
Impact of Urban Structure on Mobility during COVID-
19: A Polycentricity Perspective

GEO 511 Master's Thesis

Author
Adrian Nicolas Grossenbacher

16-054-363

Supervised by
Dr. Cheng Fu

Faculty representative
Prof. Dr. Robert Weibel

25.08.2023
Department of Geography, University of Zurich



Impact of Urban Structure on Mobility during 
COVID-19: A Polycentricity Perspective 

Abstract 

The COVID-19 pandemic has caused immense disruptions, particularly affecting urban 
mobility as a crucial aspect of infection containment efforts. While numerous studies have 
investigated various factors driving mobility changes, a substantial gap exists in 
understanding the influence of spatial structure in this context. This study addresses this gap 
by investigating the connection between spatial structure, particularly polycentricity, and 
mobility patterns during the pandemic. The polycentric structure of 384 U.S. Metropolitan 
Statistical Areas (MSAs) is assessed by employing a novel application of whole graph 
embedding on dynamic human mobility flow data. Utilizing dimensionality reduction and 
clustering techniques, the MSAs are categorized into monocentric, intermediate, and 
polycentric groups. The findings reveal a larger reduction within areas characterized by a 
higher degree of polycentricity. Despite these significant results, the applied regression model 
highlights the dominance of factors such as education, employment density, and public 
transportation. The results emphasize the complex nature of mobility and its drivers. When 
considering the broader concept of spatial structure, the applied model demonstrates a notable 
12 to 25 % enhancement in R2 performance, underscoring the importance of spatial structure 
on mobility reduction. This study not only offers valuable insights into how spatial structure, 
especially polycentricity, affected mobility during the pandemic, but also demonstrates the 
effectiveness of whole graph embedding in modeling the complexity of urban dynamics. The 
findings have the potential to shape spatial planning strategies, public health policies, and 
economic activities of urban space. 
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Chapter 1: Introduction 

1.1 Motivation and Background 

At the end of 2019, the SARS-CoV-2 virus, which is believed to have originated in the Hubei 
province of China (Wu et al., 2020), changed our daily life. Despite early containment 
measures, the virus quickly managed to spread to other Asian countries and subsequently 
across the globe. After cases were confirmed in 113 countries, on March 11th, 2020 the World 
Health Organization (WHO) declared COVID-19 a pandemic because of its alarming levels 
of spread and severity (WHO, 2020). The United States was among the countries that have 
been hit the hardest by the virus. Due to weak early responses, the virus was able to spread 
rapidly across the country, and by March 12th, 47 states had already been infected. On the 
next day, President Trump declared the outbreak a national emergency (Whitehouse, 2020). 
Towards the end of March, the U.S. surpassed China in total confirmed cases, making it the 
country with the highest number of cases in the world (McNeil, 2020). Since the disease is an 
airborne infection and no vaccine was available yet, reducing mobility and thus social contact 
remained the main non-pharmaceutical intervention to halt the spread of the virus (Zhang et 
al., 2022). Densely populated urban areas, in which the majority of the population resides, are 
especially vulnerable to the spread of such contagious diseases. Numerous policies were 
introduced in order to slow down the outbreak and reduce its impact on public health. 
Restrictions were implemented on large gatherings and traveling; schools were closed, and 
stay-at-home requirements were issued (Hallas et al., 2021).  

A lot of effort has been made for a better understanding of mobility and its influencing factors 
during the pandemic. Most research is hereby focused on various demographic and socio-
economic factors (Fraiberger et al., 2020; Roy & Kar, 2020). On the contrary, the impact of 
urban spatial structure, such as the degree of polycentricity, has been largely neglected. 
Nonetheless, the degree of polycentricity significantly influences mobility patterns by shaping 
the spatial distribution of economic centers, particularly with respect to commuting 
(Schwanen et al., 2004). Moreover, polycentricity can be conceptualized as an outcome of 
dynamic interactions, such as mobility flows among local areas (more in Section 2.2). As 
such, the degree of polycentricity can also be affected by changes in mobility, due to sudden 
mobility restrictions, as seen during the pandemic. The structure of a city can also have a 
great influence on the spread of a disease. In fact, experiences from past outbreaks such as 
cholera have already significantly shaped the form of modern urban space (Bereitschaft and 
Scheller, 2020). Filling this research gap in regard to spatial structure is the main goal of this 
thesis. Understanding the impact of spatial structure on mobility could provide valuable 
information not only for policy assessment, but also for various aspects of urban spatial 
planning. Future urban space needs to be more resilient to pandemic outbreaks, as the 
frequency of emerging infectious diseases has increased in the last decades (Jones et al., 
2008). 

In order to assess the impacts of mobility-restricting policies such as stay-at-home orders or 
school closures, a lot of human mobility data has been collected and evaluated. The large 
amount of information gained from the Global Navigation Satellite Systems (GNSS) of 
mobile devices can be used to analyze the mobility behavior of individuals while 
guaranteeing anonymity. One such dataset by Kang et al. (2020) has been generated by 
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tracking millions of mobile phone users’ trajectories in the U.S., collected by SafeGraph1. The 
set has some advantages over other available ones, such as a finer resolution on the census 
tract scale and integrated human mobility flow matrices to catch intra-city dynamics. With 
this data, the goal is to examine the impact of the urban spatial structure on mobility reduction 
during the COVID-19 pandemic in U.S. metropolitan areas.  

1.2 Research Aim 

Human mobility plays an important role in the direct transmission of viruses, and its 
management has proved an effective means of controlling outbreaks especially in the earlier 
stages. Extensive research has been conducted to understand the factors influencing mobility 
patterns. However, spatial aspects, such as the degree of polycentricity, have received limited 
attention. This master’s thesis aims to analyze the influence of spatial structure, specifically 
polycentricity, on mobility during the COVID-19 pandemic outbreak in U.S. metropolitan 
areas. In order to achieve this, large-scale human mobility data will be analyzed, with a focus 
on comparing mobility patterns between monocentric and polycentric cities. This requires the 
quantitative assessment of polycentricity for various cities. Existing polycentricity indices 
have some shortcomings in regard to the complexity they are able to model (Section 2.2). For 
this reason, a novel whole graph embedding approach will be applied, which promises 
improvements in this aspect. 

The rest of this study is structured as follows:  

Chapter 2 provides an overview of the current state of research, addressing topics such as 
urban structure, measures of polycentricity, and mobility changes during the pandemic. The 
chapter closes by identifying research gaps and formulating research questions. Chapter 3 
offers insights into the data, methods, and procedures applied in order to answer the research 
questions. Chapter 4 presents the obtained results, which are discussed in more detail in 
Chapter 5, where potential study limitations are also addressed. Lastly, Chapter 6 concludes 
the study by summarizing key findings and implications, while also outlining potential 
directions for future research. 

 

                                                 
1 https://www.safegraph.com/  

https://www.safegraph.com/
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Chapter 2: State of Current Research 

2.1 Urban Structure 

The shape of urban space has changed dramatically since the industrial revolution. The rapid 
growth led to various challenges in regard to city planning (Knox and McCarthy, 2012). 
Urban economics and geography have since examined city structures extensively and 
introduced several theoretical frameworks that could help in efficiently planning a city (Anas 
et al., 1998). In the coming sections, some theoretical models are presented and the historic 
development of U.S. cities in regard to their structure is broadly explained. Lastly, it is 
discussed how polycentricity can be measured quantitatively. 

2.1.1 Theoretical Models 

The monocentric city model, first introduced by William Alonso (1964), has been the 
dominating model for urban analysis for decades. It remains a prominent model with its 
simplistic approach that can explain the urban structure and the land patterns within. At the 
core of the model lies the dominance of the Central Business District (CBD). In the 
monocentric model, the CBD lies at the center of a city where all economic activities take 
place and everyone commutes for work. Land close to the CBD is limited and in high 
demand, because people generally prefer lower commuting times. Because the land is 
expensive, owners prefer to build higher and more compact buildings to maximize their rent 
income. Towards the edge of the city, on the other hand, the land becomes more abundant, 
and the demand decreases due to longer commuting times. People can substitute housing costs 
with transportation costs based on their preferences. Although the model is still used today, its 
assumption of a central business district as the single employment center has been challenged 
by continued city sprawl and the emergence of multiple subcenters (Arribas-Bel and Sanz-
Gracia, 2014). 

This new urban form can be better described by the polycentric model, which is usually 
defined by the presence of one or more employment subcenters besides the CBD (McMillen, 
2001). Although the historic CBD often remains as the largest employment center, it can 
happen that a subcenter outgrows it and becomes larger. The concept of land and housing 
prices remains as in the monocentric model, although now for several subcenters within the 
urban area.  

There is a wide range of other urban models that try to capture certain aspects of urban 
structure, some of which have already been proposed before the monocentric model. This 
includes noteworthy models such as the concentric zone model (Burgess, 2015/1925), the 
sector model (Hoyt, 1939) or the multiple nuclei model (Harris and Ullman, 1945). There are 
further newer models, such as the maximum disorder model, the mosaic of live-work 
communities model and the constrained dispersal model (Angel and Blei, 2015). They try to 
better describe areas that cannot be assigned as easily to either the monocentric or polycentric 
model. Although further theoretical models exist, most of them can be seen as a hybrid form 
between the monocentric and polycentric models. Out of all the existing models, these two 
remain among the most prominent ones. 

Although there has been a lot of debate about which city form should be aspired, most of 
them are based on opinions rather than on quantitative understanding. Nevertheless, the 
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transition from monocentric to polycentric has been observed in many cities. It is argued that 
this transition occurs due to increasing difficulties with congestion and pollution that would 
otherwise negatively affect the monocentric city (Louf and Barthelemy, 2014). This suggests 
that polycentric urban structure has a positive influence on the efficiency of the mobility 
network. However, the empirical findings on this are not conclusive. Sun et al. (2016) report a 
negative relation between average commuting times and the degree of polycentricity in 
Chinese cities. Another study conducted in the Netherlands reports significantly longer 
commuting times and distances for auto drivers in polycentric cities (Schwanen et al., 2004). 
Due to the definition of polycentric cities, most studies only examine commuting behavior but 
neglect general mobility in their analysis. Besides mobility, polycentricity has also been 
proven to influence socio-economic features, such as the gross domestic product (Meijers and 
Burger, 2010; Liu and Wang, 2016). 

2.1.2 Urban Structure in the U.S. 

In the case of the U.S., the transition of monocentric cities towards a polycentric structure has 
been well observed. The shift of the economic structure around the 1920s from manufacturing 
towards a service-oriented sector was one of the main factors. The industrial sector was 
traditionally located in the central places of a city. The new office buildings for the service 
sector were built as high-rise and high-density buildings, which led to the concentrated CBD 
we know today. The old industrial areas were virtually deserted and deprecated. Living in the 
main city became unattractive. The white-collar workers that followed the new service 
industry after 1945 wanted to live outside the city. The affordability of automobiles and, most 
importantly, of low-cost houses led to a high growth of the suburbs, surpassing the growth of 
the city itself. The people that lived outside the city were soon followed by supermarkets and 
other economic activities. Some of these suburbs continued growing until they became small 
cities themselves. These cities are called edge cities and could grow larger than the original 
main city itself (Knox and McCarthy, 2012).  

The polycentric nature of a city in modern times is mainly dependent on the importance of its 
CBD compared to other employment subcenters in its nearer territory. A metropolitan area 
remains monocentric when most of the workers from the suburbs commute towards the CBD. 
Contrary, the upcoming new employment subcenters outside the city center would increase 
the polycentric structure depending on the number and size of the subcenters. Arribas-Bel and 
Sanz-Gracia (2014) looked at the structure of employment centers in 359 metropolitan areas 
at three different points in time (1990, 2000, and 2010). They found that the majority (around 
60 %) of the areas still have a monocentric structure, especially smaller or medium-sized 
cities. They further show that polycentric areas are generally larger and have higher densities 
than monocentric ones.  

2.2 Measuring Polycentricity 

To appropriately analyze the spatial structure of urban space, the classification of the cities’ 
mobility network in regard to polycentricity is essential. There are various different indices 
that measure polycentricity either from a morphological or functional perspective (Burger and 
Meijers, 2012). An illustration of these two dimensions is given in Figure 1. The 
morphological perspective measures the spatial distribution and size of urban attributes, e.g., 
the distribution of residents or workplaces. Whereas the functional polycentricity measures 
the interactions between different regions, e.g., the commuting flows.  
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Figure 1: Morphological and functional polycentricity (Burger and Meijers, 2012, p. 1134). 

2.2.1 Traditional Indices 

The commonly used polycentricity indices can be broadly categorized into three main groups 
(Liu et al., 2016): 1) indices originating from social network theory; 2) measurements that use 
the slope of a regression line (rank-size distribution); 3) measures that compare observed 
polycentricity with an ideal theoretical model. The first group of indices usually uses social 
network statistics such as nodality or in-/external centrality to examine the polycentricity. The 
majority of all polycentricity indices can be categorized within this group. The second group 
believes that polycentricity is best described by the relation between the absolute and relative 
importance of centers. The rank-size distribution is therefore assumed to be a good indicator 
of polycentricity. The slope of a linear regression is used as the main measurement, whereas a 
flat slope indicates a higher degree of polycentricity. This group also utilizes the nodality and 
centrality of networks. An important aspect of the rank-size distribution is the number of 
nodes that are used to calculate the slope. Although this choice remains largely subjective, the 
use of a small but fixed number of nodes has been recommended (Burger and Meijers, 2012). 
The third group of indices derives the polycentricity by comparing an observed metric in the 
real world to an ideal model, such as the gravity model applied by Hanssens et al. (2014). 
This type of index generally relies on large amounts of data and requires fine-grained 
information. It is often limited to one-case studies and thus usually excluded in comparative 
studies on polycentricity (Bartosiewicz and Martcińczak, 2020). 

As the study by Bartosiewicz and Martcińczak (2020) shows, these different types of indices 
are not consistent and come to different conclusions for the same city. In order to achieve 
satisfying results, the proper index has to be selected for the city in question, which still 
requires prior expert knowledge. Moreover, these indices only capture a single perspective of 
urban dynamics, missing out on the more complex patterns.  
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2.2.2 Whole Graph Embedding  

Embedding techniques have become a powerful tool to convert discrete data into a low 
dimensional space as continuous vector representations, which are better suited for many 
analytical tools such as machine learning. A key feature of embeddings is that similar data 
entities are located closer within this vector space.  

Embedding covers a broad spectrum of different fields of research. One of the earlier 
applications was in the field of Natural Language Processing (NLP). Words and phrases 
cannot be directly processed by machine learning algorithms. Word embedding methods such 
as Word2Vec (Mikolov et al., 2013) are able to extract vector representations of words. In the 
vector space, words with similar meanings are located closer to each other. These embeddings 
can then be used as direct input for machine learning for tasks such as sentiment analysis, text 
classification, or paraphrase detection. The same concept can be applied to sentences or even 
whole documents. Doc2Vec (Le and Mikolov, 2014) is a direct extension of Word2Vec that 
can vectorize documents. Besides the already extensively researched NLP, the concept has 
reached new areas of application such as image processing (Karpathy and Fei-Fei, 2015), 
audio (Luo et al., 2017), bioinformatics (Elnaggar et al., 2022), times series data (Kazemi et 
al., 2019) and graph analysis. 

In the context of graph embedding, a few subcategories can be distinguished for certain parts 
of a graph. There is the embedding of nodes like the Node2Vec method (Grover and 
Leskovec, 2016) that only embeds the nodes of a graph as vectors. There are also specific 
methods that only embed the edges of graphs and hybrid methods that embed a combination 
of graph features, e.g., nodes and edges. Lastly, Whole Graph Embedding (WGE) does what 
its name suggests and embeds the whole graph. An exemplary overview of these different 
graph embedding categories can be seen in Figure 2.  

 

Figure 2: Example of various graph embedding areas (Cai et al., 2018, p. 2). 

Whole graph embedding techniques can be differentiated into three main groups (Fu et al., 
2021). The first group such as graph2vec (Narayanan et al., 2017) is graph-kernel based and 
combines a neural network with inputs from random walks through the graphs. The second 
group utilizes deep learning models such as neural networks (Niepert et al., 2016), and the last 
group uses spectral representation (Tsitsulin et al., 2018). There are various types of graphs 
that can be directed/undirected, weighted/non-weighted, or with/without node attributes. For 
this reason, different whole graph embedding methods are specialized to model a certain type 
of graph. 

A novel application of whole graph embedding by Fu et al. (2021) promises to model the 
broader complexity of urban dynamics. This method can represent complex, non-Euclidean 
graphs as an embedding vector in an Euclidean space. Non-Euclidean graphs do not represent 
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a physical structure in two or three-dimensional space, but rather the entities and the 
relationships between them. Important is the relation between the entities and not the distance 
between them. Compared to these non-Euclidean graphs, their vector space representations 
are compact, capture similarity and perform better as input to machine learning algorithms 
(Chamberlain et al., 2017). Since whole graph embedding is able to map both node and edge 
features in the same vector, it can be used to model both morphological and functional 
polycentricity in an integrated manner, potentially improving measurement results. 

