or the Alps in

Switzerland. A transferred model, where machine learning insights of one country

are used to develop a data set in a different country could further give insights as to

whether or not a data set like Scenic-or-Not can be used to determine larger areas

than those included in the data set. This might shorten data gathering processes

for other projects and show how people perceive landscape interculturally.

Olafsson et al (2022) have discussed that when decision makers want to make well

founded decisions and want to include landscape beauty, a mixture of data of both

large scale scenic models and PPGIS should be used. Such a large scale data set for

landscape beauty in Switzerland could give more context and might help develop

frameworks like Müller, Backhaus and Buchecker (2020) try to use, to assess land-
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scape beauty. As a result the process of planning infrastructure like wind parks,

industrial complexes or highways could be sped up without risking large political

debates within community members.

1.6 Research Goals and Questions

This master thesis aims to develop and evaluate a machine learning model which

predicts landscape beauty in Switzerland. The evaluation of landscape images based

on scenic beauty is subjective and can result in large variations between votes.

Here, a machine learning model might have difficulties finding patterns because

they possibly do not exist or not sufficient data is given to the model to learn

relationships. Still, with the help of additional variables like elevation, land use or

noise, the goal is to see where and how well computers can learn scenic beauty as

humans see it. If successful, such an approach could have a significant impact on

new planning processes where landscape beauty is suddenly a constant value which

can be integrated into the suitability analysis and enhance PPGIS in the affected

communities. For this thesis, the following goals are defined:

• Explore different aspects of landscape beauty and the possibility of transferring

an interpretation of scenic beauty to a different region.

• Analyze the performance of machine learning approaches using spatial data

and a British data set as training data to predict scenic beauty in Switzerland.

• View how a resulting scenic layer impacts planning processes in Switzerland

and be a useful aspect when trying to achieve high public approval ratings for

infrastructure projects.

Out of these goals, four research questions were formulated which will be tackled

and answered in this master thesis.

1. How can scenicness of landscape be measured and transferred to different

geographic regions using a machine learning model?

2. What are the limitations of using a machine learning model when looking at

a topographically complex country like Switzerland?

3. How accurately can scenic areas be mapped and used as a planning tool for

decision makers who plan infrastructure projects like wind parks or roads?

If the model does not hold up as predicted, research question four will be

looked at more closely than research question three, in order to get deeper

insights as to where the model shows weaknesses.

4. In which areas and how could the model be improved so that a suitable scenic

map can be developed for Switzerland?
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2 Methods

In this chapter the process of developing the scenic landscape model based on the

British Scenic-or-Not data set is described. The model development was the first step

in the process towards predicting landscape beauty for Switzerland. Furthermore

this chapter also describes the data preparation for the British data layers on the

one hand and the Swiss data layers on the other. Finally, this chapter addresses

how the scenic map for Switzerland was calculated.

2.1 British Random Forest Model

The following chapters describe the development process of the different random

forest machine learning models. Different approaches were tried and assessed and

only the best models were used in a second phase to predict the scenic scores.

2.1.1 Data Selection

Random Forest is the machine learning model which was chosen for this task. It uses

a vector of independent X variables and a single value for the dependent Y variable.

The X variables are then used within the machine learning model to search for

patterns. The algorithm learns and later uses these patterns to predict Y values.

Random forest is one of many algorithm and was in this thesis chosen because of

its good interpretability. The user can trace back the models decisions and display

the prediction path in the form of a decision tree. For the British model the Y

variable was represented first by the mean value of the Scenic-or-Not images votes

and later simplified by using different categories. Four different data input layers

were selected as a first basis for the X variable vector:

• Scene categories

• Land use classes

• Elevation

• Noise levels

Scene Categories: The choice of using the Places365 model is based on the re-

search done by Seresinhe, Preis, and Moat (2018) where they used the Places365

model to gain more information on what is visible inside of the images that are fed

into the model (Seresinhe, Moat, and Preis, 2018).

Land Use: The spatial variable land use was included as an estimation for land-

scape diversity and as a tool to detect how natural a place is. Landscape diversity

was identified by Bell (1999) as being an important factor (Bell, 2012). Hunziker

and Kienast (1999) also found a statistically significant relationship between diver-

sity and scenic value of landscape (Hunziker and Kienast, 1999).
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Elevation: Elevation was introduced as an estimation for item Multiple Scales de-

fined by Bell 1999 as a factor that influences perceived landscape beauty (Bell, 2012).

This preference could be caused by our prey and predator history (Havinga et al.,

2021b).

Noise levels: As a tranquility variable a basic noise estimation was introduced as a

spatial variable. Sound influences the perception of landscape and could be seen as

one of the most important variables when it comes to perceived landscape beauty.

Because sound affects us more constantly than any other sense it is therefore crucial

to include some form of noise analysis when evaluating landscape beauty (Ches-

nokova, Taylor, et al., 2018).

In a second phase two additional feature classes were added to try and improve

the models performance:

• Dominant image color

• Object detection

Dominant image color: The feature of extracting color from the images was based

on the Landscape Character Assessment by Tudor (2014) where they identified color

as being an important aspect of what the visual sensory system records and through

this influences landscape perception (Tudor, 2014).

Object detection: The object detection model which is trained on COCO17 data,

was introduced in a later stage to act as a complementary variable to the Places365

model to extract more information from the provided images (Tensorflow, 2023).

For the data of the scene categories a pre-built machine learning model was used

to generate the data by predicting different scene categories for the Scenic-or-Not

image data set. The land use data set was taken from the CORINE land cover data

set which splits the data set into 45 different land use categories. The elevation data

was taken from the OS Terrain 50 data set which is distributed in grid cells. Noise

levels were calculated from street and rail networks using the inverse square law and

where buffers were laid around the rail and road network.

2.1.2 Data Pre-Processing

Scenic-or-Not data set

The Scenic-or-Not project is a web platform where people can vote on images show-

ing British landscape. The score scale ranges from one to ten. The web platform

saves these votes in a database which was downloaded and used for the training of

the British random forest models. As mentioned before the application has been

gathering data until 2015. The data set covers nearly 95% of the 1 km squares

of land mass in Great Britain and contains 1,536,054 ratings for 212,212 images.
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Figure 6: Example of an Scenic-or-Not image with the votes symbolized as hearts
above the corresponding score (Geograph, 2023)(Seresinhe, Moat, and Preis, 2023).

Figure 6 shows the graphical user interface and an example image from the Scenic-

or-Not data set with the votes symbolized as the hearts above the corresponding

score. Because of the great spatial resolution, this data set has a lot of potential

to cover different landscape scenes. The data set built the basis for the machine

learning models.

Places365

Places365 is a pre-trained Convolutional Neural Network (CNN) which is able to

recognize 365 different scene categories in an image. Convolutional neural network

(CNN) is a machine learning approach and concentrates on processing grid data.

In general, CNN are mostly used for image and video processing. CNN’s are very

successful in tasks such as image recognition, object detection, and image segmen-

tation, and have been used in a wide range of applications, including self-driving
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cars, medical imaging, and facial recognition.

The Scenic-or-Not images were run through the Places365 model and this built the

first layer of the data input vector that is later fed into the random forest model.

Here, in a first phase each Scenic-or-Not image was loaded and the Places365 CNN

predicted different scene categories for the image. The model outputs a prediction

accuracy for each possible scene category but as the accuracy dramatically decreased

after the fifth category, only the top five predictions with the highest accuracy scores

were used. All possible features are listed in the Appendix A. In figure 7 the predic-

tions for a sample image out of the Scenic-or-Not data set are shown. The Places365

CNN takes the image and predicts different scene categories with an corresponding

accuracy score. From top to bottom the accuracy decreases, which means that the

scene category driveway is most likely and the scene category tree farm is least

likely. This pretrained model was used to predict all Scenic-or-Not images and the

corresponding scene categories were added to a shapefile which included all value for

the performed votes, variance, average, image link and the corresponding location

of the image. A small number of images were dislocated on the Geograph server

infrastructure and therefore could not be found anymore, which meant that the

number of samples which could be drawn from the Scenic-or-Not data set decreased

slightly. Because the model predicts with a certain accuracy score and the model

was designed in a way where it outputs a prediction score for all classes, the list

of scene categories which was added to the shapefile, was limited to the first five

predictions. In previous tests with the model the first five predictions still had some

statistical relevance. Figure 7 shows an example of a Scenic-or-Not image with the

Figure 7: Example of a Scenic-or-Not image with the calculated scene predictions,
generated by the Places365 model (Geograph, 2023).
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predicted Places365 scenes and the corresponding accuracy scores. The predicted

scene category tree farm has only a score of just over 2%. This means in other words

that the Places365 model predicts with just over 2% confidence that the image scene

is a tree farm. All predictions for other scene categories were lower than 2% for this

image, except the five categories which are listed in figure 7.

The categories had to be encoded in order to make it readable for the random for-

est model. For this a one-hot encoder was chosen to ensure good traceability to

important subfeatures (see chapter 1.3.4).