2.3 Mobility during COVID-19 

2.3.1 Changes in Mobility 

Mobility research helped to predict and control the spread of the virus and was essential in 
evaluating implemented policies aimed at reducing human mobility. There is a large amount 
of literature describing this reduction in detail, most of which uses mobile GPS data from 
various sources. A global study across 52 countries by Nouvellet et al. (2021) shows a 
minimum mean reduction of 63 % from the baseline on March 11th, 2020. The variation 
between countries is quite large and shows relative numbers from 37 % up to 83 %. Although 
the difference between countries is high, the minimum reduction is still a substantial change. 
Besides the overall mobility reduction, changes in the mode of transportation and commuting 
habits can also be identified. A study in New Zealand and Australia found that especially 
public transportation was affected negatively (Thomas et al., 2021). A similar study in the 
United Kingdom reported the same trend, with a significant increase in walking or travel by 
bicycle (Harrington and Hadjiconstantinou, 2022). Another central aspect of many other 
studies lies in the evaluation of policies that were implemented to reduce mobility and thus 
the outbreak. Public transport closure, public event cancellation, workplace closure, and stay-
at-home orders have been identified to be most effective in reducing mobility (Li et al., 2021).  

Human mobility data during the pandemic has been the focus of numerous studies across the 
world. Regarding the U.S., reduction estimates are in the range of 35 – 63 % compared to 
normal conditions (Badr et al., 2020). This is a large difference considering it takes place 
within a single country. The political responses within the U.S. varied greatly among different 
regions. While some regions were rather restrictive, others opposed protective measures or 
wanted to lift measures too early. This can be explained by the differences in risk perception 
between the political groups (Bruine de Bruin et al., 2020). Despite these differences, the 
overall mobility reduction was substantial. Especially working conditions have changed ever 
since the technical possibility of working from home, completely eliminating the need for 
commuting. Brynjolfsson et al. (2020) report that between February and May 2020, over one 
third of workers in the U.S. switched to remote work from home. This is naturally not 
possible for all types of jobs, as not all work can be done from home (Huang et al., 2022).  

2.3.2 Explanatory Research 

There have been various studies that try to find explanatory variables that can shed light on 
the complex and dynamic nature of human mobility. Understanding which aspects influence 
the reduction in mobility is also instrumental to policymakers in the special context of the 
recent pandemic. A lot of focus has been placed on socio-demographic, economic, and 
cultural variables, especially in the U.S. Social and ethnical disparities are a hot topic in the 
U.S. political discourse. There are various studies that show significant evidence for 
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disproportionate mobility reduction between different socio-demographic groups. Several 
works find that the ability to reduce one’s mobility is strongly dependent on the financial 
situation. Bigger changes in social distancing and mobility have been observed by increased 
family income or per capita income (Weill et al., 2020; Elarde et al., 2021; Carella et al., 
2022). Besides racial differences in the pandemic on income or health, several studies also 
point out that certain ethnical groups exhibit differences in social distancing and general 
mobility reduction (Benitez et al., 2020; Coven and Gupta, 2020; Hu et al., 2021; Hu et al., 
2022). Other socio-demographic aspects like partisanship or the level of education have also 
been identified to impact mobility during the pandemic (Grossman et al., 2020; Bollyky et al., 
2023).  

Only a few studies have also examined spatial variables in their mobility analysis. Zhu et al. 
(2021), for example, include the built environment such as gross employment density or street 
intersection density in their study. They found all built environment factors to be relevant for 
the tested counties, with employment density being one of the overall most important 
variables. Another study by Aguilar et al. (2020) has specifically examined the influence of 
polycentricity on spreading patterns and on the efficiency of mitigation measures. Although 
the more centralized cities favor spreading both in speed and extent, mitigation policies are 
shown to be more effective than in polycentral cities. They classify the cities by computing a 
metric called the flow hierarchy, which is derived entirely from trip-flows. However, they 
only examine the impact of polycentricity on epidemic severity but not on mobility directly.  

2.4 Research Gaps and Questions 

In regard to the related work, the following research gaps have been identified: 

 The spatial structure of urban areas may play a crucial role in shaping mobility 
behavior during the pandemic. However, existing research has largely focused on 
socio-demographic variables, neglecting the impact of spatial features. Understanding 
the impact of spatial structure is essential for developing effective mobility reduction 
strategies and containment measures for the specific urban context. 

 Polycentricity as a key aspect of urban structure has been largely absent in mobility 
studies during the pandemic. The impact of polycentricity on mobility is generally not 
well understood and existing studies report contradicting findings. By analyzing the 
importance of polycentricity in various urban areas, this research aims to find valuable 
insights into its influence on mobility behaviors. 

 Comparative studies of polycentricity measures show contradicting findings and the 
selection of the appropriate indices requires prior expert knowledge of the study area. 
Traditional indices only capture either the functional or the morphological dimension 
of polycentricity, while modeling the polycentricity as a whole may give new insights. 
To address these shortcomings, this study aims to apply a novel whole graph 
embedding method that can model both dimensions.  

 Most studies that aim to capture the degree of polycentricity have focused on a few 
well-known cities, leading to a limited understanding of urban spatial structure. To 
overcome this limitation, this study aims to analyze a broader, more complete set of 
metropolitan areas in the U.S. By considering diverse spatial structures of urban 
locations, new insights and trends may be uncovered. 

 Changes in the degree of polycentricity have only been researched in a historical 
context over a larger timespan. However, the sudden and large reduction in mobility 
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due to the pandemic threat presents a unique opportunity to examine the change in the 
functional dimension of polycentricity. New insights can be gained by exploring how 
urban areas dynamically adapted their functional structure during the pandemic. 

With these research gaps in mind, the following research questions (RQ) have been 
formulated:  

RQ1: To what extent does the degree of polycentricity influence mobility reduction 

during the COVID-19 pandemic in U.S. metropolitan areas, and did the degree of 

polycentricity change after the implementation of mobility regulations? 

More specifically, the relative change in general mobility flows will be used as the main 
indicator, with a focus on comparing polycentric and monocentric cities to identify any 
differences in mobility behavior. The change in the degree of polycentricity will be quantified 
using Principal Component Analysis (PCA) for two different time frames, which will enable a 
direct comparison. 

Hypothesis 1: Assuming that an increased risk of virus spread leads to an increased 
regulatory mobility reduction, monocentric areas are expected to experience higher reduction 
rates than their polycentric counterparts. The high concentration of transportation and people 
in the center within monocentric areas increases the risk of infection (Aguilar et al., 2020). 
Conversely, decentralized polycentric areas with less crowded spaces are anticipated to show 
lower reduction rates due to a reduced infection risk. 

Hypothesis 2: After the implementation of mobility restrictions to contain the virus, urban 
areas are expected to become more functionally polycentric. In order to halt the spread of the 
virus, the high mobility concentrations in central areas need to be restricted. This may lead to 
a shift in mobility away from the center, resulting in a more functionally polycentric structure 
than before.  

RQ2: How important is the general spatial structure of U.S. metropolitan areas, as 

represented by whole graph embeddings, for mobility reduction during the COVID-19 

pandemic? 

One of the main benefits of whole graph embedding is its ability to capture the spatial 
structure of the graphs. The importance of spatial structure can be estimated by comparing the 
WGE with a baseline model that does not include spatial structure. 

Hypothesis 3: Spatial structure greatly dictates the course of transportation routes for a given 
city, which therefore is essential for any mobility flows. As a consequence, spatial structure 
significantly influenced mobility reduction during the COVID-19 pandemic. 

RQ3: How important is the degree of polycentricity for mobility reduction during the 

COVID-19 pandemic in U.S. metropolitan areas, compared to other socio-demographic 

variables such as ethnicity, education, or employment? 

Spatial structure alone will not be enough to understand the complex nature of human 
mobility. It is also important to compare the contribution of spatial structure on mobility 
reduction with other influential factors. A regression model will be built to assess the 
influence of polycentricity and other important socio-demographic variables on mobility 
reduction.  



 10 

Hypothesis 4: Polycentric areas exhibit a lower risk of viral transmission in comparison to 
monocentric areas (Aguilar et al., 2020). Therefore, the degree of polycentricity is expected to 
be a good indicator of the overall mobility reduction and will be among the most important 
variables in the regression model. 
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Chapter 3: Methodology 

This chapter outlines the systematic approach and research design used to address the 
research objectives. For a better overview of the processes and results, a simplified workflow 
is shown in Figure 3. In the first step the raw data were preprocessed (Section 3.2) such that 
they can be used as input for the Whole Graph Embedding (WGE) (Section 3.3). The 
scattering features resulting from the whole graph algorithm were used in a regression 

analysis (Section 3.5.1) for model comparison and as further input for the feature reduction 
(Section 3.3.2). Within the feature reduction, clustering was applied to group data points with 
similar spatial structures together, enabling the analysis (Section 3.4) of differences and 
patterns between the groups. Besides the clusters, the feature reduction also generated several 
principal components. These components were then used in another, different regression 

analysis (Section 3.5.2), where their contributions were compared to various other socio-
demographic and mobility-related variables. The following sections will describe each step in 
more detail. Both regression analyses will be discussed individually within the same section, 
as they have similarities in model building and model selection. 

 

Figure 3: Simplified workflow; blue indicates data, yellow a process and green results. 
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3.1 Data 

The upcoming two subsections describe the data used in this thesis. Section 3.1.1 describes 
the mobility data used for the whole graph embedding, and Section 3.1.2 introduces the 
variables used in the regression analysis. 

3.1.1 Data for Whole Graph Embedding 

The mobility dataset used in this thesis contains daily and weekly origin-destination (OD) 
flows starting from January 1st, 2019 to December 27th, 2021 in the U.S. (Kang et al., 2020). 
The whole dataset is publicly available and can be downloaded directly from GitHub2. The 
visitor flows are directly calculated from the mobile phone GPS data collected by SafeGraph 
(2020). The data is computed from millions of mobile phone users’ visits to various places 
and is aggregated at three geographic scales: census tract, county, and state.  

Table 1: Overview of the mobility flow data. 

Variable Description Example 

geoid_o Unique ID of the origin 25027728400 

geoid_d Unique ID of the destination 25027708100 

lng_o Latitude of the geometric centroid of the 
origin (GCS NAD 83) 

-71.85086158823391 

lat_o Longitude of the geometric centroid of 
the origin (GCS NAD 83) 

42.38162773835911 

lng_d Latitude of the geometric centroid of the 
destination (GCS NAD 83) 

-71.90265475768281 

lat_d Longitude of the geometric centroid of 
the destination (GCS NAD 83) 

42.55122458473228 

date_range Date range of the records 01/20/20 – 01/26/20 

visitor_flows Estimated number of visitors detected by 
SafeGraph 

28 

pop_flows Estimated population flows, inferred 
from visitor_flows 

554 

Table 1 provides an overview of the attributes of the mobility data. The identifier of the 
census tracts is the same as the Federal Information Processing Standard (FIPS), which is 
used to uniquely identify any census tract within the U.S. The country is divided into several 
geographical areas for the purpose of data collection and analysis. The whole nation consists 
of several states that are divided into multiple counties and each county can be further divided 
into smaller units called census tracts. The identifier mentioned above consists of an 11-digit 
code, whereby the first two digits represent the state, the next three the county, and the last six 
the individual census tract. The data also includes the dynamic population flows, which are 
inferred from the visitor flows. To get the population flows, the visitor flows are multiplied by 

                                                 
2 https://github.com/GeoDS/COVID19USFlows.com  

https://github.com/GeoDS/COVID19USFlows.com
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the ratio of the total population and the total number of mobile phone devices detected. 
However, this work focuses on visitor flows only.  

There are several mobility datasets available for public usage provided by different sources 
such as Google, Facebook, or Twitter. However, these come with three main limitations. They 
do not come with human mobility flow matrices, have a lower spatial resolution, and provide 
only a sample of the entire population. The chosen dataset addresses two of the three 
mentioned limitations. However, data bias remains a common issue as not everyone has a 
mobile phone or uses a smartphone application with activated GPS tracking. It is estimated 
that the data represents around 10 % of the whole population. 

 
Figure 4: Absolute (above) and relative (below) mobility reduction for all MSA. 

Although the U.S. administrative areas reacted very differently towards the pandemic thread, 
a uniform decline in mobility flows can be seen after the announcement of a national 
emergency by the president in the second week of March 2020. This week acts as the 
transition point between the two time frames before and after regulations are implemented. As 
shown in Figure 4, a total of seven weeks before and after the transition week have been 
included in this study. The time periods are sufficiently long to capture the main drop in 
mobility as well as the start of a slow recovery phase. 

Besides mobility data, employment information is also utilized in the WGE. This is described 
in more detail in the following section, since the regression analysis uses the same 
employment data.  
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3.1.2 Data for Regression Analysis 

A range of different variables is needed to model the complex dynamic of urban mobility 
flows, and to make a statement about the importance of spatial variables in comparison. Most 
of the included variables are from the U.S. Census Bureau3, which provides a number of 
different datasets about the nation and its people. These datasets can be directly accessed 
through their Application Programming Interface (API). The American Community Survey 
(ACS) is one of the more extensive sets that grant insight into many socio-demographic areas. 
The public transportation rate is the ratio of people that use public transportation to commute 
to work. The data regarding the political party comes from the Massachusetts Institute of 
Technology4 (MIT). The dataset contains results from presidential elections from 2000 to 
2020 on a county level. The most recent available data for each county will be used for the 
variable. When including employment data, it is important to know whether the number of 
jobs is counted in the workplace area or the residential area, e.g., if the data reflects where the 
employees live or where they actually work. For that reason, employment data from a subset 
of the Longitudinal Employer-Household Dynamics (LEHD) is used, called the LEHD 
Origin-Destination Employment Statistics (LODES) dataset. The LODES set has a special 
focus on commuting and employment patterns and contains both information regarding 
workplace characteristics as well as residential areas. Any densities are computed by dividing 
the variables by the area of the respective census tract. These area sizes are extracted from the 
Census Bureau’s Planning Database (PDB). 

3.2 Preprocessing 

The raw mobility data needs to be cleaned and organized before it can be used as input for the 
whole graph algorithm, which is described in the next section. After downloading the files for 
the chosen time frames, the data for the Metropolitan Statistical Areas (MSAs) was selected. 
An MSA is defined as an urbanized area of at least 50’000 population, plus adjacent territory 
that has a high degree of social and economic interaction as measured by commuting ties 
(Office of Management and Budget, 2021). An MSA is made up of one or more counties. 
MSAs account for around 85 % of the total U.S. population. The integration of commuting in 
the definition makes MSA the ideal geographic unit for this study. The selection was done 
with the help of a delineation file from the U.S. Census Bureau5, which lists all counties to 
their relevant metropolitan area. By linking the first five digits of the census tract identifier 
with the county identifier from this delineation file, only census tracts within an MSA were 
kept. For the purpose of this work, areas in Puerto Rico have been excluded, because of the 
inherent differences to other U.S. states, including the spatial structure of their urban areas. 
Flows between different MSAs have also been excluded, such that the data only included sets 
of origins and destinations within the same MSA. Finally, the mean for each area was 
calculated for the two separate time periods of seven weeks each. The preprocessed data 
reflects information from a total of 384 metropolitan areas within the U.S. 

The conceptual model for whole graph embedding first represents the graph as a collection of 
nodes and edges, where nodes correspond to entities, and edges capture relationships between 
these entities. In this thesis, the nodes are represented by the census tracts and the edges by 
the mobility flows. With this data, the structural information of the transportation network can 
be modeled. In addition to the graph structure, the WGE model can take advantage of node 

                                                 
3 https://www.census.gov/  
4 https://dataverse.harvard.edu/  
5 https://www.census.gov/geographies/reference-files/time-series/demo/metro-micro/delineation-files.html  

https://www.census.gov/
https://dataverse.harvard.edu/
https://www.census.gov/geographies/reference-files/time-series/demo/metro-micro/delineation-files.html
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features or attributes. These features describe certain characteristics of the nodes, which can 
provide valuable information that helps enhance the quality of the graph embedding. Several 
other node features were used as input for the whole graph algorithm in this study, including 
the total volume of inflows, self-loop flows, clustering coefficient, employment, and degree 

centrality. The first three features have been successfully applied in the study by Fu et al. 
(2021). The degree centrality is a graphic node feature used in the original whole graph 
algorithm (Gao et al., 2019). Employment, as the total number of workplaces per census tract, 
is the last node feature used. Employment data is a core feature commonly used by other 
indices to assess the degree of polycentricity.  