Elevation

The OS terrain 50 data is distributed as a split multi-tile grid which means that

the data for the UK is divided into individual layers (Survey, 2023b). A first step

was to create a single file by computing a so-called virtual layer (VRT) out of all

the grid cells. Because the resolution is 10 km x 10 km, normally the resulting file

size would become immense. With VRT files the user has the option to compute

and merge multiple tiles faster to save storage space when writing the file to the

computer memory. For this step the library GDAL was used. This library contains

the function gdalbuildvrt which takes a list of file names and an output file name as

an input parameter. The output file in the format .vrt can easily be imported into

QGIS without an exceedingly long loading time.

In a next step the virtual layer was rasterized and exported as a TIFF file. For each

image a kernel was then placed over the x- and y-coordinate of the image to compute

the average meter above sea level for this specific location. The kernel size was set

to a three by three matrix where each cell was 100 by 100 meters. The search kernel

had a search dimension of 10’000 square meters around the point of interest. The

average meters above sea level formed the next independent X-variable and was in

a floating point format.

Land Use

For the land use data the CORINE land use data set was integrated (Cover, 2023).

The reason for the choice of this data set is that the same data set is also available

for Switzerland. This minimizes inaccuracies when discussing the way the data was

collected and evaluated and allows the machine learning model to learn from similar

data structures. The received data consisted of a vector layer with a polygon for

every location which had been assigned the land use class as an attribute. To make

it an interpretable data structure for the machine learning model, in a first step the

data set was rasterized and exported as a TIFF file. As a fixed grid cell size 100 by

100 meters was chosen.

Again for each image of the Scenic-or-Not data set a kernel was placed around the

x- and y-coordinates. For the land use layer an array was gathered of all land use

classes which were detected inside of the kernel and the resulting array represented
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an additional X-variable for the random forest regression model. The string type

data for the land use classes were then encoded once again using a one-hot encoder

(see chapter 1.3.4).

Noise

As a further element a noise layer was incorporated into the input data. The goal was

to differentiate between very loud or busy places and more quiet and natural places.

To achieve such a data layer, the rail network for Great Britain was downloaded

from the data share platform (Addy, 2023). The railway layer was merged with

the road network of Great Britain which was downloaded from the OS Open Road

project (Survey, 2023a). The resulting layer showed where possible noise pollution

could emerge. Noise emissions from air traffic were left out, as airports usually are

surrounded by an intricate network of roads and railways causing high noise levels

anyway.

To evaluate how noisy a place really is, the inverse square law was used. This law

describes how different sound attributes change over time and distance to the source.

Due to limited time and the fact that noise is only a small part of the model, the

simple approximation of the inverse square law is deemed sufficient for the scope

of this master thesis. Overall, with the inverse square law noise is overestimated

because the method does not take topography or man-made structures into con-

sideration, which would block sound more than an even surface of the earth. The

search kernel for the noise layer was a three by three grid cell and here the median

noise class was inserted as the noise variable.

Figure 8: The graph shows the processing steps of how the spatial features elevation,
land use and noise were extracted out of the raster files for the individual images.

Figure 8 summarizes the data gathering process and lists how the elevation data
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was gathered using an average kernel. For the land use data, the land use classes

were gathered within an array and added to the input data for the machine learning

model. For the noise data a median kernel was used where the most dominant noise

class was gathered and added to the input vector. Similar to the land use classes,

the scene categories were represented as a presence matrix.

2.1.3 Hyper-Parameters and Model Fitting

When the data was prepared and the model was first trained with the prepared

features and most hyper-parameters were set to the default value, the performance

was not optimal. Machine learning models, depending on the underlying concept

used, have various parameters which influence performance. These parameters are

relevant to improve the model’s performance and need to be adjusted. For the

random forest regressor model different parameter options were looped over and

evaluated with the R2 value. For this step it was important to keep all parameters

constant except the parameter that was fitted so that the effects of the tested hyper-

parameter can be evaluated.
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For the regressor the R2 accuracy metric was chosen to assess how well the X-

variables explain the variation of the predicted Y-variable which could further give

insights into how well the features were chosen. When trained, the regressor is

supposed to predict continuous values based on the average vote which acted as the

dependent y-variable. When looking at the variance of the predicted value and the

actual average voting values, the performance of the model does not hold up and

has a R2 of around 0.4.

Figure 9 shows how the different parameters affect the R2. It seems as if the model

did not have enough data points to learn enough relationships to predict the test

data set correctly. This is clearly visible in the graph on the bottom right of figure

9. It was the last test iteration to search for the optimal parameter value for the

maximum depth. This value controls how deep a tree is allowed to be built. This

particular graph indicates that the model learned sufficient relationships from the

training data but could not use the insights to sufficiently predict test data points.

The test data accuracy never exceeded 0.4. Such a graph suggests that the model

overfits (see chapter 1.3.3). To solve the issue of insufficient prediction accuracy,

different solution approaches could be considered.

1. Increase training data

2. Simplify learning task

3. Change feature number

A first possible improvement could be to increase the training data so that the

algorithm has more samples to learn relationships between the different features.

Since data gathering has stopped a few years ago, increasing the training data size

was not an option in this case.

Simplifying the learning task is a different approach, in which one switches the

machine learning strategy in order to try improve the accuracy. In this case the

regressor approach proved to be too complex when considering the complexity of

the underlying problem. Some insight into why predicting scenic beauty based on

the Scenic-or-Not data set is too complex, is visible in the distribution of the variance

between the individual votes inside of the Scenic-or-Not data set.

Figure 10 shows that the variance is rather high within the different votes for each

image. This highlights how difficult it is to fit a model to evaluate landscape beauty

when even real people do not agree with one another. The clear discrepancies in

the perceived scenicness of the landscape make it hard to detect a clear relationship

between certain features and the resulting Scenic-or-Not average voting value.
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Figure 10: The distribution of the variance within the votes for the individual Scenic-
or-Not images.

2.1.4 Random Forest Classifier

In a second approach a random forest classifier was implemented in order to test

the limits of machine learning in its ability to recognize landscape aesthetics. The

goal of this approach was a simplification of the prediction task (see chapter 2.1.3.

With the classifier model the Y-variable of the model had to be refactored in order

to fit the constraints of the random forest classifier concept. The random forest

classifier model does not predict continuous values, like the random forest regressor

does, but rather predicts categories.

As an experiment to further understand if machine learning can differentiate between

the two options scenic or not scenic landscapes, once again using the Scenic-or-Not

data set as a scenic reference value, a dual classifier random forest model was built.

This gave some insights on the possibility of training a machine learning model on

the most basic decision.

As a accuracy metric the F1 score was chosen because the metric assesses the per-

formance of a model well even though the data is imbalanced. Additionally, using

a confusion matrix the F1 score gives a great overview over how good the accuracy

scores are for the different classes. The F1 scores for the dual category random

forest are summarized in table 1. Table 1 and figure 11 show that the model can

detect the difference between scenic and not scenic places.
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Figure 11: Confusion matrix for the dual classifier random forest model.

Label 1 Label 2

F1 Score 0.83 0.59

Table 1: F1 scores of the dual category random forest classifier.

Because the scenic score are so unevenly distributed as seen in figure 12, a function

of the well known python module numpy was used, called qcut(). This function

allows to categorize data into groups where each group fulfills a certain condition.

In the scope of this task, the categorization satisfied the condition that each group

had an equal number of samples. In this attempt the data was categorized into five

groups as follows:

• Values between 1.0 and 3.0 received label 1

• Values between 3.0 and 4.0 received label 2

• Values between 4.0 and 4.778 received label 3

• Values between 4.778 and 5.8 received label 4

• Values between 5.8 and 10.0 received label 5

Because of the increased sample size for the extreme classes, the expected result was

that the model would perform better and had less difficulties to predict accurately.

A disadvantage of this interval size is that the higher scenic rated areas are more

generalized and the model has less capabilities to differentiate between the high

scenic beauty areas and the very high scenic beauty areas. With this classification
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Figure 12: This figure shows the score distribution for the Scenic-or-Not data set.
This histogram is based on the average vote values of the images.

approach the performance did not improve significantly. An optimal confusion ma-

trix has a diagonal orientation where the fields from the top left corner to the right

bottom corner are filled with prediction records. On the y-axis (bottom to top) are

true labels and on the x-axis (bottom left to bottom right) the predicted labels can

be read. There is a top left to bottom right diagonal tendency visible but the F1

scores show that the model still does not explain enough of the variance and still

predicts a lot of test samples incorrectly (see figure 13).

Label 1 Label 2 Label 3 Label 4 Label 5

F1 Score 0.52 0.31 0.24 0.18 0.56

Table 2: F1 scores of the five quantile class random forest classifier.
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Figure 13: Confusion matrix of a five quantile class categorization model where the
model predicts five classes and each class had an equal amount of training samples.