3.3 Whole Graph Embedding 

The central purpose of the WGE applied in this thesis is to capture the spatial structure of the 
urban areas in an Euclidean space as described in Section 2.2.2. This allows for further 
analytical application of clustering and machine learning. This section includes the main 
whole graph algorithm used in this thesis (Section 3.3.1), as well as the feature reduction and 
clustering (Section 3.3.2) of its output.  

3.3.1 Whole Graph Algorithm 

The geometric-scattering-based algorithm by Gao et al. (2019) was applied in this thesis. The 
algorithm basically extracts scattering features from a graph by applying cascading multi-
layer wavelet transforms. Although there are also other options as mentioned in a previous 
section, this algorithm is able to embed weighted directed graphs, such as OD graphs. 
Meaning that both morphological (node features) as well as functional (edge features) 
polycentricity can be modeled. 

The algorithm is available on GitHub6 together with a couple of example scripts to showcase 
its uses. The whole graph algorithm uses two inputs: edge features and node features. The 
edge features are given as a list of adjacency matrices and the node features are also given as 
a list. The created matrices show the directed flows for each pair of census tracts within an 
MSA. The calculation of the clustering and degree node features first required the 
construction of graphs. These were created with the network analysis library NetworkX7. 
Once the weighted and directed graphs were created, employment data was also added as an 
attribute for each node within the graphs. With the adjacency matrices and the corresponding 
graphs, all node features could now be calculated. The inflow and self-loop flows could 
simply be derived from the adjacency matrices. The employment data could also be read 
directly from the node attributes of the graphs. The clustering coefficient and the node degree 
as the two graphic features were computationally more expensive to generate. 

With all node and edge features prepared, the actual whole graph algorithm could be applied. 
The algorithm produces 64 scattering features for each individual node feature given as input. 
Using five node features resulted in 320 scattering features. These scattering features always 
have the same values for each node feature, regardless of the combination of features, 
meaning that there is no randomness involved and one could use the algorithm for each node 
feature separately and then add them together afterwards. 

                                                 
6 https://github.com/matthew-hirn/geo-scattering-graph-data  
7 https://networkx.org/  

https://github.com/matthew-hirn/geo-scattering-graph-data
https://networkx.org/
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3.3.2 Scattering Feature Reduction 

The scattering features resulting from the whole graph algorithm still have a high 
dimensionality, which needs to be reduced for clustering purposes. Firstly, the multi-
correlation between the features was inspected. For this purpose, the Variance Inflation Factor 
(VIF) was examined as a measurement of collinearity. The VIF was computed for each 
feature whereas higher values indicate a higher collinearity. The feature with the highest value 
was then iteratively removed until the highest value was no greater than a chosen threshold. 
As a rule of thumb, this threshold is often set at 5, which was also applied in this context.  

To further reduce these dimensions for clustering purposes, Principal Component Analysis 
(PCA) was applied. PCA increases the interpretability of the data while preserving most of its 
information. For this work, principal components that can explain at least 90 % of the 
variance were kept.  

In order to cluster the principal components obtained from the PCA, a k-means algorithm was 
applied, and the best k was estimated using the elbow method. The first two principal 
components were used for clustering in a two-dimensional space, and the clusters were color 
coded according to the results of the k-means clustering. 

3.4 Cluster Analysis 

The aim of the cluster analysis is firstly to label the clusters according to the degree of 
polycentricity, and secondly, to examine and explain any behavioral differences between the 
clusters in regard to mobility reduction. Assessing feature clustering results without any 
ground truth is always a challenging task, especially, when no expert knowledge about the 
areas is present. Nevertheless, an effort was made to assess the clustering results. In the 
upcoming sections, the clusters were analyzed qualitatively (Section 3.4.1) as well as 
quantitatively (Section 3.4.2). Furthermore, the cluster-specific temporal changes were 
examined (Section 3.4.3), and further explorative analysis was conducted (Section 3.4.4). 

3.4.1 Qualitative Analysis 

To get a good first impression of the distribution of the degree of polycentricity within the 
vector space, some individual MSAs were examined qualitatively. Often, an aerial view of the 
urban area can give a good first impression of the overall spatial structure. To visually 
examine such aerial views, QGIS was used to display Google satellite images of some areas. 
The borders of the MSA as well as of the individual census tracts were also displayed for a 
better understanding of the network structure. The satellite images of the selected MSA were 
compared in regard to their position within the clusters, and some simple demographics were 
also examined. The position of the individual points in the clusters can further be assessed 
with other indices, such as the urban sprawl index by Smart Growth America (2014). For each 
main cluster, the MSA closest to the centroid was examined. This MSA is the most 
representative of its cluster. Additionally, the extreme areas that are most different from each 
other were examined as well. Any outliers were also checked.  



 17 

3.4.2 Quantitative Analysis 

To complement the qualitative analysis and make a broader statement about the polycentricity 
of all MSAs and their clusters, a more comprehensive quantitative analysis was conducted as 
well. For each MSA, several commonly used polycentricity indices were calculated. These 
indices were then used to color-code the respective data points within the vector space. This 
visual representation further improved the understanding of the overall patterns of 
polycentricity within the clustering results. The similarities between the external indices and 
the principal components were further examined by comparing their correlation coefficients.  

Table 2: Polycentricity measures. 

Index Morphological Polycentrictiy Functional Polycentricity 

Green (2007) 𝑃𝑀 = 1 −  𝛿𝐹𝛿𝑀𝑎𝑥 

𝛿𝐹: The standard deviation of total 
inflow in the network. 𝛿𝑀𝑎𝑥: The standard deviation of 
inflow in a two-node network where 
one node has zero and the other has 
the maximum observed inflow. 

𝑃𝐹 = 1 − 𝛿𝐹𝛿𝑀𝑎𝑥 ∗  ∆ 

∆ = 𝐿𝐿𝑀𝑎𝑥  

Delta represents the network density where L is 
the total inflow and 𝐿𝑀𝑎𝑥  equals the maximum 
possible value of inflow for a single node. 

Burger et al. (2011) PM = 1 – ratio of employment in the 
largest center and the total 
employment in the region. 

PF = 1 – ratio of inflow into the largest center 
and the total inflow in the region. 

Limtanakool et al. 
(2007) 

—  𝐸𝑙 =  − ∑𝑖=1𝐿 (𝑍𝑙)𝐿𝑛(𝑍𝑙)𝐿𝑛(𝐿)  

For z = 0 holds that (z)Ln(z) = 0 𝐿: Total number of links in the network 
(𝑙 = 1,2,3, … , 𝐿). 𝑍𝑙: Journeys on link 𝑙 in relation to the total 
number of journeys in the network. 

Burger and Meijers 
(2012) 

The rank-size distribution of the 
nodality scores, where nodality is 
counted as the total employment.  

The 54 largest nodes are chosen to 
calculate the slope of the regression. 

The rank-size distribution of internal centrality 
scores, where internal centrality is counted as 
the total inflow.  

The 54 largest nodes are chosen to calculate the 
slope of the regression. 
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A total of four different indices from two groups of measures were applied for the data and 
used for comparison. Table 2 provides an overview of the measurements used, their formulae 
as well as the dimension of polycentricity measured. The first three (Green 2007; 
Limtanakool et al., 2007; Burger et al., 2011) are all methods that originate from social 
network theory. The method by Burger and Meijers (2012) measures polycentricity with a 
rank-size distribution. The third group of polycentricity indices compares observed 
polycentricity with an ideal model. However, their application is limited to cases with fine-
grained data of the population, and as Bartosiewicz and Marcińczak (2020) point out: “…, 
they are virtually never employed in comparative studies on polycentric urban development 

and/or on the effects of polycentricity on social and economic phenomena” (Bartosiewicz and 
Marcińczak, 2020: 3). For this reason, this group of measures was not included in this work. 

The formulae have been mostly applied, as in the study by Bartosiewicz and Marcińczak 
(2020), with the exception of the measure by Burger and Meijers (2012). Originally, they 
estimate the slope of the second, third, and fourth largest nodes in the network and then 
calculate the average of these three scores. The scale hereby is substantially different, as they 
use whole cities as nodes in a national network. They point out that the sample size of nodes 
used to calculate the slope of the regression should best be based on a fixed number of 
centers. In an earlier work by Meijers and Sandberg (2008), they set the sample size as the 
average number of nodes across all networks. If a network should have less than the fixed 
sample size, then all nodes are included. The same strategy was applied to the calculations in 
the adjusted rank-size formula. The median value of 54 has been selected as the sample size, 
as the distribution across all networks is skewed. Another small adjustment was made to the 
morphological polycentricity index by Burger et al. (2011). Bartosiewicz and Marcińczak 
(2020) use commuting flows for both morphological and functional index, perhaps due to data 
availability reasons. However, the original study uses employment data for the morphological 
dimension. Since such data was available for this study, it was applied as in the original 
formula. For an easier direct comparison, all polycentricity indices were adjusted such that 
their values range from 0 to 1, where a higher value indicates a higher degree of 
polycentricity. 

3.4.3 Temporal Analysis 

In order to examine any potentially different cluster-specific behavior over time, their 
individual change was analyzed before and after mobility restrictions were implemented. 
These changes were then compared to determine whether there are any differences in how the 
clusters reacted to the mobility reduction. This was done in regard to mobility and the degree 
of polycentricity. For mobility, the relative change in mobility flows was investigated with 
basic statistical methods. The relative change in polycentricity required a bit more 
preparation. The datasets from the two different time periods were joined together into a 
single dataset, and the same process as in Section 3.3.2 was applied. First, the features with 
high multicollinearity were removed, and then the principal component analysis was applied 
to further reduce the dimensionality of the data. The resulting principal components could 
then be visualized and compared within the same space. The data entries were colored 
according to the previously obtained clusters, allowing a comparison of cluster-specific 
movement. The centroids of the clusters were used to give a good quantitative measure of 
how much the cluster as a whole has moved.  
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3.4.4 Further Explorative Analysis 

To gain a better understanding of any possible differences between the clusters, the relation 
between the first principal component and other, mainly spatial variables was examined. 
Some of these variables were also used in the second regression analysis later on. The relation 
was examined by estimating a linear regression between the variables. The slope of this 
regression gave insights into the relation of the variables that were being compared and 
helped form an explanation for the different behaviors of the clustering groups. 

3.5 Regression Analysis 

Two different regression analyses were conducted in the scope of this thesis with the aim of 
better understanding the relationship between spatial structure (w.r.t. polycentricity) and 
mobility reduction during the pandemic. In the first regression analysis, a model based on 
results from the WGE was compared to an aggregated baseline model. The difference in 
model performance was used to illustrate the importance of spatial structure for mobility 
reduction as modeled by the whole graph algorithm. The second regression analysis was used 
to compare the importance of independent variables within a single model. More specifically, 
the focus was put on the comparison of polycentricity with other socio-demographic, spatial, 
and travel-related variables.  

3.5.1 Impact of Spatial Structure 

To assess the importance of spatial structure for the mobility reduction, two models were 
compared with each other. The general idea was to compare a whole graph model with a base 
model. For both models the dependent variable was the relative mobility reduction. The 
whole graph model used the scattering features obtained from the whole graph algorithm as 
explanatory variables, whereas the base model used mean values of the raw node and edge 
features. Since the whole graph algorithm can model the spatial structure of a graph, the 
difference in performance between these two models will reflect the impact of the spatial 
structure. Furthermore, the impact of graphic node features was examined by removing 
graphic node features in both models. This resulted in a total of four models being compared 
with each other. Besides the performance metrics, the feature importance, as well as the 
Pearson correlation coefficient of the independent variables and the mobility reduction, was 
also compared. All variables were normalized prior to the regression analysis. 

3.5.2 Impact of Polycentricity 

To get a better understanding of polycentricity and its impact on mobility reduction, it was 
compared to a range of mostly socio-demographic variables. An overview of the variables and 
their respective source is shown in Table 3.  
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Table 3: Overview of variables and their sources. Note: * square root transformed. 

Category Variable Source 

 Explanatory variables  
 

Socio-demographic Median age 
Sex ratio  
Black or African American 
Asian * 
Hispanic or Latino 
Unemployment rate 
Poverty rate 
Gini index 
Higher education 
Dominant political party 

U.S. Census Bureau 
 
 
 
 
 
 
 
 
Massachusetts Institute of Technology 
 

Travel-related Mean travel time 
Public transportation rate * 
 

U.S. Census Bureau 

Spatial Employment density * 
Polycentricity (principal components) 
 

U.S. Census Bureau 
Own work 
 

 Dependent variable  

Mobility data Relative mobility reduction SafeGraph 

Variables with high collinearity and low overall feature importance have been removed. Any 
variables with a skewed distribution were transformed by a square root function. The first, 
second, and forth principal component (PCs) have also been transformed using a square root 
function. Additionally, a power transformation was applied on the ninth PC. The skewness 
was assessed using the skew and kurtosis function from the SciPy8 library. All variables were 
normalized before applying the regression analysis. As in the other regression analysis, the 
feature importance as well as the Pearson correlation coefficient were used for further 
comparison. 

3.5.3 Model Building and Selection 

The general workflow of the regression analysis was the same for both prediction tasks. The 
hyperparameter tuning of different algorithms was performed with the GridSearchCV method 
from the scikit-learn9 library using a 10-fold cross-validation. The best set of hyperparameters 
was then used in a nested cross-validation to measure the model performance. 10-fold cross-
validation was applied in both the outer and inner loop of the nested cross-validation. To 
choose the best model, a range of performance metrics was compared. This includes the R2 
score, Mean Squared Error (MSE), Mean Absolute Error (MAE), and Root Mean Squared 
Error (RMSE). For all metrics, the mean value and the standard deviation from the nested 
cross-validation were reported. In earlier testing, ensemble methods showed the overall best 
performance. These methods also have an integrated feature importance measure, which is 
useful for assessing the impact of certain variables. For this reason, a Random Forest (RF) 
model, an AdaBoost (AB) model, and a Gradient Boosting (GB) model were compared in 
more detail. The best performing model out of these three was selected based on the metrics 

                                                 
8
 https://scipy.org/  

9
 https://scikit-learn.org/stable/  

https://scipy.org/
https://scikit-learn.org/stable/
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and then examined in more detail. The main parameters that were fine-tuned for RF and GB 
were the number of trees used in the model and the number of features to consider when 
looking for the best split. The AB model underwent fine-tuning for the number of trees 
utilized and the weight assigned to regulate the impact of individual weak learners. 
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Chapter 4: Results 

In the upcoming sections, the results to answer the given research questions (Section 2.4) are 
presented. Section 4.2 covers RQ1 by examining the clustering results, which are presented in 
Section 4.1. RQ2 will be answered in Section 4.3, in which the importance of spatial structure 
is examined. In Section 4.4 the impact of the degree of polycentricity will be analyzed in 
order to answer the final RQ3. Lastly, a summary of the findings is presented in Section 4.5. 

4.1 Whole Graph Embedding and Feature Clustering 

The removal of features with a high multicollinearity resulted in a total decrease from 320 to 
50 features. The further application of the dimensionality reduction with PCA resulted in 9 
principal components that can retain 90 % of the variance, whereas the first component alone 
can explain above 50 % of the total variance. This adds up to 65 % of the variance together 
with the second principal component. The results of the k-means clustering with the best k of 
4 are shown in Figure 5. A complete list of individual Metropolitan Statistical Areas (MSAs) 
with their respective cluster and other important information is shown in Appendix B. 

 
Figure 5: PCA transformed embedding vectors. 
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Three main groups can be identified with an additional small outlier cluster. The distribution 
of areas per cluster is skewed. The majority of the MSAs are placed within Group 2 (blue) on 
the very left. This cluster includes 306 out of the total 384 areas, coming close to 80 % of all 
examined MSA. The cluster labeled Group 1 (orange) consists of 60 MSAs, Group 4 (green) 
of 16, and the outlier Group 3 (red) of only 2 areas. It is noticeable that the clusters differ in 
terms of their compactness or spread. Group 2 is very compact with a mean spread of 0.68 
from the cluster centroid. Group 1 is more extended with a mean spread of 2.17, and Group 4 
is very widespread with a mean distance from the centroid of 5.85. Most of the visible 
difference of the three main groups is shown along the PC 1 axis. 

4.2 Cluster Analysis 

The aim of this section is to appropriately label the four clusters identified in the previous 
section based on their degree of polycentricity. This is accomplished through a combination 
of qualitative evaluation using satellite images and quantitative analysis applying various 
polycentricity measures. After labeling the clusters according to their degree of polycentricity, 
a comparison is conducted between the different groups in terms of their mobility behavior 
and structural changes. Lastly, an effort is made to explain any observed differences between 
the clusters by examining factors that may have influenced their mobility patterns. 