To improve the classification model further, the number of classifying labels were

reduced from five to four. This helps on one side to increase the number of samples

per label but also simplifies the classification task for the random forest model as

explained in chapter 2.1.3.

In this next step the model was reduced to a four label classification model with an

equal interval label groupings. The intervals were chosen as follows:

• Values between 1.0 and 3.25 received label 1

• Values between 3.25 and 5.5 received label 2

• Values between 5.5 and 7.75 received label 3

• Values between 7.75 and 10.0 received label 4

In this approach it was once again important to balance the training samples per

category. For this model the quantile categorization method using categories with

an equal sized interval was chosen over the method in which each category has an

equal number of samples. For the building of the training data set a function was

used in which a provisional training data set was created first. This provisional

data set was then searched for the lowest common denominator for the number of
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samples each class had. The value of the common denominator was then used to

choose a random equally sized selection of samples from the other categories which

then represented the training data set which was used to build the model. This

was done multiple times to ensure that the model was fed with as many different

samples as possible.

Additional Features

Additional to the model, the last possible improvements implemented were men-

tioned under point 2.1.3. Two more features were introduced to the model which

could have beneficial effects on the models performance. A first feature was another

CNN which detects basic objects inside an image. This model was pre-trained and

accessed through the Tensorflow library (Tensorflow, 2023). The range of objects

the model detects is listed in the appendix C and corresponds to the label list of the

COCO 2017 data set (COCO, 2023). The found object categories were then encoded

using a one-hot encoder approach which is discussed in chapter 1.3.4. In a next step

this data is fed into the random forest model alongside the original X-variable data.

A second feature was the analysis of the dominant color within the image. Based

on the LCA by Tudor (2014) which is visualized in figure 1, color plays a role in the

human perception of landscape and since color is easily extracted out of an image, it

is a well suited feature to possibly enhance the random forest models performance.

For this the image was read and the three most dominant colors were extracted from

each image. These colors were hex encoded and had to be encoded once again with

a label encoder to make it readable for the random forest model. For the colors

a label encoder approach was used where all three columns were encoded with the

same encoder. The label encoder approach is explained in chapter 1.3.5.

The F1 scores show better trained low scenic classes where more training data was

available and low scores for the higher scenic classes. The confusion matrix in figure

14 shows better accuracy for the low scenic classes and lower accuracy for the higher

scenic score classes.

Label 1 Label 2 Label 3 Label 4

F1 Score 0.55 0.51 0.21 0.19

Table 3: F1 scores of the four category random forest classifier.
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Figure 14: Confusion matrix with a four equal interval class categorization model.

Due to time constraints and the complexity of the research questions as well as the

variance within the different Scenic-or-Not votes (see Figure 10), the further devel-

opment of the British model was abandoned. When further analyzing it becomes

clear that the model can not become more accurate than the underlying data al-

ready is. Figure 15 shows how accurate the British model is when looking at border

cases. The absolute majority of test samples were classified within a range of 1.0

points difference to a class border value. This final model was then used to predict

Swiss data samples.
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Figure 15: Shows the difference between the class border values and the real mean
voting value of the test data set. If the vote average of the Scenic-or-Not image was
within the class limits of the prediction, the difference was counted as zero.

2.2 Swiss Scenic Predictions

The Swiss scenic predictions are based on the random forest model which was gen-

erated with the British Scenic-or-Not data, elevation data, noise levels, land use

classes, object detection model and dominant image colors.

Flickr data set

Flickr is the image data set that is used to predict scenic scores. Using the British

random forest classifier, the Flickr images are then fed into the model and act as

sample points to be later interpolated. Flickr is an online platform for people who

would like to share or store their images. The images get a geotag and a date and

are stored. Through Alexander Dunkel from the Dresden University of Technology

I was able to obtain a subsample of Flickr images for Switzerland. In figure 16 the

spatial distribution of the Flickr images is visible. The map shows where Flickr

images are present as a density estimate. Large cities like Zürich, Bern or Genève

show a high density of Flickr images. Other areas that stand out are places with a

high touristic visitor number like Luzern or the area around the Jungfraujoch.
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Figure 16: This heatmap depicts all Flickr images that were used in this thesis as a
density estimate. This heatmap was calculated using the QGIS heatmap interpola-
tion method (QGIS, 2023)(Swisstopo, 2022).

2.2.1 Data Pre-Processing

In a first phase to build the Swiss model, the Swiss data had to be prepared. Here,

the extensive list of Flickr images was filtered and only images of 2016 and later were

selected. It is highly plausible that radical changes like infrastructure projects might

have occurred between for instance 2007 and 2016, which could falsify the predictions

of the Places365 model or the object detection model as scenes or objects which have

disappeared might be detected.

As image input, a Flickr image data set is used or the time frame between 2016 to the

present. It was taken from the Flickr platform (Flickr, 2023). Every image previous

to the ones of 2016, at the risk of looking different and therefore at risk to falsify the

outcome of the scene recognition model or the object detection model, was taken

out. Each image was loaded into the Places365 model and the scene categories were

saved as strings to the informational dataframe of the images. According to the

workflow with the British images, the first five scene predictions from the Places365

model were chosen.

In a similar way the object detection model predicted the different objects present

in the image which were then also added as string values. For the elevation data,

the newest Swisstopo elevation model was used with a grid size of 200m (Swisstopo,

2023a). This was resampled to achieve a 100m grid size.

The land use data was taken from the same provider as the British data provider.
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This way uncertainties in how data is handled and what kind of classes are included,

can be remedied. For such a case the CORINE data set is an optimal choice (WSL,

2023).

The noise layer was constructed identical to the British data and based on the

road and rail network of Switzerland. The network maps were downloaded from

the Swisstopo SwissTLM3D program (Swisstopo, 2023b). For the street layer only

specific streets were chosen. Only streets on which there is regular motorised traffic

were relevant to evaluate noise. Therefore, the following street feature classes were

chosen:

• 10 meter streets

• 8 meter streets

• 6 meter streets

• 4 meter streets

• 3 meter streets

• Main roads

• Highways

Equivalent to the process of the British data preparation, the inverse square law of

sound was used to calculate the noise levels. Based on the inverse square law the

sound level experienced by the human ear decreases by six decibel per doubling of

distance to the source. With this simple data preparation, multiple buffers were

laid over the road and railway infrastructure and merged in a raster calculation.

The result was a categorized noise map, where a higher class number represented a

higher noise pollution.

The resulting Swiss data structure consisting of elevation data, scene categories,

detected object classes, dominant image colors, noise levels and land use classes was

fed into the final classifier and final regressor model. The performance for the clas-

sifier model can be viewed in figure 14 and the performance for the regressor model

can be viewed in chapter 2.1.3. The result was a list of predicted scores for every

Flickr image.

2.2.2 Interpolation

In a final step the predicted data points were loaded into QGIS and with the help

of spatial interpolation a scenic map was created. Here a 100m x 100m resolution

was chosen. First, the time consuming computation resulted in a 1000m x 1000m

resolution scenic map. The result showed that a 1000m x 1000m resolution would

be too coarse to explore research goal number three. This research goal aims at
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the possibilities of using a scenic map as an additional planning tool. To assess

suitability for smaller infrastructure objects a 100m x 100m gives more insight on

specific locations. In order to get more insight into how well the different models

performed overall and in comparison to each other, the predictions for the regressor

model were also interpolated. For the predicted data of the regressor model the

IDW interpolation method was chosen. Just like the regressor the IDW algorithm

outputs continuous data and takes into account the distance between the sampled

point and the surrounding data points to predict the actual value of the sampled

point (see chaopter 1.3.7).

For the classifier prediction data set, the IDW algorithm has an important downside

which is the output data type. The classifier outputs classes and the IDW inter-

polation outputs continuous data. When using the IDW method on the classifier’s

predictions one gets float numbers which do not say much when considering the

classifier models output type. For this reason here the SAGA multilevel B-spline

for categories interpolation tool was used. This interpolation method outputs dis-

crete values and because of the nature of the output adheres more to the classifier’s

predictions (Lee, Wolberg, and Shin, 1997).

2.2.3 Change Analysis

Because the Flickr images are date encoded, it is an interesting additional informa-

tion by doing a temporal analysis. Here for each year between 2016 and 2018, which

are the years with a sufficient number of samples in the selected subset of the Flickr

data set, an additional scenic map was created. For the year 2016 210’685 data

samples were used. For the year 2017 177’255 data samples were used. And for the

year 2018 123’195 data samples were used. Using the timestamp, the predictions

were filtered by year and then interpolated identically as the main classifier map in

figure 21. The resulting raster files enabled different calculations and the results of

these calculations can be used to show local changes in the years 2016, 2017 and

2018. For this thesis the raster layers were subtracted from each other. Year 2017

was subtracted from year 2016, year 2018 was subtracted from year 2017 and in an

additional output subtracted from year 2016. With this step more aspects of the

accuracy of the scenic map can be explored for example if such a timeline can be

used to assess the models ability to detect landscape beauty changes where large

infrastructure projects were built or changes in the use of landscape occurred.
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3 Results

After developing the British model and predicting the scenic scores for the Swiss

Flickr image samples the resulting scenic map was created through interpolation.