4.2.1 Qualitative Analysis 

A total of seven selected MSA are examined in this section. Figure 6 provides an overview of 
the MSA and their position within the clusters. Due to space reasons, only the images of the 
three areas Lynchburg, VA, Baton Rouge, LA, and New Orleans, LA, are displayed within 
this section. These three are closest to the centroid of their respective cluster. The images of 
the other areas are attached in Appendix A. For each MSA, two images are displayed, one 
with only MSA borders and one with additional census tract borders. 

The first area examined is the MSA of Lynchburg in Virginia (Figure 7). It is closest to the 
centroid of Group 2 (blue) on the very left. It is a quite small metropolitan area with only 60 
network nodes and a total population of 263’937. The area looks quite rural with a lot of 
green spaces and only a few smaller urban patches. One main center can be seen in the middle 
with a few smaller settlements scattered around. The census tracts are relatively equal in size, 
compared to other MSAs. Most of the main urban core seems to be made up of just a single 
census tract. The area is listed among the most sprawling small metropolitan areas in the 
Measuring Sprawl 2014 report by Smart Growth America. However, a city can still be 
monocentric if it experiences the sprawl adjacent to its already existing built-up area. The 
sprawl would only indicate increased polycentricity if it expands outside of the existing built-
up area, which does not appear to be the case based on the aerial view. 

The second image in Figure 8 depicts the MSA of Baton Rouge, Louisiana. It is at the center 
of the orange cluster in the middle. It is significantly larger with 157 nodes and a population 
of 856’779. The census tracts are visibly smaller in the urban center and quite large towards 
the border area. In regard to the sprawl report, the area is listed as the most sprawling medium 
sized metropolitan area.  



 24 

 
Figure 6: Overview of the selected MSA. 

The last area presented in Figure 9 is the MSA of New Orleans-Metairie-Kenner, Louisiana. It 
is the central MSA of the green cluster to the right. This area is adjacent to the south-east of 
Baton Rouge. It is the largest of the three with 403 network nodes and a population of 
1’271’651. Besides the main urban core, at least two other medium sized settlements can be 
identified. Most census tracts seem to be very small in the urban center with only a few larger 
ones towards the border. New Orleans is ranked among the less sprawling metropolitan areas 
in the report of 2014. The area has a few water bodies in or adjacent to its territory, which 
could be a natural limit to its sprawl. Its close proximity to the Gulf of Mexico brings 
challenges in regard to natural hazards such as hurricanes. New Orleans was in fact severely 
hit by Hurricane Katrina in 2005, where most of the city was completely flooded. This will 
most likely have limited sprawling activity for several years, which could also explain the low 
sprawl index from 2014. 

The two MSAs Enid in Oklahoma and Houston in Texas have been included in the appendix 
in Figure A.1 and A.2, respectively. Both represent extreme cases with Enid being the MSA 
placed on the far left and Houston being on the far right of the PC 1 axis. Enid’s structure is 
clearly monocentric, while the structure of Houston is very polycentric. Texas is known for its 
economic-oriented spatial planning policy, and Houston itself is famous for having no zoning 
ordinance (Qian, 2010). It is therefore not surprising that Houston is also the number one 
sprawling large MSA in the urban sprawl report. There is no sprawl index for Enid, as the 
report excluded smaller areas. 
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Figure 7: Lynchburg MSA, Virginia; MSA border (above) and census tract borders (below). 
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Figure 8: Baton Rouge MSA, Louisiana;  MSA border (above) and census tract borders (below); the grey area is 

part of a larger combined statistical area, but not the MSA itself. 
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Figure 9: New Orleans-Metairie-Kenner MSA, Louisiana; MSA border (above) and census tract borders 

(below).  
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A clear trend can be seen when looking at the five MSAs discussed above. The polycentric 
structure seems to increase mainly along the first principal component. This suggests that the 
three main clusters found are monocentric, intermediate, and polycentric from left to right. 
Another trend that becomes apparent is the increase in the network size, i.e., the total number 
of nodes within a network along the first principal component. These two patterns will be 
further investigated in Section 4.2.4. 

The two outlier MSAs are shown in the appendix in Figure A.3 and A.4. Both Jacksonville 
and Sarasota are located in Florida. The two MSA have further similarities in their location as 
both are located on the coast. Both areas seem to be polycentric, Sarasota more so than 
Jacksonville as it is more spread along the coast. This is also supported by their urban sprawl 
index with Jacksonville having a significantly higher value. However, judging from the 
satellite images alone, no clear feature can be identified that could explain their outlier 
position within the clustering. 

The findings of this subsection can be summarized as follows: 

 The degree of polycentricity as well as the overall size of the MSAs seems to increase 
mainly along the first principal component.  

 These results suggest that the clusters are monocentric, intermediate, and polycentric 
from left to right, with a small outlier cluster that also seems to be polycentric.  

4.2.2 Quantitative Analysis 

The aforementioned external polycentricity indices in Section 3.4.2 were applied, and the 
results can be seen in Figure 10.1 and 10.2, respectively. Although some differences between 
the indices can be seen, they all generally show a similar pattern. The degree of polycentricity 
increases from left to right mostly along the axis of the first principal component. The index 
by Green (2007) seems to have a more different pattern with values that are generally more 
monocentric. Differences between morphological and functional polycentricity are overall 
very small. Only the index by Burger et al. (2011) shows a lower polycentricity in the 
functional dimension compared to the morphological one. No significant difference between 
the social network indices and the rank-size distribution measure can be identified. Both 
outliers from the clustering are classified as polycentric for the most part. The compact cluster 
on the very left has the vast majority of monocentric areas, whereas the cluster on the right 
has mostly polycentric ones. There is a mixed transition space between them that lies 
primarily within the orange cluster in the middle. 
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Figure 10.1: Social network measures; morphological polycentricity (left), functional polycentricity (right); a) 

Burger et al. (2011); b) Green (2007); c) Limtanakool et al. (2007) (only applicable for functional 

polycentricity).  

a) 

b) 

c) 
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Figure 10.2: Rank-size distribution measure by Burger & Meijers (2012); morphological polycentricity (left), 

functional polycentricity (right). 

The correlation coefficients shown in Table 4 present a similar picture as the visualizations 
above. The external indices show a medium to high, positive correlation between each other. 
The morphological and functional measures by Green (2007) and Burger & Meijers (2012) 
show a very high correlation close to 1. Especially the rank-size distribution index seems to 
correlate highly with all other indices. Contrary to expectations, not all functional indices 
correlate better with other functional ones and the same is true in regard to the morphological 
measures.  

Table 4: Pearson correlation between external polycentricity indices. Note: p < 0.001 for all values; Suffix F for 

functional and M for morphological. 

 Burger_F Burger_M Green_F Green_M Lim_F BM_F BM_M 

Burger_F 1.0 0.681 0.515 0.444 0.861 0.789 0.769 

Burger_M 0.681 1.0 0.625 0.61 0.599 0.684 0.709 

Green_F 0.515 0.625 1.0 0.986 0.452 0.763 0.732 

Green_M 0.444 0.61 0.986 1.0 0.402 0.736 0.709 

Lim_F 0.861 0.599 0.452 0.402 1.0 0.694 0.66 

BM_F 0.789 0.684 0.763 0.736 0.694 1.0 0.964 

BM_M 0.769 0.709 0.732 0.709 0.66 0.964 1.0 

The correlation between the external indices and the principal components is shown in Table 
5. The principal components have a mostly low correlation to the external indices. The first 
principal component is the only one that has a higher correlation. It is also the only one that 
shows a positive correlation. The p-value of the fourth and ninth principal components are too 
high for the results to be considered significant. The first, third, and sixth principal 
components are the only ones that show a higher and more significant correlation overall. 
Some components like PC 5 or PC 2 seem to capture certain indices better than others. 
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Especially the second component shows low correlation coefficients, despite retaining around 
12 % of the variance. 

Table 5: Pearson correlation between external indices and principal components. Note: * p < 0.05, ** p < 0.01, 

*** p < 0.001; Suffix F for functional and M for morphological. 

 Burger_F Burger_M Green_F Green_M Lim_F BM_F BM_M 

PC_1 0.463 *** 0.388 *** 0.507 *** 0.479 *** 0.4 *** 0.422 *** 0.396 *** 

PC_2 -0.116 * -0.108 * -0.175 *** -0.166 ** -0.075 -0.075 -0.08 

PC_3 -0.322 *** -0.263 *** -0.344 *** -0.316 *** -0.32 *** -0.304 *** -0.281 *** 

PC_4 -0.099 -0.078 -0.098 -0.082 -0.075 -0.078 -0.066 

PC_5 -0.167 ** -0.073 -0.078 -0.066 -0.083 -0.212 *** -0.201 *** 

PC_6 -0.292 *** -0.224 *** -0.289 *** -0.26 *** -0.244 *** -0.289 *** -0.274*** 

PC_7 -0.132 ** -0.143 ** -0.151 ** -0.144 ** -0.108 * -0.163 ** -0.166 ** 

PC_8 -0.155 ** -0.145 ** -0.117 * -0.104 * -0.108 * -0.151 ** -0.145 ** 

PC_9 -0.013 -0.027 -0.009 -0.007 -0.003 -0.015 -0.014 

The results of this subsection can be summarized as follows: 

 All external polycentricity indices depict an increasing degree of polycentricity mainly 
along the first principal component, confirming the findings of Section 4.2.1. 

 Whereas the external indices have a medium to high correlation with each other, only 
the first principal component shows a higher positive level of correlation with the 
external measures. 

4.2.3 Temporal Change 

The results of the temporal analysis are shown in Figure 11. Due to the results from the 
previous two sections, new aliases have been assigned to the groups: Intermediate for Group 
1 (orange), Monocentric for Group 2 (blue), Outlier for Group 3 (red), and Polycentric for 
Group 4 (green). For the temporal analysis, the outlier cluster has been excluded, due to its 
small size. The results show a general movement towards the left, which is the same for all 
clusters, although in different relations. The higher the value of the first principal component, 
the larger is the change in distance between the two time periods. The centroid of the 
polycentric cluster (green) shows the largest change with an Euclidean distance of 13.266. 
The intermediate cluster (orange) follows with a distance of 3.470, and the monocentric 
cluster (blue) with a distance of 0.299 comes in last. This suggests that MSAs with a higher 
degree of polycentricity experienced a larger change. 
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Figure 11: PCA embedded vectors before (left) and during (right) mobility restrictions. 

 
Figure 12: Mobility reduction per cluster with standard deviation (above) and difference between clusters 

(below).  
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When inspecting the mean mobility reduction within each cluster in Figure 12, the overall 
pattern looks very similar. A small reduction before the regulations with a following recovery 
is apparent. The main reduction after regulations have been implemented is severe for all 
cluster types. The beginning of a recovery from the regulations is also visible for all groups. 
However, some differences can be seen towards the end of the second period. The difference 
between the monocentric and polycentric clusters reaches 4 %, whereas most change occurs 
rapidly around the transition week. The difference between the monocentric and intermediate 
clusters reaches just above 5 %, with a very similar pattern as the polycentric cluster. The gap 
between polycentric and intermediate clusters is low throughout the whole time period and 
stays under 1 % for the most part. The spread of all three clusters is very similar and shows a 
general increase when the mean value drops. The mean values always stay within the spread 
of the other clusters, indicating that the three clusters may not be significantly different from 
each other. To assess whether the mean relative reduction is statistically significant, an 
independent t-test was performed. The difference between polycentric and monocentric (p < 
0.05), as well as the difference between intermediate and monocentric clusters (p < 0.001) are 
significant. Only the difference between the polycentric and intermediate clusters is not 
significant (p > 0.95). 

The findings of this subsection can be shortly summarised as follows: 

 The overall degree of polycentricity was reduced among all clusters after mobility 
restrictions were implemented, whereas the polycentric cluster experienced the largest 
change. 

 In regard to the relative mobility reduction, the polycentric and intermediate cluster 
show a similarly higher reduction of 4 to 5 % compared to the monocentric cluster.  

4.2.4 Further Exploratory Analysis 

In order to explain the findings of the earlier sections within this chapter, linear regression is 
estimated between the first principal component and some other variables. Some of these 
variables will also be used in the regression analysis in Section 4.4. The results of these plots 
can be seen in Figure 13, whereas all relations are significant (p < 0.01). Both the total 
number of nodes and the mean commuting time clearly increase along with the first principal 
component. These two spatial variables are an estimation of the total size of the network, 
meaning that the networks generally grow larger in size along the first principal component. 
This confirms the findings of Section 4.2.1. The same statement can be made about 
employment density. Lastly, a weaker yet positive relation can be seen between the 
cumulative COVID-19 cases10 and the first principal component. 

                                                 
10

 https://github.com/nytimes/covid-19-data  

https://github.com/nytimes/covid-19-data
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Figure 13: Estimated linear regression between PC_1 and a) total number of nodes, b) mean commuting time, c) 

employment density and d) cumulative COVID-19 cases per 1’000 people. 

4.3 Impact of Spatial Structure 

For a better understanding of the importance of urban spatial structure on mobility reduction, 
a regression analysis has been conducted. After the best performing algorithm has been 
selected, the Whole Graph Embedding (WGE) model is compared with a baseline model to 
assess the impact of spatial structure on mobility reduction. The models are further interpreted 
by comparing the correlation and feature importance. 

4.3.1 Model Selection 

Among the ensemble methods tested for both WGE and base model, Gradient Boosting (GB) 
performed best overall. The performance metrics of each method are shown in Table 6. 
AdaBoost (AB) generally performed worse than the other two methods. Although Random 
Forest (RF) performed better than GB for the WGE model, it performed worse for the base 
model. Based on these results, the GB will be analyzed in more detail in the following 
sections. 

a) b) 

c) d) 
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Table 6: Model selection. Note: The content in brackets shows the best hyperparameters used. 

4.3.2 Model Comparison 

The WGE model outperformed the base model, both with and without graphic node features, 
as demonstrated by all selected performance metrics in Table 7. The improvement in 
performance is particularly evident in the R2 score, with an increase of 12 %, respectively 25 
% when comparing the models without any graphic node features. The other three metrics 
(MSE, MAE, and RMSE) are consistently correlated with the R2 score, although to a lesser 
extent. Especially the MAE displays marginal improvements compared to the enhancements 
observed in the R2 score. The inclusion of graphic features significantly enhanced the 
performance of the base model. In contrast, the WGE model experiences a reduction in 
performance when graphic node features are included.  

Table 7: Model comparison. Note: The content in brackets shows the best hyperparameters used. 

 WGE model 

(64, 1.0) 
Base model 

(30, 1.0) 
Non-graphic WGE model 

(64, sqrt) 
Non-graphic Base model 

(30, sqrt) 

R2 0.4150 ± 0.0241 0.3694 ± 0.0180 0.4467 ± 0.0252 0.3570 ± 0.0186 

MSE 0.0166 ± 0.0004 0.0183 ± 0.0004 0.0158 ± 0.0005 0.0187 ± 0.0003 

MAE 0.1013 ± 0.0013 0.1018 ± 0.0013 0.1000 ± 0.0016 0.1024 ± 0.0007 

RMSE 0.1279 ± 0.0014 0.1336 ± 0.0013 0.1246 ± 0.0021 0.1349 ± 0.0014 

A possible explanation for this could be that whole graph embedding models the graphic 
features implicitly. It could also be that the spatial structure modeled by the WGE has a high 
correlation with the graphic node features, making them irrelevant to the model. This second 
hypothesis can be tested by inspecting the relation between the pairwise distance as a spatial 
indicator and the graphic node features. The sum of pairwise distance is calculated for a 
sample of areas and their correlation with the graphic features is examined. Four MSAs have 
been chosen at random with an increasing number of nodes. The results can be seen in Figure 
14.1 and 14.2. The plots suggest no clear relation between the graphic node features and the 
pairwise distance across all tested MSAs. 

 WGE Model Base Model 

 RF 
(128, 1.0) 

GB 
(64, 1.0) 

AB 
(256, 0.3) 

RF 
(100, sqrt) 

GB 
(30, 1.0) 

AB 
(30, 0.2) 

R2 0.4336 ± 
0.0215 

0.4150 ± 
0.0241 

 

0.3853 ± 
0.0176 

0.3465 ± 
0.0176 

0.3694 ± 
0.018 

0.329 ± 
0.0222 

MSE 0.0163 ± 
0.0004 

0.0166 ± 
0.0004 

 

0.0176 ± 
0.0004 

0.019 ± 
0.0002 

0.0183 ± 
0.0004 

0.0194 ± 
0.0003 

MAE 0.1 
± 0.001 

0.1013 ± 
0.0013 

 

0.1061 ± 
0.0015 

0.1028 ± 
0.0008 

0.1018 ± 
0.0013 

0.1063 ± 
0.0015 

RMSE 0.1262 ± 
0.0015 

0.1279 ± 
0.0014 

0.1316 ± 
0.0015 

0.1359 ± 
0.0012 

0.1336 ± 
0.0013 

0.1377 ± 
0.0017 
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Figure 14.1: Graphic node features plotted against pairwise distance; a) Albany, GA; b) Austin, TX. 

a) 

b) 
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Figure 14.2: Graphic node features plotted against pairwise distance; a) Chicago, IL; b) New York, NY. 