In this chapter the various results based on the different model alterations are visu-

alized.

3.1 Random Forest Regressor

In a first phase the random forest regressor model was developed and with the latest

and most accurate model a scenic map was built. This map is shown in figure 17

and is displayed as a heatmap. The scale of values in the legend correspond to the

scores originally taken from the Scenic-or-Not data set.

Since a random forest regressor model predicts continuous data and a classifier

predicts label data, the regressor map was classified with identical intervals in order

to compare the results, as can be seen in the classifier map in figure 21. The map

showed some features with higher scenic values, but on the whole had large uniform

areas where most predictions lied within the interval classes 3.25 - 5.5 and 5.5 -

7.75. Furthermore, the model did not predict values higher than 6.75 and lower

than 3.75, although the scenic scale of the Scenic-or-Not data set ranged from 1 to

10.

Figure 18 shows the same predicted data set from the random forest regressor as

figure 17 but is not classified into four equal intervals. Here more distinct features

can be observed. The northern midland of Switzerland is generally classified lower

than the alps and higher regions. Exceptions to these observations are main roads

in the valleys, for instance in the canton of Wallis where the scenic score drops in

the major valley of the river Rhône. Local hotspots which were generated through

the prediction algorithm correspond to places where more pictures were taken such

as the Jungfraujoch in the alp region of Bern or the Säntis in the north east of

Switzerland.
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3.2 Random Forest Classifier

To improve prediction accuracy a random forest classifier model was developed. In

figure 21 the resultant scenic map can be viewed. The scale of values in the legend

correspond to the originally taken scores from the Scenic-or-Not data set.

A clear pattern of the northern midlands of Switzerland being less scenic as opposed

to the better scores for the alps can be observed in figure 21 as well as in figure 17.

The classifier model distinguishes more between high and very high scenic scores as

well as between low and very low scenic scores. Low scenic scores can be observed

along major transport axes, for instance along the highway A1 between Zürich and

Bern or along the highway A2 between Lugano and Bellinzona. These are mostly

accompanied by major railway routes.

The semivariogram in figure 19 shows the spatial autocorrelation for the predicted

scenic scores for the Flickr images inside the polygon displayed in figure 20. Due

to the large number of data points, it was not possible to calculate the semivari-

ogramm for the whole of Switzerland. The semivariogram algorithm grouped the

distances between the Flickr data points into 200 distance groups (number of lags)

and considered distances up to two kilometers (maximum lag distance). It is clearly

visible that the similarity between Flickr image predictions between distances of 0

and 250 metres slightly decrease and that the semivariance remains on a similar

level after 250 meters. This means that there is spatial autocorrelation between the

Flickr image predictions up to 250 meters.

In table 4 the importance scores for the X-variables are showed. Features that stand

out in terms of importance are noise, scene categories and land use.

Color Noise Elevation Scene Categories Land Use Object Detection

Importance
Score 0.0006 0.0054 0.0020 0.0049 0.0319 -0.0003

Table 4: Here the feature importance scores are listed for the different X-variables
that were used to build the random forest classifier model.
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Figure 19: The semivariogram shows possible spatial relationship for a subset of
data sample from all predicted Flickr images. The subset is spatially visualized in
figure 20.

Figure 20: This subset of Flickr images was used to calculate the semivariogram in
figure 19 (Swisstopo, 2022).
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3.2.1 Timeline

Because the Flickr data assigns a time stamp for each image, the predicted scenic

scores are ideal to use to create a timeline along the years. This has been done by

filtering for specific years. Each year shows a similar pattern in which areas have

a low and which have a high scenic score. Urban areas have lower scenic score and

more natural areas like the alps have higher scenic scores. It is visible that even

though similar regions have similar scores in each region, the patterns are not always

identical. In year 2016 an area that stands out is along the highway near Bassecourt

in the canton Jura which cannot be found again in the years after. A different

abnormality is the the low scores which occur in the Magadino plane in the canton

of Ticino. Further south of the Magadino plane towards Lugano and Mendrisio the

scenic scores rise again.
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Change Detection

Within the change detection maps in figure 25, figure 26 and figure 27 similar areas

stand out as in the yearly scenic maps in figure 22, figure 23 and figure 24. The

area of Bassecourt shows a massive increase in scenicness whereas the same area

shows a very low scenic score in 2016. The alps appear stable in their scenic score.

Most scenic changes can be seen in the more urban areas of the northern midlands

of Switzerland as well as along the highways with heavy traffic, for instance the

highway leading up to the Gotthard tunnel around Biasca and Bellinzona.
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3.2.2 Manual Flickr Validation

The manual Flickr validation was a process where 225 Flickr images were looked at

and evaluated based on my personal landscape beauty preference. In doing so some

reference data was generated to see how well the model performed and what kind

of images were included in the predictions. Figure 28 shows that out of 225 images

40 of the images showed an indoor scene and 185 images showed an outdoor scene.

In a second step these 185 images were scored in a similar way as the Scenic-or-Not

images were scored (from 1 to 10). Figure 29 shows the confusion matrix for the

manually scored Flickr images. A large number of Flickr images were located in the

Alps and because of this the very high scenic class with scores between 7.75 and 10.0

had more samples than the other classes. This class was also the one that scored

the best concerning F1 score (see table 5). Classes that scored worse were class one

with scenic score between 1.0 and 3.25 or class 3 with scenic scores between 5.5 and

7.75.

Figure 28: The bar chart shows the number of images that were useable for the
scenic landscape analysis and the number of images that showed an indoor scene
and were therefore not ideal to assess landscape beauty.
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Figure 29: This figure shows a confusion matrix for the validation Flickr images
that were scored by the model and by myself .

Label 1 Label 2 Label 3 Label 4

F1 Score 0.32 0.38 0.31 0.71

Table 5: F1 scores for the four categories when comparing the classifier model’s
prediction and my scenic scoring for the validation images.
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3.2.3 Validation Sites

As a final analysis step, a local validation procedure was done. Here three different

locations were chosen and visited. During my visit, pictures of and notes on the

surrounding landscape were taken. In figure 30 the validation sites are visualized

which included Biasca (TI), Bassecourt (JU), and Oetwil am See (ZH). Here the

urban areas within the villages were less important than the surrounding non-urban

landscape features.

Figure 30: This map shows the three validation sites which were chosen to compare
the scenic maps with the landscape scene score using images that were taken during
the validation visit.

The first validation site was Bassecourt (JU) in the canton of Jura. By train from

Basel one enters the valley from the east. At first it is a narrow valley with the river

Birs running through it. Then, after passing the town of Delémont, the valley widens

to include an agricultural landscape. I walked from the village of Bassecourt to the

neighbouring town of Courfaivre. Between the villages agricultural areas dominated

the landscape. Between the different plots the streets were narrow and rarely used

for car traffic. The local population however was able to enjoy the relative quietness

of the streets and used them for walking their dogs or for an occasional bike ride.

Some areas were recreational, idyllically positioned along the small river Sorne which

runs through the valley. The areas, sometimes equipped with grill spots hinted at

regular usage by families. Visually the landscape seemed populated with few full

natural places or special habitats. When leaving Bassecourt the large electricity

power plant stands out.

On an audible scale one realizes quite soon that with the A16 the valley also accom-
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modates an important traffic axis running from other parts of Switzerland, through

Delémont and Porrentrury in Switzerland to France. The noise from the continuous

traffic of cars from the highway carried to every spot I visited during the short walk

from Bassecourt to Courfaivre. Because of the elevated location and direct line

between highway and the walking route, the noise carried far and thus had a large

impact on the audible experience at Bassecourt. Figure 31 and 32 show the result-

ing scenic beauty and scenic beauty class change calculated from the random forest

model surrounding the validation location. Scenic value according to the random

forest classifier based on the Flickr images and in combination with the multilevel

b-spline interpolation predicts a decreasing scenicness when walking from Bassec-

ourt to Courfaivre. The Flickr images have a low spatial and temporal resolution

for this particular area. When looking at the validation images this pattern is the

opposite way. When moving spatially from image 1 to image 8 in figure 31 and 32

and running the validation images at figure 33 through the random forest classifier,

the scenic value decreases overall compared to the scenic classifier map in figure 21

but locally increases when moving to Courfaivre.
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Figure 31: This map shows the validation images at Bassecourt which were taken
at the red diamond markers and the results from the classifier map as a base map.

Figure 32: This map shows the validation images at Bassecourt which were taken
at the red diamond markers and the change detection map between the year 2018
and 2016 as a base map.
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(a) Image 1 with a predicted scenic score be-
tween 1.0 and 3.25.

(b) Image 2 with a predicted scenic score be-
tween 1.0 and 3.25.