This subsection can be summarised in the following two points: 

 Spatial structure as represented by the WGE leads to a model performance increase of 
12 to 25 % in terms of the R2 score.  

 The WGE model performs better without graphic node features, which may be due to 
its ability to also model graphic node features implicitly. 

4.3.3 Model Interpretation 

The Pearson correlation coefficients of relative mobility reduction and node/edge features for 
both models can be seen in Table 8. The values for the WGE model are aggregated and thus 
have no single p-value. The values are generally higher for the base model with the mobility 
flows showing the highest correlation. 

  

a) 

b) 
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Table 8: Pearson correlation coefficients of relative mobility reduction and node/edge features. Note: *** p < 

0.001, values of the WGE model are aggregated. 

Node features WGE model Base model 

Inflow 0.164 -0.174 *** 

Self-loop 0.042 -0.279 *** 

Clustering 0.364 -0.464 *** 

Employment 0.096 0.302 *** 

Degree 0.178 0.403 *** 

Flows - -0.447 *** 

 

 
Figure 15: Feature importance of the WGE model (a) and the Base model (b). 

The feature importance of both models can be seen in Figure 15. The feature importance of 
the WGE model is aggregated and displays the sum of 64 values from the scattering features. 
For the WGE model, employment is the most important feature, followed by inflow, self-
loop, clustering, and degree. This pattern remains unchanged when excluding graphic node 
features. For the base model, flows are most important, followed by employment, inflow, 
clustering, self-loop, and degree. Again this remains unchanged for the base model when 
excluding graphic node features. The pattern for employment, inflow, and self-loop remains 
the same for the most part across all models. The clustering is more important than self-loop 
in the base model and degree has a low importance across all models. 

a) 

b) 
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Table 9: Individual WGE feature importance of the top 61 features. 

 Inflow Self-loop Clustering Employment Degree 

Total 16 16 10 17 2 

Mean 0.0135 0.0089 0.0096 0.0236 0.0048 

Median 0.0117 0.0049 0.0073 0.0122 0.0048 

The individual feature importances of the WGE are also examined for any specific pattern and 
to compare with the aggregated values shown before (see Table 9). The feature importances 
are sorted descending and the cumulative sum shows an inflection point at 61, meaning that 
the top 61 values account for the majority of the total feature importance. The results confirm 
the findings of the aggregated feature importance for the most part. Degree has only two 
values and a low mean and median. Employment is both in total and average numbers the 
most important, followed by inflow in second place. Although clustering has fewer values 
than self-loop, its mean and median are higher. Self-loop has many values overall, but a lot of 
them are comparatively low.   

4.4 Impact of Polycentricity 

4.4.1 Model Selection 

For the second regression analysis, the Random Forest model performed best, followed by the 
Gradient Boosting and the AdaBoost model. The results are shown in Table 10 below. Thus, 
the RF model has been used for further analysis in the following section. 

Table 10: Model selection. Note: The content in brackets shows the best hyperparameters used. 

 
 
 
 
 

 
 
 
 

4.4.2 Model Interpretation 

For a first impression of the variables used in the regression analysis, their correlations with 
mobility reduction are inspected. The Pearson correlation coefficients can be seen in Table 
11. When looking at the PCs, only 5 out of 9 values can be considered significant. The overall 
correlation of these is low, with PC 1 having the highest value of 0.257. This is also quite low 
when compared to other variables like education, public transportation, employment density, 
or the Asian population. 

The results from the correlation analysis are complemented by the feature importance shown 
in Figure 16. Education is by far the most important, with above 30 % model importance. The 

 RF 

(90, 1.0) 
GB 

(70, sqrt) 
AB 

(50, 0.3) 

R2 0.4963 ± 0.0232 0.4670 ± 0.0265 0.4267 ± 0.0138 

MSE 0.0143 ± 0.0002 0.0152 ± 0.0004 0.0165 ± 0.0002 

MAE 0.0894 ± 0.0008 0.0916 ± 0.0017 0.0986 ± 0.0011 

RMSE 0.1178 ± 0.0008 0.1214 ± 0.0018 0.1266 ± 0.0007 
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three variables—public transportation rate, employment density, and the Asian population—
also hold comparatively high importance. Most variables besides the ones mentioned already 
have a low impact on the model. This also includes the nine principal components. 
Interestingly, the first principal component has a lower importance compared to the other 
PCs. After summing up, all PCs take almost 15 % of the total model importance. The results 
seem in line with the correlation values, except for the dominant political party, which has 
low importance, despite having a somewhat high correlation.  

Table 11: Pearson correlation coefficients between relative mobility reduction and various variables.  

  Note: * p < 0.05,** p < 0.01,*** p < 0.001. 

Variables Pearson Coefficient PC’s Pearson Coefficient 

Median age -0.122 * PC_1 0.257 *** 

Sex ratio -0.069 PC_2 -0.18 *** 

Black or African American -0.153 ** PC_3 0.213 *** 

Asian 0.469 *** PC_4 -0.102 * 

Hispanic 0.08 PC_5 0.047 

Unemployment rate -0.188 *** PC_6 -0.175 *** 

Poverty rate -0.205 *** PC_7 -0.016 

Gini index 0.2 *** PC_8 -0.029 

Higher education 0.615 *** PC_9 -0.078 

Party 0.47 ***   

Mean travel time 0.234 ***   

Public transportation rate 0.562 ***   

Employment density 0.484 ***   
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Figure 16: Feature importance of the RF model. Orange: sum of importance for all principal components. 

The subsection can be shortly summarized as follows: 

 The impact of individual principal components is limited on the model. Other 
variables such as education, public transportation rate, employment density, or the 
Asian population are dominant. 

 However, the general spatial structure, as presented by the sum of the principal 
components’ importance, is among those dominant variables. 

4.5 Summary of Results 

The main results can be summarized in the following points: 

 Three main clusters (Group 2, Group 1, and Group 4) and one outlier cluster (Group 3) 
have been identified, with the majority of MSAs being within only one cluster. 

 The qualitative and quantitative analysis suggests that the three main clusters are 
monocentric, intermediate, and polycentric. The outlier cluster also seems to be 
polycentric. 

 The temporal analysis shows a larger change for cities with an increased degree of 
polycentricity. MSAs with higher polycentricity experienced a larger relative mobility 
reduction throughout the time period analyzed. 
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 By comparing a WGE model with a base model, the impact of spatial structure on 
mobility reduction could be quantified. The spatial structure brings forth a model 
improvement of around 12 – 25 % in terms of R2 score. 

 The overall impact of the individual principal components is low in the chosen 
Random Forest regression. Education is by far the most impactful variable, followed 
by the public transportation rate and employment density. However, the principal 
components added together amount to about 15 % of the overall importance, in 
alignment with other important variables. 
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Chapter 5: Discussion 

This chapter covers the interpretation of the research findings, offering a comprehensive 
analysis of the results in the context of the research questions. By examining the outcomes 
and comparisons to existing literature, this chapter aims to provide insights and contributions 
for a broader understanding of the research area. The clusters of the embeddings and 
differences in mobility behavior are discussed in Section 5.1. The impact of spatial structure 
is covered in Section 5.2, and the impact of polycentricity in Section 5.3. Lastly, in Section 
5.4 possible limitations of this study are addressed. As a reminder, the research questions, as 
well as the hypotheses, are restated at the beginning of each subsection. 

5.1 Whole Graph Embedding Clusters 

RQ1: To what extent does the degree of polycentricity influence mobility reduction during 
the COVID-19 pandemic in U.S. metropolitan areas, and how did it change after the 
implementation of mobility regulations? 

Hypothesis 1: Assuming that an increased risk of virus spread leads to an increased 
regulatory mobility reduction, monocentric areas are expected to experience higher reduction 
rates than their polycentric counterparts. The high concentration of transportation and people 
in the center within monocentric areas increases the risk of infection (Aguilar et al., 2020). 
Conversely, decentralized polycentric areas with less crowded spaces are anticipated to show 
lower reduction rates due to reduced infection risk. 

Hypothesis 2: After the implementation of mobility restrictions to contain the virus, urban 
areas are expected to become more functionally polycentric. In order to halt the spread of the 
virus, the high mobility concentrations in central areas need to be restricted. This may lead to 
a shift in mobility away from the center, resulting in a more functionally polycentric structure 
than before. 

The four clusters identified from the whole graph embedding could be appointed to a 
monocentric, intermediate, polycentric, and outlier cluster. The majority (≈ 80 %) of 
Metropolitan Statistical Areas (MSAs) are included within the monocentric cluster, while 
polycentric areas only account for around 5 % and the intermediate for the remaining 15 %. 
Arribas-Bel & Sanz-Gracia (2014) also report that the majority of the 359 MSAs they 
examined had a monocentric structure. However, there are other studies that report the 
opposite, with polycentricity being the most found urban form within U.S. MSAs 
(Hajrasouliha and Hamidi, 2017). Most other studies only focus on a selected few well-known 
cities to measure the polycentricity, which makes a direct comparison difficult.  

Nonetheless, the qualitative analysis shows that the embeddings can differentiate MSAs of 
varying degrees of polycentricity. This was confirmed quantitatively by comparing the 
principal components (PCs) of the scattering features with other conventional polycentricity 
indices, which measure either only the functional or the morphological dimension of 
polycentricity. When looking at the correlation coefficient between these conventional 
polycentricity indices and the principal components, it becomes apparent that the first 
principal component has a higher correlation. It is also the only one with a positive 
correlation, while all others have a low to very low negative correlation. That being said, the 
first PC does not seem to be a duplicate of any of the existing indices as its unique correlation 
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pattern indicates. The first PC arguably includes both functional and morphological 
dimensions, as the level of correlation is not higher for either the functional nor the 
morphological indices. Interestingly, the second principal component, which accounts for a 
relatively large amount of the total variance, has correlations close to zero with all other 
indices. This component apparently captures something important that is not explained by the 
conventional indices. 

The analysis of cluster-specific behavior between the two different time periods yielded 
unexpected results. Against the first hypothesis stated, the monocentric MSAs experienced 
the smallest relative change. Although minor, the relative mobility reduction was 4 to 5 % 
larger in the polycentric and intermediate clusters. The difference between polycentric and 
intermediate clusters was statistically not significant (p > 0.95), indicating no real difference 
in their mobility behavior. These findings are in conflict with the results from Aguilar et al. 
(2020), who report that the spread of an epidemic, as well as the response to mobility 
restrictions, is much higher in monocentric cities, where flows are highly concentrated. A 
couple of reasons can be named to try to explain these different findings. The results from 
Aguilar et al. (2020) are on a smaller city level, compared to the wider scale of MSAs used in 
this study. They further use a fix sized grid to measure mobility, whereas this study uses 
census tracts of varying sizes that inflate densely populated areas. For these reasons, a direct 
comparison of the findings is not feasible. Polycentric MSAs have also been found to be 
generally denser in employment and larger than their monocentric counterparts, which 
matches the findings by Arribas-Bel & Sanz-Gracia (2014). Polycentric areas further showed 
a higher number of cumulative COVID-19 cases per 1’000 persons. This may explain the 
higher reduction compared to monocentric MSA. More people interacting in a small space is 
an ideal situation for the spread of a virus. In order to keep infection rates in check, 
polycentric areas had to implement overall more restrictive mobility regulations, whereas 
monocentric areas could concentrate their efforts in the main CBD. However, the relationship 
between COVID-19 cases and the first principal component is not isolated, and many more 
variables could potentially be more important. 

The temporal change in terms of the degree of polycentricity also acted against the second 
hypothesis. The movement of the clusters indicates a general trend towards a more 
monocentric structure rather than becoming more polycentric. This movement is larger for 
MSAs with a higher degree of polycentricity, meaning that polycentric areas experienced a 
larger change in their structure. Perhaps general mobility was reduced more than commuting, 
which can be altered less freely depending on the working conditions. That being the case, the 
overall pattern would become more monocentric, since commuting flows are more focused 
towards the employment center. 

As for the first research question: A higher degree of polycentricity could be associated with a 
higher relative mobility reduction in U.S. metropolitan areas during the COVID-19 pandemic. 
Both the polycentric and intermediate clusters showed higher reduction values than the 
monocentric cluster. The overall spatial structure of MSAs, as measured by whole graph 
embeddings, has become more monocentric after mobility restrictions were implemented. 
These structural changes were also higher with an increased degree of polycentricity.
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5.2 Impact of Spatial Structure 

RQ2: How important is the general spatial structure of U.S. metropolitan areas, as represented 
by whole graph embeddings, for mobility reduction during the COVID-19 pandemic? 

Hypothesis 3: Spatial structure greatly dictates the course of transportation routes for a given 
city, which therefore is essential for any mobility flows. As a consequence, spatial structure 
significantly influenced mobility reduction during the COVID-19 pandemic. 

The Whole Graph Embedding (WGE) model shows an overall performance improvement of 
12 – 25 % in terms of R2 score, compared to the base model. This is a significant 
improvement that reflects the importance of the general spatial structure for mobility 
reduction. Although the WGE model performed substantially better than the base model, it 
has to be mentioned that the values for the base model have been largely aggregated. Whereas 
the WGE uses data on census tract level, the base model uses average values for the whole 
MSA. It is possible that the performance improvement is influenced by the finer granularity 
of the input data. 

The WGE model performs better without graphic node features, which can be explained by its 
ability to model them implicitly. Another possibility is that the spatial structure has a high 
correlation with these graphic features and makes them obsolete for the regression model. The 
second possibility was tested by estimating a linear regression between the graphic features 
and the pairwise distance for a few selected locations. Since there was no clear relation 
between them, it has to be assumed that the WGE does model the graphic node features 
implicitly. 

The grouped feature importance of all 9 principal components in Figure 16 presents the 
overall importance of the spatial structure as obtained from the whole graph embedding. This 
includes spatial dimensions other than polycentricity that we may not know yet. These added 
values account for up to 15 % of total model importance, ranking among the most impactful 
variables included in the model. Although not the most important variable, the general spatial 
structure had a significant importance for the model used, thus confirming the third 
hypothesis. 

To answer the second research question: The general spatial structure of U.S. metropolitan 
areas, as presented by whole graph embeddings, had a significant impact on mobility 
reduction during the COVID-19 pandemic. By comparing a WGE model that includes spatial 
structure to a base model that does not, performance improvements of 12 to 25 % in terms of 
R2 score have been achieved. Further investigation of the feature importance in the second 
regression analysis provided an overall feature importance of around 15 %. These are 
significant values that indicate the value of spatial structure in modeling mobility reduction. 

5.3 Impact of Polycentricity 

RQ3: How important is the degree of polycentricity for mobility reduction during the 
COVID-19 pandemic in U.S. metropolitan areas, compared to other socio-demographic 
variables such as ethnicity, education, or employment? 

Hypothesis 4: Polycentric areas exhibit a lower risk of viral transmission in comparison to 
monocentric areas (Aguilar et al., 2020). Therefore, the degree of polycentricity is expected to 
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be a good indicator of the overall mobility reduction and will be among the most important 
variables in the regression model. 

The Random Forest regression had overall the best R2 score of the three tested algorithms, 
with a value close to 0.5. Although the R2 score is not very high, it can explain a significant 
part of overall mobility reduction. After all, the goal was not to predict the reduction as best 
as possible, but to be able to explain the impact of polycentricity compared to other variables. 

The feature importance of the model is clearly dominated by education, followed by the 
public transportation rate, employment density, and the percentage of the Asian population. 
The dominance of education in both correlation coefficient and feature importance is 
surprising. Although proven to influence mobility in other studies such as in Zhu et al. (2021), 
its importance was mediocre. Perhaps higher-educated people were more aware of the 
pandemic threat and acted accordingly. Education at higher levels can also be taught online 
with video conference platforms, which gained high popularity during the pandemic. Lastly, 
higher educated people usually have occupations that do not require much manual labor and 
can easier be done via home office. 

Public transportation has a very crucial role in the spread of an airborne disease such as 
COVID-19. They provide optimal conditions for infections due to low airflow and high 
accumulation of people in small spaces. Whenever possible, people would try to avoid these 
crowded spaces of public transportation and switch to alternative means such as working from 
home. Moreover, many cities reduced or even closed their public transportation services as a 
reaction to increasing infection rates. 

The gross employment density was also among the most important features in the study by 
Zhu et al. (2021). Commuting is one of the most common drivers of mobility, whereby 
workers travel to work and back home on a daily basis. It follows that the higher the 
employment density in a given place, the higher will be commuting flows in that area. Due to 
the pandemic, a lot of people switched to work from home, completely circumventing the 
need to leave the house. Additionally, the rise in unemployment may have reinforced the 
reduction in commuting. It is therefore not surprising that employment density has a high 
feature importance.  

In regard to ethnicity, both the Hispanic and African-American population do not seem to 
have influenced the mobility reduction. The Asian population on the other side correlates 
clearly with an increased reduction and has an overall high feature importance for the 
regression model. 

The 9 principal components in the model have individually a low feature importance. The 
first PC seems to include both functional and morphological dimensions of polycentricity, 
although it shows the lowest importance value among the PCs. The second, third, and sixth 
PCs have the overall highest impact among the PCs. The correlation coefficient between the 
PCs and the mobility reduction is also limited. It is again only the first principal component 
that shows higher and positive values, which are overall still low compared to other variables 
such as education or employment density. Against the last hypothesis, the degree of 
polycentricity has only a modest impact on mobility reduction. Compared to the much more 
significant impact of general spatial structure, it seems that there are other spatial aspects 
besides the degree of polycentricity that have been much more influential. 

In regard to the last research question: Polycentricity had an overall low impact on the 
mobility reduction of U.S. metropolitan areas during the COVID-19 pandemic. Both feature 
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importance and correlation coefficient do not imply a stronger influence. Other features such 
as education, employment, public transportation rate, and the Asian population are much 
more important for modeling mobility reduction. 

5.4 Limitations 

There are some limitations that need to be addressed in the scope of this thesis. One of the 
main aspects is the data itself. As already mentioned, the data comes with inherent bias and 
only represents an estimated 10 % of the population. The GPS data requires a mobile phone 
and activated GPS tracking. Only this specific part of the population has produced the entire 
dataset. Especially older adults and children are unlikely to be included in the data. 

Another common issue regarding mobile phone data is privacy concerns, and subsequently, 
the bias introduced by necessary data aggregation. Data entries are excluded when there is 
only one recorded visitor per geographical unit. Moreover, to enhance differential privacy, 
visitor counts between two and four are recorded but only shown as four. Moreover, the 
aggregation of flows from lower to higher levels may lead to visitor duplication. 

A crucial aspect in spatial studies is always the scale of the examined area. In the context of 
this study, mobility networks have been constructed using census tracts as nodes. However, 
the size of census tracts varies widely based on the density of the settlement. This variability 
results in the presence of very small census tracts within highly populated areas, and 
conversely, very large census tracts in regions with extremely low population densities. 
Consequently, this variation in census tract sizes inflates the network’s representation 
compared to the actual spatial structure, leading to a distortion of the perceived urban layout. 

The time period of 14 weeks with an additional transition week that was covered in this thesis 
was at an early stage of the pandemic. The pandemic was drawn-out over a much larger 
timeframe with several waves of reoccurring infections. A more in-depth analysis would 
require a longer timeframe or examination of several timeframes along the peaks of 
infections.
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Chapter 6: Conclusion 

In this final chapter, a concise and clear summary of the key findings from this study is 
presented in Section 6.1, highlighting the contributions to the existing body of knowledge and 
potential applications in real-world scenarios. Additionally, potential directions for further 
exploration and research are discussed in Section 6.2. 

6.1 Summary and Implications 

This study has offered profound insights into the complex relationship between spatial 
structure (w.r.t. polycentricity) and mobility patterns within U.S. metropolitan statistical areas 
(MSAs) amid the COVID-19 pandemic. By using a novel Whole Graph Embedding (WGE) 
application, the research aimed to analyze mobility behavior changes and structural shifts in 
response to varying degrees of polycentricity. Furthermore, the study aimed to examine the 
importance of spatial structure on mobility, while comparing the influence of polycentricity 
with other socio-demographic, travel-related, and spatial variables. 

Through the application of the WGE technique, the study effectively differentiated MSAs 
based on their degrees of polycentricity. The resulting clustering detected three primary 
groups – monocentric, intermediate, and polycentric. It was found that both the polycentric 
and intermediate clusters demonstrated distinct mobility patterns compared to the 
monocentric group. Contrary to initial hypotheses, the monocentric group experienced less 
reduction in mobility flows after the introduction of restrictions compared to more polycentric 
groups. It is likely the higher population density of polycentric cities that raised the risk of 
infection, resulting in a more restrictive mobility reduction in order to halt contagion. 

By applying machine learning, the spatial structure, as represented by the whole graph 
embeddings, was found to play a significant role in reducing mobility flows. Compared to a 
baseline model, the integration of spatial structure improved performance in the range of 12 to 
25 % in terms of R2 score. This gain was further supported by the added feature importance of 
the principal components, accounting for around 15 % of total model importance. The 
findings promote the significance of spatial layout, which influences mobility patterns, 
transportation systems, economic activities, travel efficiency, and travel mode selection. 

The study reveals that polycentricity, as one aspect of spatial structure, exerted a 
comparatively modest influence on mobility reduction during the early stage of the pandemic. 
Other socioeconomic factors, such as education, public transportation rate, employment 
density, and the Asian population, held greater significance. Although the clusters with 
different degrees of polycentricity showed significant dissimilarities, other variables appear to 
have been more relevant for the mobility reduction.  

This study is able to gain valuable insights into the relevance of spatial structure and 
polycentricity on the urban mobility network of U.S. MSAs during the pandemic. In this field 
of research, examining such a large number of urban areas is a rarity. This was possible due to 
the novel application of whole graph embedding, which challenges conventional 
polycentricity indices by modeling more complexity of urban dynamics. Although more 
research is still required in this regard, its successful application has been demonstrated. The 
findings have an interdisciplinary relevance for economics, sociology, public health, and 
urban planning and design. The findings can be incorporated into creating more adaptable and 
resilient cities. 
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6.2 Future Work 

There are still several open questions that can be addressed in future work. With respect to the 
WGE algorithm, it remains unclear what node features are best suited to describe the 
polycentric structure of a network. This should be tested further in more detail by comparing a 
broad range of different node features. One limitation mentioned is the varying size of the 
census tracts. This could be addressed by adding the land area as a node attribute.  

In this work only two time frames were considered at an earlier stage of the pandemic. 
Further research about an extended time frame over the whole course of the pandemic with its 
reoccurring infection waves could bring more insight into the behavior of the different urban 
structures. It would be especially interesting to examine the recovery period of mobility to 
determine whether polycentric and monocentric areas behaved differently. 

This extension can also be applied to other study areas. Although the U.S. offers a large 
number of differently sized urban spaces, they all share a similar historical and cultural 
background that has shaped their structure. Regions with very old historical structures like 
Europe or regions that experience enormous urban growth like Asia will certainly yield 
different results. 

The studied time period was very special in regard to the COVID-19 pandemic and changed 
the daily routine of many people. It offered a possibility to examine the change of 
polycentricity. Nonetheless, its results stem from an uncommon time period. With the 
pandemic in the past, a more general examination of more usual circumstances may yield 
different results. 

The change in the degree of polycentricity was mainly analyzed in regard to the functional 
polycentricity with changing mobility flows. The morphological dimension of the node 
features such as employment remained unchanged. The impact of the pandemic on the 
employment market was therefore not considered, although huge unemployment statistics 
were recorded. By also including the change in this regard, a more throughout analysis of 
structural changes could be conducted. 

 



 50 

References 

Aguilar, J., Bassolas, A., Ghoshal, G., Hazarie, S., Kirkley, A., Mazzoli, M., Meloni, S., Mimar, S., 
Nicosia, V., Ramasco, J. J., & Sadilek, A. (2020). Impact of urban structure on COVID-19 spread. 
arXiv preprint arXiv:2007.15367, 58. 

Alonso, W. (1964). Location and Land Use: Toward a General Theory of Land Rent. Harvard 
University Press. 

Anas, A., Arnott, R., & Small, K. A. (1998). Urban spatial structure. Journal of Economic Literature, 
36(3), 1426-1464. 

Angel, S., & Blei, A. M. (2016). The spatial structure of American cities: The great majority of 
workplaces are no longer in CBDs, employment sub-centers, or live-work communities. Cities, 51, 
21-35. https://doi.org/10.1016/j.cities.2015.11.031 

Arribas-Bel, D., & Sanz-Gracia, F. (2014). The validity of the monocentric city model in a polycentric 
age: US metropolitan areas in 1990, 2000 and 2010. Urban Geography, 35(7), 980-997. 
https://doi.org/10.1080/02723638.2014.940693  

Badr, H. S., Du, H., Marshall, M., Dong, E., Squire, M. M., & Gardner, L. M. (2020). Association 
between mobility patterns and COVID-19 transmission in the USA: A mathematical modelling 
study. The Lancet Infectious Diseases, 20(11), 1247–1254. https://doi.org/10.1016/S1473-
3099(20)30553-3 
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Appendix A: Figures 

 
 

 

Figure A.1: Enid MSA, Oklahoma. 
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Figure A.2: Houston-Sugar Land-Baytown MSA, Texas. 
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Figure A.3: Jacksonville MSA, Florida. 
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Figure A.4: North Port-Bradenton-Sarasota MSA, Florida. 
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Appendix B: Tables 

Table B.1: Overview of outlier MSAs, ranked by PC_1 value. 

Rank Metropolitan Title State(s) Counties Census 

Tracts 

Population Area 

(km2) 

PC_1 PC_2 

1. Jacksonville Florida 5 260 1'533'796 8'291 32.011 21.02 
2. North Port-Sarasota-

Bradenton 
Florida 2 173 821'613 3'364 28.095 31.538 

Table B.2: Overview of polycentric MSAs, ranked by PC_1 value. 

Rank Metropolitan 

Title 

State(s) Counties Census 

Tracts 

Population Area 

(km2) 

PC_1 PC_2 

1. Houston-The 
Woodlands-
Sugar Land 

Texas 9 1'070 6'979'613 21'389 33.86 -5.301 

2. Atlanta-Sandy 
Springs-
Alpharetta 

Georgia 29 951 5'947'008 22'497 29.687 -10.568 

3. Dallas-Fort 
Worth-
Arlington 

Texas 11 1'312 7'451'858 22'457 27.25 -8.288 

4. Memphis Arkansas, 
Mississippi, 
Tennessee 

8 311 1'343'150 11'857 20.177 -2.221 

5. Birmingham-
Hoover 

Alabama 6 246 1'088'170 11'625 19.927 -7.968 

6. Sebring-Avon 
Park 

Florida 3 89 390'211 3'471 17.966 5.097 

7. New Orleans-
Metairie 

Louisiana 8 403 1'271'651 8'293 15.18 -4.407 

8. Raleigh-Cary North Carolina 3 224 1'362'997 5'487 15.076 -0.789 
9. San Francisco-

Oakland-
Berkeley 

California 2 223 1'215'955 19'901 12.905 3.614 

10. Kansas City Kansas, 
Missouri 

14 530 2'144'129 18'792 12.602 -3.634 

11. Valdosta Georgia 4 34 146'462 4'117 12.347 -7.918 
12. New York-

Newark-Jersey 
City 

New York, 
New Jersey, 
Pennsylvania 

23 4'532 19'261'570 17'319 11.728 -10.418 

13. Minneapolis-St. 
Paul-
Bloomington 

Minnesota, 
Wisconsin 

15 785 3'605'450 18'255 11.569 -2.496 

14. Santa Fe New Mexico 5 979 4'709'220 6'399 10.814 -5.571 
15. Chicago-

Naperville-
Elgin 

Illinois, 
Indiana, 
Wisconsin 

14 2'212 9'478'801 18'640 10.669 -6.242 

16. Nashville-
Davidson–
Murfreesboro–
Franklin 

Tennessee 
 

13 374 1'904'186 14'736 10.482 -4.551 
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Table B.3.1: Overview of intermediate MSAs, ranked by PC_1 value. 

Rank Metropolitan Title State(s) Counties Census 

Tracts 

Population Area 

(km2) 

PC_1 PC_2 

1. Orlando-
Kissimmee-Sanford 

Florida 4 390 170'924 1'126 12.739 0.457 

2. Oklahoma City Oklahoma 7 363 284'698 1'870 11.877 2.984 
3. Phoenix-Mesa-

Chandler 
Arizona 2 991 1'397'040 14'275 11.304 -1.563 

4. Austin-Round 
Rock-Georgetown 

Texas 5 350 2'173'804 10'930 10.87 0.397 

5. Salt Lake City Utah 15 615 2'806'349 20'366 9.115 -3.821 
6. Mobile Alabama 2 120 430'313 5'982 8.053 0.837 
7. Washington-

Arlington-
Alexandria 

Maryland, 
District of 
Columbia, 
Virginia, 
West 
Virginia, 

25 1'360 6'250'309 17'002 6.998 -4.79 

8. Miami-Fort 
Lauderdale-
Pompano Beach 

Florida 3 1'217 6'129'858 13'151 6.97 -0.03 

9. Tuscaloosa Alabama 4 61 251'878 9'050 6.927 -7.503 
10. Louisville/Jefferson 

County 
Indiana, 
Kentucky 

10 299 1'262'287 8'382 6.278 -1.106 

11. Denver-Aurora-
Lakewood 

Colorado 10 618 2'928'437 21'617 5.741 -1.574 

12. San Luis Obispo-
Paso Robles 

California 8 457 2'510'211 18'940 5.632 -0.477 

13. Los Angeles-Long 
Beach-Anaheim 

California 2 2'926 13'211'027 12'558 5.58 -4.44 

14. Charleston-North 
Charleston 

South 
Carolina 

3 156 790'955 6'704 5.4 -1.194 

15. South Bend-
Mishawaka 

Indiana, 
Michigan 

3 93 397'590 6'719 5.274 3.364 

16. Columbus Alabama, 
Georgia 

7 83 83'280 1'054 5.003 2.382 

17. Indianapolis-
Carmel-Anderson 

Indiana 11 397 2'050'933 11'154 4.629 -1.201 

18. Jackson Mississippi 7 134 596'287 14'001 4.599 -0.28 
19. Tucson Arizona 1 241 1'038'476 23'795 4.561 3.226 
20. Cincinnati Indiana, 

Kentucky, 
Ohio 

16 503 304'584 5'588 4.52 -1.332 

21. Little Rock-North 
Little Rock-Conway 

Arkansas 6 164 740'602 10'581 4.475 -0.487 

22. Charlotte-Concord-
Gastonia 

North 
Carolina, 
South 
Carolina 

11 545 2'595'027 14'500 4.365 -1.855 

23. Naples-Marco 
Island 

Florida 1 74 379'345 5'176 4.349 5.844 
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Table B.3.2: Overview of intermediate MSAs, ranked by PC_1 value. 

Rank Metropolitan 

Title 

State(s) Counties Census 

Tracts 

Population Area 

(km2) 

PC_1 PC_2 

24.  Detroit-
Warren-
Dearborn 

Michigan 6 1'298 4'317'384 10'071 4.178 -2.724 

25.  Elmira New York 2 162 841'602 14'462 4.003 3.756 
26.  Columbus Ohio 10 433 429'120 3'968 3.94 -1.843 
27.  Tampa-St. 

Petersburg-
Clearwater 

Florida 4 744 186'580 4'946 3.881 -2.358 

28.  Baton Rouge Louisiana 10 157 856'779 11'307 3.598 -0.337 
29.  Colorado 

Springs 
Colorado 2 136 207'248 4'440 3.145 2.73 

30.  Montgomery Alabama 4 96 373'552 7'027 3.099 0.049 
31.  Richmond Virginia 17 289 1'282'067 11'302 3.056 -0.238 
32.  Sherman-

Denison 
Texas 3 720 3'928'498 15'210 2.773 -2.047 

33.  Fargo Minnesota, 
North Dakota 

2 46 243'966 7'279 2.697 4.1 

34.  Columbia South Carolina 6 191 319'643 7'217 2.669 -0.413 
35.  Riverside-San 

Bernardino-
Ontario 

California 2 822 4'600'396 70'612 2.605 -2.126 

36.  Santa Maria-
Santa Barbara 

California 2 383 1'985'926 6'939 2.418 -1.834 

37.  Santa Cruz-
Watsonville 

California 1 628 3'323'970 10'896 2.386 -0.01 

38.  Durham-
Chapel Hill 

North Carolina 5 121 636'256 5'932 2.337 -1.571 

39.  Champaign-
Urbana 

Illinois 2 47 226'418 3'718 2.327 0.162 

40.  Des Moines-
West Des 
Moines 

Iowa 6 140 690'585 9'361 2.296 0.139 

41.  Tulsa Oklahoma 7 272 996'141 16'238 2.254 -0.531 
42.  Boston-

Cambridge-
Newton 

Massachusetts, 
New 
Hampshire 

7 1'004 4'854'808 9'033 2.191 -2.366 

43.  Greensboro-
High Point 

North Carolina 3 168 767'467 5'164 2.145 -1.08 

44.  Huntsville Alabama 2 89 464'607 3'527 1.919 0.119 
45.  Cleveland-

Elyria 
Ohio 5 638 161'676 3'223 1.808 -1.392 

46.  Virginia 
Beach-
Norfolk-
Newport News 

North 
Carolina, 
Virginia 

19 427 1'768'956 9'166 1.7 -1.147 

47.  Knoxville Tennessee 8 199 861'872 8'340 1.651 0.134 
48.  Urban 

Honolulu 
Hawaii 1 243 979'682 1'556 1.578 -0.707 
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Table B.3.3: Overview of intermediate MSAs, ranked by PC_1 value. 