(c) Image 3 with a predicted scenic score be-
tween 1.0 and 3.25.

(d) Image 4 with a predicted scenic score be-
tween 3.25 and 5.5.

(e) Image 5 with a predicted scenic score be-
tween 3.25 and 5.5.

(f) Image 6 with a predicted scenic score be-
tween 3.25 and 5.5.

(g) Image 7 with a predicted scenic score be-
tween 3.25 and 5.5.

(h) Image 8 with a predicted scenic score be-
tween 3.25 and 5.5.

Figure 33: Validation images which were taken around the area of Bassecourt and
run through the random forest classifier model. The scores are noted in the caption
of the individual image. 59



As a second validation spot, Biasca (TI) in the canton of Tessin was chosen. As one

of the bigger towns after the Gotthard tunnel and an important meeting point of on

the one hand the highway axis between Bellinzona and the German speaking part

of Switzerland and on the other hand the axis of the mountain pass of Lucomagno

connecting Disentis with the Italian speaking part of Switzerland, Biasca is an urban

village with the river Brenno flowing into the larger river Ticino. The massive

mountains which surround Biasca make it an impressive sight. In figure 21 the

surrounding area around Biasca is classified as very scenic except for a part of the

highway and an industrial area which lie in the west of Biasca. Going around the

village, one undoubtedly notices the two rivers meeting, green spaces and beautiful

scenery. At the same time the noise of highway was once again omnipresent and

stretched across various natural landscape features such as a river or grassland.

Similar to the validation images from Bassecourt the images from Biasca in figure

36 when run through the random forest classifier show a lower scenic score than

the scenic map in figure 21 would suggest. Only image 5 which shows slightly less

man-made structures than image 4 at the same location shows a medium scenic

score.
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Figure 34: This map shows the validation images at Biasca which were taken at the
red diamond markers and the results from the classifier map as a base map .

Figure 35: This map shows the validation images at Biasca which were taken at
the red diamond markers and the change detection map between the year 2018 and
2016 as a base map .
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(a) Image 1 with a predicted scenic score be-
tween 1.0 and 3.25.

(b) Image 2 with a predicted scenic score be-
tween 1.0 and 3.25.

(c) Image 3 with a predicted scenic score be-
tween 1.0 and 3.25.

(d) Image 4 with a predicted scenic score be-
tween 1.0 and 3.25.

(e) Image 5 with a predicted scenic score be-
tween 3.25 and 5.5.

Figure 36: Validation images which were taken around the area of Biasca and run
through the random forest classifier model. The scores are noted in the caption of
the individual image.
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As a last validation location Oetwil am See was chosen. The surrounding area of

Oetwil am See consists of agricultural areas where corn is grown or cows are grazing.

The small village is not connected to the railway network and can only be reached

by car or by bus. It was the quietest town of the three validation locations visited.

Most of the agricultural area around Oetwil am See in figure 21 is classified as very

scenic. Only the village itself has a very low scenic value and in figure 38 shows a

possible scenic class change.

The validation images show an equal scenic score between 3.25 and 5.5 when run

through the random forest classifier. However, the scores still are clearly below the

scores the scenic map in figure 37 suggested for the area.
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Figure 37: This map shows the validation images at Oetwil am See which were taken
at the red diamond markers and the results from the classifier map as a base map .

Figure 38: This map shows the validation images at Oetwil am See which were taken
at the red diamond markers and the change detection map between the year 2018
and 2016 as a base map .
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(a) Image 1 with a predicted scenic score be-
tween 3.25 and 5.5.

(b) Image 2 with a predicted scenic score be-
tween 3.25 and 5.5.

(c) Image 3 with a predicted scenic score be-
tween 3.25 and 5.5.

(d) Image 4 with a predicted scenic score be-
tween 3.25 and 5.5.

(e) Image 5 with a predicted scenic score be-
tween 3.25 and 5.5.

(f) Image 5 with a predicted scenic score be-
tween 3.25 and 5.5.

Figure 39: Validation images which were taken around the area of Oetwil am See
and run through the random forest classifier model. The scores are noted in the
caption of the individual image.
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4 Discussion

Overall this master thesis shows that a machine learning model can be used to

assess landscape beauty on a large scale based on a selection of spatial variables.

It is important to remember that the definition of landscape is vital when it comes

to selecting a scenic reference value for the model. When analyzing the Swiss-wide

scenic map in figure 21, it becomes clear that on one hand the goal of transferring

landscape beauty from one region to a geographically different region succeeded on

a basic level. However, the model had some difficulties differentiating scenic scores

in areas where Switzerland differs fundamentally in a geographical sense from Great

Britain. The basic pattern of the northern and more urban areas having a lower

scenic score and the more natural alps have higher scenic scores. This is visible in the

resulting scenic map in figure 21. Furthermore, the model was able to differentiate

between scenic and not scenic places as is shown in the confusion matrix in figure 11.

When looking at the opportunities the resulting scenic maps open up for decision

makers and planners, it is clear that the precision and spatial resolution do not

suffice yet to use them as a basis to locate suitable sites for infrastructure projects

like highways or wind turbines in terms of community acceptance.

4.1 Measuring and Transferring Scenic Beauty

Research question number one aims at exploring the term landscape beauty. This

is not a term that means the same to everyone. Questionnaires where people can

rate landscape beauty will get various results for the same landscape images, as the

Scenic-or-Not data set has shown. The variance within the votes for a specific image

(see figure 10) leads to the question whether a definition of landscape beauty as the

Scenic-or-Not project tries to find it, is even attainable. Due to this discrepancy in

the human perception, a machine learning model will always have its inaccuracies

because it can not learn patterns that are not clearly discernible in the underlying

data. This aspect was also discovered by Olafsson et al (2022) where they pointed

out that a machine learning model can be used to assess landscape beauty but its

application will not cover all fields where landscape beauty analysis is needed (Olaf-

sson et al., 2022). In this thesis the issue with differing landscape beauty perception

was also tackled. First the regressor model was not able to learn sufficiently from

the Scenic-or-Not data set to predict landscape beauty with a sufficient accuracy

(chapter 2.1.3). With the regressor model continuous data was predicted with a two

decimal point accuracy which when looking at the variance of the Scenic-or-Not data

set in figure 10 is methodically hard to justify. Because of the issue with different

perceptions within the voters of the Scenic-or-Not project, a classifier model was

developed that had better accuracy scores (see figure 14). With this generalization

in terms of score prediction, the task of the model was made easier and smoothed

out possible variance within the training data. As Chesnokova, Nowak, and Purves
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(2017) have done by changing spatial resolution from a 1 km to a 10 km resolution,

smoothing out variances within the Scenic-or-Not votes will improve the accuracy

score of the underlying model.

Although the development of a classifier model increased the performance, other

issues with transferability of landscape beauty based on spatial variables arose. This

question of transferability was identified as research goal number one at the start of

this thesis because Great Britain and Switzerland have some differences concerning

topography and landscape. Great Britain is not known for its high mountains and

this led to some inaccuracies in the higher altitude regions of Switzerland. The

classifier model predicted high scores for the alps and did not often differentiate

between high scenic value (scores between 5.5 - 7.75) and very high scenic value

(scores between 7.75 - 10.0). Even though this correlates to the real distribution of

natural areas in Switzerland and to expected patterns of a Swiss scenic map, there

are still various industrial areas above 1000 meters above sea level which therefore

should not be classified as very scenic. Figure 21 shows that also larger cities like

Davos, St. Moritz or Visp which are located in the alps have a very high scenic

value. This is caused by the fact that the maximum height above sea level in Great

Britain is not as high as in Switzerland and higher places in Great Britain often

are scenic places that offer a nice view with natural landscapes. In Switzerland the

high altitudes led to higher regions being classified as scenic or very scenic due to

the importance elevation as a variable was given inside of the classifier model (see

table 4). This means that when transferring a scenic model to Switzerland and the

model has not been trained on high altitude locations, the variable elevation might

have to be left out to ensure a more nuanced map in high altitude regions.

4.2 Limitations of Machine Learning

An aspect that is relevant for every machine learning model is the data basis on

which it is built on and the data set it uses to predict new values. As McKenna et

al (2021) explain in their research, the Scenic-or-Not data set is advantageous to use

as a base input because it covers the area of Great Britain very evenly and through

this includes many different landscapes (McKenna et al., 2021). The issue with

using the data set as a scenic reference value as in this thesis, is the immense vari-

ance within the scores for the same picture. This variance distribution is visualized

in figure 10 and shows the disparity of landscape perception of the voters. When

people’s opinion differ, the machine learning model will have troubles predicting a

scenic score accurately, especially, when using a random forest regressor which pre-

dicts continuous data. The random forest classifier performed a bit better in these

cases than the regressor. The performance increased even further when changing

the model from a five class to a four class classifier model. This is not unexpected

because by switching to a classifier model and reducing the number of predicting
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classes the task is made easier for the machine learning model. These improvements

contributed towards assessing research question number two and showed that dif-

ferent steps can be taken to improve the machine learning models performance.

In general, one can conclude that both the classifier and regressor scenic map in

figure 21 and figure 18 respectively, show a plausible pattern where the northern

more urban areas have a lower scenic scores and the alps with an overall more nat-

ural landscape have higher scenic scores. The manual validation of Flickr images

showed that the classifier model was able to identify almost all areas that were iden-

tified as high scenic areas during the manual validation phase (see figure 29). The

F1 scores in table5 suggest that the classifier model had great success finding the

scenic places among the Flickr images. Here it should be mentioned that for this

scenic class the highest number of images were inside the subsample. Most very

scenic images showed peoples impressions from glacier hikes or ski trips and often

depicted landscape scenery that Switzerland is known and visited for. With the

ultimate goal being that a map depicting landscape beauty could act as an addi-

tional decision making tool and to show which landscapes are to be protected, the

referenced maps do not suffice in terms of spatial resolution and accuracy. More

data points would need to be introduced in order to generate an accurate estimate

of the most important areas. It is hard to pin point suited areas to build, for ex-

ample a wind turbine based solely on this map and even though the classifier model

identified most of the favoured Flickr images from the manual validation phase as

scenic (see figure 29), the places falsely identified as scenic make the classifier map

as presented in this thesis prone to error (see figure 21). Additionally, the validation

sites have shown, the predicted scores from the random forest classifier model differ

from the scenic scores that were found through interpolating the scores of the Flickr

images. More images could improve the interpolation result and with it its applica-

tion potential for decision makers. If more training data and prediction data points

are available, the number of classes could be increased without a relevant loss in ac-

curacy. Ideally, rough project locations could be selected using the scenic classifier

map. In a second step at a more specific planning stage, using a PPGIS like Müller,

Backhaus and Buchecker (2020) and Moore and Hacket (2016) suggest, a precise

project locations could be selected (Müller, Backhaus, and Buchecker, 2020)(Moore

and Hackett, 2016).

4.3 Accuracy and Useability

The Flickr images usually correlate with places which are easy accessible. This

makes it harder to assess landscape beauty in more remote areas (Olafsson et al.,

2022). One could argue that research question number three and the goal of the

scenic map itself, does not include mapping remote areas. Research question number

three of this thesis aims at trying to generate a layer for planners and decision mak-
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ers that is accurate enough to identify suitable location for infrastructure projects

like highways or wind farms. Very remote and rarely visited areas are usually not

interesting locations for building new power plants, wind farms or highways. These

remote places of which only a few Flickr images exist, often are high up in the

mountains and it would be expensive to develop the place and connect it to existing

infrastructure. It is crucial to maintain infrastructure objects such as a wind tur-

bine so they need to be accessible by car. Depending on the goal of the map, Flickr

images could thus be an valid option if the goal is not to map all of Switzerland.

Further, it is important to add that when using such open source image data, the

user never really knows what type of theme they get in an image. For this thesis

only images of outdoor scenes are of interest. For the validation site Bassecourt

in figure 31, specifically the data point in the middle of the village of Bassecourt,

the classifier model predicted a high scenic value. This is questionable for such an

urban environment. When looking up the specific image in the Flickr data set, it

became clear that the image showed a close-up of two people standing together in

a closed room. Such an image is not suitable to assess landscape beauty. This issue

when using Flickr images for landscape beauty analysis was also made a subject of

discussion by Seresinhe, Preis and Moat (2018). Using Flickr images in the land-

scape beauty analysis could add to the uncertainty of the model (Seresinhe, Moat,

and Preis, 2018). When using an open source image data set this effect is hard to

avoid. During the manual validation of a subsample of Flickr images, the ratio of

images adding to uncertainty became clear. Figure 28 visualizes that out of 225

manually validated and scored images only 185 images were actually useable. The

other images showed indoor scenes. All these indoor images added uncertainty to

the interpolation and influenced the accuracy of the scenic map. To solve this issue

one could add some kind of word analysis algorithms which analyzes so called tags

and tries to find out what theme the image has (A tag is a word which is linked

to the image which the user can choose freely but usually pertains some connection

to the image and what is in it). This could improve the selection of Flickr images

that are included in the analysis. Another issue with open source data sets could

be relocated images. Here the big advantage with using additional spatial variables

like elevation and land use together with the image analysis variables with the scene

recognition and object detection, the model stays more stable because it has still

data to predict scenic scores even though the scene recognition and object detection

did not generate useable information.

The machine learning model predicted Flickr image data points and to create a

surface covering Switzerland a multilevel b-spline interpolation for categorical data

was done. Due to this dual nature of the results, not only the Flickr image data

points need to be discussed but also how good the interpolation results were. The
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heatmap in figure 16 shows the density of the Flickr images. Places that stand out

with a high density of Flickr images are large cities like Zürich, Bern or Genève.

Additionally, touristic places like the Jungfraujoch or Luzern have a high density

of Flickr images. As a consequence of this density distribution, the accuracy of the

classifier map in figure 21 is higher in the areas with a high Flickr image density be-

cause more data has been included in the interpolation. Values in areas where only

few Flickr images occur the interpolated value is influenced only by a few images

which might be kilometers away. Once again depending on the goal of the map, this

issue with data availability should be kept in mind.

As a further test to assess the application of the scenic maps, timeline maps were

developed. The goal was to see if the algorithm could detect new structures or land

use changes which would potentially affect landscape beauty. Different maps from

the years 2016 to 2018 were compared to the validation sites and aerial images for

the different years were observed. The resulting changes in figures 25, 27 and 26

did not correspond to real visible changes around the validation sites. One of the

reasons for this outcome was the number of samples which was available for each

year. When analyzing the number of data points, it becomes clear that they were

not sufficient in numbers to assess temporal change. Furthermore, the spatial dis-

tribution of the data points needs to be even to ensure a good interpolation result.

For the subset of the years 2018, 2017 and 2016 the data basis did not suffice, and

had some unsuited patterns which are visualized in figure 32, figure 35 and figure

38. It is visible that there is a very coarse spatial distribution and this coarsely

distributed data set is even coarser when looking at each data point year by year.

This means that in one year an area could have had no data point and for the year

that was subtracted, suddenly one or more data points would have been included.

The issue which occurs here is that in one year a data point could influence the

surrounding area during the interpolation process and in the next year the same

area is influenced by a data point of a different location or a different Flickr picture

of the same location. This often results in a landscape beauty class change even

though there is no change in the landscape itself. Here a larger temporal interval

should have been applied. By doing this more Flickr images are included in the

different subsets which can in a seperate step be used to do a change analysis. This

would mean that a change analysis would be done over a five year period instead

of a one year period. Such a adjustment could be able to show landscape beauty

changes more definitive and accurately.

As a last issue concerning the useability of the landscape beauty maps as a ba-

sis for decision makers to identify beautiful landscape scenes, is the perception of

landscape scenes by the local population. At the validation sites different pictures

were taken to see what the local landscape looked like. In a second step the self-made
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pictures were then run through the machine learning model to see if the predicted

scenic score came close to the scenic score which was given in the scenic map in figure

21. Bassecourt in the canton of Jura was the first validation site. During the short

walk from Bassecourt to Courfaivre what stood out immediately was the number

of people who were enjoying the area by horse riding, walking their dogs or jogging

even though the area was not extraordinary or had a very natural scenery. The

noise of the highway was omnipresent, almost all fields were used for agricultural

purposes and there were industrial complexes surrounding the edges of the village of

Bassecourt. The question arose, how this area could be classified as high as it had

been by the classifier model? The resulting map in the surrounding area of Bassec-

ourt is visualized in figure 31 and shows scenic values of 7.75 to 10.0 for images 1 to

4 in figure 33. When running the images of the local validation through the model

the scenic score is considerably lower. The validation image scenic scores were 1.0 to

3.25 or 3.25 to 5.5. The score which resulted from the classifier models seems more

plausible than the scores for the same location calculated through interpolation of

the Flickr data points. A similar pattern could be seen in Biasca. Here the highway

was even closer but the area was still used as a local recreation area where families

walked with strollers or people walked their dogs. In Biasca the validation images

in figure 36 resulted in scenic scores of about 1.0 to 3.25 or 3.25 to 5.5 and are

therefore much lower than the interpolated results in the classifier map in figure 21

first suggested. Within these validation locations a deeper issue is evident which

was also discovered by Olafsson et al (2022) or Müller, Backhaus and Buchecker

(2020), when analyzing landscape beauty with a PPGIS approach: Asking the local

population will change the outcome of evaluating landscape beauty. To an outsider

the surrounding landscape is not necessarily uniquely beautiful but the importance

of the area for the local population, is evident. The question that is relevant in these

cases is what the map is used for and what goals are pursued with it. Depending

on the person that looks at the images or at the scenic maps, a different meaning

will be associated to specific landscape scenes. As Bell (1999) described with their

example comparing the remote scientist to the botanist, the individual interest will

influence the meaning associated to their observations. As a Swiss geoinformation

scientist who is evaluating landscape beauty on a national level, areas surrounding

Bassecourt or Biasca are not necessarily very beautiful compared to an area like the

Jungfraujoch and could be potantially be included as a possible site for a wind tur-

bine. In this thesis the goal is to create a data layer which serves a similar purpose

as the data layer published by the British government to avoid scenic pollution in

these outstanding scenic areas (UK, 2023). As a consequence this means that even

though the landscape surrounding Biasca and Bassecourt is used as a leisure area

and is therefore valued by the local population, this does not mean that the scenic

value which resulted for the validation images in figure 33 and in figure 36 were not

justified for the task at hand. To ensure that recreational areas are valued appro-
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priately in planning stages a PPGIS might be more appropriate (Olafsson et al.,

2022).