Rank Metropolitan 

Title 

State(s) Counties Census 

Tracts 

Population Area 

(km2) 

PC_1 PC_2 

49.  Cape Coral-
Fort Myers 

Florida 1 167 756'570 2'032 1.553 -0.088 

50.  Las Vegas-
Henderson-
Paradise 

Nevada 1 487 2'228'866 20'439 1.337 -0.605 

51.  Albuquerque New Mexico 4 202 915'986 24'042 1.337 0.984 
52.  Omaha-

Council Bluffs 
Iowa, 
Nebraska 

8 255 2'560'260 9'010 1.316 -0.574 

53.  Sacramento-
Roseville-
Folsom 

California 4 485 2'338'866 13'194 1.307 -0.068 

54.  Portland-South 
Portland 

Maine 7 491 2'472'774 17'311 1.216 -0.831 

55.  Madison Wisconsin 4 133 660'212 8'572 1.203 -0.432 
56.  Portland-

Vancouver-
Hillsboro 

Oregon, 
Washington 

2 78 481'334 2'889 1.18 1.241 

57.  Philadelphia-
Camden-
Wilmington 

New Jersey, 
Pennsylvania, 
Delaware, 
Maryland 

11 1'476 4'860'338 37'726 1.158 -1.389 

58.  Pittsburgh Pennsylvania 7 711 2'324'447 13'679 1.069 -1.396 
59.  Wichita Falls Texas 4 149 639'668 10'747 0.843 0.139 
60.  Baltimore-

Columbia-
Towson 

Maryland 7 679 2'800'427 6'738 0.819 -1.021 
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Table B.4.1: Overview of monocentric MSAs, ranked by PC_1 value. 

Rank Metropolitan 

Title 

State(s) Counties Census 

Tracts 

Population Area 

(km2) 

PC_1 PC_2 

1.  Beaumont-
Port Arthur 

Texas 3 104 394'268 5'441 0.644 0.097 

2.  Winston-
Salem 

North 
Carolina 

5 150 671'156 5'203 0.607 -0.687 

3.  St. Cloud Minnesota 2 56 698'537 4'776 0.465 0.993 
4.  Greenville-

Anderson 
South 
Carolina 

4 195 908'680 7'021 0.456 -0.559 

5.  Boise City Idaho 5 95 730'483 30'473 0.323 0.095 
6.  Rockford Illinois 2 84 336'928 2'057 0.262 0.637 
7.  Abilene Texas 3 47 171'354 7'106 0.251 1.182 
8.  Gulfport-

Biloxi 
Mississippi 4 84 414'662 5'740 0.122 0.473 

9.  Grand 
Rapids-
Kentwood 

Michigan 4 207 1'069'696 6'960 0.08 -0.585 

10.  St. Joseph Kansas, 
Missouri 

5 91 134'409 1'030 0.076 0.127 

11.  Gainesville Florida 3 70 327'329 6'069 0.064 -0.043 
12.  El Paso Texas 3 34 152'275 3'083 0.042 -1.586 
13.  Crestview-

Fort Walton 
Beach-Destin 

Florida 2 55 278'479 5'097 0.037 -0.707 

14.  Alexandria Louisiana 2 38 152'715 5'079 0.028 0.713 
15.  Milwaukee-

Waukesha 
Wisconsin 4 430 1'576'525 3'768 -0.005 -0.522 

16.  Chattanooga Georgia, 
Tennessee 

6 119 561'055 5'411 -0.011 -0.23 

17.  Pensacola-
Ferry Pass-
Brent 

Florida 2 97 403'747 8'642 -0.018 0.099 

18.  Tallahassee Florida 4 84 3'152'928 6'510 -0.106 0.104 
19.  Davenport-

Moline-Rock 
Island 

Illinois, Iowa 4 104 380'274 5'880 -0.208 -0.151 

20.  Ann Arbor Michigan 1 100 368'385 1'829 -0.248 0.367 
21.  Lansing-East 

Lansing 
Michigan 4 147 547'786 5'772 -0.279 -0.307 

22.  Pine Bluff Arkansas 3 30 89'464 5'258 -0.327 0.543 
23.  Dayton-

Kettering 
Ohio 3 209 805'929 3'321 -0.331 -0.347 

24.  Bakersfield California 1 151 892'458 21'062 -0.351 0.424 
25.  Toledo Ohio 4 177 558'635 10'986 -0.358 -0.25 
26.  Fort Collins Colorado 1 73 350'523 6'724 -0.371 0.376 
27.  Rochester New York 6 270 1'071'784 8'460 -0.406 -0.38 
28.  Albany Georgia 4 41 147'431 4'120 -0.434 1.464 
29.  Springfield Massachusetts 2 86 322'494 2'456 -0.462 -0.59 
30.  Worcester Connecticut, 

Massachusetts 
2 197 943'312 5'242 -0.482 -0.69 

31.  Lafayette Louisiana 5 93 490'220 8'829 -0.511 0.196 
32.  Augusta-

Richmond 
County 

Georgia, 
South 
Carolina 

7 119 605'303 9'015 -0.532 0.037 

33.  Wilmington North 
Carolina 

2 60 293'339 2'749 -0.575 0.439 

34.  Provo-Orem Utah 2 130 633'129 13'975 -0.612 0.059 
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Table B.4.2: Overview of monocentric MSAs, ranked by PC_1 value. 

Rank Metropolitan 

Title 

State(s) Counties Census 

Tracts 

Population Area 

(km2) 

PC_1 PC_2 

35.  Charlottesville Virginia 5 44 217'455 4'259 -0.626 0.364 
36.  Lincoln Nebraska 2 78 333'193 3'650 -0.66 0.316 
37.  McAllen-

Edinburg-
Mission 

Texas 1 113 861'137 4'069 -0.684 0.035 

38.  Harrisburg-
Carlisle 

Pennsylvania 3 124 574'691 4'201 -0.699 -0.356 

39.  Evansville Indiana, 
Kentucky 

4 78 315'186 3'794 -0.761 0.328 

40.  Greeley Colorado 1 77 315'389 10'327 -0.766 0.532 
41.  Macon-Bibb 

County 
Georgia 5 60 229'565 4'462 -0.767 0.329 

42.  Buffalo-
Cheektowaga 

New York 2 297 1'129'018 4'054 -0.784 -0.144 

43.  Palm Bay-
Melbourne-
Titusville 

Florida 1 113 180'076 1'965 -0.795 0.183 

44.  Monroe Louisiana 3 54 202'138 5'912 -0.82 0.25 
45.  Lexington-

Fayette 
Kentucky 6 129 514'273 3'804 -0.851 -0.049 

46.  Jackson Tennessee 4 49 178'601 4'432 -0.89 0.266 
47.  Stockton California 1 139 140'540 3'295 -0.894 0.29 
48.  Peoria Illinois 6 106 6'092'403 11'920 -0.922 -0.17 
49.  Syracuse New York 3 185 384'783 6'185 -0.926 -0.357 
50.  Fayetteville North 

Carolina 
3 104 523'480 4'243 -0.956 0.332 

51.  Fresno California 1 199 990'204 15'432 -1.013 -0.06 
52.  Hartford-East 

Hartford-
Middletown 

Connecticut 3 289 1'205'842 3'923 -1.022 -0.234 

53.  Ogden-
Clearfield 

Utah 4 117 672'948 18'725 -1.024 0.035 

54.  Scranton–
Wilkes-Barre 

Pennsylvania 1 50 150'319 4'946 -1.028 -0.68 

55.  Laredo Texas 1 61 274'847 8'707 -1.05 0.404 
56.  Lakeland-

Winter Haven 
Florida 1 153 705'735 4'657 -1.068 -0.255 

57.  Hagerstown-
Martinsburg 

Maryland, 
West Virginia 

3 50 285'990 2'611 -1.097 -0.574 

58.  Lubbock Texas 3 74 320'031 6'962 -1.099 0.276 
59.  Reno Nevada 2 111 468'268 17'005 -1.109 0.175 
60.  Texarkana Arkansas, 

Texas 
3 34 129'938 1'417 -1.116 0.791 

61.  Springfield Missouri 1 69 313'791 2'093 -1.143 0.338 
62.  Waco Texas 2 57 271'326 4'669 -1.187 0.31 
63.  Atlantic City-

Hammonton 
New Jersey 1 70 264'650 1'440 -1.19 0.486 

64.  Springfield Ohio 2 117 208'224 3'064 -1.208 0.118 
65.  Deltona-

Daytona 
Beach-
Ormond Beach 

Florida 2 134 658'961 4'109 -1.228 -0.164 

66.  Lake Charles Louisiana 2 46 209'821 6'083 -1.229 0.402 
67.  Springfield Illinois 4 57 264'437 6'672 -1.234 0.169 
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Table B.4.3: Overview of monocentric MSAs, ranked by PC_1 value. 

Rank Metropolitan 

Title 

State(s) Counties Census 

Tracts 

Population Area 

(km2) 

PC_1 PC_2 

68.  Myrtle Beach-
Conway-
North Myrtle 
Beach 

North Carolina, 
South Carolina 

2 105 481'489 5'131 -1.238 0.095 

69.  Brownsville-
Harlingen 

Texas 1 86 422'135 2'308 -1.26 0.425 

70.  Modesto California 1 94 546'235 3'872 -1.279 0.155 
71.  San Antonio-

New 
Braunfels 

Texas 1 94 432'977 8'497 -1.28 -0.109 

72.  Corpus Christi Texas 2 98 92'168 1'751 -1.328 0.015 
73.  Providence-

Warwick 
Massachusetts, 
Rhode Island 

6 369 1'621'099 4'111 -1.336 -0.129 

74.  Amarillo Texas 5 67 264'345 13'338 -1.346 0.234 
75.  Port St. Lucie Florida 3 115 536'314 5'387 -1.347 -0.062 
76.  Athens-Clarke 

County 
Georgia 4 46 210'810 2'655 -1.36 -0.005 

77.  Bridgeport-
Stamford-
Norwalk 

Connecticut 1 211 944'306 1'619 -1.364 -0.3 

78.  Albany-
Schenectady-
Troy 

New York 5 218 880'766 7'282 -1.406 -0.049 

79.  Boulder Colorado 1 68 324'682 1'882 -1.425 -0.079 
80.  Manchester-

Nashua 
New 
Hampshire 

1 86 415'305 2'270 -1.431 -0.178 

81.  St. George Utah 3 157 466'897 7'788 -1.432 -0.175 
82.  Flint Michigan 1 131 406'770 1'650 -1.434 0.013 
83.  Lawton Oklahoma 2 34 127'157 4'409 -1.455 0.503 
84.  Fort Smith Arkansas, 

Oklahoma 
4 49 250'260 6'235 -1.473 0.156 

85.  Allentown-
Bethlehem-
Easton 

New Jersey, 
Pennsylvania 

4 179 841'265 3'764 -1.474 -0.171 

86.  Fort Wayne Indiana 2 103 409'419 2'572 -1.484 0.094 
87.  Vallejo California 1 96 444'538 2'129 -1.497 -0.118 
88.  Sheboygan Wisconsin 3 170 554'787 4'525 -1.53 0.03 
89.  Topeka Kansas 5 57 232'248 8'373 -1.549 0.027 
90.  Wichita Kansas 3 43 151'352 6'785 -1.557 0.433 
91.  Green Bay Wisconsin 3 69 320'827 4'844 -1.557 0.239 
92.  Seattle-

Tacoma-
Bellevue 

Washington 1 90 444'895 7'084 -1.567 -0.407 

93.  Killeen-
Temple 

Texas 3 89 452'428 7'294 -1.573 0.119 

94.  Akron Ohio 2 170 703'286 2'332 -1.576 -0.04 
95.  Muskegon Michigan 1 42 173'679 1'294 -1.582 0.437 
96.  Fayetteville-

Springdale-
Rogers 

Arkansas 3 85 526'101 6'796 -1.582 -0.128 

97.  Clarksville Kentucky, 
Tennessee 

4 66 123'731 1'978 -1.593 0.333 

98.  Oxnard-
Thousand 
Oaks-Ventura 

California 1 174 594'001 2'631 -1.594 0.024 
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Table B.4.4: Overview of monocentric MSAs, ranked by PC_1 value. 

Rank Metropolitan 

Title 

State(s) Counties Census 

Tracts 

Population Area 

(km2) 

PC_1 PC_2 

99.  Youngstown-
Warren-
Boardman 

Ohio, 
Pennsylvania 

3 155 538'115 4'410 -1.597 -0.02 

100.  Cape Girardeau Illinois, 
Missouri 

3 23 97'026 3'709 -1.605 -0.085 

101.  Santa Rosa-
Petaluma 

California 1 54 282'517 8'544 -1.606 0.002 

102.  Tyler Texas 1 41 230'184 2'387 -1.627 0.389 
103.  Lafayette-West 

Lafayette 
Indiana 4 49 230'353 4'256 -1.627 -0.041 

104.  New Haven-
Milford 

Connecticut 1 190 855'733 1'566 -1.647 -0.068 

105.  York-Hanover Pennsylvania 1 90 447'628 2'342 -1.679 -0.04 
106.  Eugene-

Springfield 
Oregon 1 86 377'749 11'793 -1.694 0.053 

107.  Columbia Missouri 3 37 832'925 9'591 -1.724 0.075 
108.  Cedar Rapids Iowa 3 57 271'734 5'203 -1.752 0.041 
109.  Poughkeepsie-

Newburgh-
Middletown 

New York 2 158 675'601 4'163 -1.754 0.072 

110.  Huntington-
Ashland 

Kentucky, 
Ohio, West 
Virginia 

7 95 359'481 6'475 -1.763 0.008 

111.  Appleton Wisconsin 2 51 236'834 2'476 -1.767 0.105 
112.  Rochester Minnesota 4 50 219'848 6'416 -1.787 0.104 
113.  Visalia California 1 78 463'955 12'495 -1.817 0.44 
114.  Lynchburg Virginia 5 60 262'937 5'474 -1.848 -0.05 
115.  Coeur d'Alene Idaho 1 25 261'701 5'440 -1.857 0.473 
116.  Charleston West Virginia 5 75 260'920 6'855 -1.884 -0.044 
117.  Utica-Rome New York 2 93 290'812 6'796 -1.895 0.159 
118.  Rapid City South Dakota 2 28 140'653 16'182 -1.898 0.366 
119.  Anchorage Alaska 2 79 399'450 68'150 -1.901 0.068 
120.  Roanoke Virginia 6 65 313'289 4'840 -1.903 0.07 
121.  Panama City Florida 1 44 90'151 1'551 -1.908 0.378 
122.  Iowa City Iowa 2 29 172'919 3'064 -1.913 0.296 
123.  Canton-

Massillon 
Ohio 2 93 398'711 2'512 -1.923 -0.017 

124.  Wheeling Ohio, West 
Virginia 

3 47 140'199 2'444 -1.925 0.162 

125.  Bowling Green Kentucky 4 39 176'852 4'183 -1.928 0.092 
126.  Binghamton New York 2 65 240'473 3'172 -1.934 0.144 
127.  Asheville North 

Carolina 
4 103 459'344 5'266 -1.935 0.114 

128.  Longview Texas 4 59 285'554 6'942 -1.938 0.144 
129.  Spokane-

Spokane Valley 
Washington 4 35 144'152 5'372 -1.953 0.144 

130.  Kalamazoo-
Portage 

Michigan 1 57 264'322 1'455 -1.969 0.189 

131.  Waterloo-Cedar 
Falls 

Iowa 3 50 169'107 3'894 -1.969 0.105 

132.  Erie Pennsylvania 1 72 272'046 2'070 -1.972 0.145 
133.  San Diego-Chula 

Vista-Carlsbad 
California 4 97 411'137 5'436 -1.985 0.158 

134.  Gadsden Alabama 1 30 102'721 1'386 -1.994 0.396 
135.  Hattiesburg Mississippi 4 32 168'646 5'244 -1.995 0.225 



 68 

Table B.4.5: Overview of monocentric MSAs, ranked by PC_1 value. 

Rank Metropolitan 

Title 

State(s) Counties Census 

Tracts 

Population Area 

(km2) 

PC_1 PC_2 

136.  Duluth Minnesota, 
Wisconsin 

4 88 289'276 27'253 -2.002 0.164 

137.  San Angelo Texas 2 70 428'472 4'981 -2.005 0.082 
138.  Midland Texas 2 29 176'914 4'702 -2.007 0.487 
139.  College Station-

Bryan 
Texas 3 52 735'480 6'952 -2.012 0.059 

140.  Reading Pennsylvania 1 90 419'062 2'219 -2.012 0.091 
141.  Bloomington Illinois 1 41 172'164 3'065 -2.014 0.27 
142.  Trenton-

Princeton 
New Jersey 1 77 368'085 582 -2.018 0.086 

143.  Hilton Head 
Island-Bluffton 

South 
Carolina 

2 45 219'290 3'190 -2.03 0.057 

144.  Lancaster Pennsylvania 1 98 543'050 2'445 -2.033 0.074 
145.  Warner Robins Georgia 2 29 182'819 1'362 -2.039 0.379 
146.  Pueblo Colorado 1 54 167'412 6'180 -2.075 0.195 
147.  Lima Ohio 1 33 102'808 1'043 -2.08 0.314 
148.  Anniston-Oxford Alabama 1 30 114'324 1'570 -2.121 0.266 
149.  Ocala Florida 1 61 360'210 4'104 -2.125 0.152 
150.  Bremerton-

Silverdale-Port 
Orchard 

Washington 1 55 268'945 1'023 -2.149 0.19 

151.  Sebastian-Vero 
Beach 

Florida 1 99 496'801 4'082 -2.155 0.111 

152.  Brunswick Georgia 3 21 118'149 3'332 -2.161 0.12 
153.  Norwich-New 

London 
Connecticut 1 65 266'868 1'723 -2.177 0.136 

154.  Medford Oregon 1 41 218'781 7'210 -2.178 0.215 
155.  Yuba City California 2 35 173'839 3'197 -2.182 0.3 
156.  Bloomington Indiana 2 36 168'172 2'020 -2.19 -0.007 
157.  Burlington-South 

Burlington 
Vermont 3 47 219'764 3'243 -2.192 0.15 

158.  Jacksonville North 
Carolina 

1 31 198'377 1'976 -2.196 0.267 

159.  Yuma Arizona 1 54 211'931 14'282 -2.207 0.15 
160.  Decatur Illinois 1 34 104'688 1'504 -2.209 0.32 
161.  Sioux Falls South Dakota 1 26 133'527 2'416 -2.222 0.19 
162.  Odessa Texas 1 28 162'067 2'326 -2.226 0.345 
163.  Kankakee Illinois 1 29 109'924 1'753 -2.235 0.293 
164.  Prescott Valley-

Prescott 
Arizona 1 42 232'396 21'040 -2.242 0.175 

165.  Olympia-Lacey-
Tumwater 

Washington 1 49 940'163 11'266 -2.243 0.124 

166.  Dothan Alabama 3 34 148'825 4'445 -2.252 0.152 
167.  Jackson Michigan 1 38 158'174 1'818 -2.254 0.272 
168.  Bangor Maine 1 46 151'696 8'800 -2.257 0.159 
169.  Shreveport-

Bossier City 
Louisiana 1 30 156'964 1'303 -2.265 0.292 

170.  Victoria Texas 2 25 99'622 4'492 -2.269 0.304 
171.  Florence South 

Carolina 
2 49 205'095 3'526 -2.275 0.105 

172.  Hickory-Lenoir-
Morganton 

North 
Carolina 

4 73 367'982 4'241 -2.284 0.114 

173.  Florence-Muscle 
Shoals 

Alabama 2 36 147'827 3'265 -2.286 0.202 

174.  Terre Haute Indiana 5 48 149'482 5'291 -2.288 0.131 
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Table B.4.6: Overview of monocentric MSAs, ranked by PC_1 value. 

Rank Metropolitan 

Title 

State(s) Counties Census 

Tracts 

Population Area 

(km2) 

PC_1 PC_2 

175.  Muncie Indiana 1 30 114'461 1'016 -2.299 0.271 
176.  Decatur Alabama 2 36 152'321 3'290 -2.307 0.155 
177.  La Crosse-

Onalaska 
Minnesota, 
Wisconsin 

2 30 136'838 2'600 -2.311 0.196 

178.  Lawrence Kansas 1 22 121'304 1'181 -2.325 0.301 
179.  Ames Iowa 2 27 123'736 2'964 -2.34 0.13 
180.  Cheyenne Wyoming 1 21 99'272 6'957 -2.341 0.426 
181.  Johnstown Pennsylvania 1 42 131'611 1'783 -2.348 0.077 
182.  Houma-

Thibodaux 
Louisiana 2 45 209'277 5'958 -2.354 0.127 

183.  Pittsfield Massachusetts 1 39 125'927 2'401 -2.359 0.001 
184.  Dubuque Iowa 1 26 97'193 1'576 -2.365 0.259 
185.  Ocean City New Jersey 1 33 92'701 652 -2.372 0.152 
186.  Redding California 1 48 179'267 9'779 -2.374 0.206 
187.  Kennewick-

Richland 
Washington 2 50 294'396 7'622 -2.374 0.218 

188.  Cumberland Maryland, 
West Virginia 

2 30 98'049 1'948 -2.374 0.227 

189.  Billings Montana 3 40 180'641 16'777 -2.375 0.246 
190.  State College Pennsylvania 1 31 122'714 2'596 -2.375 0.186 
191.  Hot Springs Arkansas 1 20 99'043 1'756 -2.382 0.301 
192.  Johnson City Tennessee 3 44 203'147 2'212 -2.382 0.189 
193.  Joplin Missouri 2 34 178'816 3'272 -2.384 0.197 
194.  Dover Delaware 1 32 179'124 1'519 -2.39 0.259 
195.  Saginaw Michigan 1 56 191'166 2'073 -2.391 0.184 
196.  Bellingham Washington 1 34 224'538 5'457 -2.393 0.182 
197.  Salem Oregon 2 38 200'264 4'537 -2.397 0.169 
198.  The Villages Florida 1 19 643'724 4'192 -2.398 0.237 
199.  Michigan City-

La Porte 
Indiana 1 28 110'026 1'550 -2.401 0.188 

200.  Carbondale-
Marion 

Illinois 3 33 136'837 3'492 -2.403 0.199 

201.  Salisbury Delaware, 
Maryland 

4 34 124'946 4'288 -2.404 0.193 

202.  Parkersburg-
Vienna 

West Virginia 2 28 496'278 4'321 -2.409 0.245 

203.  Auburn-
Opelika 

Alabama 1 27 163'461 1'574 -2.414 0.101 

204.  Owensboro Kentucky 3 29 845'599 4'774 -2.416 0.182 
205.  Oshkosh-

Neenah 
Wisconsin 1 41 118'951 2'328 -2.426 0.183 

206.  Mount Vernon-
Anacortes 

Washington 1 30 127'442 4'484 -2.432 0.228 

207.  Las Cruces New Mexico 1 41 217'696 9'862 -2.434 0.248 
208.  Savannah Georgia 1 52 273'170 1'153 -2.44 0.164 
209.  St. Louis Illinois, 

Missouri 
1 44 162'264 2'875 -2.441 0.208 

210.  Merced California 1 49 273'661 5'012 -2.445 0.202 
211.  Kahului-

Wailuku-
Lahaina 

Hawaii 1 36 166'657 3'009 -2.445 0.236 

212.  San Jose-
Sunnyvale-
Santa Clara 

California 3 27 121'472 9'058 -2.449 0.294 
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Table B.4.7: Overview of monocentric MSAs, ranked by PC_1 value. 

Rank Metropolitan 

Title 

State(s) Counties Census 

Tracts 

Population Area 

(km2) 

PC_1 PC_2 

213.  Daphne-
Fairhope-Foley 

Alabama 1 32 218'289 4'118 -2.452 0.148 

214.  Danville Illinois 1 24 76'704 2'327 -2.454 0.238 
215.  Elizabethtown-

Fort Knox 
Kentucky 1 36 205'184 1'200 -2.457 0.215 

216.  Lake Havasu 
City-Kingman 

Arizona 1 43 210'998 34'476 -2.457 0.108 

217.  Idaho Falls Idaho 3 26 148'811 13'446 -2.458 0.265 
218.  Chico California 1 51 2'214'265 11'793 -2.466 0.186 
219.  Wausau-

Weston 
Wisconsin 2 37 163'172 6'279 -2.466 0.192 

220.  Burlington North 
Carolina 

1 36 166'144 1'098 -2.47 0.208 

221.  Dalton Georgia 2 26 143'911 1'645 -2.473 0.242 
222.  Blacksburg-

Christiansburg 
Virginia 4 33 167'201 2'778 -2.475 0.165 

223.  Lewiston-
Auburn 

Maine 1 28 107'958 1'212 -2.477 0.236 

224.  Grand Junction Colorado 1 29 152'962 8'622 -2.478 0.25 
225.  Morgantown West Virginia 2 32 139'806 2'613 -2.482 0.162 
226.  Yakima Washington 1 45 250'649 11'126 -2.487 0.2 
227.  New Bern North 

Carolina 
3 28 124'416 3'927 -2.489 0.206 

228.  Gainesville Georgia 1 36 201'434 1'018 -2.493 0.212 
229.  Logan Idaho, Utah 2 28 140'072 4'736 -2.493 0.168 
230.  Manhattan Kansas 3 26 131'571 4'754 -2.498 0.175 
231.  Goldsboro North 

Carolina 
1 26 123'785 1'433 -2.504 0.29 

232.  Barnstable 
Town 

Massachusetts 1 57 213'505 1'020 -2.505 0.187 

233.  Vineland-
Bridgeton 

New Jersey 1 34 150'085 1'253 -2.515 0.271 

234.  Kingsport-
Bristol 

Tennessee, 
Virginia 

5 75 307'267 5'206 -2.522 0.147 

235.  Harrisonburg Virginia 2 30 134'696 2'245 -2.526 0.208 
236.  Williamsport Pennsylvania 1 29 114'014 3'183 -2.537 0.187 
237.  Eau Claire Wisconsin 2 31 168'307 4'265 -2.538 0.204 
238.  Mansfield Ohio 1 30 121'043 1'283 -2.541 0.232 
239.  Sumter South 

Carolina 
2 35 650'211 6'177 -2.541 0.239 

240.  East 
Stroudsburg 

Pennsylvania 1 33 168'824 1'576 -2.542 0.23 

241.  Pocatello Idaho 2 24 94'377 6'518 -2.549 0.259 
242.  Hammond Louisiana 1 20 133'753 2'050 -2.55 0.282 
243.  Jefferson City Missouri 4 31 151'094 5'822 -2.557 0.152 
244.  Jonesboro Arkansas 2 24 132'828 3'796 -2.561 0.176 
245.  Ithaca New York 1 23 102'237 1'230 -2.561 0.229 
246.  Punta Gorda Florida 1 38 185'926 1'762 -2.564 0.218 
247.  Napa California 1 40 138'572 1'939 -2.569 0.221 
248.  Missoula Montana 1 20 119'062 6'717 -2.57 0.263 
249.  Rocky Mount North 

Carolina 
2 32 146'356 2'709 -2.573 0.2 

250.  Longview Washington 1 24 108'399 2'953 -2.574 0.243 
251.  Albany-

Lebanon 
Oregon 1 21 127'216 5'932 -2.576 0.181 
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Table B.4.8: Overview of monocentric MSAs, ranked by PC_1 value. 

Rank Metropolitan 

Title 

State(s) Counties Census 

Tracts 

Population Area 

(km2) 

PC_1 PC_2 

252.  Farmington New Mexico 1 33 125'608 14'279 -2.576 0.125 
253.  Greenville North 

Carolina 
1 32 179'961 1'689 -2.578 0.215 

254.  Janesville-
Beloit 

Wisconsin 1 38 162'532 1'860 -2.582 0.19 

255.  Hinesville Georgia 2 16 81'275 2'306 -2.587 0.368 
256.  Racine Wisconsin 1 45 195'859 862 -2.588 0.212 
257.  Glens Falls New York 2 36 125'491 4'399 -2.59 0.189 
258.  El Centro California 1 31 180'580 10'818 -2.591 0.235 
259.  Sierra Vista-

Douglas 
Arizona 1 26 104'574 2'634 -2.591 0.27 

260.  Monroe Michigan 1 39 150'000 1'423 -2.594 0.218 
261.  Niles Michigan 1 48 153'797 1'471 -2.595 0.202 
262.  Staunton Virginia 3 24 751'615 3'604 -2.609 0.224 
263.  Altoona Pennsylvania 1 34 122'495 1'362 -2.613 0.221 
264.  Rome Georgia 1 20 97'805 1'321 -2.614 0.257 
265.  Lebanon Pennsylvania 1 31 140'410 938 -2.616 0.218 
266.  Homosassa 

Springs 
Florida 1 27 147'938 1'507 -2.617 0.232 

267.  Grand Forks Minnesota, 
North Dakota 

2 28 101'627 8'826 -2.632 0.219 

268.  Salinas California 1 21 172'127 6'285 -2.636 0.224 
269.  Kingston New York 1 47 178'371 2'912 -2.639 0.213 
270.  Weirton-

Steubenville 
Ohio, West 
Virginia 

3 37 117'223 1'503 -2.642 0.229 

271.  Spartanburg South 
Carolina 

1 32 126'442 15'970 -2.647 0.191 

272.  Bismarck North Dakota 3 25 128'589 11'089 -2.649 0.225 
273.  Morristown Tennessee 3 26 141'909 1'855 -2.651 0.191 
274.  Cleveland Tennessee 2 24 2'053'137 5'174 -2.653 0.224 
275.  Hanford-

Corcoran 
California 1 27 151'090 3'599 -2.661 0.268 

276.  Flagstaff Arizona 1 28 142'254 48'223 -2.664 0.154 
277.  Bloomsburg-

Berwick 
Pennsylvania 2 19 83'568 1'589 -2.67 0.209 

278.  Mankato Minnesota 2 23 101'544 3'099 -2.674 0.235 
279.  Battle Creek Michigan 1 39 133'943 1'830 -2.675 0.211 
280.  Bend Oregon 1 24 191'749 7'818 -2.676 0.22 
281.  Bay City Michigan 1 26 103'506 1'146 -2.681 0.238 
282.  Elkhart-Goshen Indiana 1 22 84'115 1'056 -2.684 0.263 
283.  Sioux City Iowa, 

Nebraska, 
South Dakota 

1 27 115'152 1'325 -2.689 0.229 

284.  Fond du Lac Wisconsin 1 20 102'654 1'864 -2.699 0.233 
285.  Chambersburg-

Waynesboro 
Pennsylvania 1 27 154'954 2'001 -2.7 0.227 

286.  Corvallis Oregon 1 18 223'344 4'239 -2.703 0.259 
287.  Fairbanks Alaska 1 19 98'455 19'006 -2.713 0.279 
288.  Watertown-

Fort Drum 
New York 1 25 111'454 3'286 -2.714 0.246 

289.  Winchester Virginia, 
West 
Virginia 

3 24 139'270 2'754 -2.715 0.215 
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Table B.4.9: Overview of monocentric MSAs, ranked by PC_1 value. 

Rank Metropolitan 

Title 

State(s) Counties Census 

Tracts 

Population Area 

(km2) 

PC_1 PC_2 

290.  Beckley West 
Virginia 

2 29 117'539 3'282 -2.72 0.211 

291.  Wenatchee Washington 2 22 119'173 12'276 -2.733 0.245 
292.  Grants Pass Oregon 1 16 87'097 4'247 -2.746 0.198 
293.  Great Falls Montana 1 22 81'576 6'989 -2.755 0.239 
294.  Kokomo Indiana 1 20 82'486 760 -2.762 0.242 
295.  Gettysburg Pennsylvania 1 23 102'627 1'344 -2.762 0.253 
296.  Grand Island Nebraska 3 19 75'592 4'146 -2.773 0.216 
297.  Midland Michigan 1 19 83'445 1'338 -2.781 0.243 
298.  Twin Falls Idaho 2 19 110'272 6'523 -2.793 0.239 
299.  Madera California 1 23 155'925 5'535 -2.798 0.243 
300.  Casper Wyoming 1 18 80'067 13'832 -2.8 0.255 
301.  Walla Walla Washington 1 12 60'785 3'290 -2.822 0.287 
302.  Columbus Indiana 1 15 2'101'543 12'423 -2.83 0.259 
303.  California-

Lexington 
Park 

Maryland 1 18 113'182 926 -2.833 0.262 

304.  Lewiston Idaho, 
Washington 

2 16 63'104 3'845 -2.839 0.273 

305.  Carson City Nevada 1 13 55'244 375 -2.905 0.267 
306.  Enid Oklahoma 1 12 61'555 2'742 -2.91 0.26 
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