4.4 Possible Improvements

In future the results from this master thesis can be included to follow up on iden-

tifying feature variables which describe landscape beauty. Just like Havinga et al

(2021) have pointed out, research into more spatial variables which describe land-

scape beauty even better could further enhance machine learning models (Havinga et

al., 2021a). Additionally, an alternative scenic reference data set could be developed

and included. The Scenic-or-Not data set has various advantages but the issue with

the large variance within the different votes for an image, shows that more votes are

needed to assess a common denominator for scenic and not scenic landscapes. Opti-

mally, a Scenic-or-Not data set should be created for Switzerland to make sure that

inaccuracies which occur when transferring landscape beauty perceptions are mini-

mized. Furthermore, more Flickr images should be included to improve the spatial

coverage. As Olafsson et al (2022) pointed out, the spatial coverage for Switzerland

will probably never be as well distributed as the Scenic-or-Not data set guarantees

because most Flickr image posts follow easy accessible locations. Hopefully, a larger

Flickr image subset will bring a more nuanced result around urban areas.

4.5 Further Works

As a final input, a next project could research how PPGIS might compliment such

a large scale landscape beauty map such as the one visualized in figure 21 to see if a

compromise with the local communities could be found or not. This could also give

some new perspectives on PPGIS approaches like Müller, Backhaus and Buchecker

(2020) have done. This proposed research could follow up on research goal number

three and show the potential of a scenic map when used in tandem with an PPGIS

approach.
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5 Conclusion

How can scenicness of landscape be measured and transferred to different geographic

regions using a machine learning model?

In this thesis different machine learning approaches were explored to assess whether

the scenicness of a landscape can be measured by a machine learning model. The

regressor model and different classifier models were able to assess landscape beauty.

With a dual class random forest classifier approach the resulting model was able

to differentiate between beautiful and less beautiful places. The higher number

class models then showed the possibility of creating a nuanced scenicness model us-

ing noise, elevation and land use as input variables with additional variables being

generated by scene recognition, color extraction and object detection. The Scenic-

or-Not data set with its spatially well distributed images built a good base searching

for landscape beauty patterns, even though the data set had some disadvantages like

the high variance within the votes (see figure 10) or the distribution of different av-

erage scenic scores along the whole possible spectrum (see figure 12).

The goal of transferring possible results to different geographic regions was explored

using a British data set to train the model and then testing it on Swiss landscapes.

Landscape beauty in Switzerland was predicted using Flickr images. This was com-

plicated due to the geographically unique environment of Switzerland that led to a

partly inaccurate scenic evaluation, especially in areas that are uncommon in Great

Britain like high altitude regions.

What are the limitations of using a machine learning model when looking at a topo-

graphically complex country like Switzerland?

A machine learning model can only predict values based on information it has seen

before in the training phase. This leads to inaccuracies when using x-variables that

differ significantly between the training landscape and the target landscape. In this

thesis the model was trained on the British landscape, which has lower elevation

values and is an overall less mountainous country. Therefore, the different models

had difficulty generating nuanced landscape values for the Swiss alps which appear

to have uniformly high scenic values.

How accurately can scenic areas be mapped and used as a planning tool for deci-

sion makers who plan infrastructure projects like wind parks or roads?

The classifier scenic map (see figure 21) depicts a plausible landscape beauty layer

for Switzerland. The validation sites have shown that using the classifier scenic map

as a singular planning step concerning public approval, will not suffice to capture

the landscapes importance in locals everyday lives. Nevertheless, the scenic map

can be a helpful addition for planners and decision makers to identify unique and

important landscape scenes that need to be protected and in doing so can pin point
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possible suitable locations for large infrastructure projects.

How could the model be improved, that a suitable scenic map can be compiled for

Switzerland?

Most inaccuracies in the classifier scenic map (see figure 21) could be remedied by

using more data in the model’s training phase. This would enable the model to

build more decision trees and thus gain more insight into data patterns. During the

predicting phase when building the classifier map, more values for the scenic map

would have to be added to balance out results from unwanted pictures that do not

show landscape scenes. Lastly, spatial variables could be chosen more carefully to

make sure that the range of the variables is similar between the training region and

the target region that are described with the spatial variables. This would help to

build a model that recognizes the topography and spatial features of the area that

is supposed to be mapped. To create a scenic map for an area as large and diverse

as Switzerland an immense amount of training data of various regions would have

to be gathered. An important next step to building such a model would thus be to

generate sufficient training data for the model to learn the crucial relationships that

make a beautiful landscape.
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8 Code Repository

The used code with the final random forest classifier model and the final random

forest regressor model can be found on Github under following link:

https://github.com/qjgit1996/masterthesis_quintengroenveld

1. Masterthesis: Here the British models were developed.

2. Masterthesis2: In this project the Swiss Flickr images were run through the

models and a score was predicted for them.

3. flickrHandler: These scripts entail how the Flickr images were handled and

filtered.

4. discussion: In this project the graphs and the semivariogram for the valida-

tion phase were run.

5. cls model final v2: This is the final version of the random forest classifier

model.

6. model n600: This is the final version of the random forest regressor model.

ThePlaces365 project was cloned from following Github project: https://github.

com/GKalliatakis/Keras-VGG16-places365
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A Places365 Scene Categories

• airfield

• airplane cabin

• airport terminal

• alcove

• alley

• amphitheater

• amusement arcade

• amusement park

• apartment build-

ing/outdoor

• aquarium

• aqueduct

• arcade

• arch

• archaelogical excava-

tion

• archive

• arena/hockey

• arena/performance

• arena/rodeo

• army base

• art gallery

• art school

• art studio

• artists loft

• assembly line

• athletic field/outdoor

• atrium/public

• attic

• auditorium

• auto factory

• auto showroom

• badlands

• bakery/shop

• balcony/exterior

• balcony/interior

• ball pit

• ballroom

• bamboo forest

• bank vault

• banquet hall

• bar

• barn

• barndoor

• baseball field

• basement

• basketball court/indoor

• bathroom

• bazaar/indoor

• bazaar/outdoor

• beach

• beach house

• beauty salon

• bedchamber

• bedroom

• beer garden

• beer hall

• berth

• biology laboratory

• boardwalk

• boat deck

• boathouse

• bookstore

• booth/indoor

• botanical garden

• bow window/indoor

• bowling alley

• boxing ring

• bridge

• building facade

• bullring

• burial chamber

• bus interior

• bus station/indoor

• butchers shop

• butte
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• cabin/outdoor

• cafeteria

• campsite

• campus

• canal/natural

• canal/urban

• candy store

• canyon

• car interior

• carrousel

• castle

• catacomb

• cemetery

• chalet

• chemistry lab

• childs room

• church/indoor

• church/outdoor

• classroom

• clean room

• cliff

• closet

• clothing store

• coast

• cockpit

• coffee shop

• computer room

• conference center

• conference room

• construction site

• corn field

• corral

• corridor

• cottage

• courthouse

• courtyard

• creek

• crevasse

• crosswalk

• dam

• delicatessen

• department store

• desert/sand

• desert/vegetation

• desert road

• diner/outdoor

• dining hall

• dining room

• discotheque

• doorway/outdoor

• dorm room

• downtown

• dressing room

• driveway

• drugstore

• elevator/door

• elevator lobby

• elevator shaft

• embassy

• engine room

• entrance hall

• escalator/indoor

• excavation

• fabric store

• farm

• fastfood restaurant

• field/cultivated

• field/wild

• field road

• fire escape

• fire station

• fishpond

• flea market/indoor

• florist shop/indoor

• food court

• football field

• forest/broadleaf

• forest path

• forest road

• formal garden

• fountain

• galley

• garage/indoor
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• garage/outdoor

• gas station

• gazebo/exterior

• general store/indoor

• general store/outdoor

• gift shop

• glacier

• golf course

• greenhouse/indoor

• greenhouse/outdoor

• grotto

• gymnasium/indoor

• hangar/indoor

• hangar/outdoor

• harbor

• hardware store

• hayfield

• heliport

• highway

• home office

• home theater

• hospital

• hospital room

• hot spring

• hotel/outdoor

• hotel room

• house

• hunting lodge/outdoor

• ice cream parlor

• ice floe

• ice shelf

• ice skating

rink/indoor

• ice skating

rink/outdoor

• iceberg

• igloo

• industrial area

• inn/outdoor

• islet

• jacuzzi/indoor

• jail cell

• japanese garden

• jewelry shop

• junkyard

• kasbah

• kennel/outdoor

• kindergarden class-

room

• kitchen

• lagoon

• lake/natural

• landfill

• landing deck

• laundromat

• lawn

• lecture room

• legislative chamber

• library/indoor

• library/outdoor

• lighthouse

• living room

• loading dock

• lobby

• lock chamber

• locker room

• mansion

• manufactured home

• market/indoor

• market/outdoor

• marsh

• martial arts gym

• mausoleum

• medina

• mezzanine

• moat/water

• mosque/outdoor

• motel

• mountain

• mountain path

• mountain snowy

• movie the-

ater/indoor
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• museum/indoor

• museum/outdoor

• music studio

• natural history mu-

seum

• nursery

• nursing home

• oast house

• ocean

• office

• office building

• office cubicles

• oilrig

• operating room

• orchard

• orchestra pit

• pagoda

• palace

• pantry

• park

• parking garage/indoor

• parking garage/outdoor

• parking lot

• pasture

• patio

• pavilion

• pet shop

• pharmacy

• phone booth

• physics laboratory

• picnic area

• pier

• pizzeria

• playground

• playroom

• plaza

• pond

• porch

• promenade

• pub/indoor

• racecourse

• raceway

• raft

• railroad track

• rainforest

• reception

• recreation room

• repair shop

• residential neighbor-

hood

• restaurant

• restaurant kitchen

• restaurant patio

• rice paddy

• river

• rock arch

• roof garden

• rope bridge

• ruin

• runway

• sandbox

• sauna

• schoolhouse

• science museum

• server room

• shed

• shoe shop

• shopfront

• shopping mall/indoor

• shower

• ski resort

• ski slope

• sky

• skyscraper

• slum

• snowfield

• soccer field

• stable

• stadium/baseball

• stadium/football

• stadium/soccer
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• stage/indoor

• stage/outdoor

• staircase

• storage room

• street

• subway sta-

tion/platform

• supermarket

• sushi bar

• swamp

• swimming hole

• swimming pool/indoor

• swimming pool/outdoor

• synagogue/outdoor

• television room

• television studio

• temple/asia

• throne room

• ticket booth

• topiary garden

• tower

• toyshop

• train interior

• train sta-

tion/platform

• tree farm

• tree house

• trench

• tundra

• underwater/ocean

deep

• utility room

• valley

• vegetable garden

• veterinarians office

• viaduct

• village

• vineyard

• volcano

• volleyball court/outdoor

• waiting room

• water park

• water tower

• waterfall

• watering hole

• wave

• wet bar

• wheat field

• wind farm

• windmill

• yard

• youth hostel

• zen garden

B Land Use Categories

• Artificial surfaces;Urban fab-

ric;Continuous urban fabric

• Artificial surfaces;Urban fab-

ric;Discontinuous urban fabric

• Artificial surfaces;Industrial,

commercial and transport

units;Industrial or commercial

units

• Artificial surfaces;Industrial, com-

mercial and transport units;Road

and rail networks and associated

land

• Artificial surfaces;Industrial, com-

mercial and transport units;Port

areas

• Artificial surfaces;Industrial,

commercial and transport

units;Airports
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• Artificial surfaces;Mine, dump and

construction sites;Mineral extrac-

tion sites

• Artificial surfaces;Mine, dump and

construction sites;Dump sites

• Artificial surfaces;Mine, dump and

construction sites;Construction

sites

• Artificial surfaces;Artificial, non-

agricultural vegetated areas;Green

urban areas

• Artificial surfaces;Artificial, non-

agricultural vegetated areas;Sport

and leisure facilities

• Agricultural areas;Arable land;Non-

irrigated arable land

• Agricultural areas;Arable land;Permanently

irrigated land

• Agricultural areas;Arable land;Rice

fields

• Agricultural areas;Permanent

crops;Vineyards

• Agricultural areas;Permanent

crops;Fruit trees and berry plan-

tations

• Agricultural areas;Permanent

crops;Olive groves

• Agricultural areas;Pastures;Pastures

• Agricultural areas;Heterogeneous

agricultural areas;Annual crops as-

sociated with permanent crops

• Agricultural areas;Heterogeneous

agricultural areas;Complex cultiva-

tion patterns

• Agricultural areas;Heterogeneous

agricultural areas;Land principally

occupied by agriculture, with sig-

nificant areas of natural vegetation

• Agricultural areas;Heterogeneous

agricultural areas;Agro-forestry ar-

eas

• Forest and semi natural

areas;Forests;Broad-leaved forest

• Forest and semi natural ar-

eas;Forests;Coniferous forest

• Forest and semi natural ar-

eas;Forests;Mixed forest

• Forest and semi natural ar-

eas;Scrub and/or herbaceous veg-

etation associations;Natural grass-

lands

• Forest and semi natural ar-

eas;Scrub and/or herbaceous veg-

etation associations;Moors and

heathland

• Forest and semi natural ar-

eas;Scrub and/or herbaceous veg-

etation associations;Sclerophyllous

vegetation

• Forest and semi natural ar-

eas;Scrub and/or herbaceous veg-

etation associations;Transitional

woodland-shrub

• Forest and semi natural areas;Open

spaces with little or no vegeta-

tion;Beaches, dunes, sands

• Forest and semi natural areas;Open

spaces with little or no vegeta-

tion;Bare rocks
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• Forest and semi natural areas;Open

spaces with little or no vegeta-

tion;Sparsely vegetated areas

• Forest and semi natural areas;Open

spaces with little or no vegeta-

tion;Burnt areas

• Forest and semi natural areas;Open

spaces with little or no vegeta-

tion;Glaciers and perpetual snow

• Wetlands;Inland wetlands;Inland

marshes

• Wetlands;Inland wetlands;Peat

bogs

• Wetlands;Maritime wetlands;Salt

marshes

• Wetlands;Maritime wetlands;Salines

• Wetlands;Maritime wetlands;Intertidal

flats

• Water bodies;Inland waters;Water

courses

• Water bodies;Inland waters;Water

bodies

• Water bodies;Marine wa-

ters;Coastal lagoons

• Water bodies;Marine wa-

ters;Estuaries

• Water bodies;Marine waters;Sea

and ocean

C Object Detection Categories

• 1: ’person’

• 2: ’bicycle’,

• 3: ’car’,

• 4: ’motorcycle’,

• 5: ’airplane’,

• 6: ’bus’,

• 7: ’train’,

• 8: ’truck’,

• 9: ’boat’,

• 10: ’traffic light’,

• 11: ’fire hydrant’,

• 12: ’stop sign’,

• 13: ’parking meter’,

• 14: ’bench’,

• 15: ’bird’,

• 16: ’cat’,

• 17: ’dog’,

• 18: ’horse’,

• 19: ’sheep’,

• 20: ’cow’,

• 21: ’elephant’,

• 22: ’bear’,

• 23: ’zebra’,

• 24: ’giraffe’,

• 25: ’backpack’,

• 26: ’umbrella’,
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• 27: ’handbag’,

• 28: ’tie’,

• 29: ’suitcase’,

• 30: ’frisbee’,

• 31: ’skis’,

• 32: ’snowboard’,

• 33: ’sports ball’,

• 34: ’kite’,

• 35: ’baseball bat’,

• 36: ’baseball glove’,

• 37: ’skateboard’,

• 38: ’surfboard’,

• 39: ’tennis racket’,

• 40: ’bottle’,

• 41: ’wine glass’,

• 42: ’cup’,

• 43: ’fork’,

• 44: ’knife’,

• 45: ’spoon’,

• 46: ’bowl’,

• 47: ’banana’,

• 48: ’apple’,

• 49: ’sandwich’,

• 50: ’orange’,

• 51: ’broccoli’,

• 52: ’carrot’,

• 53: ’hot dog’,

• 54: ’pizza’,

• 55: ’donut’,

• 56: ’cake’,

• 57: ’chair’,

• 58: ’couch’,

• 59: ’potted plant’,

• 60: ’bed’,

• 61: ’dining table’,

• 62: ’toilet’,

• 63: ’tv’,

• 64: ’laptop’,

• 65: ’mouse’,

• 66: ’remote’,

• 67: ’keyboard’,

• 68: ’cell phone’,

• 69: ’microwave’,

• 70: ’oven’,

• 71: ’toaster’,

• 72: ’sink’,

• 73: ’refrigerator’,

• 74: ’book’,

• 75: ’clock’,

• 76: ’vase’,

• 77: ’scissors’,

• 78: ’teddy bear’,

• 79: ’hair drier’,

• 80: ’toothbrush’
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